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The classical infinitesimal model is a simple and robust model for the inheritance of quantitative traits. In this model, a quantitative trait is 
expressed as the sum of a genetic and an environmental component, and the genetic component of offspring traits within a family fol
lows a normal distribution around the average of the parents’ trait values, and has a variance that is independent of the parental traits. In 
previous work, we showed that when trait values are determined by the sum of a large number of additive Mendelian factors, each of 
small effect, one can justify the infinitesimal model as a limit of Mendelian inheritance. In this paper, we show that this result extends 
to include dominance. We define the model in terms of classical quantities of quantitative genetics, before justifying it as a limit of 
Mendelian inheritance as the number, M, of underlying loci tends to infinity. As in the additive case, the multivariate normal distribution 
of trait values across the pedigree can be expressed in terms of variance components in an ancestral population and probabilities of 
identity by descent determined by the pedigree. Now, with just first-order dominance effects, we require two-, three-, and four-way iden
tities. We also show that, even if we condition on parental trait values, the “shared” and “residual” components of trait values within each 
family will be asymptotically normally distributed as the number of loci tends to infinity, with an error of order 1/

���
M
√

. We illustrate our 
results with some numerical examples.
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Introduction
In the classical infinitesimal model, a quantitative trait is ex
pressed as the sum of a genetic and a nongenetic (environmental) 
component, and the genetic component of offspring traits within 
a family follows a normal distribution around the average of the 
parents’ trait values, and has a variance that is independent of 
the trait values of the parents. With inbreeding, the variance de
creases in proportion to relatedness. When trait values are deter
mined by the sum of a large number of Mendelian factors, each of 
small effect, as we show in Barton et al. (2017), one can justify the 
infinitesimal model as a limit of Mendelian inheritance. Crucially, 
the results of Barton et al. (2017) show that the evolutionary forces 
such as random drift and population structure are captured by the 
pedigree; conditioning on that pedigree, and trait values in the 
population in all generations before the present, the within-family 
distributions in the present generation will be given by a multi
variate normal, with variance determined by that in the ancestral 
population and probabilities of identity by descent that can be 
deduced from the pedigree. If some traits in the pedigree are un
known, then averaging with respect to the ancestral distribution, 
the multivariate normality is preserved. It was also shown that 
under some forms of epistasis, trait values within a family are still 
normally distributed, although the mean will no longer be a sim
ple function of the traits in the parents (as there are epistatic com
ponents which cannot be observed directly).

We emphasize that as a result of selection, population struc
ture, and so on, the trait distribution across the population can 

be far from normal; the infinitesimal model as we define it only as
serts that the within-family distributions of the genetic component 
of the trait are Gaussian, with a variance–covariance matrix that 
is determined entirely by that in an ancestral population and 
the probabilities of identity determined by the pedigree. 
Moreover, as a result of the multivariate normality, conditioning 
on some of the trait values within that pedigree has predictable 
effects on the mean and variance within and between families. 
In other words, knowing the trait values for some individuals 
in the population does not distort the multivariate normality of 
the distribution of the unobserved traits, and the mean and covar
iances of these traits may be derived explicitly (albeit after rather 
tedious calculations).

In this paper, we show that this extraordinary robustness of the 
infinitesimal model extends to include dominance. The distribu
tion of the genetic part of the trait will once again be a multivariate 
normal distribution whose mean and variance is expressed in 
terms of the variance components in an ancestral population 
and probabilities of identity by descent determined by the pedi
gree, but now, with just first-order dominance effects, the iden
tities required will involve up to four genes. As with the case of 
epistasis, the mean is not a simple function of the trait values in 
the parents, and there is nontrivial covariance between families. 
One can think of the genetic component of the trait values within 
a family as consisting of two parts. Both are normally distributed. 
In the additive case, the first reduces to the mean of the trait va
lues of the parents; with dominance it will be random (even if 
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we condition on knowing the parental traits), but the same for all 
individuals in the family. What is at first sight surprising is that 
even if we condition on knowing the trait values of the parents, 
this shared quantity is normally distributed. Assuming there is 
no mutation to ease the presentation [the effect of mutation 
was studied in Barton et al. (2017)], our first contribution is to 
show how to calculate its mean and variance from knowledge of 
variance components in the ancestral population and the pedi
gree, both with and without knowledge of the trait values of the 
parents. Knowing the trait values of the parents shifts the mean 
in a predictable way, the variance is independent of the parental 
trait values. The second part of the trait value, which is independ
ent for each offspring in the family, is independent of the first; it 
encodes the randomness of Mendelian inheritance. It is a draw 
from a normally distributed random variable with mean zero 
and variance again determined by the pedigree and variance com
ponents in the ancestral population. It is not affected by condi
tioning on parental trait values. This segregation of the trait into 
a shared part and a residual part that is independent for each 
member of a family is not the classical subdivision into additive 
and dominance components, but it arises naturally both in the 
formulation of the infinitesimal model and in its derivation as a 
limit of Mendelian inheritance for a large number of loci each of 
small effect. We give a more mathematical description of it in 
Equation (2).

Our work can be seen as an extension of that of Abney et al. 
(2000), who establish sufficient conditions for a Central Limit 
Theorem to be applied to the vector of trait values in the presence 
of dominance and inbreeding. Our second contribution in this 
work is to establish the magnitude of the error in that normal ap
proximation, verify that in conditioning on the trait values of the 
parents of an individual we are not (unless those traits are very ex
treme or the pedigree is very inbred) leaving the domain where the 
normal approximation is valid, and write down the effect of know
ing those parental trait values on the distribution of the indivi
dual’s own trait. A careful statement of our results can be found 
in Theorems 4 and 5. The notation we shall need is rather in
volved, but in a nutshell, we shall write the trait 􏽥Zi of a given dip
loid individual i in generation t as the sum over M loci of per-locus 
allelic effects that are functions of the allelic states χ1

l , χ2
l of the 

two genes of individual i at locus l, plus an environmental contri
bution Ei (that we shall assume to be Gaussian):

􏽥Zi = z̅0 +
􏽘M

l=1

1
���
M
√ (ηl(χ1

l ) + ηl(χ2
l ) + ϕl(χ1

l , χ2
l )) + Ei. (1) 

Here, z̅0 is the average trait value in the ancestral population (it
self a sum of average allelic effects) and the sum encodes the con
tribution of all loci to the deviation from this average [each 

per-locus deviation being of order 1/
���
M
√

, see Barton et al. (2017)
and the third section below for a justification]. In this sum, the 

term ηl(χ1
l ) + ηl(χ2

l ) models the additive part of the contribution of 

locus l and ϕl(χ1
l , χ2

l ) models the part due to dominance. 

Assuming Mendelian inheritance and no linkage between the M 

loci, at each locus the allelic state χ1
l is a copy of the allelic state 

of one of the two genes in the “first” parent of i, chosen at random, 

and χ2
l is a copy of the allelic state of one of the two genes in the 

“second” parent of i, again chosen uniformly at random. Writing 

χi[1],1
l , χi[1],2

l for the alleles at locus l in the first parent and 

χi[2],1
l , χi[2],2

l for the alleles in the second parent, we can then write 

the sum over all loci in Equation (1) as the sum of an average 

parental contribution (shared by all offspring of these parents), 
and a residual term of mean zero that encodes the stochasticity 
of Mendelian inheritance (the actual genetic contribution of the 
parents minus their average contribution). To avoid introducing 

even more notation, here we simply write Ri
A and Ri

D for the parts 
of the residual due to the additive terms and to the dominance 
terms respectively. Explicit formulae are given in Equations 
(24)–(27). Doing so, we obtain

􏽥Zi = z̅0 +
1
���
M
√

􏽘M

l=1

ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l )

2

􏼨

+
ηl(χ

i[2],1
l ) + ηl(χ

i[2],2
l )

2

􏼩

+
1
���
M
√

􏽘M

l=1

ϕl(χ
i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],2
l , χi[2],1

l )
4

􏼨

+
ϕl(χ

i[1],1
l , χi[2],2

l ) + ϕl(χ
i[1],2
l , χi[2],2

l )
4

􏼩

+ Ri
A + Ri

D + Ei

=: z̅0 +Ai +Di + Ri
A + Ri

D + Ei.

(2) 

The genetic component of the trait can thus be seen either as the 

sum of an additive part (Ai + Ri
A) and a dominance part (Di + Ri

D), 

or as the sum of a shared part (Ai +Di) and a residual part 

(Ri
A + Ri

D). Following the same strategy as in Barton et al. (2017), 
in Theorem 4 we show that even conditionally on (i.e. knowing) 

the parental traits 􏽥Zi[1] and 􏽥Zi[2], as M tends to infinity the residual 
part converges in distribution to a Gaussian distribution with 
mean 0 and a variance depending only on variance components 
in the ancestral population and on the probability of identity by 
descent between two parental genes (which is fully determined 
by the pedigree). Crucially, the limiting variance does not depend 
on the parental traits. This convergence happens at a rate propor

tional to 1/
���
M
√

. Turning to the shared part, we use a different ap

proach to prove that conditional on 􏽥Zi[1] and 􏽥Zi[2], Ai +Di also 
converges to a Gaussian distribution as M tends to infinity. 
Again, the nonzero mean and the variance of the limiting normal 
distribution can be fully described, the variance is independent of 
the parental traits and the convergence happens at a rate propor

tional to 1/
���
M
√

. This is the content of Theorem 5, in the special 
(and most difficult) case when individual i was produced by self
ing. For both the shared and the residual parts, the rate of conver
gence deteriorates when the pedigree is too inbred (leading to 
probabilities of identity by descent close to 1 between some pairs 
of parental genes), or when some traits in the population are too 
extreme (as knowing the trait value then gives us too much infor
mation about the unobserved underlying allelic states).

Our derivation of the infinitesimal model as the limit of a finite- 
locus model has two interesting corollaries. First, as mentioned 
above, we obtain that the error made by approximating the trait 
distribution within a family by a Gaussian distribution increases 
by a quantity of order 1/

���
M
√

in each generation. Consequently, 
for very large M, we expect the infinitesimal model with domin
ance to be valid for a time of the order of 

���
M
√

generations, provided 
the population is not too inbred and no too extreme traits appear 
in the meantime. Second, the set of technical lemmas that are key 
to the proofs of these results, presented in Appendix E, show that 
the infinitesimal model leaves essentially no signature on the al
lele frequencies at any given locus: even knowing the ancestral 
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traits, the distribution of the allelic state at a single locus in a given 
individual is barely distorted by selection acting on the trait and 
the result is that, at the population level, the allelic distribution 
evolves in an essentially neutral way. In particular, its variance 
only depends on the variance of the allele distribution in the an
cestral population and on identities by descent, that are not chan
ged by knowledge of the trait values.

The rest of the paper is organized as follows. In the next section, 
we define the identity coefficients (that is, probabilities of identity 
by descent) that we shall need to formulate the model precisely. 
We show how to compute them knowing the population pedigree 
in Appendix A and provide the corresponding Mathematica code in 
supplementary material (Barton 2023). Next, we spell out the 
model in terms of quantities that are familiar from classical quan
titative genetics, and we explore its accuracy numerically in a de
voted section. Finally, we derive this extension of the infinitesimal 
model as a limit of a model of Mendelian inheritance on the pedi
gree. The calculations are somewhat involved, and almost all will 
be relegated to the appendices. We must modify the strategy of 
Barton et al. (2017), which, although valid for the part of the trait 
value which is independent for each individual within the family, 
does not suffice for proving normality of the part of the trait value 
that is shared by all individuals within a family. To prove that this 
is normally distributed requires a new approach, based on an ex
tension of Stein’s method of exchangeable pairs. To keep the ex
pressions in our calculations manageable, we satisfy ourselves 
with presenting the details only in the case in which we condition 
on knowing the trait values of the parents of an individual, in con
trast to the additive case of Barton et al. (2017), in which we condi
tioned on knowing all the trait values in the pedigree right back to 
the ancestral generation. Our approach could readily be extended 
to conditioning on knowledge of more trait values, which amounts 
to conditioning a multivariate normal on some of its marginals. In 
Appendix H, we present the new ideas that are required to control 
the way in which errors in the infinitesimal approximation accu
mulate from knowledge of trait values of more distant relatives 
in the presence of dominance.

Just as in the additive case, the key will be to show that because 
many different combinations of allelic states are consistent with 
the same trait value, knowledge of the pedigree, and the trait va
lues of the parents of an individual in that pedigree, actually gives 
very little information about the allelic state at a particular locus 
in that individual, or about correlations between two specific loci. 
An important consequence of this is that, in practice, it is going to 
be hard to observe signals of polygenic adaptation, because even a 
large shift in a trait caused by strong selection does not yield a pre
diction about alleles at a particular locus.

Identity coefficients
In the case of an additive trait, the infinitesimal model can be ex
pressed in terms of the variance in the ancestral population (that 
is, the base population which we shall call generation zero) and two- 
way identity coefficients at a single locus. Recall that two genes at 
a given locus are identical by descent if their allelic states are iden
tical and were inherited from a common ancestor. Since we as
sume that individuals are diploid, we need to specify which 
genes we consider when defining the identity coefficients.

For two distinct individuals i and j in the same generation, we 
define Fij to be the probability of identity by descent between 
two genes (at a given locus), one taken uniformly at random 
among the two genes of individual i and one taken at random 
among the two genes of individual j. When i = j, Fii is defined to 

be the probability of identity by descent of the two distinct genes 
in the diploid individual i.

The definition naturally extends to subsets of three or four 
genes taken from two distinct individuals (again, at a given locus), 
for which we shall talk about three- and four-way identities. 
These quantities will be required to state our results below.

We use F122 for the probability that the two genes in individual 2 
are identical by descent and they are identical by descent with a 
gene chosen at random from individual 1. We write F1122 for the 
probability that all four genes across individuals 1 and 2 are iden
tical by descent; this corresponds to the quantity δ in Walsh and 
Lynch (2018, Chapter 11). We need an expression for the probabil
ity that each gene in individual 1 is identical by descent with a dif
ferent gene in individual 2 and all four are not identical. We shall 
denote this by 􏽥F1212. This is denoted by (Δ − δ) in Walsh and 
Lynch (2018). Finally, we need the probability that the two genes 
in individual 1 are identical, as are the two genes in individual 2, 
but the four genes are not all identical, which we shall denote by 
􏽥F1122. We illustrate the three- and four-way identities in Fig. 1. 
During the course of our mathematical derivations, it will be con
venient to express all two-, three-, and four-way identities in 
terms of the nine possible four-way identities (Walsh and Lynch 
2018, Fig. 11.5). This is illustrated in Fig. B1.

In Appendix A, we discuss how to compute these identity coef
ficients given a pedigree. From now on we simply write “identity” 
instead of “identity by descent.”

The infinitesimal model with dominance
For ease of exposition, in this section we leave aside the environ
mental component of the trait value and we focus on its genetic 
component, which we denote by Z [so that in the notation of 
Equation (1), 􏽥Z = Z + E]. We first introduce the different quantities 
that are involved in this component of the trait value in a rigorous 
way, most of which were already hinted at in the Introduction, and 
then we compute the mean and variance of the shared and re
sidual parts of Z with and without knowledge of the parental 
traits.

The population is diploid and trait values are determined by the 
allelic states at M unlinked loci. Each locus thus corresponds to a 
pair of genes. We assume that in generation zero (i.e. in the “an
cestral” population), the individuals that found the pedigree are 
unrelated and sampled from an ancestral population in which 
all loci are in linkage equilibrium and are in Hardy–Weinberg 
equilibrium (that is, in the ancestral population the two allelic 
states at each locus in a given individual are sampled independ
ently of each other and therefore the probability that an individ
ual carries a given pair of alleles is given by the product of the 
probabilities of each allele being sampled).
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Fig. 1. Three- and four-way identities. Lines indicate identity by descent 
between genes. See the main text for further explanation.
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In order to define the various quantities that enter into our mod
el, we introduce notation to express the trait as a sum of effects 
over loci. However, we emphasize that once these components, 
all of which are familiar from classical quantitative genetics, 
have been calculated for the ancestral population, the model can 
be defined without reference to the effects of individual loci.

To adhere to the notation of Barton et al. (2017), we use χ1
l , χ2

l for 
the allelic states of the two genes at locus l in a given individual in 
the pedigree. When we talk about the distribution of the allelic 
state of a single gene, we drop the superscript 1 or 2 and simply 
write χl. We write ̅z0 for the mean trait value in the ancestral popu
lation and express the trait value of an individual as ̅z0 plus a sum 
of allelic effects. The influence of each locus will scale as 1/

���
M
√

, 
where M is the total number of loci (assumed large). We write 
ηl(χl) to denote the (order one) scaled additive effect of the allele 
χl and ϕl(χ1

l , χ2
l ) for the scaled dominance component (where ϕl is 

assumed to be a symmetric function of the two allelic states χ1
l 

and χ2
l ). That is, the total contribution of locus l to the trait value 

will be of the form

1
���
M
√ (ηl(χ1

l ) + ηl(χ2
l )) +

1
���
M
√ ϕl(χ1

l , χ2
l ).

We shall assume that both ηl and ϕl are uniformly bounded (i.e. 
they will all take their values in some finite interval [ −B, B]). We 
also suppose that dominance effects are sufficiently “balanced” 
that inbreeding depression is finite at least in the ancestral popu
lation. More precisely, let χ̂l denote an allele sampled at random 
from the distribution of alleles at locus l in the ancestral popula
tion, then ι defined by

ι =
1
���
M
√

􏽘M

l=1

E[ϕl(χ̂l, χ̂l)] (3) 

is bounded (as a function of M). This condition is crucial to our re
sult. It is not obvious that it can hold, as the number of terms in 

the sum grows linearly with M while the scaling factor 1/
���
M
√

de
creases much more slowly. Such a uniform bound is possible for 
instance if we consider a situation in which the contributions of 
the different loci compensate each other in a “random-walk-like” 
way, i.e. each expectation is either positive or negative (by the 
same amount, say), and the number of positive and negative ex

pectations differ by at most O(
���
M
√

). An example is presented at 
the beginning of the section on numerics. Note however that the 
quantity ι may be bounded uniformly in M for many other reasons. 
For simplicity, we do not consider higher order dominance compo
nents (that is D × D—or more complex—components) here.

Remark 1. Note that χ̂l is the random variable describing a 
draw from the distribution of allelic states at locus l in the an
cestral population (generation 0), while we use χl to denote the 
allelic state at locus l in a given individual in the pedigree (liv
ing in generation t, say). A priori, the law of χl is a biased version 
of the law of χ̂l, obtained after letting selection and drift act 
over t generations, but in Appendix E we shall show that, in ef
fect, this distortion is very small for each given locus, and χ̂l 

and χl have the same distribution up to a small error even if 
we condition on knowing the parental (or ancestral) trait 
values.

For an individual in the ancestral population, its allelic states at 
locus l, which we denote by 􏽢χ1

l ,􏽢χ2
l , are independent draws from a 

distribution 􏽢νl on possible allelic states that we assume is known. 

It is convenient to normalize so that E[ηl(􏽢χl)] = 0, E[ϕl(􏽢χ1
l ,􏽢χ2

l )] = 0, 
and for any value x′ of the allelic state at locus l, the conditional 
expectations E[ϕl(􏽢χl, x′)] = 0 = E[ϕl(x

′,􏽢χl)]. We explain in the section 
on modeling Mendelian inheritance why these assumptions do 
not result in a loss of generality. The genetic component of the 
trait value takes the form [compare with Equation (1), the expres
sion for the observed trait including environmental noise]

Z = z̅0 +
1
���
M
√

􏽘M

l=1

(ηl(χ1
l ) + ηl(χ2

l ) + ϕl(χ1
l , χ2

l )). (4) 

Let us write i[1] and i[2] for the parents of the individual labeled i. 
As advertised in the Introduction, the genetic component of an off
spring’s trait value has two contributions. The first one is shared 
by all its siblings, and is a random quantity which is characteristic 
of the family. The second contribution is unique to the individual 
and independent of the first one. In our proofs, we shall investi
gate these two parts separately. We shall use the notation 

Zi = (Ai +Di) + (Ri
A + Ri

D), where the shared part has been further 

subdivided into the contribution Ai from the additive component, 

and the contribution Di from the dominance component. The re

siduals Ri
A and Ri

D are determined by Mendelian inheritance and 
correspond to the contributions from the additive and dominance 
components respectively. Explicit expressions for these quantities 
are in Equations (24)–(29) below. In this notation, the additive part 

of the trait value is Ai + Ri
A and the dominance deviation is Di + Ri

D.

Trait values for a given pedigree
We now define the infinitesimal model in terms of classical quan
tities of quantitative genetics that can be expressed in terms of ex
pectations in the ancestral population and identities determined 
by the pedigree. We use the notation of Walsh and Lynch (2018), 
which we recall in Table 1. Under the infinitesimal model, condi
tional on the pedigree, the components (Ai +Di) and (Ri

A + Ri
D) of 

the trait values of individuals in a family follow independent 
multivariate normal distributions. In Appendix B, the expressions 
presented in this section will be justified by taking the trait values 
determined by Equation (4) under a model of Mendelian inherit
ance. In writing down the infinitesimal model, we shall assume 
that as the number of loci tends to infinity, the quantities defined 
in the top part of Table 1 converge to well-defined limits.

To simplify notation, we shall use 1 and 2 in place of i[1] and i[2] 
in our expressions for identity; thus, for example, F12 ≡ Fi[1],i[2], and 
F11 will be the probability of identity by descent of the two genes in 
parent i[1]. The mean and variance of (Ai +Di) are then

E[Ai +Di] = ιF12, (5) 

and

Var(Ai +Di)

=
σ2

A

2
1 +

F11 + F22

2
+ 2F12

􏼒 􏼓

+ σADI F12 +
F112 + F122

2

􏼒 􏼓

+
(σ2

DI + ι∗)
4

(F12 + F112 + F122 + F1122) +
ι∗

4
􏽥F1212 − ι∗F2

12

+
σ2

D

4
1 − F12 + F22 − F122 + F11 − F112 +􏽥F1122 +

1
2
􏽥F1212

􏼒 􏼓

.

(6) 

In this expression, the term proportional to σ2
A is the variance of Ai, 

the term proportional to σADI is twice the covariance of Ai and Di 

and the remaining sum gives the variance of Di. Recall that we 
are assuming here that the ancestral population is in linkage 
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equilibrium. With linkage disequilibrium there is an additional 
term, c.f. the remark below Equation (11). The components (A + 
D) are also correlated across families. For individuals labeled i 
and j, respectively,

Cov((Ai +Di), (Aj +Dj))

= 2Fijσ2
A + (Fijj + Fiij)σADI

+􏽥Fijijσ2
D + Fiijj(σ2

DI + ι∗) − ι2FiiF jj + ι∗􏽥Fiijj.

(7) 

Note that, in contrast to our expression for the variance of Zi, in 
this expression, the subscripts i and j in the identities refer to 
the individuals themselves, not their parents; for example, the ex
pression Fij is the probability of identity of two genes, one sampled 

at random from individual i and one sampled at random from in
dividual j. We reserve letters for individuals in the current gener
ation, and numbers for their parents.

If we combine the components Ri
A and Ri

D that segregate within 
families, we have that the sums (Ri

A + Ri
D) are independent of each 

other (due to the independence of the variables encoding 
Mendelian inheritance), mean zero, normally distributed random 
variables with variance

Var(Ri
A + Ri

D)

= 1 −
F11 + F22

2

􏼒 􏼓
σ2

A

2

+
1
4

(3F12 − F1122 − F112 − F122)(σ2
DI + ι∗)

+
1
4

3(1 − F12) − (F11 − F112) − (F22 − F122) −􏽥F1122

􏼔

−
1
2
􏽥F1212

􏼕

σ2
D + F12 −

F112 + F122

2

􏼒 􏼓

σADI −
ι∗

4
􏽥F1212.

(8) 

Here again, the term proportional to σ2
A is the variance of Ri

A, the 

term proportional to σADI is twice the covariance of Ri
A and Ri

D, 

and the remaining sum equals the variance of Ri
D. We calculate 

the mean, variance, and covariance of these different components 
in Appendix B. In order to recover the mean and variance of the 

trait values, we add the contributions of (Ai +Di) and (Ri
A + Ri

D) 
and observe that the identity F12 in our expressions for the var
iances of these quantities (which we recall was the probability 
of identity of one gene sampled at random from each of the par
ents i[1], i[2] of our individual) corresponds to Fii. This yields 
that, conditional on the pedigree,

E[Zi] = z̅0 + ιFii, (9) 

Cov(Zi, Zj) = 2Fijσ2
A + (Fijj + Fiij)σADI +􏽥Fijijσ2

D

+ Fiijj (σ2
DI + ι∗) − ι2FiiF jj + ι∗􏽥Fiijj,

(10) 

and

Var(Zi) = σ2
A(1 + Fii) + σ2

D(1 − Fii) + (σ2
DI + ι∗)Fii

+ 2σADIFii − ι∗F2
ii.

(11) 

For a single individual, its trait value can only depend on the two 
alleles that it carries at each locus, so it is no surprise that this ex
pression depends only on pairwise identities between those two 
genes. We remark that Equation (11) differs from the correspond
ing expression [Equation (11.6c) in Walsh and Lynch (2018)]. To re

cover exactly their expression, one must add ( f̃ − F2
ii)(ι

2 − ι∗) to the 

right-hand side, where f̃ is the probability of identity at two dis
tinct loci in individual i. We see how to recover this term in 
Remark B1, but because we have assumed linkage equilibrium 
in our base population, for the period over which the infinitesimal 
model remains a good approximation, under our assumptions we 

have f̃ ≈ F2
ii. This is not to say that there is not a significant contri

bution to the trait value from linkage disequilibrium; it is just that 
for any specific pair of loci it is negligible. We shall see a toy ex
ample that reinforces this point at the beginning of the section 
on modeling Mendelian inheritance.

We emphasize again that our partition of the trait values into a 
contribution that is shared by all individuals in a family and resi
duals differs from the conventional split into an additive part and 
a dominance deviation. The additive part of the trait is Ai =Ai + Ri

A 

and the dominance component is Di =Di + Ri
D. From our calcula

tions in Appendix B, we can read off

E[Ai] = 0, E[Di] = ιFii, (12) 

Var(Ai) = σ2
A(1 + Fii), Cov(Ai, Di) = σADIFii, (13) 

and

Var(Di) = σ2
D(1 − Fii) + σ2

DIFii + ι∗(Fii − F2
ii). (14) 

Remark 2. Notice that the purely additive case can be simply 
recovered by taking ϕl ≡ 0, so that Di = 0 = Ri

D, and σ2
A is the only 

nonzero variance coefficient. This yields

E[Ai +Di] = 0, Var(Ai +Di) =
σ2

A

2
1 +

F11 + F22

2
+ 2F12

􏼒 􏼓

,

Cov((Ai +Di), (Aj +Dj)) = 2Fijσ2
A,

Var(Ri
A + Ri

D) = 1 −
F11 + F22

2

􏼒 􏼓
σ2

A

2
, 

and finally

E[Zi] = z̅0, Var(Zi) = σ2
A(1 + Fii), Cov(Zi, Zj) = 2Fijσ2

A.

Table 1. Coefficients of classical quantitative genetics (top) and 
elements of individual trait decomposition (bottom).

Additive variance σ2
A = 2

M

􏽐M
l=1 E[ηl(􏽢χl)

2]

Dominance variance σ2
D = 1

M

􏽐M
l=1 E[ϕl(􏽢χ1

l ,􏽢χ2
l )2]

Inbreeding depression ι = 1��
M
√
􏽐M

l=1 E[ϕl(􏽢χl,􏽢χl)]

Sum of squared 
locus-specific inbreeding 
depressions

ι∗ = 1
M

􏽐M
l=1 E[ϕl(􏽢χl,􏽢χl)]

2

Variance of dominance 
effects in inbred 
individuals

σ2
DI = 1

M

􏽐M
l=1 (E[ϕl(􏽢χl,􏽢χl)

2] − E[ϕl(􏽢χl,􏽢χl)]
2)

Covariance of additive and 
dominance effects in 
inbred individuals

σADI = 2
M

􏽐M
l=1 E[ηl(􏽢χl)ϕl(􏽢χl,􏽢χl)]

Additive part of the shared 
component

Ai—defined in Equation (28)

Dominance part of the 
shared component

Di—defined in Equation (29)

Additive part of the residual Ri
A—defined by Equations (24) + (25)

Dominance part of the 
residual

Ri
D—defined by Equations (26) + (27)

Genetic component of trait 
value

Zi = z̅0 +Ai +Di + Ri
A + Ri

D

Observed trait value 􏽥Zi = Zi + Ei, Ei ∼ N (0, σ2
E)

We use 􏽢χl to denote an allelic state sampled from the distribution 􏽢νl of possible 
allelic states at locus l in the ancestral population; 􏽢χ1

l , 􏽢χ2
l are independent draws 

from the same distribution.
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Conditioning on trait values of parents
Under the infinitesimal model, the trait values of individuals across 
the pedigree are given by a multivariate normal. Therefore, stand
ard results on conditioning multivariate normal random vectors on 
their marginal values, which for ease of reference we record in 
Appendix C, allow us to read off the effect on the distribution of 
Zi of conditioning on Zi[1] and Zi[2]. However, a little care is needed; 
we shall be justifying the normal distribution within families as an 
approximation as the number of loci tends to infinity, and we must 
be sure that asymptotic normality is preserved under this condi
tioning. We shall see that if, for example, parental trait values are 
too extreme, then the conditioning pushes us to a part of the prob
ability space where the normal approximation breaks down. This is 
particularly evident in the toy example that we present in the sec
tion on modeling Mendelian inheritance. A justification for asymp
totic normality even after conditioning is outlined in that section, 
and details are presented in the appendices.

Just as in the classical infinitesimal model, the mean and vari
ance of the residuals Ri

A + Ri
D are unchanged by conditioning on 

the trait values of the parents [recall that these residuals encode 
the stochasticity due to Mendelian inheritance at each locus; ex
pressions for Ri

A and Ri
D are given in Equations (24)–(27)]. For the 

shared components, the mean and variance will be distorted by 
quantities determined by the covariances between (Ai +Di) and 
Zi[1], Zi[2]. Let us write

C(i, i[1]) : = Cov((Ai +Di), Zi[1]), (15) 

with a corresponding definition for C(i, i[2]). Then, once again 
using 1 and 2 in place of i[1] and i[2] in our expressions for iden
tities,

C(i, i[1]) =
σ2

A

2
(1 + F11 + 2F12) +

σADI

2
(F11 + F12 + 2F112)

+ σ2
D(F12 − F112) + (σ2

DI + ι∗)F112 − ι2F11F12,

(16) 

with C(i, i[2]) given by the corresponding expression with the roles 
of the subscripts 1 and 2 interchanged. (A derivation of this ex
pression is provided in Appendix B.) With this notation,

E[(Ai +Di)|Zi[1], Zi[2]]

= E[(Ai +Di)] +
1

Var(Zi[1]) Var(Zi[2]) − Cov(Zi[1], Zi[2])2

× (C(i, i[1]) Var(Zi[2]) − C(i, i[2]) Cov(Zi[1], Zi[2]))
􏽮

× (Zi[1] − E[Zi[1]])

+ (C(i, i[2]) Var(Zi[1]) − C(i, i[1]) Cov(Zi[1], Zi[2]))

×(Zi[2] − E[Zi[2]])
􏽯
,

(17) 

and

Var((Ai +Di)|Zi[1], Zi[2])

= Var(Ai +Di)

−
Var(Zi[1])C(i, i[2])2 + Var(Zi[2])C(i, i[1])2

Var(Zi[1]) Var(Zi[2]) − Cov(Zi[1], Zi[2])2

+
2Cov(Zi[1], Zi[2])C(i, i[1])C(i, i[2])

Var(Zi[1]) Var(Zi[2]) − Cov(Zi[1], Zi[2])2
.

(18) 

(We have implicitly assumed that i[1] ≠ i[2]; in the case i[1] = i[2] 
the expression is simpler as we are then conditioning a bivariate 
normal on one of its marginals.)

Remark 3. In the purely additive case, things simplify greatly. 
From the expressions above, before conditioning, the mean of 
Ai +Di is zero (since ι = 0), and the variance is

σ2
A

2
1 +

(F11 + F22)
2

+ 2F12

􏼒 􏼓

.

Moreover,

Var(Zi[1]) = σ2
A(1 + F11), Var(Zi[2]) = σ2

A(1 + F22),

Cov(Zi[1], Zi[2]) = 2σ2
AF12, 

and

C(i, i[1]) =
1
2

σ2
A(1 + F11 + 2F12),

C(i, i[2]) =
1
2

σ2
A(1 + F22 + 2F12).

Substituting into Equations (17) and (18), and observing that

(1 + F11)(1 + F22 + 2F12)2 + (1 + F22)(1 + F11 + 2F12)2

− 4F12(1 + F11 + 2F12)(1 + F22 + 2F12)

= 2((1 + F11)(1 + F22) − 4F2
12) 1 +

F11 + F22

2
+ 2F12

􏼒 􏼓

, 

we find that conditional on the trait values of the parents, the 

mean and variance of Ai +Di reduce to (Zi[1] + Zi[2])/2 and zero, 
respectively, and we recover the classical infinitesimal model.

Although in the presence of dominance the expressions (17) 
and (18) are rather complicated, we emphasize that they are de
rived from knowledge of just the ancestral population and the 
pedigree, and are expressed in terms of familiar quantities from 
classical quantitative genetics.

Numerical examples
In this section, we present numerical examples to illustrate the 
accuracy of the predictions of the infinitesimal model, again disre
garding the environmental component of the trait.

We first generated a pedigree for a population of constant size 
of N = 30 diploid individuals over 50 discrete generations. Mating 
is random, but with no selfing. In order to facilitate comparison 
of different scenarios, the same pedigree was used for all subse
quent simulations. In this way, the identity coefficients are held 
constant. As expected, the mean probability of identity between 
pairs of genes sampled from different individuals in generation t 
is close to 1 − (1 − 1/2N)t.

We define a trait, Z, which depends on M = 1,000 bi-allelic loci. 
There is no epistasis, so that the trait value is a sum across loci. In 
the examples here, we assume complete dominance, so that the 
effects of the three genotypes at each locus are either −α : − α : + α 
or −α : + α : + α. In order to ensure that the inbreeding depression ι 
is bounded, we need to have some “balance” and so we choose the 
effects at each locus according to an independent Bernoulli random 
variable with parameter H; that is, the probability that the effects 
across the three genotypes at locus l is −α : − α : + α is 1 − H, inde
pendently for each locus. The effect size α is taken to be 1/

���
M
√

for 
all loci and H = 1

2 + 2��
M
√ . With these choices the additive and domin

ance variances will be O(1).
In the ancestral population, the allele frequencies were gener

ated to mimic neutral allele frequencies with very low mutation 
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rates, but conditioned to segregate at each locus. Thus, allele fre
quencies at every locus were sampled independently and accord
ing to a distribution with density proportional to (p(1 − p))1−ϵ , with 
ϵ = 0.001, but with those in [0, 1/60] and [1 − 1/60, 1] discarded 
(and the distribution renormalized). Then for each population 
replicate, these frequencies were used to endow each individual 
in the base population with an allelic type at every locus.

Variance components are defined with respect to this reference 
set of allele frequencies. For the population generated for the ex
amples presented here, these values were σ2

A = 0.269, σ2
D = 0.073, 

and the inbreeding depression ι = −0.531. The additive and domin
ance components are uncorrelated in the base population 
(Cov(A, D) = 0). In the numerical experiments that follow, each 
replicate population is started at time zero from a different collec
tion of genotypes, sampled from this base distribution.

We first simulated a neutral model. Figure 2 illustrates how the 
different components of the trait values change over fifty genera
tions of neutral evolution. Recall that we always use the same 
realization of the pedigree. For each replicate, we take an inde
pendent sample of allelic types at time zero. For each individual 
in the pedigree we evaluate the additive and dominance compo
nents A and D and then in each generation we calculate the 
mean and variance of these quantities across the 30 individuals 
in the population. This is only intended to give some feeling for 
the ways in which the components fluctuate through time. Of 
course the infinitesimal model is only providing a prediction for 

the distribution of trait values within families; a single realization 
will see substantial contributions to trait values from linkage dis
equilibrium (c.f. the toy example in the section on modeling 
Mendelian inheritance and Theorem 5). In the following figures, 
we compare these quantities to the detailed predictions of the in
finitesimal model. The top row in Fig. 2 is a single replicate, while 
the bottom is the average over 300 replicates. On the left, we have 
the mean of the additive and dominance components and their 
sum; on the right, we have plotted the variance components. For 
a single replicate, there is indeed a substantial contribution 
from linkage disequilibrium. When we plot just the genic compo
nents (that is the sum over variances at each locus, ignoring the 
contribution from linkage disequilibrium), as expected, the pic
ture is much smoother and we see that the predictions of the in
finitesimal model are close to the values obtained by averaging 
over 300 replicates. Since linkage disequilibrium will dissipate 
rapidly, halving in each generation, it is the genic component 
that determines the long term evolution.

All components are measured relative to the base population. 
In practice, in natural populations, one does not have access to 
the ancestral population and so one measures components rela
tive to the current population. This amounts to a change of refer
ence Hill et al. (2006). We do not do this in our setting, as it would 
result in different variance components for every replicate.

In Fig. 3, we explore the relationship between the dominance de
viation and inbreeding. Since we use the same pedigree for all our 

Fig. 2. Changes of the mean and variance of the additive part of the trait, the dominance part, and their sum over 50 generations of neutral evolution. The 
top row shows a single replicate, while the bottom row shows the average over 300 replicates using the same sequence of individuals spanning the 50 
generations. The left column shows the means (G̅ = A̅ + D̅, A̅, D̅; black, or middle curve; blue, or bottom curve; red, or top curve), while the right column 
shows the variance components (VG = Var(G), VA = Var(A), VD = Var(D), VA,D = Cov(A, D); black, or top curve; blue, or middle top curve; red, or middle 
bottom curve; purple, or bottom curve). On the right, solid lines show the total variances and covariance, while the dashed lines show the genic 
component. These differ through the contribution of linkage disequilibrium, which generates substantial variation. The genic component changes 
smoothly, as expected with a large number (M=1,000) of loci. With M=1,000 loci, we expect the infinitesimal model to be accurate for about 

���
M
√

∼ 30 
generations. Simulations are made on a single pedigree with 30 individuals; variance components are measured relative to the ancestral population. The 
predicted values for these means and variances under the infinitesimal model are given in Equations (12)–(14) (note that the identity coefficients Fii 

increase through time due to genetic drift).
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experiments, each individual is characterized by a single Fii (the 
probability of identity of the two genes at a given locus). For each 
of 1,000 replicates (that is independent samples of allelic types for 
the individuals in generation zero), we calculated the dominance 
deviation for each individual in the pedigree. The plot in Fig. 3 shows 
the dominance deviation averaged over those 1,000 replicates for 
each individual in the pedigree. Thus, there are 30 points in each 
generation, one for each individual in the population. As expected, 
the mean of the dominance component decreases in proportion to 
Fii, E[D] = −0.53Fii (recall that ι = −0.53 for our base population).

Figure 4 shows how the (co)variance of A and D depends on iden
tity Fii for pairs of individuals in the pedigree. As in Fig. 3, for each 
individual in the pedigree, A and D are calculated for each of the 
1,000 replicates; Fig. 4 shows the variances and covariances of 
the resulting values for each of the 30 individuals in generations 
5, 10, 20, and 40 and these are compared to the theoretical predic
tions. Note that since in the bi-allelic case σ2

D = ι∗, the expression 
(14) for the variance of the dominance component reduces to

σ2
D(1 − F2

ii) + σ2
DIFii.

Next, we consider the variances of the residuals RA and RD with
in families. One hundred pairs of parents were chosen at random 
from the population, and from each 1,000 offspring were gener
ated. This was repeated for 10 replicates made with the same 
pedigree and the same set of parents; within-family variances 
were then averaged over replicates. In Fig. 5, in each plot there 
are 100 points, one for each pair of parents. The two lines corres
pond to least square regression (blue) and theoretical predictions 
(red) which can be read off from Equation (8). For readability, in 
the figure we use the notation VRA , VRD , and VRA ,RD to denote the 
variance of RA, the variance of RD and the covariance between 
RA and RD, respectively. Using Equation (8) and the explanation 
below, together with the fact that σ2

D = ι∗ in our bi-allelic case, 
we have VRA = σ2

A(1 − FW)/2, where FW = (Fi[1]i[1] + Fi[2]i[2])/2 is the 
within-individual identity averaged over parents 1 and 2;

VRD =
σ2

DI

4
(3F12 − F1122 − F112 − F122)

+
σ2

D

4
3 − F11 − F22 − F1122 − F̃1122 −

3
2

F̃1212

􏼒 􏼓

; 

and

VRA ,RD =
σADI

2
(F12 − F(3)), 

where F(3) is defined as follows:

F(3) =
F112 + F122

2
.

The full force of our theoretical results is that even if we condition 
on the trait values of parents, the within-family distribution of their 
offspring will consist of two normally distributed components and, 
in particular, the variance components will be independent of the trait 
values of the parents. We test this by imposing strong truncation se
lection on the population. We retain the same pedigree relatedness, 

Fig. 3. The relation between the dominance deviation and the probability 
of identity of the two genes within an individual. There is one point for the 
average over 1,000 replicates for each of the 30 individuals in generations 
5, 10, 20, 40 (black, or left-most group of points; blue, or second left-most 
group; purple, or second right-most group; red, or right-most group). 
(Recall that the pedigree is fixed, so identities are the same for each 
replicate.) The mean of D decreases as ιFii = −0.53Fii (solid line), in 
accordance with Equation (12).

Fig. 4. The variance and covariance of A and D versus identity Fii for 
individuals in the pedigree. As in Fig. 3, there are 30 points in each 
generation, one corresponding to each of the 30 individuals in the 
population. Generations 5, 10, 20, 40 (black, or left-most group of points; 
blue, or second left-most group; purple, or second right-most group; red, 
or right-most group). Here, again we use the shorter notation VA = Var(A), 
VD = Var(D), VA,D = Cov(A, D) and the theoretical predictions were derived 
in Equations (13) and (14).
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but working down the pedigree, each individual’s genotype is deter
mined by generating two possible offspring from its parents and re
taining the one with the larger trait value. In Fig. 6, we compare the 
results with simulations of the neutral population. Dashed lines are 
for the neutral simulations, solid ones for the simulation with selec
tion. For the population under selection, we see an immediate drop 
in the total genetic variation, caused by the strong selection; there is 
significant negative linkage disequilibrium between individual loci, 
as predicted by Bulmer (1971). The blue is the additive component. 
We see that about one-third of the variance is dominance variance. 
The bottom row shows that the genic components are hardly affected 
by selection, as predicted by the infinitesimal model. With or without 
selection, the variance components change as a result of inbreeding.

Finally, Fig. 7 compares the variance components at 50 genera
tions for neutral simulations with those with truncation selection 
as the number of loci increases from M = 100 to M = 104. Replicate 
simulations were generated as in Fig. 6. Under the infinitesimal 
model, these components should take the same values with and 
without selection. This is reflected in the simulations, with the co
variance between the additive and dominance effects being the 
slowest to settle down to the infinitesimal limit.

The infinitesimal model with dominance as 
a limit of Mendelian inheritance
In this section, we turn to the justification of our model as a limit 
of a model of Mendelian inheritance as the number M of loci tends 
to infinity. Although we shall focus on the distribution of the gen
etic components of the trait values in the pedigree, in this section 
we consider the general situation where the observed trait of an in
dividual, 􏽥Zi, is the sum of a genetic component Zi and an environ
mental component Ei. Our mathematical assumptions on Ei are 
detailed in Main results below.

Our work is an extension of that of Abney et al. (2000), which in 
turn builds on Lange (1978). The distinctions here are that we ex
plicitly model the component of the trait value that is shared by all 
individuals in a family separately from the part that segregates 
within that family; we identify the effect on each of these compo
nents of conditioning on knowing the trait values of the parents of 
the family; and we estimate the error that we are making in taking 
the normal approximation, thus providing information on when 
the infinitesimal approximation breaks down.

The fact that the genetic component of trait values within fam
ilies is normally distributed is a consequence of the Central Limit 
Theorem. That this remains valid even when we condition on the 
trait values of the parents stems from the fact that knowing the 
trait value of an individual actually provides very little informa
tion about the allelic state at any particular locus. This in turn is 

because, typically, there are a large number of different genotypes 
that are consistent with a given phenotype. In Barton et al. (2017), 
this was illustrated through a simple example which can be found 
on p. 402 of Fisher (1918), which concerned an additive trait in a 
haploid population. Here we adapt that example to the model 
for which we performed our numerical experiments.

Suppose then that we have M bi-allelic loci. We denote the al
leles at locus l by al and Al. The contributions to the trait of the 
three genotypes alal, alAl and AlAl are −α, −α, α respectively with 
probability 1

2 − 2��
M
√ and they are −α, α, α with probability 1

2 + 2��
M
√ . 

The effect size α = 1/
���
M
√

. For simplicity, in contrast to our numer
ical experiments, we suppose that the probabilities of genotypes 
alal, alAl, AlAl are 1/4, 1/2, 1/4 respectively.

Now suppose that we observe the trait value to be k/
���
M
√

. What 
is the conditional probability that the allelic types at locus l, which 
we denote χ1

l χ2
l are AlAl? For definiteness, we take M and k both to 

be even and l = 1.
First consider the probability that the contribution to the trait 

value from locus 1 is +1/
���
M
√

. Let us write p+ for the (uncondition
al) probability that the contribution from locus 1 is 1/

���
M
√

, that is

p+ =
1
4

+
1
2

1
2

+
2
���
M
√

􏼒 􏼓

=
1
2

1 +
1
���
M
√

􏼒 􏼓

, 

and p− = 1 − p+. Let us write Ψl/
���
M
√

for the contribution to the trait 
from locus l. We have

P[
􏽐M

l=1 Ψl = k |Ψ1 = 1]

P[
􏽐M

l=1 Ψl = k]

=
P[
􏽐M

l=2 Ψl = k − 1]

P[
􏽐M

l=1 Ψl = k]

=
p(M+k−2)/2

+ p(M−k)/2
−

p(M+k)/2
+ p(M−k)/2

−

M−1
(M+k−2)/2

􏼐 􏼑

M
(M+k)/2

􏼐 􏼑

= 1 +
k
M

􏼒 􏼓
1

2p+

= 1 +
k
M

􏼒 􏼓
1

(1 + 1/
���
M
√

)
.

An application of Bayes’ rule then gives

P χ1
1 = A1, χ2

1 = A1

􏽘M

l=1

Ψl
���
M
√ =

k
���
M
√

􏼌
􏼌
􏼌
􏼌
􏼌

􏼢 􏼣

=
P[
􏽐M

l=1 Ψl = k |Ψ1 = 1]

P[
􏽐M

l=1 Ψl = k]
P[χ1

1 = A1, χ2
1 = A1]

= 1 +
k
M

􏼒 􏼓
1

(1 + 1/
���
M
√

)
P[χ1

1 = A1, χ2
1 = A1].

Fig. 5. The variance and covariance within families between the residual additive and dominance deviations RA and RD (VRA = Var(RA), VRD = Var(RD), 
VRA ,RD = Cov(RA, RD)). One hundred pairs of parents were chosen at random from the ancestral population and from each one thousand offspring were 
generated. The within-family variances obtained in this way were averaged over 10 replicates (with the same pedigree and parents). Each of the 100 
points in each plot corresponds to one pair of parents. The five outliers are families produced by selfing. The blue lines (or top lines) show a least-squares 
regression; the red lines (or bottom lines) are the theoretical predictions [see Equation (8)]. The two lines exactly coincide in the plot on the right.

Infinitesimal with dominance | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/2/iyad133/7224427 by Institute of Science and Technology Austria user on 30 O
ctober 2023



Similarly,

P χ1
1 = a1, χ2

1 = a1

􏽘M

l=1

Ψl
���
M
√ =

k
���
M
√

􏼌
􏼌
􏼌
􏼌
􏼌

􏼢 􏼣

= 1 −
k
M

􏼒 􏼓
1

(1 − 1/
���
M
√

)
P[χ1

1 = a1, χ2
1 = a1], 

and

P χ1
1 = a1, χ2

1 = A1

􏽘M

l=1

Ψl
���
M
√ =

k
���
M
√

􏼌
􏼌
􏼌
􏼌
􏼌

􏼢 􏼣

= 1 +
k
M

􏼒 􏼓
(1/2 + 2/

���
M
√

)

(1 + 1/
���
M
√

)
+ 1 −

k
M

􏼒 􏼓
(1/2 − 2/

���
M
√

)

(1 − 1/
���
M
√

)

􏼨 􏼩

× P[χ1
1 = a1, χ2

1 = A1].

In view of the Central Limit Theorem, we would expect a “typ

ical” value of k to be on the order of 
���
M
√

; conditioning has only per

turbed the probability that Ψ1 = 1 by a factor k/M +O(1/
���
M
√

), 

which we expect to be of order 1/
���
M
√

. In the purely additive 
case, which corresponds to taking p+ = p− = 1/2, at the extremes 
of what is possible (k = ±M), we recover complete information 

about the values of χ1
1, χ1

2; however, with dominance that is no 
longer true.

Notice that for the difference between the trait value of an in
dividual and the mean over the population to be order one re
quires order 

���
M
√

of the loci to be “nonrandom,” but observing 
the trait does not tell us which of the possible M loci these are. 
Similarly, performing the entirely analogous calculation for pairs 
of loci, and observing that

M−2
(M+k−4)/2

􏼐 􏼑

M
(M+k)/2

􏼐 􏼑 =
1
4

1 +
k
M

􏼒 􏼓

1 +
k − 1
M − 1

􏼒 􏼓

, 

we deduce that,

P χ1
1 = A1, χ2

1 = A1; χ1
2 = A2, χ2

2 = A2

􏼌
􏼌
􏼌
􏼌

􏽘M

l=1

Ψl
���
M
√ =

k
���
M
√

􏼢 􏼣

= 1 +
k
M

􏼒 􏼓

1 +
k − 1
M − 1

􏼒 􏼓
1

(1 + 1/
���
M
√

)2

× P[χ1
1 = A1, χ2

1 = A1; χ1
2 = A2, χ2

2 = A2]

= P χ1
1 = A1, χ2

1 = A1

􏽘M

l=1

Ψl
���
M
√ =

k
���
M
√

􏼌
􏼌
􏼌
􏼌
􏼌

􏼢 􏼣

× P χ1
2 = A2, χ2

2 = A2

􏽘M

l=1

Ψl
���
M
√ =

k
���
M
√

􏼌
􏼌
􏼌
􏼌
􏼌

􏼢 􏼣

+ P[χ1
1 = A1, χ2

1 = A1; χ1
2 = A2, χ2

2 = A2]

× 1 +
k
M

􏼒 􏼓
1

(1 + 1/
���
M
√

)2

k − 1
M − 1

−
k
M

􏼒 􏼓

.

(19) 

For a “typical” trait value the last term in Equation (19) is order 
1/M. When we sum over loci, this is enough to give a nontrivial 
contribution to the trait value coming from the linkage disequilib
rium. However, although observing the trait of a typical individual 
tells us something about linkage disequilibria, it does not tell us 

enough to identify which of the order M2 pairs of loci are in linkage 
disequilibrium.

Essentially the same argument will apply to the much more 
general models that we develop below. In particular, for the infini
tesimal model to be a good approximation, the observed parental 
trait values must not contain too much information about the al
lelic effect at any given locus, which requires that the parental 
traits must not be too extreme [corresponding to k in our toy mod
el being O(

���
M
√

)].
In the additive case, it was enough to control the additional in

formation that we gained about any particular locus from 

Fig. 6. Comparison between a neutral population (dashed lines) and one 
subject to truncation selection (solid lines). Top row: change in means 
relative to the initial value (G = A + D, A,D; black, or top curves; blue, or 
middle curves; red, or bottom curves); middle: variances, including 
linkage disequilibria (top to bottom: VG = Var(A + D), VA = Var(A), 
VD = Var(D), VA,D = Cov(A, D); black, blue, red, purple). The bottom row is 
the changes to genic variances with time against predictions of the 
infinitesimal model. The values are averages over 300 replicates for the 
neutral case, 1,000 for the selected case, made with the same pedigree. 
There are M = 1,000 loci, and thus we expect the infinitesimal model to be 
accurate for about 

���
M
√

∼ 30 generations. Selection is made within 
families; for each offspring, two individuals are generated from the 
corresponding parents, and the one with the larger trait value retained.
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knowledge of the trait value in the parents. This is because, in that 
case, the variance of the shared contribution within a family is 
zero and independent Mendelian inheritance at each locus en
sures that linkage disequilibria do not distort the variance of the 
residual component that segregates within families. With domin
ance, we must estimate the (nontrivial) variance of the shared 
component, and for this we shall see that we need to control the 
build up of linkage disequilibrium between pairs of loci. It will 
turn out that since all pairs of loci are in linkage equilibrium in 
the ancestral population, any given pair of loci will be approxi
mately in linkage equilibrium for the order 

���
M
√

generations for 
which the infinitesimal approximation is valid.

This does not mean that the linkage disequilibria do not affect 
the trait values, but because of the very many different combina
tions of alleles in an individual that are consistent with a given 
trait, observing the trait tells us very little about the allelic state 
at a particular locus. The allele at that locus can only ever contrib
ute O(1/

���
M
√

) to the overall trait value.
As the population evolves, and we are able to observe more and 

more traits on the pedigree, we gain more and more information 
about the allele that an individual carries at a particular locus. 
In Barton et al. (2017), we considered an additive trait in a popula
tion of haploid individuals. In that setting, we showed that for a gi
ven individual, one does not gain any more information about the 
state at a given locus from looking at the trait values on the whole 
of the rest of the pedigree than one does from observing just the 
parents of that individual. In our model for diploid individuals 
with dominance, this is no longer the case; observing the trait va
lues of any relatives, no matter how distant, provides some add
itional information about the allelic state at a locus. The 
difference arises from the fact that the contribution that a gene 
makes to the trait value of an individual depends not only on its 
own allelic state, but also on that of the other copy of the gene 
at that locus. As a result, we gain information about the allelic 
state in a focal individual by observing trait values in any other in
dividuals in the pedigree with which it may be identical by descent 
at that locus. However, the amount of information gleaned about 
the allelic state of an individual from observing new individuals 
in the pedigree will decrease in proportion to the probability of 

identity, and so for distant relatives in the pedigree is very small; 
provided our pedigree is not too inbred, and trait values are not too 
extreme, we can still expect the infinitesimal model to be a good 
approximation for order 

���
M
√

generations.

Environmental noise
Our derivations will depend on two approaches to proving asymp
totic normality. The first, which we apply to the portion Ri

A + Ri
D of 

the trait values, uses a generalized Central Limit theorem (which 
allows for the summands to have different distributions), which 
provides control over the rate of convergence as M→∞. (It is 
this control that tells us for how many generations we can expect 
the infinitesimal model to be valid.) However, the Central Limit 
Theorem guarantees only the rate of convergence of the cumula
tive distribution function of the normalized sum of effects at dif
ferent loci. Our proofs exploit convergence to the corresponding 
probability density function, which may not even be defined. To 
get around this, we can follow the approach of Barton et al. 
(2017) and make the (realistic) assumption that rather than ob
serving the genetic component of a trait directly, the observed 
trait has an environmental component with a smooth density. 
This results in the trait distribution having a smooth density 
which is enough to guarantee the faster rate of convergence. In 
addition to the benefit in terms of regularity of the trait distribu
tion, an environmental noise with a smooth distribution also rein
forces the property that observing the trait value gives us very 
little information on the allelic state at a given locus: a continuum 
of combinations of genetic and environmental components may 
have led to the observed trait, in which each given locus contri
butes an infinitesimal amount. (To ensure sufficient regularity 
of the trait density, we could instead make the assumption that 
the distribution of allelic effects at every locus has a smooth prob
ability density function.) The approach to proving asymptotic nor
mality of the shared component uses an extension of Stein’s 
method of exchangeable pairs. Once again in the presence of en
vironmental noise (to ensure that the trait distribution has a 
smooth density) we recover convergence with an error of order 
1/

���
M
√

.

Fig. 7. Convergence of the variance components at 50 generations, as the number of loci increases from M = 100 to M = 104 (same notation as in Fig. 6). 
Simulations with 50% truncation selection are compared with neutral simulations (solid, dashed lines). The replicate simulations were generated as in 
Fig. 6 (see main text). Regressions of the log absolute difference between selected and neutral variance components against ln (M) have slopes −0.62, 
−0.72, −0.70, −0.66 for VG, VA, VD, VA,D, respectively (see supplementary material for details). Thus, convergence is somewhat faster than 

���
M
√

.
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If the environmental component is taken to be normally dis
tributed, then exactly as in Barton et al. (2017), we can adapt our 
application of Theorem C1 in Appendix C to write down the condi
tional distribution of the genetic components given observed traits; 
i.e. traits distorted by a small environmental noise, c.f. Remark F2.

Assumptions and notation
Recall that we assume that in generation zero, the individuals that 
found the pedigree are unrelated and sampled from an ancestral 
population in which all loci are assumed to be in linkage equilib
rium. The allelic states at locus l on the two chromosomes drawn 
from the ancestral population will be denoted 􏽢χ1

l ,􏽢χ2
l . They are in

dependent draws from a distribution on possible allelic states 
that we denote by 􏽢νl(dx). Without loss of generality, by replacing 
ϕl(􏽢χ1

l ,􏽢χ2
l ) by

ϕl(􏽢χ1
l ,􏽢χ2

l ) − E[ϕl(􏽢χ1
l ,􏽢χ2

l )|􏽢χ1
l ] − E[ϕl(􏽢χ1

l ,􏽢χ2
l )|􏽢χ2

l ] + E[ϕl(􏽢χ1
l ,􏽢χ2

l )], 

and observing that the second and third terms on the right-hand 

side are functions of 􏽢χ1
l and 􏽢χ2

l , respectively, which we may there

fore subsume into ηl(􏽢χl), we may assume that for any value x′ of the 
allelic state at locus l, the conditional expectation

E[ϕl(􏽢χl, x′)]= ∫ ϕl(x, x′)􏽢νl(dx) = 0 = E[ϕl(x
′,􏽢χl)]. (20) 

As a consequence, partitioning over the possible values of 􏽢χ2
l , we 

have that the cross variation term

E[ηl(􏽢χ1
l )ϕl(􏽢χ1

l ,􏽢χ2
l )]= ∫ E[ηl(x

′)ϕl(x
′,􏽢χ2

l )]􏽢νl(dx′)

= ∫ ηl(x
′)E[ϕl(x

′,􏽢χ2
l )]􏽢νl(dx′) = 0.

(21) 

With this modification of ϕl(x, x′),

E[ϕl(􏽢χ1
l ,􏽢χ2

l )] = 0. (22) 

Moreover, still without loss of generality, by absorbing the mean 
into z̅0, we may assume that

E[ηl(􏽢χl)]= ∫ ηl(x)􏽢νl(dx) = 0. (23) 

In this notation, the genetic component of the trait of an individ

ual in the ancestral population (which we denote by Ẑ to make it 
clear that the following property is specific to individuals in gener
ation 0) is

Ẑ = z̅0 +
1
���
M
√

􏽘M

l=1

(ηl(􏽢χ1
l ) + ηl(􏽢χ2

l ) + ϕl(􏽢χ1
l ,􏽢χ2

l )), 

and by Equations (22) and (23), we have E[Ẑ] = z̅0.
We assume that the scaled allelic effects ηl, ϕl are bounded; |ηl|, 

|ϕl| ≤ B, for all l. We also assume that all the quantities in the top 
part of Table 1 exist in the limit as M→∞.

Inheritance
We now need some notation for Mendelian inheritance. Recall 
that i[1] and i[2] are the labels of the parents of individual i in 
our pedigree, each of which contributes exactly one gene at 
each locus in a given offspring. Mendelian inheritance translates 
into the property that the gene passed on by parent i[1] was the 
one inherited from its own “first” parent (i[1])[1] with probability 

1/2, or from its “second” parent (i[1])[2] with probability 1/2. 
Even though we do not distinguish between males and females, 
it is convenient to think of the chromosomes in individual i as 
being labeled 1 and 2, according to whether they are inherited 
from i[1] or i[2]. In particular, χi[1],1

l and χi[1],2
l will denote the allelic 

states of the two genes at locus l in parent i[1], respectively inher
ited from its own “first” and “second” parent. Again following the 
conventions of Barton et al. (2017), extended to account for the 
fact that we are now considering diploid individuals, we use inde
pendent Bernoulli(1/2) random variables, Xi

l, Y
i
l to determine the 

inheritance of genes 1 and 2, respectively, at locus l in individual 
i. Thus, Xi

l = 1 if the allelic state of gene 1 at locus l in individual 
i is inherited from gene 1 in i[1], and Xi

l = 0 if it is inherited from 
gene 2 in i[1]. Likewise, Yi

l = 1 if the allelic state of gene 2 at locus 
l in individual i is inherited from gene 1 in i[2], and Yi

l = 0 if it is in
herited from gene 2 in i[2].

In this notation, the trait of individual i in generation t is given 
by

Zi = z̅0 +Ai +Di

+
1
���
M
√

􏽘M

l=1

Xi
l −

1
2

􏼒 􏼓

ηl(χ
i[1],1
l ) +

1
2

− Xi
l

􏼒 􏼓

ηl(χ
i[1],2
l )

􏼚 (24) 

+ Yi −
1
2

􏼒 􏼓

ηl(χ
i[2],1
l ) +

1
2

− Yi

􏼒 􏼓

ηl(χ
i[2],2
l )

􏼛

(25)

+
1
���
M
√

􏽘M

l=1

Xi
lY

i
l −

1
4

􏼒 􏼓

ϕl(χ
i[1],1
l , χi[2],1

l )
􏼚

+ Xi
l(1 − Yi

l) −
1
4

􏼒 􏼓

ϕl(χ
i[1],1
l , χi[2],2

l ) (26)

+ (1 − Xi
l)Y

i
l −

1
4

􏼒 􏼓

ϕl(χ
i[1],2
l , χi[2],1

l ) 

+ (1 − Xi
l)(1 − Yi

l) −
1
4

􏼒 􏼓

ϕl(χ
i[1],2
l , χi[2],2

l )
􏼛

, (27) 

where

A
i =

1

2
���
M
√

􏽘M

l=1

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l )

+ ηl(χ
i[2],1
l ) + ηl(χ

i[2],2
l ))

(28) 

and

Di =
1

4
���
M
√

􏽘M

l=1

{ϕl(χ
i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],1
l , χi[2],2

l )

+ ϕl(χ
i[1],2
l , χi[2],1

l ) + ϕl(χ
i[1],2
l , χi[2],2

l )}.

(29) 

The terms Ai and Di are shared by all descendants of the parents 
i[1] and i[2]. In the third section of this paper, we presented the 
mean and variance of their sum, conditional on the pedigree 
P(t). The sums (24)+(25) and (26)+(27) comprise what we previous

ly called Ri
A and Ri

D, respectively; each has mean zero. They cap
ture the randomness of Mendelian inheritance. They are 

uncorrelated with Ai +Di. Again, in a previous section we gave ex

pressions for the variances and covariance of Ri
A and Ri

D in terms of 
the ancestral population and identities generated by the pedigree. 
These calculations allowed us to identify the mean and variance 

of the parts Ai +Di and Ri
A + Ri

D in terms of the classical quantities 
of quantitative genetics in Table 1. Since we are assuming un
linked loci, the asymptotic normality of these quantities when 
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we condition on the pedigree, but not on the trait values within 
that pedigree, is an elementary application of Theorem D2 in 
Appendix D, a generalized Central Limit Theorem which allows 
for nonidentically distributed summands.

In Barton et al. (2017), we showed that in the purely additive 
case, the vector (Ri

A)Nt
i=1, which determines the joint distribution 

of the trait values within families in generation t (recalling that 
in the additive case Ri

D = 0), is asymptotically a multivariate nor
mal, even when we condition not just on the pedigree relatedness 
of the individuals in generation t, but also on knowing the ob
served trait values of all individuals in the pedigree up to gener
ation t − 1, which we denote by 􏽥Z(t − 1) (notice the difference 
between this notation and the notation 􏽥Zt for the observed trait 
of an individual living in generation t). Our main result extends 
this to include dominance, at least under the assumption that 
the ancestral population was in linkage equilibrium.

With dominance, the expression for the distribution of the 
mean and variance–covariance matrix of the multivariate normal 
Z1, . . . , ZNt conditioned on the pedigree up to generation t and 
some collection of the observed trait values of individuals in 
that pedigree up to generation t − 1 is a sum of the quantities of 
classical quantitative genetics in Table 1, weighted by four-way 
identities and deviations of trait values from the mean. In prin
ciple, they can be read off from Theorem C1 in Appendix C.

We will focus on proving that conditional on knowing just the 
trait values of the parents of individual i and the pedigree, the 
components (Ai +Di) and (Ri

A + Ri
D) are both asymptotically nor

mal, but we explain why our proof allows us to extend to the 
case in which we also know trait values of other individuals. 
The importance (and surprise) is that given the pedigree relation
ships between the parents and classical coefficients of quantita
tive genetics for a base population (assumed to be in linkage 
equilibrium), knowing the traits of the parents distorts the distri
bution of their offspring in an entirely predictable way. In particu
lar, this is what we mean when we say that the infinitesimal 
model continues to hold even with dominance.

The extra challenge compared to the additive case is that, in 
contrast to the part Ri

A + Ri
D, where Mendelian inheritance ensures 

independence of the summands corresponding to different loci 
even after conditioning on trait values, when we condition on trait 
values the terms in Ai +Di will be (weakly) dependent and proving 
a Central Limit Theorem becomes more involved.

Main results
Recall that the trait values that we observe, and therefore on 
which we condition, are the sum of a genetic component and an 
independent environmental component; that is, the observed 
trait value is

􏽥Zi : = Zi + Ei, 

where, for convenience, the {Ei} are independent N(0, σ2
E)-valued 

random variables. We suppose that the environmental noise is 
shared by individuals in a family (so we can think of it as part of 

the component Ai +Di of the trait value, whose distribution there
fore also has a smooth density).

We write Nt for the number of individuals in the population in 
generation t, (Z1

t , . . . , ZNt
t ) for the corresponding vector of trait va

lues, and P(t) for the pedigree up to and including generation t. A 
simple application of the Central Limit Theorem gives that

(Z1
t , . . . , ZNt

t ) | P(t) 

is asymptotically distributed as a multivariate normal random 

variable as M→∞. More precisely, let (β1, β2, . . . , βNt
) ∈ RNt , and 

write Zβ =
􏽐Nt

i=1 βiZ
i
t, then using Theorem D2,

P
Zβ − E[Zβ]
���������
Var(Zβ)

􏽰 ≤ z

􏼢 􏼣

−N (z)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

≤
C

���
M
√ ���������

Var(Zβ)
􏽰 1 +

􏽥C
Var(Zβ)

􏼠 􏼡

, 

for suitable constants C, 􏽥C (which can be made explicit), where 
N (z) is the cumulative distribution function for a standard normal 
random variable. The mean and variance of Zβ can be read off 
from Equations (9), (10), and (11).

Our main results concern the components of the trait values of 
offspring when we condition on the observed trait values of their 
parents. The following result follows in essentially the same way 
as the additive case of Barton et al. (2017).

Theorem 4. The conditioned residuals (Ri
A + Ri

D)|P(t),􏽥Zi[1], 􏽥Zi[2] 

are asymptotically normally distributed, with an error of order 
1/

���
M
√

. More precisely, for all z ∈ R,

P
Ri

A + Ri
D����������������

Var(Ri
A + Ri

D)
􏽱 ≤ z P(t),􏽥Zi[1],􏽥Zi[2]

􏼌
􏼌
􏼌

⎡

⎢
⎣

⎤

⎥
⎦ −N (z)

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

≤
1
���
M
√

C′
����������������

Var(Ri
A + Ri

D)
􏽱 1 +

􏽥C′

Var(Ri
A + Ri

D)

􏼠 􏼡

× (1 + C(i[1], i[2])) 

where

C(i[1], i[2])

= C′′
|􏽥Zi[1] − E[􏽥Zi[1]|P(t − 1)]|

�����������

Var(􏽥Zi[1])
􏽱 + C′′

|􏽥Zi[2] − E[􏽥Zi[2]|P(t − 1)]|
�����������

Var(􏽥Zi[2])
􏽱

+ C′′′
1

�����������

Var(􏽥Zi[1])
􏽱

p(Var(􏽥Zi[1]), |Zi[1] − E[Zi[1]|P(t − 1)]|)

× 1 +
1

Var(􏽥Zi[1])

􏼠 􏼡

+ C′′′
1

�����������

Var(􏽥Zi[2])
􏽱

p(Var(􏽥Zi[2]), |Zi[2] − E[Zi[2]|P(t − 1)]|)

× 1 +
1

Var(􏽥Zi[2])

􏼠 􏼡

, 

and we have used p(σ2, x) to denote the density at x of a mean 

zero normal random variable with variance σ2. The constants 

C′, 􏽥C′, C′′, C′′′ depend only on the bound B on the scaled allelic 
effects. The variances in the expressions above are all calcu
lated conditional on P(t − 1), but not on observed parental trait 
values.

Put simply, the normal approximation is good to an error of or
der 1/

���
M
√

; the constant in the error term will be large, meaning 
that the approximation will be poor, if the within-family variance 
somewhere in the pedigree is small or if the observed trait values 
are very different from their expected values. Just as in the addi
tive case, we could prove an entirely analogous result when we 
condition on any number of observed trait values in the pedigree, 
except that with dominance this is at the expense of picking up an 
extra term in the error for each observed trait value on which we 
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condition. The justification required for this is provided by 
Appendix H.

What is at first sight more surprising is that the shared compo
nent of the trait value within a family, i.e. the random variable 
A +D + E, is also asymptotically normally distributed, even when 
we condition on observed parental trait values. Note that the ran
domness of the shared component comes from the fact that the al
lelic states underlying the parental traits are still random (they are 
unobserved). In the case of a purely additive trait, it turns out that 
the shared component can be simply expressed as the average of 
the two parental traits and therefore conditioning on these traits 
renders the shared contribution totally deterministic, but such a 
simplification no longer occurs when we add dominance, due to 
the nonlinearity of the allelic contributions in D [see Equation 
(29)]. Our proof of normality uses the fact that we consider the en
vironmental noise to be shared by individuals within the family; in 
this way we can guarantee that the shared component of the ob
served trait value also has a smooth density.

We are only going to prove the result for the shared component 
of a family in generation one that was produced by selfing 
(i[1] = i[2]). In what follows, for a given function h we write ‖h‖
for the supremum norm of h, and N μ,σ2 (h) for the integral of h 
with respect to the distribution of an N (μ, σ2) random variable 
(whenever this quantity makes sense):

N μ,σ2 (h) =
1
������
2πσ2
√ ∫+∞

−∞ h(z)e−(z−μ)2/(2σ2) dz.

Theorem 5. Let W =A +D + E denote the shared component 
of the trait value in a family in generation one. Let h be an ab
solutely continuous function with ‖h′‖ < ∞, then

|E[h(W)|i[1] = i[2],􏽥Zi[1]] −N μW ,σ2
W

(h)| ≤
C‖h′‖
���
M
√ , (30) 

where μW is given by Equation (F5), and σ2
W is the sum of the 

variance of the environmental noise and the expression in 
Equation (F21).

Remark 6. 1) Although we only prove that Ai +Di + Ei is 
asymptotically normal in this special case of 
an individual in generation one that is produced 
by selfing, the same arguments will apply in 
general. However, the expressions involved be
come extremely cumbersome. By considering 
selfing, we capture all the complications that 
arise in later generations (when distinct parents 
may nonetheless be related).

2) We do not record the exact bound on the constant C. It takes 
the same form as the error function C in Theorem 4, except 

that the constants C′, 􏽥C′, C′′, C′′′ depend on the inbreeding de
pression ι, as well as the bound B on the scaled allelic effects. 
In particular, just as there, the asymptotic normality will 
break down if the trait value of the parent is too extreme, 
or if the variance of the trait values among offspring is too 
small.

3) Since we are assuming that the environmental noise has a 
smooth density, convergence in the sense of Equation (30) 
is sufficient to deduce that the cumulative distribution of 

A
i +Di + Ei converges.

In Fig. 8, we show the cumulative distribution functions of the 
additive and dominance parts of the shared and residual compo
nents of trait within 10 families after 20 generations of neutral 
evolution, with M = 1,000 loci. All 10 within-family distributions 
of RA, RD are close to Gaussian; they vary somewhat in slope, since 
families vary in identity coefficients (see Fig. 5), but this is not ap
parent in these plots. The normal approximation is better for the 
residual components than for the shared component. This may be 
due to the fact that the random variables encoding Mendelian in
heritance at different loci are independent and identically distrib
uted, which makes the summands in the expressions for RA and 
RD more weakly dependent than the summands in A and D, lead
ing to faster convergence to a Gaussian distribution. This also 
explains why we need a more elaborate approach to show conver
gence of the shared parts to Gaussians.

Strategy of the derivation
Our first task will be to show that conditional on the pedigree, the 
distribution of the trait values in generation t is approximately 
multivariate normal (with an appropriate error bound). Since 
Mendelian inheritance ensures that (before we condition on 
knowing any of the previous trait values in the pedigree) the allelic 
states at different loci are independent, this is a straightforward 
application of a generalized Central Limit Theorem (generalized 
because the summands are not required to all have the same dis
tribution). Just as in Barton et al. (2017), we can keep track of the 
error that we are making in assuming a normal approximation 
at each generation. In this way we see that, under our assump
tions, the infinitesimal model can be expected to be a good ap
proximation for order 

���
M
√

generations.
The same Central Limit Theorem guarantees that the joint dis

tribution of (Zi[1], Zi[2], Ai +Di) is asymptotically normally distribu
ted as the number of loci tends to infinity. This certainly suggests 
that the conditional distribution of Ai +Di given Zi[1], Zi[2] should 
be (approximately) normal with mean and variance predicted by 
standard results on conditioning a multivariate normal distribu
tion on some of its marginals (which we recall in Theorem C1). 
However, this is not immediate. It is possible that the conditioning 
forces the distribution on to the part of our probability space 
where the normal approximation breaks down.

To verify that the conditional distribution is asymptotically 
normal, we shall show that observing the trait value of an individ
ual provides very little information about their allelic state at any 
particular locus, or any particular pair of loci, and consequently 
conditioning on parental trait values provides very little informa
tion about allelic states in their offspring. This is (essentially) 
achieved through an application of Bayes’ rule, although some 
care is needed to control the cumulative error across loci. We 
use this to calculate the first and second moments of Ai +Di con
ditional on 􏽥Zi[1], 􏽥Zi[2]. The fact that they agree with the predictions 
of Theorem C1 depends crucially on the assumption that domin
ance is “balanced,” in the sense that the inbreeding depression ι is 
well defined. This quantity enters not just in the expression for the 
expected trait value of inbred individuals, but also in our error 
bounds, c.f. Remark F4.

Of course checking that the first two moments of the condition
al distribution of Ai +Di are (approximately) consistent with 
asymptotic normality is not enough to prove that the conditioned 
random variable is indeed (approximately) normal. Moreover, we 
cannot apply our generalized Central Limit Theorem to this term. 
Instead we use a generalization of Stein’s method of “exchange
able pairs” (outlined in Appendix D), which relies on our ability 
to control the (weak) dependence between the contributions to 
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A
i +Di from different loci that is induced by the conditioning. We 

present the details in the case of identical parents (which is the 
case in which normality is most surprising) in Appendix G.

We only present our results in the case in which we condition 
on the parental traits of a single individual in generation t. Just 
as in the additive case, this can be extended to conditioning on 
any combination of traits in the pedigree up to generation t − 1, 
but the expressions involved become unpleasantly complex. 
Instead of writing them out, we content ourselves with explaining 
the only step that requires a new argument. We must show that 
knowing the traits of all individuals up to generation t − 1 does 
not provide enough information about the allelic states at any 
particular locus in an individual in generation t to destroy the 
asymptotic normality of its trait value. This is justified in 
Appendix H using the fact that, because of Mendelian inheritance, 
the amount of information gleaned about an allele carried by in
dividual i from looking at the trait value of one its relatives, is pro
portional to the probability of identity with that individual as 
dictated by the pedigree.

Asymptotic normality conditional on the pedigree
We first illustrate the application of the generalized Central Limit 
Theorem by showing that in the ancestral population, the distri
bution of (Z1

0, . . . , ZN0
0 ) is multivariate normal with mean vector 

(z̅0, . . . , z̅0) and variance–covariance matrix (σ2
A + σ2

D) Id, where Id 
is the identity matrix and σ2

A and σ2
D were defined in Table 1.

To prove this, it is enough to show that for any choice of 
β = (β1, . . . , βN0

) ∈ RN0 ,

􏽘N0

j=1

βjZ
j → Zβ, 

where Zβ is normally distributed with mean z̅0
􏽐N0

j=1 βj and vari

ance (σ2
A + σ2

D)
􏽐N0

j=1 β2
j . We apply Theorem D2, due to Rinott 

(1994), which provides control of the rate of convergence as 

M→∞. It is convenient to write ‖β‖1 =
􏽐N0

j=1 |βj| and 

‖β‖22 =
􏽐N0

j=1 β2
j . Let us write

Ψl = (ηl(􏽢χ1
l ) + ηl(􏽢χ2

l ) + ϕl(􏽢χ1
l ,􏽢χ2

l )), 

and we abuse notation by writing Ψj
l for this quantity in the jth in

dividual in generation zero. Set El =
􏽐N0

j=1 βjΨ
j
l. Recalling our as

sumption that all ηl and ϕl are bounded by some constant B, so 
that the sum of the scaled effects at each locus is bounded by 
3B, we have that |El| is bounded by 3B‖β‖1 for all l. Moreover, since 
the individuals that found the pedigree are assumed to be unre
lated and sampled from an ancestral population in which all 
loci are in linkage equilibrium, using Equations (22) and (23), we 
find that

E
􏽘M

l=1

El

􏼢 􏼣

= 0, Var
􏽘M

l=1

El

􏼠 􏼡

= M‖β‖22(σ2
A + σ2

D).

Fig. 8. The distributions of the residual (top row: RA , RD) and shared (bottom row: A, D) components of phenotype (M = 1,000 loci); for each, the cumulative 
distribution function is plotted as standard deviations of a Gaussian, z, so that a normal distribution appears as a straight line. These are calculated from 
families of 1,000 offspring, from multiple pairs of parents, each replicated 10 times, drawn after 20 generations without selection. The residuals are 
calculated by subtracting values from the family mean, and pooling across the 10 replicates. Thus, for each family there are 10,000 values; the cumulative 
distribution function is shown for 10 pairs of parents, in 10 colors. The shared component is calculated by taking the mean of each family, and pooling 
across 100 pairs of parents and across the 10 replicates. Thus, for each plot there are 1,000 points. There is now some deviation from a Gaussian.
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Theorem D2 then yields

P

􏽐N0
i=1 βi(Z

i − z̅0)

‖β‖2
���������

σ2
A + σ2

D

􏽱 ≤ z

⎡

⎢
⎣

⎤

⎥
⎦ −N (z)

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

≤
1

���
M
√
‖β‖2

���������

σ2
A + σ2

D

􏽱

���
1
2π

􏽲

3B‖β‖1

􏼨

+
16

‖β‖2
���������

σ2
A + σ2

D

􏽱 (3B)2
‖β‖21

+10
1

‖β‖22(σ2
A + σ2

D)

􏼠 􏼡

(3B‖β‖1)3
􏼩

.

Here, N is the cumulative distribution function of a standard nor
mal random variable. The right-hand side can be bounded above 
by

C(‖β‖1)

‖β‖2
���
M
√ ���������

σ2
A + σ2

D

􏽱 1 +
1

‖β‖22(σ2
A + σ2

D)

􏼠 􏼡

, (31) 

for a suitable constant C. In particular, taking βk = 0 for k ≠ j and 
βj = 1, we read off that the rate of convergence to the normal dis

tribution of Zj
0 as the number of loci tends to infinity is order 1/

���
M
√

. 

Note that the normal approximation is poor if the variance σ2
A + σ2

D 

is small.
Exactly the same argument shows that the distribution of 

(Z1, . . . , ZNt ) of the individuals in generation t converges to that 
of a multivariate normal, with mean vector (z̅0 + ιF11, . . . , z̅0 + 
ιFNtNt ) and variance–covariance matrix determined by Equations 
(10) and (11).

Our proof of asymptotic normality of Ai +Di conditional on the 
observed trait values of parents will exploit that the joint distribu
tion of (Ai +Di, Zi[1], Zi[2]) is asymptotically normal, also with an 
error of order 1/

���
M
√

. This time we show that β1Zi[1] + β2Zi[2] + 
β3(Ai +Di) is asymptotically normal for every choice of the vector 
(β1, β2, β3) ∈ R3. We apply Theorem D2 with

􏽥El = β1Ψl(i[1]) + β2Ψl(i[2]) + β3Φi
l, 

where

Ψl(i[1]) = ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ) + ϕl(χ

i[1],1
l , χi[1],2

l ), 

with a symmetric expression for Ψl(i[2]), and

Φi
l =

1
2

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ) + ηl(χ

i[2],1
l ) + ηl(χ

i[2],2
l ))

+
1
4

(ϕl(χ
i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],1
l , χi[2],2

l )

+ ϕl(χ
i[1],2
l , χi[2],1

l ) + ϕl(χ
i[1],2
l , χi[2],2

l )).

Theorem D2 then shows that the difference between the cumula

tive distribution function of β1Zi[1] + β2Zi[2] + β3(Ai +Di) and that of 
a normal random variable with the corresponding mean and vari

ance can be bounded by Equation (31) with ‖β‖22(σ2
A + σ2

D) replaced 

by Var(β1Zi[1] + β2Zi[2] + β3(Ai +Di)), which can be deduced from the 

expressions for the variance and covariance of Ψi[1]
l , Ψi[2]

l and Φi
l 

that are calculated in Appendix B and recorded in Equations 
(10), (11), and (16).

Conditioning on trait values of the parents
We suppose that for each i, we know the parents of the individual i 
and their trait values Zi[1] and Zi[2]. We shall treat the shared com
ponents (Ai +Di) and the residuals (Ri

A + Ri
D) separately. Both will 

converge to multivariate normal distributions which are inde
pendent of one another.

Mendelian inheritance ensures that the contributions to Ri
A + 

Ri
D from different loci are independent and so normality becomes 

an easy consequence of Theorem D2 once we have shown that the 
information gleaned from knowing the trait values only perturbs 
the distribution by order 1/

���
M
√

. This is checked in Equation (F7) 
and the proof then closely resembles the proof in the additive set
ting of Barton et al. (2017) and so we omit the details.

The proof that (Ai +Di) is normal is more involved as once we 
condition on the trait values in the parents, the contributions Φi

l 

for l = 1, . . . , M will all be (weakly) correlated. Our approach uses 
an extension of Stein’s method of exchangeable pairs which we re
call in Appendix D and apply to our setting in Appendix G. This 
calculation is more delicate, but the key is that our conditioning 
induces very weak dependence between loci. The deviation from 
normality is controlled by

1

P[􏽥Zi[1] = z1,􏽥Zi[2] = z2, Ai +Di + Ei = w]

×
∂

∂z1
P[􏽥Zi[1] = z1,􏽥Zi[2] = z2, Ai +Di + Ei = w], 

and the corresponding quantity for the partial derivative with re
spect to z2 (both to be interpreted as ratios of densities) evaluated 

at 􏽥Zi[1], 􏽥Zi[2] respectively. (We recall that 􏽥Z denotes observed trait 
value.) The normal approximation will break down if the trait va
lues are too extreme or if the pedigree is too inbred.

Discussion
The essence of the infinitesimal model is that the distribution of a 
polygenic trait across a pedigree is multivariate normal. 
Necessarily, if some individuals are selected (that is, if we condi
tion on their trait values), there can be an arbitrary distortion 
away from Gaussian across the population. However, conditional 
on parental values and on the pedigree, offspring within each 
family still follow a Gaussian distribution. This was shown in 
Barton et al. (2017) in the purely additive case, and is extended 
here to the case with dominance; the only difference being that 
with dominance, the part of the trait shared by all siblings, 
A +D, is now still random even when conditioning on the parental 
traits (observing the parental traits does not give us full informa
tion on the contribution of the parental alleles to the average off
spring trait as it did in the purely additive case), and the most 
difficult part of our analysis consists in showing that this shared 
contribution is also Gaussian. Our results strongly rely on our as
sumption that inbreeding depression, ι, is finite (it is zero in the 
purely additive case). Armed with these results, the classic theory 
for neutral evolution of quantitative traits can be used to predict 
evolution, even under selection. Theorems 4 and 5 show that 
this infinitesimal limit holds with dominance, at least over time
scales of order square root of the number of loci. Indeed, they 
show that conditional on the parental traits, the distance between 
the distributions of the components of the offspring trait and a 
normal distribution is of the order of 1/

���
M
√

. Hence, the distance 
between the trait distribution of an individual and the infinitesi
mal approximation increases in every generation by a factor of 
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order 1/
���
M
√

, and the error bound becomes macroscopic (i.e. order 
1) after of the order of 

���
M
√

generations.
Our work provides some mathematical justification for the ubi

quity of the Gaussian, and the empirical success of quantitative 
genetics—a success which is remarkable, given the complex inter
actions that underlie most traits. The limit is not universal: a non
linear transformation of a Gaussian trait leads to a non-Gaussian 
distribution, and failure of the infinitesimal model. This is be
cause epistatic and dominance interactions then have a systemat
ic direction, which violates the terms of the Central Limit 
Theorem. (Recall that in our toy example in the section on model
ing Mendelian inheritance, we needed a “balance” in the domin
ance component, which we see reflected in our main results in 
the requirement that ι be well defined.) Nevertheless, if the popu
lation is restricted to a range that is narrow relative to the ex
tremes that are genetically possible, then the infinitesimal 
model may be accurate, even if the genotype-phenotype map is 
not linear. This links to another way to understand our results: 
if very many genotypes can generate the same phenotype, then 
knowing the trait value gives us negligible information about indi
vidual allele frequencies. To put this another way, the infinitesi
mal limit implies that selection on individual alleles is weak 
relative to random drift (Nes ∼ 1), so that neutral evolution at 
the genetic level is barely perturbed by selection on the trait 
(Robertson 1960).

If traits truly evolve in this infinitesimal regime, then it will be 
impossible to find any genomic trace of their response to selection. 
This extreme view is contradicted by finding an excess of “signa
tures” of selection in candidate genes, though it might neverthe
less be that these signals are generated by alleles with modest 
Nes, such that the infinitesimal model remains accurate for the 
trait. Indeed, Boyle et al. (2017) argue that the very large numbers 
of single nucleotide polymorphisms that are typically implicated 
in genome-wide association studies for complex traits implies 
an “omnigenic” view, in which trait variance is largely due to genes 
with no obvious functional relation to the trait. Frequencies of 
nonsynonymous and synonymous mutations suggest that selec
tion on deleterious alleles is typically much stronger than drift 
(Nes ≫ 1; Charlesworth 2015). However, it might still be that selec
tion on the focal trait is comparable with drift, even if the total se
lection on alleles is much stronger. Whether the infinitesimal 
model accurately describes trait evolution under such a pleiotrop
ic model is an interesting open question.

In principle, we can simulate the infinitesimal model exactly, 
by generating offspring from the appropriate Gaussian distribu
tions. For the additive case, this is straightforward, since we 
only need follow the breeding value of each individual, and the 
matrix of relationships amongst individuals (e.g. Barton and 
Etheridge 2011, 2018). However, to simulate the infinitesimal 
model with dominance, we need to track four-way identities, 
which is only feasible for small populations (<30, say).

We have not set out the extension of the infinitesimal model to 
structured populations in detail. In principle, this just requires 
that we track the identities within and between the various 
classes of individual. One motivation for the present theoretical 
work was to extend our infinitesimal model of “evolutionary res
cue” (Barton and Etheridge 2018) to include inbreeding depression 
and partial selfing. This should be feasible, provided that we do 
not need to track identities between specific individuals, but in
stead, group individuals according to the time since their most re
cent outcrossed ancestor—an approach applied successfully by 
Sachdeva (2019). Already, Lande and Porcher (2015) applied the in
finitesimal model to a deterministic model of partial selfing, while 

Roze (2016) analyzed an explicit multilocus model of partial self
ing, allowing for dominance and drift, assuming that all loci are 
equivalent, and that linkage disequilibria are weak.

One of the most obviously unreasonable assumptions of the 
classical infinitesimal model, and the extension described 
here, is that there are an infinite number of unlinked loci. 
Santiago (1998) showed how loose linkage could be approxi
mated by averaging over pairwise linkage disequilibria. In the 
additive case, the infinitesimal model can be defined precisely 
for a linear genome, by assuming that very many genes are 
spread uniformly over the genome (Sachdeva and Barton 
2018). The techniques used in our approach are not robust to 
(even moderately) high levels of linkage, as groups of genes 
passed on together will decrease the number of “independent” 
units of heritable contributions to the trait value, leading to an 
effective number of loci Meff too low for the Gaussian approxi
mation to be valid (or more precisely, for the bound between 
the trait distribution and the appropriate Gaussian distribution 
in Theorems 4 and 5 to be small). In this case, one needs to con
sider explicit models of recombination that are out of the scope 
of this work.

The main value of the infinitesimal model may be to show that 
trait evolution depends on only a few macroscopic parameters; 
even if we still make explicit multilocus simulations, this focuses 
attention on those key parameters, and gives confidence in the 
generality of our results. Quantitative genetics has developed 
quite separately from population genetics. Although the theoret
ical synthesis half a century ago (Robertson 1960; Bulmer 1971; 
Lande 1975) stimulated much subsequent work (empirical as 
well as theoretical), the failure to find a practicable approxima
tion for the evolution of the genetic variance (e.g. Turelli and 
Barton 1994) was an obstacle to further progress. The infinitesi
mal model provides a justification for neglecting the intractable 
effects of selection on the variance components, and treating 
them as evolving solely due to drift and migration. This approach 
may be helpful for understanding evolution in the short and even 
medium term.

Data availability
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can be found in the public repository (Barton 2023).
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Appendices
The appendices are organized as follows. Appendix A discusses a 
simple algorithm to compute identity coefficients. In Appendix B, 
we derive the mean and covariances of the shared and residual 
parts of the offspring trait knowing the pedigree (but not the par
ental traits). In Appendix C, we recall a standard result for condi
tioning multivariate normal random vectors on their marginal 
values, while in Appendix D we recall the generalized Central 
Limit Theorems that will be needed to obtain the normal distri
bution of the offspring trait components conditional on the par
ental traits. In Appendix E, we prove some key lemmas on 
conditional allelic distributions that we use in Appendix F to 
compute the mean and variance of trait values conditional on 
the pedigree and on parental traits. The convergence of the 
shared component of the trait to a Gaussian random variable, 
as the number of loci tends to infinity, is obtained in Appendix 
G. Finally, in Appendix H we investigate how information accu
mulates when we condition on knowing more ancestral traits 
than those of the parents.

Appendix A: Calculating identity 
coefficients
Recursions for pairwise identity by descent
Two-way identities are readily expressed as solutions to a recur
rence. The recursion for F can be written in terms of a pedigree ma
trix, Pi,k(t), which gives the probability that a gene in individual i in 
generation t came from parent k in generation (t − 1); each row has 
two nonzero entries each with value 1/2 (the entries correspond
ing to the indices of the two parents, since the gene may have 
been inherited from either parent with the same probability), un
less the individual is produced by selfing, in which case there is a 
single entry with value 1 (that corresponding to the index of the 
single parent). Observe that the matrices P(t) are totally deter
mined by knowledge of the pedigree. In contrast to Barton et al. 
(2017), where we focused on haploids, here we necessarily have 
to deal with diploids. For diploids, the recursion for F is

Fij(t) =
􏽘

k,l

Pi,k(t)P j,l(t)F
∗
kl(t − 1), (A1) 
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where

F∗kl = Fkl if k ≠ l, F∗kk =
1
2

(1 + Fkk).

The quantity F∗kl is the probability of identity of two genes drawn 

independently from individuals k and l (this independent drawing 
corresponds to Mendelian inheritance); if k = l, then we may either 
pick the same gene twice, which happens with probability 1/2 
(and since the two genes are identical, they are also identical by 
descent), or pick the two genes of individual k, again with probabil
ity 1/2, and their probability of identity by descent is then Fkk by 
definition. Restating (A1) in words, the probability that a gene ta
ken in individual i and a gene taken in individual j, both in gener
ation t, are identical by descent is equal to the sum over all 
potential pairs (k, l) of parents in the previous generation (t − 1) 
of the probability that the gene in i descends from k, the gene in 
j descends from l and that the “parental” genes in k and l are them
selves identical by descent.

Calculating two-, three-, and four-way identities
Several papers have developed algorithms for calculating identity 
coefficients, given a pedigree (Karigl 1981; Abney 2009; García- 
Cortés 2015; Kirkpatrick et al. 2019). These assume a single genetic 
locus, and primarily consider the nine condensed identity coeffi
cients of Fig. B1 that describe the relationship between two diploid 
individuals. This body of work has developed algorithms that can 
efficiently calculate identity coefficients involving two individuals, 
across large pedigrees. Karigl (1982) considers (but does not imple
ment) calculation of identities amongst more than two individuals.

Here, we define and implement a (fairly) simple algorithm that 
deals with multiple sets of genes across multiple individuals. The 
corresponding code in Mathematica can be found in supplemen
tary material (Barton 2023). This is unlikely to be as efficient as ex
isting algorithms for identities amongst one set of genes across 
two individuals; it is limited by the need to calculate and store 
identities amongst very many sets of ancestral genes, correspond
ing to the very many routes by which genes may descend through 
the pedigree.

First, we establish our notation. The two genes in each individual 
each receive a separate label. Thus, a gene in individual i will have 
label i = {i, 1} or i = {i, 2}. Sets of genes will be generically denoted by 
S = {i1, . . . , ik}. We define F[S1, S2, . . . , Sn] to be the probability that 
the genes contained in each set S1, S2, … , Sn are identical by des
cent, tracing back to n distinct founders in the ancestral population. 
For example, F[{i1}, {i2, i3}, {i4, i5}] is the probability that these three 
sets of genes, S1 = {i1}, S2 = {i2, i3} and S3 = {i4, i5}, each trace back to 
three distinct founders: one ancestral to i1, another one ancestral to 
i2 and i3, and a last one ancestral to i4 and i5. Necessarily, F[{i}] = 1 
(a single gene traces back to a unique founder), and the probability 
of identity of genes i1 and i2 satisfies F[{i1, i2}] = 1 − F[{i1}, {i2}]. 
Identities in generation t are denoted Ft.

Given the pedigree, the identities are defined recursively; Ft is a 
linear combination of identities Ft−1 in the previous generation. 
Here, we simply outline the algorithm. A detailed explanation in 
terms of the Mathematica code is in the supplementary material 
(Barton 2023).

In generation t = 0 all individuals are assumed unrelated and so 
F0[S1, . . . , Sn] is set to be 1 if each Sk comprises a single gene and 
these n genes are all distinct. Otherwise it is set to zero.

The algorithm proceeds in two steps, first identifying the pos
sible parents from which each gene is descended and then the 
possible genes within that parent. In this way, a list of all possible 
scenarios is generated, with each scenario having equal 

probability. A slight twist here is that if a set contains a single 
gene in a given individual, that gene traces back to one or other 
parent of the individual, with equal probability; two genes in the 
same individual must trace back to the two parents, although 
those may be the same individual if there is selfing. This list con
tains many permutations that are equivalent, differing only by or
der; these are tallied to reduce the number of configurations that 
need to be stored, resulting in a weighted list. This gives a recur
sion back to the founder generation. The number of generations 
and size of pedigree is limited by the amount of memory needed 
to store the intermediate lists.

Appendix B: Conditioning on the pedigree
In this section, we illustrate how to recover the expressions for the 
mean and variance of the two parts (Ai +Di) and (Ri

A + Ri
D) of the 

trait of individual i from identity coefficients of its parents i[1] 
and i[2] and the classical coefficients of Table 1. Covariances be
tween families are calculated in the same way. We also calculate 
the covariance between (Ai +Di) and Zi[1] and Zi[2] (given the pedi
gree) which will be important for establishing the effect of condi
tioning on the trait values of the parents. Although these 
expressions are well known, it seems to be hard to find an explicit 
derivation such as that presented here. Note that at this stage we 
are only conditioning on the pedigree, not on the observed trait va
lues and the results in this section do not require us to assume the 
presence of an environmental noise term.

Notation
Throughout this section, we are going to be calculating quantities 
conditional on the pedigree. We shall suppress that in our 
notation.

Mean and variance of Ai +Di

The contribution to the trait Zi from the lth locus is determined by 
the four alleles χi[1],1

l , χi[1],2
l ,χi[2],1

l , and χi[2],2
l and the independent 

Bernoulli random variables Xi
l and Yi

l . The mean and variance of 
(Ai +Di) and (Ri

A + Ri
D) will depend on which combinations of these 

Gene 1 Gene 2

Parent 1

Parent 2
D

D

D

D

D

D

D

D

D

1

2

3

4

5

6

7

8

9

Fig. B1. All possible four-way identities. The dots represent the four genes 
across the two parents (each parent corresponding to a row) and lines 
indicate identity (c.f. Abney et al. 2000).
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alleles are identical. First, we introduce some notation for the nine 
possible identity classes. In Fig. B1, the two copies of each gene in 
each individual are represented by two (horizontally adjacent) 
dots. Lines between dots represent identity by descent. It is con
venient to think of the genes within an individual as being 
ordered.

Let us define

Φ(l) =
1
2

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ) + ηl(χ

i[2],1
l ) + ηl(χ

i[2],2
l ))

+
1
4

(ϕl(χ
i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],1
l , χi[2],2

l )

+ ϕl(χ
i[1],2
l , χi[2],1

l ) + ϕl(χ
i[1],2
l , χi[2],2

l )),

Ψl(i[1]) = ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ) + ϕl(χ

i[1],1
l , χi[1],2

l ),

(B1) 

and

Ψl(i[2]) = ηl(χ
i[2],1
l ) + ηl(χ

i[2],2
l ) + ϕl(χ

i[2],1
l , χi[2],2

l ).

For each of the nine possible identity classes between i[1] and i[2], 
we calculate two quantities from which the mean and variance of 

(Ai +Di) will readily follow.

id. state E[ 1
M

􏽐M
l=1 Φ(l)2

|Δ·] E[ 1��
M
√
􏽐M

l=1 Φ(l)|Δ·]
− − − − − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − −− − − − − − − − − − − − − − − − − −

Δ1 2σ2
A + 2σADI + σ2

DI + ι∗ ι

Δ2 σ2
A + σ2

D 0

Δ3
5
4 σ2

A + 3
4 σADI + σ2

DI+ι∗

4 + σ2
D
4

ι
2

Δ4
3
4 σ2

A + 1
2 σ2

D 0

Δ5
5
4 σ2

A + 3
4 σADI + σ2

DI+ι∗
4 + σ2

D
4

ι
2

Δ6
3
4 σ2

A + 1
2 σ2

D 0

Δ7 σ2
A + σ2

DI+ι∗

8 + σADI
2 + σ2

D
4

1
4 ι∗

Δ8
3
4 σ2

A + σADI
4 + σ2

DI+ι∗

16 + 3
16 σ2

D
1
4 ι

Δ9
σ2

A
2 + σ2

D
4 0 

To see where these expressions come from, consider for example 

identity state Δ3, with, say, χ1
l : = χi[1],1

l = χi[1],2
l = χi[2],1

l ≠ χi[2],2
l = : χ2

l , 

where “=” here means identical by descent. Then, using 
Equations (21)–(23),

E
1
M

􏽘M

l=1

Φ(l)2

􏼌
􏼌
􏼌
􏼌
􏼌
Δ3

􏼢 􏼣

=
1
M

􏽘M

l=1

E
3η(χ1

l ) + η(χ2
l )

2
+

2ϕ(χ1
l , χ1

l ) + 2ϕ(χ1
l , χ2

l )
4

􏼒 􏼓2􏼢 􏼣

=
5
4

σ2
A +

3
4

σADI +
1
4

(σ2
DI + ι∗) +

1
4

σ2
D.

The following quantities can be calculated in the same way. They 
are important for calculating the covariance between the trait va
lues of parent and offspring (in particular the covariance between 

(Ai +Di) and Zi[1] and Zi[2]) which will dictate the change in distri
bution of the trait values within families arising from conditioning 
on knowing the traits of the parents. We record them here for later 
reference.

id. state E[ 1
M

􏽐M
l=1 Φ(l)Ψl(i[1])|Δ·] E[ 1

M

􏽐M
l=1 Φ(l)Ψl(i[2])|Δ·]

− − − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − −− − − − − − − − − − − − − − − − − − − − − −

Δ1 2σ2
A + 2σADI + σ2

DI + ι∗ 2σ2
A + 2σADI + σ2

DI + ι∗

Δ2 σ2
A + σADI

2 σ2
A + σADI

2

Δ3
3
2 σ2

A + σ2
DI+ι∗

2 + 5
4 σADI σ2

A + σADI
4 + σ2

D
2

Δ4 σ2
A + 1

2 σADI
σ2

A
2

Δ5 σ2
A + σADI

4 + σ2
D
2

3
2 σ2

A + σ2
DI+ι∗

2 + 5
4 σADI

Δ6
σ2

A
2 σ2

A + 1
2 σADI

Δ7 σ2
A + σADI

4 + σ2
D
2 σ2

A + σADI
4 + σ2

D
2

Δ8
3
4 σ2

A + 1
8 σADI + 1

4 σ2
D

3
4 σ2

A + 1
8 σADI + 1

4 σ2
D

Δ9
1
2 σ2

A
1
2 σ2

A 

We can express two- and three-way identities between the par
ents in terms of the four-way identities Δ1, . . . , Δ9. Recall that 
we write, for example, F11 for the probability of identity of the 
two genes in i[1] and F12 for the probability of identity of two genes, 
one selected at random from i[1] and one from i[2]. In terms of the 
nine identity states, we have

F11 = P[Δ1] + P[Δ2] + P[Δ3] + P[Δ4]

F22 = P[Δ1] + P[Δ2] + P[Δ5] + P[Δ6]

F12 = P[Δ1] +
1
2

(P[Δ3] + P[Δ5] + P[Δ7]) +
1
4

P[Δ8]

F112 = P[Δ1] +
1
2

P[Δ3]

F122 = P[Δ1] +
1
2

P[Δ5]

F1122 = P[Δ1]

􏽥F1122 = P[Δ2]

􏽥F1212 = P[Δ7].

Combining the above, we find

E
1
M

􏽘M

l=1

Φ(l)Ψl(i[1])

􏼢 􏼣

=
σ2

A

2
(1 + F11 + 2F12) +

σADI

2
(F11 + F12 + 2F122)

+ σ2
D(F12 − F112) + (σ2

DI + ι∗)F112, 

with a symmetric expression for 1
M

􏽐M
l=1 E[Φ(l)Ψl(i[2])]. Similarly,

E[(Ai +Di)] =
1
���
M
√

􏽘M

l=1

E[Φ(l)] = ιF12 
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and

1
M

􏽘M

l=1

E[Φ(l)2]

=
σ2

A

2
1 +

F11 + F22

2
+ 2F12

􏼒 􏼓

+ σADI F12 +
F112 + F122

2

􏼒 􏼓

+
σ2

DI + ι∗

4
F12 + F112 + F122 + F1122( )

+
σ2

D

4
1 − F12 + F11 − F112 + F22 − F122 + F̃1122 +

1
2

F̃1212

􏼒 􏼓

+
1
4

ι∗􏽥F1212, 

from which, since for l ≠ m we are assuming 
E[Φ(l)Φ(m)] = E[Φ(l)]E[Φ(m)],

1
M

E

􏼢
􏽘M

l=1

􏽘M

m=1
l≠m

Φ(l)Φ(m)

􏼣

= (ιF12)2 − ι∗F2
12, 

and the expression (6) for the variance of (Ai +Di) follows.

Remark B1. Walsh and Lynch (2018) give an expression for 
the variance when there is linkage disequilibrium. In their no
tation, f̃ is the probability of identity at two distinct loci. Then 
for l ≠ m,

E[Φ(l)Φ(m)] = f̃E[Φl(χ̂l, χ̂l)]E[Φm(χ̂m, χ̂m)], 

so that our expression for

1
M

E
􏽘M

l=1

􏽘M

m=1
l≠m

Φ(l)Φ(m)

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦

will be multiplied by ( f̃/F2
12), resulting (when we subtract 

E[Ai +Di]2) in an overall expression of ( f̃ − F2
12)ι2 − f̃ ι∗ in place 

of −ι∗F2
12. Correcting for this by adding ( f̃ − F2

12)(ι2 − ι∗) to our ex

pression (11) for the variance of Zi (for which we recall that F12 

becomes Fii), we recover the expression of Walsh and Lynch 
(2018).

The covariance between Ai +Di and Aj +Dj

To understand the expression (7) for the covariance between Ai + 
Di and Aj +Dj for i ≠ j, consider

E
ηl(χ

i[1],1
l ) + ηl(χ

i[1],2
l ) + ηl(χ

i[2],1
l ) + ηl(χ

i[2],2
l )

2

􏼨􏼢

+
ϕl(χ

i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],1
l , χi[2],2

l )
4

+
ϕl(χ

i[1],2
l , χi[2],1

l ) + ϕl(χ
i[1],2
l , χi[2],2

l )
4

􏼩

×
ηl(χ

j[1],1
l ) + ηl(χ

j[1],2
l ) + ηl(χ

j[2],1
l ) + ηl(χ

j[2],2
l )

2

􏼨

+
ϕl(χ

j[1],1
l , χ j[2],1

l ) + ϕl(χ
j[1],1
l , χ j[2],2

l )
4

+
ϕl(χ

j[1],2
l , χ j[2],1

l ) + ϕl(χ
j[1],2
l , χ j[2],2

l )
4

􏼩􏼣

.

The 16 terms corresponding to products of additive effects corres
pond to the 16 different possibilities for the allelic types at locus l if 
we choose one allele at random from individual i and one from in
dividual j, and the contribution to the expectation will be nonzero 
precisely if the chosen alleles are identical, in which case they 

contribute E[ηl(􏽢χl)
2]. Summing over l, the overall contribution of 

such terms to the covariance will therefore be 2σ2
AFij.

Similarly, terms involving one factor of ηl and one ϕl will only be 
nonzero if all evaluated on the same allelic type, hence the terms 
multiplied by Fiij and Fijj in Equation (7).

Continuing in this way and using that E[Ai +Di] = ιFii, we re
cover Equation (7).

The residuals Ri
A + Ri

D
The corresponding calculations for the mean and variance of the 
residuals, Ri

A + Ri
D follow exactly the same pattern. It is convenient 

to consider Ri
A and Ri

D separately, and then calculate the covari
ance. The first of these, corresponding to the additive part is 
very straightforward since it is only going to depend on pairwise 
identities.

Recall first that

Ri
A =

1
���
M
√

􏽘M

l=1

Xi −
1
2

􏼒 􏼓

ηl(χ
i[1],1
l ) +

1
2

− Xi
l

􏼒 􏼓

ηl(χ
i[1],2
l )

􏼚

+ Yi −
1
2

􏼒 􏼓

ηl(χ
i[2],1
l ) +

1
2

− Yi

􏼒 􏼓

ηl(χ
i[2],2
l )

􏼛

.

Since the Mendelian inheritance is independent of the allelic 

states, Ri
A has mean zero; to establish the variance, we must cal

culate its square. Since inheritance is independent at distinct 
loci, only the diagonal terms contribute and we find

E[(Ri
A)2]

=
1
M

􏽘M

l=1

E Xi −
1
2

􏼒 􏼓

ηl(χ
i[1],1
l ) +

1
2

− Xi
l

􏼒 􏼓

ηl(χ
i[1],2
l )

􏼚􏼔

+ Yi −
1
2

􏼒 􏼓

ηl(χ
i[2],1
l ) +

1
2

− Yi

􏼒 􏼓

ηl(χ
i[2],2
l )

􏼛2
􏼣

=
1

4M

􏽘M

l=1

E[(ηl(χ
i[1],1
l ))2 + (ηl(χ

i[1],2
l ))2

+ (ηl(χ
i[2],1
l ))2 + (ηl(χ

i[2],2
l ))2]

−
1

2M

􏽘M

l=1

E[ηl(χ
i[1],1
l )ηl(χ

i[1],2
l ) + ηl(χ

i[2],1
l )ηl(χ

i[2],2
l )]

=
1
M

􏽘M

l=1

Var(ηl(􏽢χl)) −
1

2M

􏽘M

l=1

(F11 + F22) Var(η(􏽢χl))

= 1 −
F11 + F22

2

􏼒 􏼓
σ2

A

2
.

This is, of course, exactly the expression we would obtain in the 
purely additive case.

The second residual, Ri
D, also has mean zero, but its variance 

will now involve higher order identities. Recall that

Ri
D =

1
���
M
√

􏽘M

l=1

Xi
lY

i
l −

1
4

􏼒 􏼓

ϕl(χ
i[1],1
l , χi[2],1

l )
􏼚

+ Xi
l(1 − Yi

l) −
1
4

􏼒 􏼓

ϕl(χ
i[1],1
l , χi[2],2

l )

+ (1 − Xi
l)Y

i
l −

1
4

􏼒 􏼓

ϕl(χ
i[1],2
l , χi[2],1

l )

+ (1 − Xi
l)(1 − Yi

l) −
1
4

􏼒 􏼓

ϕl(χ
i[1],2
l , χi[2],2

l )
􏼛

.
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Once again, since Mendelian inheritance is independent at differ

ent loci, E[(Ri
D)2] will be entirely determined by the diagonal terms. 

Note that for independent Bernoulli (parameter 1/2) random vari
ables X and Y,

E XY −
1
4

􏼒 􏼓2
􏼢 􏼣

= E
1
2

XY +
1
16

􏼔 􏼕

=
3
16

, 

and

E XY −
1
4

􏼒 􏼓

X(1 − Y) −
1
4

􏼒 􏼓􏼔 􏼕

= −
1
16
.

So, taking expectations over the variables Xi
l and Yi

l, we find

E[(Ri
D)2]

=
3

16M

􏽘M

l=1

E[ϕl(χ
i[1],1
l , χi[2],1

l )2 + ϕl(χ
i[1],1
l , χi[2],2

l )2

+ ϕl(χ
i[1],2
l , χi[2],1

l )2 + ϕl(χ
i[1],2
l , χi[2],2

l )2]

−
2

16M

􏽘M

l=1

E[ϕl(χ
i[1],1
l , χi[2],1

l )ϕl(χ
i[1],1
l , χi[2],2

l )

+ ϕl(χ
i[1],1
l , χi[2],1

l )ϕl(χ
i[1],2
l , χi[2],1

l )

+ ϕl(χ
i[1],1
l , χi[2],1

l )ϕl(χ
i[1],2
l , χi[2],2

l )

+ ϕl(χ
i[1],1
l , χi[2],2

l )ϕl(χ
i[1],2
l , χi[2],1

l )

+ ϕl(χ
i[1],1
l , χi[2],2

l )ϕl(χ
i[1],2
l , χi[2],2

l )

+ ϕl(χ
i[1],2
l , χi[2],1

l )ϕl(χ
i[1],2
l , χi[2],2

l )].

(B2) 

The first term depends only on pairwise identities and we see im
mediately that it is

3
4M

F12

􏽘M

l=1

E[ϕl(􏽢χl,􏽢χl)
2] +

3
4M

(1 − F12)
􏽘M

l=1

E[ϕl(􏽢χ1
l ,􏽢χ2

l )2]

=
3
4

F12(σ2
DI + ι∗) +

3
4

(1 − F12)σ2
D.

The second term in Equation (B2) is most easily calculated condi
tional on identity class. Let us write Ξ(l) for the summand corre
sponding to locus l.

identity state E[ 1
M

􏽐M
l=1 Ξ(l)|Δ·]

− − − − − − − − − − − − − − − − −−− − − − − − − − − − − − − − −−

Δ1
3
4 (σ2

DI + ι∗)
Δ2

3
4 σ2

D

Δ3
1
8 (σ2

D + σ2
DI + ι∗)

Δ4
1
4 σ2

D

Δ5
1
8 (σ2

D + σ2
DI + ι∗)

Δ6
1
4 σ2

D

Δ7
1
8 (σ2

D + ι∗)
Δ8 0
Δ9 0 

Using our notation for identities, this becomes

−
1
4

(F1122 + F122 + F112)(σ2
DI + ι∗) −

1
4

ι∗􏽥F1212

−
1
4

(F11 − F112 + F22 − F122 +􏽥F1122 +
1
2
􏽥F1212)σ2

D.

Thus,

E[(Ri
D)2]

=
1
4

(3F12 − F1122 − F122 − F112)(σ2
DI + ι∗) −

1
4

ι∗􏽥F1212

+
1
4

(3(1 − F12) − (F22 − F122) − (F11 − F112)

−􏽥F1122 −
1
2
􏽥F1212)σ2

D.

The covariance of Ri
A and Ri

D
Since Ri

A has mean zero, it suffices to calculate E[Ri
ARi

D]. We need to 
establish the mean of

X −
1
2

􏼒 􏼓

ηl(χ
i[1],1
l ) +

1
2

− X
􏼒 􏼓

ηl(χ
i[1],2
l )

􏼚

+ Y −
1
2

􏼒 􏼓

ηl(χi[2],1) +
1
2

− Y
􏼒 􏼓

ηl(χ
i[2],2
l )

􏼛

× XYϕl(χ
i[1],1
l , χi[2],1

l ) + X(1 − Y)ϕl(χ
i[1],1
l , χi[2],2

l )
􏽮

+ (1 − X)Yϕl(χ
i[1],2
l , χi[2],1

l )

+(1 − X)(1 − Y)ϕl(χ
i[1],2
l , χi[2],2

l )
􏽯
.

(B3) 

We have been able to drop the “−1/4” terms in the second bracket 

since E[Ri
A] = 0.

Now

E X −
1
2

􏼒 􏼓

XY
􏼔 􏼕

=
1
2

E[XY] =
1
8

,

E X −
1
2

􏼒 􏼓

(1 − X)Y
􏼔 􏼕

= −
1
2

E[(1 − X)Y] = −
1
8

, 

and so the mean of Equation (B3) is that of

1
8

{(ηl(χ
i[1],1
l ) − ηl(χi[1],2))ϕl(χ

i[1],1
l , χi[2],1

l )

+ (ηl(χ
i[2],1
l ) − ηl(χ

i[2],2
l ))ϕl(χ

i[1],1
l , χi[2],1

l )

+ (ηl(χ
i[1],1
l ) − ηl(χ

i[1],2
l ))ϕl(χ

i[1],1
l , χi[2],2

l )

+ (ηl(χ
i[2],2
l ) − ηl(χ

i[2],1
l ))ϕl(χ

i[1],1
l , χi[2],2

l )

+ (ηl(χ
i[1],2
l ) − ηl(χ

i[1],1
l )ϕl(χ

i[1],2
l , χi[2],1

l )

+ (ηl(χ
i[2],1
l ) − ηl(χ

i[2],2
l ))ϕl(χ

i[1],2
l , χi[2],1

l )

+ (ηl(χ
i[1],2
l ) − ηl(χi[1],1))ϕl(χ

i[1],2
l , χi[2],2

l )

+ (ηl(χ
i[2],2
l ) − ηl(χ

i[2],1
l ))ϕl(χ

i[1],2
l , χi[2],2

l )}.

Taking expectations (conditional on the pedigree) and summing 
over loci, we find

E[Ri
ARi

D | P(t)] = F12 −
F112 + F122

2

􏼒 􏼓
σADI

2
.
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Finally, for two distinct parents, we have found that in generation 
t, conditional on the pedigree up to time t,

Var(Ri
A + Ri

D)

= 1 −
F11 + F22

2

􏼒 􏼓
σ2

A

2

+
1
4

(3F12 − F112 − F122 − F1122)(σ2
DI + ι∗)

+
1
4

3(1 − F12) − (F11 − F112) − (F22 − F122)
(

−􏽥F1122 −
1
2
􏽥F1212

􏼓

σ2
D

+ F12 −
F112 + F122

2

􏼒 􏼓

σADI −
1
4

ι∗􏽥F1212.

We can also read off the result for when the two parents are the 
same from this formula. In that case

F1122 = F11 = F22 = F112 = F122, F12 =
1
2

(1 + F11),

and 􏽥F1212 = 1 − F11.

Thus, Var(Ri
A + Ri

D) reduces to

(1 − F11)
σ2

A

2
+

3
8

(σ2
DI + ι∗) +

1
4

σ2
D +

1
2

σADI

􏼒 􏼓

−
1
4

ι∗.

Appendix C: Conditioning multivariate 
Gaussian vectors
For ease of reference, we record here a standard result for condi
tioning multivariate normal random vectors on their marginal 
values.

Theorem C1. Suppose that

xA

xB

􏼔 􏼕

∼ N μA
μB

􏼔 􏼕

,
ΣAA ΣAB

ΣBA ΣBB

􏼔 􏼕􏼒 􏼓

.

Then

xA|xB ∼ N (μA + ΣABΣ−1
BB (xB − μB), ΣAA − ΣABΣ−1

BB ΣBA).

The proof can be found, for example, in Brockwell (1996, 
Proposition 1.3.1 in Appendix A).

Appendix D: Generalized central limit 
theorems
We shall exploit known techniques for proving both convergence 
to a normal distribution, and for establishing the rate of conver
gence, in situations which go beyond the classical setting of inde
pendent identically distributed random variables. For 
convenience we recall the key results that we need here.

We begin with a result of Rinott (1994) on the rate of conver
gence in a generalized Central Limit Theorem; generalized be
cause the summands are not identically distributed and it 
allows some dependence between elements in the sum. We do 
not use this second feature here, but it would be needed to extend 

our results to include effects that depend on more than one locus, 
and so for completeness we include it in the statement of the re
sult. It also gives an idea of how quickly the rate of convergence 
deteriorates if one includes epistasis or higher order dominance 
effects. This result can be used both to prove asymptotic normal
ity when we condition only on the pedigree (and not on any ob
served trait values), and to prove asymptotic normality of the 
residuals (that is the part of the trait distribution within families 
that is not shared among offspring) conditional on the observed 
traits of ancestors in the pedigree.

The dependence is captured by a dependency graph.

Definition D1. Let {Xl; l ∈ V} be a collection of random vari
ables. The graph G = (V, E), where V and E denote the vertex 
set and edge set respectively, is said to be a dependency graph 
for the collection if for any pair of disjoint subsets A1 and A2 

of V such that no edge in E has one endpoint in A1 and the other 
in A2, the sets of random variables {Xl; l ∈ A1} and {Xl; l ∈ A2} 
are independent.

The degree of a vertex in the graph is the number of edges con
nected to it and the maximal degree of the graph is just the max
imum of the degrees of the vertices in it.

Theorem D2. (Rinott 1994, Theorem 2.2)

Let E1, . . . , EM be random variables having a dependency graph 
whose maximal degree is strictly less than D, satisfying |El − 
E[El]| ≤ B a.s., l = 1, . . . , M, E[

􏽐M
l=1 El] = λ and Var(

􏽐M
l=1 El) = σ2 > 0. 

Then, for every w ∈ R,

P

􏽐M
l=1 El − λ

σ
≤ w

􏼢 􏼣

−N (w)

􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌

≤
1
σ

���
1
2π

􏽲

DB + 16
M
σ2

􏼒 􏼓1/2

D3/2B2 + 10
M
σ2

􏼒 􏼓

D2B3

􏼨 􏼩

, 

where N is the distribution function of a standard normal random 
variable.

In particular, when D and B are order one and σ2 is of order M, 
the bound is of order 1/

���
M
√

.
Since we are only allowing for dominance effects that depend 

on allelic states at a single locus, and we have no epistasis, our de
pendency graphs will have no edges and so the maximal degree of 
any vertex will be zero and we may take D = 1. Epistasis or higher 
order dominance effects, will increase the degree. This bound on 
the accuracy of the normal approximation will decrease rapidly 
as the number of combinations through which the allelic state 
at a single locus can influence the trait grows.

Exchangeable pairs
In order to prove the asymptotic normality of the part of the trait 
value that is shared by all the offspring in a family conditional on 
parental traits, we require a different approach. Because we are 
conditioning on the trait values of the parents, there will be 
weak dependence between all the pairs of loci within the sums de
fining Ai +Di (and so the dependency graph for the summands 
would be the complete graph). To check that nonetheless the limit 
is Gaussian we shall use a variant of Stein’s method of exchange
able pairs, originally introduced in Stein (1986).

Recall that the pair of random variables (W, W′) is called an ex
changeable pair if their joint distribution is symmetric. Suppose 
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that E[W] = 0, E[W2] = 1, (W, W′) is an exchangeable pair and

E[W − W′|W] = λ(W − R), 

for some 0 < λ < 1, where R is a random variable of small order.
Let us write Δ = W − W′ and define

􏽢K(t) =
Δ
2λ

(1{−Δ≤t≤0} − 1{0≤t≤−Δ}).

Note that ∫∞−∞
􏽢K(t) dt = Δ2/(2λ). In this case, one can show (see Chen 

et al. 2011, §2.3) that

E[Wf (W)] = E ∫∞−∞ f ′(W + t)􏽢K(t) dt
􏽨 􏽩

+ E[Rf (W)]. (D1) 

Proposition D3. (Chen et al. 2011, Proposition 2.4i)

Let h be an absolutely continuous function with ‖h′‖ < ∞, and F
any σ-algebra containing σ(W). If Equation (D1) holds, then

|E[h(W)] −N (h)| ≤ ‖h′‖
��
2
π

􏽲

E[|1 −􏽢K1|] + 2E[􏽢K2] + 2E[|R|]

􏼠 􏼡

, 

where

􏽢K1 = E ∫∞−∞
􏽢K(t) dt

􏼌
􏼌
􏼌F

􏽨 􏽩
= E

Δ2

2λ

􏼌
􏼌
􏼌
􏼌
􏼌
F

􏼢 􏼣

,

and 􏽢K2= ∫∞−∞ |t􏽢K(t)| dt =
|Δ|3

4λ
.

Corollary D4. Suppose that (W, W′) is an exchangeable pair 
with E[W] = μW and Var(W) = σ2

W with

E[W′|W] = (1 − λ)W + λE[W] − λR (D2) 

where R is a random variable of small order. Then defining 􏽢K1, 
􏽢K2, h and F as in Proposoition D3,

|E[h(W)] −N μW ,σ2
W

(h)| ≤ ‖h′‖
��
2
π

􏽲
1

σW
E[|σ2

W −􏽢K1|]

􏼠

+
2

σ2
W

E[􏽢K2] + 2E[|R|]
􏼓

,

(D3) 

where N μW ,σ2
W 

denotes the distribution of a normal random 

variable with mean μW and variance σ2
W.

Remark D5. Although this result is enough to guarantee that 
W is asymptotically normal, because we require ‖h′‖ < ∞, it is 
not enough to bound even the distance between the cumula
tive distribution function of W and that of a standard normal 
random variable with an error of order 1/

���
M
√

. To propagate 
our argument from one generation to the next requires conver
gence of the density function of the observed trait value, and 
once again it is our assumption that there is some environmen
tal noise (with a smooth density) that allows us to guarantee 
this convergence based on the result proved here.

Appendix E: Key lemmas

Notation E1. Throughout the rest of the appendices, to ease 
the notation we shall assume that the (Gaussian) environmen
tal noise is subsumed into the trait value Z, so that its distribu
tion can be assumed to have a smooth density. That is, what 
we call Z below is the observed trait 􏽥Z discussed in the main 
text. Moreover, when we write P[Z = z], we actually mean the 
density function of the distribution of 􏽥Z evaluated at the value 
z (in formula, P[Z = z] : = φ􏽥Z(z) with φ􏽥Z 

the density of 􏽥Z). This no
tation allows us to cover both the case when the allelic distri
butions are general (potentially concentrated on a finite 
number of values) and the environmental component is 
smooth enough that the distribution of their sum is also 
smooth, and the case when there is no environmental noise 
but the scaled allelic distributions have a smooth density 
over [-B,B] (in which case the distribution of the genetic compo
nent Z is itself smooth enough for the method below to be 
employed).

In this section, we prove two key lemmas which will underpin 
our proof. They will allow us to estimate the effect on the distribu
tion of the allelic types at a particular locus, or particular pair of 
loci, of knowing the trait value. We shall be using Bayes’ rule. 
With a slight abuse of notation

P[(χ1
l , χ2

l ) = (x, x′)|Z = z]

=
P[Z = z|(χ1

l , χ2
l ) = (x, x′)]

P[Z = z]
P[(χ1

l , χ2
l ) = (x, x′)].

Let us write Ψl(x, x′) = ηl(x) + ηl(x
′) + ϕl(x, x′) and Z−l for the trait va

lue of an individual with the effect of locus l removed, then the ra
tio in this expression becomes

P[Z−l = z − Ψl(x, x′)]
P[Z = z]

.

Of course, this ratio of probabilities should be interpreted as a ra
tio of density functions. Moreover, bearing in mind our remarks on 
environmental noise, we are going to suppose that these density 
functions are sufficiently smooth that we can justify an applica
tion of Taylor’s Theorem. Of course, we know that Z−l is approxi
mately normally distributed, using exactly the same argument as 
for Z, and it is no surprise that the ratio differs from one by some

thing of order 1/
���
M
√

. The importance of the next lemma will be
come evident when we sum conditional expectations over loci; 
c.f. Remark E5.

Lemma E2. In the notation above,

P[Z−l = z]

= P[Z = z] +
1
���
M
√ E[Ψl(χ1

l , χ2
l )]

d
dz

P[Z = z]

+
1
M

E[Ψl(χ1
l , χ2

l )]2 d2

dz2 P[Z = z]

−
1

2M
E[Ψl(χ1

l , χ2
l )2]

d2

dz2 P[Z = z] + Cl(z)
1

M3/2 , 

where the function Cl(z) in the error term can be bounded inde
pendent of l and z.
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Remark E3. (Conditioning on the pedigree)

Although we have suppressed it in the notation, this lemma holds 
in any generation, but the expressions E[Ψ(χ1

l , χ2
l )]2 and E[Ψ(χ1

l , χ2
l )2] 

should be interpreted as being calculated conditional on the pedi
gree (which will determine the probability of identity of χ1

l , χ2
l ).

Proof of Lemma E2. We are going to abuse notation (still fur
ther) and imagine that P[χ1

l = x, χ2
l = x′, Z = z] has a density with 

respect to x, x′. Of course, we do not expect that to be true (even 
with environmental noise), but it makes our expressions easier 
to parse than using a more mathematically accurate notation. 
We begin with an application of Taylor’s Theorem (with re
spect to z):

P[Z−l = z]

= ∫∫ P χ1
l = x, χ2

l = x′, Z = z +
1
���
M
√ Ψl(x, x′)

􏼔 􏼕

dx dx′
(E1) 

= ∫∫ P[χ1
l = x, χ2

l = x′, Z = z] dx dx′ (E2) 

+
1
���
M
√ ∫∫ Ψl(x, x′)

∂
∂z

P[χ1
l = x, χ2

l = x′, Z = z] dx dx′

+
1

2M
∫∫ Ψl(x, x′)2

∂2

∂z2 P[χ1
l = x, χ2

l = x′, Z = z] dx dx′
(E3) 

+􏽢Cl(z)
1

M3/2 . (E4) 

Provided that P[Z = z] has a uniformly bounded third deriva
tive, our assumption that the terms that make up Ψl are uni

formly bounded allows us to deduce that 􏽢Cl is uniformly 
bounded in l and z. Notice that the expression in Equation 
(E2) is just P[Z = z].

Since we are not conditioning on any trait values in the pedi
gree, and the ancestral population is assumed to be in linkage 
equilibrium, (χ1

l , χ2
l ) and Z−l are independent. Combining this ob

servation with Equation (E1), and, once again applying Taylor’s 
Theorem, we find

P[χ1
l = x, χ2

l = x′, Z = z]

= P[χ1
l = x, χ2

l = x′]P Z−l = z −
1
���
M
√ Ψl(x, x′)

􏼔 􏼕

= P[χ1
l = x, χ2

l = x′] ∫∫ P χ1
l = y, χ2

l = y′,
􏼔

Z = z −
1
���
M
√ Ψl(x, x′) +

1
���
M
√ Ψl(y, y′)

􏼕

dy dy′

= P[χ1
l = x, χ2

l = x′] P[Z = z]
􏼚

+
1
���
M
√ ∫∫ (Ψ(y, y′) − Ψ(x, x′))

×
∂
∂z

P[χ1
l = y, χ2

l = y′, Z = z] dy dy′ +􏽥Cl(x, x′, z)
1
M

􏼛

, 

where the function 􏽥Cl in the last line is uniformly bounded inde
pendent of l and (x, x′, z). (To justify this last statement, recall 
that we are abusing notation and implicitly subsuming the envir
onmental noise into the distribution of Z. The density function 
here is actually a convolution of that of the environmental noise, 
which is smooth, and the true distribution of Z, and is therefore 
smooth.) Still assuming sufficient regularity, differentiating the 

previous equation we find

∂
∂z

P[χ1
l = x, χ2

l = x′, Z = z]

= P[χ1
l = x, χ2

l = x′]
d
dz

P[Z = z] +
1
���
M
√ ∫∫ (Ψ(y, y′)

􏼚

− Ψ(x, x′))
∂2

∂z2 P[χ1
l = y, χ2

l = y′, Z = z] dy dy′

+
∂
∂z
􏽥Cl(x, x′, z)

1
M

􏼛

,

(E5) 

and

∂2

∂z2 P[χ1
l = x, χ2

l = x′, Z = z]

= P[χ1
l = x, χ2

l = x′]
d2

dz2 P[Z = z] +
1
���
M
√

∂2

∂z2
􏽥􏽥Cl(x, x′, z)

􏼚 􏼛

,

(E6) 

with ∂
∂z
􏽥Cl and ∂2

∂z2

􏽥􏽥Cl uniformly bounded.
Finally, substituting Equations (E5) and (E6) in Equations (E3) 

and (E4), we obtain

P[Z−l = z] = P[Z = z]

+
1
���
M
√

d
dz

P[Z = z] ∫∫ Ψl(x, x′)P[χ1
l = x, χ2

l = x′] dx dx′

+
1
M

d2

dz2 P[Z = z] ∫∫∫∫ (Ψl(y, y′) − Ψl(x, x′))Ψl(x, x′)

× P[χ1
l = y, χ2

l = y′]P[χ1
l = x, χ2

l = x′] dy dy′ dx dx′

+
1

2M
d2

dz2 P[Z = z] ∫∫ Ψl(x, x′)2P[χ1
l = x, χ2

l = x′] dx dx′

+􏽢Cl(z)
1

M3/2

= P[Z = z] +
1
���
M
√ E[Ψl(χ1

l , χ2
l )]

d
dz

P[Z = z]

+
1
M

E[Ψl(χ1
l , χ2

l )]2 d2

dz2 P[Z = z]

−
1

2M
E[Ψl(χ1

l , χ2
l )2]

d2

dz2 P[Z = z] +􏽢Cl(z)
1

M3/2 , 

as required.                                                                                     □
We also require an analog of Lemma E2 with which to control 

the effect of conditioning on the trait value on the distribution 
of the allelic values at pairs of loci. We write Z−l−m = Z − 

1��
M
√ (Ψl(χ1

l , χ2
l ) + Ψm(χ1

m, χ2
m)) for the trait value with the contributions 

from loci l and m removed. The following lemma follows on iterat
ing the argument that gave us Lemma E2.

Lemma E4. In the notation above,

P[Z−l−m = z] = P[Z = z]

+
1
���
M
√ (E[Ψl(χ1

l , χ2
l )] + E[Ψm(χ1

m, χ2
m)])

d
dz

P[Z = z]

+
1
M

E[Ψl(χ1
l , χ2

l )]2 −
1

2M
E[Ψl(χ1

l , χ2
l )2]

􏼚

+
1
M

E[Ψl(χ1
l , χ2

l )]E[Ψm(χ1
m, χ2

m)]

+
1
M

E[Ψm(χ1
m, χ2

m)]2 −
1

2M
E[Ψm(χ1

m, χ2
m)2]

􏼛
d2

dz2 P[Z = z]

+ Cl,m(z)
1

M3/2 , 

where the functions Cl,m(z) are uniformly bounded in l, m, z.
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Proof of Lemma E4. We iterate the previous result:

P[Z−l−m = z] = P[Z−l = z]

+
1
���
M
√ E[Ψm(χ1

m, χ2
m)]

d
dz

P[Z−l = z]

+
1
M

E[Ψm(χ1
m, χ2

m)]2 d2

dz2 P[Z−l = z]

−
1

2M
E[Ψm(χ1

m, χ2
m)2]

d2

dz2 P[Z−l = z] + Cm(z)
1

M3/2 ; 

now substitute for P[Z−l = z] and its derivatives.                   □

Remark E5. Just as for Lemma E2, the proof of Lemma E4 ap
plies in any generation as long as one interprets the expecta
tions as being taken conditional on the pedigree. We have 
assumed that our base population is in linkage equilibrium 
to write E[Ψl(y, y′)Ψm(x, x′)] = E[Ψl(y, y′)]E[Ψm(x, x′)].

We shall only be presenting the detailed proofs for individuals 
in generation one. To extend to the general case requires an ana
log of Lemma E2 when we consider the trait values of the two par
ents of an individual. For completeness, we record that lemma 
here.

Lemma E6. Let us use P[z1, z2] to denote P[Zi[1] = z1, Zi[2] = z2]. 
In the following expression, all expectations should be inter
preted as taken conditional on the pedigree:

P[Zi[1]
−l = z1, Zi[2]

−l = z2] − P[z1, z2]

=
1
���
M
√ E[Ψl(χ

i[1],1
l , χi[1],2

l )]
∂

∂z1
P[z1, z2]

+
1
���
M
√ E[Ψl(χ

i[2],1
l , χi[2],2

l )]
∂

∂z2
P[z1, z2]

+
1
M

E[Ψl(χ
i[1],1
l , χi[1],2

l )]2 −
1

2M
E[Ψl(χ

i[1],1
l , χi[1],2

l )2]
􏼒 􏼓

×
∂2

∂z2
1

P[z1, z2] 

+
1
M

E[Ψl(χ
i[2],1
l , χi[2],2

l )]2 −
1

2M
E[Ψl(χ

i[2],1
l , χi[2],2

l )2]
􏼒 􏼓

×
∂2

∂z2
2

P[z1, z2]

+
2
M

E[Ψl(χ
i[1],1
l , χi[1],2

l )]E[Ψl(χ
i[2],1
l , χi[2],2

l )]
􏼒

−
1
M

E[Ψl(χ
i[1],1
l , χi[1],2

l )Ψl(χ
i[2],1
l , χi[2],2

l )]
􏼓

×
∂2

∂z1∂z2
P[z1, z2] +O

1
M3/2

􏼒 􏼓

.

Appendix F: Mean and variance of trait 
values conditional on parental traits
We remind the reader that Notation E1 remains in force.

We now turn to calculating the conditional distribution of the 
trait values, conditional not just on the pedigree, as we did in 
Appendix B, but also on the (observed) trait values in the parental 
generation. We spell out the details in generation one. Here al
ready we can identify the key points, without being overwhelmed 
by notation. Recall that we are implicitly conditioning not on the 

exact trait values of the parents, but on the observed trait values 
when environmental noise is taken into account, so that we can 
assume that the distribution of parental trait values has a smooth 
density.

First, we calculate the conditional mean. We distinguish the case 
of two distinct parents and a family produced by selfing. Recall that 
we wrote Ai +Di for the component shared by all individuals in the 
family, with Ai and Di defined in Equations (28) and (29).

Generation one: mean trait value, distinct parents
Since the parents are, by assumption, unrelated, we anticipate 
that the expected value of the dominance component is zero, 
and so the expected value of the shared component Ai +Di should 
be the mean value of the parental traits. However, since we are 
conditioning on knowing the trait values, we do have some infor
mation about the allelic types, and we must verify that this does 
not significantly distort the expectations.

We exploit again the fact that since the parents are unrelated, 
their trait values (and allelic states at locus l) are independent. 
Thus,

P[Zi[1] = z1, Zi[2] = z2 | (χ
i[1],1
l , χi[1],2

l χi[2],1
l χi[2],2

l )

= (x, x′, y, y′)]

= P Zi[1]
−l = z1 −

1
���
M
√ (ηl(x) + ηl(x

′) + ϕl(x, x′))
􏼔 􏼕

× P Zi[2]
−l = z2 −

1
���
M
√ (ηl(y) + ηl(y

′) + ϕl(y, y′))
􏼔 􏼕

.

(F1) 

We now use Lemma E2 and Taylor’s Theorem to deduce that

P[(χi[1],1
l , χi[1],2

l ) = (x, x′) |Zi[1] = z]

= P[(χi[1],1
l , χi[1],2

l ) = (x, x′)]

× 1 −
1
���
M
√ (Ψl(x, x′) − E[Ψl])

1
P[Zi[1] = z]

d
dz

P[Zi[1] = z]
􏼚

+O
1
M

􏼒 􏼓􏼛

, 

with a symmetric expression for i[2]. Integrating against this ex
pression and using Equations (21), (22), and (23), we find, in an ob
vious notation,

E[ηl(χ
i[1],1
l ) | i[1] ≠ i[2], Zi[1], Zi[2]]

= −
1
���
M
√

P′[Zi[1]]
P[Zi[1]]

Var(ηl(􏽢χl)) +O
1
M

􏼒 􏼓

.
(F2) 

Note that approximating P[Zi[1]] by a normal density and ignoring 
the environmental component, the order 1/M terms involves 

1/(σ2
A + σ2

D) and (Zi[1] − z̅0)2
/(σ2

A + σ2
D), and is controlled through 

these quantities and our bounds on ηl and ϕl. In particular, the ap
proximation breaks down if the genetic variance is too small or if 

the trait of the parent is too extreme. Multiplying by 1/
���
M
√

and 
summing over loci and parents, we arrive at

E[Ai | i[1] ≠ i[2], Zi[1], Zi[2]]

= −
P′[Zi[1]]
P[Zi[1]]

+
P′[Zi[2]]
P[Zi[2]]

􏼒 􏼓
1
M

􏽘M

l=1

Var(ηl(􏽢χl))

+O
1
���
M
√

􏼒 􏼓

.

(F3) 
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Remark F1. Since we already checked that the trait Zi[1] is ap
proximately normally distributed, and the same argument evi
dently gives that Zi[1]

−l is approximately normally distributed for 
each l, the derivation above may seem unnecessarily complex. 
However, in summing the terms in Equation (F2) over loci, we 
exploited the fact that we could pull the ratio P′[Zi[1]]/P[Zi[1]] 
outside the sum. Only then did we approximate it by the limit
ing normal distribution. We could only do this because we ex
pressed everything in terms of the distribution of the whole 
trait. If we try to approximate the distribution of Zi[1]

−l directly 
by a normal distribution, and then sum, we cannot control 
the error. We shall use this trick repeatedly in what follows.

Similarly,

E[ϕl(χ
i[1],1
l , χi[2],1

l ) | i[1] ≠ i[2], Zi[1] = z1, Zi[2] = z2]

= ∫ . . . ∫ ϕl(x, y) 1 −
1
���
M
√ (Ψl(x, x′) − E[Ψl])

1
P[Zi[1] = z1]

􏼚

×
d

dz1
P[Zi[1] = z1]

􏼛

× 1 −
1
���
M
√ (Ψl(y, y′) − E[Ψl])

1
P[Zi[2] = z2]

d
dz2

P[Zi[2] = z2]
􏼚 􏼛

×􏽢νl(dx)􏽢νl(dx′)􏽢νl(dy)􏽢νl(dy′) +O
1
M

􏼒 􏼓

.

The terms of order one and 1/
���
M
√

vanish as a result of Equations 

(20), (21), (22), and (23). Multiplying by 1/
���
M
√

and summing over 

loci, we find that E[Di] =O(1/
���
M
√

).
Recalling that the trait distribution in the ancestral population 

is (almost) normally distributed with mean ̅z0, we see that if we ig
nore environmental effects, so that the variance of the trait distri
bution in generation zero is σ2

A + σ2
D, then adding z̅0 to the 

right-hand side of Equation (F3), and substituting

P[Zi[1]] =
1

��������������

2π(σ2
A + σ2

D)
􏽱 exp −

(Zi[1] − z̅0)2

2(σ2
A + σ2

D)

􏼠 􏼡

, 

we recover that up to an error of order 1/
���
M
√

, the expected trait va
lue among offspring is

z̅0 +
σ2

A

σ2
A + σ2

D

Zi[1] + Zi[2]

2
− z̅0

􏼒 􏼓

, 

as predicted by Theorem C1.

Remark F2. (The breeder’s equation)

Suppose that as a result of environmental noise, the observed trait 
of each individual in the ancestral population is its genetic trait 
plus an independent N (0, σ2

E) random variable. Then assuming 
normality of the ancestral trait distribution, and using Theorem 
C1, we find that for unrelated parents the mean trait in generation 
one is

z̅0 +
σ2

A

σ2
Z

(Zi[1] + Zi[2])
2

− z̅0

􏼒 􏼓

, (F4) 

where σ2
Z is the total variance of the observed trait in the ancestral 

population; that is σ2
Z = σ2

A + σ2
D + σ2

E. Equation (F4) is the breeder’s 
equation.

Mean trait value, same parent
We now turn to the expected trait value in a family in generation 
one that is produced by selfing. The calculation for the additive 
term is unchanged, but now we have a nontrivial contribution 
from the dominance component. We denote the parent Zi[1]. 
Since Zi[1] = Zi[2], we must calculate E[ϕl(χ

i[1],1
l , χi[1],1

l )|Zi[1]] and 
E[ϕl(χ

i[1],1
l , χi[1],2

l )|Zi[1]].
Our strategy is as before: we express each of these probabilities 

in terms of the distribution of the trait value minus the contribu
tion from locus l and we apply Lemma E2. Thus, once again using 
that in generation zero, before conditioning, the two alleles at lo
cus l in Zi[1] are independent draws from 􏽢νl,

E[ϕl(χ
i[1],1
l , χi[1],1

l ) | i[1] = i[2], Zi[1] = z]

= ∫∫ ϕl(x, x) 1 −
1
���
M
√ (Ψl(x, x′) − E[Ψl])

1
P[Zi[1] = z]

􏼒

×
d
dz

P[Zi[1] = z]
􏼓

􏽢νl(dx)􏽢νl(dx′) +O
1
M

􏼒 􏼓

.

Using Equations (21), (22), (23), we see that on integration the only 
nonzero contribution comes from the term ηl(x)ϕl(x, x) which can 
be integrated to yield

E[ϕl(χ
i[1],1
l , χi[1],1

l ) | i[1] = i[2], Zi[1]]

= E[ϕl(􏽢χl,􏽢χl)] −
1
���
M
√

P′[Zi[1]]
P[Zi[1]]

E[ηl(􏽢χl)ϕl(􏽢χl,􏽢χl)] +O
1
M

􏼒 􏼓

.

Similarly,

E[ϕl(χ
i[1],1
l , χi[1],2

l ) | i[1] = i[2], Zi[1]]

= −
1
���
M
√

P′[Zi[1]]
P[Zi[1]]

E[ϕl(􏽢χl,􏽢χ2)2] +O
1
M

􏼒 􏼓

.

Multiplying by 1/
���
M
√

and summing over loci, we find that the 

mean of the term Di in Equation (29), conditional on i[1] = i[2] 

and on knowing the trait value Zi[1], is

1

2
���
M
√

􏽘M

l=1

E[ϕl(􏽢χl,􏽢χl)] −
P′[Zi[1]]
P[Zi[1]]

1
2M

􏽘M

l=1

E[ηl(􏽢χl)ϕl(􏽢χl,􏽢χl)]

􏼠

+
1

2M

􏽘M

l=1

E[ϕl(􏽢χl,􏽢χ2)2]

􏼡

+O
1
���
M
√

􏼒 􏼓

.

Adding on the additive terms that we calculated before and restat
ing everything in terms of the quantities in Table 1, we obtain that 
for two identical parents

E[Zi|i[1] = i[2], Zi[1]]

= z̅0 +
1
2

ι −
P′[Zi[1]]
P[Zi[1]]

σ2
A +

σ2
D

2
+

σADI

4

􏼒 􏼓􏼒 􏼓

+O
1
���
M
√

􏼒 􏼓

.

(F5) 

Notice that the factor of 1/2 in front of ι is the probability of iden
tity F∗ of the two genes in the offspring.

Infinitesimal with dominance | 27
D

ow
nloaded from

 https://academ
ic.oup.com

/genetics/article/225/2/iyad133/7224427 by Institute of Science and Technology Austria user on 30 O
ctober 2023



Of course, there is no surprise here: E[(Ai +Di)|i[1] = i[2]] = ι/2 
and

Cov(Ai +Di, Zi[1]|i[1] = i[2])

=
1
M

􏽘M

l=1

E ηl(􏽢χ1
l ) + ηl(􏽢χ1

2) +
ϕ(􏽢χ1

l ,􏽢χ1
l ) + ϕ(􏽢χ2

l ,􏽢χ2
l )

4

􏼒􏼔

+
ϕ(􏽢χ1

l ,􏽢χ2
l )

2

􏼓

(η(􏽢χ1
l ) + η(􏽢χ2

l ) + ϕ(􏽢χ1
l ,􏽢χ2

l ))
􏼕

= σ2
A +

σ2
D

2
+

σADI

4
.

(F6) 

Thus, up to the error term, Equation (F5) is just

z̅0 + E[Ai +Di] + Cov(Ai +Di, Zi[1])
(Zi[1] − E[Zi[1]])

Var(Zi[1])
, 

as we expect from the (approximately) bivariate normal distribu

tion of (Ai +Di) and Zi[1].

Variance of the shared parental contribution 
Ai +Di, generation one
We now turn to the variance of the shared parental contribution. 
This is where the complications associated with incorporating 
dominance really start to be felt. In the process of calculating 
the conditional mean above, we established that conditioning 
on the parental trait values (and whether or not they are identical) 
distorts the distribution of the allelic state at a given locus by a 
factor of order 1/

���
M
√

. This distortion is enough to shift the mean 
trait (as we see in the breeder’s equation), and, as we shall see, 
the variance of the sum over loci will have a contribution from 
linkage disequilibrium.

Conditional variance (Ai +Di), generation one, 
same parent
First we consider the case in which the parents are the same. We 
need to calculate the expectation of (Ai +Di)2 conditional upon 
the parental trait. We begin with the “diagonal” terms, corre
sponding to a single locus. We take these in three parts. First, pro
ceeding as before,

E[ηl(χ
i[1],1
l )2 | i[1] = i[2], Zi[1] = z]

= ∫∫ ηl(x)2 1 −
1
���
M
√ (Ψl(x, x′) − E[Ψl])

􏼒

×
1

P[Zi[1] = z]
d
dz

P[Zi[1] = z]
􏼓

􏽢νl(dx)􏽢νl(dx′) +O
1
M

􏼒 􏼓

= E[ηl(􏽢χl)
2] +O

1
���
M
√

􏼒 􏼓

.

(F7) 

Notice that the term arising from the Taylor expansion is already 

of order 1/
���
M
√

, and, since we multiply each of the terms in the sum 
by 1/M, we have no need to develop the expansion further. Indeed, 
all terms in the expression for the variance will be multiplied by 
1/M and so for the “diagonal” terms in the square of the sum, we 
only need an expression to leading order.

Remark F3. The error that we are making in discarding 
the terms arising from the Taylor expansion is 1/

���
M
√

multiplied by a term that depends on P′[Zi[1]]/P[Zi[1]]= 
−(Zi[1] − E[Zi[1]])/Var(Zi[1]). As usual, the approximation will be 

poor if the trait value of the parent is too extreme, or the vari
ance is too small.

As a result, for these terms we can calculate with respect to the 
distribution in the ancestral population and we find

1
M

E
􏽘M

l=1

ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l )

􏼐 􏼑2
􏼌
􏼌
􏼌
􏼌
􏼌
i[1] = i[2], Zi[1]

􏼢 􏼣

=
2
M

􏽘M

l=1

E[ηl(􏽢χl)
2] +O

1
���
M
√

􏼒 􏼓

= σ2
A +O

1
���
M
√

􏼒 􏼓

.

Similarly, recalling that we are still considering the case of identi
cal parents,

1
16M

E
􏽘M

l=1

(ϕl(χ
i[1],1
l , χi[1],1

l ) + 2ϕl(χ
i[1],1
l , χi[1],2

l )

􏼢

+ϕl(χ
i[1],2
l , χi[1],2

l ))2 i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌

􏼣

=
1

16M

􏽘M

l=1

(2E[ϕl(􏽢χl,􏽢χl)
2] + 4E[ϕl(􏽢χ1

l ,􏽢χ2
l )2]) +O

1
���
M
√

􏼒 􏼓

=
1
8

(σ2
DI + ι∗) +

1
4

σ2
D +O

1
���
M
√

􏼒 􏼓

, 

and

1
2M

E
􏽘M

l=1

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ))

􏼢

× (ϕl(χ
i[1],1
l , χi[1],1

l ) + 2ϕl(χ
i[1],1
l , χi[1],2

l )

+ϕl(χ
i[1],2
l , χi[1],2

l )) i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌

􏼣

=
1

2M
E
􏽘M

l=1

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ))

􏼢

× (ϕl(χ
i[1],1
l , χi[1],1

l ) + 2ϕl(χ
i[1],1
l , χi[1],2

l )

+ϕl(χ
i[1],2
l , χi[1],2

l ))

􏼣

+O
1
���
M
√

􏼒 􏼓

=
1

2M

􏽘M

l=1

2E[ηl(􏽢χl)ϕl(􏽢χl,􏽢χl)] +O
1
���
M
√

􏼒 􏼓

=
σADI

2
+O

1
���
M
√

􏼒 􏼓

.

Combining all these terms we find that if the parents are identical, 

then the contribution to E[(Ai +Di)2|i[1] = i[2], Zi[1]] from the “diag
onal” terms is

σ2
A +

1
8

(σ2
DI + ι∗) +

1
4

σ2
D +

1
2

σADI +O
1
���
M
√

􏼒 􏼓

. (F8) 

We must now turn to the contribution from correlations across 
loci. For this, we must compute

1
M

E
􏽘

l≠m

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ))(ηm(χi[1],1

m )

􏼢

+ηm(χi[1],2
m )) i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎤

⎦

(F9) 
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+
1

2M
E
􏽘

l≠m

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ))(ϕm(χi[1],1

m , χi[1],1
m )

􏼢

(F10)

+ϕm(χi[1],2
m , χi[1],2

m ) + 2ϕm(χi[1],1
m , χi[1],2

m )) i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎤

⎦

+
1

16M
E
􏽘

l≠m

(ϕl(χ
i[1],1
l , χi[1],1

l ) + ϕl(χ
i[1],2
l , χi[1],2

l )

􏼢

(F11)

+ 2ϕl(χ
i[1],1
l , χi[1],2

l ))(ϕm(χi[1],1
m , χi[1],1

m ) + ϕm(χi[1],2
m , χi[1],2

m )

+2ϕm(χi[1],1
m , χi[1],2

m )) i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎤

⎦.

This time we use Lemma E4.

1
P[Zi[1] = z]

P[Zi[1] = z | (χi[1],1
l , χi[1],2

l , χi[1],1
m , χi[1],2

m )

= (x, x′, y, y′)]

=
1

P[Zi[1] = z]
P Zi[1]

−l−m = z −
1
���
M
√ (ηl(x) + ηl(x

′)
􏼔

+ϕl(x, x′) + ηm(y) + ηm(y′) + ϕm(y, y′))
􏼕

= 1 −
1
���
M
√ (Ψl(x, x′) + Ψm(y, y′) − E[Ψl + Ψm])

×
1

P[Zi[1] = z]
d
dz

P[Zi[1] = z]

+
1

2M
((Ψl(x, x′) + Ψm(y, y′))2 − E[(Ψl + Ψm)2])

×
1

P[Zi[1] = z]
d2

dz2 P[Zi[1] = z]

−
1
M

(Ψl(x, x′) + Ψm(y, y′) − E[(Ψl + Ψm)])E[Ψl + Ψm]

×
1

P[Zi[1] = z]
d2

dz2 P[Zi[1] = z]

+O
1

M3/2

􏼒 􏼓

.

(F12) 

Using that in the ancestral population we are at linkage equilib
rium with x, x′ and y, y′ sampled independently from 􏽢νl and 􏽢νm, re
spectively, multiplying by ηl(x)ηm(y) and integrating against 
􏽢ν(dx)􏽢ν(dy), the only nonzero term corresponds to the term 

ηl(x)ηm(y) in (Ψl(x, x′) + Ψm(y, y′))2, so that

1
M

E
􏽘

l≠m

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ))

􏼢

×(ηm(χi[1],1
m ) + ηm(χi[1],2

m )) i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎤

⎦

=
4

M2

P′′[Zi[1]]
P[Zi[1]]

􏽘

l≠m

E[ηl(􏽢χl)
2]E[ηm(􏽢χm)2] +O

1
���
M
√

􏼒 􏼓

=
P′′[Zi[1]]
P[Zi[1]]

(σ2
A)2 +O

1
���
M
√

􏼒 􏼓

.

(F13) 

(The factor of 4 corresponds to the four possible ways of choosing 
the parents at the two loci.) Similarly, to calculate

E[ηl(χ
i[1],1
l )ϕm(χi[1],1

m , χi[1],1
m ) | i[1] = i[2], Zi[1]] 

we multiply Equation (F12) by ηl(x)ϕm(y, y) and integrate. Once 
again, using Equations (21)–(23), we find that most of the terms 
vanish, leaving only

−
1
���
M
√

P′[Zi[1]]
P[Zi[1]]

E[ηl(􏽢χl)
2]E[ϕm(􏽢χm,􏽢χm)]

+
1

2M
P′′[Zi[1]]
P[Zi[1]]

{E[ηl(􏽢χl)
3]E[ϕm(􏽢χm,􏽢χm)]

+ E[ηl(􏽢χl)ϕl(􏽢χ1
l ,􏽢χ2

l )2]E[ϕm(􏽢χm,􏽢χm)]

+ 2E[ηl(􏽢χl)
2]E[ηm(􏽢χm)ϕm(􏽢χm,􏽢χm)]}.

(F14) 

Multiplying by 1/(2M) and summing over loci, in the notation of 
Table 1, the first term yields

−ισ2
A

P′[Zi[1]]
P[Zi[1]]

.

[There are four terms of this form in Equation (F10) and we have 
taken account of all of them.] The last term gives

σ2
AσADI

2
P′′[Zi[1]]
P[Zi[1]] 

[again counting the contribution from all four terms of this form 
in Equation (F10)].

Now observe that

1
M

􏽘M

m=1

E[ϕm(􏽢χm,􏽢χm)] =
ι
���
M
√ , 

so that summing over loci, the contribution from the first two 

terms multiplying the second derivative will be O(1/
���
M
√

).

Remark F4. Up to this point, it has been possible to neglect 
the error terms under the assumption that the within-family 
variance is not too small and we are not too far out into the tails 
of the distribution of Zi[1]; the more extreme the trait of the par
ent, the worse the approximation will be. Now things change. 
In order for E[Ai +Di] to be finite, we required that the inbreed
ing depression ι be well defined; here, we see that it also enters 
into the error terms.

In the same way, we calculate

E[ηl(χ
i[1],1
l )ϕm(χi[1],1

m , χi[1],2
m ) | i[1] = i[2], Zi[1]] 

by multipling Equation (F12) by ηl(x)ϕm(y, y′) and integrating. The 
only term to survive integration is

1
2M

P′′[Zi[1]]
P[Zi[1]]

E[2ηl(􏽢χl)
2]E[ϕm(􏽢χ1

m,􏽢χ2
m)2]. (F15) 

There are four terms of this form in Equation (F10), each of which 
is weighted by 1/(2M) and so, summing over loci, we arrive at an 

overall contribution of σ2
Aσ2

DP′′[Zi[1]]/P[Zi[1]]. Equations (F14) and 
(F15) yield that Equation (F10) equals

1
2M

E
􏽘

l≠m

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ))(ϕm(χi[1],1

m , χi[1],1
m )

􏼢

+ϕm(χi[1],2
m , χi[1],2

m ) + 2ϕm(χi[1],1
m , χi[1],2

m )) i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎤

⎦

= −
P′[Zi[1]]
P[Zi[1]]

ισ2
A +

P′′[Zi[1]]
P[Zi[1]]

σ2
AσADI

2
+ σ2

Aσ2
D

􏼚 􏼛

+O
1
���
M
√

􏼒 􏼓

.

(F16) 
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Continuing in this way,

E[ϕl(χ
i[1],1
l , χi[1],1

l )ϕm(χi[1],1
m , χi[1],1

m ) | i[1] = i[2], Zi[1]] 

is obtained by multiplying Equation (F12) by ϕl(x, x)ϕm(y, y) and in
tegrating. When we sum the “constant” term over loci we will ob

tain ι2/M which tends to zero. The remaining nonzero terms are

−
1
���
M
√

P′[Zi[1]]
P[Zi[1]]

{E[ηl(􏽢χl)ϕl(􏽢χl,􏽢χl)]E[ϕm(􏽢χm,􏽢χm)]

+ E[ϕl(􏽢χl,􏽢χl)]E[ηm(􏽢χm)ϕm(􏽢χm,􏽢χm)]}

+
1

2M
P′′[Zi[1]]
P[Zi[1]]

{E[ϕl(􏽢χl,􏽢χl)ϕm(􏽢χm,􏽢χm)(ηl(􏽢χl)
2 + ηm(􏽢χm)2

+ 2ηl(􏽢χl)ηm(􏽢χm))]

+ E[ϕl(􏽢χ1
l ,􏽢χ1

l )ϕm(􏽢χ1
m,􏽢χ1

m)(ηl(􏽢χ2
l )2 + ηm(􏽢χ2

m)2)]}.

(F17) 

The terms in the last line will contribute O(1/
���
M
√

) when we sum, 
as will the first two terms in the middle line. There are four terms 
of this form in Equation (F11) and we are multiplying by 1/(16M) 
and summing over loci, so the top line contributes 

−ισADIP
′[Zi[1]]/(4P[Zi[1]]), similarly the second line will contribute 

σ2
ADIP

′′[Zi[1]]/(16P[Zi[1]]).
Now, again using Equation (F12),

E[ϕl(χ
i[1],1
l , χi[1],1

l )ϕm(χi[1],1
m , χi[1],2

m ) | i[1] = i[2], Zi[1]]

= ∫ . . . ∫ ϕl(x, x)ϕm(y, y′) 1 −
1
���
M
√ (Ψl(x, x′) + Ψm(y, y′)

􏼔

− E[Ψl + Ψm])
P′[Zi[1]]
P[Zi[1]]

+
1

2M
((Ψl(x, x′) + Ψm(y, y′))2 − E[(Ψl + Ψm)2])

P′′[Zi[1]]
P[Zi[1]]

−
1
M

(Ψl(x, x′) + Ψm(y, y′) − E[(Ψl + Ψm)])E[Ψl + Ψm]

×
P′′[Zi[1]]
P[Zi[1]]

􏼕

􏽢νl(dx)􏽢νl(dx′)􏽢νm(dy)􏽢νm(dy′)

+O(
1

M3/2 ).

There are eight terms of this form in Equation (F11), and we are 
multiplying by 1/(16M) and summing over loci, so the first term 
will correspond to a contribution of

−
P′[Zi[1]]
P[Zi[1]]

ισ2
D

2
.

As usual, terms multiplying the second derivative that involve the 

locus l only through ϕl(x, x) will contribute O(1/
���
M
√

) to the sum and 
we find that the nontrivial contributions will be

−
1
���
M
√

P′[Zi[1]]
P[Zi[1]]

E[ϕl(􏽢χl,􏽢χl)]E[ϕm(􏽢χ1
m,􏽢χ2

m)2]

+
1

2M
P′′[Zi[1]]
P[Zi[1]]

E[2ηl(􏽢χl)ϕl(􏽢χl,􏽢χl)]E[ϕm(􏽢χ1
m,􏽢χ2

m)2].

There are eight terms of this form in Equation (F11), so multiplying 
by 1/(16M) and summing over loci gives

−
ισ2

D

2
P′[Zi[1]]
P[Zi[1]]

+
σADIσ2

D

4
P′′[Zi[1]]
P[Zi[1]]

. (F18) 

Finally, when we scale and sum over loci, the only nontrivial term 
in our expression for

E[ϕl(χ
i[1],1
l , χi[1],2

l )ϕm(χi[1],1
m , χi[1],2

m ) | i[1] = i[2], Zi[1]] 

is

+
1

2M
P′′[Zi[1]]
P[Zi[1]]

E[2ϕl(􏽢χ1
l ,􏽢χ2

l )2]E[ϕm(􏽢χ1
m,􏽢χ2

m)2].

There are four terms of this form, and so multiplying by 1/(16M) 
and summing gives

(σ2
D)2

4
P′′[Zi[1]]
P[Zi[1]]

. (F19) 

Combining Equations (F17), (F18), and (F19), we find that Equation 
(F11) is

1
16M

E
􏽘

l≠m

(ϕl(χ
i[1],1
l , χi[1],1

l ) + (ϕl(χ
i[1],2
l , χi[1],2

l )

􏼢

+ 2ϕl(χ
i[1],1
l , χi[1],2

l ))(ϕm(χi[1],1
m , χi[1],1

m ) + (ϕm(χi[1],2
m , χi[1],2

m )

+2ϕm(χi[1],1
m , χi[1],2

m )) i[1] = i[2], Zi[1]

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎤

⎦

= −
P′[Zi[1],1]
P[Zi[1],1]

ισADI

4
+

ισ2
D

2

􏼒 􏼓

+
P′′[Zi[1],1]
P[Zi[1],1]

σ2
ADI

16
+

σADIσ2
D

4
+

(σ2
D)2

4

􏼠 􏼡

+O
1
���
M
√

􏼒 􏼓

.

(F20) 

Adding Equations (F8), (F13), (F16), and (F20) yields E[(Ai +Di)2], 
and subtracting the square of Equation (F5), we obtain

Var(Ai +Di|i[1] = i[2], Zi[1])

= σ2
A +

1
8

(σ2
DI + ι∗) +

1
4

σ2
D +

1
2

σADI

−
P′[Zi[1]]
P[Zi[1]]

ισ2
A +

ισADI

4
+

ισ2
D

2

􏼚 􏼛

+
P′′[Zi[1]]
P[Zi[1]]

(σ2
A)2 +

σ2
AσADI

2
+ σ2

Aσ2
D

􏼚

+
(σ2

D)2

4
+

σ2
ADI

16
+

σ2
DσADI

4

􏼩

−
ι
2

−
P′[Zi[1]]
P[Zi[1]]

σ2
A +

σ2
D

2
+

σADI

4

􏼒 􏼓􏼒 􏼓2

+O
1
���
M
√

􏼒 􏼓

.

Now if we substitute the Gaussian density for Zi[1], observing that

P′′[Zi[1]]
P[Zi[1]]

−
P′[Zi[1]]
P[Zi[1]]

􏼒 􏼓2

= −
1

σ2
A + σ2

D

, 
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we see that the variance reduces to

−
ι2

4
+

1
σ2

A + σ2
D

σ2
A +

σ2
D

2
+

σADI

4

􏼒 􏼓2

+σ2
A

+
1
8

σ2
DI + ι∗

( 􏼁
+

1
4

σ2
D +

1
2

σADI +O
1
���
M
√

􏼒 􏼓

.

(F21) 

Again, that was a lot of work to recover exactly the expression 
that we expected from conditioning the multivariate normal ran

dom variable ((Ai +Di), Zi[1]) on its second argument. However, in 
the process, we have identified where the normal approximation 
to the conditioned process will break down. The bounds that we 
have obtained will be poor if the trait value of either parent is 
too extreme, or if the pedigree is too inbred (as a result of which 
the variance of trait values will be small and inbreeding depres
sion may be high).

Of course, we have not proved that the conditional distribution 
of (Ai +Di) converges to a normal, we have just checked that the 
first two moments are asymptotically what we would expect. 
We defer the proof of normality until we have calculated the con
ditional variance of (Ai +Di) in the (much simpler) case of two dis
tinct parents.

Conditional variance (Ai +Di), generation one, 
distinct parents
If the parents are distinct, then the expressions are much simpler. 
First

1
4M

E
􏽘M

l=1

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ) + ηl(χ

i[2],1
l ) + ηl(χ

i[2],2
l ))2

􏼢

i[1] ≠ i[2], Zi[1], Zi[2]

􏼌
􏼌
􏼌
􏼌
􏼌

􏼣

=
1
M

􏽘M

l=1

E[ηl(􏽢χl)
2] +O

1
���
M
√

􏼒 􏼓

=
σ2

A

2
+O

1
���
M
√

􏼒 􏼓

.

Next

1
16M

E
􏽘M

l=1

(ϕl(χ
i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],1
l , χi[2],2

l )

􏼢

+ ϕl(χ
i[1],2
l , χi[2],1

l ) + ϕl(χ
i[1],2
l , χi[2],2

l ))2

i[1] ≠ i[2], Zi[1], Zi[2]

􏼌
􏼌
􏼌
􏼌
􏼌

􏼣

=
1

4M

􏽘M

l=1

E[ϕl(􏽢χ1
l ,􏽢χ2

l )2] +O
1
���
M
√

􏼒 􏼓

=
1
4

σ2
D +O

1
���
M
√

􏼒 􏼓

.

Finally,

1
4M

E
􏽘M

l=1

(ηl(χ
i[1],1
l ) + ηl(χ

i1,2
l ) + ηl(χ

i[2],1
l ) + ηl(χ

i[2],2
l ))

􏼢

× (ϕl(χ
i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],1
l , χi[2],2

l )

+ϕl(χ
i[1],2
l , χi[2],1

l )ϕl(χ
i[1],2
l , χi[2],2

l )) i[1] ≠ i[2], Zi[1], Zi[2]

􏼌
􏼌
􏼌
􏼌
􏼌

􏼣

=O
1
���
M
√

􏼒 􏼓

.

We now turn to the off-diagonal terms. We need to be able to cal
culate the conditional expectation of

1
2

(ηl(χ
i[1],1
l ) + ηl(χ

i[1],2
l ) + ηl(χ

i[2],1
l ) + ηl(χ

i[2],2
l ))

􏼔

+
1
4

(ϕl(χ
i[1],1
l , χi[2],1

l ) + ϕl(χ
i[1],1
l , χi[2],2

l )

+ϕl(χ
i[1],2
l , χi[2],1

l ) + ϕl(χ
i[1],2
l , χi[2],2

l ))
􏼕

×
1
2

(ηm(χi[1],1
m ) + ηm(χi[1],2

m ) + ηm(χi[2],1
m ) + ηm(χi[2],2

m ))
􏼔

+
1
4

(ϕm(χi[1],1
m , χi[2],1

m ) + ϕm(χi[1],1
m , χi[2],2

m )

+ϕm(χi[1],2
m , χi[2],1

m ) + ϕm(χi[1],2
m , χi[2],2

m ))
􏼕

(F22) 

given the trait values in the (unrelated) parents i[1] and i[2]. 
Because the parents are distinct, and they are in generation 
zero, as in Equation (F1) in our calculation of the conditional 

mean, we can exploit the fact that the trait values Zi[1] and Zi[2] 

are independent so that the joint probability that

(χi[1],1
l , χi[1],2

l , χi[1],1
m , χi[1],2

m ) = (x, x′, y, y′), 

conditional on Zi[1], Zi[2], is just the same as if we only condition on 

Zi[1]. Recalling Equation (F1), we can calculate the conditional ex
pectation of Equation (F22) using Equation (F12). None of the genes 
at either locus are identical by descent, and so integrating against 

the term of order 1/
���
M
√

in the Taylor expansion in Equation (F12) 
gives zero, but since we are calculating the conditional expectation 

of O(M2) terms, each of which is of order 1/M, we can expect to see a 
contribution from the term of order 1/M. All the terms involving the 
dominance components vanish, as do those terms involving only 
one copy of the additive component at one of the loci. In total we 
find that the conditional expectation of Equation (F22) is

1
M

E[ηl(􏽢χl)
2]E[ηm(􏽢χm)2]

×
P′′[Zi[1]]
P[Zi[1]]

+
P′′[Zi[2]]
P[Zi[2]]

+ 2
P′[Zi[1]]
P[Zi[1]]

P′[Zi[2]]
P[Zi[2]]

􏼚 􏼛

.

Summing over loci (and noting that we may include the diagonal 
terms and only incur an error of order 1/M), we find that, in the 

case of different parents, the variance of the shared terms Ai +Di, 
conditional on the trait values of the parent is

1
2

σ2
A +

1
4

σ2
D −

P′(Zi[1])
P(Zi[1])

+
P′(Zi[2])
P(Zi[2])

􏼒 􏼓
σ2

A

2

􏼒 􏼓2

+
P′′[Zi[1]]
P[Zi[1]]

+
P′′[Zi[2]]
P[Zi[2]]

+ 2
P′[Zi[1]]
P[Zi[1]]

P′[Zi[2]]
P[Zi[2]]

􏼚 􏼛
σ2

A

2

􏼒 􏼓2

+O
1
���
M
√

􏼒 􏼓

.

Once again we see that if we approximate the distribution of Zi[1] 

and Zi[2] by that of independent normal random variables with 

mean z̅0 and variance σ2
A + σ2

D, most of these terms cancel and we 
are left with

σ2
A

2
+

σ2
D

4
−

σ4
A

2(σ2
A + σ2

D)
, 

exactly as predicted by Theorem C1.
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The general case
So far we have only dealt with generation one, where expressions 
are simplified by the fact that Zi[1], Zi[2] are either identical or inde
pendent. More generally, we can perform entirely analogous cal
culations using Lemma E6 in place of Lemma E2. In the interest 
of sanity, we omit the details.

Appendix G: Convergence to normal of 
(Ai +Di) conditional on parental traits

Notation G1. We remind the reader that Notation E1 remains 
in force. Moreover, since the environmental noise Ei is as
sumed to be shared by all offspring of the couple i[1], i[2], 
with this convention we can also assume that the distribution 
of Ai +Di has a smooth density.

We have verified that the first two moments of the conditional 
distribution converge to the limits that we would expect if the lim
it of (Ai +Di) were multivariate normal, but this is not sufficient. 
To prove that the conditional distribution is indeed asymptotical
ly normal, we appeal to Proposition D3, or rather Corollary D4. We 
perform the calculation in the case of identical parents, the case of 
distinct parents being analogous (and less surprising). For defin
iteness, we consider only generation one. The same argument 
will work in any generation, but the calculations become consid
erably more involved, c.f. Lemma E6.

Recall that Ai +Di =
􏽐M

l=1 Φ(l)/
���
M
√

with Φ defined in Equation 
(B1). Since we are considering the case of a single parent, 
Zi[1] = Zi[2]. We shall write Φl(χ1

l , χ2
l ) when we need to specify the al

leles at locus l in Zi[1] on which this is evaluated.
Writing W =

􏽐M
l=1 Φ(l)/

���
M
√

(as a shorthand for Ai +Di), we write

􏽢W =
1
���
M
√

􏽘M

l=1

Φ(l)

􏼌
􏼌
􏼌
􏼌
􏼌
i[1] = i[2], Zi[1]; 

that is 􏽢W is the random variable W in the ith individual, condition
al on it being produced by selfing and on the parental trait value. 
This is the quantity that we should like to prove is normally dis
tributed. The first step is to find a suitable exchangeable pair. 

We write 􏽢Φ(l) for the conditioned version of Φ(l).
For each l ∈ {1, . . . , M}, let 􏽢Φ∗(l) be an independent draw from 

the conditional distribution of 􏽢Φ(l) given the sum of 􏽢Φ(m) over all 
m ≠ l; that is, in an obvious notation, 􏽢Φ∗(l) has the same distribu
tion as

Φ(l)
􏽘

m≠l

􏽢Φ(m), i[1] = i[2], Zi[1].

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

Now let L be a uniform random variable on {1, . . . , M} and define

􏽢W′ = 􏽢W −
(􏽢Φ(L) −􏽢Φ∗(L))

���
M
√ .

Then (􏽢W, 􏽢W′) is an exchangeable pair.
Observe that

E[􏽢W − 􏽢W′|􏽢W] = E
1
���
M
√

1
M

􏽘M

l=1

(􏽢Φ(l) − 􏽢Φ∗(l))

􏼌
􏼌
􏼌
􏼌
􏼌
􏽢W

􏼢 􏼣

=
1
M
􏽢W −

1
���
M
√

1
M

􏽘M

l=1

E[􏽢Φ∗(l)
􏼌
􏼌􏽢W]

: =
1
M
􏽢W − T(􏽢W).

(G1) 

Remark G2. We wish to apply Corollary D4. Our first instinct 
is to write E[􏽢W′ | 􏽢W] = 􏽢W(1 − 1/M) + T(􏽢W) and take λ = 1/M in 
Equation (D2). This will not suffice, as, with this choice, the first 
term on the right of Equation (D3) will be too big. As we shall 
see, the resolution is to take a larger value of λ which captures 
the dependence of 􏽢W′ on 􏽢W.

Before we can apply Corollary D4, we need to investigate T. The 
first step is to establish the distribution of χ1

l , χ2
l conditional on 

i[1] = i[2], Zi[1] (which we shall for the rest of this section abbreviate 
to Z) and W−l.

Keeping in mind Notation G1, and recalling that (Z, W) is short
hand for (Zi[1], Ai +Di), we write P[z, w] for the density function of 
(Z, W) evaluated at (z, w) and Pz[z, w], Pw[z, w], and so on, for the 
corresponding partial derivatives. The proof of the following lem
ma mirrors those of Appendix E.

Lemma G3. The (unconditional) distribution of (Z−l, W−l) can 
be written as

P[Z−l = z, W−l = w]

= P[z, w] +
1
���
M
√ E[Ψl]Pz[z, w] +

1
���
M
√ E[Φl]Pw[z, w]

+
1
M

(E[Ψl]
2 − E[Ψ2

l ])Pzz[z, w]

+
2
M

(E[Φl]E[Ψl] − E[ΦlΨl])Pzw[z, w]

+
1
M

(E[Φl]
2 − E[Φ2

l ])Pww[z, w]

+
1

2M
E[Ψ2

l ]Pzz[z, w] +
1
M

E[ΦlΨl]Pzw[z, w]

+
1

2M
E[Φ2

l ]Pww[z, w] +O
1

M3/2

􏼒 􏼓

.

Proof of Lemma G3. The key, as usual, is Taylor’s Theorem.

P[Z−l = z, W−l = w]

= ∫∫ P χ1
l = x, χ2

l = x′, Z = z +
1
���
M
√ Ψl(x, x′),

􏼔

W = w +
1
���
M
√ Φl(x, x′)

􏼕

dx dx′

= ∫∫ P[χ1
l = x, χ2

l = x′, Z = z,

W = w] dx dx′

+
1
���
M
√ ∫∫ Ψl(x, x′)

∂
∂z

P[χ1
l = x, χ2

l = x′, Z = z,

W = w] dx dx′

+
1
���
M
√ ∫∫ Φl(x, x′)

∂
∂w

P[χ1
l = x, χ2

l = x′, Z = z,

W = w] dx dx′

+
1

2M
∫∫ Ψ2

l (x, x′)
∂2

∂z2 P[χ1
l = x, χ2

l = x′, Z = z,

W = w] dx dx′

+
1
M

∫∫ Ψl(x, x′)Φl(x, x′)
∂2

∂z∂w
P[χ1

l = x, χ2
l = x′, Z = z,

W = w] dx dx′

+
1

2M
∫∫ Φ2

l (x, x′)
∂2

∂w2 P[χ1
l = x, χ2

l = x′, Z = z,

W = w] dx dx′ +O
1

M3/2

􏼒 􏼓

.
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Now write

P[χ1
l = x, χ2

l = x′, Z = z, W = w] = P[χ1
l = x, χ2

l = x′]

× P Z−l = z −
1
���
M
√ Ψl(x, x′), W−l = w −

1
���
M
√ Φl(x, x′)

􏼔 􏼕

.

Using the notation 

P[x, x′, z, w] : = P[χ1
l = x, χ2

l = x′, Z = z, W = w], we substitute 

from above and apply Taylor’s Theorem to obtain,

P[x, x′, z, w] = P[χ1
l = x, χ2

l = x′]

× ∫∫ P y, y′, z −
1
���
M
√ Ψl(x, x′) +

1
���
M
√ Ψl(y, y′),

􏼔

w −
1
���
M
√ Φl(x, x′) +

1
���
M
√ Φl(y, y′)

􏼕

dy dy′

= P[χ1
l = x, χ2

l = x′] P[Z = z, W = w]
􏼚

+
1
���
M
√ ∫∫ (Ψl(y, y′) − Ψl(x, x′))

∂
∂z

P[y, y′, z, w] dy dy′

+
1
���
M
√ ∫∫ (Φl(y, y′) − Φl(x, x′))

∂
∂w

P[y, y′, z, w] dy dy′

+O
1
M

􏼒 􏼓􏼛

.

Differentiating with respect to z (and assuming sufficient regu
larity),

∂
∂z

P[χ1
l = x, χ2

l = x′, Z = z, W = w] = P[χ1
l = x, χ2

l = x′]

×
∂
∂z

P[Z = z, W = w] +O
1
M

􏼒 􏼓􏼚

+
1
���
M
√ ∫∫ (Ψl(y, y′) − Ψl(x, x′))

∂2

∂z2 P[y, y′, z, w] dy dy′

+
1
���
M
√ ∫∫ (Φl(y, y′) − Φl(x, x′))

∂2

∂z∂w
P[y, y′, z, w] dy dy′

􏼛

, 

and similarly

∂
∂w

P[χ1
l = x, χ2

l = x′, Z = z, W = w] = P[χ1
l = x, χ2

l = x′]

×
∂

∂w
P[Z = z, W = w] +O

1
M

􏼒 􏼓􏼚

+
1
���
M
√ ∫∫ (Ψl(y, y′) − Ψl(x, x′))

∂2

∂z∂w
P[y, y′, z, w] dy dy′

+
1
���
M
√ ∫∫ (Φl(y, y′) − Φl(x, x′))

∂2

∂w2 P[y, y′, z, w] dy dy′
􏼛

.

As in the proof of Lemma E2, we only require the second deri
vatives to leading order

∂2

∂z2 P[χ1
l = x, χ2

l = x′, Z = z, W = w]

= P[χ1
l = x, χ2

l = x′]
∂2

∂z2 P[Z = z, W = w] +O
1
���
M
√

􏼒 􏼓

, 

with similar expressions for the other second partial deriva
tives. Substituting back into the first display yields the 
result.                                                                                            □

Lemma G4. The conditional distribution of χ1
l , χ2

l given Z and 
W−l is given by

P[χ1
l = x, χ2

l = x′|Z = z, W−l = w−l]

= P[χ1
l = x, χ2

l = x′] 1 −
Ψl(x, x′)
���
M
√

P[z, w−l]
Pz[z, w−l]

􏼨

+
E[Ψl]

���
M
√

P[z, w−l]
Pz[z, w−l]

􏼩

+O
1
M

􏼒 􏼓

.

(G2) 

Proof of Lemma G4. This is just an application of Bayes’ rule:

P[χ1
l = x, χ2

l = x′|Z = z, W−l = w−l]

=
P[Z = z, W−l = w−l|χ1

l = x, χ2
l = x′]

P[Z = z, W−l = w−l]
P[χ1

l = x, χ2
l = x′]

=
P[Z−l = z −

Ψl(x, x′)
���
M
√ , W−l = w−l]

P[Z = z, W−l = w−l]
P[χ1

l = x, χ2
l = x′].

(G3) 

Using Lemma G3 and Taylor’s Theorem,

P Z−l = z −
Ψl(x, x′)

���
M
√ , W−l = w−l

􏼔 􏼕

= P Z = z −
Ψl(x, x′)

���
M
√ , W−l = w−l

􏼔 􏼕

+
1
���
M
√ E[Ψl]Pz z −

Ψl(x, x′)
���
M
√ , w−l

􏼔 􏼕

+
1
���
M
√ E[Φl]Pw z −

Ψl(x, x′)
���
M
√ , w−l

􏼔 􏼕

= P[Z = z, W = w−l] −
Ψl(x, x′)

���
M
√ Pz[z, w−l]

+
E[Ψl]
���
M
√ Pz[z, w−l] +

E[Φl]
���
M
√ Pw[z, w−l] +O

1
M

􏼒 􏼓

.

When we integrate this expression with respect to x and x′, to 
calculate the denominator in Equation (G3), we recover 

Pz[z, w−l] + E[Φl ]��
M
√ Pw[z, w−l] +O( 1

M ) (since the expectation of Ψl 

cancels). Expanding the ratio in Equation (G3) in powers of 

1/
���
M
√

, the terms involving E[Φl] cancel, and the result fol
lows.                                                                                            □

Finally, we are in a position to calculate the quantity T(􏽢W) that 
was defined in Equation (G1). Recall that 􏽢Φ∗l is an independent 
draw from the conditional distribution of 􏽢Φl given W−l and Z, so 
using Equation (G2),

E[􏽢Φ∗l |􏽢W] = E[Φl] − (E[ΦlΨl] − E[Φl]E[Ψl])

×
1
���
M
√ E

1
P[Z, W−l]

∂
∂z

P[Z, W−l]
􏼌
􏼌
􏼌
􏼌W = 􏽢W

􏼔 􏼕

+O
1
M

􏼒 􏼓

.

(G4) 

Conditioning only on i[1] = i[2], using the calculations in Appendix 
B and Equation (F6), by an application of Theorem D2 (up to an er

ror of order 1/
���
M
√

) the joint distribution of (Ai +Di, Zi[1]) is approxi
mately that of a bivariate normal.

We will need that for a bivariate normal distribution with mean 
vector (μZ, μW) and covariance matrix

σ2
Z Cov(Z, W)

Cov(Z, W) σ2
W

􏼒 􏼓
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the density function takes the form

p(z, w) =
1

2πσZσW

�������
1 − ρ2

􏽰

× exp −
1

2(1 − ρ2)
(z − μZ)2

σ2
Z

−
2ρ(z − μZ)(w − μW)

σZσW

􏼠􏼨

+
(w − μW)2

σ2
W

􏼡􏼩

, 

where ρ = Cov(Z, W)/(σZσW). Differentiating, we find

1
p(z, w)

∂
∂z

p(z, w) =
1

(1 − ρ2)
ρ(w − μW)

σZσW
−

(z − μZ)
σ2

Z

􏼚 􏼛

. (G5) 

Recall the definition of T from Equation (G1). Multiplying Equation 

(G4) by 1/
���
M
√

, observing that E[W−l|W, Z] = W +O(1/
���
M
√

) (and 
since Φl is uniformly bounded independent of l, the error is 
bounded independent of l), and then averaging out over l as in 

the definition of T(􏽢W), on substituting Equation (G5) and 
Cov(Z, W) = ρσZσW, we find

T(􏽢W)

=
1
M

E[W] +
Cov(Z, W)

M
Z − E[Z]

σ2
Z(1 − ρ2)

−
ρ

1 − ρ2

􏽢W − E[W]
σZσW

􏼨 􏼩

+O
􏼐 1

M3/2

􏼑

=
1
M

E[W] +
ρσZσW

M
Z − E[Z]

σ2
Z(1 − ρ2)

−
ρ

1 − ρ2

􏽢W − E[W]
σZσW

􏼨 􏼩

+O
1

M3/2

􏼒 􏼓

=
1
M

E[W] +
1
M

ρ
σW

σZ

Z − E[Z]
1 − ρ2 −

1
M

ρ2

1 − ρ2 (􏽢W − E[W])

+O
1

M3/2

􏼒 􏼓

.

(G6) 

Using the approximation for the conditional distribution of (χ1
l , χ2

l ), 

given Z obtained in Appendix E,

E[􏽢W] = E[W|Z] = E[W] + ρ
σw

σz
(Z − E[Z]) +O

1
���
M
√

􏼒 􏼓

, 

so we can rewrite Equation (G6) as

T(􏽢W) =
1
M

1
(1 − ρ2)

E[􏽢W] −
1
M

ρ2

1 − ρ2
􏽢W +O

1
M3/2

􏼒 􏼓

.

Substituting in Equation (G1),

E[􏽢W − 􏽢W′|􏽢W] =
1
M

1
1 − ρ2 (􏽢W − E[􏽢W]) +O

1
M3/2

􏼒 􏼓

. (G7) 

We are going to apply Corollary D4 to (􏽢W, 􏽢W′) with F = σ(􏽢W). We 

set λ = 1/(M(1 − ρ2)) and observe from Equation (G7) that we may 

take a remainder term R with E[|R|] of order 1/M1/2 in Equation 
(D3). Moreover,

􏽢K2 =
1
2λ
|Δ|3

2
, 

and so, since by construction |Δ| < C/
���
M
√

, E[􏽢K2] is also order at 

most 1/M1/2.

Since with these definitions

􏽢K1 =
M(1 − ρ2)

2
E[(􏽢W − 􏽢W′)2|􏽢W], 

it remains to control

E σ2
􏽢W

−
M(1 − ρ2)

2
E[(􏽢W − 􏽢W′)2|􏽢W]

􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌

􏼔 􏼕

. (G8) 

Again using the results of Appendix E,

σ2
􏽢W

= (1 − ρ2)σ2
W +O

1
���
M
√

􏼒 􏼓

, 

(the first term being the conditional variance if the random vari
ables were distributed exactly as a bivariate normal), whereas

E[E[(􏽢W − 􏽢W′)2|􏽢W]] = E[(􏽢W − 􏽢W′)2]

= E
1

M2

􏽘M

l=1

(􏽢Φl − 􏽢Φ∗l )2
􏼢 􏼣

= 2
1
M

σ2
W +O

1
M3/2

􏼒 􏼓

.

(Note that we see the unconditioned σ2
W in this second expression 

since it involves only diagonal terms.)
To control Equation (G8), observing that, by the Cauchy– 

Schwarz inequality,

E[|E[M(􏽢W − 􏽢W′)2] − E[M(􏽢W − 􏽢W′)2|􏽢W]|]

≤ Var(E[M(􏽢W − 􏽢W]′)2
|􏽢W])1/2, 

it suffices to control

Var(E[M(􏽢W − 􏽢W′)2|􏽢W]).

In particular, we should like to show that this expression is of or
der O(1/M).

Now we use the standard decomposition of conditional expec
tations: for two random variables X and F,

Var(X) = E[E[X2 | F] − (E[X | F])2 + (E[X | F])2] − E[E[X | F]]2

= E[Var(X | F)] + Var(E[X | F]).

So

Var(E[X|F]) = Var(X) − E[Var(X|F)].

For us, X = M(􏽢W − 􏽢W′)2 = (ΦL − Φ∗L)2, and F = 􏽢W, so

Var(X) =
1
M

􏽘M

l=1

E[(Φl − Φ∗l )4] −
1
M

􏽘M

l=1

E[(Φl − Φ∗l )2]

􏼠 􏼡2

, 

and we seek

1
M

􏽘M

l=1

E[(Φl − Φ∗l )4] −
1
M

􏽘M

l=1

E[(Φl − Φ∗l )2]

􏼠 􏼡2

−
1
M

􏽘M

l=1

E[E[(Φl − Φ∗l )4]|􏽢W] + E
1
M

􏽘M

l=1

E[(Φl − Φ∗l )2|􏽢W]

􏼠 􏼡2
⎡

⎣

⎤

⎦, 
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where the expectation is with respect to the distribution of 􏽢W. By 

the tower property, the terms involving (Φl − Φ∗l )4 cancel, leaving

1
M2

􏽘M

l=1

􏽘M

m=1

E[E[(Φl − Φ∗l )2|􏽢W]E[(Φm − Φ∗m)2|􏽢W]]
􏽮

−E[(Φl − Φ∗l )2]E[(Φm − Φ∗m)2]
􏽯
.

(G9) 

Expanding E[(Φl − Φ∗l )2|􏽢W]E[(Φm − Φ∗m)2|􏽢W] in an entirely analogous 

way to Equation (G4), when we take expectations, using the tower 
property of conditional expectations, the part of the product that 

is an affine function of 􏽢W will cancel in Equation (G9), leaving 
quadratic (and higher order) terms, each of which is of order 
O(1/M) in the summand. Overall then Equation (G9) is O(1/M), 

and applying Corollary D4, the proof that Ai +Di is normal with 

an error of order 1/
���
M
√

is complete.

The residuals, generation one
Proving that Ri

A + Ri
D is normal is much simpler. Since Mendelian 

inheritance is independent across loci, we are able to use 
Theorem D2 in much the same way as in generation zero. A com
bination of Lemma E2 and Bayes’ rule suffices to show that the 
variance is not affected by conditioning on parental trait values, 
after which the proof proceeds essentially as in the additive case 
and so is omitted.

Appendix H: Generation t, accumulation of 
information
If we wanted to prove a strict analog of the results of Barton et al. 
(2017) in the additive case, then we would want to condition not 
just on the trait values of the parents, but on the trait values of 
an arbitrary collection of individuals in the pedigree. Such a proof 
can follow essentially the same lines as above, although the calcu
lations are considerably longer to write out. The only thing that 
must be checked is that we do not accumulate too much informa
tion from knowing those trait values; it is this that controls for 
how long the infinitesimal approximation will remain accurate. 
This requires more care than the additive case of Barton et al. 
(2017), so we present the argument here.

Recall that we write P(t) for the pedigree up to and including 
generation t and Z(t) for the corresponding vector of trait values 
of all individuals in P(t). We would like to understand the distribu
tion of the allelic types χ1

l (j∗), χ2
l (j∗) at locus l of an individual j∗ in 

generation t, conditional on knowing the trait values of all indivi
duals in the pedigree up to generation t − 1. That is, we would like 
to estimate

P[(χ1
l (j∗), χ2

l (j∗)) = (x, x′) | P(t), Z(t − 1) = (zj) j∈P(t−1)]

=
P[Z(t − 1) = (zj) j∈P(t−1) | (χ

1
l (j∗), χ2

l (j∗)) = (x, x′), P(t)]

P[Z(t − 1) = (zj) j∈P(t−1) | P(t)]

× P[(χ1
l (j∗), χ2

l (j∗)) = (x, x′) | P(t)].

(H1) 

To estimate the numerator in the fraction, we partition over the 
possible patterns of identity at locus l in the pedigree, conditional 
on that pedigree; that is we condition on the values of the 
Bernoulli random variables that determine Mendelian inheritance 
at locus l across the pedigree. We denote this Ml(t) and abuse no

tation by writing (M1
l (j), M2

l (j)) for the allelic states at locus l in 

individual j ∈ P(t − 1) conditional on Ml(t). More precisely, if χ1
l (j∗) = 

x and χ2
l (j∗) = x′, (M1

l (j), M2
l (j)) = (y, y′), (y, x′), (x, y′), (x, x′) according 

to whether j is identical by descent with the chosen individual j∗

on neither chromosome, one chromosome or both chromosomes. 
We use EMl 

when we wish to emphasize that we are taking the 
expectation with respect to this quantity. We proceed as in 
Lemma E6:

P[Z(t − 1) = (zj) j∈P(t−1) | (χ
1
l (j∗), χ2

l (j∗)) = (x, x′),

P(t), Ml(t)]

= P Zj
−l = zj −

1
���
M
√ Ψl(M

1
l (j), M2

l (j)), ∀j ∈ P(t − 1) | P(t)
􏼔 􏼕

= E P Zj = zj −
1
���
M
√ Ψl(M

1
l (j), M2

l (j))
􏼔􏼔

+
1
���
M
√ Ψl(χ1

l (j), χ2
l (j)), ∀j ∈ P(t − 1) | P(t)

􏼕􏼕

, 

where in the last line the expectation is taken with respect to the 

unconditional law of the random family {(χ1
l (j), χ2

l (j)), j ∈ P(t − 1)}.
Substituting in Equation (H1), in an obvious notation,

P[(χ1
l (j∗), χ2

l (j∗)) = (x, x′) | P(t), Z(t − 1) = z]

= P[(χ1
l (j∗), χ2

l (j∗)) = (x, x′) | P(t)]

× 1 −
􏽘

j∈P(t−1)

1
���
M
√ {E[Ψl(M

1
l (j), M2

l (j)) | P(t)]

⎛

⎝

−E[Ψl(χ1
l (j), χ2

l (j)) | P(t)]}
PZj [z]
P[z]

⎞

⎠ +O
1
M

􏼒 􏼓

.

In particular, the summand will vanish if j and j∗ are not identical 
by descent in at least one copy at locus l, since then the allelic 
states at locus l in individuals j and j∗ are independent. 
Furthermore, the more distant the relationship between j and j∗

(that is, the smaller the probability of their being identical by des
cent), the less information we glean about the allelic states in j∗

from observing the trait value of individual j, resulting in a small 
contribution of the jth term to the difference between the condi

tional and unconditional laws of (χ1
l (j∗), χ2

l (j∗)). The infinitesimal 

model can be expected to break down for an individual if we 
know that one of its close relatives had a particularly extreme trait 
value, or if the pedigree is particularly inbred (so that there is little 
variation between offspring).

Appendix I: Supplementary material and 
codes
The following supplementary material can be found in the public 
repository (Barton 2023): 

• The Mathematica notebook Algorithm for calculating 
identities.nb, comprising a set of codes to compute the 
identity coefficients of Appendix A.

• The Mathematica notebook Infinitesimal with 
dominance.nb, accompanying and complementing the si
mulations and figures presented in the paper.

• The different datasets from which the numerical examples in 
this paper can be reproduced. 
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