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Abstract
The maximization of submodular functions have found widespread application in areas such as
machine learning, combinatorial optimization, and economics, where practitioners often wish to
enforce various constraints; the matroid constraint has been investigated extensively due to its
algorithmic properties and expressive power. Though tight approximation algorithms for general
matroid constraints exist in theory, the running times of such algorithms typically scale quadratically,
and are not practical for truly large scale settings. Recent progress has focused on fast algorithms
for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms
only exist for graphic and partition matroids [12]. In this work, we develop algorithms for monotone
submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time
near-linear in the size of their representation. Our algorithms achieve an optimal approximation
of 1 − 1/e − ε and both generalize and accelerate the results of Ene and Nguyen [12]. In fact, the
running time of our algorithm cannot be improved within the fast continuous greedy framework of
Badanidiyuru and Vondrák [6].

To achieve near-linear running time, we make use of dynamic data structures that maintain
bases with approximate maximum cardinality and weight under certain element updates. These data
structures need to support a weight decrease operation and a novel Freeze operation that allows
the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data
structure operations. For the laminar matroid, we present a new dynamic data structure using the
top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [2] that maintains the maximum
weight basis under insertions and deletions of elements in O(log n) time. This data structure needs
to support certain subtree query and path update operations that are performed every insertion
and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze
operation corresponds to requiring the data structure to keep a certain set S of vertices matched,
a property that we call S-stability. While there is a large body of work on dynamic matching
algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex
updates. We give the first such algorithm for bipartite graphs with total running time linear (up to
log factors) in the number of edges.
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1 Introduction

Submodular optimization is encountered in a variety of applications – combinatorial optimiz-
ation, information retrieval, and machine learning, to name a few [7]. Many such applications
involve constraints, which are often in the form of cardinality or weight constraints on certain
subsets of elements, or combinatorial constraints such as connectivity or matching. A conveni-
ent abstraction which has been studied heavily in this context is that of a matroid constraint1.
For instance, transversal matroids appear in ad placement and matching applications [4, 3],
laminar and partition matroids capture capacity constraints on subsets which are widely
used in recommendation settings (e.g. YouTube video recommendation algorithm [25]), and
graphic matroids appear in applications for approximating Metric TSP [26]. Maximization
of a submodular function subject to any of these constraints is an APX-hard problem, but
a (1 − 1/e)-approximation is known in this setting for any matroid constraint [11], and
the factor of 1− 1/e is also known to be optimal [22, 13]. Considering this, it has been a
long-standing quest to develop fast algorithms for the submodular maximization problem
that achieve an approximation close to the optimal factor of 1− 1/e. In this work, we achieve
this goal for several common classes of matroids.

Perhaps the first step in this direction was the threshold-greedy technique which gives
a fast (1/2 − ε)-approximation [5] for the cardinality constraint. With more work, this
technique can be extended to give approximations close to 1 − 1/e [6] and ultimately a
(1−1/e−ε)-approximation in running time O(n/ε) was found for the cardinality constraint.2

For general matroids, the fastest known algorithm is the fast continuous greedy algorithm,
which uses O(nrε−4 log2(n/ε)) oracle, where n is the number of elements in the matroid
and r is the rank of the matroid [6]. (The exact running time would depend on the
implementation of these queries, which [6] does not address.) We can assume that the rank r

scales polynomially with n and hence this algorithm is not near-linear. Further work on fast
submodular optimization developed in the direction of parallelized and distributed settings
(see [18, 20, 21] and the references therein); we do not discuss these directions in this paper.

A recent line of work initiated by Ene and Nguyen [12] attempts to develop a “nearly-
linear” continuous greedy algorithm, i.e., with a running time of n · poly(1/ε, log n). They
achieved this goal for partition and graphic matroids. Prior to their work, the fastest known
algorithm for any matroid class beyond cardinality was the work of Buchbinder, Feldman,
and Schwartz [10], who showed an O(n3/2)-time algorithm for partition matroids.

This immediately leads to the question of whether such improvements are also possible for
other classes of matroid constraints. As observed by Ene and Nguyen [12], even determining
feasibility may take longer than linear time for certain matroids. One such example is for

1 A matroid on N is a family of “independent sets” I ⊂ 2N which is down-closed, and satisfies the
extension axiom: For any A, B ∈ I, if |A| < |B| then there is an element e ∈ B \A such that A∪{e} ∈ I.

2 Running time in this paper includes value queries to the objective function f(S) as unit-time operations.
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matroids represented by linear systems, as simply checking the independence of a linear
system takes O(rank(M)ω) time, where rank(M) is the rank of the linear system and ω is
the exponent for fast matrix multiplication.

1.1 Our contributions
In this paper, we generalize and significantly improve the work of Ene and Nguyen [12],
to develop a (1− 1/e− ε)-approximation for maximizing a monotone submodular function
subject to a matroid constraint, for several important classes of matroids: namely for graphic,
laminar, and transversal matroids. The technical developments behind these results are on
two fronts:
(i) a refinement of the optimization framework of [12] and formulation of abstract data
structures required for this framework;
(ii) implementation of such data structures for graphic, laminar and transversal matroids.
(See Section 2 for definitions of these classes of matroids.)

To describe our results in more detail, the efficiency of optimizing a submodular function
f can be broken down into two components: the number of oracle calls to f , and the number
of additional arithmetic operations needed to support the algorithm optimizing f . The
number of oracle calls to f that our framework need to achieve a (1− 1/e− ε)-approximation
is Oε(n log2(n)) regardless of the matroid, where n is the number of elements in the matroid
constraint. Thus for all results below, the running time is measured in the number of the
number of arithmetic operations needed by the data structures supporting the optimization
of f . Our contributions are as follows:

We give nearly-linear time versions of continuous greedy for laminar, graphic, and
transversal matroids. These algorithms are accelerated by special data structures we
developed for each matroid and which might be of independent interest. For all of our
matroids, it is impossible to improve our running time without improving the continuous
greedy algorithm itself.
For graphic matroids on n vertices and m edges, we improve the running time of [12]
from Oε(n log5 n + m log2 n) to Oε(m log2 n).
We generalize the partition matroids results of [12] to laminar matroids, and match their
running time of Oε(n log2 n) for continuous greedy. As a by-product, we also develop the
first data structure that maintains the maximum weight basis on a laminar matroid with
O(log n) update time for insertions and deletions that may be of independent interest.
This data structure uses the top tree interface of Alstrup, Holm, de Lichtenberg, and
Thorup [2].
For transversal matroids represented by a bipartite graph with m edges and the ground
set being one side of the partition with n vertices, we give an algorithm running in
Oε(m log n + n log2 n) time.3 This is the first such fast algorithm for transversal matroids.
For this we develop a dynamic matching algorithm in a vertex-weighted, bipartite graph
with a weighted vertex sets L and an unweighted vertex set R with the following conditions:
(i) There exists a dynamically changing set S ⊆ L such that every vertex in S must be
matched in the current matching. (ii) The matching must give both an approximation in
terms of cardinality in comparison to the maximum cardinality matching as well as the
weight of the matching in comparison to the best matching that matches all vertices of S,
where the weight of the matching is the sum of the weights of the matched vertices of L.

3 Any transversal matroid with n elements can be represented as the family of matchable sets the left-hand
side of an n × n2 bipartite graph, with degrees at most n. See Section 2 for more details.

ICALP 2023



74:4 Faster Submodular Maximization for Several Classes of Matroids

We emphasize that our results are true running times, as opposed to black-box independence
queries to the matroid. The only black box operation we need is the query to the objective
function f(S).

The performance of the dynamic matching data structure used in our transversal matroid
algorithm is interesting as none of the earlier work on dynamic matching can maintain both
a constant approximation to the weight as well as to the cardinality of the matching. Our
algorithm builds on a recent fast algorithm for maximum-weight matching by Zheng and
Henzinger [27]. We briefly mention a few relevant works:

There is a conditional lower bound based on the OMv conjecture [16] that shows that
maintaining a maximum weight matching in an edge weighted bipartite graph with only
edge weight increase operations cannot be done in amortized time O(n1−δ) per edge
weight increase and amortized time O(n2−δ) per query operation for any δ > 0 [17].
The reduction from [17] can be adapted to the setting with only edge weight decrement
operations, achieving the same lower bound. Thus, this shows that our running time
bound cannot achieved if a exact maximum weight matching has to be maintained under
edge weight decrement operations.
Le, Milenkovic, Solomon, and Vassilevska-Williams [19] studied one-sided vertex updates
(insertions and deletions) in bipartite graphs and gave a maximal matching algorithm
whose total running time is O(K), where K is the total number of inserted and deleted
edges. Bosek el al. [8] studied one-sided vertex updates (either insertions-only or deletions-
only) in bipartite graphs and gave algorithms that for any ε > 0 maintain a (1 − ε)-
approximate maximum cardinality matching in total time O(m/ε). Gupta and Peng [15]
developed the best known dynamic algorithm that allows both edge insertions and deletions
and maintains a (1 − ε)-approximate maximum cardinality matching (for any ε > 0).
It requires time O(

√
m/ε) amortized time per operation. For all these algorithms, they

either cannot be extended to the weighted setting, or cannot maintain both a constant
approximation to the weight as well as to the cardinality of the matching.

1.2 Technical Overview
The submodular optimization framework. Our framework is an adaptation and improve-
ment over that of Ene and Nguyen [12]. The framework consists of two phases:
(1) a LazySamplingGreedy phase, which aims to build a partial solution that either

provides a good approximation on its own, or reduces the problem to a residual instance
with bounded marginal values of elements.

(2) a ContinuousGreedy phase, which is essentially the original fast continuous greedy
algorithm [11, 6], with an improved analysis based on the fact the marginal values are
bounded.

The original fast ContinuousGreedy runs in time Oε(nr log2 n), where the factor of r log2 n

is due to the cost in evaluating the multilinear extension of f . The multilinear extension is an
average over values of f on randomly drawn subsets of the input. In ContinuousGreedy,
O(r log2 n) samples are needed to estimate the multilinear extension to sufficient accuracy.

The LazySamplingGreedy phase transforms f into a function f̃ such that (a) the
number of samples required in ContinuousGreedy for f̃ is reduced by a factor of r

and (b) the optimal solution of f̃ is within a (1 − ε) factor of the optimal solution f .
LazySamplingGreedy does this by constructing an initial independent set S in our
matroid M such that f̃(T ) = f(T ∪ S) has relatively small marginal values. The final
solution is obtained by running ContinuousGreedy on f̃ constrained by M \ S and
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combining the solution with S. The construction of S relies on a fast data structure to get
the maximum weight independent set of M at any given time, subject to weight changes on
each element.

We begin by simplifying and improving the LazySamplingGreedy phase (Section 3.2).
A significant part of LazySamplingGreedy in [12] is dedicated to randomly checking and
refreshing estimates of marginal values for each element in the matroid. We show that (a)
this random checking can be dramatically reduced, and (b) the maximum-weight independent
set requirement for the data structure can be relaxed to a constant-factor approximation
of the maximum-weight independent set. The relaxation to constant-factor approximations
enables us to design much more efficient data structures than the previous work of [12], and
also allows us to handle more classes of matroids.

In the ContinuousGreedy phase (Section 3.3), a subroutine requires an independence
oracle to check if proposed candidate solutions are independent sets of the matroid. Ene
and Nguyen use fully dynamic independence oracles to implement this, where independence
queries require O(polylog n) time. We show that only incremental independence oracles
are needed. This opens the door to implementing such oracles for new classes of matroids,
as sublinear fully dynamic independence oracles are provably hard in many settings (e.g.
bipartite maximum-cardinality matchings are hard to maintain exactly in faster than O(n2−ε)
amortized time per update [1], which corresponds to finding the maximum independent set
in a transversal matroid).

Dynamic data structures for various matroid constraints. From a data structures point
of view, we give the first efficient data structure for two settings. (We refer the reader to
Section 2 for definitions of laminar, graphic and transversal matroids.)

Maximum-weight basis in a laminar matroid. In a laminar matroid with n elements we are
able to output the maximum-weight basis under an online sequence of insertions and deletions
of weighted elements with O(log n) time per update, which we show to be worst-case optimal.
The biggest challenge for laminar matroids is that each element may have as many as O(n)
constraints that need to be kept track of on each insertion and deletion. We leverage the tree
structure induced by a laminar set system to build data structures. Specifically, we show
there exists a data structure with O(log2 n) query time using the heavy-light decomposition
technique of [24]. Since the heavy-light decomposition technique decomposes the tree into
paths, we store some carefully chosen auxiliary information at each vertex to transform our
subtree queries into path queries. We further improve this to O(log n) using the top tree
interface of Alstrup, Holm, de Lichtenberg, and Thorup [2] that more naturally support
both path and subtree operations using a similar idea of carefully storing the right auxiliary
information at each top tree node combined with lazily propagating path changes.

Approximate maximum-weight basis in a transversal matroid. In the case of transversal
matroids, our LazySamplingGreedy+ algorithm requires what we call a (c, d)-approximate
maximum weight matching oracle: a matching that is an c-approximation in weight and at
least d of the cardinality of the maximum cardinality matching. In addition, the oracle must
implement two update operations, (a) a Freeze operation that adds a vertex of L to S and
(b) a Decrement operation that reduces the weight of a vertex of L to a given value. We
give a novel algorithm that maintains a maximal (inclusion-wise) matching M in a weighted
graph such that the weight of the matching is a (1− ε)-approximation of the max-weight
solution in total time O(m(1/ε + log n)). Thus our algorithm is a (1− ε, 1/2)-approximate
maximum weight matching oracle. Due to standard rescaling techniques we can assume that
the maximum weight W = O(n).

ICALP 2023
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To illustrate the challenges introduced by Freeze operations, assume we want to maintain
a (1/2, 1/2)-approximate maximum weight matching oracle and let n ≥ 5 be an odd integer.
Consider a graph consisting of the path ℓ0, r0, ℓ1, r2, . . . , ℓ(n+1)/2 of length n−1 where the first
and last edge have large weight W < say W = 100n, and all other edges have weight 1. If the
initial (Ω(1), Ω(1))-approximate matching has greedily picked every second edge, it achieves a
weight of W + n−1

2 − 1 versus an optimum weight of 2W + n−1
2 − 2. Now if the weight of the

first edge is halved, the weight of the computed solution drops to W/2 + n−1
2 − 1, which is no

longer a 2-approximation of the weight of the optimum solution (for large enough W ). Thus
the algorithm needs to match the last edge in order to maintain a 2-approximation to the
weight. This would only require two changes to the matching, namely un-matching the edge
(ℓ(n−1)/2, r(n−1)/2) and matching the last edge. However, if prior Freeze operations added
the vertices ℓ1, ℓ2, ...ℓ(n−1)/2 to S, i.e. S = V \{ℓ0}, then we cannot un-match ℓ(n−1)/2. Thus,
the edge (ℓ(n−1)/2, r(n−3)/2) needs to be unmatched, which in turn un-matches the vertex
ℓ(n−3)/2, leading to further un-matchings and matchings along the path. More specifically,
all (n− 1)/2 matched edges need to change. Next, the weight of the last edge is divided by
4 and the process along the path starts again. Thus, due to the prior Freeze operations,
each Decrement operation can lead to Θ(n) = Θ(m) changes in the graph. As this can
be repeated Θ(log W ) = Θ(log n) times it shows that work Ω(m log n) is unavoidable if a
2-approximation to the weight is maintained with Freeze operations. This is the running
time that we achieve.

More precisely, for any ε > 0, we give an (1 − ε, 1/2)-approximate maximum weight
matching oracle under Freeze and Decrement operations with total time O(m(log n+1/ε)).
It follows that O(m(log n + 1/ε)) is also an upper bound on the number of matching and
un-matching operations of the algorithm. To do so we extend a recent algorithm [27] for
fast (1− ε)-approximate maximum weight matching algorithm in bipartite graphs based on
the multiplicative weight update idea. The analysis within [27] shows stability properties
that makes the Freeze operation trivial to implement. However, LazySamplingGreedy+
requires that the maintained matching is at least 1/2 the size of the maximum matching.
Furthermore, we need to support the Decrement operation. We show that both extensions
are possible and obtain an algorithm with total time (for all operations) of O(m(1/ε + log n)).

2 Preliminaries

Set notation shorthands. Given a set S ⊆ N and an element u ∈ N , we denote S ∪ {u}
and S \ {u} by S + u and S−u respectively. Similarly, given sets S, T ⊆ N , we denote S ∪T

and S \ T by S + T and S − T respectively.

Submodular functions. Given a set N , a set function f : 2N → R is called submodular if
for any two sets S and T we have

f(S) + f(T ) ≥ f(S + T ) + f(S − T ).

We only consider monotone submodular functions, where f(S) ≤ f(T ) for any sets S ⊆ T .

Matroids. A set system is a pair M = (N , I), where I ⊆ 2N . We say that a set S ⊆ N is
independent in M if S ∈ I. The rank of the set system M is defined as the maximum size of
an independent set in it. The independent sets must satisfy (i) S ⊆ T, T ∈ I =⇒ S ∈ T ,
and (ii) S, T ∈ I, |S| < |T | =⇒ ∃e ∈ T \ S such that S + e ∈ I.

A matroid constraint means that f is optimized over the independent sets of a matroid.
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Graphic matroids. Let G = (V, E) be a graph. A graphic matroid has N = E and I
equal to the forests of G. The rank of M is |V | − C where C is the number of connected
components in G.

Laminar matroids. Let {S1, S2, . . . , Sm} be a collection of subsets of a set N such that for
any two intersecting sets Si and Sj where i ̸= j, either Si ⊂ Sj or Sj ⊂ Si. Furthermore,
let there be non-negative integers {c1, c2, . . . , cm} associated with the Si’s. Let I be the
sets S ⊆ N for which |S ∩ Si| ≤ ci for all i. I is then the collection of independent sets in
a laminar matroid on N . A laminar matroid has a natural representation as a tree on m

nodes, which we describe in the full version.

Transversal matroids. Let G = ((L, R), E) be a bipartite graph with a bipartition of
vertices (L, R). Let I be the collection of sets S ⊆ L such that there is a matching of all
vertices in S to |S| vertices in R. A transversal matroid has N = L and I as its independent
sets. From the definition, it is clear that rank(M) is the size of the maximum cardinality
matching in G. It is known that every transveral matroid can be represented by a bipartite
graph where L is the ground set of the matroid and |R| = rank(M) (see [23], Volume B,
equation (39.18)).

3 Improved nearly-linear submodular maximization

In what follows, f is the submodular function we want to maximize, M is the matroid
constraint, n is the number of elements in M, and OPT is the optimal independent set.
Additionally, we can assume that rank(M) = ω(log n), as the standard ContinuousGreedy
would run in O(n polylogn) time otherwise.

Our high-level framework adapts and improves upon the nearly-linear time framework of
Ene and Nguyen [12]. We will do the following:

Algorithm 3.1: Overall Framework.

1. Run LazySamplingGreedy+ (see below), to obtain a partial solution S0.
2. Run ContinuousGreedy on f̃(T ) = f(S0 ∪ T ) − f(S0) with the constraint
M/S0, to obtain a solution S1.

3. Return S0 ∪ S1.

As previously discussed, the original ContinuousGreedy runs in time Oε(nr log2 n),
where the r log2 n is due to the number of samples needed to evaluate the multilinear extension
of f . LazySamplingGreedy+ finds a set S0 such that f̃(T ) := f(T | S0) = f(S0∪T )−f(S0)
has a tighter range of marginal values. This allows us to reduce the number of samples used
in ContinuousGreedy by a factor of r.

The overall idea is to run LazySamplingGreedy+ until the marginals in f̃ are small
enough to guarantee good performance in the ContinuousGreedy phase of our overall
framework (Algorithm 3.1). To accelerate our algorithms, we construct specialized data
structures for both LazySamplingGreedy+ and ContinuousGreedy.

3.1 Data structure requirements
We next describe the data structures needed for the two phases of our algorithm. In the
LazySamplingGreedy+ phase we need a c-approximate dynamic max-weight independent
set oracle. In the CountinuousGreedy phase we have two options of dynamic independence

ICALP 2023
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oracles, both of them unweighted. In addition, our LazySamplingGreedy+ requires the
ability to obtain a weighted sample from the approximate max-weight independent set. Since
we use these data structures as subroutines in our static algorithm which uses the answers
of the data structure to determine future updates, it is important that their running time
bounds are valid against an adaptive adversary.

Dynamic (c, d)-approximate maximum weight oracle. Let M = (E, I) be a matroid.
Given an independent set S ⊆ E the independent sets relative to S are the independent sets
of M that contain S. Let rank(M) denote the size of the largest independent set, which
equals the size of the largest independent set containing S. The weight of an independent
set is the sum of the weights of its elements. A maximum weight basis in M relative to S is
a basis B∗ that maximizes the sum of we over all bases of M that contain S.

Let c < 1 and d < 1 be constants. An independent set B is called an (c, d)-approximate
independent set relative to S if it fulfills the following conditions: (a) its size is at least
rank(M) · d and (b) its weight is at least a c-approximation to the weight of a maximum
weight basis relative to S.

We study the dynamic setting where each element e ∈ E has a dynamically changing
weight we ∈ R+ and where S is a dynamically growing subset of E. A (c, d)-approximate
dynamic maximum weight oracle is a data structure which maintains a (c, d)-approximate
independent set B relative to S (i.e. in the matroidM/S) while S and the weight of elements
not in S can change. Initially S is an empty set and the data structure supports the following
operations:

Freeze(e): Add to S the element e, where e must belong to the current (c, d)-approximate
basis relative to (the old) S and return the changes to B.
Decrement(e, w): Return the weight we of e /∈ S to w, which is guaranteed to be
smaller than the current weight of e and return the changes to B.
ApproxBaseWeight(): Return the weight of the (c, d)-approximate independent set
maintained by this data structure.

If c = 1 and d = 1 we call such a data structure a dynamic maximum weight oracle
relative to S.

We will use (c, d)-approximate maximum weight oracles in the LazySamplingGreedy+
phase of the algorithm.

We will also need to augment this data structure with two additional sampling operations.
Whenever the independent set B maintained by the data structure changes, we need to
spend an extra O(1) time updating a sampling data structure. This sampling data structure
can be generically and efficiently implemented to augment any (c, d)-approximate maximum
weight oracle as long as the (c, d)-approximate maximum weight oracle does not change the
independent set B too much amortized over all calls to the data structure. This is described
in the full version of the paper.

Sample(t): Return a subset of B \S, where each element is included independently with
probability min

(
1, t

w(B\S) we

)
.

UniformSample(): Return a uniformly random element from B \ S.

(1 − ε)-approximate independence oracles. For the second phase of our algorithm Con-
tinuousGreedy we have a choice between two data structures. Both of them are unweighted,
i.e., elements have no associated weights. We can either use an incremental (i.e. insertions-
only) exact data structure or a dynamic (1 − ε)-approximate data structure, for a small
ε > 0. Next we define both in more details.
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Incremental independence oracle. The incremental independence oracle data structure
maintains an independent set B and supports the following operation:

Test(e): Given an element e, decide if B ∪ {e} is independent. If so, output YES,
otherwise output NO.
Insert(e): Given an element e such that B ∪ {e} is independent, add e to B.

(1− ε)-approximate dynamic maximum independent set data structure. Let ε > 0 be a
small constant and let us call an independent set B of a matroid M that contains at least
(1− ε) · rank(M) elements an (1− ε)-approximate basis ofM. The (1− ε)-approximate data
structure maintains an (1− ε)-approximate basis B for a dynamically changing matroid M
and supports the following operations.

Batch-Insert(E′): Given a set E′ of new elements, insert all elements of E′ into the
matroid M and compute a new (1− ε)-approximate basis B such that all elements that
were in the basis before the update belong to B. Return all new elements that were
introduced to B.
Delete(e): Given an element e of M, delete e from M and update the independent set
B such that it consists of at least (1− ε) · rank(M) elements of the new M. If any new
elements were added to B, return this set of new elements. Otherwise, return ∅.

Depending on which version of the algorithm we use, we will need either an exact
incremental oracle or a (1−ε)-approximate dynamic maximum independent set data structure.

3.2 The LAZYSAMPLINGGREEDY+ algorithm
In this section, we describe the implementation of LazySamplingGreedy+.

The LazySamplingGreedy+ algorithm is inspired by the Random Greedy algorithm
of Buchbinder, Feldman, Naor, and Schwartz [9] and the Lazy Sampling Greedy algorithm of
Ene and Nguyen [12]. The algorithm begins with an initially empty solution S, and runs until
the function f̃(T ) = f(T |S) has small enough marginals to reduce the sampling requirements
of ContinuousGreedy.

We denote the weight of an element by we(S) := f(S ∪ {e})− f(S), and weight(T ) to
denote

∑
e∈T we(S). The algorithm will only ever add elements to S, so by submodularity,

we(S) can only decrease as the algorithm runs (satisfying the requirements of Section 3.1).
Throughout this algorithm, we use a (c, d)-approximate maximum-weight oracle (Section 3.1)
that maintains a maximum-weight independent set B as the weights we(S) are updated. For
the sake of exposition, we defer proofs to the full version of the paper and assume c ≥ 1/2,
and d ≥ 1/2.

Discretizing the marginal weights. Whenever S is changed, the weight we(S) of all elements
e can be changed. To reduce the number of weight changes, we use a standard rounding trick.
Assume we have some constant-factor approximation M to f(OPT ) (which can be computed
in O(n) time via well-known algorithms [10]). Instead of maintaining we(S) exactly, we
round we(S) to one of logarithmically many weight classes, that is, we(S) belongs to weight
class j if we(S) ∈ ((1 − ε)j+1M, (1 − ε)jM ], with the lowest class containing all weights
from [0, O(εM/r)]. The value of the rounded weight is then w̃e = (1 − ε)je . We denote
by bucket B(j) all elements that belong to weight class j. Throughout the algorithm, we
maintain estimates j̃e for the weight class that e is in (and thus estimates of we as well). An
estimate is called stale if we(S) is not actually in the weight class indicated by j̃e. To achieve
a multiplicative error of (1− ε), it suffices for the number of different weight classes to be at
most O(ε−1 log(r/ε)), where r is the rank of the matroid. We denote by weight(B) the sum
of current weight estimates over the set B.
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The analysis of our algorithm works with any constant-factor approximation to f(OPT )
and any constant c-approximate maximum weight independent set data structure, albeit
with slight changes in the approximation factors.

Algorithm 3.2: LazySamplingGreedy+.

S ← ∅, and set the weight estimate w̃e to we(∅) for all e ∈M.
D ← (c, d)-approximate dynamic maximum weight oracle on M and w̃.

While D.ApproxBaseWeight() ≥ 50
ε f(OPT ):

1. B′ ← D.Sample(128 log n)
(a random subset of B \ S, each element included independently with probability
pe = min{1, 128 log n

w̃(B\S) w̃e})
2. Update the weights of all stale elements e ∈ B′ by computing je, w̃e = (1− ε)je

and then calling D.Decrement(e, w̃e).
3. If less than half of the elements in B′ where pe = 1 were stale (i.e. needed an

update), and less than half of the elements in B′ where pe < 1 were stale, then
add e = D.UniformSample() to S by calling D.Freeze(e).

Note that in each iteration, we check and update only the weights of some random sample
of elements. This is for efficiency; we show the estimated weight w̃(B) is still correct in
expectation up to a constant multiplicative factor. We begin the correctness proof by showing
the following lemma.

▶ Lemma 1. Assume 0 < ε < 1/3. With high probability, if less than 1
2 of the estimated

weight of B′ is in elements which are stale, then∑
e∈B\S

we(S) ≥ 4
ε

f(OPT ).

Next, we show a bound on the computational complexity of LazySamplingGreedy+.

▶ Lemma 2. LazySamplingGreedy+ uses at most O(nε−1 log(r/ε)) arithmetic operations,
calls to f , and calls to the maximum weight data structure.

Next we observe that S cannot have too many elements, otherwise f(S) is close to
f(OPT ) and we are done.

▶ Observation 3. With high probability, S at the end of the algorithm has at most εr/2
elements.

▶ Theorem 4. Let S be the set returned at the end of LazySamplingGreedy+, OPT :=
arg maxT ∈M f(T ), and OPT ∗ := arg maxT ∈M/S f(T |S). The following inequality holds:

E[f(OPT ∗ ∪ S)] ≥ (1− 2ε)f(OPT ).

3.3 The CONTINUOUSGREEDY algorithm
In this section we discuss our implementation of the ContinuousGreedy algorithm. The
basis of our algorithm is the fast implementation from [6], with additional speed-up due to the
fact that the LazySamplingGreedy+ stage reduces the marginal values of the remaining
elements. The previous section shows that our LazySamplingGreedy+ algorithm runs
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with at most Oε(n log r) arithmetic operations, calls to f , and calls to the maximum weight
data structure. In this section, we describe how LazySamplingGreedy+ helps the runtime
of ContinuousGreedy. The proofs are given in the full version of the paper.

At the termination of LazySamplingGreedy+ it holds that w̃(B) ≤ 50
ε f(OPT ). Stale

weights in B have true weights lower than its weight estimate w̃e. Therefore, the true
weight of elements of B must be also at most 50

ε f(OPT ). Furthermore, since B is a
constant-factor approximation to the true maximum weight basis B⋆, this implies that
weight(B⋆) = O( 1

ε f(OPT )).
Let f̃(T ) = f(T |S), where S is the set output at the termination of LazySampling-

Greedy+. We observe that for any set T ∈M/S,
∑

e∈T f̃(e) = O( 1
ε f(OPT )). When this

is the case, [10] (Corollary 3.2) gives the following result:

▶ Lemma 5 ([10]). ContinuousGreedy to obtain a (1 − 1/e − ε)-approximation uses
O(nε−2 log(n/ε)) independent set data structure operations and O(nε−5 log2(n/ε)) queries
to f̃ .

In this section, we make two observations that improve the number of independent set
queries by a log factor. The inner loop of the ContinuousGreedy algorithm is essentially
a greedy algorithm which operates on a function derived from the multilinear extension of f̃ :
g(T ) = F (x + ε1T ) where F (x) = E[f̃(R)], R sampled independently with probabilities xe.
The inner loop of ContinuousGreedy finds an increment of the current fractional solution
x by running a greedy algorithm to approximate a maximum-weight basis with respect to the
function g. Let us define we(T ) = g(T + e)− g(T ) to be the marginal values of this function.

A fast implementation of this inner loop is the DescendingThreshold subroutine of
Badanidiyuru and Vondrák [6], which also appears in the algorithm of [10]. This subroutine
uses the marginal values we(B) defined above; the expectation requires O(ε−1 log2(n/ε))
samples to estimate for the required accuracy of ContinuousGreedy. In the algorithms
below, we(S) can be thought of as a black-box that issues O(ε−1 log2(n/ε)) calls to the
function f̃ .

Algorithm 3.3: DescendingThreshold.

B ← ∅
τ ← max{e}∈M we(∅)
While τ ≥ ε

r f(O):
1. Iterate through e ∈ E one by one. If B ∪ {e} ∈ I and we(B) ≥ τ , add e to B.

Otherwise, if B ∪ {e} /∈ I, remove e from E.
2. τ ← (1− ε)τ
Return B

The number of independent set queries in ContinuousGreedy is dominated by the first
line of the while loop in DescendingThreshold.

We make two observations about the DescendingThreshold algorithm of Badanidiyuru
and Vondrák [6], resulting in two modifications to DescendingThreshold that uses the
incremental independence oracle and approximate maximum independent set data structure
outlined in Section 3.1.

▶ Observation 6. Only O(n/ε) independence oracle queries are required. Furthermore, it is
sufficient to use an incremental independence oracle.
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Thus, we can modify the DescendingThreshold of [6] by simply ignoring elements
that have been previously rejected within the descending threshold greedy subprocedure (see
Algorithm 3.4). This yields the following:

▶ Lemma 7. ContinuousGreedy uses O(n/ε) incremental independent set data structure
operations and O(nε−5 log2(n/ε)) queries to f̃ .

Algorithm 3.4: DT-Incremental.

D ← Incremental independence oracle maintaining a set B (Section 3.1)
τ ← max{e}∈M we(∅)
While τ ≥ ε

r f(O):
1. Eτ ← {e | we(B) ≥ τ, e ∈ E \B}
2. Iterate through e ∈ Eτ one by one. If D.Test(e) returns YES and we(B) ≥ τ ,

call D.Insert(e) and add e to B. Otherwise, if B ∪ {e} /∈ I, remove e from E.
3. τ ← (1− ε)τ
Return B

An alternative observation
In the case of transversal matroids, exact incremental independence oracle with polylogar-
ithmic update times are not known. Instead, we will make the following observation: An
approximate decremental maximal independent set data structure can be used instead of an
incremental independence oracle. This results in the modification of descending threshold
described in Algorithm 3.5.

Algorithm 3.5: DT-ApproxIndepSet.

D ← Approximate dynamic maximum independent set data structure maintaining
a set B (Section 3.1)

τ ← max{e}∈M we(∅)
While τ ≥ ε

r f(O):
1. Eτ ← {e | we(B) ≥ τ, e ∈ E \B}
2. B+ ← D.Batch-Insert(Eτ )
3. While B+ ̸= ∅:

a. Get any e ∈ B+. If we(B) < τ , D ← D.Delete(e) and set B+ ← B+ ∪D.
b. Remove e from B+.

4. τ ← (1− ε)τ

Return B

▶ Observation 8. Instead of an incremental independence oracle, ContinuousGreedy can
be implemented with a decremental approximate maximum independent set data structure.
Furthermore, ContinuousGreedy will only make O(ε−1 log r) calls to Batch-Insert and
O(nε−1 log r) calls to Delete.

Rounding the fractional solutions. The ContinuousGreedy algorithm makes O(1/ε)
calls to Algorithm 3.3, and outputs a fractional solution that is a convex combination of the
O(1/ε) bases returned by these calls [6]. This fractional solution then needs to be rounded
to an integral solution efficiently. In the full version, we show that the data structures we
develop can speed up the rounding as well, leading to the overall cost being dominated by
the LazySamplingGreedy+ and ContinuousGreedy phases.
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3.4 Analysis of the overall framework
▶ Lemma 9. The approximation returned by our framework has approximation ratio at least
1− 1/e− ε.

Proof. Let S0 be the set returned by LazySamplingGreedy+. Recall that f̃(T ) := f(T |S0).
By the results in the previous sections, there exists a set OPT ⋆ such that OPT ⋆ ∪S0 is inde-
pendent and E[f̃(OPT ⋆)] ≥ (1−ε/2)f(OPT )−f(S0) (by running LazySamplingGreedy+
with ε/4 instead of ε). Running continuous greedy on f̃ yields a (1−1/e−ε/2)-approximation
S1 to OPT ⋆. Thus the final value of our solution f(S0 + S1) is:

E[f(S0 + S1)] = E[f̃(S1) + f(S0)]
≥ (1− 1/e− ε/2)E[f̃(OPT ⋆) + f(S0)]
≥ (1− 1/e− ε/2)(1− ε/2)f(OPT )
≥ (1− 1/e− ε)f(OPT ). ◀

▶ Observation 10. Our framework uses at most:
O(nε−5 log2(n/ε)) calls to the submodular function oracle f .
O(nε−1 log(r/ε)) calls to an approximate maximum weight oracle (Section 3.2).
Either O(n/ε) incremental oracle data structure operations or O(ε−1 log r) calls to Batch-
Insert and O(nε−1 log r) calls to Delete on a decremental approximate maximum
independent set data structure (Section 3.3).

The cost of evaluating f is dominated by the ContinuousGreedy phase (see Lemma 7), as
LazySamplingGreedy+ only uses O(nε−1 log(r/ε)) oracle calls to f , where r is the rank
of the matroid (Lemma 2).

4 Data structures for various matroids

In this section, we give dynamic (c, d)-approximate maximum weight oracles and (1 − ε)-
approximate independence oracles for laminar matroids, graphic matroids, and transversal
matroids.

Limitations for further improvements. For both the laminar, graphic, and transversal
matroid, the total runtime of the data structure operations in LazySamplingGreedy+ and
ContinuousGreedy is Oε(|M| log2 |M|), where |M| is the number of matroid elements.
Without improving the original ContinuousGreedy algorithm itself, it is impossible to
improve the runtime further. This is because the ContinuousGreedy phase requires at
least Oε(|M| log2 |M|) oracle calls to f , which is at least O(1) cost in any reasonable model
of computing.

Weighted sampling on (c, d)-approximate independent sets. Our (c, d)-approximate
maximum weight oracles in Section 3.1 require the ability to sample from the independent
set they maintain. This sampling operation can be handled independently from the other
operations of the data structure, by augmenting the Decrement and Freeze operations.
As this augmentation is the same in all our data structures, we describe it in the full version.

4.1 Laminar matroids
Laminar matroids generalize uniform and partition matroids. In the full version of the
paper we present a data structure D using top trees [2] that maintains a fully dynamic
maximum weight basis for a laminar matroid under insertions and deletions of elements with
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arbitrary weights in O(log n) update time. This data structure satisfies the (c, d)-approximate
maximum weight oracle requirements with c = d = 1 and satisfies the (1− ε)-approximate
independence oracle requirements with ε = 0.

Dynamic maximum weight oracle. The data structure D maintains the maximum weight
basis under insertion and deletions. For Freeze(e) operations, we don’t need to do anything.
For Decrement(e, w) operations, we can simulate a decrement with the deletion of e and
an insertion of e with the changed weight. As we show in the appendix of the full version,
deleting and inserting an element removes at most the deleted element and adds at most one
element to the maximum weight basis, and thus would never remove a frozen element from
the basis whose weight never decreases.

Incremental independence oracle. This data structure can also be used to implement an
incremental independence oracle as follows: Run the data structure D where every element
has the same weight and that maintains a maximum basis B. Both Test and Insert can
easily be handled by our data structure.

4.2 Graphic matroids
A graphic matroid can be represented with a weighted undirected graph G = (V, E, w) where
the weight of and edge e ∈ E is given by w(e).

Dynamic (1/2, 1/2)-approximate maximum weight oracle. To obtain an approximate
maximum spanning tree of a graph G = (V, E), take the largest edge incident to every vertex,
with ties broken according to the edge numbering. For every vertex v ∈ V , let Ev denote
the set of edges incident to v. We can store the weights of edges in Ev in a heap Hv and
maintain that the maximum element of Hv is part of our approximate maximum spanning
tree. It is easy to show that the set of edges maintained, F , is a forest with at least 1/2 the
weights and 1/2 the number of edges of the optimal maximum spanning tree T .

For the correctness of the algorithm we show first that there cannot be any cycle in F .
Assume by contradiction that there is a cycle C in F . Direct each edge in C towards the
vertex where it was the maximum weight edge, breaking ties according to the vertex number.
If C is a cycle, then C must give a directed cycle, where each edge is larger than the next
edge in the directed cycle in the lexicographic order induced by the edge weight and the
vertex number. This is a contradiction.

Approximation factor. Root T at an arbitrary vertex and consider the vertices of T

starting at the leaves. We will use a simple charging argument to show that F has at least
1/2 the weight of T and that |F | ≥ |T |/2. The edge of a vertex v going to its parent u in the
tree T can be charged to the largest weight edge leaving v, which is in F . Since each edge of
e ∈ F can be charged at most twice from the two endpoints of e by edges of lesser or the
same weight, F has at least half the weight of T and at least half the edges as well.

Decrement(e, w): When the weight of an edge e = (u, v) ∈ E changes to w, we update
Hu and Hv accordingly. This may change the maximum weight edge incident to u or v, but
we can lookup and accordingly modify our approximate maximum spanning tree with the
new maximum weight edge of Tu and Tv in O(log n) time and report these changes.

Freeze(e): When we freeze an edge e = (u, v) ∈ F , we can contract the graph along the
edge. To do so, we can merge the heaps Hu and Hv and associate the merged heap with the
new merged vertex. This can be done in O(log n) time with binomial heaps or O(1) time
using the Fibonacci heaps of Fredman and Tarjan [14]. When we merge two vertices, the
maximum weight edge incident to the new merged vertex may be added to the approximate
maximum spanning tree.
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Incremental independence oracle. Unweighted incremental maximum spanning tree in-
volves checking if inserting any edge increases the size of the spanning tree. This can be done
in O(α(n)) update and query time with the disjoint set union data structure of Tarjan [24].

4.3 Transversal matroids
Representation of transversal matroids. As stated in Section 2, we assume that our
transversal matroids are given as minimal representations. This means that the matroid
M is represented by a bipartite graph G = ((L, R), E) where |R| = rank(M). For sake of
notation let n = |L| and m = |E|. As a reminder, each element of the matroid corresponds
to a node in L, and an independent set I is a subset of L such that there exists a matching
in G that matches every element of I. We will let N(v) denote the neighbors of v in G, that
is N(v) = {u | (u, v) ∈ E}. If m > n2 we can remove neighbours from each vertex in L until
their degree is at most n. This doesn’t affect whether a vertex belongs to an independent
set, as it can always be matched. This reduces m to at most O(n2).

Dynamic (1 − ε, 1/2)-approximate maximum weight oracles. Recall that in the case of
transversal matroids, the weighted setting of LazySamplingGreedy+ leads to a dynamic
matching problem on a vertex-weighted bipartite graph G = ((L, R), E), where each vertex
ℓ ∈ L has a non-negative weight w(ℓ) and all edges incident to L have weight w(ℓ). We
assume that each vertex in L has a value wmin ≥ O(wmaxε/n) such that we may ignore the
weight of any vertex that drops below wmin. For the purposes of LazySamplingGreedy+,
we stop if the maximum weight basis decreases below O(f(OPT )) ≥ wmax, and so even if we
discard all items with weight less than O(wmaxε/n), we can discard at most an ε fraction of
f(OPT ). Thus after appropriate multiplicative rescaling, we may assume that wmin = 1 and
wmax = (1 + ε)k for k = O(log1+ε n). Furthermore we may assume that the weight of any
ℓ ∈ L is (1+ε)j for some j ≥ 0 as we can round all weights in the range of [(1+ε)j , (1+ε)j+1]
down to the nearest (1 + ε)j and lose only a (1 + ε)−1 factor in the value of the solution.

We will design a data structure that maintains a matching M such that whenever a
Decrement(ℓ, w) operation is performed on ℓ ∈ L, then ℓ will be the only node of L that
may potentially become unmatched in M . We will call a data structure that has this property
L-stable. The basis we output will be the set of nodes of L matched in M . Note that L-stable
data structures can handle the Freeze operation by not doing anything and always returning
an empty set. No frozen element will be removed from the basis because frozen elements are
never decremented.

The high level idea of our algorithm is as follows: We want to maintain a maximal
matching according to some weights, as this guarantees that at least half as many nodes of
L are matched as in the optimum solution. The question is just which weights to choose
and which algorithm to use to guarantee maximality while fulfilling L-stability. Note that
L-stability allows edges in the matching to change, just un-matching a matched vertex of
L is forbidden. For this reason we chose an algorithm that is greedy for the vertices in R,
i.e., each vertex in R is matched with a neighbor of largest weight for a suitable choice of
weight. In order to maintain the invariant at every vertex r of R our greedy algorithm allows
r to “steal” the matched neighbor l of another vertex r′ of R. This maintains L-stability as
l remains matched. However, the newly un-matched vertex r′ might want to steal l right
back from r. To avoid this, we do not use the original weights in the greedy algorithm, but
instead we use “virtual weights” that are initialized by the original weights and that decrease
by a factor of (1 + ε) whenever l is (re-)matched. This makes l less attractive for r′ and, as l
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is never re-matched when its weight is below 1, it also guarantees that l is only re-matched
Õε(1) times in total over all decrement operations. For formal details and the proof, see the
full version of the paper.

▶ Theorem 11. Given a bipartite graph G = ((L, R), E) and a value wmin, there exists a
L-stable data structure that handles Decrement operations and maintains a (1− ε, 1/2)-
approximate maximum weighted matching provided that the maximum weighted matching has
cost at least wmin. The total running time for preprocessing and all operations as well as the
total number of changes to the set of matched vertices is O(|E|(1/ε + log |L|)). Furthermore,
the matching maintained is maximal.

(1 − ε)-approximate dynamic maximum independent set data structure. The fastest
known algorithm for incremental maximum bipartite matching takes O(m

√
n) total time

[8]. However, given a bipartite graph G = (L, R) there is a (1− ε)-approximate maximum
matching data structure DM for deletions of vertices in L [8]. It has three properties that
are crucial for our algorithm: (1) It does not unmatch a previously matched vertex of L

as long as it is not deleted, (2) it maintains an explicit integral matching, i.e., it stores at
each vertex whether and if so, along which edge it is matched, and (3) the total time for
computing the initial matching and all vertex deletions is O((m + |L|)/ε), where m is the
number of edges in the initial graph.

Given an initial graph G0 and a partial matching B of G0 this algorithm can be modified
to guarantee that the initial (1 − ε)-approximate matching computed for G0 matches all
vertices of B ∩ L. See teh full version of the paper for details. We use this data structure
DM to implement a (1− ε)-approximate dynamic maximum independent set data structure
for the transversal matroid as follows:

Batch-Insert(E′): Let B be the (1 − ε)-approximate matching before the update.
Initialize a new data DM with all current elements and compute an initial (1−ε)-approximate
matching computed for G0 matching all vertices in B ∩ L. This is possible by the discussion
above.

Delete(e): Execute a vertex deletion of vertex e in DM .
Test(e): Return YES if e is matched and NO otherwise.

▶ Lemma 12. Given a transversal matroid there exists a (1 − ε)-approximate dynamic
maximum independent set data structure such that each Batch-Insert(B, E1, E2) and all
Delete operations until the next Batch-Insert take O((m′ +|E1|+|E2|)/ε) total worst-case
time and each Test operation takes O(1) worst-case time.
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