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The elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot surface.
Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state floating. The
effect embodies an unexplored interplay between thermodynamics, elasticity, and lubrication: despite being
observed, its basic theoretical description remains a challenge. Here, we provide a theory of elastic
Leidenfrost floating. As weight increases, a rigid solid sits closer to the hot surface. By contrast, we discover
an elasticity-dominated regime where the heavier the solid, the higher it floats. This geometry-governed
behavior is reminiscent of the dynamics of large liquid Leidenfrost drops. We show that this elastic regime is
characterized by Hertzian behavior of the solid’s underbelly and derive how the float height scales with
materials parameters. Introducing a dimensionless elastic Leidenfrost number, we capture the crossover
between rigid and Hertzian behavior. Our results provide theoretical underpinning for recent experiments,
and point to the design of novel soft machines.
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The elastic Leidenfrost effect represents a largely unex-
plored class of Leidenfrost physics, combining thermody-
namics, flow, and elasticity [1–5]. In the liquid Leidenfrost
effect, a fluid droplet hovers above a heated surface,
cushioned by a gap layer of its own vapor. The basic
physics of this scenario is extensively explored: capillarity
and gravity determine the droplet’s geometry and how high
it floats above the hot surface [6–11]. These fundamental
advances have enabled the discovery of new effects, such
as self-propelled droplets [12] and controlled wetting [13],
as well as the design of new applications, for example, heat
exchangers [14,15].
The typical description of Leidenfrost physics combines

flow and phase change, but neglects bulk 3D elastic
deformation within the levitated object entirely [16–18].
Yet, the interplay between fluid flow and soft elastic
response is known to yield a plethora of fluid-structure
phenomena not possible in a purely rigid limit [19–33]. So it
proves in the elastic Leidenfrost effect: when the levitated
object is soft and elastic, striking effects result. For example,
a water-saturated hydrogel lowered onto a hot surface either
bounces spontaneously [1,2] or floats on its own vapor
layer [3]. Figure 1(a) shows an example of floating behavior

for a sphere of radius 7 mm. These effects may appear
superficially similar to the phenomenology of liquids [9,34],
but they arise from a distinct interplay between the vapor
phase and the condensed phase. In the levitation of
Leidenfrost liquids, excess pressure in the vapor layer
competes with surface tension [9–11,34]. By contrast, in
a soft elastic solid [Fig. 1(a)] the characteristic feature of
both bouncing and floating is that the excess pressure in the
vapor layer (of order kilopascals) competes with bulk 3D
elastic stress [1].
Soft materials thus invite us to reexamine the fundamen-

tals of Leidenfrost physics when combined with large solid-
body deformations. However, to fully realize the scope of
the elastic Leidenfrost effect, both at a fundamental level
and for the potential design of soft devices, a theoretical
description of the basic mechanism is required. Despite
experimental observation, this description remains a chal-
lenge. In particular, there is currently no theory which
explains how three-dimensional elasticity determines either
the levitation height of the soft solid, or its shape in the
floating regime.
In this Letter, we overcome this challenge by marrying

thermodynamic phase change with the lubrication theory of
soft elastic objects [19–26,33], to formulate the first
description of elastic Leidenfrost floating. By varying a
single dimensionless parameter, we discover a transition
from rigid behavior to an elasticity-dominated regime
described by Hertzian contact mechanics. Using asymptotic
analysis and finite element simulations, we quantify this
Hertzian limit via scaling laws for the gap height with
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sphere radius and elastic modulus. Our asymptotic theory
reveals the existence of two distinct scalings of the height:
the first in a contact region well underneath the solid, and
the second in an ever-narrowing neck region [see Fig. 1(b)].
The development of a neck is also observed for large liquid
Leidenfrost drops [8,10,11] and our results invite the
question of how liquid Leidenfrost phenomenology inter-
sects with that of soft Leidenfrost solids. More broadly, our
results demonstrate how to tailor float height via materials
properties, and offer a solid theoretical basis for exploring
more complex elastic Leidenfrost phenomena. This theory
lays the groundwork for combining elasticity, phase change,
and flow to design novel soft machines.
Our first main result is that elastic response yields a new

class of scaling laws for the gap height h of floating
Leidenfrost objects. This elastic scaling law is distinct from
both the liquid and rigid solid cases. A stiff vaporizable
sphere (or small liquid drop [7]) of radius R, density ρs, and
weight F ¼ ð4π=3ÞρsgR3 floats at a height h ∼ F−1=2R
above a heated surface. Taking the load to be proportional to
the volume F ∼ R3, we have h ∼ R−1=2: intuitively, balanc-
ing an increasing radius R (i.e., an increasing weight)
requires more vapor flux, and so a stiff solid must sit closer
to the heated surface. By contrast, we find that a vaporizable

elastic sphere of Young’s modulus E and Poisson ratio ν
(Fig. 1) has a gap height that scales as

h ∼ Π1=4
0 E−1=3R1=3F1=12: ð1Þ

In Eq. (1), Π0 models the thermal and viscous properties of
the vapor layer, and is defined below. Again taking F ∼ R3

we find the height scaling h ∼ R7=12: counterintuitively, the
heavier the soft solid, the higher it floats.
To derive Eq. (1) we now formulate a theory of phase-

change induced lubrication coupled to elastic deformation
of the solid. Figure 1(b) shows a schematic of the soft solid
floating above a hot surface. The heated surface is held at a
temperature difference ΔT above the vaporization thresh-
old of the solid, causing the solid’s underbelly to evaporate
and open a thin vapor gap. To describe vapor flow, we note
that the gap height is significantly smaller than the lateral
scale of the underbelly. We will verify that this observation
is indeed self-consistent below. We use the lubrication
approximation of the Navier-Stokes equations [10,22],
which neglects the vertical component of flow. In this
approximation, the (axisymmetric) height profile hðrÞ in
Fig. 1(b) and the pressure in the vapor layer PðrÞ are related
through

1

r
d
dr

�
r
ρhðrÞ3
12η

dPðrÞ
dr

�
¼ −

κΔT
LhðrÞ : ð2Þ

Equation (2) expresses continuity: the pressure gradient
under the solid establishes a Poiseuille flow with mass
flux ∼ðρ=ηÞh3∇PðrÞ, where η and ρ are the viscosity and
density of the vapor. This flux is balanced by a Leidenfrost
source term−κΔT=LhðrÞ, describing conduction-dominated
evaporation from the solid’s underbelly [10]. Here, κ is the
vapor thermal conductivity and L is the latent heat of
vaporization. The materials parameters in Eq. (2) define a
typical force scale within the vapor layer, Π0 ≡ κΔTη=Lρ
[17] [see Eq. (1)]. Nondimensionalized by the elastogravita-
tional force scaleE3=ðρgÞ2,Π0 represents the elastic analog of
the evaporation number found in liquid Leidenfrost physics
[10,11]. UsingΠ0, Eq. (2) can be rearranged so that the source
term is simply −Π0=hðrÞ.
For a steady gap height, integrated vapor pressure must

balance the total weight F of the solid. If the pressure P acts
over a lateral length scale l characteristic of the solid’s
underbelly, we have the scaling F ∼ Pl2. A scaling analysis
of the lubrication equation Eq. (2) relates P, l, and gap
height h as P ∼ Π0l2=h4. Using this pressure relation in the
total force balance gives

F ∼ Π0

�
l
h

�
4

: ð3Þ

For a given load F, Eq. (3) specifies h in terms of an
unknown lateral scale l. The crucial question is, then, what

FIG. 1. Leidenfrost levitation of elastic solids enabled by
soft lubrication. (a) A soft elastic hydrogel sphere of radius
R ¼ 7 mm hovers above a hot surface (ΔT ¼ 115°C). The inset
shows hydrogel in daylight. (b) Evaporative flux elastically
deforms the soft solid. Competition between vapor pressure and
elastic stress sets the shape of the solid’s underbelly and the gap
height. Inset: we predict distinct height scaling laws in a contact
region under the soft solid, an outer region, and a narrow neck
region of width δ.
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is the correct choice of l? We postulate that there are two
choices of l, giving two possible gap height scaling laws.
The first choice is for a completely rigid sphere, neglecting
elasticity: lS ¼ ffiffiffiffiffiffi

hR
p

[23]. Using this choice in Eq. (3)
recovers the height scaling for rigid spheres, h ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
Π0=F

p
R.

This scaling applies whenever geometric deformation can
be neglected [7,11].
Scaling laws unique to elastic Leidenfrost floating

result from a different choice of lateral length scale l,
arising from linear elasticity theory and Hertzian contact
mechanics [35–37]: we describe this regime as one of
Hertzian scaling. When an elastic sphere of Young’s
modulus E is placed in direct contact with a hard surface,
a circular indentation results, with radius lH ∼ ðFR=EÞ1=3∼
R4=3. We hypothesize that the underbelly of an elastic
Leidenfrost solid asymptotically adopts this lateral scale.
The total vapor thrust then scales as the ratio ðlH=hÞ4, but the
total load scales as the volume R3, resulting in a float height
given by h ∼ lH=R3=4 ∼ R7=12. Note that h=lH ∼ R−3=4, and
so the lubrication approximation improves as we go further
into the Hertzian limit.
The full scaling with all materials parameters is given in

Eq. (1). Intuitively, as the sphere radius increases, elastic
deformation of the solid’s underbelly gives a rapidly
increasing contact area over which evaporative thrust is
generated. This increasing thrust outcompetes the increas-
ing weight, leading to the counterintuitive increase of gap
height with radius R. In the discussion, we compare this
behavior to that of large liquid Leidenfrost drops, which
also exhibit a regime of increasing gap height with lateral
extent [6,8,10,11].
We have described two distinct scaling regimes for the

gap height of elastic Leidenfrost solids: a stiff regime
characterized by the lateral length scale lS, and a Hertzian
regime characterized by lH. Our second main result is to
show that the crossover between these regimes is charac-
terized by a single dimensionless elastic Leidenfrost number
λ, defined as

λ≡2π

3

�
lS
lH

�
4

¼ 2π

3

�
4E

3ð1−ν2Þ
�
4=3

Π0F−7=3R8=3: ð4Þ

Intuitively, λ compares the length scales over which vapor
pressure causes elastic deformation, as shown by the
first equality in Eq. (4). The second equality provides
an expression in terms of materials parameters. When
λ → ∞, lS ≫ lH and vapor pressure is too small to cause
appreciable elastic deformation. By contrast, when λ → 0,
lS ≪ lH and Hertzian elasticity dominates. A crossover
between the rigid and Hertzian regimes is expected at
λ ∼ 1. In Supplemental Material (SM) [38], we show that
nondimensionalizing the combined equations of linear
elasticity and the lubrication equation [i.e., Eq. (2)] yields
λ as the single dimensionless number governing the
floating regime.

We have predicted that the dimensionless parameter λ
mediates the crossover between rigid behavior and our
scaling law, Eq. (1). We now test these predictions. To do
so, we numerically solve for a series of profiles for the gap
height hðrÞ and for the pressure PðrÞ, across a range of
sphere radii and Young’s moduli. We implement a hybrid
finite element method in COMSOL multiphysics, in which
the equations of linear elasticity are solved throughout the
3D solid. This elastic solver is coupled to a numerical
solution of the lubrication equation Eq. (2) via COMSOL’s
standard Coefficient Form Boundary PDE option. Our
finite element approach, described further in SM [38],
was used in Refs. [42,43] to study droplet impact and the
liquid Leidenfrost effect. This method allows us to probe
the limits of validity for our theory by bypassing the
assumptions made in Hertzian contact theory, i.e., the use
of a half-space elastic solution for a curved boundary and a
parabolic approximation to the solid’s underbelly.
In Fig. 2, we show the gap height in the contact region,

hðr ¼ 0Þ, against radius R and modulus E. Parameters not
varied are fixed to natural experimental values for the
hydrogel spheres used in, for example, Ref. [3]. We find a
clear crossover between two distinct regimes of behavior
occurring at λ ∼ 1, with agreement between our predicted

FIG. 2. Gap height scaling laws. (a) Profiles of the solid’s
underbelly in the Hertzian limit λ → 0 show the development of a
neck region (orange triangle), with height scaling law distinct
from the contact region (purple circle). (b),(c) Finite element
simulations (markers) verify our analytically predicted gap height
scaling laws (lines) for the contact (h ∼ E−1=3R7=12) and neck
(h ∼ E−7=24R43=96) regions. Black lines show analytic predictions
for a rigid sphere. We find three regimes: rigid (λ → ∞),
transition (λ ∼ 1), and Hertzian (λ → 0). In (b), R ¼ 40 mm.
In (c), E ¼ 50 kPa. Remaining parameters as in [3].
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scaling laws, Eq. (1), and those found in simulation.
However, our numerical results also reveal a neck region
at the edge of contact [Fig. 2(a)], which develops as the
solid transitions into the Hertzian regime. The height of
this neck follows a distinct scaling law, not captured by the
analysis above.
To study this neck region further, in Fig. 3 we plot the

full height [Fig. 3(a)] and pressure [Fig. 3(b)] profiles
under the soft solid, nondimensionalized by Hertzian
scales: r̃ ¼ r=lH, h̃ ¼ hR=l2H, P̃¼ð2πl2H=3FÞP. As λ→0
both height and pressure profiles approach their Hertzian
limits, h̃ðr̃Þ ¼ ðr̃ − 1Þ3=2 for r̃≳ 1, and P̃ðr̃Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r̃2

p
for

r̃ < 1 [36], except in a boundary layer of width δðλÞ located
at r̃ ¼ 1. The discrepancy in the height data becomes clearer
when we rescale h̃ by the contact scaling law Eq. (1). We
show in SM [38] that Eq. (1) corresponds to the dimension-
less scaling law h̃ðr̃ ¼ 0Þ ∼ ϕcðλÞ, where ϕcðλÞ ¼ λ1=4. As
shown in the left inset of Fig. 3(a), this law collapses data in
the contact region, but fails in the neck δðλÞ. The reason is
that the Hertzian dry contact solutions are singular at r̃ ¼ 1.
This singularity implies a breakdown of Hertz theory over

the width δðλÞ, because the height and pressure profiles in
our lubrication problemmust remain smooth everywhere. In
this region, the height scaling from Eq. (1) does not apply
because the relevant lateral length scale is no longer the
Hertzian length scale lH.
To capture the anomalous scaling of the height in the

neck region and the width δðλÞ, we take inspiration from
the numerical collapse of Fig. 3. The key observation is
that in the contact region under the solid (r̃ ≪ 1), the
pressure is given by the Hertzian solution at leading order
in the parameter λ [Fig. 3(b)]. By the same logic, when
r̃ ≫ 1, the height is asymptotically Hertzian [Fig. 3(a)].
Using the lubrication equation Eq. (2), we construct the
corresponding height and pressure solutions in each
region. These solutions patch together over the neck
region, shown schematically in the inset of Fig. 1(b). In
the neck, both pressure and height vanish as some
unknown power of λ; we denote the height scaling as
ϕnðλÞ and the pressure scaling as ψnðλÞ. The patching
conditions, derived in SM [38], determine δðλÞ, ϕnðλÞ, and
ψnðλÞ to give a complete set of scaling laws:

δðλÞ ¼ λ3=16; ϕcðλÞ ¼ λ1=4;

ψnðλÞ ¼ λ3=32; ϕnðλÞ ¼ λ9=32: ð5Þ

In the insets of Fig. 3, we show that the scalings Eq. (5)
now collapse our simulation data in the neck region as well
as the contact region. Our asymptotic theory gives a new
prediction: redimensionalized, the relation ϕnðλÞ ¼ λ9=32

yields the anomalous neck height scaling

h ∼ Π9=32
0 E−7=24F1=96R5=12: ð6Þ

Again taking the load to go as the volume, F ∼ R3, we find
the neck height scaling h ∼ R43=96. In Fig. 2, we show that
these revised scalings with radius R and modulus E agree
well with simulations. Taken together, the scalings Eqs. (1)
and (6) provide a complete picture of elastic Leidenfrost
floating, with the agreement between the asymptotic result
Eq. (6) and our simulations also serving as a rigorous
cross-check on our theory.
Our fundamental description of elastic Leidenfrost float-

ing provides the theoretical groundwork for interpreting
recent studies [1,3], and establishes principles for exper-
imental investigation of this new class of Leidenfrost
phenomena. Using hydrogel spheres of radius R ¼ 7 mm
andmodulusE ¼ 50 kPa, Ref. [3] places an upper bound on
the gap height in the floating regime as h < ð25� 10Þ μm.
Our theory predicts a contact height of h ¼ 15 μm and a
neck height of h ¼ 12 μm, and finds λ ∼ 10−5, placing the
experiments of Ref. [3] in the regime of Hertzian scaling
governed by Eq. (1). Gap heights of ∼15 μm are measurable
via interferometric imaging, although inferring absolute
height data in this range requires techniques beyond

FIG. 3. Collapsing to the Hertzian limit. Nondimensionalized
(a) height h̃ and (b) pressure P̃ profiles from finite element
simulation. Both approach the Hertzian solutions (black dashed
lines) as λ → 0. Deviations are confined to the neck region δðλÞ.
Insets: our height scaling law in the contact region, ϕcðλÞ ¼ λ1=4,
breaks down in the neck [(a), left]. Instead, our asymptotic theory
predicts that profiles collapse in the neck when radius Δr̃≡ r̃ − 1

is rescaled by δðλÞ ¼ λ3=16, height by ϕnðλÞ ¼ λ9=32 [(a), right]
and pressure by ψnðλÞ ¼ λ3=32 [(b) right].
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white-light interferometry: in SM we describe the exper-
imental methodology necessary to probe our theoretical
scaling laws.
Before chimneying, large liquid Leidenfrost drops also

exhibit a regime of increasing float height with lateral
extent, and the development of a neck [6,8,10,11]. The
mechanism behind this regime, both in liquids and the soft
elastic solids considered here, is geometric change occur-
ring on the underbelly of the levitated object. However,
scaling relations differ between the liquid and soft solid
cases [10]. For example, we find neck height scaling
h ∼ R43=96, whereas in Ref. [11] the neck height appears
to plateau at a constant value. Our Letter invites the question
of how much of the rich phenomenology of liquids finds an
elastic counterpart [44,45].
More broadly, our Letter points toward combining

Leidenfrost-type physics and soft elasticity beyond the
setup of Fig. 1(a). We envision tailoring the floating
configuration of an object by combining phase-change
induced forces with those from motion [23,25], and by
tuning initial geometry: in SM [38], we show that an elastic
cylinder in the Hertzian regime has a contact height scaling
h ∼ R5=8, distinct from the spherical case. Such shape
control is not possible for liquid droplets.
The supporting data for this Letter are openly available

from Zenodo under an MIT license Ref. [46].
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