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In [10] Nam proved a Lieb-Thirring Inequality for the kinetic
energy of a fermionic quantum system, with almost optimal
(semi-classical) constant and a gradient correction term. We
present a stronger version of this inequality, with a much
simplified proof. As a corollary we obtain a simple proof of
the original Lieb—Thirring inequality.
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Let v be a positive trace-class operator on L?(RY) with density (i.e., diagonal) p.

Such operators naturally arise as reduced density matrices of many-particle quantum

systems. In the case of fermions, the Pauli principle dictates a bound on the eigenvalues

of v, which in the simplest (spinless) case reads v < 1. In this case, Lieb and Thirring

[7,8] proved a powerful lower bound on the kinetic energy Tr(—A)y, where A is the

Laplacian on R?, and the trace should really be interpreted as the one of the positive

operator —V+V. This bound is one of the key ingredients in their elegant proof of the

stability of matter, first proved by Dyson and Lenard in [1]. It can be interpreted as a

many-body uncertainly principle, and reads
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Te(~A)y > OFF / P2/ (1)
Rd

for some universal constant CII;T depending only on the space dimension d. The optimal
value of this constant is not known, and for d > 3 was conjectured by Lieb and Thirring
to equal the semi-classical Thomas-Fermi value, CIF = 471'#‘12F(1 4 d/2)?/4. We refer
to [3] for the currently best known lower bounds, as well as to [2] for further information
on Lieb—Thirring and related inequalities. We note that Lieb and Thirring proved (1)
by first proving a dual inequality on the sum of the negative eigenvalues of Schrédinger
operators, but direct proofs of (1) have since also been derived [11,9,3].

In [10] Nam proved a Lieb-Thirring inequality with constant arbitrarily close to C}¥,
at the expense of a gradient correction term. In this paper we present an improved version
of Nam’s inequality, with a much simpler proof. Our proof is inspired by [5, Thm. 3],
where an analogous upper bound is proved (on the kinetic energy density functional,
i.e., the infimum of Tr(—A)~y for given p). Interestingly, the method can also be used for
a lower bound, in a similar spirit as the method of coherent states, which can also be
applied to give bounds in both directions [6], but seems to be more useful for the study
of the dual problem, however.

Our main result is the following.

Theorem 1. Let n: R — R be a function with

n(t)?—=1= [ n(t)*tdt (2)
[

and let CT¥ = 471'%“1 +d/2)?/%. For any trace-class 0 < v < 1 on L*(R?) with
density p,

Tr(=A)y >

O;FF / 1+2/d 4 2 i 104\2
. i [ o= [1vvet [erea @)
(™ n(e2esian) ™, LA

We note that under the normalization conditions (2) we have [;*n(t)*t4"1dt > 1
by Jensen’s inequality. In order for this integral to be close to 1, n? needs to be close
to a d-distribution at 1, in which case the final factor in (3) necessarily becomes large,
however. A possible concrete choice is

n(t) = (re) "/ exp (—(e/2 + Int)?/(22)) (4)

for € > 0. Then fooo n'(t)*tdt = (2¢)~"! and

/n(t)zt”xdt =exp (ex(2+ z)/4)
0
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for any « € R. For this choice of  the bound (3) thus reads

TI‘(—A)’)/ > CdTFe—e(H-d/Q) /p1+2/d _ d%g / |v\/p‘2
Rd d

for any £ > 0. A similar bound was proved by Nam in [10], but with the exponent —1
of € in the gradient term replaced by —3 — 4/d. We don’t expect the exponent —1 to be
optimal, however. In fact, according to the Lieb—Thirring conjecture no correction term
to the semiclassical expression should be needed at all for d > 3. Some correction term is
needed for d < 2, but possibly the divergence of the prefactor as ¢ — 0 could be slower
than in our bound.

As already pointed out in [10], one can combine an inequality of the form (3) with
the Hoffmann-Ostenhof inequality [4]

(-A)p = [ VP )
Rd

to obtain a Lieb—Thirring inequality without gradient correction. The following is an
immediate consequence of (3) and (5).

Corollary 2. For any trace-class 0 <y <1 on L*(R%) with density p, we have

Tr(-A)y = CJ Ry [ 201 (6)
]Rd
with
1 1
([ n(t)2td+1dn)®* 1+ L [0 (t)2tdt

(7)

Ry = sup

where the supremum is over functions n satisfying the normalization conditions (2).

We shall show below that for d < 2, R4 can be calculated explicitly. In fact, Ry =
(—3/a)3/2* ~ 0.132, where a ~ —2.338 is the largest real zero of the Airy function, and
Ry = 1/4. We were not able to compute Ry for d > 3, but it can easily be obtained
numerically. For d = 3, we find R4 ~ 0.331. In all these cases, our result is weaker than
the best known one in [3], however, and also weaker than the one obtained in [11] where
(6) was proved with Rq =d/(d + 4).

Proof of Theorem 1. The starting point is the following IMS type formula for any posi-
tive function f: R? — R,

a= [utassnsaw/snt + TLOE [rea
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where we used the first normalization condition in (2). This follows from

Lo L p2 2

59 A+ §A9 = 0A0 + (V0)

applied to 8(z) = n(t/f(x)). As a consequence, we have

2 i d
Tr(—A)y = — / Vfé/ (t)2tdt+//pzwp,tlvlwp,ﬁ;tdp

Rd 0 Rd 0O

where 1, () = (27)~%2e%p(t/ f(z)). Note also that

// (Wp,elY[ep,e)dt dp = /pr/n )*tdt = /pf2

Rd 0

where we used the second normalization condition in (2). Hence

Tr(-A)y = — / |ij2”|2/ (t)2tdt+/pf2
0

//P—t¢mw%>

R4 0

Since 0 < v < 1 by assumption, we can get a lower bound on the last term as

//p _t )Wt [V [¥p,e) dp>//p _t2 )—1¥p,e |2—dp
Rd O Rd O
where (-)_ = min{0, - } denotes the negative part. Since
2 1 2
Il = s [ ntt/7(e) s
Rd
we have
//p—t_wWW—@——()d/<bm%m/ﬂ“/MWﬁ“w
R? 0 Ipi<1 R 0

Altogether, we have thus shown that
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o

|Vf|2 / 2 2
Tr(-A)y > — | p—5— [ W) tdt+ [ pf
1 o0
—oa | QA =pdp [ U2 [ dt
(&) pgl R[ 0/

We now choose f = cp'/? and optimize over ¢ > 0. This gives (3). O

Finally, we shall analyze the optimization problem in (7). Let e¢; > 0 denote the
ground state energy of —02 — t~10; + d?/(4t?) +t? on L*(R,tdt) (or, equivalently, of
—A + |z|? on L2(R9*+2)). We claim that

d d+2 1+2/d
Ra = 2 ( 2eq ) (8)

To see this, let us note that by a straightforward scaling argument we can rewrite R;l

L _4 2,d+1 2/d d? ) )
= -5 inf )2t dt Lt 02 ) ¢t
Rq d? HanI;:1 (/77( ) > / <4t277( ) +n'(t) )

4 aN2IT g 22 . 1+2/d
“wat () [ (e o) al o

where |n]|2 denotes the L?(R.,tdt) norm, and we used the simple identity ab® =
ﬁ infyx~o A™%(a + Ab)1T® for positive numbers a, b and z. Taking first the infi-
mum over 7 for fixed A leads to the ground state energy of —02 — =10, +d?/(4t%) + \t?,
which a change of variables shows to be equal to A*/(?+2)e;. Hence we arrive at (8).
For d = 1, once readily checks that the ground state of —02 — t719, + 1/(4t%) + ¢
equals t~/2Ai(t + a) with a the largest real zero of the Airy function Ai. In particular,

as

e1 = —a. For d = 2 we find e3 = 4 (the ground state energy of —A + |z|? on R%), and
the ground state of —97 —t=19; + 1/t? + 2 is given by te=t/2,

One can also check that Ry — 1 as d — oo. In fact, using (4) as a trial state and
optimizing over the choice of ¢, one finds

2d?
Vit mas 1 1+d/2 242 1/
1/1+m+1
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