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ABSTRACT
We consider N trapped bosons in the mean-field limit with coupling constant λN = 1/(N − 1). The ground state of such systems exhibits
Bose–Einstein condensation. We prove that the probability of finding ℓ particles outside the condensate wave function decays exponentially
in ℓ.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0172199

I. INTRODUCTION AND MAIN RESULT
We consider N bosons described by the Hamiltonian

HN =
N

∑
i=1
(−Δi + Vext

(xi)) +
1

N − 1 ∑1≤i<j≤N
v(xi − xj) (1.1)

acting on the N-particle Hilbert space HN
= ⊗

N
symL2

(R3
). We shall work under the following assumptions:

(A1) The external potential Vext : R3
→ R is measurable, locally bounded and satisfies Vext

(x)→∞ as ∣x∣→∞, i.e., it acts as a confining
potential.

(A2) The pair potential v : R3
→ R is either (i) a pointwise bounded, even function with non-negative Fourier transform v̂(k) ≥ 0 or (ii)

the repulsive Coulomb potential v(x) = λ∣x∣−1 with λ > 0.

Under these conditions, HN is essentially self-adjoint and has a unique ground state, which we denote by ΨN . It is well understood
that the ground state exhibits complete Bose–Einstein condensation (BEC) in the minimizer φ ∈ L2

(R3
) of the Hartree energy functional

u↦ N−1
⟨u⊗N , HN u⊗N

⟩. This means that in the limit N →∞, most of the particles occupy the same one-particle state φ ∈ L2
(R3
). To make

this statement precise, let p = ∣φ⟩⟨φ∣ and consider the family of operatorsPN(ℓ) : HN
→ H

N with ℓ ∈ {0, . . . , N} given by

PN(ℓ) = ((1 − p)⊗ℓ ⊗ p⊗N−ℓ
)

sym
. (1.2)

It is straightforward to verify that

PN(ℓ)PN(k) = δℓk and 𝟙 =
N

∑
ℓ=0
PN(ℓ). (1.3)

The operator PN(ℓ) projects onto states that contain N − ℓ particles in the condensate wave function φ and ℓ particles in the orthogonal
complement {φ}� ⊆ L2

(R3
). The number PN(ℓ) := ∥PN(ℓ)ΨN∥

2 is thus the probability of finding ℓ particles in the ground state ΨN that do

J. Math. Phys. 64, 121901 (2023); doi: 10.1063/5.0172199 64, 121901-1

© Author(s) 2023

 02 January 2024 08:43:57

https://pubs.aip.org/aip/jmp
https://doi.org/10.1063/5.0172199
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0172199
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0172199&domain=pdf&date_stamp=2023-December-19
https://doi.org/10.1063/5.0172199
https://orcid.org/0000-0002-8058-3263
https://orcid.org/0000-0001-8030-3623
mailto:mitrouskas@ist.ac.at
mailto:p.pickl@uni-tuebingen.de
https://doi.org/10.1063/5.0172199


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

not occupy the condensate wave function φ. Complete BEC with optimal rate of condensation can be formulated as PN(0) = 1 +O(N−1
) as

N →∞. We refer to Refs. 1, 6, 8, 11, and 22 for results in the mean-field limit and Refs. 2, 3, 5, 9, 12, 13, 15, 18, and 19 for BEC in more
singular scaling limits. For finite values of N, there is in general a non-vanishing probability 1 − PN(0) = ∑N

ℓ=1 PN(ℓ) > 0 of finding particles
outside the condensate. This work aims to establish strong asymptotic bounds on PN(ℓ) for large ℓ and N. Our main result is that PN(ℓ)
decays exponentially in ℓ.

Theorem 1.1. Under Assumptions (A1) and (A2) there exists a constant ε > 0 such that for every f : N→ N with f (n) n→∞
ÐÐÐ→∞

lim
N→∞

PN( f (N)) exp (ε f (N)) = 0. (1.4)

For the homogeneous Bose gas on the torus with bounded pair potential of positive type, the theorem was stated and proved already
in 2017 within the Ph.D. thesis (Ref. 14, Theorem 3.1). In this note, we present essentially the same proof, albeit somewhat simplified and
with the correction of two minor errors. The generalizations to the trapped Bose gas and the repulsive Coulomb potential require only small
modifications. As shown in Ref. 14, the statement can be extended to excited low-energy eigenstates of HN but for conciseness, we shall
address only the ground state here.

In Ref. 4, a related result was obtained under similar assumptions. The authors derived higher-moment bounds for the number of
excitations of the form∑N

ℓ=1 ℓ
nPN(ℓ) ≤ Cn for all n ∈ N with unspecified constants Cn [for v bounded, they showed that Cn ≤ (C(n + 1))(n+6)2

for some C > 0]. Theorem 1.1 dircetly implies that Cn ≤ Cnn! for some C > 0. In Ref. 4, the higher-moment bounds were employed to obtain
an asymptotic series for the ground state energy of HN in inverse powers of (N − 1)−1. Our bounds on Cn could thus be potentially relevant
for establishing certain resummation properties, such as Borel summability, of this asymptotic series, see Ref. 4 (Remark 3.5).

Very recently, Nam and Rademacher17 achieved a major advancement by extending the exponential decay of PN(ℓ) to dilute Bose gases.
They consider the homogeneous Bose gas on the unit torus with pair potential v(x) = N3βv(Nβx), β ∈ [0, 1], for non-negative compactly
supported v ∈ L3

([0, 1]). This includes, in particular, the physically most relevant Gross–Pitaevskii regime with β = 1. Their result shows that
for every low-energy eigenfunction ψN ∈ H

N , ⟨ψN , eκN ψN⟩ = O(1) as N →∞ for some κ > 0, where N = ∑N
i=1 (1 − pi) is the operator that

counts the number of particles outside the condensate. Since ⟨ψN , eκN ψN⟩ = ∑
N
ℓ=1 PN(ℓ) exp (κℓ), this proves (1.4) for the dilute Bose gas.

Higher-moment bounds of the form ⟨ψN , N nψN⟩ ≤ Cn, n ∈ N, have been obtained in the Gross–Pitaevskii regime in Ref. 2.
Finally, let us mention that exponential bounds for slightly different observables than N have been recently studied also in the context

of large deviations7,20,21 [see also Ref. 17 (Remark 1.3)].
The key idea of the Proof of Theorem 1.1 is to show that PN(ℓ) satisfies an inequality of the form PN(ℓ + 2) + PN(ℓ − 2) − 2PN(ℓ)

≥ σPN(ℓ) for some σ > 0. To obtain such a bound, we take the scalar product of the ground state eigenvalue equation with PN(ℓ)ΨN and
utilize the observation that the two-body potential in HN acts, after subtraction of the mean-field contribution, effectively as a discrete second
derivative in ℓ. To illustrate the simplicity of the idea, we provide a sketch of the argument in Sec. II B.

II. PROOF
The remainder of this note is organized as follows. In Sec. II A, we introduce the Fock space excitation formalism,10,11 which is convenient

for our analysis. In Sec. II A, we give a heuristic discussion of the proof and in Sec. II C, we state the main technical lemma and use this lemma
to prove our main result. In Secs. II D and II E, we provide the proof of the technical lemma.

A. Excitation Hamiltonian
We define the Hartree energy as eH := N−1 infu⟨u⊗N , HN u⊗N

⟩, where the infimum is taken over all L2-normalized u ∈ H1
(R3
). The

corresponding unique positive minimizer is denoted by φ. For a proof of existence, uniqueness and positivity of the minimizer, see e.g. Ref. 4
(Lemma 2.2). Given the Hartree minimizer φ, we introduce the unitary excitation map UN(φ) : HN

→ F ≤N
� := ⊕N

ℓ=0⊗
ℓ
sym{φ}� acting as

UN(φ)ΦN =
N
⊕
ℓ=0

q⊗ℓ(
a(φ)⊗N−ℓ
√
(N − ℓ)!

ΦN), ΦN ∈ H
N (2.1)

where q = 1 − ∣φ⟩⟨φ∣ and a(φ) is the usual bosonic annihilation operator.
To fix some notation and conventions, we call F� := ⊕∞ℓ=0⊗

ℓ
sym{φ}� the full excitation Fock space and F ≤N

� its truncated version. We
will denote the bosonic creation and annihilation operators on both these spaces by a∗( f ) and a( f ) for f ∈ {φ}�. It will be convenient to
also use pointwise creation and annihiliation operators, defined through a( f ) = ∫dxf (x) ax. Note that these satisfy [ax, a∗y ] = δ(x − y) and
[ax, ay] = 0. The number operator on F� is abbreviated by N = ∫dx a∗x ax.

Next, we define the excitation Hamiltonian H as an operator acting on the truncated excitation Fock space F ≤N
� by

H ∶= UN(φ)(HN −NeH)UN(φ)∗

= K0 +
1

N − 1
(K1 a(N ) + (K2 b(N ) +h.c.) + (K3 c(N ) +h.c.) +K4) (2.2)
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with N-dependent functions

a(ℓ) ∶= N − ℓ, b(ℓ) ∶=
√
(N − ℓ)(N − ℓ − 1), c(ℓ) ∶=

√
N − ℓ (2.3)

and N-independent operators K0 := dΓ(qhq) with h : L2
(R3
)→ L2

(R3
) given by

h = −Δ + Vext
+ v ∗φ2

− ⟨φ, (−Δ + Vext
+ v ∗φ2

)φ⟩ (2.4)

and

K1 ∶= ∫ dx1dx2 K1(x1, x2)a∗x1 ax2 (2.5)

K2 ∶=
1
2 ∫

dx1dx2K2(x1, x2)a∗x1 a∗x2 (2.6)

K3 ∶= ∫ dx1dx2dx3 K3(x1, x2, x3)a∗x1 a∗x2 ax3 (2.7)

K4 ∶=
1
2 ∫

dx1dx2dx3dx4 K4(x1, x2, x3, x4)a∗x1 a∗x2 ax3 ax4. (2.8)

With K(x, y) ∶= φ(y)v(x − y)φ(x) and

W(x, y) := v(x − y) − v ∗φ2
(x) − v ∗φ2

(y) + ⟨φ, v ∗φ2φ⟩, (2.9)

the different kernels are given by

K1(x1, x2) ∶= ∫ dy1dy2 q(x1, y1)K(y1, y2)q(y2, x2), (2.10)

K2(x1, x2) ∶= ∫ dy1dy2 q(x1, y1)q(x2, y2)K(y1, y2), (2.11)

K3(x1, x2, x3) ∶= ∫ dy1dy2 q(x1, y1)q(x2, y2)W(y1, y2)φ(y1)q(y2, x3), (2.12)

K4(x1, x2, x3, x4) ∶= ∫ dy1dy2 q(x1, y1)q(x2, y2)W(y1, y2)q(y1, x3)q(y2, x4), (2.13)

where q(x, y) is the integral kernel of q = 1 − ∣φ⟩⟨φ∣. For the derivation of (2.2), we refer to Refs. 4 and 11. Before we continue, let us note the
important fact that the operator qhq with h defined in (2.4) has a spectral gap above zero, that is, qhq ≥ τ for some number τ > 0. This follows
easily from hφ = 0, φ > 0 and qφ = 0. Consequently, we have K0 ≥ τN as inequality on F�.

Denoting by ΨN ∈ H
N the unique normalized ground state of HN with ground state energy EN = inf σ(HN), we set χ ∶= UN(φ)ΨN . By

unitarity of UN(φ), it satisfies the eigenvalue equation Hχ = (EN −NeH)χ. In terms of χ = (χ(ℓ))N
ℓ=0 with χ(ℓ) ∈ ⊗ℓ

sym{φ}�, the probability of
finding ℓ excitations outside the condensate wave function φ is given by PN(ℓ) = ∥χ(ℓ)

∥
2.

B. Idea of the proof
To illustrate the idea of the proof Theorem 1.1, we demonstrate the argument for the ground state eigenfunction of the quadratic

Bogoliubov approximation of H. That is, we consider the eigenvalue equation H0ϕ = E0ϕ on F�, where

H0 = K0 +K1 +K2 +K†
2 (2.14)

and E0 < 0 is the lowest possible eigenvalue of H0. Existence and uniqueness of the ground state ϕ ∈ F� follow by unitary diagonalization
of H0.11,16 Similarly as for χ, the number of particles in ϕ correspond to the number of particles in the state UN(φ)∗𝟙(N ≤ N)ϕ ∈ HN that
are not in the condensate wave function. In the following, we show that ∥ϕ(ℓ)

∥
2
≤ C exp(−εℓ) for some constants C, ε > 0 and all ℓ ≥ 0, thus

proving an analogous statement to Theorem 1.1 for the Bogoliubov ground state. For the purpose of this demonstration, we assume that v is
pointwise bounded with ∥v∥∞ sufficiently small and v̂ ≥ 0.

We start by taking the scalar product on both sides of the eigenvalue equation with ϕ(ℓ). Using E0 ≤ 0 and K0 ≥ τN with τ > 0, this
implies

τℓ∥ϕ(ℓ)∥2
≤ −⟨ϕ(ℓ)K2ϕ(ℓ−2)

⟩ − ⟨ϕ(ℓ)K†
2ϕ
(ℓ+2)
⟩ − ⟨ϕ(ℓ)K1ϕ(ℓ)⟩. (2.15)

Since K1 ≥ 0 (this follows from v̂ ≥ 0), we can apply 4∣⟨ϕ(ℓ),K2ϕ(ℓ−2)
⟩∣ ≤ ⟨ϕ(ℓ),K1ϕ(ℓ)⟩ + ⟨ϕ(ℓ−2),K1ϕ(ℓ−2)

⟩ + v(0)∥ϕ(ℓ−2)
∥

2 and a similar
bound for K†

2 (see Lemma 2.3 for details). This leads to
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(4τ −
v(0)
ℓ
)ℓ∥ϕ(ℓ)∥2

≤ ⟨ϕ(ℓ+2)K1ϕ(ℓ+2)
⟩ + ⟨ϕ(ℓ−2)K1ϕ(ℓ−2)

⟩ + v(0)∥ϕ(ℓ−2)
∥

2
− 2⟨ϕ(ℓ)K1ϕ(ℓ)⟩ (2.16)

Next, we use K1 ≥ 0 to estimate the last term and introduce the abbreviation f (ℓ) ∶= ℓ∥ϕ(ℓ)
∥

2. Since by a short computation (see Lemma 2.2),
one finds ∣⟨ϕ(ℓ),K1ϕ(ℓ)⟩∣ ≤ C∥v∥∞ f (ℓ), we can bound the first two terms on the right-hand side, such that

(4τ −
v(0)
ℓ
) f (ℓ) ≤ C∥v∥∞( f (ℓ + 2) + f (ℓ − 2)). (2.17)

Dividing both sides by C∥v∥∞, the pre-factor on the left side is strictly larger than two if ∥v∥∞ is chosen sufficiently small. Note that we are
only interested in ∥v∥∞ > 0 since in the absence of interaction, f (ℓ) = 0 for all ℓ. Also note that the spectral gap τ > 0 of the operator qhq is
uniform in ∥v∥∞ → 0. Thus, we arrive at

σ f (ℓ) ≤ f (ℓ + 2) + f (ℓ − 2) (2.18)

for some σ > 2 and all ℓ ≥ 2. Considering f (ℓ) separately for ℓ even/odd, the difference inequality states that the second discrete derivative
of f (ℓ) is bounded from below by (σ − 2) f (ℓ). On the one hand, this shows that f (ℓ) is convex, and thus has at most one minimum f (ℓ0).
On the other hand, the inequality implies that f (ℓ) ≤ C(σ − 2)−ℓ+2

( f (1) + f (2)) for 1 ≤ ℓ ≤ ℓ0 and f (ℓ) ≥ (σ − 2)ℓ−ℓ0 f (ℓ0) for ℓ ≥ ℓ0. By
normalization of ϕ, i.e., ∑∞ℓ=0 ∥ϕ

(ℓ)
∥

2
= 1, and since σ > 2, this implies that f (ℓ) has no minimum. Consequently, f (ℓ) ≤ (σ − 2)−ℓ+2

( f (1)
+ f (2)) for ℓ ≥ 1, as claimed.

In Sec. II C, we extend the above argument to the ground state χ = UN(φ)ΨN of the excitation HamiltonianH and remove the assumption
that ∥v∥∞ is small. This requires some technical modifications: Most importantly, in (2.16) we will not estimate the last term by −K1 ≤ 0.
Instead, we sum both sides over ℓ − L, . . . , ℓ + L for some large but fixed integer L. While on the right side, many terms are canceled, the left-
hand side is effectively increased by a factor proportional to L. This will help us to remove the smallness assumption on ∥v∥∞. The Coulomb
case requires another approximation argument that will be explained in Sec. II E. An obstacle in considering the full Hamiltonian H compared
to H0 is the presence of K3 and K4 (for the Coulomb potential, K4 is not relevant since it is non-negative). In order to treat these operators
as perturbations, we restrict the derivation of the difference inequality to values ℓ ≤ δN for some small δ. This helps because K3 and K4 have
more than two creation and annihilation operators and additional factors of (N − 1)−1/2. Having established the exponential decay up to
ℓ = δN, it will follow as a simple consequence of the eigenvalue equation that ∥χ(ℓ)

∥ is bounded by exp(−εN) for all δN ≤ ℓ ≤ N and some
ε > 0.

C. Difference inequality and Proof of theorem 1.1
The following lemma is the main ingredient for the Proof of Theorem 1.1. It provides a generalization of the difference inequality (2.18)

to the ground state χ ∈ F ≤N
� of H.

Lemma 2.1. Under Assumptions (A1) and (A2) there exist constants L ≥ 1, σ > 2 and κ ∈ (0, 1) such that the discrete function
FL(ℓ) ∶= ∑

ℓ+L
k=ℓ−L k∥χ(k)∥2 satisfies

σFL(ℓ) ≤ FL(ℓ + L) + FL(ℓ − L) (2.19)

for all L ≤ ℓ ≤ κN and N large enough.

Before we embark on the proof of the lemma, we deduce its consequences to obtain a Proof of Theorem 1.1.

Proof of Theorem 1.1. We apply (2.19) for ℓ = L, 2L, 3L, . . . , nL with n ≤ κN/L. In other words, we use that the second discrete derivative
of the function G(ℓ) ∶= FL(ℓL) is bounded from below by (σ − 2)G(ℓ),

(σ − 2)G(ℓ) ≤ G(ℓ + 1) +G(ℓ − 1) − 2G(ℓ) (2.20)

for all ℓ ∈ {1, . . . , κ′N} with κ′ = κ/L. This implies that G is convex and thus attains a unique minimum at some value ℓ0. The inequality
implies further that G(ℓ) is exponentially decaying for ℓ ≤ ℓ0 and exponentially increasing for ℓ ≥ ℓ0,

G(ℓ) ≤
G(1)

(σ − 2)ℓ−1 ∀ 1 ≤ ℓ ≤ ℓ0, (2.21)

G(k) ≥ (σ − 2)k−ℓG(ℓ) ∀ ℓ0 ≤ ℓ ≤ k ≤ κ′N, (2.22)

where the second case is only relevant if ℓ0 < κ′N. Using the second bound, we obtain a sufficient estimate for G(ℓ) for ℓ0 ≤ ℓ ≤ κ′N/2:
In fact, choosing ℓ = κ′N/2, k = κ′N and since G ≤ N by normalization of χ, Eq. (2.22) implies G(κ′N/2) ≤ N(σ − 2)−κ′N/2 and thus G(ℓ)
≤ N(σ − 2)−κ′N/2 for ℓ0 ≤ ℓ ≤ κ′N/2.
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From the above, we conclude that G(ℓ) ≤ C exp(−ε′ℓ) for some constants C, ε′ > 0 and all 1 ≤ ℓ ≤ κ′N/2. Recalling G(ℓ)
= ∑

(ℓ+1)L
k=(ℓ−1)L ℓ∥χ

(ℓ)
∥

2, we obtain

sup{∥χ(k)∥2 : (ℓ − 1)L ≤ k ≤ (ℓ + 1)L} ≤ C exp (−ε′ℓ) (2.23)

for all ℓ ≤ κ′N/2, which implies ∥χ(ℓ)
∥ ≤ C exp(−εℓ) for all ℓ ≤ κ′N/2 and some ε > 0.

It remains to prove the exponential decay for κ′N/2 ≤ ℓ ≤ N. To this end, we write χ = χ≤ + χ> with χ≤ ∶= 𝟙(N ≤ Nκ′/2)χ. Then, we use
the eigenvalue equation Hχ = (EN −NeH)χ together with H ≥ EN −NeH and the fact that only K2 and K3 couple the two different parts of
the ground state,

0 = ⟨χ,Hχ⟩ − (EN −NeH) ≥ ⟨χ>,Hχ>⟩ − (EN −NeH)∥χ>∥2
+ 2Re⟨χ>,K2 b(N )χ≤⟩ + 2Re⟨χ>,K3 c(N )χ≤⟩. (2.24)

The last two terms are bounded by

∣⟨χ>,K2 b(N )χ≤⟩∣ + ∣⟨χ>,K3 c(N )χ≤⟩∣

≤ CN(∥χ(Nκ
′/2−1)

∥ + ∥χ(Nκ
′/2)
∥) ≤ exp (−cN) (2.25)

for some c > 0 and large enough N, where we used Lemmas 2.3, 2.4, and 2.6 in the first step and the exponential decay of ∥χ(ℓ)
∥ for ℓ ≤ κ′N/2

in the second step. Thus,
⟨χ>,Hχ>⟩ − (EN −NeH)∥χ>∥2

≤ exp (−cN). (2.26)

Since every normalized state ϕ with energy ⟨ϕ,Hϕ⟩ ≤ EN −NeH + o(N) as N →∞ exhibits BEC (Ref. 8, Theorem 3.1), the energy of the state
χ>/∥χ>∥ can not be close to EN −NeH, in particular not exponentially close. Hence, (2.26) implies that ∥χ>∥ ≤ C exp(−εN) for some C, ε > 0
and N large enough.

To summarize, we have shown that there exist constants C, ε > 0 such that ∥χ(ℓ)
∥ ≤ C exp(−εℓ) for all ℓ ∈ {1, . . . , N} and all large N. This

implies Theorem 1.1. ■

D. Proof of the difference inequality
Let us recall Assumption (A2) on the pair potential v: We consider either (i) v even, pointwise bounded and with non-negative Fourier

transform or (ii) v(x) = λ∣x∣−1 with λ > 0. For better readability, we first prove Lemma 2.1 in case (i). In Sec. II E, we explain how the proof is
adapted to cover case (ii). Note that in both cases, we have ∥v2

∗ φ2
∥∞ <∞, where φ is the normalized positive Hartree minimizer. For the

Coulomb potential, this follows from Hardy’s inequality and φ ∈ H1
(R3
).

Before we come to the Proof of Lemma 2.1, we state and prove some preliminary estimates for the operators appearing in the excitation
Hamiltonian. The statements of Lemmas 2.2 and 2.4 hold in both cases, whereas Lemmas 2.3 and 2.5 only hold in case (i).

Lemma 2.2. Under Assumption (A2) we have for all ξ ∈ F� that

∣⟨ξ(ℓ),K1ξ(ℓ)⟩∣ ≤ ∥v2
∗φ2
∥

1/2
∞ ℓ∥ξ(ℓ)∥2. (2.27)

Proof. We apply two times Cauchy–Schwarz to find

∣⟨ξ(ℓ),K1ξ(ℓ)⟩∣ = ∣∫ dxdy φ(x)v(x − y)φ(y)⟨ξ(ℓ), a∗x ayξ(ℓ)⟩∣

≤ ∫ dx φ(x) (v2
∗φ2
(x))

1/2
∥axξ(ℓ)∥ ∥N 1/2ξ(ℓ)∥

≤ ∥v2
∗φ2
∥

1/2
∞ ∥φ∥2∥N 1/2ξ(ℓ)∥2. (2.28)

■

Lemma 2.3. For pointwise bounded v with v̂ ≥ 0, we have

4∣⟨ξ(ℓ),K2ξ(ℓ−2)
⟩∣ ≤ ⟨ξ(ℓ),K1ξ(ℓ)⟩ + ⟨ξ(ℓ−2),K1ξ(ℓ−2)

⟩ + v(0)∥ξ(ℓ−2)
∥

2 (2.29)

4∣⟨ξ(ℓ),K†
2ξ
(ℓ+2)
⟩∣ ≤ ⟨ξ(ℓ),K1ξ(ℓ)⟩ + ⟨ξ(ℓ+2),K1ξ(ℓ+2)

⟩ + v(0)∥ξ(ℓ)∥2 (2.30)

for all ξ ∈ F�.
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Proof. We estimate

∣⟨ξ(ℓ),K2ξ(ℓ−2)
⟩∣ =

1
2
∣∫ dxdy⟨ξ(ℓ), K(x, y)a∗x a∗y ξ

(ℓ−2)
⟩∣

=
1
2
∣∫ dk v̂(k)⟨∫ dx φ(x)eikxaxξ(ℓ),∫ dy φ(y)eikya∗y ξ

(ℓ−2)
⟩∣

≤
1
4 ∫

dk v̂(k)(∥∫ dx φ(x)eikxaxξ(ℓ)∥
2
+ ∥∫ dy φ(y)eikya∗y ξ

(ℓ−2)
∥

2
) (2.31)

and note that

∫ dk v̂(k)∥∫ dx φ(x)eikxaxξ(ℓ)∥
2
= ⟨ξ(ℓ),K1ξ(ℓ)⟩ (2.32)

while

∫ dk v̂(k)∥∫ dx φ(x)eikxa∗x ξ
(ℓ−2)
∥

2
= ∫ dxdy K(x, y)⟨ξ(ℓ−2), axa∗y ξ

(ℓ−2)
⟩

= v(0)∫ dx φ(x)2
∥ξ(ℓ−2)

∥
2
+ ⟨ξ(ℓ−2),K1ξ(ℓ−2)

⟩, (2.33)

where we used axa∗y = δ(x − y) + a∗y ax and K(x, y) = K(y, x).
The second bound of the lemma follows from ℓ↦ ℓ + 2 and (K†

2)
†
= K2. ■

Lemma 2.4. Under Assumption (A2) there is a constant C > 0 so that for all ℓ ≤ δN, δ ∈ (0, 1), we have

∣⟨ξ(ℓ),K3ξ(ℓ−1)
⟩∣ ≤ (δN)1/2

(Cℓ∥ξ(ℓ)∥2
+ (ℓ − 1)∥ξ(ℓ−1)

∥
2
) (2.34)

∣⟨ξ(ℓ),K†
3ξ
(ℓ+1)
⟩∣ ≤ (δN)1/2

(Cℓ∥ξ(ℓ)∥2
+ (ℓ + 1)∥ξ(ℓ+1)

∥
2
) (2.35)

for every ξ ∈ F�.

Proof. Using ∥W2∗φ2
∥∞ ≤ C, it follows again by Cauchy–Schwarz that

∣⟨ξ(ℓ),K3ξ(ℓ−1)
⟩∣ = ∣∫ dx2 W(x1, x2)φ(x1)⟨ξ(ℓ), a∗x1 a∗x2 ax2ξ

(ℓ−1)
⟩∣

≤ C∫ dx2(W2
∗φ2
(x))

1/2
∥ax2 N

1/2ξ(ℓ)∥ ∥ax2ξ
(ℓ−1)
∥

≤ Cℓ3/2
∥ξ(ℓ−1)

∥ ∥ξ(ℓ)∥ (2.36)

and similarly, for the bound involving K†
3 . ■

Lemma 2.5. For ∥v∥∞ ≤ C, we have for ℓ ≤ δN, δ ∈ (0, 1),

∣⟨ξ(ℓ),K4ξ(ℓ)⟩∣ ≤ CδNℓ∥ξ(ℓ)∥2 (2.37)

for every ξ ∈ F�.

The proof is straightforward and thus omitted.

Proof of Lemma 2.1. We shall prove the lemma in two steps.

Step 1. We take the scalar product with the state χ(ℓ) on both sides of the eigenvalue equation Hχ = (EN −NeH)χ. Using EN −NeH ≤ 0,
N χ(ℓ) = ℓχ(ℓ) and multiplying both sides by N − 1, we obtain

0 ≥(N − 1)⟨χ(ℓ),K0χ(ℓ)⟩ + a(ℓ)⟨χ(ℓ),K1χ(ℓ)⟩

+ b(ℓ − 2)⟨χ(ℓ),K2χ(ℓ−2)
⟩ + b(ℓ)⟨χ(ℓ),K†

2χ
(ℓ+2)
⟩

+ c(ℓ − 1)⟨χ(ℓ),K3χ(ℓ−1)
⟩ + c(ℓ)⟨χ(ℓ),K†

3χ
(ℓ+1)
⟩ + ⟨χ(ℓ)K4χ(ℓ)⟩ (2.38)
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and invoking K0 ≥ τN , we find

(N − 1)τℓ∥χ(ℓ)∥2
+ a(ℓ)⟨χ(ℓ),K1χ(ℓ)⟩

≤ −b(ℓ − 2)⟨χ(ℓ),K2χ(ℓ−2)
⟩ − b(ℓ)⟨χ(ℓ),K†

2χ
(ℓ+2)
⟩

− c(ℓ − 1)⟨χ(ℓ),K3χ(ℓ−1)
⟩ − c(ℓ)⟨χ(ℓ),K†

3χ
(ℓ+1)
⟩

− ⟨χ(ℓ),K4χ(ℓ)⟩. (2.39)

To facilitate the reading, let us abbreviate f (ℓ) ∶= ℓ∥χ(ℓ)
∥

2, g(ℓ) ∶= ⟨χ(ℓ),K1χ(ℓ)⟩ and

R2(ℓ) := −b(ℓ − 2)⟨χ(ℓ),K2χ(ℓ−2)
⟩ − b(ℓ)⟨χ(ℓ),K†

2χ
(ℓ+2)
⟩ (2.40)

R3(ℓ) ∶= −c(ℓ − 1)⟨χ(ℓ),K3χ(ℓ−1)
⟩ − c(ℓ)⟨χ(ℓ),K†

3χ
(ℓ+1)
⟩ (2.41)

R4(ℓ) ∶= −⟨χ(ℓ),K4χ(ℓ)⟩. (2.42)

such that Inequality (2.39) reads
(N − 1)τ f (ℓ) + a(ℓ)g(ℓ) ≤ R2(ℓ) + R3(ℓ) + R4(ℓ). (2.43)

Since the left-hand side of (2.43) is non-negative, we can apply Lemma 2.6 to estimate

∣R2(ℓ)∣ ≤
1
4
(b(ℓ − 2)g(ℓ) + b(ℓ − 2)g(ℓ − 2) + b(ℓ)g(ℓ) + b(ℓ)g(ℓ + 2)) + CNℓ−1 f (ℓ) + C∥χ(ℓ−2)

∥
2 (2.44)

where we used that b(ℓ − 2),b(ℓ) ≤ N and v(0) ≤ C. Note that for ℓ − 2 ≥ δ−1/2 for some δ ∈ (0, 1), we can bound the last term by ∥χ(ℓ−2)
∥

2

≤ δ1/2 f (ℓ − 2). If we further restrict the values of ℓ to ℓ ≤ δN, we have by Lemma 2.4 that

∣R3(ℓ)∣ ≤
√

N(∣⟨χ(ℓ),K3χ(ℓ−1)
⟩∣ + ∣⟨χ(ℓ),K3χ(ℓ+1)

⟩∣) ≤ CNδ1/2 f (ℓ) +Nδ1/2 f (ℓ − 1) +Nδ1/2 f (ℓ + 1) (2.45)

where we used c(ℓ − 1) ≤ c(ℓ) ≤
√

N. Moreover, by Lemma 2.5, ∣R4(ℓ)∣ ≤ CNδf (ℓ). Thus, we arrive at

4(N − 1)(τ − Cℓ−1
− Cδ1/2

) f (ℓ) ≤ b(ℓ − 2)g(ℓ) + b(ℓ − 2)g(ℓ − 2) − 2a(ℓ)g(ℓ)

+ b(ℓ)g(ℓ) + b(ℓ)g(ℓ + 2) − 2a(ℓ)g(ℓ)

+ CNδ1/2
( f (ℓ + 1) + f (ℓ − 1) + f (ℓ − 2)). (2.46)

We now choose ℓ ≥ c large enough and δ sufficiently small so that the left-hand side is bounded from below by 2Nτf (ℓ). Moreover, we write
the first two lines of the right-hand side as

b(ℓ − 2)g(ℓ − 2) − b(ℓ)g(ℓ) + b(ℓ)g(ℓ + 2) − b(ℓ − 2)g(ℓ) + 2(b(ℓ) − a(ℓ))g(ℓ) + 2(b(ℓ − 2) − a(ℓ))g(ℓ) (2.47)

and use that
b(ℓ) − a(ℓ) ≤ 0, b(ℓ − 2) − a(ℓ) ≤ C, g(ℓ) ≤ C f (ℓ), (2.48)

where the last bound follows from Lemma 2.2. Thus, we obtain the inequality

Nτ f (ℓ) ≤ b(ℓ − 2)g(ℓ − 2) − b(ℓ)g(ℓ) + b(ℓ)g(ℓ + 2) − b(ℓ − 2)g(ℓ)

+ CNδ1/2
( f (ℓ + 1) + f (ℓ − 1) + f (ℓ − 2)). (2.49)

Now, we sum both sides over {L − ℓ, . . . , L + ℓ}. On the left-hand side, this gives

NτFL(ℓ) ∶= Nτ
ℓ+L

∑
k=ℓ−L

k∥χ(k)∥2, (2.50)
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whereas the terms on the right-hand side are bounded by

ℓ+L

∑
k=ℓ−L

(b(k − 2)g(k − 2) − b(k)g(k)) ≤ b(ℓ − L − 2)g(ℓ − L − 2) ≤ CN f (ℓ − L − 2) (2.51)

and
L+ℓ
∑

k=ℓ−L
(b(k)g(k + 2) − b(k − 2)g(k)) ≤ b(ℓ + L)g(ℓ + L + 2) ≤ CN f (ℓ + L + 2) (2.52)

and
ℓ+L

∑
k=ℓ−L

Nδ1/2
( f (ℓ + 1) + f (ℓ − 1) + f (ℓ − 2))

≤ 3Nδ1/2FL(ℓ) +N( f (ℓ − L − 1) + f (ℓ + L + 1) + f (ℓ − L − 2)), (2.53)

where we used δ1/2
≤ 1/2.

Putting everything together, we arrive at the conclusion that there is a constant 0 < μ ≤ C(τ − Cδ1/2
) such that for all allowed values of ℓ,

that is, for 2 + δ−1/2
≤ ℓ ≤ δN for sufficiently small δ and all large N, we have

μFL(ℓ) ≤ f (ℓ + L + 2) + f (ℓ + L + 1) + f (ℓ − L − 1) + f (ℓ − L − 2). (2.54)

Step 2. We proceed by estimating

FL(ℓ + L) + FL(ℓ − L) ≥
ℓ+2L

∑
k=ℓ+L+1

f (k) +
ℓ−L−1

∑
k=ℓ−2L

f (k)

≥ μ(FL(ℓ) + FL+2(ℓ) + FL+4(ℓ) + ⋅ ⋅ ⋅ + F2L−2(ℓ)) (2.55)

where we used the definition of FL(ℓ) in the first step and applied Inequality (2.54) with L→ L + j in the second step, that is,

f (ℓ + L + j + 2) + f (ℓ + L + j + 1) + f (ℓ − L − j − 2) + f (ℓ − L − j − 1) ≥ μFL+j(ℓ) (2.56)

for j = 0, . . . , L − 2.
Finally, we invoke FL+j(ℓ) ≥ FL(ℓ) to arrive at the desired inequality

FL(ℓ + L) + FL(ℓ − L) ≥
μ
2
(L − 3)FL(ℓ) =: σFL(ℓ). (2.57)

By choosing L large enough, we have σ > 2, which completes the Proof of Lemma 2.1. ■

E. Extension to the repulsive Coulomb potential
We briefly explain how the Proof of Lemma 2.1 presented in Sec. II D needs to be adapted to cover the Coulomb potential v(x) = λ∣x∣−1

with λ > 0. Since ∥v2
∗ φ2
∥∞ <∞, Lemmas 2.2 and 2.4 still apply. Lemma 2.5, on the other hand, is not needed, since we can use K4 ≥ 0

in (2.38). (Note that we have not assumed positivity of v in the bounded case). The only obstacle comes from the use of Lemma 2.3, which
requires v(0) <∞. For the repulsive Coulomb potential, we replace Lemma 2.3 by the following statement.

Lemma 2.6. Let v(x) = λ∣x∣−1 with λ > 0. There is a constant C > 0 such that for every ε > 0 there exists a constant ν(ε) > 0, such that

4∣⟨ξ(ℓ),K2ξ(ℓ−2)
⟩∣ ≤ g(ℓ) + g(ℓ − 2) + ν(ε)∥ξ(ℓ−2)

∥
2
+ ε( f (ℓ − 2) + f (ℓ)) (2.58)

for all ξ ∈ F�, where g(ℓ) = ⟨ξ(ℓ),K1ξ(ℓ)⟩ and f (ℓ) = ℓ∥ξ(ℓ)
∥

2.

The bound for ∣⟨ξ(ℓ),K†
2ξ
(ℓ+2)
⟩∣ is obtained by ℓ ↦ ℓ + 2 and (K†

2)
†
= K2. After invoking Lemma 2.6 to bound ∣R2(ℓ)∣ in (2.44), the

crucial point is that we can choose ε as small as we want (but always fixed w.r.t. N), say ε ≤ δ1/2. This comes at the cost of a large fac-
tor ν(ε), which can be compensated by restricting the values of ℓ to ℓ ≥ 2 + δ−1/2ν(ε). This way, we can bound the third term in (2.58) by
ν(ε)∥ξ(ℓ−2)

∥
2
=

ν(ε)
ℓ−2 f (ℓ − 2) ≤ δ1/2 f (ℓ − 2). Hence, the ε-dependent terms in (2.58) are bounded by δ1/2

(2 f (ℓ − 2) + f (ℓ)) and with this at
hand, the remaining steps of the proof are completely analogous to the bounded case.

Proof of Lemma 2.6. We write v = vκ + v
�
κ with vκ(x) = v(x) (1 − exp(−∣x∣/κ)), κ > 0, and observe that vκ(0) = λκ−1 and v̂κ ≥ 0. The

non-negativity of the Fourier transform follows from the fact that the Fourier transform of the Yukawa potential x ↦ v(x) exp(−∣x∣/κ) is
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smaller than the Fourier transform of the Coulomb potential. Moreover, we have ∥(v�κ )2
∗φ2
∥∞ → 0 as κ→ 0, which is a consequence of

fκ(x) ∶= (v�κ )2
∗φ2
(x) being strictly monotone decreasing as κ→ 0, i.e., fκ(x) − fη(x) = λ ∫ dy∣x − y∣−2

(e−2∣x−y∣/κ
− e−2∣x−y∣/η

)φ(y)2
> 0 for all

x ∈ R3 and κ > η, where we used positivity of φ. In analogy to the definitions in Sec. II A, we introduce Kκ(x, y) = φ(x)vκ(x − y)φ(y) as well
as K2,κ and K1,κ. For the part involving vκ, we can proceed as in the Proof of Lemma 2.3, which gives

4∣⟨ξ(ℓ),K2,κξ(ℓ−2)
⟩∣ ≤ ⟨ξ(ℓ),K1,κξ(ℓ)⟩ + ⟨ξ(ℓ−2),K1,κξ(ℓ−2)

⟩ + λκ−1
∥ξ(ℓ−2)

∥
2. (2.59)

Applying Lemnma 2.2 for v�κ = v − vκ and using ∥(v�κ )2
∗φ2
∥∞ → 0 as κ→ 0, we further have

∣⟨ξ(ℓ), (K1,κ −K1)ξ(ℓ)⟩∣ ≤ ∥(v�κ )
2
∗φ2
∥

1/2
∞ ℓ∥ξ(ℓ)∥2

≤ δ(κ)ℓ∥ξ(ℓ)∥2 (2.60)

for some sequence δ(κ)→ 0 as κ→ 0. To estimate the remainder term, we apply two times Cauchy–Schwarz (similarly as in the Proof of
Lemma 2.2) to obtain

∣⟨ξ(ℓ), (K2 −K2,κ)ξ(ℓ−2)
⟩∣ = ∣∫ dxdy φ(x)v�κ (x − y)φ(y)⟨χ(ℓ), a∗x a∗y χ

(ℓ−2)
⟩∣

≤ C∥(v�κ )
2
∗φ2
∥

1/2
∞ ℓ∥ξ(ℓ)∥ ∥ξ(ℓ−2)

∥ ≤ δ(κ)ℓ∥ξ(ℓ)∥ ∥ξ(ℓ−2)
∥. (2.61)

This implies the statement of the lemma. ■
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