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r é s u m é

On étudie l’évolution temporelle d’un système de N fermions sans spin dans R3

qui interagissent via un potentiel à deux particules, par exemple, le potentiel 
de Coulomb. On compare la solution de l’équation de Schrödinger avec son 
approximation donnée par la méthode de Hartree–Fock dépendant du temps, et 
on estime la précision de cette approximation en fonction de l’énergie cinétique du 
système. De ceci découle une borne de l’erreur en fonction de l’énergie totale du 
système.
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1. Introduction

The model. In quantum mechanics, the state of a system of N identical particles is described by a wave 
function Ψt which evolves in time t ∈ R according to Schrödinger’s equation,{

i∂tΨt = HΨt ,

Ψt=0 = Ψ0 .
(1)

Given the (Bose–Einstein or Fermi–Dirac) particle statistics and the one-particle Hilbert space h, the wave 
function Ψt is a normalized vector in H(N)

b := S(N)[h⊗N ], for a system of N bosons, or in H(N)
f := A(N)[h⊗N ], 

for a system of N fermions. Here S(N) and A(N) are the orthogonal projections onto the totally symmetric 
and the totally antisymmetric subspace, respectively, of the N -fold tensor product h⊗N of the one-particle 
Hilbert space h. The dynamics (1) is generated by the Hamilton operator H which is self-adjointly realized 
on a suitable dense domain in H(N)

b or H(N)
f , respectively.

In the present article we study a system of N spinless fermions in R3, so Ψt ∈ H
(N)
f , and h = L2[R3] is 

the space of square-integrable functions on R3. The Hamiltonian is given by

H = ν +
N∑
j=1

h
(1)
j + λ

∑
1≤j<k≤N

v(xj − xk) , (2)

where

• the number ν ∈ R is a constant contribution to the total energy. For example, if we describe a molecule 
in the Born–Oppenheimer approximation, then ν would account for the nuclear–nuclear repulsion,

• the coupling constant λ > 0 is a small parameter and possibly depends on the particle number N ≥ 1
(while our interest ultimately lies in the description of systems with N � 1, the estimates in this article 
hold for any N ≥ 1),

• the self-adjoint operator h(1) on h is of the form −aΔ + w(x), where a > 0 and the external potential 
w is an infinitesimal perturbation of the Laplacian,

• and v(x) := ±|x|−1 is the Coulomb potential, for x ∈ R3 \ {0}; v(x) = +|x|−1 is the repulsive case, 
v(x) = −|x|−1 the attractive case.

The Hamiltonian specified in (2) describes several situations of interest, e.g.:

• Atom. For an atom in the (0th) Born–Oppenheimer approximation with a nucleus of charge Z at the 
origin, we have repulsive interaction and

ν = 0 , h(1) = −Δ
2 − α

Z

|x| , λ = α , (3)

where α > 0 is the fine structure constant whose physical value is α � 1/137. Note that our system of 
units is chosen such that the reduced Planck constant �, the electron mass m and the speed of light c
are equal to one, and the charge of the electron is −e = −√

α. For more details about this choice of 
units see [45, p. 21].

• Molecule. More generally, we can consider a molecule with M ∈ N nuclei of charges Z1, . . . , ZM > 0 at 
fixed, distinct positions R1, . . . , RM ∈ R3 in the Born–Oppenheimer approximation. In this case we have

ν =
∑

1≤m<l≤M

αZmZl

|Rm −Rl|
, h(1) = −Δ

2 −
M∑

m=1

αZm

|x−Rm| , λ = α . (4)
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• Particles in a trap. For electrons in an external confining potential (realized, e.g., by a laser trap), we 
have repulsive interaction and

ν = 0 , h(1) = −Δ
2 + w(x) , λ = α . (5)

• Fermion star. The Hamiltonian also describes systems of gravitating fermions, e.g., neutrons. In this 
case the interaction is attractive and

ν = 0 , h(1) = −Δ
2 , λ = G , (6)

where G is Newton’s gravitational constant (and recall that we set the mass m = 1). A better description 
of a fermion star is achieved by replacing the non-relativistic Laplacian by the semi-relativistic operator √
−Δ + 1.

For these situations the Hartree–Fock description that we are aiming at in this article and that we describe 
below can only be expected to hold for very short times (short relative to the large particle number N). 
For times of order 1, we have to choose the coupling constant small in N to see Hartree–Fock behavior 
(“mean-field scaling”). There are several possibilities to do that

• Mean-field scaling for large volume. Let us first note that for systems with large volume proportional 
to N , the kinetic energy is naturally also of order N . For such a system, the choice

ν = 0, h(1) = −Δ
2 + w(x) , λ = 1

N2/3 (7)

leads to an interaction energy which is of the same order in N as the kinetic energy (see [50] for a more 
detailed discussion).

• Mean-field scaling for fixed volume. For systems with volume independent of N , the mean-field limit is 
naturally coupled to a semi-classical limit. Note that here the kinetic energy is of order N5/3. Then the 
choice

ν = 0, h(1) = − Δ
2N1/3 + w(x) , λ = 1

N2/3 (8)

leads to an interaction energy of the same order as the kinetic energy and nontrivial mean-field behavior 
(see in particular [22,16] for more details).

• λ = N−1 scaling. Very often, the term “mean-field scaling” is identified with the choice λ = N−1. 
However, comparing with (7) and (8), in the two situations considered above, we see that this scaling 
leads to a subleading interaction.

Theory of the time-dependent Hartree–Fock equation. Although (1) admits the explicit solution Ψt =
e−itHΨ0, this explicit form is not useful in practice (from the point of view of numerics, for example) 
because of the large number N � 1 of variables, and it therefore becomes necessary to consider approxima-
tions to this equation. One such approximation consists of restricting the wave function Ψt to a special class 
of wave functions. For fermion systems, the Hartree–Fock approximation is a natural choice: it restricts Ψt

to the class of Slater determinants, i.e., to those Φ ∈ H
(N)
f which assume a determinantal form,

Φ(x1, . . . , xN ) = 1√
N !

det

⎛⎜⎝ ϕ1(x1) · · · ϕ1(xN )
...

. . .
...

⎞⎟⎠ , (9)

ϕN (x1) · · · ϕN (xN )
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where the orbitals ϕ1, . . . , ϕN ∈ h are orthonormal. We express (9) more concisely as Φ = ϕ1 ∧ · · · ∧ ϕN . 
In time-independent Hartree–Fock theory, one is interested in determining the minimal energy expectation 
when varying solely over Slater determinants [7,11,10,43,9], i.e., one is interested in finding

inf
{
〈Φ, HΦ〉

∣∣Φ = ϕ1 ∧ · · · ∧ ϕN , 〈ϕi, ϕj〉 = δij
}
.

One can also study the evolution governed by (1) using Slater determinants, which gives rise to
time-dependent Hartree–Fock theory. Here the basic intuition is that, for a system containing a large number 
of particles, the solution will stay close to a Slater determinant (at least for short times), provided the ini-
tial state is close to a Slater determinant. Turning this intuition into mathematics requires the specification 
of the equation of motion of the approximating Slater determinant, as well as a mathematically rigorous 
notion of being “close”. For the derivation of the former, one assumes that the solution to (1) is of the form 
Φt = ϕt,1 ∧ · · · ∧ ϕt,N , as in (9). It is then easy to verify that the orbitals ϕt,1, . . . , ϕt,N necessarily satisfy 
the time-dependent Hartree–Fock (TDHF) equation, that is the system of N non-linear equations given by

i
dϕt,j

dt
= h(1)ϕt,j + λ

N∑
k=1

(
[v ∗ |ϕt,k|2]ϕt,j − [v ∗ (ϕt,jϕ̄t,k)]ϕt,k

)
(10)

for j = 1, . . . , N (ϕ̄ is the complex conjugate of ϕ).
The TDHF equation (10) can be rewritten in terms of the one-particle density matrix

pt =
∑N

j=1 |ϕt,j〉〈ϕt,j | with ϕt,j ∈ h and 〈ϕt,j , ϕt,k〉 = δjk as

(TDHF) i∂tpt = [h(1), pt] + λTr2[v(2), (pt ⊗ pt)(1 − X)] . (11)

Here X is the linear operator on h ⊗ h such that X(ϕ ⊗ ψ) = ψ ⊗ ϕ and Tr2 is the partial trace (see (23)). 
Sometimes, we write p(2)

t = (pt ⊗ pt)(1 − X). In the sequel, when speaking of the TDHF equation, we refer 
to (11). The term involving 1 is called the direct term, the term involving X the exchange term.

Note that the TDHF equation (11) can be written as i∂tpt = [h(1)
HF(pt), pt], where the effective

HF-Hamiltonian h(1)
HF(γ) is given by

h
(1)
HF(γ) := h(1) + λTr2[v(2)(1h⊗h − X)(1h ⊗ γ)] . (12)

Implicitly assuming the existence and regularity of pt, the HF-Hamiltonian h(1)
HF(pt) is self-adjoint with the 

same domain as h(1), and hence the solution to ∂tUHF,t = −ih
(1)
HF(pt)UHF,t, with UHF,0 = 1, is unitary. 

This has the important consequence that (11) preserves the property of the one-particle density matrix pt
of being a rank-N orthonormal projection. In other words, if Φt ∈ H

(N)
f evolves according to the TDHF 

equation and Φ0 = ϕ1 ∧ · · · ∧ ϕN is a Slater determinant, then so is Φt, for all t ∈ R.
The TDHF equation for density matrices as in (11) has been studied in [17] for a bounded two-body 

interaction. Then the mild solutions of the TDHF equation in the form (10) have been handled for a Coulomb 
two-body potential in [21] for initial data in the Sobolev space H1. This result has been extended to the 
TDHF equation in the form (11) in [18,20]. Note that [18] also handles the case of a more general class of 
two-body potentials and the existence of a classical solution for initial data in a space similar to the Sobolev 
H2 space for density matrices. In [63] the existence of mild solutions of the TDHF in the form (10) was proved 
for a Coulomb two-body potential with an (infinite sequence of) initial data in L2. For the convenience of 
the reader we state the precise results we use about the theory of the TDHF equation in Appendix A. In [5]
the existence and uniqueness of strong solutions to the von Neumann–Poisson equation, another nonlinear 
self-consistent time-evolution equation on density matrices, are proved with the use of a generalization of 
the Lieb–Thirring inequality. Another direction in which to generalize the Hartree equations is to consider, 
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instead of an exchange term, a dissipative term in the Hartree equation; the existence and uniqueness of a 
solution for such an equation have been proved in [6].

One-particle density matrix. The notion of proximity of two states we use in this article is defined by 
expectation values of k-particle observables, where 1 ≤ k 
 N . More specifically, if Ψt ∈ H

(N)
f is the 

(normalized) solution to (1) and ΦHF,t = ϕt,1 ∧ · · · ∧ ϕt,N , where ϕt,1, . . . , ϕt,N are the solutions to (10), 
then, for any k-particle operator A(k) (i.e., for any bounded operator A(k) on h∧k := A[h⊗k]), we wish to 
control the quantity

δ
(k)
t

(
A(k)) := 1

‖A(k)‖∞
∣∣〈Ψt, (A(k) ⊗ 1N−k)Ψt〉 − 〈ΦHF,t, (A(k) ⊗ 1N−k)ΦHF,t〉

∣∣ .
Here 1N−k denotes the identity operator on h⊗(N−k) and ‖ · ‖∞ denotes the operator norm on B[h∧k].

It is more convenient to reformulate this approach in terms of reduced density matrices. We recall that, 
given Ψ ∈ H

(N)
f , the corresponding reduced k-particle density matrix is the trace-class operator γ(k)

Ψ on H(k)
f

whose kernel is given by

γ
(k)
Ψ (x1, . . . , xk; y1, . . . yk)

= N !
(N − k)!

∫
Ψ(x1, . . . xk, xk+1, . . . xN ) Ψ(y1, . . . yk, xk+1, . . . xN ) d3xk+1 · · · d3xN . (13)

Note that we normalize the reduced density matrices so that Tr γ(k)
Ψ = N !

(N−k)! . We may then rewrite 

δ
(k)
t (A(k)) as

δ
(k)
t

(
A(k)) = 1

‖A(k)‖B(H(k)
f )

∣∣∣Tr
[
(γ(k)

Ψt
− γ

(k)
ΦHF,t

)A(k)]∣∣∣
and observe that

sup
A(k)∈B(H(k)

f )
δ
(k)
t

(
A(k)) = ∥∥γ(k)

Ψt
− γ

(k)
ΦHF,t

∥∥
L1 ,

where ‖ · ‖L1 denotes the trace norm. We are thus interested in bounds on ‖γ(k)
Ψt

− γ
(k)
ΦHF,t

‖L1 . In the present 
article we restrict ourselves to the case k = 1.

Derivation of the TDHF equation. The derivation of the TDHF equation may be seen as part of the quest for 
a derivation of macroscopic, or mesoscopic, dynamics from the microscopic classical or quantum-mechanical 
dynamics of many-particle systems as an effective theory. Let us first discuss some generally interesting 
examples and then come to the case of the TDHF equation for fermions.

In the case of the dynamics of N identical quantum-mechanical particles, the time-dependent Hartree 
equation, that is the TDHF equation (10) without the exchange term, was first derived rigorously in [60] for 
a system of N distinguishable particles in the mean-field limit. For systems of indistinguishable particles, 
the case of bosons has received considerable attention compared to the case of fermions, and several methods 
have been developed. The so-called Hepp method has been developed in [41,35,36] in order to study the 
classical limit of quantum mechanics. It inspired, among others, [34], where the convergence to the Hartree 
equation is proved, [57], where the rate of convergence toward mean-field dynamics is studied, and [2,3], 
where the propagation of Wigner measures in the mean-field limit is studied, with special attention to the 
relationships with microlocal and semi-classical analysis. In this direction, with a stochastic microscopic 
model, the linear Boltzmann equation was obtained as a weak-coupling limit in [19] yielding an example for 
a derivation of an equation with non-local terms using methods of pseudodifferential calculus. The derivation 
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of the linear Boltzmann equation in the earlier work [30], along with the series of works following it, used 
a different method based on series expansions in terms of graphs similar to Feynman diagrams. The result 
is valid on longer time-scales than in [19], but with more restrictive initial data. Other limit dynamics have 
been obtained, a particularly interesting one is the weak-coupling limit for interacting fermions for which 
a (non-rigorous) derivation of the nonlinear Boltzmann equation has been given in [25]. Series expansion 
methods and the Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy have also proved fruitful 
in other works, e.g., [60,14,23,1,27,4,29,28]. In [29,28] the Gross–Pitaevskii equation, which describes the 
dynamics of a Bose–Einstein condensate has been derived. Also for the Gross–Pitaevskii equation the 
formation of correlations has been studied in [24], providing information on the structure of solutions to 
the Gross–Pitaevskii equation. The techniques developed in [48] to study the weakly nonlinear Schrödinger 
equation are used in [47] to derive quantum kinetic equations; those techniques resemble the BBGKY 
hierarchy methods, but they do not impose the normal ordered product of operators when considering 
expectation with respect to the initial state. The bounds on the rate of convergence in the mean-field limit 
given in [34] have been sharpened in [26] using a method inspired by Lieb–Robinson inequalities. Another 
method introduced in [33] shows that the classical time evolution of observables commutes with the Wick 
quantization up to an error term which vanishes in the mean-field limit, yielding an Egorov-type theorem. 
Recently a new method based on a Grönwall lemma for a well-chosen quantity has been introduced [52,42]
in the bosonic case, which considerably simplifies the convergence proof for the Hartree equation.

In the fermionic case, the TDHF equation has been derived in [12] in the λ = N−1 scaling for initial data 
close to Slater determinants, and with bounded two-body potentials. The same authors give bounds on the 
accuracy of the TDHF approximation for uncorrelated initial states in [13], still with a bounded two-body 
potential. For the same scaling, the TDHF equation has been derived in [32] for the Coulomb potential 
for sequences of initial states given by Slater determinants. The semi-classical mean-field scaling from (8)
has first been considered in [49] where it is shown that for suitably regular interactions the Schrödinger 
dynamics is close to the classical Vlasov dynamics. The results have been improved in [61]. In [22], in the 
semi-classical mean-field scaling, the closeness of the Schrödinger dynamics to the Hartree–Fock dynamics 
was discussed and bounds for the Husimi function were given, assuming the potential to be real-analytic and 
thus in particular bounded. Up to that point all the method used to derive the TDHF equation had always 
been based on BBGKY hierarchies. In [16,15] estimates of ‖γN,t−pN,t‖L1 were given in terms of the number 
N of electrons and the time t, in the semi-classical mean-field scaling. Their method is based on the Grön-
wall lemma, similarly to [57,52] in the bosonic case. The second article deals with the semi-relativistic case.
The authors pointed out that with a bounded potential, in this scaling, the exchange term in the time-
dependent Hartree–Fock equation does not play a role so that the time-dependent Hartree–Fock equation 
reduces to the time-dependent Hartree equation. In [50], the fermionic Hartree equation in the large volume 
case is considered by generalizing the method of [52]. Interactions of the form |x|−s are considered, with 
the corresponding λ = N−1+s/3. Under the condition that the Hartree–Fock kinetic energy per particle is 
bounded uniformly in time, a derivation of the TDHF equation is given for 0 < s < 3/5, and for Coulomb 
interaction with either a mild singularity cutoff on a ball with radius N−1/6+ε, for any ε > 0, or for the 
full Coulomb interaction under certain Sobolev conditions on the solution to the TDHF equation which are 
not proven in this work. Explicit bounds in terms of N , the Hartree–Fock kinetic energy and t are given. 
Furthermore, in [50], the main result of [16] is reproduced with a different method than in [16] and written 
down for weaker conditions on the closeness of the initial state to a Slater determinant.

Main estimate of this article (see Theorem 2.1). Given a normalized initial state Ψ0 ∈ H
(N)
f and the 

one-particle density matrix p0 ≡ γΦHF,0 associated with a Slater determinant ΦHF,0 = ϕ1,0∧· · ·∧ϕN,0, with 
〈ϕi,0, ϕj,0〉 being orthonormal orbitals in H1(R3), γt the one-particle density matrix of the solution Ψt to 
(1) and pt the solution to (11) obey the trace norm estimate
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1
N

‖γt − pt‖L1 ≤
√

8
√

N2/3 1
N

‖γ0 − p0‖L1 exp(Cλ,N,Kt) + N−1/3
(
exp(Cλ,N,Kt) − 1

)
, (14)

with Cλ,N,K = 30λ
√
KN1/6, where K is a bound on the kinetic energy of pt which is assumed to be uniform 

in time (see (15)).

Discussion of the results. Roughly speaking, the estimate (14) implies that, starting from a state close 
to a Slater determinant for the N -body Schrödinger equation and from the corresponding one-particle 
density matrix for the TDHF equation, the Hartree–Fock approximation is justified up to times of or-
der (λ

√
KN1/6)−1, where K is the kinetic energy (which, for repulsive systems, is bounded by the total 

energy of the system, uniformly in time) and λ the coupling constant. Hence, our assumption on the ini-
tial state is given in terms of energy, and not in the form of “increasing” sequences of Slater determinants.
This assumption seems more natural to the authors as it is closer to a thermodynamic assumption on the sys-
tem. In our proof we obtain a rate of convergence of N−1/6. For the initial data, in order to have convergence,
we can allow states with N−1/3‖γ0 − p0‖L1 → 0 for N → ∞. This means, e.g., that, for any ε > 0, the 
initial state can have N1/3−ε particles outside the condensate, i.e., the Slater determinant structure.

The fact that the estimate (14) is relevant when λN1/6K1/2t is of order one, restricts its applicability to 
a regime where the kinetic energy dominates the direct and exchange terms. This implies that the evolution 
is the free evolution to leading order. Estimate (14) captures the subleading effect of the direct term on the 
dynamics and is thus relevant provided that K � N4/3. We substantiate this by heuristic arguments in 
Appendix B. Let us stress that estimate (14) requires no additional assumption on the initial states other 
than the Hartree–Fock kinetic energy to be finite. Furthermore, estimate (14) applies to the repulsive or 
attractive Coulomb interaction, which is very relevant for many physical systems.

Compared to [32], where also the Coulomb potential was considered, our result holds for larger time 
scales. In [32], the λ = N−1-scaling was assumed and, by a rescaling in time and in space, the result also 
applies to a large neutral atom (i.e., with charge N � 1 and λ = α). With the result of [32] the Hartree–Fock 
approximation is then justified up to times of order N−2. Assuming we have a state with a negative energy, 
the kinetic energy is controlled by a universal multiple of N7/3 (see Section 2 for more details), and our 
estimate allows us to justify the approximation up to much larger times, of order N−4/3. (Note, however, 
that our estimate deteriorates if the energy of the state is higher.)

Compared to [16] where the semi-classical scaling (8) is considered, our result allows us to control the 
approximation only up to times of order N−1/3, whereas the estimates in [16] allow one to control the 
approximation up to times of order 1 (however, only for bounded two-body potentials). This comes from 
the fact that we do not assume any semi-classical structure on the initial data. Note that our strategy is 
similar to the one of [16] since we do not use the BBGKY hierarchy but instead make use of a Grönwall 
lemma. An important difference lies in the decomposition of the potential: in [16] a Fourier decomposition 
is used whereas we use the Fefferman–de la Llave formula.

Let us compare our results to [50] where the mean-field scaling for large volume (7) is considered. Note 
that there the Schrödinger dynamics is compared to the fermionic Hartree equation without exchange term. 
While in [50] other interactions are also considered, for Coulomb interaction, essentially two results are 
proven. First, for regularized Coulomb interaction with singularity cut off on a ball with radius N−1/6+ε

for any ε > 0, convergence of the Schrödinger dynamics to the fermionic Hartree dynamics is shown in 
terms of a counting measure αg, with convergence rate depending on the cutoff. Note, that we use the same 
measure in our proof, see also Remark 3.5, but we formulate our main result only in terms of the trace norm 
difference of reduced densities. The improvement of our result is that it holds for full Coulomb interaction 
without any regularization and, in general, with a better convergence rate. For the second result in [50]
a bound on Tr[(−Δ)3+εpt] is assumed. Under that condition convergence for full Coulomb interaction in 
terms of αg and the trace norm difference is shown, with rate N−1/2 in the trace norm sense. This bound on 
Tr[(−Δ)3+εpt] was, however, not proven to hold for t > 0. Compared to that, our result holds for any initial 
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condition with kinetic energy bounded by CN , without further assumptions, but only with a convergence 
rate of N−1/6 in the trace norm sense.

Sketch of our derivation of estimates on the accuracy of the TDHF approximation. We derive an estimate 
on the trace norm of the difference γt − pt between the one-particle density matrix γt ≡ γΨt

of the (full) 
solution Ψt = e−itHΨ0 of (1) and the one-particle density matrix pt solving the TDHF equation (11).
Our work is inspired by Pickl [52], where one of us developed a new method for bosonic systems which was 
generalized to fermion systems in [50] by two of us. The method uses a Grönwall estimate for a well-chosen 
quantity called the number of bad particles in [52]. We refer to the quantity we chose to control as the degree 
of evaporation Sg. The subscript g refers to a freedom in the choice of a weight function g which allows us 
to fine-tune the distance of γt (the density matrix of Ψt) to pt in a suitable way. For the simplest choice 
g(x) = x, Sg is called the degree of non-condensation in [38, Remark (a) on p. 5], while in [59] it is called 
Verdampfungsgrad, which translates to degree of evaporation.

We show that the degree of evaporation Sg is directly related to the trace norm ‖γ − p‖L1 . We then 
calculate the time derivative of Sg and split it into three terms that we estimate separately. To obtain 
the estimates we make use of correlation inequalities which may be seen to be a dynamical version of the 
correlation estimate presented in [7]. (See also [38] for an alternative proof of that correlation estimate which 
does not make use of second quantization.) While we estimate two of the terms in a way very similar to [50], 
our estimate for the remaining term (here called A; in [50] called (I)) is very different and allows us to treat 
the full Coulomb potential. This term is physically the most important, since its smallness is a consequence 
of cancellations between the Hartree–Fock and the many-body interaction. The bounds on this term are the 
key estimates of this work. They are obtained by using the Fefferman–de la Llave decomposition formula 
[31]. We remark that, in view of the generalization of this decomposition derived in [39,37], our result applies 
to a more general class of two-body interaction potentials. The Lieb–Thirring inequality [46] and Hardy’s 
inequality then provide an estimate in terms of kinetic energy. Finally, we note that in many physically 
relevant cases the estimate in terms of kinetic energy can be stated in terms of an estimate on the initial 
total energy of the system.

Outline of the article. In Section 2 we state our main result, along with applications to molecules or the 
mean-field limit. In Section 3 we introduce the degree of evaporation Sg and relate it to the difference 
between the one-particle density matrix of the solution to our model and the solution to the TDHF equation.
We then calculate the time derivative of Sg and provide bounds for the different contributions, thus proving 
our main theorem. In Appendix A we recall some results about the theory of the TDHF equation.

2. Main result and applications

Our main result is an estimate of the trace norm ‖ · ‖L1 of the difference between the one-particle density 
matrix of the solution to the many-body Schrödinger equation (1) and the solution to the time-dependent 
Hartree–Fock equation (11) in terms of the kinetic energy of the system. As usual, we denote by H1(R3)
the Sobolev space of weakly differentiable functions with square-integrable derivative.

We henceforth make use of the following notation:

• Let Ψ0 ∈ H
(N)
f be a normalized initial state, and let γt := γΨt

be the one-particle density matrix of 
the solution Ψt = e−iHtΨ0 to the Schrödinger equation (1) with Hamiltonian H from (2) (i.e., with 
Coulomb interaction).

• Let ΦHF,0 = ϕ1,0 ∧ · · · ∧ ϕN,0 be a Slater determinant, with ϕj,0 ∈ H1(R3) and 〈ϕj,0, ϕk,0〉h = δjk, for 
1 ≤ j, k ≤ N . Let p0 := γΦHF,0 be the one-particle density matrix of ΦHF,0 and pt be the solution to the 
time-dependent Hartree–Fock equation (11) with initial condition p0.
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Theorem 2.1. Assume that the kinetic energy of pt is uniformly bounded in time,

K := sup
t≥0

Tr[−Δpt] < ∞ . (15)

Under the assumption of (15) the estimate

1
N

‖γt − pt‖L1 ≤
√

8
√

N2/3 1
N

‖γ0 − p0‖L1 exp(Cλ,N,Kt) + N−1/3
(
exp(Cλ,N,Kt) − 1

)
(16)

holds true with Cλ,N,K = 30λ
√
KN1/6.

The proof of Theorem 2.1 is postponed to Section 3.

Remark 2.2. One of the ingredients of our proof is the Fefferman–de la Llave decomposition of the Coulomb 
potential [31]

1
|x| =

∞∫
0

16
π r5 (1B(0,r/2) ∗ 1B(0,r/2))(x) dr , (17)

an identity that holds for all x ∈ R3 \ {0}, where 1B(0,r/2) is the characteristic function of the ball of radius 
r/2 centered at the origin in R3. A generalization of this decomposition to a class of two-body interaction 
potentials v of the form

v(x) =
∞∫
0

gv(r) (1B(0,r/2) ∗ 1B(0,r/2))(x) dr , (18)

with x ∈ R3 \ {0}, was given in [39] under Assumption 2.3 below, and our proof largely generalizes to 
those potentials v. More precisely, the assertion of Theorem 2.1 holds true and without any change in the 
constants, if we replace the Coulomb potential by any pair potential v that satisfies Assumption 2.4 below, 
which in particular implies v(x) ≤ |x|−1. Note that the assumption of semi-boundedness of v is only used 
to ensure the global existence of a solution to the TDHF equation. One could drop it to study problems up 
to the time the solution to the TDHF blows up.

Assumption 2.3. The function v : R3 \ {0} → R has the following properties:

• v is a radial function, and there exists a function ṽ ∈ C3[(0, ∞); R] such that v(x) = ṽ
(
|x|
)
, for all 

x ∈ R3 \ {0},
• rm dmṽ

drm (r) → 0, as r → ∞, for m = 0, 1, 2,
• limR→∞

∫ R
1 r3 gv(r) dr exists, with gv(r) := 2

π
d
dr

( 1
r
d2ṽ
dr2 (r)
)
.

Note that g|·|−1(r) = 16
π r−5 in case of the Coulomb potential which is prototypical for the following 

further assumption:

Assumption 2.4. (With the same notation as in Assumption 2.3.) The function v : R3 → R satisfies As-
sumption 2.3, |gv(r)| ≤ 16

π r−5 and, for some μ ∈ R, v(x) ≥ μ for all x.

Remark 2.5. Note that we actually prove a slightly stronger result in Theorem 3.8 in terms of the degree 
of evaporation Sg(t) (with properly chosen g), which is defined in Definition 3.3. The way our result is 
formulated in Theorem 3.8 can directly be compared to the results in [50].
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Remark 2.6. Note that the two summands in the square root on the right-hand side of (16) come from 
different contributions which we call At, Bt and Ct (and which are called (I), (II ), (III ) in [50]), see 
Proposition 3.9. It is interesting to note that all three terms contribute to the first summand (which is 
proportional to ‖γ0 − p0‖L1) but only the Bt term contributes to the second summand.

Remark 2.7. Note that it is sufficient to prove Theorem 2.1 with Ψ0 in H(N)
f ∩H1(R3)⊗N . A density argument 

then provides the result for a general Ψ0 in H(N)
f .

Let us discuss some cases when the assumption that the Hartree–Fock kinetic energy is uniformly bounded 
in time is satisfied. In Propositions 2.11 and 2.12 we give explicit bounds on the kinetic energy K in terms 
of the energy expectation value 〈ΦHF,0, HΦHF,0〉 of the initial state ΦHF,0 and the ground state energy for 
examples presented in Section 1. In the case of atoms or molecules this follows from known estimates, which 
we now recall.

To formulate these, we denote the energy expectation value and the kinetic energy expectation value of 
a normalized wave function Ψ ∈ H

(N)
f ∩ H1(R3)⊗N by

E(Ψ) = 〈Ψ, HΨ〉 and K(Ψ) =
〈

Ψ,
( N∑

j=1
−Δj

)
Ψ
〉
.

For atoms and molecules the ground state energy Egs is defined as

Egs = inf
{
E(Ψ)
∣∣∣ Ψ ∈ H

(N)
f ∩ H1(R3)⊗N

, ‖Ψ‖
H

(N)
f

= 1 ,

R1, . . . , RM ∈ R3, l �= m ⇒ Rl �= Rm

}
.

Equipped with this notation, we formulate the coercivity of the energy functional on the Sobolev space of 
states with finite kinetic energy:

Proposition 2.8. Consider a neutral atom or a molecule as in (3) or (4). If Egs ≤ 0 then

K(Ψ) ≤
(√

E(Ψ) − Egs +
√
−Egs

)2
≤ 2E(Ψ) + 4|Egs| .

Proof. See [45, p. 132]. �
Using Proposition 2.8 along with the conservation of the total energy for both the Schrödinger equation 

and the TDHF equation (see Appendix A) we get the following bound on the kinetic energy.

Proposition 2.9. Assume that ΦHF,0 = ϕ1,0 ∧ · · · ∧ ϕN,0 is a Slater determinant, with ϕj,0 ∈ H1(R3) and 
〈ϕj,0, ϕk,0〉h = δjk, for 1 ≤ j, k ≤ N . Then, in the case of atoms or molecules as in (3) or (4),

K := sup
t≥0

Tr[−Δpt] ≤
(√

E(ΦHF,0) − Egs +
√
−Egs

)2
. (19)

Thus, if E(ΦHF,0) ≤ 0 then

K ≤ −4Egs . (20)

We also recall a known bound for the ground state energy, see [46] or [45], whose units we use.
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Proposition 2.10 (Ground state energy of a molecule). For a molecule with nuclei of charges Z1, . . . , ZM > 0
at pairwise distinct positions R1, . . . , RM ∈ R3, with λ = α, ν =

∑
m<l αZmZl/|Rm − Rl| as in (4), and 

Z = max{Z1, . . . , ZM}, the ground state energy satisfies the bound

0 < −Egs ≤ (0.231)α2N

[
1 + 2.16Z

(M
N

)1/3]2
.

Proposition 2.11 (Neutral atom). In case of an atom with N = Z the ground state energy satisfies

0 < −Egs ≤ (2.31)α2 N7/3 .

Proposition 2.12 (TDHF equations without external potential and with repulsive interaction). 
For h(1) = −Δ/2 and v(x) = |x|−1, the Hartree–Fock kinetic energy is bounded by the total Hartree–Fock 
energy (for any λ > 0), which is preserved in time, i.e.,

K ≤ E(ΦHF,0) .

Finally, let us note that for attractive Coulomb interaction without external field, we have the bound

K ≤ 2E(ΦHF,0) + Cλ2N7/3 , (21)

which follows from the Lieb–Thirring inequality and which we prove in Appendix B. Thus, also for attractive 
interaction, the bounds K ≤ CN in the mean-field scaling for large volume (7) and K ≤ CN5/3 in the 
semi-classical mean-field scaling (8) hold, if the corresponding bounds hold for the total energy.

3. Control of the degree of evaporation Sg

We first introduce the degree of evaporation Sg, which is a function of a state on the Fock space and a 
one-particle density matrix. We use Sg as an indicator of closeness of the Hartree–Fock to the Schrödinger 
quantum state.

3.1. Definition and properties of the degree of evaporation

For A and more generally B(M) (M ≤ N) linear operators acting on h and H(M)
f , respectively, we use 

the notation

dΓ(A) :=
N∑
j=1

Aj and dΓ(M)(B(M)) :=
N∑

j1,...,jM=1
j1 	=j2... 	=jM

B
(M)
j1...jM

, (22)

as operators on H(N)
f , with Aj acting on the jth factor in h⊗N and B(M) acting on the jth1 , . . . , jthM factors 

in h⊗N , respectively.

Remark 3.1. Although we do not use the fermion creation and annihilation operators a∗, a, note that (22)
coincides with the second quantization dΓ in quantum field theory in the sense that

dΓ(A) =
∫

A(x; y) a∗(x)a(y) dxdy ,

or, more exactly, its restriction to the N -particle sector. Similarly, e.g.,
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dΓ(2)(B(2)) =
∫

B(2)(x1, x2; y1, y2) a∗(x2)a∗(x1)a(y1)a(y2) dx1dx2dy1dy2 .

Let L1(H) denote the space of trace class operators on a Hilbert space H. We use the partial trace 
Tr2 : L1(h⊗2) → L1(h) which is defined for B(2) ∈ L1(h⊗2) to be the operator Tr2[B(2)] ∈ L1(h) such that

Tr
[
Tr2(B(2))A

]
= Tr
[
B(2) (A⊗ 1h)

]
(23)

holds for all A ∈ B(h).

Definition 3.2. For an N -particle density matrix ρ ∈ L1
+(H(N)

f ), i.e., a non-negative trace-class operator on 

H
(N)
f of unit trace, the one- (resp. two-)particle density matrix of ρ is denoted by γρ (resp. γ(2)

ρ ). It is the 

operator on h (resp. H(2)
f ) such that

∀A ∈ B(h) : Tr
H

(N)
f

[ρ dΓ(A)] = Trh[γρ A] , (24)

∀B(2) ∈ B(H(2)
f ) : Tr

H
(N)
f

[
ρ dΓ(2)(B(2))

]
= Tr

H
(2)
f

[
γ(2)
ρ B(2)] . (25)

We note that γρ and γ(2)
ρ satisfy

0 ≤ γρ ≤ 1 , Trh[γρ] = N , 0 ≤ γ(2)
ρ ≤ N , Tr

H
(2)
f

[γ(2)
ρ ] = N(N − 1) (26)

(see, e.g., [9, Theorem 5.2]). Further note that we are slightly abusing notation since the one-particle 
density matrix was defined for wave functions in Eq. (13), rather than for density matrices. We thus identify 
γΨ ≡ γ|Ψ〉〈Ψ|, for all normalized Ψ ∈ H

(N)
f , whenever this does not lead to confusion.

Definition 3.3. Let N ∈ N and

SN :=
{
η ∈ L1(h)

∣∣ 0 ≤ η ≤ 1 , Tr[η] = N
}
,

and g be a continuous function from R to R. The map Sg : L1
+(H(N)

f ) ×SN → R+
0 defined by

Sg(ρ, η) := Tr[ρ ĝ] , (27)

where ĝ := g
(
dΓ(1 − η)

)
, is called the degree of evaporation (of ρ relative to η). The translation of g by 

k ∈ Z, is denoted by τkg(y) := g(y − k).

Note that when the expression of g is too long to fit under a hat, we write (g)∧ instead of ĝ.

Remark 3.4. ĝ := g
(
dΓ(1 − η)

)
is defined using the functional calculus [54,56].

Remark 3.5. The particular case in which η is a rank-N projector is of importance in the sequel, and we 
then write

p := η and q := 1 − η .

In this case, only the values of g on {0, . . . , N} are relevant for the definition of ĝ and the continuity 
assumption on g can be dropped. We can then give an alternative and equivalent viewpoint using the 
orthogonal projections
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P (M)
m :=

∑
a∈{0,1}M

0
|a|=m

M⊗
�=1

(
(1 − a�)p + a�q

)
= 1{m}

(
dΓ(q)
)

on h⊗M , with |a| = a1 + · · · + aM , for M ∈ N and m ∈ Z. (Note that with this definition P (M)
m = 0 for 

m /∈ {0, . . . , M}.) We can then write down the spectral decomposition of dΓ(q),

dΓ(q) =
∑
n∈Z

nP (N)
n , (28)

i.e., P (N)
n is the projection on the eigenspace of dΓ(q) associated with the eigenvalue n ∈ Z. It follows that

Sg(ρ, p) =
N∑

n=0
g(n) Tr

[
ρP (N)

n

]
. (29)

In this form we see directly that for ρ = |Ψ〉〈Ψ| we have Sg = αg, where αg is the functional used in 
[50, Definition 2.1] to control the closeness of a Hartree–Fock state to a Schrödinger state. However, note 
that there is a difference in the choice of normalization. The particular choices of functions, f in [50] and 
g in our article, are related through g = N f , such that Sg = Nαf . Note also that for g(x) = x we find 
SIdR

(ρ, p) = Tr[γρ(1 − p)].

Remark 3.6. For g(x) = x, the functional Sg has been used in [8,38,59] in the context of mean-field
approximations for ground states. In [38], Sg is called “degree of non-condensation” or “the relative number 
of particles outside the Fermi sea”. For general g, a bosonic variant of Sg was introduced for the derivation 
of mean-field dynamics in [52] and for the derivation of the NLS equation in [51,53]. For the derivation of 
mean-field dynamics for fermions, Sg was introduced in [50]. Note that for g(x) = x and Ψ0 ∈ H

(N)
f , 2Sg(t)

coincides with the quantity 〈UN (t; 0)ξ, NUN (t; 0)ξ〉 in [16] in case ξ = R∗
νN

Ψ0.

Let us collect some properties of Sg(ρ, η) and show how it relates to the distance of γρ to η in trace norm. 
(Note that some of the statements were already proven in [16] and [50].) We denote the Hilbert–Schmidt 
norm by ‖ · ‖L2 .

Proposition 3.7. For η ∈ SN and ρ a density matrix with one particle density matrix γ, the degree Sg(ρ, η)
of evaporation has the properties

inf
0≤x≤N

g(x) ≤ Sg (ρ, η) ≤ sup
0≤x≤N

g(x) , (30)

‖γ − η‖2
L2 ≤ 2SIdR

(ρ, η) , (31)

g1 ≤ g2 on [0, N ] ⇒ Sg1(ρ, η) ≤ Sg2(ρ, η) , (32)

g �→ Sg(ρ, η) is linear, (33)

for g, g1, g2 functions from R to R.
If furthermore p2 = p is a rank-N orthogonal projection and g(0) = 0, g(x) ≥ x on [0, N ], then

1
N

‖γ − p‖L1 ≤
√

8
N

Sg(ρ, p) , (34)

Sg(ρ, p) ≤ sup
0<x≤N

∣∣∣g(x)
x

∣∣∣‖γ − p‖L1 . (35)
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Proof. The spectrum of dΓ(q) (restricted to H(N)
f ) is included in [0, N ], thus

inf
0≤x≤N

g(x) ≤ ĝ ≤ sup
0≤x≤N

g(x) ,

in the sense of quadratic forms. As ρ is a state, Eq. (30) follows.
Equation (31) follows from

‖γ − η‖2
L2 = Tr

[
(γ − η)2

]
= Tr
[
γ2 + η2 − 2γη

]
= 2SIdR

(ρ, η) − Tr[γ − γ2] − Tr[η − η2] ≤ 2SIdR
(ρ, η) .

Equations (32) and (33) follow from the properties of the functional calculus.
For the proof of (34), we first remark that γ − p has at most N negative eigenvalues (counting 

multiplicities). This is a well-known consequence of γ − p ≥ −p and the fact that p is a rank-N orthogonal 
projection (see, e.g., [55]), but we include its proof for the sake of completeness: Suppose that γ − p has at 
least N +1 negative eigenvalues. Then there is a subspace W of dimension N +1 such that 〈ϕ|(γ−p)ϕ〉 < 0, 
for all ϕ ∈ W \ {0}. Since γ ≥ 0, this implies that 〈ϕ|pϕ〉 > 0, for all ϕ ∈ W \ {0}. On the other hand, the 
largest dimension of a subspace with this property is N , by the minmax principle and the fact that p has 
precisely N positive eigenvalues, which contradicts the existence of W .

Denoting the number of negative eigenvalues (counting multiplicities) of γ − p by M , we consequently 
have that M ≤ N . Let λ1, . . . , λM be these M negative eigenvalues of γ − p, and λM+1, λM+2, . . . be the 
non-negative ones. Since Tr[γ − p] = 0, it follows that

−(λ1 + · · · + λM ) =
∞∑

m=M+1
λm .

Using the Cauchy–Schwarz inequality and M ≤ N , we obtain

‖γ − p‖L1 =
∞∑

m=M+1
λm −

M∑
m=1

λm = −2
M∑

m=1
λm ≤ 2

√
M

( M∑
m=1

λ2
m

)1/2

≤ 2
√
N

( ∞∑
m=1

λ2
m

)1/2

= 2
√
N‖γ − p‖L2 ,

and Eq. (34) follows from Eq. (31) and SIdR
(ρ, p) ≤ Sg(ρ, p).

To prove Eq. (35), we observe that g(x) ≤ sup0<x≤N

{∣∣∣ g(x)
x

∣∣∣}x on [0, N ] and thus, using positivity 
preservation and linearity, we have

Sg(ρ, p) ≤ sup
0<x≤N

{∣∣∣g(x)
x

∣∣∣}SIdR
(ρ, p) .

We conclude with

SIdR
(ρ, p) = Tr[γ(1 − p)] = Tr[p(p− γ)p] ≤ ‖γ − p‖L1 ,

using again p = p2 and Tr[γ] = N = Tr[p]. �
Let us now state the main result of this section. Recall that we defined K := supt≥0 Tr[−Δpt].
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Theorem 3.8. Assume (15) holds, i.e., the kinetic energy is uniformly bounded, as in Theorem 2.1.
Then, writing ρt = |Ψt〉〈Ψt|,

Sg1/3(ρt, pt) ≤ Sg1/3(ρ0, p0) exp
(
30λ

√
KN1/6t

)
+ N2/3

(
exp
(
30λ

√
KN1/6t

)
− 1
)
, (36)

where, for θ > 0, gθ is the function from R to R defined by

∀x ∈ R , gθ(x) := N1−θx1[0,Nθ](x) + N1(Nθ,∞)(x) . (37)

Note that the function gθ was also used to obtain the results in [50]. Theorem 3.8 will be proved in the 
following subsections. The strategy is to obtain a bound for dSt/dt in terms of St and N δ, for some δ < 1, 
and then integrate it, in the spirit of the Grönwall lemma.

Before we turn to the proof of Theorem 3.8, we show how Theorem 3.8 and the properties of the degree 
of evaporation imply Theorem 2.1, the main result of this article.

Proof of Theorem 2.1. Since g1/3 ≥ IdR on [0, N ], we can apply Eq. (34) to Eq. (36) which gives

1
N

‖γt − pt‖L1 ≤
√

8
N

√
Sg1/3(ρ0, p0) exp(30λ

√
KN1/6t) + N2/3

(
exp(30λ

√
KN1/6t) − 1

)
.

Equation (35) with g1/3 yields Sg1/3(ρ, p) ≤ N2/3‖γ − p‖L1 which then gives Eq. (16). �
The rest of this section is devoted to the proof of Theorem 3.8.

3.2. Time-derivative of the degree of evaporation

In this subsection we calculate the time derivative of the degree of evaporation Sg(t) := Sg(ρt, pt) and 
bring it into a form that can be conveniently estimated. Then most of the following subsections pro-
vide bounds on the different contributions to the time derivative. First, recall the Fefferman–de la Llave 
decomposition, for x �= y ∈ R3,

1
|x− y| =

∫
R3

d3z

∞∫
0

dr

π r5 Xr,z(x)Xr,z(y) , (38)

of the Coulomb potential, where Xr,z(x) := 1|x−z|≤r is the characteristic function of the ball in R3 of radius 
r > 0 centered at z ∈ R3. This formula can also be written as

v(2) =
∫

dμ(ω) Xω ⊗Xω , (39)

where ω = (r, z) ∈ R+ × R3 and 
∫
dμ(ω) f(ω) :=

∫
R3 d

3z
∫∞
0

dr
π r5 f(r, z). The form (38) is convenient for 

the estimates derived below, but we note that it agrees with (18), of course. Note that the terms At, Bt, 
Ct in the following proposition are the same as (I), (II ), (III ) in [50, Lemma 6.5]. However, an important 
difference lies in the presentation of the At term using the decomposition (38), which enables us to handle 
the case of the Coulomb interaction. In the following, � denotes the imaginary part.

Proposition 3.9. For all monotonically increasing g : R → R, the time-derivative of Sg(t) = Sg(ρt, pt) (with 
the notation from Theorems 2.1 and 3.8) is
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dSg(t)
dt

= λ
(
At + Bt + Ct

)
, (40)

where

At :=
∫

2�Tr
[
dΓ(qtXωpt)

(
dΓ(ptXωpt) − Tr[Xωpt]

)
ρ
[−1,1]
t

]
dμ(ω) , (41)

Bt := �Tr
[
dΓ(2)((qt ⊗ qt)v(2)(pt ⊗ pt)

)
ρ
[−2,2]
t

]
, (42)

Ct := 2�Tr
[
dΓ(2)((qt ⊗ qt)v(2)(pt ⊗ qt)

)
ρ
[−1,1]
t

]
, (43)

with qt := 1 − pt, and

ρ[−j,j] := (τ−jg − g)1/2∧ ρ(g − τjg)1/2∧ . (44)

Before we turn to the proof we note that

qt pt = pt qt = 0 , (45)

since pt is a projection. We further note that, for A, B linear and bounded operators on h, we have that

dΓ(A) dΓ(B) = dΓ(2)(A⊗B) + dΓ(AB) . (46)

To prove Proposition 3.9 we need several lemmas. We begin with an evolution equation for ĝ.

Lemma 3.10. For any function g : R → R, with ĝ = g
(
dΓ(qt)
)

and h(1)
HF defined in Eq. (12),

i∂tĝ = [dΓ
(
h

(1)
HF(pt)
)
, ĝ] . (47)

Proof. First observe that only the values of g on the spectrum of dΓ(qt) are used to define ĝ. As the 
spectrum of dΓ(qt) is independent of the time t, we could as well consider a time-independent polynomial 
which coincides with g on the spectrum of dΓ(qt). It is then enough to prove that Eq. (47) holds for any 
monomial dΓ(qt)n. It indeed holds for n = 1:

i∂tdΓ(qt) = dΓ(i∂tqt) = dΓ
(
[h(1)

HF(pt), qt]
)

=
[
dΓ
(
h

(1)
HF(pt)
)
, dΓ(qt)

]
.

Then, for any n ∈ N,

i∂t
(
dΓ(qt)
)n =

n∑
j=1

(
dΓ(qt)
)j−1 [dΓ

(
h

(1)
HF(pt)
)
, dΓ(qt)

] (
dΓ(qt)
)n−j

=
[
dΓ
(
h

(1)
HF(pt)
)
,
(
dΓ(qt)
)n]

,

as all the terms but two simplify in the sum. �
Next, we need a commutation relation (analogous to [50, Lemma 6.4]) involving ĝ that enables us to 

write the time derivative of Sg(t) in terms of a discrete derivative of g. Recall that τj−kg(x) = g(x − j + k).

Lemma 3.11. For integers 0 ≤ j, k ≤ M ≤ N , any function g : R → R, with the notations of Definition 3.3, 
and h(M) ∈ L(h⊗M ),

dΓ(M)(P (M)
j h(M)P

(M)
k

)
ĝ = τ̂j−kg dΓ(M)(P (M)

j h(M)P
(M)
k

)
. (48)
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Proof. First, note that if

dΓ(M)(P (M)
j h(M)P

(M)
k

)
dΓ(q) = τ̂j−kId dΓ(M)(P (M)

j h(M)P
(M)
k

)
holds, then Eq. (48) follows by the same argument as in the proof of Lemma 3.10. Using P (M)

m1 P
(M)
m2 =

δm1m2P
(M)
m1 and P (N)

m =
∑

d∈Z
P

(M)
d ⊗P

(N−M)
m−d (recall that P (M)

d = 0 for d /∈ {0, . . . , M}), and without loss 
of generality singling out the first M variables,((

P
(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)
P (N)
n =
((

P
(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)(∑
d∈Z

P
(M)
d ⊗ P

(N−M)
n−d

)
=
(
P

(M)
j h(M)P

(M)
k

)
⊗ P

(N−M)
n−k

=
(∑

d∈Z

P
(M)
d ⊗ P

(N−M)
n−k+j−d

)((
P

(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)
= P

(N)
n−k+j

((
P

(M)
j h(M)P

(M)
k

)
⊗ 1⊗N−M

)
.

It follows from the spectral decomposition (28) of dΓ(q) that

dΓ(M)(P (M)
j h(M)P

(M)
k

)
dΓ(q) = dΓ(M)(P (M)

j h(M)P
(M)
k

)∑
n∈Z

nP (N)
n

=
∑
n∈Z

nP
(N)
n−k+jdΓ(M)(P (M)

j h(M)P
(M)
k

)
=
∑
n∈Z

(n + k − j)P (N)
n dΓ(M)(P (M)

j h(M)P
(M)
k

)
= τ̂j−kId dΓ(M)(P (M)

j h(M)P
(M)
k

)
,

which, as discussed above, implies the result. �
Proof of Proposition 3.9. Without loss of generality we assume that Ψ0 ∈ H

(N)
f ∩H1(R3)⊗N (see Remark 2.7). 

Using the evolution equation for ĝ from Lemma 3.10, we find

dSg

dt
(ρt, pt) = Tr

[
− i[H, ρt]ĝ + ρt (−i[dΓ(h(1)

HF(pt)), ĝ])
]

= Tr
[
i[H − dΓ(h(1)

HF(pt)), ĝ]ρt
]

= λTr
[
i[ 12dΓ(2)(v(2)) − dΓ(v(1)

HF(pt)), ĝ]ρt
]

with v(1)
HF(pt) := Tr2[v(2)(1 − X)(1 ⊗ pt)]. Now, recall that 

∑M
m=0 P

(M)
m = 1h⊗M . Inserting this identity for 

M = 1 and M = 2 and using Lemma 3.11 gives

dSg

dt
(ρt, pt) = λ

2 Tr
[
i[dΓ(2)(

(
P

(2)
0 + P

(2)
1 + P

(2)
2
)
v(2)(P (2)

0 + P
(2)
1 + P

(2)
2
)
)

− 2dΓ(
(
P

(1)
0 + P

(1)
1
)
v
(1)
HF(pt)
(
P

(1)
0 + P

(1)
1
)
), ĝ]ρt
]

= λ

2 Tr
[
i[dΓ(2)(P (2)

0 v(2)P
(2)
2 + P

(2)
2 v(2)P

(2)
0

+ P
(2)
0 v(2)P

(2)
1 + P

(2)
1 v(2)P

(2)
0

+ P
(2)
1 v(2)P

(2)
2 + P

(2)
2 v(2)P

(2)
1 )
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− 2dΓ
(
P

(1)
0 v

(1)
HF(pt)P (1)

1 + P
(1)
1 v

(1)
HF(pt)P (1)

0
)
, ĝ]ρt
]

= λ�Tr
[(

dΓ(2)(P (2)
1 v(2)P

(2)
0 ) − 2dΓ

(
P

(1)
1 v

(1)
HF(pt)P (1)

0
))

ρ
[−1,1]
t

]
+ λ�Tr

[
dΓ(2)(P (2)

2 v(2)P
(2)
0 ) ρ[−2,2]

t

]
+ λ�Tr

[
dΓ(2)(P (2)

2 v(2)P
(2)
1 ) ρ[−1,1]

t

]
.

We then insert the Fefferman–de la Llave decomposition and Eq. (46) in the first term to get

� Tr[(dΓ(2)(P (2)
1 v(2)P

(2)
0 ) − 2dΓ(P (1)

1 v
(1)
HF(pt)P (1)

0 ))ρ[−1,1]
t ]

= 2�
∫

Tr
[(

dΓ(2)(qtXωpt ⊗ ptXωpt)

−Tr[Xωpt]dΓ(qtXωpt) + dΓ(qtXωptXωpt)
)
ρ
[−1,1]
t

]
dμ(ω)

= 2�
∫

Tr
[
dΓ(qtXωpt)

(
dΓ(ptXωpt) − Tr[Xωpt])

)
ρ
[−1,1]
t

]
dμ(ω) ,

where we used P (1)
0 = pt, P

(1)
1 = qt, P (2)

0 = p⊗2
t , P (2)

1 = qt ⊗ pt + pt ⊗ qt. �
3.3. Auxiliary lemmas

We prove here three lemmas that we frequently need for estimating the terms At, Bt and Ct from 
Proposition 3.9.

For fermionic systems the following bound on dΓ(A) is well-known. Note that this is the only point at 
which the Fermi statistics enter our paper.

Lemma 3.12. Let A be a trace-class and self-adjoint operator on a separable Hilbert space h. Then, as 
quadratic forms on H(N)

f ,

dΓ(A) ≤ ‖A‖L1 .

Proof. We use the spectral decomposition A =
∑

j λj |ϕj〉〈ϕj | with λj ∈ R, 
∑

j |λj | < ∞, for some
orthonormal basis (ϕj)∞j=1, and we write any vector Ψ ∈ H

(N)
f as

Ψ =
∑

j1<···<jN

αj1,...,jNϕj1 ∧ · · · ∧ ϕjN ,

where ‖Ψ‖2 =
∑

|αj1,...,jN |2 < ∞. Then

〈Ψ,dΓ(A)Ψ〉 = 〈Ψ,
∑

j1<···<jN

(λj1 + · · · + λjN )αj1,...,jNϕj1 ∧ · · · ∧ ϕjN 〉

=
∑

j1<···<jN

(λj1 + · · · + λjN )|αj1,...,jN |2

≤
∑

j1<···<jN

‖A‖L1 |αj1,...,jN |2 = ‖A‖L1 ‖Ψ‖2 ,

which yields the result. �
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We recall the definition of the direct integral of a family (B(x))x∈R3 of operators on h:

[( ⊕∫
R3

B(x′
1)dx′

1

)
ψ
]
(x1, x2) :=

[(
1 ⊗B(x1)

)
ψ
]
(x1, x2) , (49)

for any ψ ∈ H
(2)
f .

Lemma 3.13. Let A be a bounded non-negative operator on h and (B(x))x∈R3 be a family of non-negative 
trace class operators on h. Then

dΓ(2)
(
(
√
A⊗ 1)

⊕∫
R3

B(x1)dx1(
√
A⊗ 1)
)
≤ dΓ
(√

A Tr[B(x)]
√
A
)
. (50)

If A is also trace-class and such that Tr
[√

ATr[B(x)]
√
A
]
< ∞ then

dΓ(2)
(
(
√
A⊗ 1)

⊕∫
R3

B(x1)dx1(
√
A⊗ 1)
)
≤
∫

A(x;x) Tr[B(x)]dx , (51)

where A(x, y) =
∑∞

i=1 λiϕi(x)ϕi(y) denotes the integral kernel of A defined in terms of the spectral
decomposition of A.

In particular:
If B(x) = B does not depend on x,

dΓ(2)(A⊗B) ≤ Tr[B]dΓ(A) . (52)

With w : R3 → R+, w(2) = w(x1 − x2) and p =
∑N

i=1 |ϕi〉〈ϕi|, 〈ϕi|ϕj〉 = δij a rank-N projector on h, we 
have that

dΓ(2)((q ⊗ p)w(2)(q ⊗ p)
)
≤ dΓ
(
q(w ∗ f)q

)
≤ ‖w ∗ f‖∞ dΓ(q) , (53)

dΓ(2)((p⊗ p)w(2)(p⊗ p)
)
≤ dΓ
(
p(w ∗ f)p

)
≤ ‖(w ∗ f)f‖1 , (54)

where f(x) := p(x; x) :=
∑N

i=1 |ϕi(x)|2 are the diagonal values of the integral kernel of p.

Proof. Let Ψ(N) ∈ H
(N)
f . With

Ψ̃(N−1)
A,x (x1, . . . , xN−1) :=

((
1⊗N−1 ⊗

√
A
)
Ψ(N)
)
(x1, . . . , xN−1, x)

and the direct integral representation we get, using Lemma 3.12,

〈
Ψ(N), dΓ(2)

(
(
√
A⊗ 1)

⊕∫
R3

B(x1)dx1(
√
A⊗ 1)
)
Ψ(N)〉

= N(N − 1)
∫ 〈

Ψ̃(N−1)
A,x ,
(
1⊗N−2 ⊗B(x)

)
Ψ̃(N−1)

A,x

〉
dx

= N

∫ 〈
Ψ̃(N−1)

A,x , dΓ
(
B(x)
)
Ψ̃(N−1)

A,x

〉
dx
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≤ N

∫ 〈
Ψ̃(N−1)

A,x ,Tr[B(x)]Ψ̃(N−1)
A,x

〉
dx

=
〈
Ψ(N), dΓ

(√
ATr[B(x)]

√
A
)
Ψ(N)〉 ,

and Eq. (50) follows. If Tr[
√
ATr[B(x)]

√
A] < ∞, then Eq. (51) follows from Lemma 3.12.

The case with B(x) independent of x is clear.
For the second particular case, observe that the operator (1 ⊗ p)w(2)(1 ⊗ p) can be written as the direct 

integral

(1 ⊗ p)w(2)(1 ⊗ p) =
⊕∫

R3

p(τx1w)p dx1

with τx1w(x2) = w(x2 − x1) a translation of w. Then with B(x) = p(τxw)p and A = q we get Eq. (53), and 
with A = p we get Eq. (54). �

For ρ ∈ L1(H(N)
f ), let us introduce the shorthand notation

ρ[j] := (g − τjg)1/2 ∧ ρ (g − τjg)1/2 ∧ , (55)

ρ[−j] := (τ−jg − g)1/2 ∧ ρ (τ−jg − g)1/2 ∧ , (56)

with j = 1, 2, and let γ[j] and γ[−j] be the corresponding one-particle and γ[j](k) and γ[−j](k) the correspond-
ing k-particle density matrices (see also Definition 3.2 extended to non-negative and trace class operators 
whose trace is not necessarily one). Note that ρ[j] and ρ[−j] are not states because their trace is not one, 
and thus γ[j] and γ[−j] do not necessarily satisfy Eq. (26).

The next lemma shows the advantage we gain from using the function

gθ(x) := N1−θx1[0,Nθ](x) + N1(Nθ,∞)(x) (57)

in the definition of the degree of evaporation. This lemma is analogous to [50, Lemma 7.1], but note that 
the use of the functional calculus clarifies the fact that one ultimately uses only inequalities on functions 
from R to R.

Lemma 3.14. For j ∈ {−2, −1, 1, 2}, any (normalized) state ρ ∈ L1(H(N)
f

)
, and the function gθ from (57)

(with the notation from (55) and (56)),

Tr
[
ρ[j]] ≤ |j| N1−θ ,

Tr
[
dΓ(q) ρ[j]] ≤ |j| (|j| + 1) Sgθ ,

Tr
[
dΓ(2)(q ⊗ q) ρ[j]] ≤ |j| (|j| + 1)2 Nθ Sgθ .

Proof. The inequalities are a direct consequence of the functional calculus, once we observe that
dΓ(q) = ÎdR, dΓ(2)(q ⊗ q) = dΓ(q)2 − dΓ(q) = (IdR · (IdR − 1))∧ and

τjgθ − τkgθ ≤ (k − j) N1−θ ,

IdR · (τjgθ − τkgθ) ≤ (k − j)(k − j + 1) gθ ,

IdR · (IdR − 1) · (τjgθ − τkgθ) ≤ (k − j) (k − j + 1)2 Nθ gθ ,

as inequalities of functions from R to R, for −2 ≤ j < k ≤ 2. �
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3.4. Bound for At

Let us first estimate the integrand At(Xω) of (41), i.e.,

At(X) := 2�Tr
[
dΓ(qtXpt)

(
dΓ(ptXpt) − Tr[Xpt]

)
ρ
[−1,1]
t

]
,

where X is an operator on h such that 0 ≤ X ≤ 1.

Proposition 3.15. Let X be an operator on h such that 0 ≤ X ≤ 1 and set γ[−1]
t

⊥
:= Tr[ρ[−1]

t ] − γ
[−1]
t . Then

At(X) ≤ Tr[ptX] Tr[X(2qtγ[1]
t qt + ptγ

[−1]
t

⊥
pt)] . (58)

Proof. Using the Cauchy–Schwarz inequality and 2ab ≤ a2 + b2, and then Eq. (46) and Lemma 3.12, we get

At(X) = 2�Tr
[
dΓ(qtXpt)

(
dΓ(ptXpt) − Tr[Xpt]

)
ρ
[−1,1]
t

]
≤ Tr
[
dΓ(qtXpt) dΓ(ptXqt) ρ[1]

t

]
+ Tr
[(

Tr[ptX] − dΓ(ptXpt)
)2
ρ
[−1]
t

]
≤ Tr
[
dΓ(2)(qtXpt ⊗ ptXqt) ρ[1]

t

]
+ Tr
[
dΓ(qtXp2

tXqt) ρ[1]
t

]
+ Tr[ptX] Tr

[(
Tr[ptX] − dΓ(ptXpt)

)
ρ
[−1]
t

]
. (59)

For the first term on the right-hand side of (59), we apply the Cauchy–Schwarz inequality again and obtain

Tr
[
dΓ(2)( qtXpt ⊗ ptXqt) ρ[1]

t

]
= Tr
[(
qt
√
X ⊗ pt

√
X
) (√

Xpt ⊗
√
Xqt
)
γ

[1](2)
t

]
≤
√

Tr
[
(qtXqt ⊗ ptXpt) γ[1](2)

t

] √
Tr
[
(ptXpt ⊗ qtXqt) γ[1](2)

t

]
= Tr
[
(qtXqt ⊗ ptXpt) γ[1](2)

t

]
= Tr
[
dΓ(2)(qtXqt ⊗ ptXpt) ρ[1]

t ] . (60)

Using Lemma 3.13 yields in turn

Tr
[
dΓ(2)(qtXqt ⊗ ptXpt) ρ[1]

t ] ≤ Tr
[
p2
tX] Tr

[
dΓ(qtXqt) ρ[1]

t

]
= Tr[ptX] Tr

[
Xqtγ

[1]
t qt
]
. (61)

For the second term on the right-hand side of (59), we observe that

Tr[dΓ(qtXp2
tXqt) ρ[1]

t ] = Tr[Xp2
tXqtγ

[1]
t qt] ≤ Tr[ptX] Tr[Xqtγ

[1]
t qt] ,

and for the third term on the right-hand side of (59),

Tr[ptX] Tr
[(

Tr[ptX] − dΓ(ptXpt)
)
ρ
[−1]
t

]
= Tr[ptX] Tr[(Tr[ρ[−1]

t ]pt − ptγ
[−1]
t pt)X] ,

which yields (58). �
We now give a bound on the integral 

∫
At(Xω)dμ(ω) using the estimate from Proposition 3.15 on At(X). 

To get good estimates we take g to be gθ as in Eq. (37). We use the notation

fHF(x) := pt(x;x) ≥ 0 , (62)
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where pt =
∑N

i=1 |ϕi,t〉〈ϕi,t|, with 〈ϕi,t|ϕj,t〉 = δij and pt(x; y) :=
∑N

i=1 ϕi,t(x)ϕi,t(y), which allows us to 
rewrite the traces as integrals. For example,

Tr[ptXr,z] =
∫

|x−z|≤r

fHF(x) d3x .

Observe that 
∫
fHF = N and that the quantity 

∫
f

5/3
HF appearing in Proposition 3.17 is controlled by the 

Lieb–Thirring inequality, as is discussed in Section 3.7.
Before we give the bound for At, let us prove an auxiliary lemma. Let Ac denote the complement of a 

set A and recall that B(0, R) denotes the ball of radius R centered at 0 in R3.

Lemma 3.16. For 1
p1

+ 1
p2

+ 1
s = 2, with 1 ≤ pj , s ≤ ∞, measurable functions χ, f1, f2 : R3 → R and 

v(x) = |x|−1, ∫
(χ v)(x− y) f1(x) f2(y) d3x d3y ≤ ‖f1‖p1 ‖f2‖p2 ‖χ v‖s .

Additionally, for s < 3,

‖1B(0,R) v‖s =
( 4π

3 − s

)1/s
R3/s−1 ,

and, for s > 3,

‖1B(0,R)c v‖s =
( 4π
s− 3

)1/s
R3/s−1 ,

with the convention that 
(

4π
∞−3

)1/∞
:= 1.

Proof. The first relation follows directly from applying Hölder’s and Young’s inequalities. The second and 
third relations follow directly from integration. �

With the ingredients above we can give a bound on At.

Proposition 3.17. The estimate

At ≤ 5−5/6 72π1/3N1/6∥∥fHF
∥∥5/6

5/3 Sgθ (63)

holds.

Proof. By Proposition 3.15,

At ≤ 2
∫

Tr[ptXω] Tr[qtγ[1]
t qtXω] dμ(ω) +

∫
Tr[ptXω] Tr[ptγ[−1]

t

⊥
ptXω] dμ(ω) . (64)

We now explicitly use the Fefferman–de la Llave decomposition of the Coulomb potential. Then,
we find that for any non-negative trace-class operator h, using 

∫
h(y; y)dy = Tr[h], Hölder’s inequality 

and Lemma 3.16 in the end (where we distinguish between the short-range and the long-range part of the 
potential) gives us that
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∫
Tr[ptXω] Tr[hXω] dμ(ω) = 1

π

∫
Tr[ptXr,z] Tr[hXr,z]

dr

r5 d3z

= 1
π

∫ ( ∫
|x−z|≤r

fHF(x) d3x
)( ∫

|y−z|≤r

h(y; y) d3y
) dr
r5 d3z

=
∫ 1

|x− y|fHF(x)h(y; y) d3x d3y

≤
(
‖1B(0,R) v‖5/2 ‖fHF‖5/3 + ‖1B(0,R)c v‖∞ ‖fHF‖1

)
Tr[h]

≤
(
(8π)2/5R1/5‖fHF‖5/3 + R−1‖fHF‖1

)
Tr[h] .

Optimizing with respect to R > 0 yields

R = (8π)−1/355/6‖fHF‖5/6
1 ‖fHF‖−5/6

5/3 ,

so that (recall ‖fHF‖1 = N)∫
Tr[ptXω] Tr[hXω] dμ(ω) ≤ 5−5/66(8π)1/3

(∫
f

5/3
HF

)1/2 (∫
fHF

)1/6
Tr[h]

= 5−5/612π1/3 ‖fHF‖5/6
5/3 N

1/6 Tr[h] .

We now apply this inequality to (64), i.e., with h = qtγ
[1]
t qt and with h = ptγ

[−1]
t

⊥
pt. It follows from 

Lemma 3.14 that

Tr[qtγ[1]
t qt] = Tr[qtγ[1]

t ] = Tr[dΓ(qt)ρ[1]
t ] ≤ 2Sgθ , (65)

Tr[ptγ[−1]
t

⊥
pt] = Tr[pt] Tr[ρ[−1]

t ] − Tr
[
dΓ(pt)ρ[−1]

t

]
= Tr
[
dΓ(qt)ρ[−1]

t

]
≤ 2Sgθ . (66)

This proves (63). �
3.5. Bound for Bt

We estimate Bt in the same fashion as in [50, Lemma 7.3]. Note, that for this term and the Ct term it is 
not necessary to use the Fefferman–de la Llave decomposition.

Proposition 3.18. The estimate

Bt ≤ 21/3π2/3∥∥fHF
∥∥5/6

5/3 N
1/6(6Sgθ + N1−θ

)
(67)

holds.

Proof. We estimate the Bt term by using the Cauchy–Schwarz inequality to arrive at a three-particle term.
Recall that ρ[−2,2]

t is a rank one operator, i.e., ρ[−2,2]
t =

∣∣Ψ[−2]〉〈Ψ[2]
∣∣. For a linear operator A on h, 

j ∈ {−2, 2} and almost every x ∈ R3, we define the vectors Ψ̃[j]
A,x ∈ H

(N−1)
f by

Ψ̃[j]
A,x(x1, . . . , xN−1) := (1⊗N−1 ⊗A)Ψ[j](x1, . . . , xN−1, x) .

Inserting the form of v(2) as a direct integral into the expression of Bt in Eq. (42) yields
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Bt = �
〈
Ψ[2], dΓ(2)((qt ⊗ 1)

⊕∫
R3

qt(τx1v)pt dx1(pt ⊗ 1)
)
Ψ[−2]
〉

= N�
∫
R3

〈
Ψ̃[2]

qt,x, dΓ
(
qt(τxv)pt

)
Ψ̃[−2]

pt,x

〉
dx .

Taking the modulus of both sides and using the Cauchy–Schwarz inequality we obtain

Bt ≤
(
N

∫
R3

∥∥Ψ̃[2]
qt,x

∥∥2dx)1/2(N ∫
R3

∥∥dΓ(qt(τxv)pt) Ψ̃[−2]
pt,x

∥∥2dx)1/2
=
〈
Ψ[2], dΓ(qt)Ψ[2]〉1/2(N ∫

R3

〈
Ψ̃[−2]

pt,x , dΓ(pt(τxv)qt) dΓ(qt(τxv)pt) Ψ̃[−2]
pt,x

〉
dx
)1/2

.

From Lemma 3.14 we deduce that 〈Ψ[2], dΓ(qt) Ψ[2]〉 ≤ 6Sgθ . We estimate the remaining integral using 
Eq. (46), the Cauchy–Schwarz inequality, Lemma 3.13 and Lemma 3.14:

N

∫
R3

〈
Ψ̃[−2]

pt,x ,
[
dΓ(2)((pt(τxv)qt) ⊗ (qt(τxv)pt)

)
+ dΓ
(
pt(τxv)qt(τxv)pt

)]
Ψ̃[−2]

pt,x

〉
dx

≤ N

∫
R3

〈
Ψ̃[−2]

pt,x ,
[
dΓ(2)((pt(τxv)2pt) ⊗ qt

)
+ dΓ
(
pt(τxv)2pt

)]
Ψ̃[−2]

pt,x

〉
dx

=
〈
Ψ[−2],
[
dΓ(2)(p⊗2

t (v2)(2)p⊗2
t

)
dΓ(qt) + dΓ(2)(p⊗2

t (v2)(2)p⊗2
t

)]
Ψ[−2]
〉

≤
(
〈Ψ[−2], dΓ(qt)Ψ[−2]〉 + 〈Ψ[−2],Ψ[−2]〉

)∫
R3

(fHF ∗ v2)fHF

≤ (6Sgθ + 2N1−θ)
∫
R3

(fHF ∗ v2)fHF .

By the Hardy–Littlewood–Sobolev inequality (see, e.g., [44, Theorem 4.3]) we find∥∥(v2 ∗ f)f
∥∥

1 ≤ 41/3π4/3‖f‖2
3/2. (68)

We then apply Hölder’s inequality with 1 = 3
4 + 1

4 to obtain

‖f‖2
3/2 = ‖f5/4f1/4‖4/3

1 ≤ ‖f5/4‖4/3
4/3 ‖f

1/4‖4/3
4 = ‖f‖5/3

5/3 ‖f‖
1/3
1 . (69)

Applying this to fHF and ab ≤ (a2 + b2)/2 to the bound we obtained on Bt yields the result. �
3.6. Bound for Ct

Our estimate for Ct is analogous to [50, Lemma 7.3]. Note that for this estimate our choice of the function 
gθ is crucial, while in the bounds for At and Bt we could have used the identity function to obtain the desired 
estimate. By using gθ with appropriate θ < 1 we obtain the desired N -dependence in the estimate for Ct.

Proposition 3.19. The estimate

Ct ≤ 4
√

2
∥∥fHF ∗ v2∥∥1/2

∞ Nθ/2Sgθ (70)

holds.
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Proof. Using the Cauchy–Schwarz inequality, Lemma 3.13 and Lemma 3.14 we find

Ct = 2�Tr
[
dΓ(2)((qt ⊗ qt)v(2)(pt ⊗ qt)

)
ρ
[−1,1]
t

]
≤ 2
(

Tr
[
dΓ(2)((pt ⊗ qt)

(
v(2))2(pt ⊗ qt)

)
ρ
[−1]
t

]
Tr
[
dΓ(2)(qt ⊗ qt

)
ρ
[1]
t

])1/2
≤ 2
(∥∥fHF ∗ v2∥∥

∞ Tr
[
dΓ
(
qt
)
ρ
[−1]
t

]
4NθSgθ

)1/2
≤ 4

√
2
∥∥fHF ∗ v2∥∥1/2

∞ Nθ/2Sgθ ,

which is the result. �
3.7. Kinetic energy estimates and proof of Theorem 3.8

In order to estimate ‖fHF‖5/3
5/3 and ‖fHF ∗ v2‖∞ in terms of the kinetic energy we use the following 

inequalities:

Proposition 3.20 (Lieb–Thirring inequality). (See [46] or [45, p. 73].) Let γ ∈ L1(h) be a one-particle density 
matrix of finite kinetic energy, i.e., 0 ≤ γ ≤ 1 and Tr[−Δγ] < ∞. Then

CLT

∫
f5/3(x) d3x ≤ Tr[−Δγ] , (71)

with CLT = 9
5 (2π)2/3 and where f(x) := γ(x; x) is the corresponding one-particle density.

Proposition 3.21 (Hardy’s inequality). (See [40] or, e.g., [62].) Let γ ∈ L1(h) be a one-particle density matrix 
of finite kinetic energy, i.e., 0 ≤ γ ≤ 1 and Tr[−Δγ] < ∞. Then∫

f(x)
|x|2 d3x ≤ 4 Tr[−Δγ] , (72)

where f(x) := γ(x; x) is the corresponding one-particle density.

We now combine the results of Sections 3.2 to 3.6 to prove Theorem 3.8.

Proof of Theorem 3.8. We choose θ = 1
3 so that our bound for Ct is good enough. Collecting the esti-

mates for the At, Bt and Ct terms from Propositions 3.17, 3.18 and 3.19 and using the kinetic energy 
inequalities from Propositions 3.20 and 3.21, we can continue the estimate for the time derivative of Sg1/3,t

from Proposition 3.9 and find (recall that K := supt≥0 Tr[−Δpt])

dSg1/3(t)
dt

= λ
(
At + Bt + Ct

)
≤ λ 5−5/6 72π1/3 N1/6

(
5
9(2π)−2/3K

)1/2

Sg1/3(t)

+ λ 21/3π2/3
(

5
9(2π)−2/3K

)1/2

N1/6
(
6Sg1/3(t) + N2/3

)
+ λ 4

√
2 (4K)1/2 N1/6Sg1/3(t)

≤ 30λ
√
KN1/6

(
Sg1/3(t) + N2/3

)
. (73)

Integrating this inequality (Grönwall lemma) yields Theorem 3.8. �
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Appendix A. Some results about the theory of the time-dependent Hartree–Fock equation

In this appendix we recall some known facts about the theory of the TDHF equation. We begin by stating 
a theorem summarizing those results proved in [18] which we use.

Theorem A.1. Let E a separable Hilbert space, A : E ⊇ D(A) → E self-adjoint such that ∃μ ∈ R, A ≥ μ 1. 
Let M := (A − μ + 1)1/2 and

HA
k,p(E) :=

{
M−kTM−k

∣∣ T = T ∗ , T ∈ Lp(E)
}
,

equipped with the norm ‖T‖k,p,A = ‖MkTMk‖p, where ‖X‖p = Tr[|X|p]1/p for 1 ≤ p < ∞ or ‖X‖B(E)
for p = ∞ (we write L∞(E) for B(E)). We adopt the special notations H(E) := HA

0,∞(E) for the space 
of bounded self-adjoint operators on E and HA

1 (E) := HA
1,1(E) for a weighted space of trace-class opera-

tors on E.
Let W ∈ B(HA

1 (E); H(E)) be such that

1.
(
W(T )M−1)(E) ⊆ D(M) for all T ∈ HA

1 (E),
2.
(
T �→ MW(T )M−1) ∈ B(HA

1 (E); H(E)),
3. ∀T, S ∈ HA

1 (E): Tr[W(T )S] = Tr[W(S)T ].

Then

• For any T0 ∈ HA
1 (E) there exists t0 > 0 and T ∈ C([0, t0); HA

1 (E)) such that, ∀t ∈ [0, t0),

T (t) = e−itA T0 e
itA − i

t∫
0

e−i(t−s)A [W(T (s)), T (s)
]
ei(t−s)A ds .

Such a function T is called a local mild solution of the TDHF equation and, provided its interval of 
definition is maximal, it is unique.

• If, moreover, T0 ∈ HA
2,1(E) then T ∈ C1([0, t0); HA

1 (E)) and{
idTdt (t) =

[
A, T (t)

]
+
[
W(T (t)) , T (t)

]
,

T (0) = T0.

Such a function T is called a classical solution of the TDHF equation.
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• Any mild solution to the TDHF equation satisfies

∀t ∈ [0, t0) , Tr
[
MT (t)M

]
+ 1

2 Tr
[
T (t)W(T (t))

]
= Tr
[
MT0M

]
+ 1

2 Tr
[
T0 W(T0)

]
.

• If ∃k1 ∈ R such that1

(
T ∈ HA

1 (E) , 0 ≤ T ≤ 1
)

⇒
(
W(T ) ≥ k1

)
,

and T0 ∈ HA
1 (E), 0 ≤ T0 ≤ 1, then T can be extended to the entire positive real axis. Moreover if 

T0 ∈ H2,1
A (E), then T is the unique global classical solution.

Remark A.2. In [18] the space HA
2,1(E) is not used. They use a space larger than HA

2,1(E) which is more 
natural, but less explicit. As it is enough for us to use classical solutions for initial data in HA

2,1(E) and then 
use a density result, we restrict ourselves to this framework.

We now quote a result which, although not explicitly stated in [18], is a direct consequence of [18] along 
with [58].

Proposition A.3. The map

HA
1 (E) × [0,∞) → HA

1 (E)

(T0, t) �→ T (t) ,

where T (t) is the (mild) solution to the TDHF equation with initial data T0, is jointly continuous in T0 and t.

Indeed the proof of existence and uniqueness in [18] is based on the results in [58] which also ensure the 
continuity with respect to the initial data (see [58, Corollary 1.5, p. 350]).

It was shown in [18] that those results apply to the case E = h = L2(R3), A = −Δ,

W(γ) = Tr2
[
v(2)(1 − X)(1 ⊗ γ)

]
,

and v(2) = |x − y|−1. The proof then extends to the case A = h(1) with h(1) = −CΔ + w(x), where the 
external potential w is an infinitesimal perturbation of the Laplacian.

Appendix B. Some estimates of the direct term and the kinetic energy

The dynamics is the free dynamics to leading order in the λK1/2N1/6t ∼ 1 regime. We now substantiate 
by heuristic argument that, in the particular case of the Coulomb interaction potential, if λK1/2N1/6t is 
assumed to be of order one, which is the regime where our estimates are relevant, then the evolution is the 
free evolution to leading order. Note that the exchange term is expected to be subleading with respect to 
the direct term; we thus neglect the exchange term in the following computation.

We now estimate the effect of the direct term on the time derivative of the average momentum per 
particle. We denote the Hartree–Fock density at time t by fHF,t =

∑N
j=1 |ϕt,j |2; thus the direct term is 

the convolution λv ∗ fHF,t. For the absolute value of the time derivative of the expectation value of the 
momentum per particle we find, using |∇v| = 3v2 and (68) with (69),

1 There was a typographical error in Assumption iv) in [18], namely, W(T )T ≥ k1 shall be read W(T ) ≥ k1.
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∣∣N−1∂t Tr
(
pt(−i∇)

)∣∣ = N−1 ∣∣Tr
(
pt[hHF ,∇]

)∣∣
≤ λN−1 ∣∣Tr

(
pt(∇v ∗ fHF,t)

)∣∣
≤ 3λN−1∥∥(v2 ∗ fHF,t)fHF,t

∥∥
1

≤ CλN−2/3K. (B.1)

After a time t the effect of the direct term on the momentum is thus expected to be of order λN−2/3Kt. Since 
λK1/2N1/6t is assumed to be of order one, the average change in momentum is of order K1/2N−5/6. Since 
this is much smaller than the average momentum of a particle (K/N)1/2, we conclude that the dynamics 
is, to leading order, free.

The estimate (14) allows to distinguish the free dynamics and the Hartree–Fock dynamics to the next or-
der. Again using heuristic arguments we substantiate that, for large enough kinetic energy K � N4/3, 
estimate (14) allows to distinguish the effect of the direct term on the evolution, i.e., our main result shows 
that the Hartree–Fock equation gives a better approximation to the Schrödinger equation than the free 
equation. This is because our convergence rate is N−1/6 (let us assume γ0 = p0), i.e., for λK1/2N1/6t of 
order 1, the error between Schrödinger and Hartree–Fock dynamics is for any bounded observable of order 
N−1/6. For K � N4/3 this rate is much smaller than the average change in momentum estimated above, 
i.e., N−1/6 
 K1/2N−5/6.
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