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Abstract. Partially specified Boolean networks (PSBNs) represent a
promising framework for the qualitative modelling of biological systems
in which the logic of interactions is not completely known. Phenotype
control aims to stabilise the network in states exhibiting specific traits.
In this paper, we define the phenotype control problem in the context of
asynchronous PSBNs and propose a novel semi-symbolic algorithm for
solving this problem with permanent variable perturbations.

1 Introduction

Boolean networks (BNs) are a widely used model to study dynamics of complex
biological systems [4,2]. Recently, a new interesting variant of BN control prob-
lem called phenotype control was proposed [16,18]. The goal of the phenotype
control is to stabilize the network in states exhibiting specific traits regardless
of the source state. This approach does not limit the control target to a single
state or a specific attractor but rather considers arbitrary combinations of traits
(subspaces of BN states). To control the network, we use variable perturbations
that fix variable values to specific constants.

The behavior of a BN is given by the Boolean update functions and the
considered updating scheme. In this work, we specifically focus on asynchronous
updates, where one update rule is triggered at a time, because they suitably
capture the behaviour of biological systems [3]. However, it is important to
note that in many cases, the exact Boolean functions of the model may not
be precisely known due to various uncertainties such as insufficient experimen-
tal knowledge [22], inconsistent observations [21], genetic mutations [30], or any
other ambiguities. To address this issue, we employ a framework of partially
specified Boolean networks (PSBN), in which update functions can be defined
using uninterpreted function symbols [8,12,9].

The most well-studied variant of BN control problem is source-target control
in which both source and target states are specified. Generalized variants of this
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problem include target control [25], which aims to reach the target attractor
regardless of the initial state, and full-control [20], which seeks a control strategy
between all attractor pairs.

The control problems also differ significantly in the perturbations which they
employ. The simplest perturbation variant is solved in the context of Boolean
control networks (where only inputs are allowed to be set) [27]. In contrast, an-
other line of research allows influence of any BN variable. In biology, such per-
turbations can be implemented in terms of gene knock-outs or over-expressions.
Commonly used are permanent perturbations which consider variables being sta-
bilized ad infinitum [40,34,33]. Other types of perturbations include one-step [5],
temporary [28,36,38], and sequential dynamics [1,29,31,37]. It is worth noting
that the source-target control was also studied in the context of PSBNs [11,12].

A common drawback of source-target, target and full control problems is
that the target attractor must be fully known in advance in order to be pro-
vided as an input to the source-target control algorithm. However, the unknown
parts might cause a PSBN to exhibit very similar attractors differing only in
some negligible parts. Therefore, multiple attractors might be in fact a target
of interest. A similar scenario can occur even for fully known networks, as the
modeler’s goal might be to stabilize just some subset of traits (phenotype) which
are actually exhibited in several different attractors.

The phenotype control of BNs was previously solved using a method based
on a reduction of the network into a layered network and converging trees [15].
However, the method is assuming synchronous update semantics. The phenotype
control was later addressed also for asynchronous update semantics and solved
using model checking methods [18]. A very similar problem, marker control, was
also solved for the most permissive updating scheme [32].

Our contribution. In this work, we lift the problem of phenotype control from
standard asynchronous BNs to partially specified BNs. We use permanent vari-
able perturbations to achieve the control objective. We develop semi-symbolic
method based on Binary Decision Diagrams (BDDs). This method allows us to
find solutions for all PSBN interpretations in a single run, unlike brute-force
methods, which need to compute solutions for each fully specified BN instance
separately. Our method is based on a search of trap-sets, which makes its main
idea transferable to other BN updating schemes as well. The method is concep-
tually related to [18], but aside from our novel incorporation of PSBNs, we also
lift the perturbations into the symbolic domain (as opposed to the brute-force
enumeration in [18]). We also demonstrate how this method can be applied to
obtain interesting observations about PSBN models on real-world case studies.

2 Theory

This section presents a formal introduction to the topic of partially specified
Boolean networks, including the notion of permanent perturbation, phenotype
control and perturbation robustness.
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Notation. Let us first note that we consider 0 and 1 as interchangeable with
false and true, respectively. We then define B = {0, 1} to be the set of Boolean
values and B∗ = {0, 1, ∗} to be an extension of B which also admits a free value ∗
(i.e. neither true nor false). We write Bn to denote the set of all n-element vectors
over B. In the following, such n refers to the size of a Boolean network, while x
represents its state (a configuration). For each x ∈ Bn, xi then denotes the i-th
element of x. Finally, for x ∈ Bn, index i ∈ [1, n], and a Boolean value b ∈ B,
expression x[i 7→ b] denotes a substitution of the i-th element in x for the value b.
Formally, the result is x′ = x[i 7→ b] s.t. x′

j = b for j = i, and x′
j = xj otherwise.

2.1 Boolean networks

Before we define partially specified Boolean networks, we first introduce the
classical (i.e. fully specified) Boolean network (BN) and other related concepts:

Definition 1. Let n be the number of system variables. A Boolean network is
a collection BN = {f1, . . . , fn} with each fi : Bn → B being the Boolean update
function (sometimes called local function) of the network’s i-th variable.

In the context of a specific Boolean network, the set Bn is the network’s state
space, and the vectors x ∈ Bn are its states. Note that although the input of
each fi is a full state x ∈ Bn, the output of fi does not typically depend on
all network variables, but rather on a smaller subset of variables which we say
regulate the i-th variable. If a variable has no regulators (i.e. its update function
is a constant), we also call it an input of BN. Symmetrically, variable that does
not regulate any other variable is called an output.

Additionally, we call the members of Bn
∗ the subspaces of BN. Intuitively, each

subspace S ∈ Bn
∗ describes a hypercube in the state space Bn. This hyper-cube

consists of states x ∈ Bn such that xi = Si for all i where Si ∈ B. We can
thus treat each subspace S as a set of states. Furthermore, to denote a specific
subspace, we will often simply use a string of values from B∗ instead of the full
vector notation (e.g. S = 11∗0 instead of S = (1, 1, ∗, 0)).

To formally reason about the evolution of the network’s state, we consider
its asynchronous state-transition graph:

Definition 2. For BN = {f1, . . . , fn}, the state-transition graph STG(BN) =
(V,E) is a directed graph with V = Bn and E ⊆ V × V given as follows:

(u, v) ∈ E ⇔ (u ̸= v ∧ ∃i ∈ [1, n]. v = u[i 7→ fi(u)])

We can write u → v whenever (u, v) ∈ E. Observe that each transition within
STG(BN) always updates exactly one network variable. To then study the long-
term behaviour of a network, we focus on the terms trap set and attractor [17,32]:

Definition 3. Let BN = {f1, . . . , fn} be a Boolean network and X ⊆ Bn a set
of network states. We say that X is a trap set when for all x ∈ X and y ∈ Bn

we have that x → y implies y ∈ X (i.e. X cannot be escaped). We write that X
is an attractor when X is strongly connected within STG(BN).
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Equivalently, we can also define attractors as exactly the inclusion-minimal
trap sets of BN. We write A(STG(BN)) to denote the set of all attractors of BN.

It has been shown that attractors are closely tied to the notion of biological
phenotypes [26,18]. Each attractor represents a possible stable outcome achiev-
able within a particular BN. The combination of traits observable as part of this
outcome then forms the actual phenotype. However, in many cases, there can
be multiple attractors that exhibit the same set of traits, and thus the same
biological phenotype. We formalise this concept as follows:

Definition 4. A character is a set of BN variables U ⊆ [1, n] which cover the
observable real-world properties of the system. A trait T is then a valuation of
these character variables: T : U → B.

Such character variables U typically correspond to the network outputs, but
this is not required. Each trait defines a subspace ST ∈ Bn

∗ s.t. ST
i = T (i) for

i ∈ U , and ST
i = ∗ otherwise. With a slight abuse of notation, we simply use T

to also mean the subspace ST when clear from context.

Definition 5. A phenotype is a set of states P ⊆ Bn described by an arbitrary
combination of the BN traits. We say that phenotype P exists in BN when A ⊆ P
for some A ∈ A(STG(BN)). We say that BN exhibits P when A ⊆ P for all
A ∈ A(STG(BN)).

While a trait is always a subspace, a phenotype is an arbitrary combination
of traits. For example, assuming n = 4 and U = {1, 2}, 11∗∗ and 00∗∗ are two
of the four admissible traits (or rather trait subspaces). Each of these traits can
represent a single phenotype, but they can also represent a combined phenotype
00∗∗∪11∗∗. We typically assume that if a network admits more than one pheno-
type, these are mutually disjoint. Finally, note that not all traits have to belong
to some phenotype (e.g. if a trait is not biologically viable).

2.2 Partially specified Boolean networks

A shortcoming of classical BNs as defined above is that to study network dy-
namics, all update functions must be fully known. However, this is often not
realistic for large-scale systems. To address this problem, we consider the no-
tion of Partially Specified Boolean Networks (PSBNs) [8] (also termed Coloured
Boolean Networks).

In a PSBN, we can use uninterpreted functions as stand-ins for unknown
(fixed but arbitrary) parts of the network’s dynamics. Each uninterpreted func-
tion is then denoted by its symbol (a name) and input arguments.

Definition 6. Let n be the number of system variables, and F a set of un-
interpreted function symbols. A partially specified Boolean network PSBN =
{P1, . . . , Pn} consists of expressions Pi given by the following grammar:

E ::= 0 | 1 | x | ¬E | E ∧ E | E ∨ E | F (a)(E, . . . , E)
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Here, x ranges over the network variables and F over the uninterpreted functions
of F (superscript a ∈ N0 denotes the arity of F). Other Boolean operators (e.g.
⇒ or ⇔) can be implemented as syntactic abbreviations using ∨, ∧, and ¬.

In other words, a PSBN is defined using standard Boolean constants (0 and
1), variable state propositions (x) and Boolean connectives (¬, ∧, ∨), but it
can also use uninterpreted functions from F as a way of incorporating unknown
behaviour. This makes it possible to idiomatically describe systems whose dy-
namics are not fully known.

Note that this definition also allows zero-arity uninterpreted functions (e.g.
F (0) ∈ F). These are effectively unknown Boolean constants. As such, they are
functionally equivalent to network inputs with an unknown value. To distinguish
them, we sometimes call these uninterpreted functions logical parameters.

To assign meaning to a particular PSBN, we rely on the term interpretation.
An interpretation I is a function which assigns each symbol from F a Boolean
function of the corresponding arity. By substituting each F ∈ F in expressions
P1, . . . , Pn for its corresponding I(F) (written Pi(I)), we obtain a classical fully
specified Boolean network which we denote PSBN(I) = {P1(I), . . . , Pn(I)}.

Definitions of trap set and attractor for fully specified BNs then extend to
PSBNs naturally per individual interpretations. For example, we write that a set
A ⊆ Bn is an attractor of PSBN for interpretation I when it is an attractor of
PSBN(I) (i.e. there are no attractors of PSBN, only attractors of its interpre-
tations). The definitions of character, trait and phenotype do not depend on
the actual dynamics of the network (only on its variables). As such, these are
identical for both BNs and PSBNs.

Note that for any given PSBN based on uninterpreted functions F, there is a
logically equivalent normalised P̂SBN based on F̂, such that F̂ only admits zero-
arity uninterpreted functions. The details of this conversion can be found in [12].
However, in general, the size of F̂ is exponential w.r.t. the arity of functions in
F. Considering that F̂ only admits zero-arity logical parameters, the possible
valuations of these parameters (which we also call colours) can be encoded as
vectors c ∈ Bm where m = |F̂|. We then write Ic to denote an interpretation of
PSBN that is encoded by a particular colour c ∈ Bm.

Finally, to algorithmically study the dynamics of possible PSBN interpreta-
tions, we rely on the term coloured state-transition graph.

Definition 7. Let PSBN = {P1, . . . , Pn} be a partially specified Boolean net-
work such that P̂SBN admits m logical parameters. The coloured state-transition
graph STG(PSBN) = (V,C,E) is a directed graph where V = Bn, C = Bm and
E ⊆ V × C × V is given as (u, c, v) ∈ E ⇔ (u, v) ∈ E(STG(PSBN(Ic))).

In other words, the coloured state-transition graph is a unifying structure
which incorporates the STGs of all interpretations of PSBN: A transition from
a state u to state v is enabled for colour c if the same transition appears in the
STG of PSBN(Ic). An example of such an STG is depicted in Fig. 1a. We further
explore the utility of coloured STGs in the Methods section, where we show how
these can be efficiently manipulated symbolically.
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Example 1. Consider a PSBN with F = {F (2)} and P1 ≡ F(x1, x2); P2 ≡ x1∧x3;
P3 ≡ x1 ∨ ¬x3. After normalisation, we have F̂ = {F00,F01,F10,F11} and P̂1 ≡
((¬x1∧¬x2) ⇒ F00)∧((¬x1∧x2) ⇒ F01)∧((x1∧¬x2) ⇒ F10)∧((x1∧x2) ⇒ F11).

The coloured STG of this PSBN is shown in Fig. 1a. Each edge label describes
a subspace of the colour set Bm which enables said edge (edges without labels
are enabled for all colours). Note that the presence of each edge always depends
on a single logical parameter. Fig. 1b then shows STGs of two specific PSBN
interpretations: I0101 and I0110 (i.e. F(x1, x2) = x2 and F(x1, x2) = x1 ⇎ x2).

(a) STG(PSBN) (b) STG(PSBN(Ic)) (c) STG[Q](PSBN(Ic))

Fig. 1: STGs of the PSBN from Example 1: (a) The full coloured STG; (b) STGs
for interpretations I0101 and I0110; (c) Perturbed STGs for Q = ∗1∗. Green states
represent phenotype P = 1∗∗.

2.3 Phenotype control of partially specified Boolean networks

Finally, we can discuss the topic of phenotype control for PSBNs: we assume a
set of phenotype states P ⊆ Bn and the goal is to perturb the network such that
it exhibits this phenotype. In other words, after the perturbation is applied to the
network, the network stabilizes in some attractor A such that A ⊆ P . However,
in the presence of partially unknown dynamics, this may not be achievable using
a sufficiently small perturbation. In such cases, we rely on control robustness to
assess viability of possible perturbations.

As before, for simplicity, we first introduce some of the concepts for classical
BNs and then expand these to PSBNs. First, to control the behaviour of a BN,
we use the notion of variable perturbation:
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Definition 8. A variable perturbation is a vector Q ∈ Bn
∗ . For every Qi = ∗,

we say that the i-th variable is unperturbed, whereas for Qi = 0 or Qi = 1, we
say that the variable is perturbed to either 0 or 1.

We write fixed(Q) and free(Q) to denote the subset of perturbed and un-
perturbed variables, respectively. The size of Q is the size of the fixed(Q) set.
Furthermore, a perturbation can again be seen as a subspace of Bn. We then
write that the states in this subspace are compliant with Q.

For a particular BN and Q, we consider a perturbed state-transition graph
STG[Q](BN), which is a sub-graph of STG(BN) induced by the states compliant
with Q. Intuitively, the fixed(Q) variables are restricted to their perturbed values,
while free(Q) variables are left to evolve without modification.

We say that a permanent variable perturbation Q ∈ Bn
∗ controls Boolean

network BN towards phenotype P if and only if A(STG[Q](BN)) ⊆ P . Intu-
itively, a perturbation represents an effective control strategy if it causes the
network to only exhibit attractors from the desired phenotype P . However, note
that A(STG[Q](BN)) is not necessarily a subset of A(STG(BN)). A permanent
perturbation can disturb existing attractors or even introduce new ones.

This concept naturally applies to interpretations of PSBNs as well: given
a PSBN, an interpretation I and a perturbation Q, the interpretation has a
perturbed STG[Q](PSBN(I)). As such, a perturbation Q controls PSBN under
the interpretation I if it ensures A(STG[Q](PSBN(I))) ⊆ P .

Example 2. Consider the network from Example 1, a phenotype P = 1∗∗ and
a perturbation Q = ∗1∗. Fig. 1c depicts the perturbed STGs of interpretations
I0101 and I0110, with phenotype states highlighted in green. Perturbation Q =
∗1∗ achieves control for interpretation I0101, but not for I0110.

Definition 9. Assume a partially specified network PSBN, a phenotype P ⊆
Bn and a set of admissible perturbations Q ⊆ Bn

∗ . The goal of the complete
phenotype control is to compute all pairs (c,Q) ∈ Bm ×Bn

∗ such that Q ∈ Q and
Q controls PSBN(Ic) towards phenotype P .

Intuitively, the result of PSBN phenotype control are all combinations of
colours and perturbations for which the perturbation necessarily stabilizes the
associated network interpretation in the given phenotype. The set Q is in practice
used to restrict the problem setting to perturbations of a certain size or to
otherwise biologically feasible perturbations.

Perturbation size and robustness In practice, it is often unnecessary to compute
the complete set of colour-perturbation pairs. The goal is instead to find the
smallest functioning perturbation [39,37]. However, in partially specified net-
works, such minimal perturbation typically only works for a small subset of
interpretations, making it potentially unreliable in practice. To address this, we
consider robust phenotype control:
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Definition 10. The robustness ρ of a perturbation Q ∈ Bn
∗ is defined as:

ρ(Q) =
|{c ∈ Bm | Q controls PSBN(Ic)}|

|Bm|

Given a robustness threshold r ∈ (0, 1], the goal of robust phenotype control is
to compute the smallest perturbation (or perturbations) Q s.t. ρ(Q) ≥ r.

Ideally, a suitable perturbation Q with ρ(Q) = 1 achieves control for all
interpretations of PSBN. However, if no such perturbation exists, the parameter
r can be tuned to achieve a trade off between perturbation size and robustness.

3 Methods

Partially specified Boolean networks suffer from both state and parameter space
explosion, which in practice makes them hard to analyse exhaustively. In the
context of control, this problem is further complicated by perturbation space
explosion. To mitigate this, we employ symbolic state space exploration which
allows us to analyse the full set of possible perturbed STGs within a single
algorithm pass. This technique exploits similarities between the STGs of var-
ious network interpretations (and perturbations) to significantly speed up the
exploration process compared to the naive enumeration [6,11].

3.1 Symbolic computation model

A binary decision diagram (BDD) [13] is a directed acyclic graph which repre-
sents a Boolean function. A BDD-encoded function f : Bk → B can be used to en-
code a set (or relation) of Boolean vectors X ⊆ Bk, such that f(x) = 1 ⇔ x ∈ X.
Since both network states (Bn) and interpretations (Bm after normalisation) cor-
respond to Boolean vectors, such sets have a direct BDD representation.

For sets of perturbations, a naive approach requires two Boolean variables
per component, since their domain is B∗ instead of B. However, in [12], we intro-
duce an alternative encoding suitable for representing perturbed state-transition
systems that only requires one variable. This significantly improves the efficiency
of the encoding, since fewer symbolic variables typically result in smaller BDDs.

Perturbed STG encoding Observe that in the context of a state x ∈ Bn which is
compliant with a perturbation Q, it is sufficient to know the set fixed(Q) to fully
reconstruct Q: we have Qi = xi for every i ∈ fixed(Q) and Qi = ∗ otherwise.

Consequently, a relation over states x, interpretations Ic and perturbations Q
where all states are compliant with their respective perturbations can be encoded
as a relation over Bn ×Bm ×Bn. Here, the last component encodes the possible
sets fixed(Q). Since each perturbed STG[Q](BN) only admits states compliant
with Q, such representation is suitable for collectively encoding dynamics of such
perturbed STGs for different perturbations.
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To avoid confusion, we write V ≡ Bn to mean the set of network states,
C ≡ Bm to mean the set of network interpretations (colours), and L ≡ Bn to
mean the set of sets of perturbed variables fixed(Q), collectively S = V ×C ×L.
For (x, l) ∈ V × L, we also write that Q ≡ (x, l) when Qi = xi for all li = 1 and
Qi = ∗ when li = 0 (i.e. Q can be reconstructed based on the state x and the
set of perturbed variables l).

When the goal is to symbolically represent a subset of perturbations Q ⊆ Bn
∗ ,

we do this through a relation SQ ⊆ V × L where SQ contains exactly all states
compliant with every Q ∈ S. Finally, in some cases, we may need to directly
reference the Boolean BDD variables used in our encoding. We then use the
notation Vi, Ci, resp. Li to denote the i-th BDD variable that encodes the state,
colour or perturbation component of S.

Symbolic operations Set operations (∩,∪, \, etc.) on symbolic sets (or relations)
are implemented through Boolean logical operators (∧,∨,¬, etc.) as is customary
for BDDs. Furthermore, the following standard BDD operations are used:

ProjectX (X ⊆ Bk) = {x ∈ Bk | ∃b ∈ B. x[X 7→ b] ∈ X}
SelectX=b(X ⊆ Bk) = {x ∈ Bk | x ∈ X ∧ x[X ] = b}

RestrictX=b(X ⊆ Bk) = ProjectX (SelectX=b(X))

Here, X denotes a variable of the BDD encoding (e.g. V3). We can also use
a list of conditions in the subscript of the method as a shorthand for multiple
nested calls to the same method. Intuitively, Project is equivalent to existential
quantification, Select is implemented through conjunction, and Restrict is a
combination of both. To explore the perturbed STGs, we use:

Pre(X ⊆ S) = { (s, c, l) | ∃(t, c, l) ∈ X. s →c,Q t for Q ≡ (s, l) }
Post(X ⊆ S) = { (t, c, l) | ∃(s, c, l) ∈ X. s →c,Q t for Q ≡ (s, l) }

Here, s →c,Q t denotes that s → t within the graph STG[Q](PSBN(Ic)). Intu-
itively, Pre and Post compute the sets of predecessors and successors of the
states in X within PSBN under their respective interpretations Ic and pertur-
bations Q. The implementation details of these operations can be found in [12].

We then rely on a method Trap(X ⊆ S) which computes the maximal
trap set within the given set X. Naively, this method can be implemented as the
greatest fixed point of Trap(X) = X∩Trap(X \Pre(Post(X))). However, we
use a more efficient implementation based on the technique called saturation [8].

Finally, we use VALn
k to denote a BDD which encodes a function of n inputs

that is true iff exactly k inputs are true. To construct such BDD efficiently, we
observe that VALn

0 =
∧

i∈[1,n] ¬xi, and that VALn
k =

∨
i∈[1,n](VAL

n
k−1 ∨ xi).

3.2 Control algorithm

Our control approach is based on Algorithm 1 where we describe:
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– CompletePhenotypeControl: Core algorithm that iteratively computes
the complete control map for an admissible set Q.

– RobustPhenotypeControl: A wrapper for the core algorithm that facil-
itates minimal control under the desired robustness.

– Enumerate: An auxiliary method to enumerate all working perturbations
and find the maximum robustness.

Algorithm 1: Symbolic permanent phenotype control of PSBNs.
Fn CompletePhenotypeControl(P ⊆ V,Q ⊆ V × L (encodes Bn

∗ ))
universe← { (x, c, l) ∈ S | (x, l) ∈ Q };
phenotype← universe ∩ (P × C × L);
phenotype_trap← Trap(phenotype);
non_phenotype← universe \ phenotype_trap;
cannot_control← Trap(non_phenotype);
for i ∈ [1, n] do

not_perturbed← ProjectVi(SelectLi=0(cannot_control));
cannot_control← not_perturbed ∪ SelectLi=1(cannot_control);

control_map← universe \ cannot_control;
return control_map;

Fn RobustPhenotypeControl(r, P ⊆ V,Q ⊆ V × L)
for k ∈ [0, n] do
Qk ← Q∩ (V × VALn

k );
control_map← CompletePhenotypeControl(P,Qk);
ρbest ← Enumerate(1, control_map);
if ρbest ≥ r then return;

Fn Enumerate(i ∈ N, control_map ⊆ S (encodes Bm × Bn
∗ ))

if control_map = ∅ then return 0;
if i > n then return |{c∈C|∃(x,c,l)∈S.(x,c,l)∈control_map}|

|C| ;
not_controlled← RestrictLi=0(control_map);
controlled_true← RestrictLi=1,Vi=1(control_map);
controlled_false← RestrictLi=1,Vi=0(control_map);
best← Enumerate(i+ 1, not_controlled);
best← max (best,Enumerate(i+ 1, controlled_true));
best← max (best,Enumerate(i+ 1, controlled_false));
return best;

Complete control The main idea behind Algorithm 1 is the following: A pertur-
bation achieves phenotype control if and only if all attractors in the perturbed
STG are within the phenotype subset P . Consequently, we want to discard any
perturbation that provably retains some attractor not contained in P .

Therefore, we compute a non-phenotype trap set that is guaranteed to contain
all non-phenotype attractor states in it. First, we compute a similar trap subset
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of the phenotype P which is guaranteed to contain all phenotype attractors.
Then, we invert this set and repeat the operation to obtain a trap which is a
superset of all non-phenotype attractors. Note that simply computing the largest
trap set within V\P would only cover attractors that are completely within V\P .
The above-described process is necessary to also cover attractors that intersect
P but are not subsets of P .

The algorithm then iterates over all network variables and performs projec-
tion in cases where the variable is not perturbed. Initially, the cannot_control
set contains at least one state of the perturbed STG of each Q ∈ Q that admits
a non-phenotype attractor. After this operation, cannot_control contains all
states of such perturbed STG. In other words: the resulting set can depend on
variable Vi only if Li = 1 (i.e. the variable is perturbed). In such cases, the role
of Vi is to encode the actual perturbed value of the i-th network variable.

Finally, we invert the cannot_control set to only retain perturbations where
no non-phenotype attractor state exists.

Robust control To extend this algorithm to robust control, we test the perturba-
tions of increasing size (using the VALn

k BDD) and use a recursive Enumerate
method to find perturbations with maximal robustness. Notice that the necessity
of this step makes our algorithm semi-symbolic.

Instead of iterating through all possible control strategies of size k, procedure
Enumerate recursively branches into three cases for each variable i: i is not
perturbed, i is perturbed to true, and i is perturbed to false. Note that each
call completely eliminates both Li and Vi from control_map (for the case of
Li = 0, Vi was already eliminated by the core algorithm). As such, once i > n,
the resulting control_map only depends on variables Ci and we can use it to
compute the robustness.

Note that for simplicity, we do not store the actual perturbations with max-
imal robustness explicitly in the algorithm. However, these can be easily recon-
structed from the recursion path in the Enumerate algorithm. Furthermore,
note that the recursion in the Enumerate algorithm can be replaced using
projected iteration, where we first project the control_map to the admissible
l ∈ L, and then project only to the state variables perturbed within each such
l. This approach can be faster as it uses fewer symbolic steps. However, it is
also highly specific to each BDD library. As such, we chose to present the more
widely applicable algorithm.

4 Evaluation

In this section, we evaluate our proposed semi-symbolic method. For the imple-
mentation, we use the Rust language and libraries of the AEON tool [7]. This
prototype implementation is available as an open-source GitHub repository3.
The repository also includes auxiliary scripts we used for the measurements and

3 https://github.com/sybila/biodivine-pbn-control/

https://github.com/sybila/biodivine-pbn-control/
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Table 1: Comprehensive overview of the tested real-world Boolean networks. The
first four columns contain the model name and the counts of network inputs, all
variables, and perturbable variables, respectively. Column Q≤3 represents the
number of all admissible perturbations of size up to three. Sixth column gives a
reference to the literature that describes each model. Lastly, the seventh column
contains variables that we do not allow to be perturbed.

Model Ins Vars Per. Q≤3 Ref. Uncontrollable vars
Cardiac 2 13 11 6,252 [23] Tbx1, Tbx5
Red. MAPK 4 14 11 25,008 [22] Apoptosis, Growth_Arrest,

Proliferation
ERBB 1 19 18 14,354 [24] pRB1
Tumour 2 30 24 69,380 [19] Apoptosis, Metastasis,

Invasion, Migration,
EMT, CellCycleArrest

Cell Fate 2 31 26 88,612 [14] Apoptosis, Survival,
Death, Division, NonACD

Full MAPK 2 49 46 2,010,768 [22] Apoptosis, Growth_Arrest,
Proliferation

the raw results. All experiments were performed using a computer with AMD
Ryzen Threadripper 2990WX 32-Core Processor and 64GB of memory.

4.1 Performance

Benchmark model set We use real-world Boolean networks to evaluate our
method. All tested networks contain input nodes which can be viewed as func-
tionally equivalent to zero-arity uninterpreted functions in PSBNs. We thus treat
these inputs as unknown external signal beyond our control.

Table 1 lists all models and their relevant characteristics, including number
of inputs, variables, perturbable variables, and reference to the original publica-
tion. We also state the number of admissible perturbations of size up to three.
Previous work shows that such relatively small size is both realistic to implement
in practice [10,18,38] and robust enough in the presence of partially unknown
dynamics [12]. This number therefore represents how many models would need
to be explored in a brute-force based methods for the models of the given size.
The table also lists variables which we explicitly do not allow to be perturbed.
These variables are mostly outputs and they represent traits which induce in-
dividual phenotypes. Therefore, perturbing these variables would lead to trivial
control which is neither viable nor interesting.

The first model illustrates cardiac progenitor cells differentiation into the first
heart field (FHF) or second heart field (SHF) [23]. The second and sixth mod-
els represent Mitogen-Activated Protein Kinase (MAPK) network representing
signalling pathways involved in diverse cellular processes including cancer dereg-
ulations. We use both the full and reduced versions of this model as stated
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Table 2: Performance of PSBN control. The first two columns contain model and
phenotype names. Then, for perturbations of the size up to three, we list the
computation time and maximal robustness found in perturbations of this size.
Last column gives the number of minimal perturbations with ρ = 1.0.

Model Phenotype Size 1 Size 2 Size 3 # Min. per.
Time ρ Time ρ Time ρ (ρ = 1.0)

Cardiac
FHF <1s 0.5 <1s 1.0 <1s 1.0 4
SHF <1s 0.5 <1s 1.0 <1s 1.0 2
No mesoderm <1s 0.5 <1s 1.0 <1s 1.0 3

Red. MAPK

Apoptosis <1s 1.0 <1s 1.0 <1s 1.0 1
Growth arrest <1s 0.75 <1s 1.0 <1s 1.0 1
No decision <1s 1.0 <1s 1.0 <1s 1.0 1
Proliferation <1s 0.25 <1s 1.0 <1s 1.0 3

ERBB Phosphor. <1s 1.0 <1s 1.0 <1s 1.0 7
Non-phospor. <1s 1.0 <1s 1.0 <1s 1.0 8

Tumour

Apoptosis 2s 1.0 8s 1.0 23s 1.0 2
EMT <1s 0.5 3s 1.0 11s 1.0 15
Hybrid <1s 0.25 5s 1.0 24s 1.0 3
Metastasis <1s 0.5 <1s 1.0 1s 1.0 6

Cell Fate

Apoptosis <1s 0 4s 1.0 58s 1.0 24
Naive <1s 0 2s 1.0 29s 1.0 8
Necrosis <1s 1.0 <1s 1.0 11s 1.0 1
Survival <1s 1.0 2s 1.0 21s 1.0 1

Full MAPK

Apoptosis <1s 1.0 7s 1.0 14min 1.0 6
Growth arrest 4s 0.75 4s 1.0 22min 1.0 47
No decision 3s 0.81 107s 1.0 22min 1.0 45
Proliferation 3s 0.25 3s 1.0 20min 1.0 8

in [22]. The third model depicts the key event preceding breast cancer cells pro-
liferation which is the hyper-phosphorylation and subsequent lack of pRB. This
process is regulated by ERBB kinase, the lack of which is considered a breast
cancer marker [35]. The fourth model focuses on specific conditions which lead
to a metastatic tumour [19]. Finally, the cell fate model provides a high-level
understanding of the interplays between pro-survival, necrosis, and apoptosis
pathways in response to death receptor-mediated signals [14].

Performance evaluation on real-world models In Table 2, we show results of
computing phenotype control on all our benchmark models from Table 1. We use
real-world phenotypes as described in the source literature. These are typically
subspaces obtained by fixing network outputs to the desired values. The details
of exact phenotypes can be found in the git repository.

For each model and its phenotype, we computed all working perturbations of
size up to three. We then show the times needed for individual computations (in-
cluding enumeration and robustness calculation), the highest robustness achieved
for each case, and the number of minimal perturbations with 100% robustness.
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Table 3: Minimal perturbations for reduced MAPK model. The first column is
target phenotype while other columns contain minimal perturbations for unper-
turbed model, model with over-expressed EGFR, and model with FGFR3 gain-of-
function. Variables divided by / stand for perturbing either of them. ∅ is used
when no perturbation is necessary.

Phenot. Unperturbed Perturbed EGFR=1 Perturbed FGFR3=1
Apoptosis DNA_dmg=1, TGFBR_st=1,

FRS2=1
DNA_dmg=1, TGFBR_st=1,
ERK=0, p53=1

DNA_dmg=1, TGFBR_st=1,
ERK=0, p53=1

¬Apoptosis ∅ AKT=1, ERK=1, MSK=0,
PTEN=0, p14=0, p53=0

AKT=1, ERK=1, MSK=0,
PTEN=0, p14=0, p53=0

Prolif. ERK=1 p14=0, p53=0 {p14/p53=0, FRS2=1},
{p14/p53=0, PI3K=1},
{p14/p53=0, EGFR=1}

¬Prolif. ∅ DNA_dmg=1, TGFBR_st=1,
AKT=0, ERK=0, MSK=0,
PI3K=0, PTEN=1, p53=1

DNA_dmg=1, TGFBR_st=1,
AKT=0, ERK=0, MSK=0,
PI3K=0, PTEN=1, p53=1

No decis. ∅ MSK=0 MSK=0
¬No decis. DNA_dmg=1, TGFBR_st=1

EGFR=1, ERK=1, FRS2=1,
p53=1

∅ DNA_dmg=1, TGFBR_st=1
ERK=1, FRS2=1, p53=1,
PI3K=1

The performance of our method is almost instant for small-sized models
which is very convenient for practical use. As for the bigger models, the method
also performs sufficiently, nonetheless, due to complex unpredictable nature of
PSBN dynamics, its performance may vary significantly from case to case. For
example, even though Cell Fate model has only one more perturbable variable
than the Tumour model, we can notice that perturbations of size three take on
average twice longer to compute. The differences in PSBN dynamics can also
have big impact within the same model for different phenotypes. Even though
the phenotypes within the same model are all of the same size, we can notice
that in any of the bigger models and perturbations of size three, the control
takes much longer to compute. There are many factors which can contribute
to these big performance differences such as fixed-point nature of the trap set
algorithm (which might require numerous iterations in case of long paths with
few neighbors) or heuristic BDD representation.

4.2 MAPK case study

Now we demonstrate how phenotype control can be used to replicate observa-
tions conducted in [22] and even strengthen these results with a more robust
assessment of the model. In [22], various perturbations of a reduced MAPK
model are simulated and their effect on phenotypes is observed. Specifically,
networks with all inputs set to false and with EGFR or FGFR3 over-expressed
(gain-of-function) are exposed to a set of further perturbations. The model
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Table 4: Full MAPK model with uninterpreted functions controlled to the apop-
tosis phenotype. Each of the three sections covers a different set of uninterpreted
functions (increasing in size). For each case, we state: maximal robustness, count
of perturbations having such robustness (- for no perturbation) and the compu-
tation time. N/A denotes a 24h timeout.

Uninter.
functions EGFR, FGFR3, p53, p14 EGFR, FGFR3, p53, p14,

PTEN
EGFR, FGFR3, p53, p14,
PTEN, PI3K, AKT

Colours 806,400 2,419,200 1,161,216,000
Metrics ρ # Time ρ # Time ρ # Time
∅ 0.58 - 4s 0.39 - 5s 0.24 - 22s
Size 1 0.87 1 74s 0.58 4 2min 0.59 1 37min
Size 2 1.0 17 27min 0.87 4 38min 0.87 1 20.2hrs
Size 3 1.0 1165 5.6hrs 1.0 68 8.2hrs N/A N/A N/A

has three outputs (Apoptosis, Growth_arrest, Proliferation) and three at-
tractors are observed: apoptosis (Apoptosis=Growth_arrest=1), proliferation
(Proliferation=1) and no decision (all outputs set to false).

We first compute phenotype control on the fully specified but reduced model.
We list discovered minimal perturbations for network variants of interest in Ta-
ble 3. Here, the perturbations which were also discovered in [22] are shown as
green. In the enumeration, where appropriate, we only considered perturbations
with over-expressed EGFR or FGFR3, as in the original paper. We also list the
minimal perturbations working for the unperturbed network. This way we can
compare such perturbations with the EGFR and FGFR3 over-expressed variants.
We can see that with our method we were able to not only replicate all solutions
from [22], but also conveniently obtain more perturbation options, including the
truly minimal controls (if we consider over-expressions of EGFR or FGFR3 as per-
turbations, the further perturbations to these networks lead to a non-minimal
perturbations in most of the cases).

The interest of the original MAPK study [22] is also to observe the impact
on phenotypes caused by various gain- or loss-of-function mutations. Here, au-
thors replace such functions with constants to simulate these effects. Nonetheless,
such an approach could be too restrictive: a mutation could alter the function in
unpredictable ways instead of knocking-out (resp. over-expressing) the variable
permanently. To model such mutations, we employ the uninterpreted functions
of the PSBN framework. This application is demonstrated in Table 4. Here, we
selected apoptosis phenotype as the phenotype of interest (the “healthy” pheno-
type preserving non-cancerous cell behaviour). We then replace the dynamics of
variables studied in [22] with uninterpreted functions in the full MAPK model.

Our method performs well in spite of the significant amount of colours in-
troduced by the model uncertainty. Moreover, we see that perturbations with
relatively small size are still capable of successful control. The obtained obser-
vations can be for example used to refute hypotheses about model’s update
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functions. If a candidate perturbation is shown as non-viable, this indicates that
the colours where such perturbation works do not represent the true dynamics of
the system. This can guide further refinements of the partially specified model.

5 Conclusion

In this work, we presented a novel problem of phenotype control for partially
specified Boolean networks. We proposed a semi-symbolic method using perma-
nent variable perturbations to solve this problem. Our approach offers a practical
and flexible solution for stabilizing a network at specific collection of traits, re-
gardless of its initial state. We have also demonstrated the applicability of our
method to real-world networks. In future work, we would like to further optimize
our method, investigate other types of perturbations for phenotype control and
further explore applicability of these methods.
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