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Abstract

In this paper, we determine the motivic class — in
particular, the weight polynomial and conjecturally the
Poincaré polynomial — of the open de Rham space,
defined and studied by Boalch, of certain moduli spaces
of irregular meromorphic connections on the trivial
rank n bundle on P!. The computation is by motivic
Fourier transform. We show that the result satisfies the
purity conjecture, that is, it agrees with the pure part
of the conjectured mixed Hodge polynomial of the cor-
responding wild character variety. We also identify the
open de Rham spaces with quiver varieties with mul-
tiplicities of Yamakawa and Geiss-Leclerc-Schroer. We
finish with constructing natural complete hyperkéhler
metrics on them, which in the four-dimensional cases
are expected to be of type ALF.
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1 | INTRODUCTION

In the paper [27], the Hodge structure on the cohomology of character varieties of representations
of the fundamental group of a Riemann surface was studied, using arithmetic harmonic analysis.
It resulted in a conjecture [27, Conjecture 4.1] on the mixed Hodge polynomial and observations
[27, Remark 4.4.2] on the pure part. This study was extended to character varieties of punctured
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960 | HAUSEL ET AL.

Riemann surfaces in [24], where a more geometric purity conjecture [24, Remark 1.3.1] appeared.
First, we recall this conjecture.

1.1 | Tame purity conjecture

Fork,n € Z.,letu = (i, ..., u*) € P¥ be a k-tuple of partitions of n. Let G := GL,(C). An orbit
O C g := gl,(C) for the adjoint action of G has type u € P, if the partition given by the multiset
of multiplicities of the eigenvalues of any element in O is u. Let (O, ..., O;) be a generic k-tuple
of semisimple adjoint orbits in g of type u in the sense of Definition 3.1.6. Then the variety

M; ={(A, Ay, ...,A ) | A €0, Al + - + A, =0}//G, (1.1.1)

constructed in [7, pp. 141-142] as an affine geometric invariant theory (GIT) quotient by the
diagonal conjugation action of G is smooth.

Fix distinct points a,, ..., a; € P!\ {o0}. A point of M; represented by (4, A4,, ..., A;) yields a
logarithmic connection

k
Yazes
i=1 i
on the trivial rank n bundle on P! with residue in O; at the point a; for 1 < i < k. We call M,} the
tame open de Rham space, as it is open in the full moduli space of flat rank n connections on P!
with logarithmic singularities and prescribed adjoint orbit of residues around g;.

Defining the conjugacy class C; = exp(27i©;) C G, we get a generic k-tuple (Cy,...,C;) of
semisimple conjugacy classes of type u. We define the tame character variety of type u as the
smooth affine GIT quotient [7, pp. 141-142]

ME = {My, ..., M) | M; € C;, My - My =1,}//G, (11.2)

where 1, is the n X n identity matrix.

The character variety parameterizes isomorphism classes of n-dimensional representations
of the fundamental group of P!\ {a,, ..., a;}, with monodromy around q; in C;. One has the
Riemann-Hilbert monodromy map

. * M
v, - M#—>MB,

taking the flat connection Z;‘zl A, i_i to the representation given by its monodromy along loops
i

in P!\ {a, ..., a;}. Although this monodromy map is not algebraic, we have the following.

Conjecture 1.1.3 (Purity conjecture). The map v} : H*(ME, Q) — H*(M;,Q) is surjective, it
preserves mixed Hodge structures and is an isomorphism on the pure parts.

As the mixed Hodge structure of M,’; is known to be pure [24, Proposition 2.2.6], the conjecture
implies that the pure part of the cohomology of Mﬁ is isomorphic to the full cohomology of M,’;

The consistency of [24, Conjecture 1.2.1] on the mixed Hodge polynomial of Mﬁ with Conjec-
ture 1.1.3 above was tested by checking in [24, Theorem 1.3.1] that the pure part of the conjectured
mixed Hodge polynomial of M’]; agrees with the weight polynomial of M;
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The proof of the purity of H *(M; Q) in [24, Proposition 2.2.6] proceeds by recalling [15] the
identification of M; as a certain star-shaped Nakajima quiver variety. In particular, M; acquires a
natural complete hyperkdhler metric of ALE type. For example, for the star-shaped affine Dynkin
diagrams of D,, E, E,, and Eg together with an imaginary root, we obtain the corresponding
asymptotically locally Eucledian (ALE) gravitational instantons of Kronheimer [36].

1.2 | Irregular purity conjecture

The tame moduli spaces and the Riemann-Hilbert monodromy map above were generalized to
allow irregular singularities in [7]. The aim of the present paper is to extend the above purity ideas
to the case of meromorphic connections with irregular singularities.

Consider the following analog of (1.1.1). Fix k,n,s € Z., and we will take u and (O, ..., Oy)
as in Section 1.1. In addition, for 1 < i < s, let m; € Z,; and consider the truncated polynomial
ring R, 1= C[z]/(z™), and the group GL,(R,, ) of invertible matrices over R, . Let T C G be
the maximal torus of diagonal matrices and t denote its Lie algebra. We will fix an element of the
form

Ccl= 2ty e (1.2.1)

with Ct € t, further assuming that C! has distinct eigenvalues. An element g € GL,,(R,, ) actson
J m; i

C! by conjugation, viewing both ¢ and C! as matrices over the ring of Laurent polynomials over z;
however, we will truncate any terms with nonnegative powers of z. We denote the GL,,(R,,, )-orbit
of C! under this action by O(C?) (it is explained in Section 2.1 how we may view C’ as an element of
the dual of the Lie algebra of GLn(Rmi ), and O(C?) as its coadjoint orbit). Observe that G = GL,,(C)
sits in each GLn(Rmi) as a subgroup and so acts on each O(C?); in fact, given an element

Yi i Yi
i M e i
Y'=—2 e oCh, (1.2.2)
the G-action is by conjugation on each term Y;) Now, for1 <i < s,wesetr; :=m; — 1, and write
= (ry,...,1,) for the tuple. We may then construct the (i lrregular) open de Rham space as the

smooth affine GIT quotient

k s k s
M, = {(Al,...,Ak,Yl,...,YS)eHijHO(Cl) DY A+ Y =0}//G
j=1 i=1 j=1 i=1

One likewise has an interpretation of M‘j; . asamoduli space of meromorphic connections (see
Section 3.2), this time with poles of higher order, on the trivial rank n vector bundle over PL. The
class of (A i Y?) yields a connection

N

k
Z;Afz—a +ZZ P(Z_b)p

i=1 p=1

for a set of distinct poles {aj, ..., ay, by, ..., b} € P! \ {oo}.
The definition of the corresponding wild character variety M%", which is the space of mon-
odromy data for moduli spaces of irregular connections, is a little more involved than in the
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962 | HAUSEL ET AL.

logarithmic case (see [8, Equation (2)]). For the poles of higher order b;, in addition to the topo-
logical monodromy, one must also take into account the Stokes data, which distinguish analytic
isomorphism classes of locally defined connections from formal ones. However, even in this irreg-
ular case, the wild character variety retains certain similarities with the character variety defined
above at (1.1.2): it is a smooth affine variety defined only in terms of G, certain algebraic subgroups
of G, and orbits in them, and may be viewed as a space of “Stokes representations” [7, §3], though
we will not be working with this space directly.
There is again a Riemann-Hilbert monodromy map [8, Corollary 1]

viM - ME" (1.2.3)

in this irregular case, which takes a connection to its monodromy data. An explanation of why
the wild character variety takes the form that it does and a detailed description of the monodromy
map v may be found at [7, §3]. We then have the following.

Conjecture 1.2.4 (Irregular purity conjecture). The irregular Riemann-Hilbert map v (1.2.3)
induces a surjective map v* : H* (M’];’r, Q) - H* (M; » @) which preserves mixed Hodge structures
and is an isomorphism on the pure parts.

1.3 | Main results and layout of the paper

To formulate our main result, we fix integers g > 0 and k > 0. Let X; = {X; 1, X1 5, ...}, ., X =
{Xk.1> Xk 2, - } be k sets of infinitely many independent variables and let A(Xy, ..., X;) be the ring
of functions separately symmetric in each of the sets of variables.

We define the Cauchy kernel

k

Q(z,w) := 2 H;(z,w) Hﬁl(zz, w?x;) € A(Xq, ..., Xg) @, Az, w),
lep i=1

where
(Z2a+1 _ w21+1)2g

(22a+2 _ wzl)(zza _ w21+2)

Hy(z,w) :=[]

is a (z, w)-deformation of the (2¢g — 2)th power of the standard hook polynomial — where the
product goes through the boxes in the Young tableaux of 4, and a and [ are the arm length and leg
length of the corresponding box — and

H,(z*, w%x;) € Ax) ®, Q(g, 1)

is the modified Macdonald symmetric function defined in [22, (11)]; see [24, §2.3.4] for more
details. Finally, we let

H,u,r(z’ w) =
(12 = 1)1~ w){Log(Qs ). iy () ® =+ ® Iy, (5 ® 510y (s1) ® - B 510, () ),

where h,(x;) are the complete symmetric functions, s;»)(X;) are the Schur symmetric functions
in the corresponding variables, and (-, -) is the extended Hall pairing and Log is the plethystic
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logarithm. The notation is explained in more detail in Section 5.2; see also [24, §2.3] for detailed
explanations of the formalism.

Note that H,,(—z,w) as defined is a rational function in Q(z,w), but conjecturally,
because of Conjecture 1.3.2 below, it is a polynomial function in Q[z, w] with positive integer
coefficients.

One of our main results is the computation of the weight polynomial of the open de Rham space
M;,r.

Theorem 1.3.1. Y, ;. ,(—1) dlmC(GrWHl(M O)qk = qdﬂ’f/zHﬁ’,(O,ql/z).

wr’
The main conjecture of [26, Conjecture 0.2.2] — formulated here for compactly supported
cohomology by Poincaré duality for the smooth variety M’];’r — claims that

Conjecture 1.3.2.

Z dimg (Griy H{(ML™,0))q"t' = (qtz)du’r/zﬂ-ﬂﬁ’r(—q_l/z,tql/z).
k>0

Thus, if H *(M* , @) were pure, our main Theorem 1.3.1 would be a consequence of our purity
conjecture Conjectures 1.2.4 and 1.3.2. However, we were unable to prove that H*(M* , Q) is
always pure and we only state it as Conjecture 5.2.7.

The proof of Theorem 1.3.1 is first performed, as Theorem 4.3.1, in the case of k = 0, that is, only
irregular punctures. In this case, we can proceed by motivic Fourier transform, as in [52], and the
result will be a motivic extension of Theorem 1.3.1. The general case — Theorems 5.1.6 and 5.2.3
— is then proved via the arithmetic harmonic analysis technique of [24].

As an analog of Crawley-Boevey’s result [15] for the irregular case, in Section 6, we prove that
the open de Rham spaces M* are isomorphic to quiver varieties with multiplicities. These vari-
eties have been considered by Yamakawa [54] in the rank 2 case and their defining equations, in
terms of certain preprojective algebras, have been studied by Geiss-Leclerc-Schréer [23] in gen-
eral. Then, in Section 6.4.2, we consider the star-shaped nonsimply laced affine Dynkin diagrams
that correspond to open de Rham spaces of dimension 2. Here, we discuss the main results of the
paper in these special toy cases.

Finally, in Section 7, we prove the existence of natural complete hyperkédhler metrics on M,
when the irregular poles have order 2. Existence of such metrics was discussed in [10, §3.1]), but
as there seems to be no complete proofs given in the literature, we provide the details here. In
the (real) four-dimensional toy example cases, for example, those appearing in Section 6.4.2, we
expect the resulting metrics to be of type ALF, i.e. asymptotically locally flat.

wr’

2 | PRELIMINARIES

2.1 | Groups, Lie algebras, and their duals over truncated polynomial
rings

Let us fix a perfect base field K and an integer n > 1. We will set G : = GL,(K) and denote by g :
gl,,(K) its Lie algebra. Furthermore, T C G will denote the standard maximal torus consisting of
the invertible diagonal matrices, t C g its Lie algebra, and t"8 C t the subset of elements with
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964 | HAUSEL ET AL.

distinct eigenvalues. Fix another integer m > 1 and let R,, := K[[z]|/(z™) = K[z]/(z™). Then we
may also consider these groups over R,

G,, :=GL,(R,) = {go +zg + -+ melgm_l | 9 €G, 915591 € g}, (2.11)

8n 1=al,(R,) = {Xo +2zX, + - +2"'X,_, | X; € g},

and we define T,, and t,,, similarly. We will regard G,,, and T,,, as algebraic groups over K: from the
description above, G,,, = G X ¢! as a K-variety; writing out the components of each z' under the
group law in G,,, it is easy to see that the operation is well defined on tuples, and so, one indeed
gets an algebraic group over K. Of course, g, is a vector space over K.

Observe that GL,(R,,) is not reductive; its unipotent radical G, C G,, and Lie algebra g}, are,
respectively,

G, =GL}(R,) ={1, +zb; +z’b, + - + 2" 'b,,_, | b; € g},
g, = oL, (R,)) = {zX, + 2°X, + - +2"7'X,,_ | X, € g},

where 1, denotes the n X n identity matrix.
There is a semidirect product decomposition

G, =G XG, (2.1.2)
where we identify G with the subgroup of those elements satisfying
g ="=0n1= 0’

in the notation of (2.1.1); we will often refer to G identified as such as the subgroup of constant
elements in G,,,. We thus obtain a direct sum decomposition

On =6, ®g (21.3)
this decomposition is preserved by the adjoint action of G but not of G,,. We will write T;n 1=

T,,NG) andt) :=t,Ng..
It will be convenient to identify the dual vector space gy, with

z7 gy, = {z—’"ym +z27 VY, 4+ 27NY

Y, e g} (2.1.4)

via the trace residue pairing. This means that for X € g, and Y € z7™g,,,, we set

m
(Y,X) :=Res,otrYX = ) trY;X; ;. (2.1.5)
i=1

Under this identification, the dual gV of the subgroup G C G,, corresponds to the subspace z~g C
z ™g,, and (grln)v to those elements in z7g,, having zero residue term, thatis, Y; = 0. We write

Toes t Gy =8, T 18y~ (g,)" (2.1.6)
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ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES 965

for the natural projections. The latter projection may be identified with
m

27" > 2 "8 /27 Qs (2.1.7)

so we are simply truncating the residue term.
The adjoint and coadjoint actions of G, on g,, and g;, will both be denoted by Ad and are
defined by the same formula: for g € G,,,,

Ad X =gXg™', Xeg, Ad,Y =gYg!, Yeg),.
What we mean in the latter case is that we consider g, g~ and Y as matrix-valued Laurent poly-

nomials in z and we truncate all terms of nonnegative degree in z after multiplying. With this
convention, we have

(Ad,Y,X) =(Y,Ad,1X).

Consider a tuple” 2 = (4, ..., ;) € N'*! with Y'*1 2, = n. Let L; C G be the subgroup of block
diagonal matrices, with blocks of sizes A, ..., 4;, that is,

L, = {diag(fo, - f)EG : fie GL/li(K)}. (2.1.8)
Let [; denote its Lie algebra. The center of [ is given by
3([1) = {diag(coﬂ/lo, ’Clﬂ/ll) L CpseeesCl € K} Ct.
We will write 3(1,;)™8 for the subset of 3(1;) for which the ¢; are pairwise distinct. The center of
L, satisfies Z(L;) = 3(I;) N G, and can be described as the subset of 3(I;) with all ¢; € K*. An
important special case iswhen A = (1, ...,1),soone has [; = t and 3(I;)"® = t"8. We will also use

the notation as above for these groups, namely,

L/l,m = Ll(Rm) Lim = Ll,m N G%n Iﬂ,m = Il(Rm) I/ll,m = I/l,m n gin

2.2 | Coadjoint orbits

Coadjoint orbits for groups of the form G,,, will play a prominent role in this paper, so here we
will set some notation and record some results that will be used later.

2.21 | Conventions and variety structure

By a diagonal element or formal type of order m, we will mean an element in g/, of the form

_ c
nl 4+ Let =z, withC, etK), 1<£<m (2.21)
Z

T We will use N and Z. , interchangeably.
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966 | HAUSEL ET AL.

By permuting diagonal entries if necessary, C may be written
C= diag(coﬂﬂo, clﬂ,ll,...,clﬂ&l) (2.2.2)

for some partition (4, ..., 4;) of n, with the ¢ € z7™R,,, distinct. In fact, we will make the stronger
assumption that forall0 < i # j <1

z"(c' = c/) eR). (2.2.3)

This assumption is stronger than what is required, for example, in [6, Main assumption], but
many of our arguments will rely crucially on (2.2.3).

If we write ¢! = :—’,"n + -+ C?with cif € K, 1< 7 < m, then (2.2.3) is equivalent to

i J
C,, # Cm

forall 0 < i # j < [; thatis, all the leading coefficients are distinct. We fix such a diagonal element
C and write O(C) for the coadjoint orbit of C, that is, the image of the orbit map

1 : Gy = gl

g Adg(C).

Lemma 2.2.4. Let C be a diagonal element satisfying (2.2.3).

(a) The coadjoint orbit O(C) is an affine variety.
(b) Let ZGm(C) denote the centralizer of C in G,,. There is a G,,-equivariant isomorphism ¢ :

G, /Zcm ©) N O(C) such that the diagram

N\

G/ Z,(C) ———=0(C)

commutes. In particular, O(C) is a homogeneous space for G,,, and 1 is a categorical quotient.
We will give a description of the centralizers Zg, (C) for certain C in Lemma 2.2.8(d) below.
Proof. To see (a), we note that O(C) will be the set of elements satisfying the appropriate minimal
polynomial over R,,, which may then be written down as equations over K. To be explicit about
this, let Y € g/, be written as in (2.1.4); we consider z™Y as an element of g,, by writing
Z"Y =Y, +2zY g+ + 2"
Similarly, for 1 < i < I, we consider zZMel e R,, by writing
T

C —C +ZCm 1
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Then the minimal polynomial as mentioned gives defining equations for O(C) in the sense that
the following matrix over R,, is zero if and only if Y € O(C):

I
(™Y —z"c%1,) - (™Y - z"cl1)).

Of course, this can be expanded and the coefficient of each power z' gives a matrix equation over
IK; the individual entries of all of these matrices give the algebraic equations for O(C). The fact
that these are indeed defining equations for @(C) can be proved in the same way one proves the
theorem that asserts that a matrix is diagonalizable if and only if its minimal polynomial has
distinct roots; for this, we need to use the assumption (2.2.3).

For (b), notice that both G and O@(C) are smooth over K and for every closed point A € O(C),
one has dim7~!(A) = dim Zg, (C). Since 7) is surjective, it is thus faithfully flat by [43, Theorem
23.1] and [51, https://stacks.math.columbia.edu/tag/00HQ Tag 00HQ] and ¢ an isomorphism by
[45, Proposition 7.11]. O

2.2.2 | Computational lemmata

Fix a tuple 1 = (A, ...,4;) € N*! with Y4, = n and consider the group L, C G as in (2.1.8).
Let I;’Ld C g denote the subspace consisting of matrices with zeros on the diagonal blocks (of
course, the superscript can be read, “off diagonal”), so that we have an obvious L,-invariant
decomposition

g=1 01 (2.2.5)
Inthecase A =(1,...,1), we set g°d = Ij{d, so that this is the space of matrices with zeroes along

the main diagonal.
Letb =1, + YI", z'b; € G! . We may write

where the w; € g are given by

i

wp= (=P Y by by, (2.2.6)
p=1 (A1 Agunemid p)ENP
Ayt Ap=i

Suppose A =Y. z7/A; €gy. Using the fact that w; = —b; +.., we have the explicit

formula
m—1 m—1
Ad,A = <11n + zibi>A<ﬂn > ziwi>

i=1 i=1

m—1 p p—1p—i
=A+ ) z_m+p<2[bi,Am+i_p] +) Z[bi,Am_pHH]wj). (22.7)
p=1 i=1

i=1 j=1
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Lemma 2.2.8.

() If XegandY € 3(1,), then [X,Y] € Ij’ld.
) If X eg Y € 3(1)8and [X,Y] € 1, (orequivalently, by (2.2.5), [X,Y] = 0), then X € 1.
(c) Let

m
C=)z'c ey, cty,

i=1

be given as in (2.2.2) with C,,, € 3(1)*¢ and suppose g € G, is such that Ad ,C — C € I\A’ 1
Then g € Ly , and Ad,C = C.
(d) Let C beasin (c). Then the centralizers of C and C' := 7, (C) € ()" are

m—1
Zg, (CO)=Ly, ZG}n(Cl) = GE; = {b =1,+ 2 z'b; € G,, | by, .., by € IA}.
j=1

The superscript rc stands for “regular centralizer” that is justified by the statement.
(e) Letg € Z(Ly) and h € G}, such thathgh™ € L, .. Then hgh™' = g.

Proof. The first two statements can be seen by writing everything out as block matrices. For part
(c), by (2.1.2), we may write g = g,b for some g, € G, b € G}n. Thus, Ad,C can be obtained by
applying Ad, to the expression in (2.2.7). The z7™ term is then Ad 9o Cms the hypothesis is that
this is C,,,. Then part (b) implies that g € [; N G = L;. Already this shows that Ad 4 C = C, since
all C; € 3(1).

Now, the z=("=D term in Ad gC — Cis then Adg0 [by,C,,]- The assumption is that this liesin I;;
by L,-invariance, [b;, C,,,] € [; and again by (b), b; € I,. By induction, we may assume by, ..., b, €
I;. We will show that b, ,; € [;. Then from (2.2.7), the z~("~"~D-term of Ad,C—-Cis

r+1 ror—i+l
Adgo (Z[bl’ Cm+i—r—1] + Z Z [bi, Cm_,+i+j_1]wj>.
i=1

i=1 j=1

The induction hypothesis implies that the only commutator that does not vanish is [b,;,C,,],
and then, by assumption, this lies in [;, and again, we conclude by (b). This shows that
all b; € [; and hence h € Li’m; as go €L, g = gob € L;,,,. Furthermore, as above, we can
show that all commutators in (2.2.7) vanish, and we have already noted AdgoC = C; hence
Ad,C=C.

The first assertion in part (d) follows from (c). The second assertion uses the same argument,
and one simply needs to observe that we are omitting the residue term when computing in g}n,
and hence, no condition is imposed on b,,_;.

Part (e) is proved with an inductive argument similar to that of (c), using (2.2.6). O

Next, we study regular semisimple coadjoint orbits. We take C € ty , let C! :=7;,(C) € (t})"
with C,,, € t"8. We will write O(C) for the G,,-coadjoint orbit through C and O(C") for the G}, -
coadjoint orbit through C*. These are coadjoint orbits for different groups.

I0111PUOD PUe SWB | 34} 38S *[7202/T0/0€] Uo Ateiqiauniuo A8 |Im ‘AReiqi - eLisny ABojouyos | puy 80us S JO aIMinsu| Aq G552T Swid/ZTTT 0T/1I0p/00’ A3 1M AR 1 [Bul U0"d0SYTeLUpUO //Sdiy WOaj PapeoiumMoq 'y ‘€202 ‘Xv209rT

foum:

5US0 1 SUOLULLIOD BAIES.D) 3 et (dde au) Aq peusenoh a1 Sapie YO ‘8sn Jo Sani 1oy Ariq 1T auljuQ A8]IM uo



ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES 969

Let

m—1
G := {b =1,+ ) 2/b; €G) | by, by EgOd},
j=1

m—1
GLod ;= {b =1,+ ), 2/b; € Gyl | by =0}'

j=1

Observe that Gi;lOd C G‘r),f are subvarieties of G}%, though not subgroups, isomorphic to affine

spaces of dimensions (m — 2)n(n — 1) and (m — 1)n(n — 1), respectively.

Lemma 2.2.9.

(a) The restriction of the multiplication map yields isomorphisms
d 1 "l 1,0d Lrc = Al
G, xT, — G, G, xXG, " —G,,.
In other words, every b € G}n has unique factorizations
b= bode b= bl,odbrc

with b°d e Gfr‘li, bT eT!, plod g G,qud, b e Gi,fc, and the map taking b to any one of these

factors is a morphism.
(b) The morphism Gi,’l‘)d - OChH

b [ =d Adbc‘1

is an isomorphism. In particular, O(C') = A(m—2n(n—1)
(c) Thereis an isomorphism

r: (G x G;’;‘)/T —~0C)  (g,b) ~ Ad,,C,

where the action of T on G X G is given by (gy, b)tg = (goto, Ad,-1b). In particular; G X G —
(Gx Ggf) /T is a Zariski locally trivial principal T-bundle.

Proof. To prove part (a), consider elements

m—1 m—1 m—1
x:=1,+ ) zlx;, yi=1,+ ) zly;, b:=1,+ ) z/b;€G),.
j=1 j=1 j=1
Then the product expression xy = b imposes the relations
j-1
bj=x;+yj+ ) X;j_s (2.2.10)
f=1
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for 1 < j < m — 1. Assuming that b € G}, is arbitrary, the equation b; = x; + y; allows us to take
x; € g%, y; € t to be the off-diagonal and diagonal parts of b, , respectively. The relations (2.2.10)
allow us to continue this inductively, so thatall x; € g°dand y ; € t, noting that at each stage, one
has an algebraic expression in terms of the b;. This gives the first factorization. The second one
is obtained in exactly the same way, except that the conditions are that x,,_; = 0, but there is no
condition on y,,_;, which makes up for it.

Part (b) follows directly from Lemma 2.2.8(d) and part (a).

For part (c), note that Lemma 2.2.4(b), together with Lemma 2.2.8(d), gives an isomorphism

¢:G,/T, —> O(C). Observe that G,, = G X G}, and hence, as a variety, one has
- 1 d gl
G, =GxG, =GxG;'xT,,

by part (a). Taking the quotient by T,, = T X T}n then gives the desired isomorphism. One obtains
the indicated T-action on G X G;‘f by identifying G X G}n with G,, via multiplication. The final
statement follows since G — G/T is a Zariski locally trivial principal T-bundle, as T is a special
group [48, §4.3]. O

2.3 | Grothendieck rings with exponentials

Following [14] and [12], in this section, we introduce Grothendieck rings with exponentials, a
naive notion of motivic Fourier transform and convolution. Similar techniques were used in [52]
to compute the motivic classes of Nakajima quiver varieties. Throughout this section, K will
denote an arbitrary field; by a variety, we mean a separated scheme of finite type over K; and
by a morphism of varieties, we will mean a iK-morphism.

2.3.1 | Definitions

The Grothendieck ring of varieties, denoted by KVar, is the quotient of the free abelian group
generated by isomorphism classes of varieties modulo the relation

X-Z-U,

for X avariety, Z C X aclosed subvarietyand U = X \ Z. The multiplicationis given by [X] - [Y] =
[X X Y], where we write [X] for the equivalence class of a variety X in KVar.

The Grothendieck ring with exponentials KExpVar is defined similarly. Instead of varieties,
we consider pairs (X, f), where X is a variety and f : X - A! = Spec(K[T]) is a morphism.
A morphism of pairs u : (X, f) — (Y, ¢) is a morphism u : X — Y such that f = gou. Then
KExpVar is defined as the free abelian group generated by isomorphism classes of pairs modulo
the following relations.

(i) For a variety X, a morphism f : X — Al, a closed subvariety Z C X and U = X \ Z the
relation

X ) =2 fl2) = U, fly)-
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(ii) For avariety X and pry: : X X Al — Al the projection onto Al, the relation
(X x Al,pr/v).

The class of (X, f) in KExpVar will be denoted by [X, f]. We define the product of two
generators [X, f]and [Y, g] as

[X’f] : [Xag] = [XXY’foer+goer]a

where f o pry + go pry : X XY — Al is the morphism sending (x, y) to f(x) + g(y). This gives
KExpVar the structure of a commutative ring with identity [pt, 0].

Denote by L the class of Al in KVar, resp. (Al,0) in KExpVar. The localizations of KVar and
KExpVar with respect to the multiplicative subset generated by L and L" — 1, where n > 1, are
denoted by .# and &xp.# .

For a variety S, there is a straightforward generalization of the above construction to obtain
the relative Grothendieck rings KVarg, KExpVarg, #s, and &xp.#. For example, generators of
KExpVarg are pairs (X, f) where X is an S-variety (i.e., a variety with a morphism X — S) and
f : X > Al a morphism. The class of (X, f) in KExpVarg will be denoted by [X, f]g or simply
[X, f1if the base variety S is clear from the context.

The usual Grothendieck ring KVarg can be identified with the subring of KExpVarg generated
by pairs (X, 0), see [12, Lemma 1.1.3].

For a morphism of varieties u : S — T, we have induced maps

u, : KExpVarg - KExpVary, X, fls ~ [X, flr

u* : KExpVar; — KExpVarg, (X, flp = [X X7 S, f o prxls.

In general, u* is a morphism of rings and u, a morphism of additive groups.

2.3.2 | Realization morphisms

The rings KVar and KExpVar and their localizations .#,&xp.#, although easy to define,
are quite hard to understand concretely. To circumvent this, one usually considers realization
morphisms to simpler rings.

If K = [, isafinite field, there is a ring homomorphism KVar — Z sending the class of a variety
X/F, to the number of F,-rational point of X. More generally for S a variety over F,, we can
construct a realization from KExpVarg to the ring Map(S(F,), C) of complex valued functions on
S(F4) by sending the class of [X, f] to the function

SESFY~ Y W), (23.0)

xeX(Fg)

where W : F, — C* is a fixed nontrivial additive character and X the fiber over s. Under this
realization, for a morphism u : S — T, the operations u, and u* correspond to summation over
the fibers of u and composition with u, respectively.
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If K is a field of characteristic 0, whose transcendence degree over Q is at most the one of C/Q,
we can embed K into C and consider any variety over K as a variety over C. By the work of Deligne
[17,18], the compactly supported cohomology H’: (X, C) of any complex algebraic variety X carries
two natural filtrations, the weight and the Hodge filtration. Taking the dimensions of the graded
pieces, we obtain the compactly supported mixed Hodge numbers of X

Dg;t —di HeA, W i
RPEx) = dime (GriIGrY, HI(X,©)).

From these numbers, we define the E-polynomial as

EX:x,y)= Y (DT 0xPys. (23.2)
p,q,i=0

This way we obtain a morphism (see, e.g., [27, Appendix])
KVar - Z[x,y] [X]~ EX;x,y). (2.3.3)
It is not hard to see that E(L; x, y) = xy, and thus, this realization extends to a morphism

1. 1
%_)Z[xny] 59(1_()6)))”)3"21

These two realizations of KVar are related by the following theorem of Katz. We refer to [27,
Appendix] for the precise definition of a strongly polynomial count variety over C.

Theorem 2.3.4 [27, Theorem 6.1.2(3)]. If X over C is strongly polynomial count with counting
polynomial Px(t) € Z[t], then

E(X;x,y) = Px(xy).

In particular, in the situation of Theorem 2.3.4, the E-polynomial of X is a polynomial in one
variable, which we also call the weight polynomial

1 1
E(X;q) = E(X;q2,q2).

2.3.3 | Computational tools

We now introduce several tools for our computations in KVar and KExpVar, which are mostly
inspired by similar constructions over finite fields through the realization (2.3.1).

Fibrations
We say that f : X — Y isa Zariski locally-trivial fibration if Y admits an open covering Y = U;U;

such that f~1(U j) =2 F X U for some fixed variety F. In this case, we have the product formula

[X] =[FIlY] (2.3.5)
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in KVar as we can compute directly

X] = 2L UPI= D17 WUy nUI+ - = [FIIY ],

J J1<)2

Character sums
When computing character sums over finite fields, one has the following crucial identity:

dimV  f £ =
Zwmm={q /=0

Byt 0 otherwise,

where V is a finite-dimensional vector space over F, and f € VV a linear form. To establish
an analogous identity in the motivic setting, we let V' be a finite-dimensional vector space over
K and S a variety. We replace the linear form above with a family of affine linear forms, that
is, a morphism ¢ = (g;, 9,) : X = VV XK, where X is an S-variety. Then we define f to be the
morphism

fi XXV =K (x,0) = (g1(x), V) + gp(x).
Finally, we put Z = ¢;'(0).
Lemma 2.3.6 [52, Lemma 2.1]. With the notation above, we have the relation
XXV, f1=L9"7[Z, g1
in KExpVaryg. In particular, if X = SpecK and f € VY, we have [V, f] = 0 unless f = 0.
Fourier transforms
We now define the naive motivic Fourier transform for functions on a finite-dimensional K-vector

space V and the relevant inversion formula. All of this is a special case of [14, Section 7.1].

Definition 2.3.7. Letpy, : VX VY - Vand pyv : V X VY — VV be the obvious projections. The
naive Fourier transformation F, is defined as

F, : KExpVar,, — KExpVar ¢ = pyvi(pyd - [VXVY,()H]).

Here (,) : V X VV — K denotes the natural pairing. We will often write F instead of 7;, when no
ambiguity will arise from doing so.

Of course, the definition is again inspired by the finite field version, where one defines for any
function ¢ : V — C the Fourier transform at w € V'V by

F@w) = Y $0)¥(w,v)).

veVv

Notice that F is a homomorphism of groups, and thus, it is worth spelling out the definition
in the case when ¢ = [X, f] is the class of a generator in KExpVary,. Letting u : X — V be the
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structure morphism, we simply have
F(X,f1) =[X XV, fopry+ (uopry, pryv)l. (2.3.8)
We have the following version of Fourier inversion.
Proposition 2.3.9 [52, Proposition 2.2]. For every ¢ € KExpVar,,, we have the identity
F(F(@$) = L9™7 - i%(¢),
wherei : V — V is multiplication by —1.

Convolution
Finally, we introduce a motivic version of convolution.

Definition 2.3.10. Let R : KExpVar,, Xx KExpVar;,, - KExpVary,, be the natural morphism

sending two varieties over V to their product, and s : VXV — V the sum operation. The
convolution product is the associative and commutative operation

+: KExpVary X KExpVar;,, - KExpVar, (1,95) > D1 * Py = S R(P1, P2)-
As expected, the Fourier transform interchanges product and convolution product.
Proposition 2.3.11. For ¢,,¢, € KExpVary, we have
F(¢y * ¢,) = F($1)F(¢,).
Proof. As both F and # are bilinear, it is enough prove the identity for two generators

[X, f1,[Y, g] € KExpVar,, with respective structure morphisms u : X - V, v : Y — V. Using
(2.3.8), we can then directly compute

FAX, f1# 1Y, g]) = F(s[X XY, fopry +gopryl)
=[XXYXVY,fopry+gopry + <So(uXU)oerXy,per>].
On the other hand, using the natural isomorphism
XXV)Xpy Y XVY)2XXY XVY,
we get
FIX, fIF[Y,g] = [X x VY, f o pry + (uo pry, pryw)I[Y X V¥, g o pry + (vo pry, pryv)]
=[X XY X VY, foprg+gopry + (s0(uxv)o pryyy, pryv ),

and thus, F([X, f] % [Y, g]) = FIX, fIF[Y, g]. O
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Remark 2.3.12. We will use the convolution product to study equations in a product of varieties,
that is, consider V-varieties u; : X; — V say for i = 1, 2. Then it follows from the definition of
+ that for any v : Spec K — V, the class of {(x;,x,) € X; X X, | u;(x;) + u,(x,) = v} is given by
v*([X;] * [X,]). Proposition 2.3.11 allows us to compute the latter by understanding the Fourier
transforms F(X;) and F(X,) separately.

3 | OPEN DE RHAM SPACES

In this section, we define open de Rham spaces as an additive fusion of coadjoint orbits, similar
asin [29, §2]. They were first introduced in [7, Section 2] as certain moduli spaces of connections
on P!. We recall this viewpoint briefly in Section 3.2.

3.1 | Additive fusion products of coadjoint orbits

As before, let K be a fixed base field. Fix a diagonal element C € g, as in (2.2.1) and consider
its G,,-coadjoint orbit O(C) C g . In the case that K =R or C, G,, is a real or complex Lie
group, accordingly, and the coadjoint orbit @(C) admits a canonical symplectic form (the Kirillov—
Kostant-Souriau form) for which the coadjoint action is Hamiltonian with moment map given
by the inclusion pey : O(C) < gy, [2, §11.3.3.5, §11.3.3.8]. We may restrict the action on O(C)
to that of the constant subgroup G C G,,, using (2.1.2). The moment map o = Tye5 © He(c)
O(C) — z7'g = g for the restricted action is the composition of the inclusion and the projection
Tres - 8y, = ¢ (2.1.6), so simply takes the residue term

Y Y, Y Y
_m + m—1 + -+ -1 = _1 (3.1.1)
zm Zm—l z z

Now, ford € Z, let m; € Z,, for1<i< d,andlet C' € gy be diagonal elements and O(C")

their coadjoint orbits. We may form the product H?:] O(CY) that has the product symplectic
structure. It also carries a diagonal G-action for which the moment map is

n

. (3.1.2)
zZ

d d
e H@(ci) —qY, YL, YY) Z
i=1 i=1

In this case where K = R or C, we can then form the symplectic (Marsden-Weinstein) quotient
in the usual way. We now observe that if K is any field, then both (3.1.1) and (3.1.2) are defined
over K.

Definition 3.1.3. Let C = (C',...,C%) be a tuple of diagonal elements satisfying (2.2.3), so that

the product H?:l O(C?) is an affine variety (Lemma 2.2.4(a)). The open de Rham space M*(C) is
the affine GIT quotient

d
M*(C) = H@(Ci)// G := Spec (K[u~(0)]°).
i=1 0
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Except possibly in Section 6, we will typically impose two more conditions on C, regularity and
genericity.

Definition 3.1.4. A diagonal element C € g, of order m > 2 is regular if C,,, € t"#, that is, has
distinct eigenvalues. A d-tuple C = (C!, Cd ) is called regularif forall 1 < i < d with m; > 2, C!
is regular.

We now define genericity of the tuple C in a similar manner as in [24, 2.2.1]. Our more explicit
formulation will be used in later computations, see the proof of Theorem 4.3.1 and Lemma 4.3.11.
Define for I C {1, 2, ..., n} the matrix E; € g by

(Ep;ij = {1 fi=jel (3.1.5)

0 otherwise.

Definition 3.1.6. We call C generic if Z?:l tr Ci = 0 and for every integer n’ < n and subsets
I,...,I; c{1,...,n} of size n’, we have

zd: <c§,E,l_> £0, (3.17)

i=1

where (, ) is the pairing defined in (2.1.5). In other words, if C is generic, there are no nontrivial
subspaces V1, ..., V; € K" of the same dimension such that V; is invariant under C; for1 <i < d
and Y, trCi|y, = 0.

Now, let C be a regular generic tuple of formal types. We adapt the following notation so as
to later (Section 5.2) make comparisons with [26]. First, we order C?,...,C% in a way such that
my = =my =landmy,,,..,m > 2, withk + s = d. We write u = (u, ..., u¥) € P¥ for the
k-tuple of partitions of n defined by the multiplicities of the eigenvalues of C] for 1 <i < k.

When one is talking about a meromorphic connection having a formal type of order m at a pole
with a semisimple leading order term (of course, here we have only discussed such types of poles),
then it is standard terminology to refer to the number m — 1 as the Poincaré rank of the pole. For

our moduli spaces, since C’;;]:i €t for 1 < i < s, we will write r; := m,; — 1 for the Poincaré
rank of C* and record these in the s-tuple r = (rl, ..., ry). Finally, we write r = }°_ r; and call this

the total Poincaré rank.

Definition 3.1.8. For a regular generic C, we write M; instead of M*(C) and refer to it as the
generic open de Rham space of type (u, r). If, furthermore, k = 0 we write M;, . for M*(C).

Remark 3.1.9. This notation is justified since the invariants we compute in Sections 4 and 5 will
depend only on (i, r) and not on the actual eigenvalues of the formal types.

We will always assume s > 1 in this paper, in which case a generic C always exists if K is alge-
braically closed. This follows from [24, Lemma 2.2.2], because in our case when s > 1 in loc. cit.
both D =d = 1. If K = [ is a finite field, one needs an additional lower bound on g depending
on n and d to make sure that the Zariski-open subvariety of A" defined by (3.1.7) has an Fq-
rational point. We will not spell out an explicit bound here, as we are only interested in sufficiently
large q.
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Proposition 3.1.10. If nonempty, M;‘L » 18 smooth and equidimensional of dimension
k
dyr = dn? —sn +r(n* —n) — Z N —2(n? - 1), (3.1.11)

i=1
where for u = (u; 2 - > ;) € P, we define N(u) = 25:1 ,ujz__

Proof. We take  asin (3.1.2). Clearly, the scalars K* < G act trivially on x~1(0), hence the G-action
factors though PGL,, = G/K*. We show first that this PGL, -action is free on u~1(0).

Let (Al,...,AY) € u~(0) and g € G such that AdgAi = Al for 1 < i < d. We show now that g
is scalar, by looking at some nonzero eigenspace V of g. Then clearly Ai will preserve V for all i
and by the moment map condition };; A} = 0, we deduce }}; tr A]|;, = 0. The point is then that
for each i, there is a subspace Vl.’ of the same dimension as V such that

trAlly = trC|y. (3.1.12)

By the genericity of C (Definition 3.1.6), this implies then V' = V! = K" and hence g is scalar.

For 1 < i < k, (3.1.12) follows simply because A' and C* are conjugate in G. To prove (3.1.12) for
k+1<i<d wewrite A" = Ad,C' for some h € G,, . By conjugating A’ and g with the constant
term h, of h, we can assume without loss of generality h € G}ni, thatis, hy = 1. Then Aini = C;'ni €
t'®8 and thus g € T. Next, consider i = hgh~!, which satisfies Ad;C' = C'. By Lemma 2.2.8(c), we
have h € T, and then by Lemma 2.2.8(e) hgh™!' = g¢. This implies that h j preserves V for every
0<j<m;—1 and hence we have trA|, = tr(Ad,C")|y, = trAdy C'|y, = trC'|y,. This proves
(3.1.12) and hence PGL,, acts freely on x~1(0).

In particular, all the G-orbits in ©~1(0) are closed, and hence, they are in bijection with the
points of the GIT quotient [20, Theorem 6.1]. Furthermore, as y is a moment map, freeness of the
PGL,, action implies that 0 is a regular value of u, which, in turn, implies smoothness of ©~1(0)
and hence of M*(C). Looking at tangent spaces, we see that

d
dim M*(C) = dim [ ©(C") - 2dim PGL,.
i=1

The formula now follows since dim O(C?) = n?> — N(u!) for 1 <i < k and dim O(C**)) = (r; +
D(n?> —n)for1 <i<s. O

We will see in Corollary 5.1.8 that M; . isnonempty and connected ifd,, , > 0. For more general
(i.e., nongeneric) C, the nonemptiness of M*(C) has been determined in [28, Theorem 0.3].

3.2 | Moduli of connections

We now work over the field K = C, otherwise adopting the notation of Section 2.1 for groups and
Lie algebras. Let X be a Riemann surface and fix a point x € X. Let O and Q be the sheaves of
holomorphic functions and differentials on X, respectively, and @x, Q, the completions of their
stalks at x.
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Ifme 7, we will let Q(m - x) denote the sheaf of meromorphic differentials with a pole of

order < m at x; we let Q(x x) = | mez,, Q(m - x) be their union, that is, the sheaf of meromor-

phic differentials with a pole at x of arbitrary order. Finally, we write Q@m - Xy Q(x x), for their
respective completions. If z is a choice of coordinate centered at x, one has isomorphisms

ﬁx = Cllz] - dz Q(m - X)y = z7"C|z] - dz Q(x X)y = C(2) - dz. (3.2.1)

Consider the space (ﬁ(* x),/ ﬁx) ®c t. It is clear that one has a well-defined notion of the
order of the pole of such an element. Further, under the isomorphisms (3.2.1), a given C € (Q(x
x),/Q,) ®c t with a pole of order m has a unique representative in z~'t[z~!] C t((z)) of the form

<_m 4o 4 ﬁ)dz (3.2.2)
VA

with C; € 1.

Definition 3.2.3. A formal type of order m at x is an element C € (Q(x x)x/ﬁx) ®ct with a
pole of order m. We will call such a formal type C of order m > 2 regular if, upon some choice of
coordinate z at x, in the expression (3.2.2), one has C,,, € t™.

Definition 3.2.4. Let VV be a holomorphic vector bundle over X and V a meromorphic connection
with a pole (only) at x. Choose any holomorphic trivialization of V' in a neighborhood of x and
let A be the connection matrix of V with respect to this trivialization; if V has a pole of order m at
X, then A yields an element of Q(m - x), ® g. Let C be a formal type at x. We say that (V, V) has
formal type C at x if there exists a formal gauge transformation ¢ € G(@x) such that the class of
Ad,A—dg- gle (ﬁ(* x)x/ﬁx) ® g agrees with that of C under the inclusion

(66 0./, ) @t e (G 0./0, ) @3

With these definitions, the open de Rham spaces admit the following moduli description. Set
X = P! with an effective divisor D = m;a; + m,a, + --- + mya, and for 1 < i < d, a formal type
C'! of order m; at a;. By “forgetting” dz in (3.2.2), we obtain a tuple C = (C1,...,C%) of diagonal
elements in gV (depending on a fixed coordinate on P!).

Proposition 3.2.5 7, Proposition 2.1], [29, Proposition 2.7, Corollaries 2.14, 2.15]. For C regular and
generic, the open de Rham space M; . isisomorphic to the moduli space of meromorphic connections
V on the trivial bundle of rank n on P!, where V has poles bounded by D and prescribed formal type
Clata,.

Remark 3.2.6. More generally, fixing the polar divisor D and the local parameters C, one may
construct a moduli space M(C) of meromorphic connections (V, V) on P!, where V is a degree 0
vector bundle (though not necessarily trivial) and V has formal type C' at a;. An analytic construc-
tion is given by [7, Proposition 4.5], which is generalized to higher genus curves in [6]. Algebraic
constructions of these moduli spaces are given in [31].

After [50], such moduli spaces are typically referred to as “de Rham moduli spaces.” Forgetting
the connection, these spaces yield, a fortiori, families of vector bundles of degree 0. As the only
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semistable bundle of degree 0 on P! is the trivial bundle, and since the semistable locus of a family
is always Zariski open, the moduli spaces M*(C) sit as open subvarieties

M*(C) € M(C).

It is for this reason that we call them “open” de Rham spaces.

4 | MOTIVIC CLASSES OF OPEN DE RHAM SPACES

Throughout this section K, will always be an algebraically closed field of O or odd characteristic.
The main result in this section is Theorem 4.3.1, a formula for the motivic class of M,, . in

the localized Grothendieck ring .# for any d-tuple r = (rq, ..., r;) € N%. By definition, M, . isan

additive fusion of coadjoint orbits, and thus, the computation of [ M,, ,.] can be split up in two parts.
First, we determine in Theorem 4.2.1 the motivic Fourier transform of the composition

o) =g, — ¢,
under the assumption m > 2. In particular, we prove that 7(O(C)) € KExpVar, is supported on
semisimple conjugacy classes, which is not true for m = 1. The motivic convolution formalism
then allows us to deduce the formula for [M,, ;.| from these local computations.

4.1 | Some notation for partitions

For n € Z,, we denote by P, the set of partitions of n. For A = (1, 2 1, > --- > ;) € P, we use
the following abbreviations:

Q) :=1 A=A

l
N = Y 22 (”) —
i=1 A

= l—
Hi:l /1i!

Further we write m, (1) for the multiplicity of k € Z,; in 4 and

u = [ me@).

kez.,
The polynomial ¢; € Z[t] is defined as

l
$(0) = [Ja-na - a-rh)
i=1

Thenif L; = ngl GL,, denotes the subgroup of block diagonal matrices in GL,,, we have

N()—n
2

L] =(-D"L #,(L) € KVar,
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since for any n € Z.,,, we have, for example, by [21, Proposition 1.1]

4.2 | Fourier transform at a pole

In this section, we compute the Fourier transform 7(O(C)) € KExpVar, of a coadjoint orbit 77, :
O(C) — g of an element C € t), say in the notation of (2.1.6), where we use the language of
Section 2.3. Assuming m > 2, we can give an explicit formula for F([O(C)]), but to do so, we will
first need to introduce some more notation.

A semisimple element X € g has type A = (4, > --- > 4)) € P, if X has [ distinct eigenvalues
with multiplicities 4,, ..., 4;. We write g; :={X € ¢| X hastype A}and i, : g; & g.

Theorem 4.2.1. Let C € g, be a regular diagonal element of order m > 2. For any partition 1 € P,,
in &xp.# ., we have the formula

AN )

F([O0)]) = G 2, 4], (4.2.2)
whereZ; :={(9,X) € Gxg; | Ad,~1 X € t}and
¢ 17, - Al (9.X) ~ (C1,Ad -1 X).

Furthermore, the pullback of F([O(C)]) to the complement g \ | |, g, equals O.
Proof. By the formula (2.3.8), we have
FIOO)]) = [O(C) X 8, {Tres © Proycys Prg )] = [O(C) X 8, { Procys Pry )],
where for the second equality sign, we used the definition of {, ), see (2.1.5). By Lemma 2.2.9(c),

the natural map G X G‘r)f — O(C) is a Zariski-locally trivial T-bundle, and thus, we can rewrite
thisin &xp.# as

FAOED = (L~ 1) [0 x G x g, (T o prosen pry ).
Now, notice that for all (¢,b,X) € G X Ggf X g, we have
(T(g,b),X) = (Ad,,C,X ) = (Ad,C,Ad,-1 X).

Thus, we finally obtain

F{o)h=@-n"

GxG%xg, <AdprcodC,Ad(prG)_1 prg>] ) (4.2.3)
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We will simplify this by applying Lemma 2.3.6. Consider the decomposition G%¢ = G4 @ G4
with

Gidz{bEGSrflbL’"T“J =..=b, , =0} G3d={b€Gf,f|b1= =bL"’T_1 = 0}.

|

It follows from Lemma 4.2.6 below that there are functions
(hy,hy) 1 Gxgx G = (G™)Y x K

such that (Ad,C,Ad 1 X) = (h(g,X,b,),b_) + hy(g9,X,b,) for all y€G,X €g and b=
(b,,b_) € G @& G*. More explicitly, h; and h, are given by

h(9.X.b,) = (Ady,C.Ad X ), (mi(9.X,b,),b_) = (Ad,C = Ad,, C,Ad,-1X ).
Applying Lemma 2.3.6 to this decomposition formula (4.2.3) becomes
FAOE)D = @ — 1)L [11(0), by . (4.2.4)
Now assume first m is even. In this case, [mT_IJ = [mT_ZJ and Lemma 4.2.6 implies
h'(0) = {(9.X,b,) € GXgx G | Ad,-1 X €1,[b,,Ad,1X] =0},

and h,, 0 isindependent of b, . For any 4 € P,, the pullback i:hl_l(o) — Z, is the kernel of the
vector bundle endomorphism b, + [b;,Ad 1 X]onZ; x G‘jrd. The rank of the kernel is constant
and equals mT_Z(N (1) — n), thus we finally get

m—2
i2[h710), hy] =L N[z, 46, (4.2.5)

Together with dim G°¢ = %(n2 — n), the theorem follows when m is even.
If m is odd, we have

h'(0) = {(9.X,b,) € GXxgx G | Ad -1 X €1,[b,,Ad -1 X] = [bmi1, Ad -1 X]}.
, A -

If we decompose bm_1 = b! + b* into strictly lower and upper diagonal parts, then Lemma 4.2.6
2

implies that h,, ) is affine linear in b* and independent of b* if and only if b commutes with
Ad -1 X. As before, we can now apply Lemma 2.3.6 and see that (4.2.5) also holds for m odd, which
finishes the proof of (4.2.2).

Finally, we see from (4.2.4) and the description of A71(0) C G X g X G?rd in both the even and
odd case, that the structure morphism h=1(0) — g, which is the projection onto g, has image in the
semisimple elements of g. Thus, the pullback of F([O(C)]) to the complement g \ | |, g; equals
0. [l

We are left with proving Lemma 4.2.6, for which we need the explicit formula (2.2.6) for the

inverse of an element b = 1 + zb, + -- + z""'b,,_, € G . Notice that for LW‘T“ <p<m-—1,
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b, can appear at most once in each summand on the right-hand side of (2.2.6). This is the crucial
observation in the proof of Lemma 4.2.6.

Lemma 4.2.6. For X € g, the function
¢y 1 G > K b+ ¢x(by, by, by_1) = (Ad,C, X)

is affine linear in bLm_-HJ,... ,b,_1. It is independent of those variables if and only if X € t and
2
bl,bz,...,btm_—ZJ commute with X.
2

In this case, if m is odd and we decompose bm-1 = b! + b%, where b and b* are strictly lower and
2

upper triangular, respectively, then ¢y, is affine linear in b* and independent of b* if and only if b!
commutes with X.

Proof. It follows directly from the observation above that ¢y depends linearly on b; for [W’Tﬂ <
i<sm-1.
Forb € G‘;r‘li, using the notation (2.2.6), we have

m i—1

i=1 j=0

where we use the convention b, = w, = 1. We start by looking at the dependence of (Ad,C,X)
when varying b,,,_;. The terms in (4.2.7) containing b,,_; are given by

tr(bm_lcmX - Cmbm—IX) = tr[bm_l, Cm]X.

As C,, € t™8, the commutator [b,,_;,C,,] can take any value in ¢°¢; thus, tr[b,,_;,C,,1X is
independent of b,,,_; if and only if X € (g°%)* = t.
Assume from now on X €t. We show now inductively that ¢y is independent of

bl L |5 e s b,,_, ifand only if by, b,, ..., bI m=2, all commute with X.
2 2
To do so, fix ['"TH < p < m—2andassume thatb,, ..., b,,_, , commute with X. Consider the

element
b =1+zb, + - +2zP'b, | +2Pb,X + 2P b, ) + - + 2" b, € G
The point now is that the b ,-parts of the explicit formulas for (Ad,C, X) and
Res, tr(b’Cb’1) = Res, tr(C) = tr(C;)

are very similar. Indeed, from (4.2.7), we see that all the terms containing b, in (Ad,C,X) are
contained in

m m—-1 m
tr ) b,Cw_, X+ ) D b, CwX. (4.2.8)
i=p+1 r=p i=r+1

To write a formula for Res, tr(b'Cb'™"), we write b~ =1 + zw| + --- + 2" 'w/ . Then

we can use a similar expression as (4.2.7) to conclude that all the terms containing b, in
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Res, tr(b’Cb’~1) are contained in

m—-1 m
tr Z by XCwl_, 1+ D, Y, by G (4.2.9)
i=p+1 r=p i=r+1

Next, we want to study the dependence of the difference (4.2. 8) (4 2.9) on b Notice first

that since [b;,X]=0for 1<i<m-—-2-—palso [w;,X]=0for1<i<m—-2-— p and further-
more [w,,_ —p— LX] = [X b, 1] From (2.2.6), we also see w = w; for alll1gi<p. Flnally, we
remark that w,X —w/ is 1ndependent of b, for p<r<m-— 2 and the terms containing b,

W1 X — wm_ are given by b [b,,,_p_1, X]. Comblnlng all this, we see that the terms contalnlng
b, in (4.2.8)-(4.2.9) are just

tr (b,Cpp[X, by 11+ Cpby[byy 1, X1) = trlb,,, Cp 1[X, by 1.
Since C,,, € 18, the commutator [b ps C,,] can take any value in g°d aswevary b » € gOd. Hence, in
order for tr[bp, c,lIX, bm—p—l] to be constant, we need [X, bm—p—l] € t. Since X € t, this is only
possible if [X, b,,_ p—l] = 0, which finishes the induction step.
Finally, we consider the special case when m is odd. Take p = mT_l Then by the same argument

as before, we obtain that all the terms in (Ad,C, X) that depend on b, are tr[b,,, C,,][X, b, ]. Now
using the decomposition b, = b! + b*, we have

trlby, CpllX. by ] = 2tr(b*[Cp, [X, BT
Since the orthogonal complement of strictly upper triangular matrices are the upper triangular
matrices, we see that tr(b*[C,,,, [X, b']]) is independent of b* if and only if [X, b'] = 0. O
4.3 | Motivic classes of open de Rham spaces

In this section, we compute the motivic class of the generic open de Rham space [M | € .# as
defined in Definition 3.1.8.

Theorem 4.3.1. The motivic class [M, .| € .# is given by

(L- l)nd_l Z( DT 1(1(/1); 5 </1> (r?)(m)_")%([L)d‘l, (4.3.2)

where d. = (n?> — n)(r + d) — 2(n? — 1) denotes the dimension of M:;r
We start by simplifying [ M ] in the following standard way.

Lemma 4.3.3. We have the following relation in .#

L= D]

Moarl =]

(4.3.4)
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984 | HAUSEL ET AL.

Proof. Define G, = H?:l G, and T, = H‘ii:1 T,,,- It follows from Lemmata 2.2.4(b) and 2.2.8(d)
that the natural map

d
a: Gy — [JOe),
i=1

is a principal T,,-bundle. Notice that « is G-equivariant with respect to the free G-action on G,
given by diagonal left multiplication.

By restriction, we obtain a G-equivariant principal T,,-bundle X — u~1(0). Taking the (affine
GIT-)quotient by G, we obtain a principal K* \ T,,-bundle G \ X — M* .Also, X - G\ Xisa
principal G-bundle, as it is the restriction of G, - G \ G,. As the groups Tp» G and KX\ T,
are special [48, §4.3], all the principal bundles here are Zariski locally trivial and we get

[G\X] _ [X] _WONTRL-1) _ @ -Dlx ‘1(0)]
[KX\ Tr] — [GIKX\ Tl [Gl[Tsn] [G] u

(M =

By (4.3.4), it is enough to determine [u~1(0)] = 0*[O(C') X -+- x O(C?)], where we consider
0 : SpecK — g* as a morphism.

Since the motivic class of Hle O(C?) relative to g is the convolution of the individual classes
[O(CY)], we have by Proposition 2.3.11 the equality

d
F<
i=1

H och

Notice that the last product is relative to g; hence, we have by Theorem 4.2.1 for every 1 € P,

d
> = F([OCH] * - x [O(CD)]) = HF([O(Ci)]) € KExpVar, . (4.3.5)
i=1

d

d
. 1 i
i [T7aoE)) = @ - st 2nsae N Tz, o)
i=1

i=1

d
— ([L _ 1)—nd[L%(r(n2_2n)+dn2+N(/1)(r—d)) lzg’ Z ¢C1] ’
i=1

with the notation r = ) r;, Z;l for the d-fold product Z; X, -+ X, Z; and Y, ¢ for the function
taking (zy,...,24) € Zg to ), ¢ (z;). By Fourier inversion (Proposition 2.3.9), we thus get

d
PROIE L‘”ZO*P<H F([@(ci)])>
i=1

—nd, (r(n2=2n)+dn? sN@)(r—d :
= (L — )7 002w 3 g SN )lzf’qucl' (4.3.6)
i

AEP,

This leaves us with understanding [Z E ¢C ] as an element of KExpVar. We start by taking a
closerlookatZ; = {(¢9,X) € G X g; |Adgle € t}. Ifweputt; =t N g;, we have an isomorphism

Z, 51, xG (9.X) = (Ad,1X, g). (4.3.7)
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ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES | 985

Next, we need to fix some notation to describe t; combinatorially. To parameterize the eigen-
values of elements in t, define for any e € N the open subvariety A C A® as the complement of

Ui;éj{xi = x]}
Furthermore, we need some discrete data. A set partition of n is a partition
I1=(,1,..,I)
of {1,2,...,n}, thatis, I; nl;= @fori#jandyl; ={1,2,..,n}.Forl=(4, > - > 1) € P,, we

write P, for the set of set partitions I = (I;, ..., I;) of n such that (|I;|, ..., |I;]|) = (44, ..., 4;). Notice
thatI = (Iy,1,,...,I;) is ordered, and hence, we have

n! n
7) = = .
7l L, 4! (/1>

=171

Lemma 4.3.8. The morphism
!
p:PixAL >t (La) = Y By,
j=1

is a trivial covering of degree u;, where EIJ, is defined as in (3.1.5).

Proof. For e € N, let S, be the symmetric group on e elements. Then the lemma follows from the
fact that the subgroup [] ., Smj( 1) of S; acts simply transitively on the fibers of p. 1

Lemma 4.3.9. The following relation holds in KExpVar
d _ [G X Ld—l] d
1 A .
[ZiZf] T R CE
i=1 A (1L, I)e(P,)d i=1

where ppi = Piipal @ AL = 1.

Proof. For a € Al, the map Pip,xia} * P2 — t; from Lemma 4.3.8 is injective and its images are
exactly the elements in t; with eigenvalues given by a. Combining this with (4.3.7), we see

Z)yXqZy =1 XG) X, (1) XG) =t; XGXLy XP;.

Applying this reasoning d — 1 times and then using Lemma 4.3.8, we obtain a trivial covering
of degree u,

d—-1 d l d
GXL; XP;y XA, —»Z.
Keeping track of the isomorphisms gives the desired equality. O

Proof of Theorem 4.3.1. Combining (4.3.4), (4.3.6), and Lemma 4.3.9, we are left with computing
the character sum [A!, Z?zl(Ci, pri)] for a fixed d-tuple (I, ..., I?) of set partitions of n. For a €
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986 HAUSEL ET AL.

Alo , We can write

d d ! ! d
PREN-HCHEDY <cll, Y ajE > =Y a; ) <c;,Eﬂ.>.
i=1 i=1 j=1 J j=1  i=1 !
Now, for a fixed 1 < j < I, we have by definition |I}| = .. = |I;.i|. Thus, by our genericity
assumption (3.1.7), the numbers B; = Z?=1<C§’E1".> satisfy the assumptions of Lemma 4.3.11
J

below, and we deduce

d
[Ai’ Y (Cpr >] = (DM -Du, (4.3.10)

i=1
which proves Theorem 4.3.1. O

Lemma 4.3.11. Let 34, ..., 3, € K be such that ijl B; = 0andforJ C{1,2,...,e}a proper subset,
2 jes Bj # 0. Then for the function

e
(B) i AL =K, am Y B,
j=1

we have

[A¢, (-, B)] = (=1)*"*(e — 1!L € KExpVar.

Proof. We use induction on e. For e = 1, we have §; = 0 and /-\}> = Al; hence, the statement is
clear. For the induction step, consider A¢ as a subvariety of A°~! x Al. As 8, # 0, we have [A¢~1 x
AL, (-,)] = 0 by Lemma 2.3.6, hence

[Ai’<"ﬁ>] = _[Ai_l X Al \Ai’<"ﬁ>]'

Now notice that the complement A°~! X Al \ A¢ has e — 1 connected components, each of which
is isomorphic to A¢~!, which implies the formula. O

5 | TAME POLES AND FINITE FIELDS

Here, the notation will be the same as in Sections 3 and 4, especially Definition 3.1.8 and Sec-
tion 4.1. In this section, we replace the motivic computations over an algebraically closed field
with arithmetic ones over a finite field F,- This allows us to study the number of I -rational points
of M’ for any pair (u,r) with s >

FII‘St we derive in Theorem 5.1. 6 a closed formula for |M; (IF )| using techniques similar to
those of Section 4. Then, in Theorem 5.2.3, we give a second descrlptlon of |M; ([F )| in terms of
symmetric functions, which allows us to identify the E-polynomial of M* with the pure part of
the conjectural mixed Hodge polynomial of the corresponding character Varlety [26, Conjecture
0.2.2]. This gives strong numerical evidence for the purity Conjecture 1.1.3, which was one of the
main motivations of this paper.
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ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES 987

5.1 | de Rham spaces and finite fields

Let F, be a finite field of characteristic coprime to n and g large enough (see Remark 3.1.9) so that
there exists a regular generic tuple C = (C1, ..., C%) of formal types over F, for a given pair (u, r)
with s > 1. Then also M;r is defined over Fq and we can prove a version of Theorem 4.3.1 that
also includes tame poles.

For a variety X defined over [, we sometimes abbreviate |X ([Fq)l = |X|. We write g’ ([Fq) C
g([Fq) for the matrices in g([Fq) whose eigenvalues are in F, and for 1 € P,, we write gjl([Fq) =
q’ (qu) Nng l([Fq). The proof of Theorem 4.2.1 then implies that the Fourier transform of the count
function # : gV([Fq) -7, Y |7rr‘e§(Y)| associated to the coadjoint orbit 7, : O(C) — g is
supported on | | 2ep, g;([Fq). Givensuchan X € gﬁl([Fq), the F,-version of formula (4.2.2) reads

g+ 3 (mOP=2m+(m=-2DN (D)

F#e)(X) = ISR S ()} (5.1.1)

(-1 tEtnOX)(F,)

where O(X) C g denotes the orbit of X under the adjoint action and F and ¥ are defined as in
Section 2.3.

We now spell out a similar formula for the Fourier transform of a tame pole. Let u = (4 > «++ >
M) € P, be a partition, C € t(F,) N g;(F,) and 1¢ : g(F,) — Z the characteristic function of the
adjoint orbit of C. Furthermore, for e € N, we write S, for the symmetric group on e elements and
S, = Hle Sy, CS,. Now conjugacy classes of maximal tori over F; in G = GL, are in natural
bijection with the conjugacy classes of the Weil group W = S,, [24, Section 2.5.3]. For any w € S,,,
we fix a maximal torus T,, corresponding to the conjugacy class of w under this bijection and
define

L,

1 b
gz N O™T, |

Q;i — (_1)”—"kq(Tw)

where rkq denotes the [Fq-rank. Thisis a shorthand notation for the value at 1 of the Green function
[19, Theorem 7.1], and we can be even more explicit. If we write u(w) € P, for the partition defined
by the cycles of w € S,,, we have

I(u(w))
ITol = J] @ -0 (51.2)
i=1

Lemma 5.1.3. ForA € P,andany X € gjl([Fq), we have

3(n?=N()

!

q

F)X) = Yook Y we ), (5.1.4)

WES, YetwnO(X)([Fq)
where t* C t denotes the locus fixed by w € S,,. If C is regular, then F (1) is supported on g’([Fq).

Proof. The proof consists of writing out Equation (2.5.5) in [24] explicitly. In their notation, we
have

Fo) = e Wel ™ Y, g2 (Fle()).

weWy,
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988 | HAUSEL ET AL.

Here, L Hﬁzl GL,, denotes the centralizer of C and Wy = Hﬁ:l S,, the normalizer of the
standard maximal torus T in L. We have d; = dim G — dim L = n?> — N(u) and since T is split

over g also egey, = (—1)"(=1)" = 1. The formula then becomes

n2-N(u)

Fe) =1 ;! > 7 (Fha).

weWy

The T, -coadjoint orbit of C is just C and hence F‘w(lgw)(Y) =¥Y({C,Y)) forallY € t,. As
X e g;([Fq) is semisimple, [24, Equation (2.5.4)] gives

- C
h (r%(ﬁw))(;@: LY Q% mwc, Adyx)). (5.1.5)
! oty "
q
XeAdyt,}
Cs(X) _ Al
By [19, Theorem 7.1], for any h € G([Fq), QhT h—1(1) = Q;", and thus,
Ly
o GCED) COREEE YRRV E RS DTS YR (A )
N Al {heG(FyI Y€, NOMX)(Fy)
XGAdhtw}

Using [24, 2.5.3], we see that for every w € Weo ) thereisa g € CG(C)(ﬁq) such that (t, N
OX))(Fy) = g(t* N OX)(F,))g~" and hence

Y wc Y= ) w(CgYgtn= ) W(CY)).

Yetwn(O(X)([Fq) Yetwno(X)([Fq) YetWOO(X)([Fq)
If C is regular, we have W = {1}and for X € g([Fq) clearly {h € G([Fq)|X < € Adj, (1)} = A unless
X € ¢/(F,), which finishes the proof of the lemma. O

Recall that for 4 € P,, we denote by P; the set of ordered set partitions of 1. The natural action
of S, on{l, ..., n} induces an action on P; and for w € S,,, we write P}’ C P, for the set partitions
invariant under w, that is,

Pi” ={I=(Il,...,Il)€P/1|ij =ij0r3111<j<l}.

For two partitions 4, u € P,, we then define

1
AL == ¥ QF [PYI.

weSu

Theorem 5.1.6. Letd =k + s and C = (C,...,Ck,Ck+1, ..., C?) generic regular formal types. If
s > 1, we have

d

. Q”TJ
|M#,r([Fq)| = (q _ l)ns—l
_ @) -1 5D ne)— L ;
x 3 (=10 1((21_)<Z> g7 VO (@ T]aG D), (5:17)
1P, A i=1

. . X
where d,, .. denotes the dimension of M L
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Proof. The argument is similar to the proof of Theorem 4.3.1. First, by repeating the proof of

Lemma 4.3.3 with M* . replaced by M, e W see that

(@ —D|u~1(0)]

M (F)l = S,

where u is the moment map defined in (3.1.2). Using Fourier inversion and convolution over finite
fields, we further have

k N
O q—"2r<1'[ Fae) [ r(#ck+j>><o> =q" ) H Fe)(X) H F (4 i JX)

i=1 J=1 Xeq(Fy) i=
D> Hf’(lco(X)HF(#ckH)(X)
AP, Xeg) (Fy) 1=1

For the last equation, we used that 7 (#x+;) is supported on | | 1ep, 9 A([F )foralll< j<sand
our assumption s > 1. We now parameterize g l([F ) using the same notation as in Sectlon 4.3, that
is, we have a surjective map

l
p : G([Fq) X Pﬂ. X Ai([Fq) - g;.([Fq) (971’ a) g g(z ajEIj>g_17
j=1

with each fiber of p having cardinality u, (2) |L;|. Since F(1¢:) and F(#k+;) are class functions,
they depend only on a € Ai([Fq). In particular, if X = p(g,1, a), we have for everyw € S,

£ N OX)(F,) = p({ld} x P x {a}),

with 73/'1” ={I=,...I;))eP; | wl; =1I;forall1<j< I}. Using these parameterizations of
g;([Fq) and t¥ N O(X)([Fq) as well as (5.1.1) and Lemma 5.1.3, we can write

> H F(Ac)X) H F(# i )(X)

Xeg)(Fy) i=1
Q s k La S
_ 49 |LA| T, i k+j
“aor 2 H| 225 X (el w(erep
Xeq(F) i=1 \wesS,; 7 Yet no(X)(F,) j= tetn(ﬂ(X)(F)

_ LG S S TR
> 1|2 % 5 w(eSen ) T( 5 w(e Ses )
'“” 1epy a=1 ’ j=1 \I€P, a=1 ’

(q l)nsul ae/&l([F ) i=1 wES

where we abbreviated Q = %(nz(d +7r)—=2nr — Y N(ub)) + @(V —5). Now multiplying out the
products over i and j, we are left with computing sums of the form

! d
> w(Zaa<Zci,Eﬁ>>,
aeal(Fy) \a=l i=1 ’
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with I' € P;. Because of the genericity assumption (3.1.7) and (the finite field version of)
Lemma 4.3.11, this sum always equals (—1)'~'(I — 1)!q independently of the I’s. With this
simplification, we finally deduce

> H FQe)X) H F(# e )X)

Xegl([Fq)l

Q s—1 k

L7611 -
WP PYHIP (=D - 1)
(q_l)nsul I #”wezs QL IPYI|IPA (D' U~ Dig
Q+1|L |s 1|G|

AQ, - -
- LA m( )( -
Summing up over all 1 € P, finishes the proof. O

Theorem 5.1.6 immediately implies that |M;,r([Fq)| is a rational function in q as we vary the
finite field ;. Because it is the count of an algebraic variety, we deduce that it is, in fact, a poly-
nomial in g, namely, its weight polynomial by Theorem 2.3.4. By analyzing the combinatorics of
(5.1.7), we obtain the following.

Corollary 5.1.8. For every pair (u,r) with d, , > 0 and s > 1, the counting polynomial for M;,r is
monic of degree d,, .. In particular, M;‘ ¢ is nonempty and connected, both over F; and C.

Proof. The statement about the counting polynomial implies the second one, as the leading
coefficient gives the number of components of M; see, for example, [25, Lemma 5.1.2].

Forn =1, we have d,, , = 0 and Theorem 5.1.6 gives indeed |M* ([F )I=1.Forn > 2, dyy >
implies either r > 2 orr =5 =1,k > 1 and there exists an 1 < k with u! # (n). In both cases,
it follows from Lemma 5.1.9 below that there is only one summand in (5.1.7) of highest degree,
namely, the one for 4 = (n). From the explicit formula for A((n), &) in Lemma 5.1.9, we also see
that the coefficient of the highest g-power equals 1 and the corollary follows. O

Lemma 5.1.9. Forany A4, u € P,, we have
L A(n), ) = (-1 52—
q2
2. deg A((n), u) = deg A4, ,u) and equality holds if and only if A = (n) or u = (n).

Proof. Let o € N and write T for the standard maximal torus of GL,. The lemma boils down to
the following combinatorial identity:

e . o a
2w VY Y Aoy - Y@

WES,, VEP,

Here, the first equality follows from (5.1.2), while the second one can be deduced from [40,
(2.14’) and Example 1.2.4].
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Now every I =(Iy,...,I,) € P, defines a refinement u of u as follows. Write u = (u; >
w2 My and My ={1,...,,u;;}, M; = {2;11 Mp+ 1., 2;=1 pp} for 2 <i<m, sothat {1,...,n} =
]_[:11 M;. Then ! is obtained by writing the numbers

IM;nIl, 1<i<m1<j<?
in (some) nonincreasing order. In particular, {w € Sylwl=1 } = Sy With this, we have
1 L 1 L Ly | (="
AW =2 D QLIPI= 0 X Y Q= 3 )
K wes, K rep, WES 1 ,u!qi( @)= 1eP; wes 1 w
L Iy
= (=" ll 2l iy
g i N (& b (q)
From this, we get the formula for A((n), u) as well as
1 1 ! 1 . !
A = - —_ — = — —_ .
deg A(4, 1) 2(N(/l) +n) min 2(N(M ) +n) 2(N(/l) }TEI}DT;N(# )
The inequality deg A((n), u) > deg A(4, ) is thus equivalent to
min N(u!') > N(1) + N(u) — n?. (5.1.10)
IEPA

We prove this inequality by induction on n. Let I € P; be such that N(u!) is minimal and suppose
n € I;. We may assume that 1;,, < 4; since otherwise we could interchange I; and I, and the
resulting I’ would still minimize N(u!). Hence,

A =122, 22 )

and M; = M, for1<i<m—1,M,, = M, \ {n}. We have
N@)=N@) +24; -1 N(uw) = N(t) + 2, — 1.
By induction, we know
}relip%N(ﬂ]) >N+ N —(n—1)"
Therefore, it suffices to show that

min N@) <N@H +2(n—2; — up) + 1. (5.1.11)
€P;
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992 | HAUSEL ET AL.

Consider

_(117’--7 J 1 _]\{n}7 ]+l"' aIf)Epz

Clearly, if i # m or k # j, we have |M; NJ| = |M; nI;| and so

m ¢ m
N(@") = N(u) =Z:,Z Minfk|2—Z;I;1|MinIkl2=|anf,-|2—|anIj|2
=1 k=1 = =

=(M,,nI;| =17 = [M,, N I;]> = =2[M,, nI;| +1

:2(|MmUIj|—/lj—,um)+1<2(n—/1j—um)+l

and taking the minimum, we see that the inequality (5.1.11) holds. The equality cases follows from
a direct inspection. O

Example 5.1.12. Let us spell out explicitly formula (5.1.7) for n = 2, 3. Recall that k denotes the
number of simple poles, s the number of higher order poles, d = k + s the total number of poles,
and r the sum of the Poincaré ranks of the poles. We will assume y; # (n) for all 1 < i < k, since
the corresponding coadjoint orbits are points and do not contribute to the count.

For n = 2, we have by assumption u! = (1?) for 1 < i < k, and thus,

qr+d—3(qr—1(q + l)d—l _ 2d—1)

11
T (5.113)

M (F )] =

For n = 3, we write k = k; + k, with k; = |{i | #' = (1*)}| and k, = |{i | &' = (2,1)}|. Then
IM;’;,r([Fq)I is given by

q3r+3d—k2—8<q3r—3(q2 +q+ 1)d—1(q + 1)s+k1—1 — 38tk qr—l(q + 1)s+k1—1(q + 2)k2 + 3d—12s+k1)
(q-1)? '

(5.1.14)
Remark 5.1.15. If we take k = 0, and thus, s = d, formula (5.1.7) agrees with (4.3.2) if we replace
g by L. In fact, by Theorem 2.3.4, (5.1.7) is a consequence of (4.3.2), provided that there exists a
suitable spreading out of M, .. We refer to [24, Appendix A], where a similar construction has
been carried out in detail.

5.2 | Comparison with wild character varieties

Lemma 5.2.1. Let m > 1 and C any formal type of order m with C; regular semisimple. Then we
have an equality of Fourier transforms

F(#co) = F(lcl)r(lN)m_l,

where N' C g([Fq) denotes the nilpotent cone and 1 , its characteristic function on g([Fq) = gV([Fq).
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Proof. By [38, Theorem 3.6], the Fourier transform F(1 /) is given by
F(ly) = Uy = g2 90wt |
where St,, denotes the Steinberg character and O, the regular nilpotent orbit, hence
dim O, = n(n - 1).

By [38, (2.2)], St,, is supported on semisimple elements and its value on X € g;([Fq) is

St,(X) = €00 |Ca(X)l, = g3 T,
Thus, in total, we obtain
F()X) = q%(n2—2n+N(/1))‘
Comparing this with Equations (5.1.1) and (5.1.4), we finally see
F(#c) = F(1c )F(1)" 0

Next, we recall some combinatorics; for more details, see [24, §2.3] and [26, §4.2]. For a partition
A e P, welet

Hyzw) =[] L € a(z,w),

(Z2a+2 _ wzl)(zza — w21+2)

where the product is over the boxes in the Young diagram of 1 and a and [ are the arm length and
the leg length of the given box.

We fix integers g > 0 and k > 0. Let x; = {xy 1, X; 5, }, s X = {Xj 1, Xk 2, .-} be k sets of
infinitely many independent variables and let A(x,...,X;) be the ring of functions separately
symmetric in each of the set of variables. Then we define the Cauchy kernel

k
Q(z,w) 1= z H;(z,w) HH’A(ZZ, w%x;) € AXq, ..., X;) ®5 Az, w),
AEP i=1

where we have the Macdonald polynomials of [22]

H)(q,t;x) = Z IZM(q, s, (%) € A(x) ®7 Az, w).
HEP,

Letnow u € P:f, r=(,...1) € ZS>0 andr :=r; + -+ + r, be as in Definition 3.1.8. We let

H,, (2, w)

=(-D"z* -1 - w2)<Log(Qk+r), By (%) ® - ® by, (%) ® Sam (K1) ® -+ ® s(ln)(xk+s)>.
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994 | HAUSEL ET AL.

Let now Mg’r denote a generic wild character variety of type u,r and ¢ = 0 as studied in [26].
The main conjecture [26, Conjecture 0.2.2] in the form of [26, Lemma 5.2.1] is that the mixed
Hodge polynomial of Mg’r satisfies

WH(WMET; q,0) = (qt?) e /*Hy,, (ql/ 2, —q7V zt‘l), (52.2)

where @t = (u!, ..., 4%, ("), ...,A") Pff”. The purity conjecture then is saying that the pure
part of WH (M’g’r;q,t) should equal the Poincaré polynomial of the corresponding open de
Rham space.

The following is our main Theorem 1.3.1.

Theorem 5.2.3. In the notation of Theorem 5.1.6, we have E(M;, .;q) = g/ *Hy,(0,4'/2).
Proof. By Theorem 2.3.4, we have E (M;,r; q) = |M;r([Fq)| and by Lemma 5.2.1, we can compute

2

k s
M EDl = = F( [T Q) [] P FALYT () = g/t 0./,
’ |PGLn(|]:q)| e =1 1

(5.2.4)

The last equation follows from combining [37, Theorem 7.3.3] and [37, Corollary 7.3.5] with
the observation in [37, §6.10.3] that the symmetric function corresponding to a split semisim-
ple adjoint orbit of type ' is h,, and in [37, §6.10.4], the symmetric function corresponding to a
regular nilpotent adjoint orbit is s(;»). The result follows in the usual way, as in the proof of [24,
Theorem 7.1.1]. O

Remark 5.2.5. The formula for IM; [(FPI=E (M; @) in (5.1.7) was obtained by computing the
same Fourier transform as in (5.2.4). Thus, we can consider the result of Theorem 5.1.6 as the
explicit form of Theorem 5.2.3.

We finish this section by observing that a combination of [37, Theorem 6.10.1, Theorem 7.4.1]
implies that H (0, q'/?) has nonnegative coefficients; thus, we have the following.

Corollary 5.2.6. The weight polynomial E (M;’r; q) has nonnegative coefficients.

This motivates the following.
Conjecture 5.2.7. The mixed Hodge structure on the cohomology of M;,r is pure.

If all poles in C are of order one, this is proven in [24, Theorem 2.2.6] using the description of
M; . as a quiver variety. Moreover, if there is only one higher order pole, [11, Theorem 9.11] also
identifies M; . with a quiver variety; thus, Conjecture 5.2.7 follows in this case too. In Section 6, we

obtain a quivér like description of M; . for poles of any order, giving more evidence and possible
strategy for Conjecture 5.2.7.
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6 | QUIVERS WITH MULTIPLICITIES AND THEIR ASSOCIATED
VARIETIES

The greater part of this section is devoted to a generalization of the theorem of Crawley-Boevey [15,
Theorem 1], which realizes an additive fusion product of coadjoint orbits for GL, (K), where K is a
fixed perfect ground field (the primary examples the reader should have in mind are where K = C
or K is a finite field), as a quiver variety associated to a star-shaped quiver. The generalization
we will achieve is to replace the GL, (K)-coadjoint orbits with those for the nonreductive group
GL,(R,,) of Section 2.1 and to replace quivers with “quivers with multiplicities” or “weighted
quivers” that are defined in Section 6.1 below. The main theorem is stated as Theorem 6.4.2. It
states that an open de Rham space as defined in Section 3.1 may be realized as a variety associated
to a weighted star-shaped quiver for an appropriate choice of multiplicities.

The main novelty that enters when one introduces multiplicities is that the groups one obtains
are no longer reductive. As in the usual quiver case, one wants to define a variety associated to a
quiver with multiplicities as an algebraic symplectic quotient. In the approach we take here, we
simply define this quotient as the spectrum of the appropriate ring of invariants. Of course, this
makes good sense as an affine scheme; however, without the reductivity hypothesis, we are not
guaranteed that this ring of invariants is a finitely generated K-algebra. For the star-shaped quivers
described in Section 6.1.2, we show that we do, in fact, get finite generation. Essentially, what we
show is that the preimage of the moment map is a trivial principal bundle for the unipotent radical
of the group (Proposition 6.2.1), the proof of which occupies Section 6.2.

Let us also mention that there seem to be several difficulties in applying the general theory of
nonreductive GIT as developed by Bérczy, Doran, Hawes, and Kirwan [3] directly to our situation:
The varieties we consider are affine and the unipotent radical does not seem to admit a suitable
G,,,-grading.

In Section 6.3, we explain how a certain symplectic quotient of a “leg”-shaped quiver (out of
which one builds a star-shaped quiver) yields a coadjoint orbit for the group GL,,(R,,), general-
izing Boalch’s explanation of Crawley-Boevey’s theorem [11, Lemma 9.10]. This was done in the
holomorphic category for “short legs” in [54, Lemma 3.7]; ours is an algebraic version, along the
lines described above.

Quivers with multiplicities have been introduced in [54] for purposes quite similar to ours
(namely, the description of moduli spaces of irregular meromorphic connections), and indeed,
the quivers of interest in that paper are a special case of those considered here [54, §6.2]. We
would like to point out that the quotients referred to there are either taken in the holomorphic
category (when restricted to the stable locus, in the sense defined there) or simply set-theoretic
[54, Definition 3.3]. The results of Sections 6.2 and 6.3 show that these quotients indeed make
sense algebraically.

Finally, we put together the results in Section 6.4, relating the varieties constructed in this sec-
tion to the open de Rham spaces of Section 3. Quivers with multiplicities are also discussed by [23]
in order to generalize certain classical results known for finite-dimensional algebras associated to
symmetric Cartan matrices to the case where the Cartan matrix is only symmetrizable. It is well
known that given a simply laced affine Dynkin diagram, one can associate a two-dimensional
quiver variety (depending on some parameters), which will, in fact, be a gravitational instanton
(i.e., carry a complete hyperkihler metric). In a parallel generalization, the construction above
allows us to construct quiver varieties for nonsimply laced Dynkin diagrams; this is explained in
Section 6.4.2. In the next section, we will see that these also admit complete hyperkdhler metrics
(see Theorem 7.3.3 and Remark 7.3.6(1)).
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6.1 | Definitions, notation, and a statement for star-shaped quivers
6.1.1 | Definitions, notation, and a finite generation criterion

Here, we discuss a generalization of the definition of quiver representations to allow for multiplic-
ities at the vertices. This was first done in [54]. We follow the approach of [23, §1.4] and [55], using
the greatest common divisor of neighboring multiplicities in the definition of a representation.

Let K be a field. For a positive integer m € Z,, we will denote by R, the truncated polynomial
ring

R, :=K[z]/(z"™),

so that R, = K. Observe that if m|Z, then there is a natural inclusion of K-algebras R,, & Ry,
which makes R, a free R,,,-module of rank £ /m.

Asin Section 2.1, we will use the groups GL,,(R,,) and GL},(R,,) and their respective Lie algebras
gl,(R,,) and gIrll(Rm). However, since the value of n will vary, we will not shorten these to G or
G,,, and so on. We do adopt the identifications

QIn(Rm)v = Z_mgIn(Rm)

via the trace-residue pairing (2.1.5).

As usual, a quiver Q = (Q,, Qq, h, t) is a finite directed graph, that is, Q, and Q, are finite sets
and one has head and tail maps h, t : Q; — Q,. By a set m of multiplicities for Q, we will mean an
elementm € Zgg The pair (Q, m) of a quiver and a set of multiplicities m can be referred to as a
quiver with multiplicities or a weighted quiver.

A dimension vector is also an element n € Zgg The space of representations of (Q, m) for a
given dimension vector n is defined as

e D) 1SNy
Rep(Q,m,n) := @ Homg_ (Rmt(a) ,Rmh(a) ,

aeQq

where we have made the abbreviation R, := Ry, (@ Mhey)” HIETE (M), Mp(o)) denotes the greatest
common divisor of m,,y and of my, ). In the case that m; =1 for all i € Q,, this is the usual
definition of the space of representations Rep(Q, n) for Q with dimension vector n.

For a triple (Q, m, n), we define the group

Gomn = Gmn 1= H GL, (R, ).

i€Q,

We will denote its Lie algebra by g,,, ,,- One has an action of Gy, , on Rep(Q, m, n) as in the usual
case: for (g;) € Gy, , and (¢,) € Rep(Q, m,n),

(9 - (po) = (gh(a)%gf(;))-

The main difference between this and the case without multiplicities is that Gy, ,, is not reductive
if there is some i € Q, with my; > 2.
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As usual, we denote by 6 the doubled quiver: that is, 61 :=Q, UQ/, where Q’1 ={a :ae
Q;}and h(a") = t(a), t(a") = h(a) for all « € Q. Then

Oy 1, Bl Onp(q) €B”:(a)> (6.1.1)

Rep(Q,m,n) = @ Homyg_ (Rmt(a) Ry ) ©® Homyg,_ (Rmh(a) Ry
aeQ;

= T" Rep(Q, m, n).

Thus, we have the usual situation of a cotangent bundle, which has a canonical symplectic form,
and an action of a group on the base, for which the induced action on the cotangent bundle is
Hamiltonian. We will be working with the corresponding moment map

# : Rep(Q,m,n) — gy,

for the G, ,-action. An explicit formula can be derived as in the case without multiplicities (see,
e.g., [39, Lemma 3.1]) and is given by

up,q) =z Z Pole — 2 ™ Z dzPg , (6.1.2)
ach~1(i) Bet1()

i€Q,
where we identify for each i € Q,, the dual g;)’%ni with z7" G, n; A8 in (2.1.4). We will usually drop
the factor z7™ in the computations below if no confusion arises.

Definition 6.1.3. Let us fix an element y € g | whose G, ,-coadjoint orbit is a singleton. One
defines the reduced quiver scheme associated to Q(m,n) at y as

Q, := Spec (K[u~'(y)]Cmn). (6.1.4)

In this formula, K[u~!(y)] denotes the coordinate ring of the affine variety u~'(y), and
K[! (y)]“mn its subring of Gy, ,-invariants.

Remark 6.1.5. By definition, Q;, is an affine scheme over K. However, as Gmn is not reductive,
K[u~'(y)]Cmn is not a priori a finitely generated K-algebra; therefore, we cannot say that Q, isan
affine variety (possibly nonreduced) without further justification.

In view of the preceding remark, we now give a criterion that is sufficient to conclude that Q,
is an affine variety. Then in Section 6.1.2, we will describe a class of quivers with multiplicities and
conditions on y for which this criterion is fulfilled.

Observe that the group Gy, ,, is a semidirect product: there is a surjective morphism of algebraic
groups

where
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is the usual group associated to the quiver Q and dimension vector n. We will call the kernel
Grln - This surjection splits, with GLnl_(K) being the subgroup of “constant” group elements in
GL, (le_), and then taking the product of these inclusions (cf. Section 2.1). We may thus write

1
Gmn = G X Gl 1.

With this decomposition, we may similarly decompose the Lie algebra g, ,, and its dual as
direct sums:

Smn = 80 ® Op 1 A= 0l @ (gh ). (6.1.6)

Fory € gy, ,,wewillwritey, . € g andy;, € (glln,n)v for its components. Likewise, the moment
map (6.1.2) will also have components ., and ;. corresponding to g and (glln,n)v, respectively.
Of course, each of these components is a moment map for the restriction of the action to the
respective subgroup.

Lemma 6.1.7. Suppose that there is a G,-invariant closed subvariety M,, C (i) and a G -

1rr
equivariant isomorphism

'ui_rrl(yirr) - Glln,n XM,,

where Grlnn acts by left multiplication on the first factor (and trivially on M,); in other words,
,Ltl._rrl (1) B8 a trivial (left) principal Glln o-bundle over M,,. Then Q, is an affine algebraic symplectic

variety, and hence, we will often refer to it as a quiver variety.

Remark 6.1.8. By “symplectic variety,” we mean that it is an algebraic symplectic manifold along
its smooth locus. We are making no claims about the possible singular locus.

Proof. We deal only with the finite generation of K[¢~!()]%mn; the symplectic structure arises
as usual on the smooth locus [41, Theorem 1]. Since G is normal in Gmn» it is not hard to see

that .. is constant on G _-orbits in Rep(Q, m, n). We have that

K0 = (1) 0 B i) = b aes) 0 (Gl X M ).
Using the fact just mentioned, we obtain an isomorphism
pH ) = Gy X (Mt (Pres) N M),

Now write X := u 1(7yes) N M, for the second factor and note that this is an affine algebraic
G,-variety. From this,

1 Gn
1o = ( (1G] @ X)) = X,

and since G,, is reductive, this is a finitely generated K-algebra. 1
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Remark 6.1.9. The idea in the proof comes from the procedure in the general theory of Hamil-
tonian reduction known as “reduction in stages.” When taking a symplectic quotient by a group
with a semidirect product decomposition, one obtains the same quotient by first reducing by the
normal subgroup and then by the quotient group. See, for example, [42, §4.2].

6.1.2 | Star-shaped quivers with multiplicities constant on the legs
We now describe a class of quivers with multiplicities and give conditions on the choice of y €

gy, , for which the hypotheses of Lemma 6.1.7 will hold. Let Q be a star-shaped quiver as on [15,
p. 340]":

[1,1] [1,2] [1,1]
(2,1] (2,2] [2,L]
O: . . . 4—0
0 . .

[n,1] [n,2] [, 1]

with d legs and the ith leg of length [;. Thus, the vertex set is

d
Qo ={oyu [ Jili, 1L, -, [, L 13- (6.1.10)
i=1

For notational convenience, for 1 < i < d, we will often write [i, 0] for 0. Then for 1 <i < d and
1 < j < I;, the doubled quiver Q will have one arrow from [i, j — 1] to [i, j] and one from [i, j] to
[i,j —1].

Foreach 1 <i < d, we fix m; € Z, and choose the multiplicity vector m with

m, =1 my; ;) = m; (6.1.11)

thus, the multiplicity is fixed in each leg (away from the central vertex 0). The dimension vector
n will be

no =n n[l"j] = ni’j (6112)

with n>n;; > ...>n;; > 0for 1 <i<d,so that the dimensions are decreasing as one moves
away from the central vertex on each leg.
Observe that with this,

d L
Gmn = GL, (0 x [ T[] GLu ,Rpn):

i=1 j=1

The same diagram also appears at [53, p. 27] and at [24, p. 348, Figure 1].
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hence
d li d li
mn = LS PPty Ry)  gn=2"aL, ) SP Pzl Ry
i=1 j=1 i=1 j=1

We choose ¥ € gy, , Of the form

y = (yoﬂn,y”’j]“ni,j)lsigd with Yez'k yhlezmg,.

1<j<;

We further assume that foreach1 <i<dandfor1 < j<k<l

VA

i’
2z (y[i’j] ot y[i’k]> ERX. (6.1.13)
Proposition 6.1.14. With (Q, m,n) and y as above, Q;, is an affine algebraic symplectic variety.

In the next subsection, we will show that the hypotheses of Proposition 6.1.14 imply those of
Lemma 6.1.7, which then provides a proof of the proposition.

6.2 | Proof of Proposition 6.1.14: Construction of a section
Here we prove the following.

Proposition 6.2.1. Let (Q,m,n) and y € g}, be as in Proposition 6.1.14. Then there is a
-1

Gy-invariant closed subvariety M,, C u:(7i) and a G}n’n-equivariant isomorphism

it (Fier) = Gy XM, (6.2.2)
as in the hypothesis of Lemma 6.1.7.

Simplified case:d = 1

For notational simplicity, we will first assume that d = 1, so that we have a quiver with a single
leg. This allows us to drop the index i from the notation in (6.1.10), (6.1.11), and (6.1.12). Thus, the
doubled quiver Q is the following:

-1

p p p p
0 TR I LN N
- —_ """ (6.2.3)
ql qz qlfl q[

where the vertices are labeled 0, ..., [ from left to right, multiplicity vector m = (1, m, ..., m) and
dimension vector n = (n,n,,...,n;) with n > n; > -« > n;. To avoid having to write out things
separately for the vertex 0, we will often write n;, := n.

Also,

y = <y01]n,yj1]nj) with ezl K 7y ez ™R,

1gj<l
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ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES 1001

The condition (6.1.13) on y reads
2"y + - +7F) € R (6.2.4)
fori<j<g<kgl

Explicit description of the groups, Lie algebras, and their duals
Let us now be explicit about the groups that are involved. One has

! !
Gmn = GL,(K) x [ 6L, (R,,) Ghn = [ [ OL) Ry, (6.2.5)
i=1 i=1
with respective Lie algebras

l l
dmn = 8L, () @ [ ] oL, Ry o = P al), R,
i=1 i=1

1

and duals
1 v 1
O =2 OB [[ 770l R) (k) = D7 "aby Ru) /2 0L, Ry).
i=1 i=1

One has direct sum decompositions as in (6.1.6) and the projection maps to each factor simply
omits the “irregular” part or the “residue” term, respectively, as in (2.1.6) and (2.1.7). As before,
we write ¥, and y;,, for the images of ¥ under the respective projections to g, and to g .

Explicit description of the space of representations Rep(Q, m, n) and group actions
Explicitly, the space Rep(Q, m, n) is given by

1
Hom, (K", RE™) @ Hom, (RE", k") & P <HomRm(Rj‘,;-1 JR) @ Homy (R, R )).
i=2

We will write elements of Rep(Q, m, n) as pairs (p, q), where p = (p', ..., p) and q = (¢, ..., ¢)
are each themselves s-tuples, where

p' € Hom, (K", R®™) p' € Homy (R, R}, 2<i<!
q' € Hom, (R®™ k™) q' € Homg (R, Ry, 2<i<l.
Since Homg (R}, R} ) = Homy (K", K°) ® R,,, we will think of the p' as elements
P €M,y (R,), 1<i<l
and dually of the g’ as Laurent polynomials

q €z7"M, R, 1<i<l
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1002 | HAUSEL ET AL.

In this notation, an element g = (¢°, ..., ¢") € Gmn actson (p,q) € Rep(Q, m, n) by

9.0, = (¢"'P' (@7 ?P* (g7 gD (6D

R R O Rl ) Rl L (7 I (6.2.6)

Of course, here ¢° € GL,,(K) and ¢’ € GL,, (R,,)-
Later, we will need to be even more explicit, and so, we will write

. . A . . q q
-1 m 1
p'=py+zp;+-+z""p, ql=z—m+~~+—

with pji. € M, s, (K, q§. €M, (K.

When we will need to evaluate moment maps or group actions, we will need to regard, for
example, the product p’q as an element of al,, R, = z7"gl, (R,,). We do this by multiplying
p' and g’ as matrices of Laurent polynomials and truncating the terms of degree > 0. Explicitly,

_ P9 Podna TP P TPt P,

i
q Zm Zzm—1 zZ

€gl, (R,)". (62.7)

Of course, products of the form g'p’ or ¢"~'q'(¢")~! as in (6.2.6) are written similarly. Products
such as g'p'(¢'~1)~! in (6.2.6) will be considered as multiplication of the relevant matrices with
entriesin R,,.

We will also write

with yj. € K. In particular, the assumption (6.2.4) implies that yfn ek*foralll1 i<l

Explicit description of the moment maps
The moment map u : Rep(Q,m,n) — g  has the explicit expression

u(p.@) = (-q'p'.p'q" — p* ... p" ¢ = ¢'p. p'g) € gl - (6.2.8)

Composing with the projections arising from the direct sum decomposition (6.1.6), we get moment
maps

fres : Rep(Q,m,n) — g M © Rep(Q,m,n) — (g}, )",
which are, in fact, the moment maps for the restricted G- and Glln ,-actions, respectively.
We are primarily interested in the preimage ,ui‘rrl(yirr). The point (p, q) lies in this preimage if

and only if (in other words, the moment map condition translates to)

p'qg =g Pt 4y, 1<i<i-1 pld' =7",. (6.2.9)
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ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES | 1003

We recall that (grln »)’ has no component corresponding to the vertex 0. Thus, if we write out
an explicit expression as in (6.2.7), we should ignore any contributions coming from the residue
terms, because we are considering these equations in (grln 2

Definition of M,, and its G, -invariance
We now proceed with defining the subvariety M, appearing in Lemma 6.1.7, where (Q, m, n) is
as in Proposition 6.1.14 in the special case where d = 1. We start by defining

0 ._, -1
My '_Mirr (Yirr)

and define inductively a nested sequence of subvarieties of M’ 2 by

M, = {(p.gye Mt : pig, =71, +a P}
M, = Mi, i= {(p, q) € Mi,_l : plqin = yinﬂnl } (6.2.10)

Remark 6.2.11. On the left side of the defining equation for M}, the matrix p'q;, is a priori a
gl (K)-valued polynomial in z of degree < m — 1, but the right-hand side is, in fact, a constant
matrix. So, the defining condition is equivalent to the further conditions

Py, = = = P)_1q,, = 0 € gL, (). (6.2.12)

The fact that M,, is an affine variety is thus clear.
Furthermore, from this description, it is easy to see that M,, is a G,-invariant subvariety of

Rep(a, m, n) using (6.2.6) and the appropriate expressions in (6.2.7): the vanishing conditions
(6.2.12) imposed by (6.2.10) are left unchanged.

Remark 6.2.13. Equation (6.3.13) below implies that z" piq’ € GL, (R,)for1 <i < L. In particular,
the constant term, namely, péqﬁn, must lie in GLni(K). This fact is crucial in the construction of
the isomorphism (6.2.2); see Lemma 6.2.17 below.

We now establish some properties of the M ;, with respect to the action of Grln ,, and its subgroups.
Let us consider each GL;_(Rm) for 1 < i< as a subgroup of Gllnn via the obvious inclusion in
(6.2.5). We will also use the subgroups

!
1y 1 1
@L =T] GL,, (Ryy) C Gy s
j=i
noting that we have a (decreasing) chain of inclusions

(Gin,n)l C (Gt%n,n)l_1 cC (Grln,n)2 C (Grln,n)1 =G,

m,n’

Lemma 6.2.14. M;, is invariant under (GL, ).
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1004 | HAUSEL ET AL.

i _ i+1 I 1 i+l
Proof. Let(p,q) € M;, andr=(1,..,1,rt, ) e (Gm,n)l+ . Then

r

i+1 ,.i+1 i+1/,.i+1\—1
g )T, r

r-(p.@) =(p'.q"..p.q" . r"'p

. l"lpl(}"l_l)_l, Vl_lql(}’l)_l).

i+2pi+2(}'i+1)_1, i+1qi+2(}’i+2)_1,

Observe thatr - (p,q) € M ;‘1 since the condition for this to hold depends only on the components
phq, ..., pl, g, which are unchanged under the action of r. We only need to check the condition
for M ;, which involves the terms g*?, p(i)“. It suffices to see that

(FHpit1) = pit! (g1G)), = gitL,
But since rit! GLrllz+1 (R,,), the constant terms of r'*! and (r'+1)~! are both L O
Lemma 6.2.15. Letr' € GL}%(RW,) and (p,q) € M;,. Ifrt-(p,q) € M;,, thenr! = U,
Proof. Writer' =1, +zrl + - +2"'rl _ . Then
r(poq) = (phagh o riph g )L P rg L L g, (6.2.16)

The condition for r - (p,q) € M; is

Pl (@)™, = Ve, + DR (PTED T,
but
(qi(ri)—l)m — q:n (riqi+1)m — q;ll—l (pi+1(ri)—1)0 — p(i)+1’
so we need

o000 i+1 ,i+1

rp'ay, = Vil + 4o oy = Pods

where the last equality follows from the definition of M} . But by Remark 6.2.13, p(q;, € GL,, (K) C
GL,, (R,,,), and hence, this may be regarded as an equation in GL}l_(Rm) and hence ri = 1 ne

Construction of the isomorphism (6.2.2)

Lemma 6.2.17. For 1 <i <, there exists a morphism @; : M;,_l - GL},,(Rm) such that for all
(p.q) € My™", we have (p,q) - (p.q) € M,,.

Proof. Let(p,q) € M;',‘l andri e GL;,-(Rm)' Sincer! € (Grln’n)i, ri-(p,q) € M;‘l and so we need
only check the condition for M;. We recall the expression for r - (p, q) from (6.2.16) and observe
that

LAl 4l

r'ip'q, = piq., +z(p} + rip)a., + Z2(ph + rip| + rip)gl, + -+ 2" NPl +ripL L+

i [P
+ rm—lpo)qm'
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The condition we want is that all the nonconstant (with respect to z) terms vanish (Remark 6.2.11).
But now, by Remark 6.2.13, péqin is invertible, and so starting with the coefficient of z above, we
may solve for r! = —pi(piq’ )" so that this coefficient vanishes. It is then clear that we may

successively solve for r’, ..., r, _, algebraically as functions of p and g to eliminate the remaining

nonconstant terms. This produces ¢; with the stated property. O
Corollary 6.2.18.

(a) Forr' € GL} (R,,) and x € M;‘l, we have ;(r' - x) = ¢;(x)(r")~1.

(b) For e (Glln,n)i+1 andx € M;',‘l, we have ¢;(F - x) = @;(x).

Proof.

(a) By definition, ¢;(x) - x € M;',, so also ¢;(r' - x) - (r' - x) € M;',, but the latter is equal to ¢;(r' -
x) -t @;(x)7L - (@;(x) - x). Since g;(x) - x € M;,, by Lemma 6.2.15, @;(r' - x) - r' - g;(x)7! =
1,.

(b) We have ¢;(7 - x) - (7 - x) € M;', but since ¢;(7 - x) € GL. (R,,,) and 7 € (G}Im)i“, we have

@;(F - X)F = Fo;(F - x)

and hence 7 - (¢;(F - x) - x) € M;',, but then also ¢;(F - x) - x € M;, by Lemma 6.2.14. So again,
Lemma 6.2.15 yields ¢;(7 - x) = ¢;(x). O

. 1 i . . . . . ‘_1 1 i

Corollary 6.2.19. There is a (Gm’n)’—equlvarlant isomorphism o; : M;, - GLni(Rm) xM;,,
: i 1 1 i+1 _ 1 i 1 i
where the action of (r',7) € GLni (R,,) X (Gm,n)l+ = (Gm’n)l on(s,y) € GLni(Rm) X M;, is

(', 7) - (s, %) = (r's, 7 - x).

Proof. We define o; : M;,‘l - GLii(Rm) xM;, by o;(x) = (¢;(x)7L, ¢;(x) - x), which is well
defined by Lemma 6.2.17. The inverse 7; : GL}T(Rm) XM ;, - M ;_1 is simply given by the action
7,(s,y) = s - y. This is well defined since GL}li(Rm) C (Grln’n)" and M;, c M;,‘l and (Grln’n)i act
on M;',_l by Lemma 6.2.14. It is clear that 7;00; = ﬂMiy_l. Now, if (s,y) € GL'I% (R,,) X M;',, then

@i(s-y)=9;(y)s7! = s since p;(y) -y € M;, but already y € M;, so one uses Lemma 6.2.15 to
see that ¢;(y) = 1. Then

g07(s,y) =0y(s-¥) = (@i(s- ) L @i(s-y) - (s ) = (8,571 - (5- ) = (s,9).
Using Corollary 6.2.18(a), it is easy to see that o; is GL;(Rm)-equivariant. Thus, it suffices to
show that it is (G.  )'*!-equivariant. Let 7 € (GL )'*',x € M;_lz
oi(F-x) = (@i(f X)L @y(F - x) - (F - x)) = (<0i(x)‘1,qoi(X) 7 x) =7 (@i(x)_l, @i(x) - x)
=7 o0;x). O

Conclusion in the cased = 1
We can now put the o; of Corollary 6.2.19 into a Grln ,-€quivariant isomorphism
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1006 | HAUSEL ET AL.

U (Vi) = M;), — GL}ll (R,,) X M;l, — GL}H(RM) X GL}IZ(Rm) X M;Z, —
— GL,, (Ry)) X - X GLy (Ry)) X M, = Gy X M.

It was already noted in Remark 6.2.11 that M, is Gy -invariant. These are the hypotheses of
Lemma 6.1.7, and so, we may conclude in the case d = 1.

The general case of d legs

Now, consider the situation of Proposition 6.1.14, where the number of legs d € Z., in the quiver
Q is arbitrary. Since the multiplicity at the central vertex 0 is m, = 1, y;,, has no component at 0
and thus

d
ﬂl_rrl (Yirr) = H :ul_rrl (Yirr)i’
i=1

where ,ui‘rrl (7ir); denotes the moment map preimage for the ith leg. Likewise, GL _ factors as a

product of the groups (6.2.5) for each leg and the action on ,ui_rrl(yirr) is just the product action.
Thus, if we set

M, =M,

d
i=1

with M, ; is in (6.2.10) for the ith leg, we get a G}n,n-equivariant isomorphism

'ui_rrl(yifr) - Grln,n XM,.

Finally, the G,,-invariance of M,, follows from the corresponding statement for each leg (see
Remark 6.2.11) since there we already included the action of GL,,(K) at the central vertex. Applying
Lemma 6.1.7 completes the proof of Proposition 6.1.14.

6.3 | Coadjoint orbits

Here, we discuss the relationship between coadjoint orbits for the group GL,,(R,,) forafixedm > 1
and varieties associated to quivers with multiplicities, where the underlying quiver is a single leg.
It may thus help the reader to refer back to the diagram (6.2.3). What will be true is that coadjoint
orbits of certain diagonal elements C € t in gl (R,,)¥ (2.2.1) can be realized as symplectic reduc-
tions of the spaces Rep(Q, m, n) that we considered in the case d = 1 in Section 6.2. To be able to
make a precise statement, we will first need to explain the conditions on the coadjoint orbits and
set some notation.

We will take C € t , and suppose that it is written in the form (2.2.2). We will make the further
assumption that (2.2.3) holds. For such a C, we wish to describe a quiver Q, which will be a leg, as
well as some data on it, from which we will recover O(C). The quiver will be the same as in (6.2.3),
having I + 1 nodes and 2! arrows, and will have the same multiplicity vector m, with multiplicity
1 at the vertex 0 and all other vertices receiving multiplicity m. The dimension vector n will be
defined by taking n; := 4, nj_; :=1;+ 4;_;, and so on, with (4, ..., 4;) given as in (2.2.2).
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Remark 6.3.1. Observe that if C is a regular formal type (recall Definition 3.2.3), then any
representative of C in any local coordinate z satisfies (2.2.3).

From the data in (2.2.2), we set
Yy i=c yli=c -l 1<igl (6.3.2)

Then (2.2.3) implies that (6.2.4) holds.

The statement that we want is that the GL,(R,,)-coadjoint orbit of C as above is given by a
symplectic reduction of Rep(Q, m, n) by a subgroup of G, ,. The subgroup in question is that we
obtain by leaving out the group GL,,(K) corresponding to the vertex 0, namely,

1
Gm,n,O L= H GLni(Rm)-
i=1

We write gy, ,, o for its Lie algebra. The reason the vertex 0 in (6.2.3) was drawn empty is because
we want to consider only the symplectic quotient by Gy, , ¢-
Of course, Grln , is a normal subgroup of Gy, ,, o with quotient

l
Gno = [ [ GL,, (),

i=1
which is precisely the group associated to the underlying quiver with dimension vector n, ignoring
the multiplicities, where again we are omitting the group GL,,(K) corresponding to the vertex O.
Thus, we want to take a symplectic quotient by the semidirect product
Gmyno = Gnypo X Grln,n- (6.3.3)
From the inclusion g, , 0 € 61, n» We have a natural surjection of the duals

\% \%
gm,n - gm,n,O’
and the moment map for the G, , o-action on Rep(Q, m, n) is given by the composition
: Re (amn)i MU
Mo - pl¢, m, 9m.n Omn,0°
We will consider the element
O | ! v
Yo = ()/ ]]”1’ eV 1]n,) € gm,n,O’

and define the symplectic quotient

Rep(Q, m,n)// 7oGmuno *= Spec (Kluy? (70)]Cmno).

For less burdensome notation, we will often abbreviate the left-hand side of the above to
Rep /Gy n - Observe that the assumption (2.2.3), the arguments of Section 6.2, and Lemma 6.1.7
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already show that Rep /Gy, ,, o is an affine symplectic variety. We will write

T #(;1(70) - Rep //Grn,n,O
for the quotient map; since this is defined as a GIT quotient, this is a categorical quotient.

Proposition 6.3.4. Suppose C € z7"t(R,,,) C g[,,(R,,)" is ‘written in the form (2.2.2) and satisfies
(2.2.3) and that Q, m, and n are given as above. Then Rep(Q, m,n)// 7oCmn,0 admits a GL,(R,)-
action and there is a GL,,(R,,,)-equivariant isomorphism

Rep(Q,m,n)//, G no — OC). (6.3.5)

The following is a slight generalization of [11, Proposition D.1] that will be important in the
proof of the proposition.

Lemma 6.3.6. Let R be a commutativelocalringandletm < n € Z. o, p € M,,;.,(R), ¢ € M,;5,n(R)
be such that pq € GL,,,(R). Then

0,_
qp and l" " pq] (6.3.7)

are conjugate in GL,(R).
Proof. Observe that R" = ker p @ im q. Indeed, given v € R", letw := (pq)~!pv € R™. Then
p(v—qw)=0

hence v = (v — qw) + qw € ker p + im g, that is, R" = ker p + im q. Furthermore, the sum is
direct, forif v € ker p nimq, say v = qw withw € R™ and pv = pqw = 0, then w = 0 and hence
v=0.

Furthermore, the assumption that pq is invertible also implies that ker p and im q are free R-
modules. This can be seen via the Cauchy-Binet formula: for a subset I C {1, ..., n} of size m, one
sets det; p to be the determinant of the m X m submatrix of p taking the columns with indices
in I; one defines det; g the same way, using columns instead of rows; then the formula states
that

det pqg = Z(detlp)(deth),
1

where the sum is over all subsets of size m. Since det pg € R* and R is local, there must be some I
with det; p € R* (otherwise, all the terms in the sum would lie in the maximal ideal, and hence,
det pq could not be a unit). Hence, there exists r € GL,,(R) for which the submatrix of rp corre-
sponding to I is the identity matrix. That is, the matrix rp is in reduced row echelon form and
one can find a basis of ker p = kerrp as one does in a first-year linear algebra class. A similar
argument shows that the columns of q are linearly independent over R and hence already give a
basis of im gq.
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Now, we choose a basis of R" by taking the first n — m vectors as a basis of ker p and the
last m vectors as the columns of q. Then the fact that R" = ker p @ im q implies that the matrix
obtained in this way lies in GL,(R). Writing qp with respect to this basis gives the second matrix

in (6.3.7). O

With this, the proof of Proposition 6.3.4 follows the idea of [11, Lemma 9.10], which explains the
proof of [15, §3]. However, there one can rely on usual results of linear algebra over fields, while
in our case, working with the orbits of the unipotent groups involved requires a little care, which
makes the arguments somewhat longer.

Proof of Proposition 6.3.4. For the reader’s convenience, we recall the explicit expressions for the
moment map (6.2.8)

l
o(ps ) = (p'q" — p% . P — 4P p'd) € 9l o = ED ol (R, (6.3.8)
i=1

and the Gy, , p-action: for h = (hy, ..., b)) € Gy, , o, One has

h-(p.q = (hp'.q'hit yp* kT @iy ypth Y gt h. (6.3.9)

O

GL,(R,,)-action on Rep //Gp, 1o
Of course, Rep(a, m, n) admits a GL,,(R,,)-action: for ¢ € GL,(R,,), one has

9-(p.9) = 97" 99" % ¢, ... P\ gV (6.3.10)

From (6.3.8), it is easy to check that u (y,) is invariant under this action. It is likewise easy
to see that it commutes with the Gy, ,, o-action (6.3.9). Thus, the action descends to the quotient

Rep //Gm,n,O‘

Definition of the isomorphism ® : Rep /Gy, 0 — O(C)
We begin by defining a morphism & : ual(yo) — O(C) by

(p.q) ~ q'p' +7°1,. (6.3.11)

For this to define a GL,,(R,,,)-equivariant morphism @ : Rep /Gy, , o — O(C), we need to verify
three things: first, a priori, ® takes values only in g ,(R,,)V, so we need to see that it indeed takes
values in O(C); second, we need to check that dis Gm no-invariant; finally, one wants to see that )
is GL,,(R,,,)-equivariant. The latter two statements are easy to check simply from their definitions:
(6.3.9) for Gy, , p-invariance and (6.3.10) for GL, (R,,,)-equivariance. The first statement is a bit
longer and so we will justify it in the next paragraph.

® takes values in O(C)
For 0 < i < I, we define the diagonal matrix
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1010 HAUSEL ET AL.

i
s
Lit1
Y

= €z "gl, (R,) = gl,, (R,))",

il-1
VAL VA

| yh, |
where the ' were defined in (6.3.2) and
Yo oi=yib 4y, 1gi<jglL

Since (2.2.3) and hence (6.2.4) hold, z"t! GL,, (R,,,) for 1 < i < 1. Also, we have
0z, i i : 0
i1 +y'1, =t', 0<i<li-1 ¥ =cC. (6.3.12)

We observe that if (p,q) € /xo_l(yo), thenfor1 <i<l,
p'q’ ~GLy, (Ryy) & (6.3.13)

where ~g; (g ) means in the same GL,, (R,,) coadjoint orbit in gl,, (R,,,)", and

ip~ Ot (6.3.14)
9P ~GL, Ry il -

First, note that (6.3.14) follows from (6.3.13) and Lemma 6.3.6. Then (6.3.13) is easy to see by
decreasing induction on i. For i = 1, (6.3.13) follows from the last component of the moment map
condition uy(p, q) = 7,, see (6.3.8). Now, for the inductive step, one has

S . 0;, . ,
plql qu+1pl+1 +yl1]nl- ~ l i ti+1] +yl1]ni ztl,

the first equality being the ith component of the moment map (6.3.8), the similarity (6.3.14), and
the last equality following directly from the definition of the .

Finally, to show that & takes values in (9(C), we wish to show that for (p, q) € My 1(y), one has
q'p' +¥°1,, € O(C). This now follows from (6.3.14) for i = 1 and (6.3.12).

Definition of the inverse ¥ : O(C) — Rep /G
We start by defining a morphism ¥’ : GL,(R,,) — Mo L(y,). Of course, we can compose this with
the projection 7 : ,ual(yo) — Rep /Gy n to obtain a map ¥ : GL,(R,,) = Rep// Gmn,o- Then,
since themap# : GL,(R,,) > O(C) of Lemma 2.2.4(b) is a categorical quotient, in order to define
¥ 1 O(C) — Rep //Gyny- it suffices to show that U is L, ,,-invariant, by Lemma 2.2.8(d).

We first define a tuple (p, ) by

. . Ol- ) .
plc = [Onini—l ﬂni] qlC = l ‘_tixn“| , 1<igl (6315)
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ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES 1011

With (6.3.12), it is easy to check that

(P, Qe € Ky (7o) and ®(p,q)c =C. (6.3.16)

We now define ¥’ : GL,(R,,) — My Y(y,) using the action (6.3.10)

g g9-(p,qQc-

We will show that the resulting ¥ is L, n-invariant. Let f € L, ,,,. We may write

[ = diag(fo, . f1)

with f; € GLAi(Rm). Furthermore, for 0 < i < [, we will set
f':= diag(fi, .. f1) € GL, (Ry),
noting that f 0= f- Then it is easy to check that for 1 < i <,
pLUTY T = (Y Pk [l =qpfh (6.3.17)

By an inductive argument using (6.3.17), it is straightforward to show that for g € GL,(R,,,) and
f €L,,, asabove,

@ @a)e= (Y ) (g (2@,

where the right-hand side is the action of Gy, ,, o; in other words, ¥’(g f) and ¥'(f) lie in the same
Gmno-orbit. It follows that T is L J.m-invariant, and hence, induces ¥ : O(C) = Rep //Gyno
with

Wopn=1.

Verification that ® and ¥ are mutually inverse
We first check that ® o ¥ = 1. Now, ® o ¥ is the morphism induced via L, ,,-invariance from
the map ® o ¥’ : GL,(R,,) — O(C), which is, by (6.3.16),

g g-(p,q)c— Ad,C.

But this is precisely 7, as in Lemma 2.2.4(b), hence the induced map on the quotient must be
the identity.
Furthermore, for (p, q), the similarity relations in (6.3.13) and (6.3.14) are, in fact, equalities.
In particular, g}, p}, +¥°1, = t° = C, and hence, it is easy to check that
DPoP(A)=A

forall A € O(C).
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1012 | HAUSEL ET AL.

Finally, we show that W o ® = T, 6 . Let(p,q) € uy'(¥o). Then ®(p, q) = ¢'p' +y°1,,;if
thisis Ad,C, for g € GL,(R,), then -

¥ o®(p,q) =g (p,q)c-

Thus, to show that ¥ o ® o 7(p, q) = m(p, q), we will show that (p,q) and ¢ - (p, @) are in the
same Gy, ,, o-orbit. This is again an (increasing) induction. Using (6.3.16), we have

q'p' + 701, = Ad,C = g(g-pl + 701,97

and hence, we find
q'p' = 9qcpcy”" (6.3.18)
and multiplying by p! on the left and by ¢ on the right, we obtain

p'q'p'g = p'9aipe. (6.3.19)

Let us now write

forsomed, € M, ;3 (R,,)and h; € gl,, (R,,). Substituting thisinto (6.3.19), and using the explicit
expressions for p, and g/, (6.3.15), we get

[(p'gNd;  (p'g"hy] = [0n 5z, hat'].

Now, (6.3.13) tells us that z p'q! is invertible and hence d; = 0. Therefore,

plg=1[0 hy=hpe
or equivalently
p'=hplg". (6.3.20)
Since z"p'q! is invertible, p! is of rank n; and multiplication by g does not change this, so
h, must also be of rank n; and hence h; € GL, (R,,). Using this and substituting (6.3.20) into
(6.3.18), we can conclude that
q' = gqchi.
Therefore,
(p.@) = (hyptg~ " gqiht P @ . Pl )
= (h',1,..,1) - (pLg ™", 99t p*hi. b a% PP P, .. bl g,

thus, after relabeling p2, q2, (p,q) is in the same Gm’n,o-orbit as an element of the form
(pe97% 998, 0% 4% P @, DL 4.
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ARITHMETIC AND METRIC ASPECTS OF OPEN DE RHAM SPACES 1013

By induction, we may assume that (p, q) is of the form

(p.@) = (pbg™" 998 P& Qe > Per @i P @ DL ).

Then the ith component of the moment map (6.3.8) gives
. . . . 0
+1,i+1 — A .
gt P =peqe =7, = l ti“] ;

(in case i =1, we have the product (p.g~')(gq5) = plqg, and so, this case yields the same
equation). Using the same argument as above, we write p'*! as a block matrix with two blocks
and using the fact that zp*1g'*! is invertible, we show that the square block is an invertible
matrix h;,; and the other block is zero. We then conclude that p'*! = h;_, piC+1 and then that
q'*' = g5'h . Hence,

(p,9) = (L9 ™", 998> P& qGs -+ Pes Ao hia P g5 i ' g

=1,y hiygs s 1) (PG 908 Do Qs e P @, PE 2Ry 0T 52, P g,
and the induction hypothesis is satisfied for i + 1. Continuing in this fashion, we see that our
original (p, q) is in the G, ,, o-orbit of g - (p, g)¢ and hence ¥ o ® o 7(p, q) = 7(p, ).

6.4 | Relation between open de Rham spaces and nonsimply laced
affine Dynkin diagrams

6.4.1 | Additive fusion product of coadjoint orbits and open de Rham spaces

The reason for the emphasis on the quiver with multiplicities described in Section 6.1.2 is to relate
the corresponding variety to an additive fusion product of coadjoint orbits and hence open de
Rham spaces. Suppose that we are given a d-tuple m := (mi)fl=1 of positive integers and coad-
joint orbits O(C*), 1 < i < d, for some diagonal elements C* € gl ,(R,, )¥, which we will take to be
written in the form (2.2.2). We use this to define the data for a quiver with multiplicities.

1. For 1 <i < d, the integer [; is defined as in (2.2.2) and the quiver Q as in (6.1.10) with arrows
defined immediately thereafter.

2. The tuple m of multiplicities can then be chosen as in (6.1.11).

3. We define the dimension vector n as follows. We set n, := n. Again, from (2.2.2), for each 1 <
i < d, one gets a series of positive integers A; ), ..., A[;;, _1], and we set nj; 17 1= 1) — A
with the convention ny; o) = n. This defines (ny; ), ..., nj;;,) for 1 <i < d and we use these to
define the remaining entries of n. We have now defined Q(m, n), and hence also G, 5, 8mn-
and so on.

4. Finally, we define an element y € gIVn,n. Once again from (2.2.2) and (6.3.2), foreach 1 < i < d,

we obtain elements y[t0, .. ylbhl € z iR, ; We take

[i.j] —m;
y ‘ﬂ}’l[i’j] e z gIn[i,j] (le)
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to be the component of ¥ at all vertices except the central vertex 0. There, we take y°z711, €
gl,(K)Y, where

res,_o y1"0l. (6.4.)

<
=}
.”.

Il
_

5. Furthermore, we will assume that for 1 < i < d, (2.2.3) is satisfied.

Theorem 6.4.2. With Q(m,n) and y € g, ,, chosen as above, one has an isomorphism of the
associated quiver variety with the additive fusion product of coadjoint orbits

d
Q, = (H (9(ci)> // GL,,(K). (6.4.3)
i=1 0

In particular, if Ccl,..,c% are regular generic, we have Q}, o M; - Furthermore, in terms of the
quiver data, the dimension of Q,, is given by the formula

d

d l
dim Q}’ = 2<Z m; z n[i’kj(n[i,k_lj - n[i,kJ) - ng + 1) (644)
k=1

i=1

Proof. Taking each leg one at a time, Proposition 6.3.4 takes (p, q) € u~'(y) and gives us a d-tuple
(AL, ..., A with Al € O(CY), 1 < i < d; more explicitly (6.3.11), one has

Al = gl plit] 4 ylioly

The moment map condition for the quiver at the vertex 0 is

d
nres<_ Z q[m]p[l’l]) = yoﬂn,
i=1

and that for the additive fusion product, that is the right-hand side of (6.4.3), is

d d
ﬂres(ZA’> = %(Z g"Hplttl + V“"”ﬂn) = 0.
i=1

i=1

So, by definition (6.4.1), it is clear that one moment map condition is satisfied if and only if the
other one is. Finally, we remark that the remaining group action is the diagonal action of GL,,(K),
with g € GL,(K) acting on gl*!l as ggl®!l and on pli!l by plillg=1; this clearly translates into
conjugation on the A’

For the dimension formula, we can use the expression (6.4.3) and compute the total dimension
by summing those of the coadjoint orbits ()(C?). To obtain these in terms of the quiver data, we
use the expression (6.3.5). For the ith leg, the dimension of the space of representations for the
arrows (going in opposite directions) joining the (k — 1)th and kth nodes is 2m;ny; jny; x—1}; the

dimension of the group at the node [i, k] is min[zl, K- Summing over the nodes on the ith leg and
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accounting for the preimage of central elements in the dual of the Lie algebra, we get

L l L
dim O(C") = 2<mi D A ey — My ”[21-,,(]> =2m; " (g1 = Myii))-
k=1 k=1 k=1

The term —2(n(2) —1) = —=2(n? — 1), of course, comes from the quotient by PGL,, = GL,,/Z. [

6.4.2 | Surfaces associated to nonsimply laced affine Dynkin diagrams

It is well known how to attach a smooth algebraic surface to a simply laced affine Dynkin
diagram. Namely, given a simply laced affine root system of type 7 (where 7 is one of
{A}is1,{Di}is4, E6, E7, Eg}), the type 7 ALE space can be constructed as a Nakajima quiver
variety for the quiver, the affine Dynkin diagram, and with a suitable choice of dimension
vectors [47, §2]. It is isomorphic to a resolution of a Kleinian singularity C?/T for a finite
I' ¢ SL, corresponding to 7 via the McKay correspondence. It carries natural Asymptotically
Locally Euclidean hyperkdhler metrics [35] — hence the abbreviation ALE. In this section,
we will study open de Rham spaces corresponding to nonsimply laced affine Dynkin dia-
grams. Many of them will turn out to be isomorphic to ALE spaces, thanks to Boalch’s [11,
Theorem 9.11].

Let Q = (Qy, Qq,h,t) be a quiver, n € ZS‘(’) a dimension vector, and m € Zgg the multiplicity
vector. As explained in [55], this data are equivalent to the following symmetrizable generalized
Cartan matrix C = (c¢;;);, jeq, defined by ¢;; = 2 and fori # j

Cij i= —mai’j
where

a,; = l{a € Q, | h(a) = i,1(a) = j or h(a) = j, 1(a) = i}|.
This we can record by a not necessarily simply-laced Dynkin diagram.

Letnowy € grvn’n. Then the quiver variety with multiplicity Q, has dimension given by formula
(6.4.4). Thus, Q,isa surface if and only if

d l

m; Z n[i,k](n[i,k—l] - n[i,k]) = I’l(z).
i=1 k=1
For instance, in the example of FE;I) below, one has

m= (mo, I’H[Ll], m[l’z], m[1’3], I’l’l[z,l]) = (1, 2, 2, 2, 1),

n= (no, 1115 P[1,2]5 P[1,3)» n[z,l]) =(4,3,2,1,2),

and thus, m; = 2 and m, = 1 and the condition is readily verified.
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Below we will list the star-shaped nonsimply laced affine Dynkin diagrams, which correspond
to open de Rham spaces in Theorem 6.4.2 of dimension 2. The simply laced star-shaped ones
D,,E, E;, Eg correspond to open de Rham spaces with logarithmic singularities.

Example. A(SZ)
1
©)
1
—ole
2

—_ QO
— ON

The diagram depicts the nonsimply laced Dynkin diagram. The integers written below each
node show the dimension vector, while the ones above the node give the multiplicity vector. This
corresponds to the open de Rham space MZZ 21 of type ((12,12),(1)). By [11, Theorem 9.11],
Mzklz )1 is isomorphic to an A; ALE space. In particular, the mixed Hodge structure is pure on

* ’ *’

H (M(12,12),(1)) and

WH(ME“l t) =1+ 3qt?,

2,12),(1); q’

which is compatible with |J\/lE"12 ) (1)([Fq)| = g° + 3q from (5.1.13) with d = 3,7 = 1.

Example. C;l)

—~ O
{
o O+
i
— O

This corresponds to the open de Rham space M; )

ple from the list of star-shaped nonsimply-laced Dynkin diagrams which is not isomorphic to
a Nakajima quiver variety [9]. One can see this using the explicit equation for MZ,(LI) in [4,
(3.1)]. One can deduce that it has isolated singularities at infinity by [49, Remarks 2.5.(a)]. In
turn, this implies that it is homotopic to a wedge of spheres by [49, Theorem 3.1]. In order to
match the virtual weight polynomial computation WH C(M;,(l,l)’ q,—1) = g*> + 2q from (5.1.13)

with d = 2,r = 2, we must have that the mixed Hodge structure is pure and

of irregular type (1,1). This is the only exam-

WH(M q,t) =1+ 2qt>.

* .
2,(1,1)°
This case is special in that Boalch’s [11, Theorem 9.11] identification with a quiver variety does
not apply, as we have two irregular poles. In fact, there is no ALE space that is isomorphic with
M;‘ (1) 38 the intersection form on H CZ(M;,(I,I)) is divisible’ by 2, whereas the intersection form
of the A, ALE space is not divisible by 2.

Examples. Df), Agz)’ G;l), FE‘I), E(62)

T Because after a hyperkihler rotation, the manifold becomes a blow-up of (C* x C)/Z, at the two A, singularities, where

Z, acts by the inverse (see Example 7.3.5 and [1, 46]). Thus, Hf(M; a1y Q) has a basis represented by the two disjoint

exceptional divisors of self-intersection —2.
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In these cases, we will only have one irregular pole, and thus, [11, Theorem 9.11] will apply. The
arguments are identical to the Agz) case above. We collect the results in the following table.

type Dynkin open de Rham space ALE type WH(q,t)-polynomial
(2) * A
A (1) M A, 1+ 3qt?
1
1 1 2
O—O <=0
1 2 1
p® 1 1 3 M A 1+ 2q¢>
4 (12,2 2
O—0O €0
1 2 1
(2) * A
A 1 4 Mz,(s) Ay 1+ qt?
oR=Xe¢)
2 1
G 3 3 1 M A, 1+ 2q12
O—O0O>0 ’
1 2 3
P2 2 2 11 My, D, 1+4q1>
O—O0O—0=>0—0
1 2 3 4 2
EY 1 1 1 2 2 My, D, 1+4ge2.
O—O0O—0<«<0—0
1 2 3 2 1

In all these cases, the mixed Hodge polynomial is compatible with the weight polynomial com-
puted from (5.1.13) in the rank 2 cases and (5.1.14) in the rank 3 cases. The only example of rank 4
isF ‘(ll) where one can compute the weight polynomial g? + 4q directly from (5.1.7).

7 | HYPERKAHLER CONSIDERATIONS

Our purpose in this section is to prove Theorem 7.3.3, which says that some of the open de Rham
spaces M*(C) that we have been discussing, namely, those for which all the formal types are of
order < 2, admit canonical complete hyperkéhler metrics.

Let us first give some motivation for and review what is already known about this problem. In
the tame case (i.e., when m; = 1 for all i in Definition 3.1.3), the corresponding open de Rham is
known to be a Nakajima quiver variety [15, Theorem 1], and these possess complete hyperkidhler
metrics [47, Theorem 2.8]. On the other hand, in the case where we have two poles of order 2
(cf.,, [8, discussion after Corollary 1]), then M*(C) will be a holomorphic symplectic quotient of
T*G, which is, in fact, realizable as a hyperkihler reduction of T*G; see Example 7.3.5 for further
details. The existence of such metrics in more general irregular cases was discussed in [10, §3.1],
but as we know of no precise reference for this fact, we give a construction here.

Now, to give a rough explanation of this construction, let us recall that an M*(C) with poles
of order < 2 is an additive fusion product of coadjoint orbits in ¢¥ and those for the group
G, = GL,(R,) (using the notation of Section 2.1). Each coadjoint orbit of the latter type may be
realized as an algebraic symplectic quotient of T*G, the cotangent bundle of G = GL,,(C), by left
multiplication by a maximal torus (Lemma 7.3.1). It is well known that T*G admits a hyperkéhler
metric, by an infinite-dimensional hyperkéhler quotient via Nahm’s equations [33]. Furthermore,
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if K C G is a maximal compact subgroup, then K X K acts by left and right multiplication (7.2.1)
and these actions admit hyperkdhler moment maps [16].

For coadjoint orbits in gV, hyperkihler metrics were first constructed by [34] for regular
semisimple orbits and for general semisimple orbits in [5] and [32]. The coadjoint G-action can be
restricted to K and it can be shown (Proposition 7.2.4), in a manner similar to that for T*G, that
this action also admits a hyperkdhler moment map.

Now, if a hyperhamiltonian action of a compact group extends to a holomorphic action of
its complexification, then the hyperkéhler reduction can be understood as a holomorphic sym-
plectic reduction [30, §3(D)]. Here, we will need the opposite direction: M*(C) is given as an
algebraic symplectic quotient; we will show that it, in fact, arises as a hyperkéhler quotient. A
special case of a version of the Kempf-Ness theorem due to Mayrand [44] gives sufficient condi-
tions for algebraic symplectic quotients of the type we have been considering to be upgraded to
hyperkihler quotients.

7.1 | Holomorphic symplectic quotients to hyperkihler quotients

Let us begin by incorporating Mayrand’s statement into the following, which will give us the
criterion we will apply later to obtain the theorem.

Proposition 7.1.1. Suppose that (M, g,1,J,K) is a hyperkdhler manifold, with Kdahler forms
wy, @5, W € Q*(M) in the corresponding complex structures. We suppose that (M, I) is a (smooth)
complex affine variety and refer to M as such with the complex structure I in mind. Suppose that G
is a complex reductive group with an algebraic action on M for which the restriction to its maximal
compact K admits a hyperkdhler moment map py, uy, ug : M — £V. As usual, we will write

Mr *= M Mo = py +iug

for the real and complex components of the moment map; we will assume that i : M — ¢¥ =t @
itV is algebraic. Here g = Lie(G) is a complex and ¥ = Lie(K) a real Lie algebra and v means dual
vector space over the respective field. Let 2 € (¢V)° be such that G acts freely on the affine variety
,uEl(/l); thus, the algebraic symplectic quotient

M //,G = SpecCluc ' (D]°

is smooth. Then, if there exists a K-invariant, proper global Kdhler potential for wy| W1y which is
C

bounded below, then there exists 1y € ¥ and, for the complex structures induced from I, a natural

biholomorphism

M///(/lR,ﬂ.)K = M//AG,
where M [l ;. 5y = (4z" (Az) N ' (0))/K denotes the hyperkdhler quotient.
Proof. The Kihler potential produces a moment map fi for the K-action with respect to wy [44,

Proposition 4.1]. This must differ from the given uy by a constant, that is, there exists Az € £V such
that up = fig + Ag- Thus, ﬂﬂgl(o) = ,uﬂgl(AR). Then [44, Proposition 4.2] gives a homeomorphism
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at the last step of the sequence

M g oK = (' (Ar) 0 uc'(0)) /K = (11 (0) N (0)) /K = M ;6.

Furthermore, by the freeness of the action, there is a single orbit-type stratum and hence the
homeomorphism is, in fact, a biholomorphism, again from [44, Proposition 4.2]. O

7.2 | Hyperkihler moment maps on the factors

Here, we show that the two kinds of factors that appear in the relevant additive fusion product
each admit hyperhamiltonian group actions.

7.21 | Cotangent bundles

Let G be a complex reductive group with Lie algebra g and let K < G be a maximal compact sub-
group. We recall that for T*G = G X ¢, there is an algebraic hamiltonian action of G X G given

by
(g,h) - (a,X) = (gah™, Ad),X), (7.2.1)
for which the moment map is
(a,X) - (Ad X, —X). (7.2.2)

Proposition 7.2.3. T*G admits a hyperkdhler metric for which the restriction of the action (7.2.1)
to K X K admits a hyperkdhler moment map. Furthermore, the complex part of this moment map
is given by (7.2.2), and for the natural complex (Kdhler) structure, there exists a (K X K)-invariant,
proper, and bounded below global Kdihler potential.

Proof. As mentioned, the hyperkéhler structure is due to [33, Proposition 1]. The existence of the
hyperkdhler moment map is [16, §3 Lemma 2]. The expression for the complex part of the moment
map is obtained by comparing [16, Equations (4), (5)] and the expressions in the statement of [16,
§3 Lemma 2]. Finally, the existence of the global Kdhler potential is [44, Proposition 4.6]. O

7.2.2 | Coadjoint orbits

Let G, g, K be as above and let O be a semisimple coadjoint orbit in g¢". Of course, G acts alge-
braically on O via the coadjoint action and the moment map is simply the inclusion O < gV.
Exactly, the same statement as in Proposition 7.2.3 holds for ©.

Proposition 7.2.4. O admits a complete hyperkdhler metric for which the restriction of the coadjoint
action to K admits a hyperkdhler moment map. Furthermore, the complex part of this moment map
is given by the inclusion O < gV, and for the natural complex (Kdhler) structure, there exists a K-
invariant, proper, and bounded below global Kdhler potential.
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Proof. As mentioned earlier, existence of the hyperkidhler metrics can be found at [34, Theorem 1.1]
for regular semisimple orbits and at [5, Théoréme 1] and [32, Theorem 1.1] for general semisim-
ple orbits. The fact that the conjugation action of K admits a hyperkdhler moment map can be
proved in the same way as [16, Lemma 2]. The existence of the Kidhler potential with the indicated
properties uses the same argument as that of [44, Proposition 4.6]. Further details can be found
in Subsection 7.4. O

Remark 7.2.5. Let S :=T N K be a maximal torus in the maximal compact group K < G and let 8
be its Lie algebra. Then, as in the references [5, 32, 34], once the coadjoint orbit is fixed, the family
of such hyperkihler metrics is parameterized by an element 7; € 3 (see Subsection 7.4).

7.3 | Hyperkihler metrics on open de Rham spaces
We first give a lemma describing coadjoint orbits for G, as algebraic symplectic reductions of T*G.

Lemma 7.3.1. Consider the diagonal element (2.2.1)

. CZ Cl \%
C.—;+?Et2

with C, regular (i.e., having distinct eigenvalues). Then the G, coadjoint orbit O(C) C gg is
isomorphic to the algebraic symplectic quotient

T*GJ o, T
forthe T-action t - (a,X) = (ta,X).
Remark 7.3.2. This is a special case of [7, Lemma 2.3(2), see also Lemma 2.4].
Proof. Recall that the moment map for this actionis u : T*G — tY
(a,X) —» m(Ad, X).

The map u~1(C;) = O(C)

Ad,C
(@,X) > —a 72 4 X
72
is readily seen to be T-invariant, so descends to a morphism TG /¢, T — O(C).
Now, as in Lemma 2.2.4(b), O(C) may be realized as the geometric quotient G, /T,. If we write
an element of G, in the form ¢(I + zH) for some g € G, H € g, then we define G, - T*G//, T

by
g +zH) = [g71,Ad,(C, + [H,C,))],

with the square brackets indicating the class mod T'. It is straightforward to check that this is well
defined and that it descends to O(C) — T*G// ¢, T to give the inverse. 1
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Theorem 7.3.3. Consider a generic open de Rham space M*(C) for which the orders of all the
formal types C' are < 2. Then M*(C) admits a complete hyperkiihler metric induced by a choice of
a hyperkdihler metric on each coadjoint orbit O(C?) as in Proposition 7.2.4.

Proof. As in Section 3.1, we label the coadjoint orbits so that O(C?) C g for 1 < i < k and O(C?) is
a coadjoint orbit for G, for k + 1 < i < d; we will abbreviate O(C?) to @' in the following. Spelling
out [7, Proposition 2.1], we may use Lemma 7.3.1 to rewrite the holomorphic symplectic quotient
of Definition 3.1.3 as follows:

d k d k d
M*(C)=HO(Ci)// G= <Hc9f>< I oi>// G (Hoix I1 T*G//Ci:r>// G
i=1 0 i=1 i=k+1 0 i=1 i=k+1 ! 0

k m
<H o x[] T*G>// T" X G, (7.3.4)
i=1 i=1 (€,0)

where C; denotes the tuple (Ci‘“, s Cf) of residue terms of the formal types. Each factor of T
acts via the left action on the corresponding T*G factor as in (7.2.1) and the G factor acts diag-
onally: by the coadjoint action on (@, for 1 < i < k and with the right action in (7.2.1) for the
factors indexed by k + 1 < i < d. We have thus expressed M™*(C) as an algebraic symplectic quo-
tient and we can now apply Proposition 7.1.1. But now the hypotheses are verified for each factor
in Propositions 7.2.3 and 7.2.4, and can therefore easily be verified for the product. O

IR

Example 7.3.5. Consider the case of a rank 2 open de Rham space M*(C) with two poles each of
order 2, which is a smooth affine algebraic surface (Proposition 3.1.10). Applying [7, Proposition
2.1] or (7.3.4), if we first take the quotient of T*G X T*G by G, one can see that it is a quotient of the
form T*G J/T? (for appropriate values of the moment map), which is precisely the reduction car-
ried out at [1, pp. 88-89]. Hence, M*(C) is isometric to the deformation of the D, singularity, which
was already observed at [9, p. 3], the hyperkéhler metric on which was previously constructed via
twistor methods in [46, §7], and proved to be ALF in [13, §5.3]. It is worth noting that this space
can also be described via a slice construction [4, (3.1)] which, although an algebraic operation,
also yields the metric [4, §4]. Furthermore, we expect the metrics on higher dimensional open de
Rham spaces to exhibit “higher dimensional ALF behavior.”

Remark 7.3.6.

(i) It is true more generally, and not much harder to prove, that with no restriction on the
order of the formal types, the spaces M*(C) always admit complete hyperkdhler metrics.
However, there is some extra choice involved. In general, a coadjoint orbit for G,, may be
realized as an algebraic symplectic quotient of T*G x O(C") ([7, Lemma 2.3(2), Lemma 2.4],
cf. Remark 7.3.2), where O(C’) is a coadjoint orbit for the unipotent group G}n. Assuch, O(C")
is an even-dimensional complex affine space, hence, upon some choice of coordinates, admits
a flat hyperkdhler metric. One can show that the coordinates can be chosen so that S acts on
pairs of coordinates with opposite weights, and hence with a hyperkdhler moment map.

(ii) The spaces T*G x O(C') are (isomorphic to) what are known as “extended orbits” and these
can be arranged into a moduli space by taking an additive fusion product (this is referred to
as the “extended” moduli space in [7, Definition 2.6] [29, Definition 2.4]. This moduli space
will admit an action of T, where [ is the number of irregular poles, and M*(C) can thus be
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realized as a hyperkéhler quotient of the extended moduli space from this action. Indeed, in
the last expression in (7.3.4), if we first take the quotient by G, then we obtain the extended
moduli space.

7.4 | Details of proof of Proposition 7.2.4

Here, we will give the details of the proof of Proposition 7.2.4. The statements that need to
be proved are: the existence of a hyperkdhler moment map on the coajdoint orbit @ and its
complex part is simply the inclusion map into the dual of the complex Lie algebra, which is
Lemma 7.4.3 below; and the existence of a Kdhler potential with the appropriate properties, which
is Lemma 7.4.6.

To proceed, we will need to fix notation, and so we will adopt that of [5, §3, Lespace des mod-
ules]. As such, G will now denote a compact Lie group, which is, of course, the maximal compact
subgroup of its complexification G, whereas in Section 7.2, it denoted the complexification and
K a maximal compact subgroup; we hope that this will cause the reader no confusion. Of course,
g will denote the Lie algebra of G and g its complexification, and (, ) will denote a Ad-invariant
inner product on g.

Let us recall how the coadjoint orbit © is identified with a moduli space of solutions to Nahm’s
equations. Let S C G be a maximal torus (which is, of course, compact) with Lie algebra 8, and
respective complexifications S and 8. As usual, using the invariant inner product, we identify
g = gand gé = gc. Viewing O as a subset of g, as it is a semisimple orbit, its intersection with
8¢ is a singleton; we write this element as 7, 4+ it; with 7,, 73 € 8. One chooses a third element
7, € 8 so that we have a triple T = (7,,7,,73) € 83, so that for an appropriate ¢ > 0, we can make
sense of the space le;g as described at [5, §3, p. 265]. We will write an element V +a € 424 as
a quadruple T = (T,, T, T,, T5) of smooth maps T; : (—o0,0] — g satisfying an asymptotic con-
dition depending on 7: one has V +a = d + Ty ds + Y;_, T; d6". We consider such T which are
solutions to Nahm’s equations:

drT;
d—s‘ + [Ty, T;]1 + [T}, T ] =0 (7.4.1)

for cyclic permutations (i j k) of (1 2 3). The quotient of the space of such solutions by the group
9., also defined at [5, §3, p.265], will be referred to as the moduli space M = M(7) of solutions
to Nahm’s equations. We will often write [T] for the ¢, -orbit of a solution T. The isomorphism

M Ois given by [5, Corollaire 4.5] (see also the definition before Equations (I11a) and (IIIb))
as

[T] = T,(0) + iT5(0). (7.4.2)
Lemma 7.4.3. Themap u : M — g% given by
[T] = (T1(0), T,(0), T5(0)) (7.4.4)

yields a hyperkdhler moment map for the (co)adjoint G-action. Furthermore, the complex part of the
moment map coincides with the inclusion of © in the dual of the complex Lie algebra.
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Proof. As mentioned in Section 7.2.2, the proof mirrors that of [16, Lemma 2]. Consider the group

.- . . -1 1
EA .—{g tR_—>G : (Vg)g EQv;g}’

which has Lie algebra
; — . . 1
L1e(£4g+) = {u R_—>g: Vue Qv;g}.

Consider 4" — G the evaluation map ats = 0 and ¢ its preimage of 1. It is a normal subgroup
of %;r with quotient G. Of course, we have a parallel statement for the Lie algebras. Furthermore,
%;r acts on the space of solutions to Nahm’s equations inducing the adjoint action of G on O, as
is easily seen via the map (7.4.2).

A tangent vector to M at [T] is represented by a quadruple w = (wy, wy, w,, w;) € leg
satisfying ’

dw;

T —[To, wi] = [wo, T;] = [T}, wi ] — [w), T] (7.4.5)
for cyclic permutations (i j k) of (1 2 3) (cf. [16, Equations (6)-(9)]; note that there is a slight
difference in the complex structures there and in [5] accounting for the sign differences in the
equations). These equations are obtained simply by linearizing Nahm’s equations (7.4.1).

Let £ € g and choose a lift u(s) € Lie(g;“), so that u(0) = £. A representative for the tangent
vector v¢([T]) to M at [T] generated by the infinitesimal action of & is given by

o (T]) <[u, T,] - Z—’;, [, Ty ], [, Ty, [, T3]>.

We evaluate using (7.4.5)

0
CUI(U§, w) = /_ —<[u,T0] - d_u,w1> +([u, T1], wo) — ([u, T,], ws) + ([u, T5], w,) ds

o ds

ds

0 d 0
/_00 <u, %> + <Z—le,w1>ds = /_oo %(u,wl)ds = (&, w,(0)),

sinceu - 0ass - —oo.
On the other hand, pairing & with the moment map y; gives the function u

0
/_ (U, —[Tg, w0y ] = [wo, T1] = [Ty w3] — [w, T ) + <d—“,w1> ds

IgiM—>R

[T] = (£, T,(0)).
Hence,

du; () = (£,w,(0)) = wy(ve, W),

and this is exactly the moment map condition. The same computation can be repeated for the
complex structures J and K.
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The statement about the complex part of the moment map is obvious from the expressions
(7.4.2) and (7.4.4). O

Lemma 7.4.6. The semisimple coajdoint orbit © admits a global G-invariant Kdhler potential (for
the complex structure 1) which is proper and bounded below.

As mentioned, the proof here is adapted from that of [44, Lemma 4.5].

Proof. A global Kihler potential ¢; : M — R for the Kéhler form wjy is given by (see [30, §3(E)],
cf. [16, p.64])

0
113 [ @)+ ds

It is then sufficient to show that the ¢y is G-invariant, proper, and bounded below. G-invariance
follows from that of the bilinear form (,) and lower-boundedness is obvious, so properness is
essentially all that needs to be proved.

Let & = (£,,&,,&;) € ¢®3. Then the existence and uniqueness theorem for systems of ordinary
differential equations gives a unique solution Té = (Tg =0, Tf . Tg ) T§ ) to the reduced Nahm’s
equations

(this is just (7.4.1) with T; = 0) with Tl.g(O) = ¢, for i = 1,2, 3. This allows us to define a function

P11 ¢%° > Rby
1[0 e e £t
£ 2 (T5,T;) +(T;,T;)ds, (7.4.8)

which is (at the very least) continuous, again by the assertions of the existence and uniqueness
theorem on the dependence on the initial conditions.
Let us explain how this is related to ¢;. Consider the map ev : ¢®3 — g,

§m & +ils

As O is a semisimple (co)adjoint orbit, O is closed in g and hence so is eVEI(O). We may then
identify O with the subset of ¢ € evEl(O) for which T¢ is gauge equivalent to an element of .
We observe that this will be closed, as we are imposing an asymptotic condition on Tf . As the def-

inition of ¢; is independent of the gauge equivalence class, one sees that under the identification
of © with the described subset of ev.'(0),

%1 = Prlo-

It now sulffices to show that there is a closed subset V C ¢®3 containing © (using the identifica-
tion above) for which @;|, is proper, since the restriction of a proper map to a closed subset is
still proper.
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For this, we will take
Vi={r-&:teev (0), reRy},

which is closed in ¢®3. Let S C ¢®° be the unit sphere (here, we may take the invariant inner
product on g in each factor); this is compact. Then S N V is a compact subset of ¢®3, and hence, @;
has a minimum value m > 0. It is nonzero, for if r - £ € V is such that @;(r§) = 0, then assuming
that @ # {0} (which we may of course do), then one finds ev(r§) = 0, and hence r = 0; but this
would contradict r§ € S.

By uniqueness of the solutions T¢ to (7.4.7), for r € R, it is easy to see that T (s) = rTé(rs).
From this, we obtain for any ¢ € ¢®3,

0

B1(ré) = %rz /_ (T5(rs), T (rs)) + (T5(rs), T (rs)) ds

1[0 e £ ik .
=57 /_oo(Tz(t),T ©)) +(T5(0), T (1)) dt = rgy(§). (7.4.9)

Now, given £ € V, one has % € SNV and so (7.4.9) gives
76 = 181 722 ) > mil
€1l
or equivalently,
1 < Z.

From this, one finds that the preimage of a bounded set in R under @y|;, is bounded in V. By
continuity, the preimage of a closed set is closed, and so, @y|y is proper. [
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