
Formal Methods in Computer-Aided Design 2023

Binary Decision Diagrams on Modern Hardware
Samuel Pastva and Thomas Henzinger

Institute of Science and Technology Austria
Klosterneuburg, 3400 Austria

Email: samuel.pastva@ist.ac.at,tah@ist.ac.at

Abstract—Binary decision diagrams (BDDs) are one of the
fundamental data structures in formal methods and computer
science in general. However, the performance of BDD-based
algorithms greatly depends on memory latency due to the reliance
on large hash tables and thus, by extension, on the speed
of random memory access. This hinders the full utilisation of
resources available on modern CPUs, since the absolute memory
latency has not improved significantly for at least a decade.

In this paper, we explore several implementation techniques
that improve the performance of BDD manipulation either
through enhanced memory locality or by partially eliminating
random memory access. On a benchmark suite of 600+ BDDs
derived from real-world applications, we demonstrate runtime
that is comparable or better than parallelising the same opera-
tions on eight CPU cores.

Index Terms—binary decision diagram, symbolic algorithm,
hash table, cache.

I. INTRODUCTION

Binary decision diagrams (BDDs) [9] (or more specifically,
reduced ordered binary decision diagrams (ROBDDs)) are one
of the fundamental data structures in computer science. They
are directed acyclic graphs representing Boolean functions,
often exponentially more succinct compared to Boolean ex-
pressions or function tables [34].

They have a wide range of applications in formal verifica-
tion [1], [10], [12], [14], [20], [43], satisfiability checking [22],
[24], hardware design [26], [27], [44], test design [37], di-
alectical frameworks [16], and optimisation [7]. They are the
building blocks for the so-called symbolic algorithms that
are, among other applications, used for exploration of large
graphs suffering from exponential state-space blow-up [3],
[5], [6], [28], [45]. Many extensions of BDDs exist that
attempt to improve their succinctness, typically at the cost
of more complex manipulation algorithms. One example are
zero-suppressed decision diagrams [32], but a more exhaustive
summary of known BDD variants can be found in [2].

There are implementations of BDDs that rely on shared-
memory [41] and distributed-memory [35] parallelism, exter-
nal memory [38] and even GPUs [42]. Furthermore, variable
ordering within the BDD has a strong impact on its succinct-
ness and has been an intense subject of optimisation [18], [21].

In this paper, we tackle another important aspect of BDD
implementation. In general, it is known that operations on
BDDs are bottlenecked by memory latency due to their
extensive use of large hash tables [8].

This is an unfortunate bottleneck on modern hardware, since
the absolute memory latency has not improved for at least the

last 15 years [13]. Memory capacity, memory bandwidth, the
number of CPU cores, as well as their width and frequency
has grown significantly. However, the memory latency on a
CPU bought today (i.e. 2023) is essentially the same as on
the one bought in 2006 [13].

In this paper, we demonstrate that as a result, a modern CPU
(2020) is in fact worse at BDD manipulation compared to its
legacy (2014) counterpart once the problem size grows beyond
the last-level cache (typically L3 cache). To address this
problem, we propose an alternative data structure that replaces
one of the underlying hash tables (node uniqueness table). We
also devise additional criteria to reduce the amount of memory
accesses performed during BDD manipulation. In the end,
we observe that our approach to BDD manipulation indeed
improves the performance on a modern CPU significantly, to
an extent comparable with parallelisation on 8 CPU cores.

Finally, note that this is not the first attempt to design
a more cache friendly BDD implementation. In [15], the
authors propose to use a more cache-friendly hashing scheme
called Hopscotch hashing. However, the paper also proposes
fundamentally different BDD manipulation algorithms (based
on BFS, not DFS), incorporates parallelism, a novel GC
algorithm, and a number of other experimental optimizations.
The work demonstrates an improvement over existing BDD
packages, but does not show whether the improvement is due
to improved cache friendliness or due to the fundamentally
different algorithm. Meanwhile, [29] proposes to order the
BDD nodes chronologically: i.e. the BDD node must appear in
memory after both of its child nodes (this is trivially satisfied
by the DFS post-order in which nodes are typically generated).
This assumption then partially eliminates memory lookups that
would be necessary with arbitrary node order. An improvement
in runtime is demonstrated, but we are not aware of any
modern work that uses this technique (the original paper is
now 25 years old). Furthermore, we are not aware of any
work that would directly measure the extent to which BDD
operations are bottlenecked by memory or attempt to control
for this aspect in the measurements.

A. Paper structure

First, Section II recalls the definition of ROBDDs and of
the APPLY algorithm which ROBDDs use to perform logical
transformations. Section III then describes our benchmark
scenario involving a modern and a legacy CPU, together with
the set of tested BDD operations and packages.

https://doi.org/10.34727/2023/isbn.978-3-85448-060-0 20 This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD23
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20
https://doi.org/10.34727/2023/isbn.978-3-85448-060-0_20
https://creativecommons.org/licenses/by/4.0/

v2

v3v3

10

a1

a3a2

fA = v2 ⇔ v3

v1

v2

10

b1

b2

fB = v1 ∨ v2

a1, b1

a1,1a1, b2

a2,1 a3,1a2,0

0,1 1,1

A×∧ B

v1

v2v2

v3v3

10

fC = fA ∧ fB

Fig. 1. Illustration of ROBDDs over the set V = {v1, v2, v3}. Solid edges represent the high successor while dashed edges represent the low successor. Left
to right: ROBDDs of two simple functions fA = v2 ⇔ v3 and fB = v1 ∨ v2. The product graph for the operation APPLY∧(a1, b1). The resulting ROBDD
for the function fC = fA ∧ fB .

Subsequently, Section IV-A demonstrates that for suffi-
ciently large problem instances, the performance of a typical
BDD package is in fact worse on the modern CPU. In
Section IV-B, we then observe that BDD nodes with in-degree
one are significantly over-represented in a typical BDD.

Using this observation, we define a new node table with
improved memory locality (Section IV-C) and formulate a
simple rule that eliminates a portion of redundant accesses
to the operations cache (Section IV-D). Finally, we test the
performance of this new approach in Section IV-E.

Due to the nature of this work, we also provide a repro-
ducibility artefact1 which contains all benchmark data and
code, as well as the raw results for each experiment. To keep
the main paper concise, some of the more low-level parts of the
methodology and results are only available within the artefact.

II. PRELIMINARIES

Since there are already many excellent texts describing
BDDs in detail, we only introduce the terminology and no-
tation relevant for this paper. An interested reader is further
referred for example to Chapter 7 of [14].

Notation: We assume V is a finite set of Boolean variable
symbols. We also use 1 and 0 interchangeably with true and
false when appropriate.

A. Binary decision diagrams

A binary decision diagram (BDD) B is a directed acyclic
graph with a single root node (denoted root(B)) and two
terminal nodes 0 and 1. We write B to mean either the
BDD itself or the set of its nodes when the distinction is
clear from context. Each non-terminal node x ∈ B is labelled
with a variable var(x) ∈ V . Furthermore, each such x ∈ B
has exactly two successor nodes denoted low(x) and high(x)
(corresponding to the choice of var(x) = 0 and var(x) = 1
respectively). A simple example is given in Fig. 1, left.

We assign a Boolean function fx : {0, 1}V → {0, 1} to each
x ∈ B s.t. fx = (var(x)∧fhigh(x))∨(¬var(x)∧flow(x)), with
f0 = false and f1 = true . In other words, every valuation of

1https://doi.org/10.5281/zenodo.7958052

variables from V determines a path from x to either 0 or 1,
corresponding to the output of the function fx.

Now, let us assume there is some total ordering on the
variables V . We say that a BDD B is ordered (OBDD) when
var(low(x)) > var(x) and var(high(x)) > var(x) for every
non-terminal x ∈ B (we also assume var(0) and var(1) are
values greater than any v ∈ V). For example, in Fig. 1, the
variable ordering is v1 < v2 < v3.

Finally, we say that B is reduced (ROBDD) when: (a) there
is no vertex x such that low(x) = high(x), and (b) there are
no two vertices x and y such that var(x) = var(y), low(x) =
low(y), and high(x) = high(y). These two requirements can
be also interpreted as “reduction rules” that describe how to
transform an OBDD into an ROBDD. In the following, we
assume all BDDs are ordered and reduced, we thus use the
terms BDD and ROBDD interchangeably.

B. The APPLY algorithm

Given a fixed ordering of variables V , each Boolean function
f : {0, 1}V → {0, 1} has a unique corresponding ROBDD [9].
We also have an algorithm that, given two ROBDDs A and
B, computes ROBDD C of the function fC = fA ⋆ fB where
⋆ is some binary Boolean operator. In the worst case, this
APPLY algorithm operates in O(|A| · |B|) time. However, the
complexity for practical BDDs is typically much smaller than
this upper bound.

In Algorithm 1, we give a recursive formulation of this
APPLY procedure. In practice, one often replaces the recursion
with a loop and an explicit stack to avoid overflow and
to eliminate function call overhead. The APPLY algorithm
also relies on two core data structures which are typically
implemented using hash tables.

First is the node table (also called unique table) accessed
using the ENSURE NODE(v, l, h) procedure. This function
searches the node table for a node x with var(x) = v,
low(x) = l, and high(x) = h. If such node is found, its
identifier x is returned. When no such node exists, a new node
is created and its identifier is returned.

Second is the cache table responsible for memorisation of
already computed results. This table is often implemented as a

123

https://doi.org/10.5281/zenodo.7958052

1 Function APPLY⋆(xA ∈ A, xB ∈ B)
2 if xA ⋆ xB ∈ {0,1} then return xA ⋆ xB ;
3 if let xC ← CACHE(xA, xB) then return xC ;
4 v ← min(var(xA), var(xB));
5 (lA, hA)← (xA, xA);
6 if v = var(xA) then
7 (lA, hA)← (low(xA), high(xA));
8 (lB , hB)← (xB , xB);
9 if v = var(xB) then

10 (lB , hB)← (low(xB), high(xB));
11 l← APPLY⋆(lA, lB);
12 h← APPLY⋆(hA, hB);
13 xC ← ENSURE NODE(v, l, h) if l ̸= h else l;
14 CACHE(xA, xB)← xC ;
15 return xC ;

Algorithm 1: BDD APPLY algorithm parametrised by a
binary Boolean operator ⋆.

leaky hash table which overwrites values when hash collision
occurs. Such implementation is correct (if a value is missing,
it is simply recomputed), but depending on the number of
collisions, it may exceed the O(|A| · |B|) time complexity.
This introduces a possible trade-off between running time and
memory consumption.

Finally, let us observe that for every operation
APPLY⋆(root(A), root(B)), there is a tighter complexity
metric given by the number of unique (xA, xB) pairs
reachable from (root(A), root(B)) by APPLY⋆. We call this
set of tuples the product graph of APPLY⋆(root(A), root(B))
and denote it A×⋆B. Note that the size of this product graph
depends on ⋆, because some operations can short-circuit the
condition on Line 2 even when one of the arguments is not
a terminal node (e.g. xA ∧ 0 = 0). We then observe that the
complexity of the APPLY algorithm is c · |A ×⋆ B| for some
constant c, assuming the calls to CACHE and ENSURE NODE
are O(1) and that CACHE is not leaky. Observe that for the
example in Fig. 1, we have |A| · |B| = 20, but |A×∧ B| = 8.

III. BENCHMARK METHODOLOGY AND HARDWARE

Due to the practical nature of this paper, we must thoroughly
disclose what benchmarks are performed and how we measure
the performance of BDD packages on our hardware.

A. Benchmark BDDs

Many authors test the performance of BDDs on pathological
worst case scenarios like the multiplier circuit or the n-queens
problem [11], [33]. While this certainly reveals some perfor-
mance characteristics of the implementation, it is susceptible
to over-fitting of a particular pattern of BDD operations. To
mitigate this issue, we derive a large benchmark dataset based
on real-world problems from model verification in systems
biology, scaling from simple BDDs to millions of nodes.

Specifically, we use the tool AEON [4] which performs
exhaustive formal analysis of Boolean networks, simple logical
models of asynchronous biological processes. We then take

the 20 largest models from the Biodivine Boolean Models
(BBM) dataset [36], ranging from 100 to 300 variables (and
consequently, 2100−300 states).

We use AEON to compute the BDD representations of
a set of network fixed-points and a set of reachable states
based on a predefined initial state for each model. These are
tasks that are also commonly performed by formal methods
tools in computer science and are not specific to Boolean
networks or systems biology. For each computation, we save
every intermediate BDD smaller than ten million nodes into
a separate file. If two different BDDs of equivalent size are
encountered, we only retain the latest BDD. This generates a
large dataset of realistic BDDs of increasing size.

Now, our goal is to define a set of benchmarks which cover
the space of admissible BDD operations over these real-world
BDDs as uniformly as possible. Each BDD B can be assigned
a bucket b(B) = log10(|B|) (the “order of magnitude” of the
size of B). We then sample pairs of BDDs A, B (w.l.o.g.
we assume |A| ≥ |B|) and compute the BDD C = A ∧ B.
Such benchmark triple (A,B,C) is then assigned into a bucket
triple (b(A), b(B), b(C)). For each bucket triple, we save the
first five unique benchmarks. The sampling stops once no new
viable benchmark is found in the last 100 samples.

In our case, this process yields 629 benchmark instances
using 963 unique BDDs. The final number of triples for each
combination of buckets is summarized in Fig. 2. While the re-
sult does not cover every theoretically admissible combination
of BDD sizes, it still covers a wide range of possible BDD op-
erations. When presenting results for individual benchmarks,
these are typically sorted by the size of the product graph
A ×∧ B, as this gives a good approximation of the expected
complexity of the BDD operation.

Finally, note that for the sake of simplicity, our tests only
cover the conjunction (∧) operator. However, we have no
reason to believe that there are significant differences in
performance compared to other Boolean operators once the
size of the product graph is taken into account. As such, we
prioritize a wider coverage of different BDD sizes to testing
more Boolean operators.

B. Hardware configuration
To compare “modern” and “legacy” CPUs, we consider the

following two platforms:
• 4-core Intel i7-4790 (released in 2014) with 32GB of

DDR3-1600 memory at CAS latency of 9 cycles.
• 8-core AMD Ryzen 5800X (year 2020) with 128GB of

DDR4-3200 memory at CAS latency of 18 cycles.
These are both very common CPUs from their respective

generations. They are paired with the maximum amount of
memory available on that platform at the top speed officially
supported by the manufacturer2. Furthermore, notice that the

2The data rate is maximal supported on both CPUs. However, in terms
of latency, the DDR3 configuration is slightly worse than the best official
JEDEC configuration (9 cycles instead of 8 for DDR3-1600), while the DDR4
configuration is slightly better than the best official JEDEC configuration (18
cycles instead of 20 for DDR4-3200). Hence the modern system even has a
small advantage compared to the officially claimed “best” configurations.

124

|A| |B| |A ∧B|
101 102 103 104 105 106 107 108 109

101 101 5 5 − − − − − − −
102 101 1 5 5 − − − − − −
102 102 0 5 5 5 − − − − −
103 101 0 0 5 5 − − − − −
103 102 5 0 5 5 1 − − − −
103 103 5 0 5 5 0 0 − − −
104 101 0 0 1 5 5 − − − −
104 102 4 0 5 5 5 1 − − −
104 103 5 0 5 5 4 0 0 − −
104 104 5 0 5 5 5 3 0 0 −
105 101 0 0 0 0 5 4 − − −
105 102 0 0 5 5 5 5 1 − −
105 103 5 0 5 5 5 5 0 0 −
105 104 5 0 5 5 5 5 4 0 0
105 105 5 0 2 5 5 5 5 1 0
106 101 0 0 0 0 5 5 5 − −
106 102 1 0 5 5 5 5 5 0 −
106 103 5 0 5 5 5 5 4 1 0
106 104 5 0 5 5 5 5 5 0 0
106 105 5 0 1 5 5 5 5 1 1
106 106 5 0 4 4 5 5 5 5 0
107 101 0 0 0 0 0 1 5 2 −
107 102 5 0 5 5 5 5 5 0 0
107 103 5 0 5 5 5 5 5 1 1
107 104 5 0 5 5 5 5 5 1 1
107 105 5 0 0 5 5 5 5 5 0
107 106 5 0 0 0 5 5 5 5 5
107 107 5 0 0 1 3 5 5 5 5

Fig. 2. The distribution of the 629 benchmarks within buckets of exponentially
increasing size. Dashes indicate combinations that are provably impossible.

effective latency of both memory configurations is the same:
the DDR4 configuration has twice the CAS latency, but also
twice the data rate of the DDR3 configuration3.

All automated overclocking features were disabled on both
CPUs to improve consistency between runs and we did not
observe any thermal throttling. Furthermore, we assume that
no other programs were using a significant amount of re-
sources during measurements. This is critical due to the fact
that multiple CPU cores compete for the shared L3 cache.

Finally, as a sanity check, some tests were also repeated on a
similar server hardware (Intel Xeon E7-8860; released in 2011,
and AMD EPYC 7713; released in 2021) yielding comparable
results. However, since we did not have exclusive access to
these machines and thus could not prevent measurement noise
caused by sharing resources with other software, we focus on
the numbers obtained for the “desktop” platforms.

C. BDD packages and the benchmark harness

Our implementation is built using the Rust programming
language. In several instances, we use unsafe operations in
Rust to remove unnecessary array bounds check in the core
algorithm. Aside from these instances, the memory safety of
the implementation has been validated by the Rust compiler.
Testing was performed using Debian 12 with gcc 12.2.0

3Currently, the fastest officially supported memory configuration in con-
sumer CPUs is roughly DDR5-5600 CL32 (faster configurations do exist but
require CPU overclocking and are typically not feasible with high amounts
of memory). Unfortunately, we did not have access to such configuration.
However, its effective latency is again very similar to our tested scenarios.

and rustc 1.71.0. Each measurement was performed over
at least three runs. When we observed standard deviation
higher than 5% of the average, we repeated the experiment
up to ten times to improve reliability. However, this was only
rarely necessary. Due to this low run-to-run variance, we only
report the average runtime for each experiment.

Aside from our purpose-built implementation, we consider
the following three BDD packages:

• cudd 3.0 [39] as one of the best known BDD pack-
ages. While originally designed over 25 years ago, CUDD
is still one of the most widely used BDD packages.

• sylvan [41] is one of the first BDD packages to demon-
strate practical multi-core scalability. When presenting
results, we suffix its name with the number of employed
cores (e.g. sylvan-4).

• lib-bdd of the tool AEON [4] is an example of a
“naive” BDD implementation: it uses hash tables pro-
vided by Rust’s standard library and generally does not
implement any advanced features like variable reordering.

To compare performance, we focus on individual BDD
operations, i.e. on the individual runs of the APPLY algorithm
with the conjunction (∧) operator. For each package we
prepared a test harness where the runtime of the operation
is isolated from other overhead such as package initialization
and loading of test BDDs into memory. Where applicable, we
disable garbage collection or dynamic variable reordering, as
it is not relevant for our testing.

Furthermore, the performance of BDD packages often
strongly depends on the initial size of the node and cache
table [40]. While the packages can grow these data structures
dynamically, the combination of the problem size and the
growth rate can influence runtime significantly [40].

To reduce the impact of this variable on the final runtime,
we allow each package to pre-allocate as much memory as
possible during initialization (not counted towards the total
runtime)4. While this can impact performance on smaller
BDDs, it seems necessary to allow each package to reach its
full potential on larger benchmarks and is outright mandatory
in some instances.5 Furthermore, this models the situation
where our single benchmarked BDD operation is part of a
larger symbolic computation which amortizes the allocation
of the necessary data structures across many operations.

Finally, when reporting the average value for additive
metrics (like runtime), this stands for the standard arithmetic
mean. Meanwhile, for multiplicative metrics (like speed-up),
this corresponds to the geometric mean which is more appro-
priate in such instances. We also use internal CPU performance
counters to measure executed instructions per clock and L3

4Package lib-bdd cannot perform any pre-allocation and thus its memory
allocation counts towards the total runtime. Also note that while each package
is allowed to reserve and initialize as much memory as needed, it can still
choose to initially use a smaller portion and grow the hash tables gradually.
In particular, sylvan grows the hash table utilization gradually, while cudd
always uses the whole table from the start.

5In cudd, the growth is extremely slow beyond the first few gigabytes of
memory, making it practically unusable unless we explicitly override the table
sizes to reserve as much memory as necessary beforehand.

125

APPLY product graph |A×∧ B|
lib-bdd ■ / cudd ▲ / sylvan-1 •

sp
ee

d-
up

on
m

od
er

n
C

PU

104 105 106 107 108 109
1
4×

1
2×

1×

2×

4×

Fig. 3. The speed-up in runtime of the modern vs. the legacy system. Speed-
up greater than 4× is truncated to 4×. Points below the red line represent
slow-down instead of speed-up. Points to the right of the vertical line represent
200 largest benchmark instances. Note that both axis are logarithmic.

cache miss ratio. However, their usage has negligible impact
on runtime.6

IV. ALGORITHMS AND RESULTS

We structure this section as follows: First, we present
several empirical findings about BDDs and the current APPLY
implementations. Based on these findings, we then propose
a variant of the node and cache table which should help
improve performance on modern CPUs. Finally, we evaluate
these claims empirically on our benchmark dataset.

A. Comparing modern and legacy systems

While it is generally known that the performance of BDD
operations is bottlenecked by the memory latency, it is useful
to demonstrate the extent of this problem. To do so, we
benchmarked each BDD package on both the legacy and
the modern system, calculating the relative speed-up achieved
by the modern system. Note that for this test, we used the
same pre-allocation settings on both systems and excluded six
benchmarks that we could not reliably complete on the legacy
system due to insufficient memory. The results of this analysis
are presented in Fig. 3.

If we consider the full benchmark suite, the results appear
to be largely positive: For lib-bdd and sylvan-1, two
packages that gradually increase their table sizes with bench-
mark size, we see 1.52× and 1.78× average improvement,
respectively. Only for cudd, which was instructed to use the
maximal table size for each benchmark due to issues with
table growth, we actually observe a slow-down of 0.69×.
However, once we focus on the 200 largest benchmarks, every
package is actually slower compared to the legacy system: a
lib-bdd operation is 0.88× slower on a modern system,

6Performance counters are thread-local and thus could not be reliably used
for the multithreaded BDD package sylvan, even with one worker.

cudd operation is 0.77× slower, and a sylvan-1 operation
is even 0.61× slower.

From Fig. 3, it is clear that small benchmarks benefit the
most from the modern CPU (except for cudd), which aligns
with our assumption that additional L3 cache on the modern
CPU improves BDD performance. In case of cudd, the reason
for the poor performance on the smaller problem instances is
the table growth setting: When the hash tables grow gradually,
they maintain high density and thus utilise the available cache
lines well. However, when the table is set to its maximal size
from the start, it is very sparse for small problems. As such,
each cache line will typically store only one element, making
it much less effective. Intuitively, for this cudd configuration,
every benchmark behaves like a “large” benchmark and it
further amplifies the difference in practical latency of the
modern and legacy system.

Also note that the relatively good results of lib-bdd
compared to the other packages can be primarily attributed
to its naive architecture: Each BDD operation in lib-bdd
performs more instructions to accomplish the same task com-
pared to the other packages (evidence for this is given in
the subsequent text), which leaves the CPU more headroom
for optimization and reordering while waiting for memory. In
other words, lib-bdd achieves the best speed-up on large
problems because it is the slowest, most inefficient package
with the most space to improve.

To support these claims experimentally, we use CPU per-
formance counters to measure the number of CPU cycles, ex-
ecuted instructions, L3 cache references and L3 cache misses
for each benchmark. Interestingly, both cudd and lib-bdd
seem to perform approx. 22 L3 cache references for each node
of the APPLY product graph on average. This number is also
independent on the size of the product graph. Similarly, the
absolute number of executed instructions per product graph
node is also largely constant, but here cudd is consistently
almost 2× better than lib-bdd. Both implementations thus
perform as expected: their complexity in terms of instructions
is in fact c · |A×∧ B|, with ccudd < clib-bdd.

However, for the 200 largest problem instances, the average
IPC (instructions per cycle) of both implementations is very
low: 0.35 for cudd and 0.85 for lib-bdd7. This is because
both implementations miss almost 40% of the L3 cache
requests while an L3 cache reference occurs on average every
14 (cudd) and 32 (lib-bdd) instructions.

In theory, the modern CPU can achieve up to 4 IPC,
and we actually observed 3.49 IPC on some small problem
instances. At the same time, the worst IPC observed on the
large benchmarks was just 0.18. Intuitively, this means that
for the larger problem instances, the CPU is utilizing less
than 10% of its available compute resources. Furthermore, the
results indicate that any speed-up between the modern and the
legacy system occurs for problem instances that fit into (or are
close to) the available L3 cache.

7Note that higher IPC generally does not guarantee higher performance.
While lib-bdd achieves higher IPC, it also performs more instructions and
is overall 0.84× slower than cudd in these tests.

126

1 2 3 4 ≥ 5

0

0.2

0.4

0.6

0.8

1

vertex in-degree

fr
ac

tio
n

of
al

l
ve

rt
ic

es

Fig. 4. The in-degree distribution within the BDDs of our benchmark dataset
larger than 1000 nodes. Each box plot summarises the proportion of vertices
with the corresponding in-degree across all available benchmark BDDs. Last
box plot covers all in-degrees greater than or equal to five.

B. In-degree distribution in BDDs

Next we state a very simple but powerful observation: Due
to each non-terminal node having exactly two outgoing edges,
a BDD B has 2·(|B|−2) edges. Furthermore, each node aside
from root has at least one incoming edge. As such, for every
node with in-degree k > 2, we expect to have k − 2 nodes
with only one incoming edge. This leads us to an intuitive
hypothesis that single-parent nodes are greatly overrepresented
among BDD nodes.

We can easily verify that this property holds in our bench-
mark dataset. In Fig. 4, we show the portion of nodes for
individual in-degrees, cutting off at ≥ 5 incoming edges. As
expected, our observations strongly resemble an exponential
distribution: if we draw a random BDD node, there is roughly
a 70% chance the node has a single parent, 20% chance it has
two parents, 3% chance of it having three parents, and so on.

C. Parent-local node table design

We can now use the previous claim to design a new node
table which is simpler and more cache friendly than current
implementations. For simplicity, we assume that the node table
stores entries in a continuous array, with new entries simply
added to the end of the node list. This mirrors the assumption
form [29], but as we later show, the node ordering is not a strict
requirement for our approach. To resolve an ENSURE NODE
query, each node maintains a pointer structure akin to a prefix
trie consisting of a subset of its parent nodes.

We know that due to the in-degree distribution, the vast
majority of such tries will only store a handful of elements.
Furthermore, due to the recursive nature of APPLY, whenever
ENSURE NODE(v, l, h) is executed, it is likely that the entries
for nodes l and h are still in the CPU cache.

The pseudocode for this approach is given in Algorithm 2.
Here, CREATE allocates a new table slot for the given node
and returns the slot identifier. MSB stands for most significant
bit, and ROTATE ONE is a simple single-bit left rotation. Ex-
pression node(t) is a shorthand for (var(t), low(t), high(t)).

Finally, for each node x, we introduce three additional
identifiers which are all initialised to nil and stored together

1 Function ENSURE NODE(v, l, h)
2 (cmax, cmin)← (max(l, h),min(l, h));
3 hash← HASH(v, cmin);
4 t← parent(cmax);
5 if t is nil then
6 x← CREATE(v, l, h);
7 parent(cmax)← x;
8 return x;
9 loop

10 if (v, l, h) = node(t) then return t;
11 msb← MSB(hash) ; // msb ∈ {0, 1}
12 hash← ROTATE ONE(hash);
13 if nextmsb(t) is nil then
14 x← CREATE(v, l, h);
15 nextmsb(t)← x;
16 return x;
17 else
18 t← nextmsb(t);

Algorithm 2: The ENSURE NODE procedure that resolves
node duplicates through a parent-local trie.

with the node data in the node table: parent(x), next0(x),
and next1(x). Here, parent(x) is the reference to the root
of the prefix trie. This trie then references all nodes where x
is the maximal child (see Lines 2-4). Subsequently, next0(x)
and next1(x) reference the “successor” nodes within the trie.
Which successor is taken depends on the MSB prefix of the
node hash (see Lines 11-12).

We’d like to highlight several properties of Algorithm 2:
• We choose cmax to store the node because it avoids ter-

minal nodes, which typically have very high in-degrees.
However, other suitable conditions could be considered,
as long as they only depend on the values (v, l, h).

• We do not include cmax in the node hash. Furthermore,
the hash need not be truncated to a specific node table
length, which further simplifies the hash function8.

• Consequently, our HASH function is a simple multiplica-
tive hash (v xor cmin)·p where p is a large prime number
and the multiplication is natively truncated to 64 bits.

• If the table grows such that it needs to be completely re-
allocated, the existing nodes can be simply copied: there
is no need to relocate nodes or recompute hashes.

To test the viability of this approach in practice, we prepare
a simple benchmark that recreates all of our test BDDs one-
by-one: first in a standard hash map with quadratic probing
and a fast industry-standard hash function, and then in our
parent-local node table. The nodes are created in DFS post-
order, i.e. in the same order as within the APPLY algorithm.
Averaging all BDDs, the parent-local table is 2.38× faster.
However, on BDDs with at least one million nodes, the parent-

8Note that internally, a x mod y operation (except for x mod 2k)
translates to division, which is still a relatively costly operation even on
modern CPUs. A single division instruction may require as many CPU cycles
as the whole ENSURE NODE method if the required data is present in cache.

127

local approach is even 4.08× faster than the standard hash
table, with an L3 cache miss rate of just 18% vs. 27% for the
standard hash table. Keep in mind that these results do not
account for the rest of the APPLY algorithm. We will revisit
this aspect in further experiments.

D. Excluding single-parent tasks from CACHE

Unfortunately, we cannot apply the same principle to the
CACHE table, because its entries (i.e. the nodes of the product
graph A×⋆B) are queried in DFS pre-order, unlike the output
BDD nodes which are queried in DFS post-order. This means
that when we first query a particular entry (xA, xB), we do
not have any information about its child nodes yet.

However, the observation about the number of single parent
nodes nevertheless applies to the product graph as well. That
is, for the majority of (xA, xB) pairs explored by the APPLY
algorithm, there is a single parent (yA, yB) through which
(xA, xB) is discovered.

Proposition 1: Let (xA, xB) be a node of the product graph
A×⋆ B such that it has a single parent node (yA, yB). Then
it is unnecessary to store the result for (xA, xB) in CACHE as
long as (yA, yB) is saved properly.

Intuitively, every time (xA, xB) is visited by the APPLY
algorithm, it is through the node (yA, yB). As such, once the
result for (yA, yB) is saved in the cache, (xA, xB) is never
visited again. Consequently, due to the distribution of node
in-degrees, we know that the majority of nodes in the product
graph do not actually need to be stored in CACHE.

However, this proposition does not tell us how to detect
these “redundant” cache entries. Furthermore, detecting all
such entries appears to be a hard problem: when a product
graph node is first visited, we do not know if it can be visited
again from some other source. If we mistakenly exclude it
from CACHE, it could result in re-computation of a non-trivial
portion of the product graph.

Proposition 2: Assume xA has a single parent in BDD A
and xB has a single parent in BDD B. Then (xA, xB) has a
single parent in any product graph A×⋆ B.

While this certainly does not cover all redundant entries,
such observation gives us a way of eliminating at least some of
the redundant work. To implement it, we only need to maintain
a simple 2-bit {0, 1,many} parent counter for each BDD node.
It is then easy to verify the conditions of our proposition during
each CACHE access and to skip any unnecessary queries.

In our benchmark dataset, this criterion leads to an average
22% reduction in the number of product graph nodes stored
in CACHE. However, we should note that this method is quite
uneven: the eliminated node ratio ranges from more than 90%
to less than 1% depending on the BDD. Nevertheless, due to its
low overhead, we still consider it a worthwhile improvement.

In the future, it is possible to explore additional heuristics
that eliminate a higher percentage of single-parent nodes from
the operations cache.

Other cache table considerations: Aside from the afore-
mentioned improvements, we use a relatively standard cache
table design: (1) we overwrite results on collision; (2) we grow

APPLY product graph |A×∧ B|
cudd ▲ / sylvan-8 •

sp
ee

d-
up

on

104 105 106 107 108 109
1
4×

1
2×

1×

2×

4×

8×

16×

32×

Fig. 5. The speed-up in runtime of our implementation compared to cudd
and sylvan-8, truncated to 32×. Points below the red line represent slow-
down instead of speed-up. Points to the right of the vertical line represent
200 largest benchmark instances. Note that both axis are logarithmic.

the table in exponents of two once the number of insertions
exceeds the current length; (3) to determine the cache slot,
we use log2(length) most significant bits of the same prime
multiplicative hash as for the node table, but the input is a
single integer concatenation of xA and xB .

Note that when this hash is truncated to the same bit-
length as the input, it is in fact perfect: it maps each input
to a unique output [31]9. As such, we only need to save
the hash of (xA, xB) instead of the whole key. This does
not necessarily reduce memory consumption, but there is no
need to recompute the hash during table growth. Furthermore,
when the table grows, this hash has a very predictable node
placement since the new slot is a single-bit extension of the
previous slot. Consequently, similar to the node table, growing
the cache is essentially a memory copy operation.

E. Performance evaluation

1) State-of-the-art BDD packages: To evaluate the perfor-
mance of this approach, we compare the implementation to
the cudd and sylvan-8 runtime on our modern CPU (we
omit lib-bdd as it is largely superseded by at least one
of the methods on every benchmark). The effective speed-
up is shown in Fig. 5. If we focus on the 200 largest
benchmarks, our implementation achieves on average a 3.70×
speed-up compared to cudd and 5.69× speed-up compared to
sylvan-8. However, we see that especially for sylvan, the
improvements are diminishing as the benchmark size grows.

Therefore, we also investigate the 10 largest benchmarks.
Here, sylvan-8 is sometimes faster than our implementa-
tion, however our method is still on average 1.03× as fast
as sylvan-8. Note that these are tasks that all consume
at least 16 GBs and sometimes more than 32 or 64 GBs

9This hash is similar and often confused with the notorious Knuth
multiplicative hash [25] and the so-called binary multiplicative hash [17].
However, these do not use a prime as the multiplier and are consequently not
perfect [30].

128

APPLY product graph |A×∧ B|

sp
ee

d-
up

on
m

od
er

n
C

PU

104 105 106 107 108 109
1
4×

1
2×

1×

2×

4×

Fig. 6. The speed-up in runtime on the modern vs. the legacy system for
our implementation. Points below the red line represent slow-down instead
of speed-up. Points to the right of the vertical line represent 200 largest
benchmark instances. Note that both axis are logarithmic.

of system memory over hundreds of millions of product
graph nodes. This means that our implementation is better on
small and medium tasks while achieving roughly comparable
performance on very large tasks.

Furthermore, note that our implementation is always faster
than sylvan-4 (not shown in the figure), and on average
1.5× faster on the 10 largest tasks. We also note that in our
testing, sylvan-4 was on average 2.27× (up to 3.9×) faster
and sylvan-8 on average 3.22× (up to 6.3×) faster than
sylvan-1 for the 200 largest benchmarks. While this is not
perfect scaling, it appears to be roughly in line with previous
reported results for sylvan [41].

We also investigated the performance counters to explain
this improvement. For the 200 largest instances, we see
average IPC of 1.26 (as opposed to cudd’s 0.35), while the
L3 cache miss rate is only 27% compared to cudd’s 40%.
Furthermore, our implementation needs on average only 12 L3
cache references per product graph node compared to cudd’s
21, and the number of instructions executed between such
references increased to 42 from 14 on average. In other words,
our implementation performs more work with fewer requests
to the main memory, just as we were trying to achieve. For
the top 10 benchmarks, these numbers are less ideal, with just
0.73 IPC and 32% cache miss rate, but this is still quite enough
to achieve a sizeable improvement over cudd.

2) Modern hardware: Next, we investigate whether we
achieved our initial goal. That is, whether we improved the
scalability of the BDD APPLY algorithm on modern hardware.
As such, we repeat the experiment from Section IV-A with our
new implementation. The results are shown in Fig. 6, which
is directly comparable to Fig. 3.

Here, we see that the speed-up is again diminishing with
growing BDD size. However, we also see that the overall
improvement is greater and more predictable compared to the
other implementations. In particular, while we see a slight
slow-down in some of the experiments, it is generally within

the 5% measurement noise tolerance established earlier. For
the whole dataset, we see an average speed-up of 1.72×, which
is comparable to lib-bdd and sylvan-1. However, for the
200 largest benchmarks, we still have a speed-up of 1.26×, as
opposed to slow-down for lib-bdd (0.88×) and sylvan-1
(0.61×). Finally, zooming in on the 10 largest benchmarks,
we have a small average slow-down of 0.95×, which is again
(barely) within our 5% measurement tolerance.

3) Memory consumption and memory layout: Due to the
prototype nature of our implementation, we have not thor-
oughly evaluated the memory consumption yet. However, we
observed no significant differences between the packages when
the memory was limited to 32GB. Specifically, each package
ran out of memory on roughly the same handful of largest
benchmark problems. We thus do not consider out method to
be significant advantaged nor disadvantaged in this regard.

Finally, we should stress that in the presented setting,
our method supersedes [29]. It benefits from the temporal
ordering of BDD nodes, but further reduces the number of
necessary memory accesses and collisions through the use of
the prefix trie. However, while our method also benefits when
the in-memory ordering of BDD nodes matches the temporal
ordering, the in-memory ordering is not strictly required: as
opposed to [29], the critical aspects of the temporal ordering
are essentially stored in the prefix tries.

This begs the question: How important is the in-memory
node ordering for our method? To test this, we prepared an
experiment where we compare our method on BDDs pre-
processed with three possible in-memory orderings: DFS pre-
order, DFS post-order, and randomly shuffled.

We find that when comparing pre-order and post-order, pre-
order is slightly faster, but the difference is < 5% and dimin-
ishes with increasing benchmark size. However, comparing
post-order and shuffled node ordering, we observe that post-
order is on average 26% faster, and almost 40% faster for the
200 largest benchmarks. However, this lead then diminishes
for the largest 10 queries, where it is less than 10%, suggesting
that the ordering is the most important for medium-sized
BDDs that are “close” to the L3 cache capacity.

Hence we see that the improvements of our method are not
completely dependent on the in-memory layout of the BDD
nodes. The method is still better than sylvan-4, but not
as good as sylvan-8 for the largest benchmarks. However,
the choice of memory ordering does measurably influence
the outcome. Consequently, this information can inform the
implementation of garbage collection algorithms for BDDs.
It is not uncommon for garbage collection methods to reorder
objects to improve memory locality [23]. Our results thus show
this to be an important consideration for BDDs.

V. CONCLUSION

In this paper, we demonstrated the impact of memory
latency on the performance of BDD packages. Specifically,
we show that a more “modern” CPU does not necessarily
guarantee improved performance once the size of the problem
no longer fits into the L3 cache of the CPU.

129

We then proposed improvements to the node and cache table
used within the APPLY algorithm with the goal of increasing
locality and reducing the number of memory accesses overall.
We demonstrate that with these improvements, our implemen-
tation significantly outperforms classical BDD packages like
cudd, and is better or comparable to parallelization of the
same task to 8 CPU cores using the package sylvan. Impor-
tantly, we also show that it is the only implementation in our
testing that exhibits a consistent improvement in performance
when comparing a modern and a legacy CPU.

However, we should stress that the results of this paper
do not argue against parallelization of BDD operations. We
simply use parallelism as a meaningful comparison that gives
an alternative way of speeding up BDD operations. In fact,
we believe that similar performance benefits can also translate
to parallel BDD algorithms if appropriate data structures are
developed based on our observations.

Additionally, we should note that the presented approach
does not in any way prevent dynamic variable reordering: to
swap two adjacent variables, we can swap the BDD nodes
in-place, such as in [19]. We then update the parent-local
trie for each affected node accordingly. This requires a delete
operation on the trie structure, but such operation does not
differ from deletion on normal tries.

Finally, we observe that latest hardware developments open
new interesting propositions for improving BDD performance.
First, several new CPUs utilize silicon die stacking or other
advanced packaging techniques to significantly increase the
L3 cache capacity or add another layer of L4 cache.

Second, we are currently experiencing a resurgence of task-
specific hardware in the field of statistical machine learning
and a great increase in capabilities of field programmable gate
arrays (FPGAs). Perhaps an in-hardware APPLY implementa-
tion tuned for out-of-order exploration of the product graph
can be designed such that it sufficiently hides the large latency
of modern random access memory.

ACKNOWLEDGMENTS

This work was supported by the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 101034413 and the
“VAMOS” grant ERC-2020-AdG 101020093.

REFERENCES

[1] Ehab Al-Shaer and Saeed Al-Haj. Flowchecker: Configuration analysis
and verification of federated openflow infrastructures. In Proceedings of
the 3rd ACM workshop on Assurable and usable security configuration,
pages 37–44, 2010.

[2] Junaid Babar, Gianfranco Ciardo, and Andrew Miner. CESRBDDs:
binary decision diagrams with complemented edges and edge-specified
reductions. International Journal on Software Tools for Technology
Transfer, 24(1):89–109, 2022.

[3] Jiřı́ Barnat, Jakub Chaloupka, and Jaco Van De Pol. Distributed
algorithms for SCC decomposition. Journal of Logic and Computation,
21(1):23–44, 2011.

[4] Nikola Beneš, Luboš Brim, Jakub Kadlecaj, Samuel Pastva, and David
Šafránek. AEON: attractor bifurcation analysis of parametrised Boolean
networks. In Computer Aided Verification: 32nd International Confer-
ence, CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings,
Part I 32, pages 569–581. Springer, 2020.

[5] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. Com-
puting bottom SCCs symbolically using transition guided reduction. In
Computer Aided Verification: 33rd International Conference, CAV 2021,
Virtual Event, July 20–23, 2021, Proceedings, Part I 33, pages 505–528.
Springer, 2021.

[6] Nikola Beneš, Luboš Brim, Samuel Pastva, and David Šafránek. Sym-
bolic coloured SCC decomposition. In Tools and Algorithms for the
Construction and Analysis of Systems: 27th International Conference,
TACAS 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27–April 1, 2021, Proceedings, Part II 27, pages 64–83. Springer,
2021.

[7] David Bergman, Andre A Cire, Willem-Jan Van Hoeve, and John
Hooker. Decision diagrams for optimization, volume 1. Springer, 2016.

[8] Karl S Brace, Richard L Rudell, and Randal E Bryant. Efficient imple-
mentation of a BDD package. In Proceedings of the 27th ACM/IEEE
design automation conference, pages 40–45, 1991.

[9] Randal E Bryant. Graph-based algorithms for Boolean function manip-
ulation. Computers, IEEE Transactions on, 100(8):677–691, 1986.

[10] Randal E Bryant. Binary decision diagrams and beyond: Enabling tech-
nologies for formal verification. In Proceedings of IEEE International
Conference on Computer Aided Design (ICCAD), pages 236–243. IEEE,
1995.

[11] Luigi Capogrosso, Luca Geretti, Marco Cristani, Franco Fummi, and
Tiziano Villa. HermesBDD: A multi-core and multi-platform binary
decision diagram package. arXiv preprint arXiv:2305.00039, 2023.

[12] Krishnendu Chatterjee, Wolfgang Dvořák, Monika Henzinger, and
Alexander Svozil. Symbolic time and space tradeoffs for probabilistic
verification. In 2021 36th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13. IEEE, 2021.

[13] ChipsAndCheese. AMD’s 7950X3D: Zen 4 gets VCache. https:
//chipsandcheese.com/2023/04/23/amds-7950x3d-zen-4-gets-vcache/,
Apr 2023. Accessed: 2023-05-01.

[14] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick
Bloem, et al. Handbook of model checking, volume 10. Springer, 2018.

[15] Mahmoud Elbayoumi, Michael S Hsiao, and Mustafa ElNainay. A
novel concurrent cache-friendly binary decision diagram construction
for multi-core platforms. In 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1427–1430. IEEE, 2013.

[16] Stefan Ellmauthaler, Sarah Alice Gaggl, Dominik Rusovac, and Jo-
hannes P Wallner. Representing abstract dialectical frameworks with
binary decision diagrams. In Logic Programming and Nonmonotonic
Reasoning: 16th International Conference, LPNMR 2022, Genova, Italy,
September 5–9, 2022, Proceedings, pages 177–189. Springer, 2022.

[17] Jeff Erickson. Algorithms. 2019.
[18] Eric Felt, Gary York, Robert Brayton, and Alberto Sangiovanni-

Vincentelli. Dynamic variable reordering for BDD minimization. In
Proceedings of EURO-DAC 93 and EURO-VHDL 93-European Design
Automation Conference, pages 130–135. IEEE, 1993.

[19] Masahiro Fujita, Yusuke Matsunaga, and Taeko Kakuda. On variable
ordering of binary decision diagrams for the application of multi-level
logic synthesis. In Proceedings of the European Conference on Design
Automation., pages 50–54. IEEE, 1991.

[20] Daochuan Ge, Meng Lin, Yanhua Yang, Ruoxing Zhang, and Qiang
Chou. Quantitative analysis of dynamic fault trees using improved
sequential binary decision diagrams. Reliability Engineering & System
Safety, 142:289–299, 2015.

[21] Justin E Harlow III and Franc Brglez. Design of experiments in
BDD variable ordering: Lessons learned. In Proceedings of the 1998
IEEE/ACM international conference on Computer-aided design, pages
646–652, 1998.

[22] Tobias Heß, Chico Sundermann, and Thomas Thüm. On the scalability
of building binary decision diagrams for current feature models. In
Proceedings of the 25th ACM International Systems and Software
Product Line Conference-Volume A, pages 131–135, 2021.

[23] Xianglong Huang, Stephen M Blackburn, Kathryn S McKinley, J Eliot B
Moss, Zhenlin Wang, and Perry Cheng. The garbage collection advan-
tage: Improving program locality. ACM SIGPLAN Notices, 39(10):69–
80, 2004.

[24] Martin Jonáš and Jan Strejček. Solving quantified bit-vector formulas
using binary decision diagrams. In Theory and Applications of Sat-
isfiability Testing–SAT 2016: 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings 19, pages 267–283. Springer, 2016.

130

https://chipsandcheese.com/2023/04/23/amds-7950x3d-zen-4-gets-vcache/
https://chipsandcheese.com/2023/04/23/amds-7950x3d-zen-4-gets-vcache/

[25] Donald Ervin Knuth. The art of computer programming, volume 3:
Sorting and searching, volume 3. Pearson Education India, 1973.

[26] Lukas Kohutka and Peter Pistek. Faster synthesis of combinational
logic based on multiplexer trees and binary decision diagrams. In
2014 IEEE 12th IEEE International Conference on Emerging eLearning
Technologies and Applications (ICETA), pages 239–244. IEEE, 2014.

[27] Jitendra Kumar, Yukio Miyasaka, Asutosh Srivastava, and Masahiro
Fujita. Formal verification of integer multiplier circuits using binary
decision diagrams. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2022.

[28] Casper Abild Larsen, Simon Meldahl Schmidt, Jesper Steensgaard,
Anna Blume Jakobsen, Jaco van de Pol, and Andreas Pavlogiannis.
A truly symbolic linear-time algorithm for SCC decomposition. In
Tools and Algorithms for the Construction and Analysis of Systems:
29th International Conference, TACAS 2023, pages 353–371. Springer,
2023.

[29] David E Long. The design of a cache-friendly BDD library. In Proceed-
ings of the 1998 IEEE/ACM international conference on Computer-aided
design, pages 639–645, 1998.

[30] Memotut. Multiplicative hash is not perfect. https://memotut.com/en/
aeefa085417b7134f793/.

[31] Mercari. Knuth multiplicative hash is the least complete hash func-
tion. https://engineering.mercari.com/blog/entry/2017-08-29-115047/,
Oct 2017. Accessed: 2023-05-01.

[32] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in
combinatorial problems. In Proceedings of the 30th International Design
Automation Conference, pages 272–277, 1993.

[33] AMY Miyasaka and M Fujita. A simple BDD package without variable
reordering and its application to logic optimization with permissible
functions. In Proc. Int. Workshop Log. Synth, pages 1–8, 2019.

[34] Jim Newton and Didier Verna. A theoretical and numerical analysis of
the worst-case size of reduced ordered binary decision diagrams. ACM
Transactions on Computational Logic (TOCL), 20(1):1–36, 2019.

[35] Wytse Oortwijn, Tom van Dijk, and Jaco van de Pol. Distributed binary
decision diagrams for symbolic reachability. In Proceedings of the 24th
ACM SIGSOFT International SPIN Symposium on Model Checking of
Software, pages 21–30, 2017.

[36] Samuel Pastva, David Safranek, Nikola Benes, Lubos Brim, and Thomas
Henzinger. Repository of logically consistent real-world boolean net-
work models. bioRxiv, pages 2023–06, 2023.

[37] Itai Segall, Rachel Tzoref-Brill, and Eitan Farchi. Using binary decision
diagrams for combinatorial test design. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, pages 254–
264, 2011.

[38] Steffan Christ Sølvsten, Jaco van de Pol, Anna Blume Jakobsen, and
Mathias Weller Berg Thomasen. Adiar binary decision diagrams in
external memory. In Tools and Algorithms for the Construction and
Analysis of Systems: 28th International Conference, TACAS 2022, pages
295–313. Springer, 2022.

[39] Fabio Somenzi. CUDD: CU decision diagram package release 3.0.0.
URL: http://vlsi. colorado. edu/fabio/CUDD, 4(3), 2015.

[40] Tom van Dijk, Ernst Moritz Hahn, David N Jansen, Yong Li, Thomas
Neele, Mariëlle Stoelinga, Andrea Turrini, and Lijun Zhang. A compar-
ative study of BDD packages for probabilistic symbolic model checking.
In Dependable Software Engineering: Theories, Tools, and Applications:
First International Symposium, SETTA 2015, Nanjing, China, November
4-6, 2015, Proceedings 1, pages 35–51. Springer, 2015.

[41] Tom Van Dijk and Jaco Van de Pol. Sylvan: multi-core framework
for decision diagrams. International Journal on Software Tools for
Technology Transfer, 19:675–696, 2017.

[42] Miroslav N Velev and Ping Gao. Efficient parallel gpu algorithms
for BDD manipulation. In 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 750–755. IEEE, 2014.

[43] Alexander Von Rhein, Sven Apel, and Franco Raimondi. Introducing
binary decision diagrams in the explicit-state verification of Java code.
In Proc. Java Pathfinder Workshop, volume 82, page 2, 2011.

[44] Liudong Xing, Ola Tannous, and Joanne Bechta Dugan. Reliability
analysis of nonrepairable cold-standby systems using sequential bi-
nary decision diagrams. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 42(3):715–726, 2011.

[45] Yang Zhao and Gianfranco Ciardo. Symbolic computation of strongly
connected components and fair cycles using saturation. Innovations in
Systems and Software Engineering, 7:141–150, 2011.

131

https://memotut.com/en/aeefa085417b7134f793/
https://memotut.com/en/aeefa085417b7134f793/
https://engineering.mercari.com/blog/entry/2017-08-29-115047/

	Introduction
	Paper structure

	Preliminaries
	Binary decision diagrams
	The apply algorithm

	Benchmark methodology and hardware
	Benchmark BDDs
	Hardware configuration
	BDD packages and the benchmark harness

	Algorithms and results
	Comparing modern and legacy systems
	In-degree distribution in BDDs
	Parent-local node table design
	Excluding single-parent tasks from cache
	Performance evaluation
	State-of-the-art BDD packages
	Modern hardware
	Memory consumption and memory layout

	Conclusion
	References

