®

Check for
updates

Reachable Set Over-Approximation
for Nonlinear Systems Using Piecewise
Barrier Tubes

Hui Kong!®) | Ezio Bartocci?, and Thomas A. Henzinger!

1 IST Austria, Klosterneuburg, Austria
hui.kong@ist.ac.at
2 TU Wien, Vienna, Austria

Abstract. We address the problem of analyzing the reachable set of a
polynomial nonlinear continuous system by over-approximating the flow-
pipe of its dynamics. The common approach to tackle this problem is to
perform a numerical integration over a given time horizon based on Tay-
lor expansion and interval arithmetic. However, this method results to be
very conservative when there is a large difference in speed between trajec-
tories as time progresses. In this paper, we propose to use combinations
of barrier functions, which we call piecewise barrier tube (PBT), to over-
approximate flowpipe. The basic idea of PBT is that for each segment of
a flowpipe, a coarse box which is big enough to contain the segment is
constructed using sampled simulation and then in the box we compute
by linear programming a set of barrier functions (called barrier tube or
BT for short) which work together to form a tube surrounding the flow-
pipe. The benefit of using PBT is that (1) BT is independent of time and
hence can avoid being stretched and deformed by time; and (2) a small
number of BTs can form a tight over-approximation for the flowpipe,
which means that the computation required to decide whether the BTs
intersect the unsafe set can be reduced significantly. We implemented a
prototype called PBTS in C++. Experiments on some benchmark sys-
tems show that our approach is effective.

1 Introduction

Hybrid systems [17] are widely used to model dynamical systems which exhibit
both discrete and continuous behaviors. The reachability analysis of hybrid sys-
tems has been a challenging problem over the last few decades. The hard core
of this problem lies in dealing with the continuous behavior of systems that are
described by ordinary differential equations (ODEs). Although there are cur-
rently several quite efficient and scalable approaches for reachability analysis
of linear systems [8-10,14,16,19,20,26,34], nonlinear ODEs are much harder

This research was supported by the Austrian Science Fund (FWF) under grants
S11402-N23, S11405-N23 (RiSE/SHINE) and Z211-N23 (Wittgenstein Award).
© The Author(s) 2018

H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10981, pp. 449-467, 2018.
https://doi.org/10.1007/978-3-319-96145-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96145-3_24&domain=pdf

450 H. Kong et al.

to handle and the current approaches can be characterized into the following
groups.

Invariant Generation [18,21,22,27,28,36,37,39]. An invariant I for a system S
is a set such that any trajectory of S originating from I never escapes from I.
Therefore, finding an invariant I such that the initial set Iy C I and the unsafe
set U NI =) indicates the safety of the system. In this way, there is no need to
compute the flowpipe. The main problem with invariant generation is that it is
hard to define a set of high quality constraints which can be solved efficiently.

Abstraction and Hybridization [2,11,24,31,35]. The basic idea of the abstraction-
based approach is first constructing a linear model which over-approximates the
original nonlinear dynamics and then applying techniques for linear systems to
the abstraction model. However, how to construct an abstraction with the fewest
discrete states and sufficiently high accuracy is still a challenging issue.

Satisfiability Modulo Theory (SMT) Over Reals [6,7,23]. This approach encodes
the reachability problem for nonlinear systems as first-order logic formulas over
the real numbers. These formulas can be solved using for example §—complete
decision procedures that overcome the theoretical limits in nonlinear theories
over the reals, by choosing a desired precision §. An SMT implementing such
procedures can return either unsat if the reachability problem is unsatisfiable or
d-sat if the problem is satisfiable given the chosen precision. The J-sat verdict
does not guarantee that the dynamics of the system will reach a particular region.
It may happens that by increasing the precision the problem would result unsat.
In general the limit of this approach is that it does not provide as a result a
complete and comprehensive description of the reachability set.

Bounded Time Flowpipe Computation [1,3-5,25,32]. The common technique
to compute a bounded flowpipe is based on interval method or Taylor model.
Interval-based approach is quite efficient even for high dimensional systems [29],
but it suffers the wrapping effect of intervals and can quickly accumulate over-
approximation errors. In contrast, the Taylor-model-based approach is more pre-
cise in that it uses a vector of polynomials plus a vector of small intervals to sym-
bolically represent the flowpipe. However, for the purpose of safety verification
or reachability analysis, the Taylor model has to be further over-approximated
by intervals, which may bring back the wrapping effect. In particular, the wrap-
ping effect can explode easily when the flowpipe segment over a time interval
is stretched drastically due to a large difference in speed between individual
trajectories. This case is demonstrated by the following example.

Ezample 1 (Running example). Consider the 2D system [30] described by & = y
and § = z2. Let the initial set X, be a line segment z € [1.0,1.0] and y €
[-1.05,—0.95], Fig. la shows the simulation result on three points in X, over
time interval [0, 6.6]. The reachable set at t = 6.6s is a smooth curve connecting
the end points of the three trajectories. As can be seen, the trajectory originating
from the top is left far behind the one originating from the bottom, which means
that the tiny initial line segment is being stretched into a huge curve very quickly,

Reachable Set Over-Approximation for Nonlinear Systems 451

(a) (b)

Fig.1. (a) Simulation for Example 1 showing flowpipe segment being extremely
stretched and deformed, (b) Interval over-approximation of the Taylor model com-
puted by Flow* [3].

while the width of the flowpipe is actually converging to 0. As a result, the
interval over-approximation of this huge curve can be extremely conservative
even if its Taylor model representation is precise, and reducing the time step
size is not helpful. To prove this point, we computed with Flow* [3] a Taylor
model series for the time horizon of 6.6 s which consists of 13200 Taylor models.
Figure 1b shows the interval approximation of the Taylor model series, which
apparently starts exploding.

In this paper, we propose to use piecewise barrier tubes (PBTs) to over-
approximate flowpipes of polynomial nonlinear systems, which can avoid the
issue caused by the excessive stretching of a flowpipe segment. The idea of PBT
is inspired from barrier certificate [22,33]. A barrier certificate B(x) is a real-
valued function such that (1) B(x) > 0 for all & in the initial set Xp; (2)
B(x) < 0 for all « in the unsafe set Xy; (3) no trajectory can escape from
{x € R" | B(x) > 0} through the boundary {x € R™ | B(x) = 0}. A sufficient
condition for this constraint is that the Lie derivative of B(x) w.r.t the dynamics
& = f is positive all over the invariant region, i.e., Lz B(x) > 0, which means
that all the trajectories must move in the increasing direction of the level sets
of B(x).

Barrier certificates can be used to verify safety properties without computing
the flowpipe explicitly. The essential idea is to use the zero level set of B(x) as
a barrier to separate the flowpipe from the unsafe set. Moreover, if the unsafe
set is very close to the boundary of the flowpipe, the barrier has to fit the shape
of the flowpipe to make sure that all components of the constraint are satisfied.
However, the zero level set of a polynomial of fixed degree may not have the
power to mimic the shape of the flowpipe, which means that there may exist no
solution for the above constraints even if the system is safe. This problem might
be addressed using piecewise barrier certificate, i.e., cutting the flowpipe into
small pieces so that every piece is straight enough to have a barrier certificate
of simple form. Unfortunately, this is infeasible because we know nothing about
the flowpipe locally. Therefore, we have to find another way to proceed.

Instead of computing a single barrier certificate, we propose to compute bar-
rier tubes to piecewise over-approximate the flowpipe. Concretely, in the begin-

452 H. Kong et al.

ning, we first construct a containing box, called enclosure, for the initial set
using interval approach [29] and simulation, then, using linear programming, we
compute a group of barrier functions which work together to form a tight tube
(called barrier tube) around the flowpipe. Similarly, taking the intersection of
the barrier tube and the boundary of the box as the new initial set, we repeat
the previous operations to obtain successive barrier tubes step by step. The key
point here is how to compute a group of tightly enclosing barriers around the
flowpipe without a constraint on the unsafe set inside the box. Our basic idea
is to construct a group of auxiliary state sets U around the flowpipe and then,
for each U; € U, we compute a barrier certificate between U; and the flowpipe.
If a barrier certificate is found, we expand U; towards the flowpipe iteratively
until no more barrier certificate can be found; otherwise, we shrink U; away
from the flowpipe until a barrier certificate is found. Since the auxiliary sets
are distributed around the flowpipe, so is the barrier tube. The benefit of such
piecewise barrier tubes is that they are time independent, and hence can avoid
the issue of stretched flowpipe segments caused by speed differences between
trajectories. Moreover, usually a small number of BTs can form a tight over-
approximation of the flowpipe, which means that less computation is needed to
decide the intersection of PBT and the unsafe set.

The main contributions of this paper are as follows:

1. We transform the constraint-solving problem for barrier certificates into a
linear programming problem using Handelman representation [15];

2. We introduce PBT to over-approximate the flowpipe of nonlinear systems,
thus dealing with flowpipes independent of time and hence avoiding the error
explosion caused by stretched flowpipe segments;

3. We implement a prototype in C++ to compute PTB automatically and we
show the effectiveness of our approach by providing a comparison with the
state-of-the-art tools for reachability analysis of polynomial nonlinear systems
such as CORA [1] and Flow* [3].

The paper is organized as follows. Section 2 is devoted to the preliminaries.
Section 3 shows how to compute barrier certificates using Handelman represen-
tation, while in Sect. 4 we present a method to compute Piecewise Barrier Tubes.
Section 5 provides our experimental results and we conclude in Sect. 6.

2 Preliminaries

In this section, we recall some concepts used throughout the paper. We first
clarify some notation conventions. If not specified otherwise, we use boldface
lower case letters to denote vectors, we use R for the real number field and
IN for the set of natural numbers, and we consider multivariate polynomials in
R[x], where the components of & act as indeterminates. In addition, for all the
polynomials B(u,), we denote by u the vector composed of all the w; and
denote by @ the vector composed of all the remaining variables x; that occur in

Reachable Set Over-Approximation for Nonlinear Systems 453

the polynomial. We use R>(¢ and R+ to denote the domain of nonnegative real
number and positive real number respectively.

Let P C R™ be a convex and compact polyhedron with non-empty interior,
bounded by linear polynomials py,--- ,p, € R[z]. Without lose of generality,
we may assume P = {x € R" | p;(x) > 0,i=1,--- ,m}.

Next, we present the notation of the Lie derivative, which is widely used in
the discipline of differential geometry. Let f : R™ — R™ be a continuous vector
field such that @; = f;(x) where &; is the time derivative of x;(t).

Definition 1 (Lie derivative). For a given polynomial p € R[x] over & =
(z1,...,2n) and a continuous system & = f, where f = (f1,..., fn), the Lie
derivative of p € R[zx| along f of order k is defined as follows.

def D, k:O
Ckp = ork-1
d {Z?—l i?fllpf“kzl

Essentially, the k-th order Lie derivative of p is the k-th derivative of p w.r.t.
time, i.e., reflects the change of p over time. We write Lyp for C}p.

In this paper, we focus on semialgebraic nonlinear systems, which are defined
as follows.

Definition 2 (Semialgebraic system). A semialgebraic system is a triple
def

M = (X, f, Xy, I), where

1. X CR™ is the state space of the system M,

2. f € Rlx]™ is locally Lipschitz continuous vector function,
3. Xo C X is the initial set, which is semialgebraic [40],

4. I is the invariant of the system.

The local Lipschitz continuity guarantees the existence and uniqueness of
the differential equation & = f locally. A trajectory of a semialgebraic system is
defined as follows.

Definition 3 (Trajectory). Given a semialgebraic system M, a trajectory
originating from a point xy € Xy to time T > 0 is a continuous and differentiable
function ¢(xo,t) : [0,T) — R™ such that (1) {(x¢,0) = xo , and (2) V7 € [0,T):
% |t:‘r = f(¢(xo,7)). T is assumed to be within the maximal interval of existence
of the solution from xg.

For ease of readability, we also use ((t) for ((xo,t). In addition, we use
Flowg(Xp) to denote the flowpipe of initial set X, i.e.,

Flows(Xo) © {¢(zo,t) | To € Xo,t € Rs, & = F(O)} (1)

Definition 4 (Safety). Given an unsafe set Xy C X, a semialgebraic system
M = (X, f,Xo,I) is said to be safe if no trajectory {(xo,t) of M satisfies that
Ar € R>¢ : x(7) € Xy, where g € X.

454 H. Kong et al.

3 Computing Barrier Certificates

Given a semialgebraic system M, a barrier certificate is a real-valued function
B(x) such that (1) B(z) > 0 for all = in the initial set; (2) B(x) < 0 for all « in
the unsafe set; (3) no trajectory can escape from the region of B(x) > 0. Then,
the hyper-surface {x € R" | B(x) = 0} forms a barrier separating the flowpipe
from the unsafe set. To compute such a barrier certificate, the most common
approach is template based constraint solving, i.e., firstly figure out a sufficient
condition for the above condition and then, set up a template polynomial B(u, x)
of fixed degree, and finally solve the constraint on u derived from the sufficient
condition on B(u,x). There are a couple of sufficient conditions available for
this purpose [13,22,27]. In order to have an efficient constraint solving method,
we adopt the following condition [33].

Theorem 1. Given a semialgebraic system M, let Xy and U be the initial set
and the unsafe set respectively, the system is guaranteed to be safe if there exists
a real-valued function B(x) such that

Ve € Xp: B(x) >0 (2)
Veel:Li;B>0 (3)
Ve € Xy : B(x) <0 (4)

In Theorem 1, the condition (3) means that all the trajectories of the system
always point in the increasing direction of the level sets of B(x) in the region I.
Therefore, no trajectory starting from the initial set would cross the zero level
set. The benefit of this condition is that it can be solved more efficiently than
other existing conditions [13,22] although it is relatively conservative. The most
widely used approach is to transform the constraint-solving problem into a sum-
of-squares (SOS) programming problem [33], which can be solved in polynomial
time. However, a serious problem with SOS programming based approach is
that automatic generation of polynomial templates is very hard to perform. We
now show an example to demonstrate the reason. For simplicity, we assume that
the initial set, the unsafe set and the invariant are defined by the polynomial
inequalities Xy(x) > 0, Xy(x) > 0 and I(x) > 0 respectively, then the SOS
relaxation of Theorem 1 is that the following polynomials are all SOS

B(x) — p1(x) Xo(x) + €1 (5)
£1B — ja(@)I(@) + ez (6)
— B(x) — ps(x) Xv(x) + €3 (7)
where p;(x),i = 1,---,3 are SOS polynomials as well and ¢; > 0,4 =1,---,3.

Suppose the degrees of Xy (x), I(x) and Xy (x) are all odd numbers. Then, the
degree of the template for B(x) must be an odd number too. The reason is that,
if deg(B) is an even number, in order for the first and third polynomials to be
SOS polynomials, deg(B) must be greater than both deg(us Xy) and deg(u1 Xp),
which are odd numbers. However, since the first and third condition contain B(x)

Reachable Set Over-Approximation for Nonlinear Systems 455

and —B(x) respectively, their leading monomials must have the opposite sign,
which means that they cannot be SOS polynomial simultaneously. Moreover, the
degrees of the templates for the auxiliary polynomials p; (), p3(2) must also be
chosen properly so that deg(u1 Xy) = deg(usXy) = deg(B), because only in this
way the leading monomials (which has an odd degree) of (5) and (7) have the
chance to be resolved so that the resultant polynomial can be a SOS. Similarly,
in order to make the second polynomial a SOS as well, one has to choose an
appropriate degree for ps(x) according to the degree of £;B and I(x). As a
result, the tangled constraints on the relevant template polynomials reduce the
power of SOS programming significantly.

Due to the above reason, inspired by the work [38], we use Handelman repre-
sentation to relax Theorem 1. We assume that the initial set X,, the unsafe set
Xy and the invariant I are all convex and compact polyhedra, i.e., Xy = {x €
R™ | pi(@) = 0, o, (@) 2 0}, [= {m € B [(@) > 0, , gy (@) > 0}
and Xy ={xz e R" | ri(x) >0, -+ ,rm,(x) > 0}, where p;(x), g;(x), ri(x) are
linear polynomials. Then, we have the following theorem.

Theorem 2. Given a semialgebraic system M, let Xy, Xy and I be defined as
above, the system is guaranteed to be safe if there exists a real-valued polynomial
function B(x) such that

B(x)= Y Aapit-pmit ta (8)
|| <My

LiB= Y Maalam’ +e 9)
[B|<M2

—B(x) = Z D (10)
[v|<Ms3

where Ao, Mg, Ay € R>p, ¢ € Ryg and M; e N,i=1,---,3.

Theorem 2 provides us with an alternative to SOS programming to find
barrier certificate B(x) by transforming it into a linear programming problem.
The basic idea is that we first set up a template B(u, x) of fixed degree as well as
the appropriate M;,i = 1,--- ,3 that make the both sides of the three identities
(8)—(10) have the same degree. Since (8)—(10) are identities, the coefficients of
the corresponding monomials on both sides must be identical as well. Thus,
we derive a system S of linear equations and inequalities over w, Aq,Ag, Ay.
Now, finding a barrier certificate is just to find a feasible solution for S, which
can be solved by linear programming. Compared to SOS programming based
approach, this approach is more flexible in choosing the polynomial template as
well as other parameters. We consider now a linear system to show how it works.

Example 2. Given a 2D system defined by & = 2z + 3y,y = —4x + 2y, let
Xo={(z,y) €ER? | p1 =2 +100 > 0,ps = —90 —x > 0,p3 =y + 45 > 0,py =
40—y >0}, I ={(z,y) €ER? | ¢y =2 + 110 > 0,0 = —80 — = > 0,q3 =
y+45>0,qs=—-20—y >0} and Xy = {(z,y) €R? |11 =2+ 98 > 0,19 =

456 H. Kong et al.

(a) (b) () (d)

Fig. 2. (a) Linear barrier certificate (straight red line) for Example 2. Rectangle in
green: initial set, rectangle in red: unsafe set. (b) PBT for the running Example 5,
consisting of 45 BTs. (c¢) Enclosure (before bloating) for flowpipe of Example 3 (green
shadow region). (d) Enclosure (after bloating) for flowpipe of Example 3. (Color figure
online)

—90—z > 0,73 = y+24 > 0,74 = —20—y > 0}. Assume B(u,) = uj+usz+ugy,
M; =¢=1fori=1,---,3, then we obtain the following polynomial identities
according to Theorem 2

4

Uy +u2x+U3y—Z)\1ipi - =0
i=1

4
U2(2.’E —|— 3y) + u3(—4x + 2y) — Z)\qu_j — €2 = 0
7j=1

4
— (w1 +upw +ugy) — > Agkrp — €3 =0
k=1

where \j; >0fori=1,---,3,j=1,---,4. By collecting the coefficients of z,y
in the above polynomials, we obtain a system S of linear polynomial equations
and inequalities over u;, Aji. By solving S using linear programming, we obtain
a feasible solution and Fig.2a shows the computed linear barrier certificate.
Note that, for the aforementioned reason, it is impossible to find a linear barrier
certificate using SOS programming for this example.

4 Piecewise Barrier Tubes

In this section, we introduce how to construct PBTs for nonlinear polynomial
systems. The basic idea of constructing PBT is that, for each segment of the
flowpipe, an enclosure box is first constructed and then, a BT is constructed to
form a tighter over-approximation for the flowpipe segment inside the box.

4.1 Constructing an Enclosure Box

Given an initial set, the first task is to construct an enclosure box for the initial
set and the following segment of the flowpipe. As pointed out in Sect.1, one

Reachable Set Over-Approximation for Nonlinear Systems 457

principle to construct an enclosure box is to simplify the shape of the flowpipe
segment, or in other words, to approximately bound the twisting of trajectories
by some 6 in the box, where the twisting of a trajectory is defined as follows.

Definition 5 (Twisting of a trajectory). Let M be a continuous system and
C(t) be a trajectory of M. Then, ((t) is said to have a twisting of 6 on the
time interval I = [Ty, Ts], written as £7(C), if it satisfies that £7(C) = 6, where

def (1), (1))
€r(Q) = supy, g, er arccos | Tea e) -

The basic idea to construct an enclosure box is depicted in Algorithm 1.

Algorithm 1. Algorithm to construct an enclosure box

input : M: dynamics of the system; n: dimension of system; Xjy: initial set

01: twisting of simulation; d: maximum distance of simulation;
output: E: an enclosure box containing Xy; P: plane where flowpipe exits ;
G: range of intersection of Flows(Xy) with plane P by simulation

1 sample a set So of points from Xp;
2 select a point x¢ € Sop;
3 find a time step size ATy by (6, d)-bounded simulation for xo;
4 AT — AT();
5 while AT > ¢ do
6 [found, E] < find an enclosure box by interval arithmetic using AT}
7 if found then
8 do a simulation for all x; € Sp, select the plane P which intersects with
the most of simulations; generate G;
9 bloat E s.t Flows(Xo) gets out of E only through the facet in P;
10 break;
11 else
12 | AT« 1/2 % AT;

Remark 1. In Algorithm 1, we use interval arithmetic [29] and simulation to
construct an enclosure box E for a given initial set and its following flowpipe
segment. Meanwhile, we obtain a coarse range of the intersection of the flowpipe
and the boundary of the enclosure, which helps to accelerate the construction of
barrier tube. To be simple, the enclosure is constructed in a way such that the
flowpipe gets out of the box through a single facet. Given an initial set X,, we
first sample a set Sp of points from X, for simulation. Then, we select a point
xo from Sy and do (0, d)-simulation on xy to obtain a time step AT. A (6,d)-
simulation is a simulation that stops either when the twisting of the simulation
reaches 6 or when the distance between zy and the end point reaches d. On the
one hand, by using a small 6, we aim to achieve a straight flowpipe segment.
On the other hand, by specifying a maximal distance d, we make sure that the

458 H. Kong et al.

simulation can stop for a long and straight flowpipe. At each iteration of the while
loop in line 5, we first try to construct an enclosure box by interval arithmetic
over AT'. If such an enclosure box is created, we then perform a simulation (see
line 8) for all the points in Sy to find out the plane P of facet which intersects
with the most of the simulations. The idea behind line 9 is that in order to better
over-approximate the intersection of the flowpipe with the boundary of the box
using intervals, we push the other planes outwards to make P the only plane
where the flowpipe get out of the box. Certainly, simply by simulation we cannot
guarantee that the flowpipe does not intersect the other facets. Therefore, we
have the following theorem for the decision.

Theorem 3. Given a semialgebraic system M and an initial set Xy, a box E
is an enclosure of Xy and F; is a facet of E. Then, (Flows(Xg) N E) N F; =0
if there exists a barrier certificate B;(x) for Xo and F; inside E.

Remark 2. According to the definition of barrier certificate, the proof of The-
orem 3 is straightforward, which is ignored here. Therefore, to make sure that
the flowpipe does not intersect the facet F;, we only need to find a barrier cer-
tificate, which can be done using the approach presented in Sect. 3. Moreover, if
no barrier certificate can be found, we further bloat the facet. Next, we still use
the running Example 1 to demonstrate the process of constructing an enclosure.

Ezample 8 (running example). Consider the system in Example 1 and the initial
set z = 1.0,—1.05 < y < —0.95, let the bounding twisting of simulation be § =
7/18, then the time step size we computed for interval evaluation is AT = 0.2947.
The corresponding enclosure computed by interval arithmetic is shown in Fig. 2c.
Furthermore, by simulation, we know that the flowpipe can reach both left facet
and top facet. Therefore, we have two options to bloat the facet: bloat the left
facet to make the flowpipe intersects the top facet only or bloat the top facet
to make the flowpipe intersects left facet only. In this example, we choose the
latter option and the bloated enclosure is shown in Fig.2d. In this way, we can
over-approximate the intersection of the flowpipe and the facet by intervals if we
can obtain its boundary on every side. This can be achieved by finding barrier
tube.

4.2 Compute a Barrier Tube Inside a Box

An important fact about the flowpipe of continuous system is that it tends to
be straight if it is short enough, given that the initial set is straight as well
(otherwise, we can split it). Suppose there is a small box E around a straight
flowpipe, it will be easy to compute a barrier certificate for a given initial set
and unsafe set inside E. A barrier tube for the flowpipe in E is a group of barrier
certificates which form a tube around a flowpipe inside E. Formally,

Definition 6 (Barrier Tube). Given a semialgebraic system M, a box E and
an nitial set X9 C E, a barrier tube is a set of real-valued functions BT =
{Bi(x),i = 1,--- ,m} such that for all B;(x) € BT: (1) V& € Xy : Bi(x) > 0
and, (2) Ve e E: ﬁfBi > 0.

Reachable Set Over-Approximation for Nonlinear Systems 459

According to Definition 6, a barrier tube BT is defined by a set of real-valued
functions and every function inequality B;(x) > 0 is an invariant of M in E and
so do their conjunction. The property of a barrier tube BT is formally described
in the following theorem.

Theorem 4. Given a semialgebraic system M, a box E and an initial set Xy C
E, let BT = {By(x) :i=1,--- ,m} be a barrier tube of M and 2 = {x € R" |
A Bi(x) >0, B; € BT}, then Flows(Xy) NE C 2NE.

Remark 3. Theorem 4 states that an arbitrary barrier tube is able to form an
over-approximation for the reach pipe in the box E. Compared to a single barrier
certificate, multiple barrier certificates could over-approximate the flowpipe more
precisely. However, since there is no constraint on unsafe sets in Definition 6,
a barrier tube satisfying the definition could be very conservative. In order to
obtain an accurate approximation for the flowpipe, we choose to create additional
auxiliary constraints.

Auxiliary Unsafe Set (AUS). To obtain an accurate barrier tube, there are
two main questions to be answered: (1) How many barrier certificates are needed?
and (2) How do we control their positions to make the tube well-shaped to better
over-approximate the flowpipe? The answer for the first question is quite simple:
the more, the better. This will be explained later on. For the second question,
the answer is to construct a group of properly distributed auxiliary state sets
(AUSs). Each set of the AUSs is used as an unsafe set U; for the system and
then we compute a barrier certificate B; for U; according to Theorem 2. Since
the zero level set of B; serves as a barrier between the flowpipe and U;, the
space where a barrier could appear is fully determined by the position of U;.
Roughly speaking, when U; is far away from the flowpipe, the space for a barrier
to exist is wide as well. Correspondingly, the barrier certificate found would
usually locate far away from the flowpipe as well. Certainly, as U; gets closer to
the flowpipe, the space for barrier certificates also contracts towards the flowpipe
accordingly. Therefore, by expanding U; towards the flowpipe, we can get more
precise over-approximations for the flowpipe.

Why Multiple AUS? Although the accuracy of the barrier certificate over-
approximation can be improved by expanding the AUS towards the flowpipe,
the capability of a single barrier certificate is very limited because it can erect a
barrier which only matches a single profile of the flow pipe. However, if we have
a set U of AUSs which are distributed evenly around the flowpipe and there is a
barrier certificate B; for each U; € U, these barrier certificates would be able to
over-approximate the flowpipe from a number of profiles. Therefore, increasing
the number of AUSs can increase the quality of the over-approximation as well.
Furthermore, if all these auxiliary sets are connected, all the barriers would form
a tube surrounding the flowpipe. Therefore, if we can create a series of boxes
piecewise covering the flowpipe and then construct a barrier tube for every piece
of the flowpipe, we obtain an over-approximation for the flowpipe by PBT.
Based on the above idea, we provide Algorithm 2 to compute barrier tube.

460 H. Kong et al.

Algorithm 2. Algorithm to compute barrier tube

input : M: dynamics of the system; X,: Initial set;

E: interval enclosure of initial set;

G: interval approx. of (OE N Flows (X)) by simulation;

P: plane where flowpipe exits from box;

D: candidate degree list for template polynomial;

e: difference in size between AUS (auxiliary unsafe set)
output: BT: barrier tube; X{: interval over-approximation of (BT N E)

1 foreach G;j: an facet of G do

2 found «— false ;

3 foreach d € D do

4 AUS «— CreateAUS(G, P, Gy;);

5 while true do

6 [found, B;j] «—— ComputeBarrierCert(Xy, E,AUS,d) ;
7 if found then AUS’ «— Expand (AUS);

8 else AUS' «—— Contract (AUS) ;

9 if Diff(AUS’, AUS) < € then break;

10 else AUS’ «—— AUS;

11 if found then BT «— Push(BT, B;;); break;
12 else return FAIL;

13 return SUCCEED;

Remark 4. In Algorithm 2, for an n-dimensional flowpipe segment, we aim to
build a barrier tube composed of 2(n — 1) barrier certificates, which means we
need to construct 2(n — 1) AUSs. According to Algorithm 1, we know that the
plane P is the only exit of the flowpipe from the enclosure E and G is roughly
the region where they intersect. Let ' be the facet of E that contains G, then
for every facet Fg of F, we can take an (n — 1)-dimensional rectangle between

Fg and G; as an AUS, where Gy is the facet of G adjacent to Fg Therefore,
enumerating all the facets of G in line 1 would produce 2(n — 1) positions for
AUS. The loop in line 3 is attempting to find a polynomial barrier certificate
of different degrees in D. In the while loop 5, we iteratively compute the best
barrier certificate by adjusting the width of AUS through binary search until
the difference in width between two successive AUSs is less than the specified
threshold e.

Ezample 4 (Running ezample). Consider the initial set and the enclosure com-
puted in Example 3, we use Algorithm 2 to compute a barrier tube. The ini-
tial set is X, = [1.0,1.0] x [-1.05,—0.95] and the enclosure of X, is F =
[0.84,1.01] x [-1.1,—0.75], G = [0.84,0.84] x [-0.91,—0.80], the plane P is
x = 0.84, D = {2} and € = 0.001. The barrier tube consists of two barrier
certificates. As shown in Fig.3, each of the barrier certificates is derived from
an AUS (red line segment) which is located respectively on the bottom-left and
top-left boundary of E.

Reachable Set Over-Approximation for Nonlinear Systems 461

7
VIS

Y
7

DI S S
1
T

7
%

Z

I,
PR
11777
(/7177

77
s

El
&
Ei
E.
o
Ei
E.
E.
4
Ei
g
E!
L
El
E.
E.
4
Ei
E!
E.
E.
4
&
Ei
E.
E.

00

s IS
D077

Vi
1y
G
T
1

7

7
o I

7
PR

£

7

E
H
§
E
E

Fig. 3. Computing process of BT for Example 4. Blue line segment: initial set, red line
segment: AUS. Figure a—1 show how intermediate barrier certificates changed with the
width of the AUSs and Fig.1 shows the final BT (shadow region in green). (Color figure
online)

4.3 Compute Piecewise Barrier Tube

During the computation of a barrier tube by Algorithm 2, we create a series
of AUSs around the flowpipe, which build up a rectangular enclosure for the
intersection of the flowpipe and the facet of the enclosure box. As a result, such
a rectangular enclosure can be taken as an initial set for the following flowpipe
segment and then Algorithm 2 can be applied repeatedly to compute a PBT.
The basic procedure to compute PBT is presented in Algorithm 3.

Remark 5. In Algorithm 3, initially a box that contains the initial set Xg is
constructed using Algorithm 1. The loop in line 2 consists of 3 major parts: (1)
In lines 3-6, a barrier tube BT is firstly computed using Algorithm 2. The while
loop keeps shrinking the box until a barrier tube is found; (2) In line 8, the initial
set Xy is updated for the next box; (3) In line 9, a new box is constructed to
contain X, and the process is repeated.

Ezample 5 (Running example). Let us consider again the running example. We
set the length of PBT to 45 and the PBT we obtained is shown in Fig.2b.
Compared to the interval over-approximation of the Taylor model obtained using
Flow*, the computed PBT consists of a significantly reduced number of segments
and is more precise for the absence of stretching.

Safety Verification Based on PBT. The idea of safety verification based on
PBT is straightforward. Given an unsafe set Xy, for each intermediate initial set
Xy and the corresponding enclosure box E, we first check whether Xy N E = ().
If not empty, we would further find a barrier certificate between Xy and the
flowpipe of X, inside E. If empty or barrier found, we continue to compute

462 H. Kong et al.

Algorithm 3. Algorithm to compute PBT
input : M: dynamics of the system; X,: Initial set;
N: length of piecewise barrier tube
output: PBT: piecewise barrier tube

1 E < construct an initial box containing Xp;

2 for i+ 1to N do

3 [Found, BT] « findBarrierTube (E,Xy) ;

4 while not Found do

5 E — Shrink (E) ;

6 L [Found, BT] « findBarrierTube (E,Xy) ;
7
8
9

)

if Found then
Xo < OverApprox(BT NFacet(E)) ;
E < construct the next box containing Xy;

Table 1. Model definitions

Model Dynamics Initial set Xy | Time horizon (TH)
Controller 2D | = zy +4* +2 | = € [29.9,30.1] | 0.0125

g =a®+ 2z — 3y |y € [-38, 36
Van der Pol |z =1y z € [1,1.5] 6.74
Oscillator y=y—2z—xz’y |ye[20,245]
Lotka-Volterra | & = z(1.5 —y) |z € [4.5,5.2] |3.2
y=-yB—-z) |ye[l8,2.2]
i=10(y —x) | =€ [1.79,1.81] 0.51
Controller 3D | = 2* y € [1.0,1.1]
Z=u1zy—2.667z |y € [0.50.6]

longer PBT. The refinement of PBT computation can be achieved by using
smaller £ and higher d for template polynomial.

5 Implementation and Experiments

We have implemented the proposed approach as a C++ prototype called Piece-
wise Barrier Tube Solver (PBTS), choosing Gurobi [12] as our internal linear
programming solver. We have also performed some experiments on a benchmark
of four nonlinear polynomial dynamical systems (described in Table1) to com-
pare the efficiency and the effectiveness of our approach w.r.t. other tools. Our
experiments were performed on a desktop computer with a 3.6 GHz Intel Core
i7-7700 8 Core CPU and 32 GB memory. The results are presented in Table 2.

Remark 6. There are a number of outstanding tools for flowpipe computation
[1,3-5]. Since our approach is to perform flowpipe computation for polynomial

Reachable Set Over-Approximation for Nonlinear Systems 463

Table 2. Tool Comparison on Nonlinear Systems. #var: number of variables; T: com-
puting time; NFS: number of flowpipe segments; DEG: candidate degrees for tem-
plate polynomial (only for PBTS); TH: time horizon for flowpipe (only for Flow* and
CORA). FAIL: failed to terminate under 30 min.

PBTS Flow* CORA
Model #var | T NFS | DEG | TH T NFS|T NFS
Controller 2D | 2 5.62| 46 |2 0.0125|22.17| 6250 | FAIL | -
Van der Pol 2 13.38 110 |2,3 |6.74 15.28 | 337 212.51 | 12523
Lotka-Volterra | 2 6.65 30 |34 3.2 10.59 3200 | 35.84| 2903
Controller 3D |3 83.65| 15 |4 0.51 11.61 5100 | 65.18 | 6767

nonlinear systems, we pick two of the most relevant state-of-the-art tools for
comparison: CORA [1] and Flow™* [3]. Note that a big difference between our
approach and the other two approaches is that PBTS is time-independent, which
means that we cannot compare PBTS with CORA or Flow* over the exactly
same time horizon. To be fair enough, for Flow* and CORA, we have used
the same time horizon for the flowpipe computation, while we have computed
a slightly longer flowpipe using PBTS. To guide the reader, we have also used
different plotting colors to visualize the difference between the flowpipes obtained
from the three different tools.

Evaluation. As pointed out in Sect. 1, a common problem with the bounded-
time integration based approaches is that the flowpipe segment of a dynamics sys-
tem can be extremely stretched with time so that the interval over-approximation
of the flowpipe segment is very conservative and usually the solver has to stop
prematurely due to the error explosion. This fact can be found easily from the
figures Fig. 4, 5, 6 and 7. In particular, for Controller 2D, Flow* can give quite
nice result in the beginning but started producing an exploding flowpipe very
quickly (Note that Flow* offers options to produce better plotting which how-
ever is expensive and was not used for safety verification. CORA even failed to
give a result after over 30 min of running). This phenomenon reappeared with
both Flow* and CORA for Controller 8D. Notice that most of the time horizons
used in the experiment are basically the time limits that Flow* and CORA can
reach, i.e., a slightly larger value for the time horizon would cause the solvers to
fail. In comparison, our tool has no such problem and can survive a much longer
flowpipe before exploding or even without exploding as shown in Fig. 4a.
Another important factor of the approaches is the efficiency. As is shown in
Table 2, our approach is more efficient on the first three examples but slower on
the last example than the other two tools. The reason for this phenomenon is
that the degree d of the template polynomial used in the last example is higher
than the others and increasing d led to an increase in the number of decision
variables in the linear constraint. This suggests that using smaller d on shorter
flowpipe segment would be better. In addition, we can also see in Table2 that
the number of the flowpipe segments produced by PBTS is much fewer than that

464 H. Kong et al.

LA

\t! |
=AY

N

(a) PBTS (b) Fxlow*

Fig. 4. Flowpipe for Controller 2D.

(b) CORA (¢) Flow*

Fig. 5. Flowpipe for Van der Pol Oscillator.

(a) PBTS (b) CORA (c) Flow*
Fig. 6. Flowpipe for Lotka-Volterra.

 (1<

(a) PBTS (b) CORA (projection) (c¢) Flow* (projection)

Fig. 7. Flowpipe (projection) for Controller 3D.

produced by Flow* and CORA. In this respect, PBTS would be more efficient
on safety verification.

6 Conclusion

We have presented PBTS, a novel approach to over-approximate flowpipes of
nonlinear systems with polynomial dynamics. The benefit of using BTs is that
they are time-independent and hence cannot be stretched or deformed by time.

Reachable Set Over-Approximation for Nonlinear Systems 465

Moreover, this approach only results in a small number of BTs which are suf-
ficient to form a tight over-approximation for the flowpipe, hence the safety
verification with PBT can be very efficient.

References

10.

11.

12.

13.

14.

. Althoff, M., Grebenyuk, D.: Implementation of interval arithmetic in CORA 2016.

In: Proceedings of ARCHQCPSWeek 2016: The 3rd International Workshop on
Applied Verification for Continuous and Hybrid Systems, EPiC Series in Comput-
ing, vol. 43, pp. 91-105. EasyChair (2017)

Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Inform. 43(7), 451-476 (2007)

Chen, X., Abrahém, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258-263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8_18

Dang, T., Le Guernic, C., Maler, O.: Computing reachable states for nonlinear bio-
logical models. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp.
126-141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03845-
79

Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68-82. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-
0-5

Frianzle, M., Herde, C.: HySAT: an efficient proof engine for bounded model check-
ing of hybrid systems. Form. Methods Syst. Des. 30(3), 179-198 (2007)

Franzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
JSAT 1(3-4), 209-236 (2007)

Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379-395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291-305. Springer, Heidel-
berg (2005). https://doi.org/10.1007/978-3-540-31954-2_19

Girard, A., Le Guernic, C.: Efficient reachability analysis for linear systems using
support functions. In: Proceedings of IFAC World Congress, vol. 41, no. 2, pp.
8966-8971 (2008)

Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396-411. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31

Gu, Z., Rothberg, E., Bixby, R.: Gurobi optimizer reference manual (2017). http://
www.gurobi.com/documentation/7.5/refman /refman.html

Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190-203. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_18

Gurung, A., Ray, R., Bartocci, E., Bogomolov, S., Grosu, R.: Parallel reachability
analysis of hybrid systems in xspeed. Int. J. Softw. Tools Technol. Transf. (2018)

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-03845-7_9
https://doi.org/10.1007/978-3-642-03845-7_9
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-662-46681-0_5
https://doi.org/10.1007/978-3-642-22110-1_30
https://doi.org/10.1007/978-3-540-31954-2_19
https://doi.org/10.1007/978-3-642-22110-1_31
http://www.gurobi.com/documentation/7.5/refman/refman.html
http://www.gurobi.com/documentation/7.5/refman/refman.html
https://doi.org/10.1007/978-3-540-70545-1_18

466

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

H. Kong et al.

Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pac. J. Math. 132(1), 35-62 (1988)

Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Abrahdm, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593-598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of IEEE Sym-
posium on Logic in Computer Science, pp. 278-292 (1996)

Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification
of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 373-390. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9-25

Jiang, Y., Yang, Y., Liu, H., Kong, H., Gu, M., Sun, J., Sha, L.: From state-
flow simulation to verified implementation: a verification approach and a real-time
train controller design. In: 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 1-11. IEEE (2016)

Jiang, Y., Zhang, H., Li, Z., Deng, Y., Song, X., Ming, G., Sun, J.: Design and
optimization of multiclocked embedded systems using formal techniques. IEEE
Trans. Ind. Electron. 62(2), 1270-1278 (2015)

Kong, H., Bogomolov, S., Schilling, C., Jiang, Y., Henzinger, T.A.: Safety verifi-
cation of nonlinear hybrid systems based on invariant clusters. In: Proceedings of
HSCC 2017: The 20th International Conference on Hybrid Systems: Computation
and Control, pp. 163-172. ACM (2017)

Kong, H., He, F., Song, X., Hung, W.N.N.,; Gu, M.: Exponential-condition-based
barrier certificate generation for safety verification of hybrid systems. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 242-257. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_17

Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: d-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200—
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0-15
Krilavicius, T.: Hybrid techniques for hybrid systems. Ph.D. thesis, University of
Twente, Enschede, Netherlands (2006)

Lal, R., Prabhakar, P.: Bounded error flowpipe computation of parameterized lin-
ear systems. In: Proceedings of EMSOFT 2015: The International Conference on
Embedded Software, pp. 237-246. IEEE (2015)

Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540-554. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-
440

Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: Proceedings of EMSOFT 2011: The 11th International
Conference on Embedded Software, pp. 97-106. ACM (2011)

Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid
systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 373-389. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15769-1_23

Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: Proceedings of SCAN 2006:
The 12th GAMM - IMACS International Symposium on Scientific Computing,
Computer Arithmetic and Validated Numerics, p. 4. IEEE (2006)

Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of
ODEs. SIAM J. Numer. Anal. 45(1), 236-262 (2007)

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-319-08867-9_25
https://doi.org/10.1007/978-3-319-08867-9_25
https://doi.org/10.1007/978-3-642-39799-8_17
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-02658-4_40
https://doi.org/10.1007/978-3-642-15769-1_23
https://doi.org/10.1007/978-3-642-15769-1_23

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Reachable Set Over-Approximation for Nonlinear Systems 467

Prabhakar, P., Soto, M.G.: Hybridization for stability analysis of switched linear
systems. In: Proceedings of HSCC 2016: The 19th International Conference on
Hybrid Systems: Computation and Control, pp. 71-80. ACM (2016)

Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow com-
putations. In: Proceedings of HSSC 2011: The 14th International Conference on
Hybrid Systems: Computation and Control, pp. 133-142. ACM (2011)

Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477-492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_32

Ray, R., et al.: XSpeed: accelerating reachability analysis on multi-core processors.
In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 3-18. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-26287-1_1

Roohi, N.,; Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR. for
hybrid automata with affine dynamics. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 752-769. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9_48

Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: Proceedings of HSCC 2010: The 13th ACM International
Conference on Hybrid Systems: Computation and Control, pp. 221-230. ACM
(2010)

Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 539—
554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2_36
Sankaranarayanan, S., Chen, X., et al.: Lyapunov function synthesis using handel-
man representations. In: IFAC Proceedings Volumes, vol. 46, no. 23, pp. 576-581
(2013)

Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gener-
ation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 268-288. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49122-5_13

Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Math. Ann. 207(2), 87-97 (1974)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1007/978-3-319-26287-1_1
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-662-49674-9_48
https://doi.org/10.1007/978-3-540-24743-2_36
https://doi.org/10.1007/978-3-662-49122-5_13
https://doi.org/10.1007/978-3-662-49122-5_13
http://creativecommons.org/licenses/by/4.0/

	Reachable Set Over-Approximation for Nonlinear Systems Using Piecewise Barrier Tubes
	1 Introduction
	2 Preliminaries
	3 Computing Barrier Certificates
	4 Piecewise Barrier Tubes
	4.1 Constructing an Enclosure Box
	4.2 Compute a Barrier Tube Inside a Box
	4.3 Compute Piecewise Barrier Tube

	5 Implementation and Experiments
	6 Conclusion
	References

