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Abstract 

CA3 pyramidal neurons are thought to play a key role in memory storage and 

pattern completion by activity-dependent synaptic plasticity between CA3─CA3 

recurrent excitatory synapses. To examine the induction rules of synaptic 

plasticity at CA3─CA3 synapses, we performed whole-cell patch-clamp 

recordings in acute hippocampal slices from rats (postnatal 21–24 days) at 

room temperature. Compound excitatory postsynaptic potentials (EPSPs) were 

recorded by tract stimulation in stratum oriens in the presence of 10 µM 

gabazine. High-frequency stimulation (HFS) induced N-methyl-D-aspartate 

(NMDA) receptor-dependent long-term potentiation (LTP). Although LTP by 

HFS did not require postsynaptic spikes, it was blocked by Na+-channel 

blockers suggesting that local active processes (e.g. dendritic spikes) may 

contribute to LTP induction without requirement of a somatic action potential 

(AP).  

We next examined the properties of spike timing-dependent plasticity (STDP) at 

CA3─CA3 synapses. Unexpectedly, low-frequency pairing of EPSPs and 

backpropagated action potentials (bAPs) induced LTP, independent of temporal 

order. The STDP curve was symmetric and broad, with a half-width of ~150 ms. 

Consistent with these specific STDP induction properties, post─presynaptic 

sequences led to supralinear summation of spine [Ca2+] transients. 

Furthermore, in autoassociative network models, storage and recall was 

substantially more robust with symmetric than with asymmetric STDP rules.  

In conclusion, we found associative forms of LTP at CA3─CA3 recurrent 

collateral synapses with distinct induction rules. LTP induced by HFS may be 

associated with dendritic spikes. In contrast, low frequency pairing of pre- and 

postsynaptic activity induced LTP only if EPSP─AP were temporally very close. 

Together, these induction mechanisms of synaptic plasticity may contribute to 

memory storage in the CA3─CA3 microcircuit at different ranges of activity. 
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1 Introduction 

1.1 Declarative memory and hippocampus 

Memory is a process in which information about an individual’s environment is 

encoded, stored and retrieved. Memory can be divided into procedural (implicit) 

and declarative (explicit) memories. Procedural memory builds up slowly, 

through repetition over many trials and does not depend directly on conscious 

processes. Examples of implicit memory include perceptual and motor skills 

and the learning of certain types of procedures and rules (Schacter et al., 

2010). Declarative memory on the other hand requires conscious recall e.g. 

memory of facts and verbal knowledge. It can be further divided into: episodic 

and semantic memory. Episodic memory is involved in storing specific personal 

experiences while semantic memory is associated with storage of factual infor-

mation (Tulving, 1972).  

Though nearly all brain regions play a pivotal role in some aspect of memory, 

the hippocampus and related areas are shown to be particularly important for 

declarative memory (Eichenbaum, 2001). The hippocampus is part of the limbic 

system located in the temporal lobe of each hemisphere. The first evidence of 

the role of the hippocampus on memory formation and storage came from the 

study on Henry Moliason, known as ‘Patient H.M.’, the most intensively studied 

subject in medical history (Squire, 2009). In their famous report, William B. 

Scoville and Brenda Milner (Scoville and Milner, 1957) describe the results of 

surgical removal of H.M.’s hippocampus in order to alleviate severe epileptic 

seizures. The consequence of this surgery was severe anterograde and partial 

retrograde amnesia. H.M. was unable to form new episodic memories (memo-

ries of events: a form of declarative memory). He could not remember the 

events that occurred just before his surgery leaving intact his childhood memo-

ries. It has also been reported that the hippocampus encodes spatial infor-

mation. Spatial memory is a part of declarative memory responsible for record-

ing information about one's environment and its spatial orientation (Milner et al., 

1998; O’Keefe and Dostrovsky, 1971; Squire, 2004). This form of memory 

https://en.wikipedia.org/wiki/Procedural_memory
https://en.wikipedia.org/wiki/Declarative_memory
https://en.wikipedia.org/wiki/Episodic_memory
https://en.wikipedia.org/wiki/Episodic_memory
https://en.wikipedia.org/wiki/Semantic_memory
https://en.wikipedia.org/wiki/Semantic_memory
http://en.wikipedia.org/wiki/William_Beecher_Scoville
http://en.wikipedia.org/wiki/William_Beecher_Scoville
http://en.wikipedia.org/wiki/Brenda_Milner
http://en.wikipedia.org/wiki/Epileptic_seizure
http://en.wikipedia.org/wiki/Epileptic_seizure
http://en.wikipedia.org/wiki/Anterograde_amnesia
http://en.wikipedia.org/wiki/Retrograde_amnesia
http://en.wikipedia.org/wiki/Episodic_memories
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helps an animal to navigate around a familiar environment. If neurons are the 

cellular substrate for the memory, cellular phenomena such as synaptic trans-

mission and plasticity may explain how memories can be stored and retrieved 

in the hippocampus. 

1.2 Hippocampal network 

The hippocampus is subdivided into three subregions; the CA3 region (CA for 

cornu ammonis), the CA1 region, and the dentate gyrus (DG; Lorente de Nó, 

1934).  

 

 

 

 

Figure 1: Schematic representations of the hippocampal excitatory pathways 

(a) Perforant Pathway (PP): Layer II of the entorhinal cortex (EC) projects their axons 
to granule cells in dentate gyrus (1) and CA3 in pyramidal cell layer (2). Layer III of EC 
projects to CA1 pyramidal neurons (4).  
(b) GCs send their axons (called “mossy fibers”) to CA3 (3).  
(c) CA3 pyramidal neurons send their axons to either other pyramidal neurons in CA3 
region (recurrent collaterals; RC) or to CA1 (Schaffer collaterals, SC). 
(d) Pyramidal cells of CA1 send their axons to the subiculum and deep layers of the 
EC (taken from Rolls and Treves, 1998) 

 

Each subregion consists of a population of principal neurons and numerous 

interneurons. The three subregions (GC→CA3→CA1) are connected in series 
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via excitatory synapses, forming the trisynaptic loop (Cajal, 1911; Andersen, 

1975).  

The entorhinal cortex projects to granule cells in the DG region and the axons 

of these cells further target the CA3 pyramidal neurons. The axons of the CA3 

pyramidal cells send their projections to the CA1 pyramidal neurons. CA1 

sends back the output of the hippocampal network to the cortex via subiculum 

(Amaral and Witter, 1995). 

1.2.1 Granule cells 

There are the approximately 106 granule cells in the DG region. A typical 

granule cell has an elliptical cell body packed together with a cone-shaped tree 

of spiny apical dendrites (Claiborne et al., 1990). The axons of granule cells, 

called mossy fibers (MFs) project to the CA3 pyramidal cell layer (Amaral et al., 

1990; Chicurel and Harris, 1992, Blackstad et al., 1970; Swanson et al., 1978; 

Claiborne et al., 1986). MF–CA3 excitatory synapses are unique due to several 

features: giant presynaptic terminals, multiple transmitter release sites, 

prominent paired-pulse facilitation (Henze et al., 2000; Bischofberger et al., 

2006) and presynaptic expression mechanisms of plasticity (Zalutsky and 

Nicoll, 1990; Kobayashi et al., 1996; Tzounopoulos et al., 1998).  

1.2.2 CA3 pyramidal neurons 

CA3 pyramidal neurons are embedded in a classical trisynaptic circuitry 

(Andersen et al., 1971). There are approximately 300,000 CA3 pyramidal 

neurons in the circuit. The main characteristic of these neurons is their complex 

dendritic structures called thorny excrescences (Witter 2007) and their burst 

firing properties (Masukawa et al., 1982).  

Pyramidal cells in the CA3 region are further divided into CA3a, CA3b and 

CA3c. CA3 pyramidal neurons send their input to pyramidal cells in the CA1 

region via Schaffer collaterals (Schaffer, 1892) and receive excitatory inputs 

from three different sources; (1) the MFs from granule cells, (2) the PP inputs 

from layer II of entorhinal cortex and (3) the recurrent collaterals of CA3 

pyramidal cells (CA3–CA3 recurrent synapses, Ishizuka et al., 1990).  
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Figure 2: Schematic CA3 morphology and synaptic inputs and outputs 

(a) Dendritic morphology of a CA3 pyramidal neuron. The major excitatory synaptic 
inputs to CA3 pyramidal neuron as well as are the major synaptic outputs. Bar 50 µm.  
(b) The presence of thorny excrescences (large spine clusters) on proximal apical 
dendrites of CA3 neurons in stratum lucidum (s.l.) as shown by the arrows. Bar 25 µm.  
(c) 3-D reconstruction of a large branched spine. The reconstructed thorn is light gray, 
and the PSDs are indicated in white. Bar 1 µm. (taken from Andersen et al., 2007). 

 

CA3–CA3 recurrent synapses are the most abundant excitatory synapses in 

the hippocampus (Frotscher et al., 1991; Li et al., 1994). CA3 neurons also 

send strong commissural projections to contralateral CA3 and CA1. The 

excitatory synapses on CA3 neurons are monosynaptically activated by 

recurrent collaterals (MacVicar and Dudek, 1980; Miles and Wong, 1983, 

1986). The commissural input also forms synapses with CA3 pyramidal cells, 

both in stratum radiatum and in stratum oriens (Andersen et al., 1969; 

Andersen, 1975). 

Several lines of evidence suggest that CA3–CA3 recurrent synapses are the 

main subcellular correlates of pattern completion. First, the CA3–CA3 synaptic 

system is the most extensive synaptic system in the entire brain (Li et al., 

(CA3─CA3) 

(CA3─CA3) 

(GC─CA3) 

(EC LII─CA3) 

(CA3─CA3) (CA3─CA1) 

a 

 

b 

c 
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1994), providing a large capacity network to store information. Second, CA3–

CA3 synapses show robust long-term plasticity, rendering them highly suitable 

for information storage (Zalutsky and Nicoll, 1990; Debanne et al., 1997; 

Montgomery et al., 2001). Third, selective genetic deletion of NMDA-type 

glutamate receptors in CA3 pyramidal neurons impairs pattern completion, 

presumably by abolishing plasticity at CA3–CA3 synapses (Nakazawa et al., 

2002). 

Finally, network models endowed with recurrent connectivity and Hebbian 

synaptic plasticity can reproduce storage, recall, and pattern completion (Marr, 

1971; McNaughton and Morris, 1987; Lisman, 1999; Gibson and Robinson, 

1992; Treves and Rolls, 1994; Bennett et al., 1994). 

1.2.3 CA1 pyramidal neurons 

CA1 pyramidal neurons are one of the most studied classes of neurons in the 

brain from both structural and functional points of view. The principle excitatory 

inputs arrive from the EC and CA3 pyramidal neurons. Schaffer collaterals 

(inputs from CA3 pyramidal neurons from both hemispheres) form synapses on 

the apical dendrites in stratum radiatum and on the basal dendrites in stratum 

oriens (Schaffer, 1892).  

Several studies using restricted knockouts and overexpression of the NMDAR 

and with regulated expression of calcium-calmodulin-dependent kinase II 

(CaMKII) at CA3─CA1 synapses have reported that molecular pathways 

important for LTP are also required for spatial information processing (Tang et 

al., 1999; Martin et al., 2000; Morris, 2006; Mayford et al., 1996). 

1.3 Activity-dependent synaptic plasticity 

An activity-dependent change in the strength of synapses is termed as synaptic 

plasticity. “When an axon of cell A is near enough to excite a cell B and 

repeatedly or persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A’s efficiency, as 

one of the cells firing B, is increased” (Hebb, 1949). The theory was proposed 

by Hebb in his famous book “The Organization of Behavior”. In short, 

http://en.wikipedia.org/wiki/The_Organization_of_Behavior
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simultaneous activity of two cells leads to an increase in their synaptic 

strengths. This forms the basis of “associative or Hebbian learning”. This theory 

challenged the general belief that synapses are merely a mode to transfer 

information between a pair of neurons or between a neuron and a muscle cell. 

It is now well established that the strength of most of the synapses can be 

changed or modified. 

There are two forms of synaptic plasticity depending on whether the strength of 

the synapses increases or decreases: (1) long-term potentiation (LTP) and 

(2) long-term depression (LTD; Bliss and Lømo, 1973; Levy and Steward, 1983; 

Siegelbaum and Kandel, 1991; Bliss and Collingridge, 1993; Nicoll and 

Malenka, 1995b).  

1.3.1 Long-term potentiation  

An activity-dependent persistent increase in the synaptic strength is called long-

term plasticity. LTP was first described in the rabbit hippocampus (Bliss and 

Lømo 1973). In this study presynaptic fibers of the perforant pathway were 

stimulated and responses were recorded from a group of postsynaptic cells in 

the area dentate gyrus as field excitatory postsynaptic potentials (fEPSPs). 

Following a high-frequency train of stimuli delivered to the presynaptic fibers, 

the fEPSP response of postsynaptic cells was enhanced for several hours. This 

phenomenon of long-lived enhancement in the synaptic strength of 

postsynaptic cells was termed as LTP. LTP has been observed in practically all 

brain areas including cerebral cortex, cerebellum and amygdala (Clugnet and 

LeDoux, 1990). 

A direct link between LTP and learning and memory has been shown in several 

studies. Blocking the activity of proteins involved in synaptic plasticity either 

pharmacologically or through gene knockout affected animals to perform 

certain behaviorally relevant tasks (Lynch, 2004; Martin et al., 2000; Morris, 

2006). 

http://en.wikipedia.org/wiki/Synaptic_strength
http://en.wikipedia.org/wiki/Synaptic_strength
http://en.wikipedia.org/wiki/Associative_learning
http://en.wikipedia.org/wiki/Hippocampus
http://www.ncbi.nlm.nih.gov/pubmed/4727084
http://www.ncbi.nlm.nih.gov/pubmed/4727084
http://en.wikipedia.org/wiki/Tetanic_stimulation
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Figure 3: Experimental demonstration of LTP  

(a) Schematic representation of the recording configuration. EPSPs were recorded 
from granule cells by performant path stimulation  
(b) An increase in synaptic strength of EPSPs following high-frequency stimulation 
(taken from Bliss and Lømo, 1973).  

 

Impaired spatial memory has been reported by infusing NMDAR antagonist into 

the hippocampus (Morris and Frey, 1997). Also, overexpression or lack of 

expression of specific subunits of NMDARs is shown to affect synaptic plasticity 

and thereby spatial memory (Tang et al., 1999). 

1.3.2 Long-term depression  

If potentiation would be the only process for the activity-dependent change in 

strength of synapses, synapses will reach their maximum efficiency at a certain 

time point. At this point the network would stop processing new information and 

therefore learning will be ceased. LTD is one of several mechanisms by which 

strength of synapses is weakened in order to avoid saturation of the network. 

LTD has been discovered in CA1 pyramidal neurons of the rat hippocampus 

(Dudek and Bear, 1992). The typical protocol for LTD induction consists of low 

frequency (0.5−5 Hz) stimulation for 900 repetitions or with a lesser number of 

repetitions if the postsynaptic neurons are held at a slightly depolarized 

membrane potential (Selig et al., 1995).  

b a 
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Figure 4: LTD induction by LFS 

Population EPSP evoked by stimulation of the Schaffer collaterals at 0.03 Hz. The 
horizontal bar represents the period of 1-Hz conditioning stimulation (taken from 
Dudek and Bear, 1992).  

 

Based on the mechanism, there are two different forms of LTD-(1) NMDAR-

dependent, e.g. LTD at CA3─CA1 synapses (Mulkey and Malenka, 1992), (2) 

metabotropic glutamate receptor (mGluR)-dependent, e.g. cerebellum and 

cortex (Bolshakov and Siegelbaum, 1994; Oliet et al., 1997; Otani and Connor, 

1998). Both mechanisms coexist in adults (Heynen et al., 1996; Oliet et al., 

1997; Otani and Connor, 1998). In young animals LTD is predominantly 

mGluR-dependent (Bolshakov and Siegelbaum, 1994; Normann et al., 2000).  

LTD has been shown to be important for encoding spatial information and thus 

is involved in formation of the spatial map (Kemp and Vaughan, 2007).  

1.3.3 Mechanism of LTP and LTD induction 

Synaptic plasticity at Schaffer collaterals synapses (CA3─CA1) is the most 

studied form of plasticity. LTP at CA1 pyramidal neurons requires NMDAR 

activation through postsynaptic depolarization (Bliss and Collingridge, 1993; 

Malenka and Nicoll, 1999). During basal synaptic transmission, i.e. at resting 

membrane potentials, synaptically released glutamate binds to both NMDARs 

and α-amino-5-hydroxy-3-methyl-4-isoxazole propionic acid receptors 
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(AMPARs). Ions flow through the AMPARs but not through the NMDARs 

because of the Mg2+ block.  

 

 

 

 

 

Figure 5: Model of synaptic transmission at excitatory synapses 

Basal synaptic transmission (left panel). Depolarization of the postsynaptic cell leads 
to NMDAR activation (right panel; taken from Citri and Malenka 2008). 

 

Depolarization of the postsynaptic cell as a result of activity of the post- and 

presynaptic neurons relieves the Mg2+ block. Subsequent activation of the 

NMDAR leads to an increase in Ca2+ concentration within the dendritic spine. 

This process could act as a trigger for induction of either LTP or LTD (Mulkey 

and Malenka, 1992). A moderate increase in Ca2+ leads to LTD (Cummings et 

al., 1996) whereas LTP occurs when the increase in Ca2+ crosses a certain 

threshold (Malenka and Nicoll, 1993).  

1.3.4 Signal transduction mechanism for LTP and LTD  

LTP has been shown to be prevented by blocking CaMKII (Malenka et al., 

1989; Malinow et al., 1989). More direct evidence came from a study in which a 

knockout mouse lacking alpha-CaMKII subunit (Silva et al., 1992) did not show 

Before LTP LTP induction 
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LTP. In another study, LTP was prevented in an animal with CaMKII lacking the 

autophosphorylation site (Giese et al., 1998).  

Some other kinases are also shown to be important for LTP such as cyclic 

adenosine monophosphate-dependent protein kinase (PKA; Blitzer et al., 1998, 

Lisman, 1989, Makhinson et al., 1999), extracellular signal-regulated kinase 

(Erk)/mitogen-activated protein kinase (MAPK) pathway (Sweatt, 2004; Thomas 

and Huganir, 2004), Src kinase (Kalia et al., 2004) and protein kinase C 

(Hrabetova and Sacktor, 1996; Ling et al., 2002, Pastalkova et al., 2006, 

Serrano et al., 2005). 

LTD, on the other hand, involves activation of a Ca2+-dependent protein 

phosphatase cascade. This cascade consists of the calcium / calmodulin-

dependent phosphatase calcineurin / protein phosphatase 2B, PP1, and a 

phosphoprotein termed inhibitor-1. Inhibitor-1 inhibits PP1 until it is 

dephosphorylated by calcineurin (Lisman, 1989). Accordingly, LTD is abolished 

by application of phosphatase inhibitors (Kirkwood and Bear, 1994, Mulkey et 

al., 1994, 1993). In another study intracellular application of PP1 enhances LTD 

(Morishita et al., 2001).  

1.3.5 Mechanism of LTP/LTD expression 

A persistent biochemical signal described in the previous section acts upon an 

effector, e.g. a glutamate receptor, resulting in the expression of plasticity. 

Change in neurotransmitter release would suggest a presynaptic expression 

mechanism. A postsynaptic mechanism could be explained through changes in 

AMPARs properties. An increase in the numbers of AMPARs within the 

postsynaptic density has been reported at hippocampal CA1 synapses. Thus, 

LTP expression at these synapses is postsynaptic and mediated by activity-

dependent changes in AMPAR trafficking (Bredt and Nicoll, 2003; Derkach et 

al., 2007; Malenka and Nicoll, 1999; Malinow and Malenka, 2002; Song and 

Huganir, 2002). It involves endocytosis of synaptic AMPARs (Bredt and Nicoll, 

2003; Collingridge et al., 2004; Derkach et al., 2007; Malenka and Bear, 2004; 

Malinow and Malenka, 2002). Dissociation of AMPARs from their anchors 

within the postsynaptic density (PSD) has been reported, followed by lateral 
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movement to the edge of the PSD. There they undergo clathrin- and dynamin-

dependent endocytosis (Ashby et al., 2004; Blanpied et al., 2002; Groc et al., 

2004). 

 

 

  

 

Figure 6: Model of AMPAR trafficking during LTP and LTD 

(a) In the basal state, receptors cycle between the postsynaptic membrane and 
intracellular compartments through lateral mobility of the receptors out of the synapse 
into endocytic zones. 
(b) Following induction of LTP, there is enhanced receptor exocytosis and stabilization 
at the synapse. This process is Ca2+-driven and involves CAMKII and fusion of 
recycling endosomes mediated by Rab11a. 
(c) Following the induction of LTD, enhanced endocytosis at extrasynaptic sites 
occurs. This process is also Ca2+-dependent but involves protein phosphatases, 
primarily calcineurin and protein phosphatases 1 (PP1; taken from Citri and Malenka, 
2008). 

 

A postsynaptic expression of LTP can also involve a phosphorylation-driven 

increase in the single-channel conductance of AMPARs (Benke et al., 1998, 

Soderling and Derkach, 2000). A presynaptic expression mechanism on the 

other hand requires a retrograde messenger (brain-derived neurotrophic factor; 

BDNF, nitric oxide; NO). These messengers might be released by postsynaptic 

cells and acts on presynaptic terminals (Nicoll, 2003).  

a 

b c 
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1.4 Spike timing-dependent plasticity (STDP) 

Change in the strength of synapses observed by pairing presynaptic spikes 

with postsynaptic APs is termed as spike timing-dependent plasticity (STDP). 

The relevance of spike timing may vary across synapses but there is a general 

consensus that STDP could be the primary mechanism for Hebbian learning in 

several regions of the brain (Hebb, 1949; Markram et al., 1997; Magee and 

Johnston, 1997; Bi and Poo, 1998; Zhang et al., 1998; Sjöström et al., 2001; 

Feldman, 2012). In early studies, STDP (also called Hebbian STDP) was 

mostly bidirectional and order dependent at many excitatory synapses 

(Markram et al., 1997; Magee et al., 1997; Bi and Poo, 1998). 

 

 

 

            

 

 

 

 

 

 
 
 
Figure 7: Spike timing-dependent plasticity  

(a) Induction of STDP by pairing EPSP with postsynaptic AP  
(b) Pre-before-post spiking drives LTP; while post-before-pre spiking drives LTD. Pre- 
or postsynaptic spikes alone do not alter synapse strength (Feldman 2000). 

 

A pre─postsynaptic sequence of activity within a narrow time window induces 

LTP whereas post─presynaptic sequence of activity induces LTD. In their 

independent findings, Markram et al., 1997 and Magee and Johnston, 1997 

showed the order dependence of synaptic plasticity. A synapse got potentiated 

if presynaptic stimulation occurred first whereas if postsynaptic AP was 

presented before presynaptic stimulation, it was depressed.  

   a b 
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Figure 8: Critical window for the induction of LTP and LTD 

Note the order dependence of STDP with a peak around 10 ms for LTP and a negative 

peak for LTD at –10 ms (taken from Bi and Poo, 1998). 

 

However, a full description of the STDP was first provided by Bi and Poo in 

their study on cultures of dissociated rat hippocampal neurons in 1998. (Bi and 

Poo, 1998) They showed that postsynaptic APs that peaked within a time 

window of 20 ms after synaptic activation resulted in LTP. LTD occurred when 

the activity was reversed (spiking within a time window of 20 ms before 

synaptic activation). A narrow transition zone of ~5 ms existed between the 

LTP and LTD windows. When the time interval (∆t) of pairing was increased on 

either sides of pairing, no potentiation / depression was observed.  

Many different forms of STDP time windows have been reported from various 

excitatory synapses across the brain (Feldman, 2012). In neocortex layer 5, 

layer 2/3 pyramidal neurons and hippocampal CA1 pyramidal neurons the 

STDP is balanced between LTP and LTD. 
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Figure 9: STDP exist in different forms  

(a) Hebbian STDP that is equally balanced between LTP and LTD. 1- Froemke et al., 
2005; 2- Fino et al., 2008. 
(b) Hebbian STDP that is biased toward LTD. 3- Celikel et al., 2004; 4- Froemke et al., 
2005. 
(c) Anti-Hebbian STDP that contains both LTP and LTD. 5- Fino et al., 2005;  
6- Letzkus et al., 2006. 
(d) Anti-Hebbian STDP that contains only LTD (anti-Hebbian LTD). 6- Han et al., 2000; 
7- Lu et al., 2007; 8- Safo and Regehr, 2008 (taken from Feldman 2012). 

 

STDP also varies by postsynaptic cell type in striatum (Fino et al., 2008, 2009). 

Neuromodulation and dendritic depolarization also play a key role in shaping 

the order / amplitude of synaptic plasticity. For instance, dopamine and 

inhibition affect the sign of STDP in hippocampal and striatal neurons (Fino et 

a b 

c d 
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al., 2005; Shen et al., 2008; Zhang et al., 2009). Manipulations which either 

depolarize the dendrites or make bAP more effective are able to change the 

direction of STDP from LTP to LTD or vice versa (Sjöstrom and Häusser, 2006; 

Letzkus et al., 2006; Zilberter et al., 2009).  

There are other factors which might influence STDP apart from spike timing. 

These factors include firing rate, synaptic cooperativity, and postsynaptic 

voltage (Markram et al., 1997; Sjöstrom et al., 2001).  

1.5 Aim of the study 

CA3 pyramidal neurons in the hippocampal network play a key role in spatial 

information processing and memory. These neurons are embedded in the clas-

sical trisynaptic circuitry (Andersen et al., 1971), but also give origin to commis-

sural / associational (C/A) synapses, the most abundant glutamatergic synap-

ses in the hippocampus (Li et al., 1994). Classical network models suggest a 

major role of these synapses in spatial learning (Marr, 1971). For example, 

synaptic plasticity at these synapses is believed to be of key importance for pat-

tern completion (Nakazawa et al., 2002). However, synaptic plasticity rules at 

these synapses have not been determined yet in acute hippocampal prepara-

tions. 

To clarify the role of CA3–CA3 cell synapses in learning and memory, we sys-

tematically analyzed synaptic plasticity at these synapses. We employed elec-

trophysiological recordings, single spine Ca2+ imaging and network simulations 

to answer the following questions: 

 
(1) Are these synapses plastic, i.e. whether an activity-dependent change in 

synaptic strength is possible? 

(2) If so, is plasticity associative and how is plasticity dependent on spike 

timing? 

(3) What are the mechanisms driving plasticity? 

(4) What is the functional relevance of plasticity at the network level? 
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2 Materials and methods 

2.1.1 Brain dissection and slice preparation 

Transverse hippocampal slices (thickness, 350 μm) were prepared from the 

brains of 21- to 24-day-old Wistar rats of either sex (Kim et al., 2012). Animals 

were lightly anesthetized using isofluorane (Forane®; Abbott) and sacrificed by 

rapid decapitation. Experiments were performed in strict accordance with 

institutional, national, and European guidelines for animal experimentation and 

were approved by the Bundesministerium für Wissenschaft, Forschung und 

Wirtschaft (A. Haslinger, Vienna). Slices were cut in ice-cold sucrose-containing 

physiological saline using a vibratome (VT1200, Leica Microsystems), 

incubated in a maintenance chamber filled with sucrose-saline at ~36°C for 

~45 min, and subsequently stored at room temperature. Slices were then 

individually transferred into a recording chamber perfused with standard 

physiological saline. Recordings were performed at room temperature (~22°C, 

range: 21–23°C) or near-physiological temperature (~33°C; range 32–34°C) as 

indicated. In the experiments at ~33°C, temperature was controlled using a 

water jacket or a temperature controller (Sigmann Elektronik, Hüffenhardt, 

Germany). Slices were used for maximally six hours after dissection.  

2.1.2 Electrophysiology 

Patch pipettes were pulled from thick-walled borosilicate glass tubing (outer 

diameter: 2 mm, inner diameter: 1 mm) using a horizontal pipette puller (P-97, 

Sutter Instruments). When filled with internal solution, the open-tip resistance 

was 4–6 M. All measurements were performed with an Axoclamp 700B 

amplifier (Molecular Devices). Signals were low-pass filtered at 5–10 kHz and 

digitized at a sampling rate of 20 kHz with a CED 1401 plus interface 

(Cambridge Electronic Design). Pulse protocols were generated using custom-

made data acquisition software (FPulse 3.33; U. Fröbe, Freiburg) running under 

Igor Pro 6.22 (WaveMetrics) and Signal 6 (Cambridge Electronic Design). 

Whole-cell patch-clamp recordings were made from the soma of visually 
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identified pyramidal neurons located in the stratum pyramidale of the CA3b 

subfield (Fig. 1a). Resting membrane potential was measured immediately after 

membrane rupture.  

EPSPs were recorded in the presence of 10 µM SR-95531 (gabazine). To 

stimulate input synapses, a borosilicate glass pipette (2–3 MΩ) filled with 1 M 

sodium chloride (NaCl) was placed in stratum oriens (~200 µm away from the 

soma of the recorded CA3 pyramidal cell). As axons of CA3 pyramidal neurons 

often traverse the pyramidal cell layer, this location will activate synapses on 

both apical and basal dendrites of target cells (Li et al., 1994; Ropireddy et al., 

2011), while avoiding stimulation of mossy fiber inputs. Axons were stimulated 

with brief voltage pulses (3–25 V amplitude, 100 µs duration) via a stimulus 

isolation unit at a basal frequency of 0.1–0.2 Hz. Stimulus intensity was chosen 

to give evoked EPSP amplitude of 1–5 mV, corresponding to ~2–10 unitary 

synaptic inputs (Guzman et al., 2014b).  

To verify the selective stimulation of CA3–CA3 recurrent synapses, the effect of 

bath application of DCG-4 (1 µM; an agonist of type II mGluRs) was tested at 

the end of the experiment in the majority of recordings. DCG-4 inhibits mossy 

fiber synaptic transmission substantially (Kamiya et al., 1996). Cells were 

excluded from further analysis if DCG-4 inhibited evoked EPSPs by >15%, 

which would indicate contamination by mossy fiber synapses.  

To confirm the identity of the recorded neurons, a subset of cells was filled with 

biocytin during recording and labeled using 3, 3’-diaminobenzidine (Kim et al., 

2012). All labeled neurons showed the typical morphology of CA3 pyramidal 

neurons, including a high density of spines on their dendritic branches.  

For EPSP recording, series resistance was fully compensated, and pipette 

capacitance was ~70% compensated. Both resting membrane potential and 

input resistance (Rin) of the recorded CA3 pyramidal neuron were monitored 

over time. Experiments were discarded if the resting membrane potential 

depolarized above –60 mV, Rin fell below 100 MΩ, or Rin changed by more than 

30% during the recording. Membrane potential values were specified without 

correction for liquid junction potentials. 
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2.1.3 Induction of synaptic plasticity 

LTP was induced with either pairing or HFS paradigms.  

(1) The HFS protocol consisted of 4 trains of 100 stimuli at 100 Hz delivered 

every 10 s. 

(2) The pairing protocol consisted of 300 repetitions of a single presynaptic 

stimulation paired with a postsynaptic AP at different time intervals at 1 Hz. APs 

were evoked by brief current injection (4 nA amplitude, 2 ms duration) to the 

soma.  

                                  

 

     Post─presynaptic sequence      Pre─postsynaptic sequence 

2.1.4 Single spine Ca2+ imaging 

Imaging of CA3 pyramidal neuron spines was performed using an upright 

microscope (DM 6000 FS, Leica Microsystems) equipped with a confocal laser 

scanhead (TCS SP5 II, Leica Microsystems) using either a 20x (NA = 1.0) or a 

63x (NA = 0.9) water immersion objective. Before imaging, neurons in the 

CA3b area were identified with Infrared-differential interference contrast (IR-

DIC) microscopy using a CCD camera (DFC365 FC, Leica Microsystems). CA3 

pyramidal neurons were loaded with 100 µM of the Ca2+ indicator dye Fluo-5F 

and 50 µM of the Ca2+-insensitive dye Alexa Fluor 594 (both Invitrogen) via the 

patch pipette (Oertner et al., 2002). To allow for a proper equilibration of the 

dyes, fluorescence signals were measured 40–50 min after break-in, and series 

resistance was kept below 25 MΩ. Excitation wavelength was 488 nm (argon 

laser) for Fluo-5F and 561 nm for Alexa Fluor 594 (diode pumped solid state 

laser). 

To detect spines that responded to the stimulation of the recurrent CA3 

recurrent synapses, we scanned an area of 11.5 x 11.5 µm with 10 frames (128 

x 128 pixels) acquired at a rate of 3.9 Hz while a stimulation electrode was 

placed in the vicinity of a dendrite (typically < 20 µm). Reactive spines were 

identified by an increase in the green fluorescence in the presence of a 

+10 ms pre 

post 

-10 ms pre 
post 
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modified Mg2+-free physiological saline. In total, ~5% of spines were reactive. 

For subsequent recording, standard physiological saline was used.  

For imaging, regions of interest were set to basal dendrites 50–200 µm from 

the soma. Line scans of spines, dendrites, or both were acquired every 400 Hz. 

Distance of reactive spines was measured as the shortest linear path along the 

dendrite from the scanning site to the tip of the somatic pipette. Fluorescent 

transients were recorded in response to extracellular synaptic stimulation or 

bAPs evoked by brief somatic current pulses (4 nA, 2 ms), both delivered every 

15 s. All recordings were made in the presence of 10 µM gabazine in the bath 

solution. Intracellular [Ca2+] transients were analyzed with custom-made 

routines implemented in Fiji (Schindelin et al., 2012) and were expressed as 

green over red ratio, ΔG(t)/R = (G(t) − G0)/R, where G(t) is the fluorescence 

time course in the green channel, Go is the mean basal fluorescence signal 

50 ms before stimulation, and R is the mean fluorescence signal of the red 

channel during the acquisition time (Oertner et al., 2002). No background 

subtraction was performed, but care was taken to avoid dye ejection from the 

patch pipette during cell approach and sealing procedure.  [Ca2+] transients 

shown in figures represent average fluorescence of 5–10 consecutive line 

scans including failure, unless noted differently.  

2.1.5 Solutions and chemicals 

Sucrose-based solution was used for dissection and storage of slices that con-

tained 87 / 64 mM NaCl, 25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 

7 mM MgCl2, 0.5 mM CaCl2, 25 mM glucose, and 75 / 120 mM sucrose. Phys-

iological saline for experiments (artificial cerebrospinal fluid, aCSF) contained 

125 mM NaCl, 25 mM NaHCO3, 2.5 mM KCl, 1.25 mM NaH2PO4, 1 mM MgCl2, 

2 mM CaCl2, and 25 mM glucose. Slices were superfused at a rate of 2.5–

5.0 ml min-1 (recording chamber volume ~2 ml). For current-clamp recording, 

intracellular solution was composed of 140 mM K-gluconate, 20 mM KCl, 

10 mM HEPES, 0.1 mM EGTA, 2 mM MgCl2, 4 mM Na2ATP, and 0.3 mM 

NaGTP, pH adjusted to 7.28 with KOH (~300 mOsm). For imaging, intracellular 

solution contained 135 mM K-gluconate, 20 mM KCl, 10 mM HEPES, 2 mM 

MgCl2, 4 mM Na2ATP, 0.3 mM NaGTP, 2 mM ascorbic acid, 50 µM Alexa Fluor 
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594, and 100 µM Fluo-5F, pH adjusted to 7.28 with KOH (~300 mOsm). In sub-

sets of experiments, 10 mM phosphocreatine was included (effect was unno-

ticeable).  

Extracellularly applied chemicals were kept in concentrated stock solution in 

ultrapure water at –20°C and dissolved in physiological saline immediately 

before the experiment. These included: D-AP5 (D-2-amino-5-phosphonovaleric 

acid), nimodipine (3-(2-methoxyethyl) 5-propan-2-yl 2,6-dimethyl-4-(3-

nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate), DCG-4 ((2S,2'R,3'R)-2-

(2',3'-dicarboxycyclopropyl)glycine), Tetrodotoxin (TTX) and SR-95531 (2-(3-

carboxypropyl)-3-amino-6-(4 methoxyphenyl) pyridazinium bromide; gabazine). 

Intracellularly applied EGTA (ethylene glycol-bis (2- aminoethylether)-

N,N,Nʹ,Nʹ-tetraacetic acid) and QX-314 (N-(2,6-dimethylphenyl- 

carbamoylmethyl) triethylammonium chloride) were directly added to the pipette 

solution and were allowed to diffuse into the recorded cell for ~20 min before 

the experiment was started.  

2.1.6 Data analysis 

Analysis of evoked EPSPs was performed with Stimfit (version 0.13 or 0.14; 

Guzman et al., 2014a) or equivalent custom-made routines written in C or 

Python 2.6 or 2.7. The rise time of the EPSPs was determined as the time 

interval between the points corresponding to 20 and 80% of the peak 

amplitude, respectively. The peak amplitude was determined as the mean or 

maximum within a window of 1 or 2 ms duration, respectively, following the 

stimulus. The synaptic latency was determined as the time interval between the 

center of the stimulus artifact and the onset of the subsequent EPSP; the onset 

point was determined from the intersection of a line through the 20 and 

80% points with the baseline. The decay phase of the EPSPs was fit with a 

monoexponential function using a nonlinear least-squares fit algorithm. To 

assure reliable quantification of LTP, only recordings with stationary baseline, 

as tested by a Spearman rank-correlation test (P > 0.05), were included. The 

magnitude of LTP was quantified by ratio between the mean EPSPs amplitude 
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20−30 min after the induction paradigm and the mean value in a 10-min time 

interval before induction.  

2.1.7 Storage and recall in autoassociative network models 

Simulations of pattern completion in autoassociative network models were performed 

following previous work (Supplementary Table 1). The network was implemented with 

a size of 3,000 neurons, connected by excitatory synapses with a probability of 0.5. For 

each storage cycle (e.g. a theta cycle of 200 ms duration), synaptic plasticity was 

implemented using different STDP rules based on piecewise exponential functions. In 

the symmetric rule (Fig. 4b, top), the potentiation function was y(∆t) = Exp[-Abs(∆t) / 

pot], where ∆t is the time difference between EPSP and AP, pot is the time constant, 

and Abs is the absolute value. pot was set to one time unit, corresponding to one 

storage cycle. In the asymmetric rule (Fig. 4b, bottom), the potentiation function was 

y(∆t) = Sign(∆t) x Exp[-Abs(∆t) / pot], where Sign is the signum function. Basal synaptic 

strength (j0) was assumed as 0. The total activity level a was set to 0.1. Activity in the 

network was assumed to show normally distributed spike times, with a standard 

deviation t of 0.2 time units, which would correspond to a 20%-fraction of a storage 

cycle. The lower and upper boundaries for synaptic efficacy were 0 and 1, respectively.    

Neuronal activity during progressive recall was simulated during 5–10 time steps. 

Excitatory synaptic potentials in the network were generated according to the function 

v(t, ) = Step(t - ) x Exp[-(t – )/ syn], where  is a delay determined by the spike time 

of the presynaptic neuron, and syn is the synaptic decay time constant (1 time unit, 

corresponding to one recall cycle, e.g. a theta, gamma, or ripple cycle), For each recall 

cycle, the total input to the ith neuron at time t was calculated as 

where W denotes the connectivity matrix, J represents 

synaptic potentiation matrix, Tj is the spike time of the jth presynaptic neuron in the 

previous recall cycle (–infinity for silent neurons), and n is the number of neurons. A 

neuron was assumed to fire action potentials in a given recall cycle if the condition 

was met, where S is the total activity in the network in the prior 

cycle, g0 is the firing threshold (set to 0), and g1 is the proportionality factor of inhibition 
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(varied between 0 and 1). The spike time was calculated by solving the equation 

. Retrieval was tested with incomplete random patterns, in which the 

proportion of valid firing neurons was 0.5 (i.e. b1 = 0.5), and the proportion of spuriously 

firing neurons was 0 (i.e. bn = 1). The overlap between original and recalled patterns 

was computed as the correlation coefficient between original and final activity vectors. 

The absolute capacity of the network was defined as the maximum of the product 

function of pattern correlation times pattern load. The capacity of the implemented 

3,000-neuron network was up to 100 patterns, but was substantially increased for real-

sized 330,000-neuron networks (P.J., unpublished observations). Simulations were 

implemented in Mathematica, Matlab, C, or C++, and run on PCs or a scientific 

computer cluster (Supermicro, San Jose, CA, USA) using GNU/Debian Linux (x86_64), 

a GNU C compiler (GCC, 4.9.2), and the GNU scientific library (GSL, 1.16). Computer 

code will be provided upon request.  

2.1.8 Statistics and conventions 

All values are given as mean ± SEM. Error bars in the figures also indicate 

SEM (shown only if larger than symbol size). Statistical significance was tested 

using a two-sided Wilcoxon signed rank test for paired data or a two-sided 

Wilcoxon rank sum test for unpaired data (Igor Pro 6.3.2). Differences with P < 

0.05 were considered significant. Throughout the figures, * indicates P < 0.05, 

** P < 0.01, and *** P < 0.001.  
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3 Results 

3.1 Characteristics of CA3-CA3 recurrent synapses  

CA3 pyramidal neurons were identified based on the following criteria, 

(a) location in the slice, (b) electrophysiological properties such as firing 

pattern, AP phenotype and input resistance (Rin), and (c) morphology, e.g. 

presence of thorny excrescences and characteristic axonal arborization in post 

hoc biocytin labeling of the CA3 pyramidal neuron (Fig. 10a, b). We next 

examined whether the kinetic properties of CA3–CA3 recurrent synapses are 

consistent with their proposed function in storage and recall and studied 

synaptic plasticity of these synapses in acute hippocampal slices from mature 

rats (21 -24 day old Wistar rats). 

 

 

 

Figure 10: Cellular identification of CA3 pyramidal neurons 

(a) IR-DIC image of the CA3b area of an acute slice preparation of the rat 
hippocampus. 
(b) Neurolucida reconstruction of a CA3 pyramidal neuron filled with biocytin. 
Recording and stimulation pipettes are indicated schematically. Blue, soma and 
dendrites; red, axon; sp, stratum pyramidale; so, stratum oriens. 
(c) Voltage response of a CA3 pyramidal neuron to a depolarizing (630 pA) and 
hyperpolarizing (-250 pA) current injection.  
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Figure 11: Properties of compound EPSPs at hippocampal CA3–CA3 synapses 

(a) EPSPs were isolated by extracellular stimulation of the recurrent collaterals in the 
presence of 10 µM gabazine. Single EPSPs traces are shown in gray and the average 
is shown in black. 
(b–e) Histograms of peak EPSP amplitude (b), latency (c), 20–80% rise time (d) and 
decay time constant of EPSPs (e, 17 cells). 
(f) EPSP traces in control (drug-free) conditions (black) and in the presence D-AP5 
(red) at –70 mV (top) and –20 mV. To prevent spiking at more depolarized holding 
potentials, 5 mM QX-314 was added to the pipette solution. A slower voltage 
component was blocked at depolarizing holding potential was abolished by D-AP5 
indicating a NMDAR component.  
(g) Plot of EPSP peak amplitude (left) and integral (right) against holding potential. 
Open symbols, data in control; filled symbols, data in the presence of 20 µM D-AP5. 
Red curves represent 5-th order polynomial functions fit to the data points.  
(h) Plot of compound EPSP peak amplitude against experimental time during 
application of 1 µM of DCG-4 (horizontal bar). Note that DCG-4 has no significant 
effects on basal synaptic response suggesting selective stimulation of CA3–CA3 cell 
synapses. Inset shows overlay of average EPSP traces in control conditions and in the 
presence of DCG-4 (black and gray, respectively).  

 

Recurrent collaterals were stimulated in the stratum oriens, while compound 

EPSPs were recorded in CA3 pyramidal neurons in the whole-cell current-

clamp recording configuration. Compound excitatory postsynaptic potentials 

(EPSPs) were isolated in presence of 10 µM gabazine (Fig. 11a). EPSPs 

a b c d 

f g h 

e 
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evoked by presynaptic axons stimulation showed an average peak amplitude of 

2.0 ± 0.3 mV, which suggests that compound synaptic signals were on average 

comprised of ~5 unitary synaptic events (Fig. 11b; Guzman et al., 2014b). An 

average latency of 2.9 ± 0.5 ms suggest that compound EPSPs were 

monosynaptic (Fig. 11c). The average 20 – 80% rise time of 5.0 ± 0.2 ms, and 

decay time constant of 107.0 ± 5.0 ms explains the distantly located synapses 

and summation of synaptic events respectively (Fig. 11d, e). These parameters 

are consistent with previously reported properties of CA3–CA3 EPSPs 

(Zalutsky and Nicoll, 1990).  

We then examined the contribution of NMDAR channels since they are involved 

in most forms of plasticity. We added D-AP5 (an antagonist of NMDARs; 

20 µM) to the bath solution and measured the difference in EPSP peak 

amplitude and its voltage-time integral before and during D-AP5. The 

postsynaptic neuron was loaded with QX-314 (5 mM) to block EPSP 

amplification by voltage-activated channels. Compound EPSPs were measured 

at different membrane potentials. At –70 mV, a difference between the EPSPs 

was not detectable (Fig. 11f, g) whereas at –20 mV, both peak amplitude and 

the voltage-time integral were substantially reduced. The component blocked 

by D-AP5 probably reflects the contribution of NMDA-type glutamate receptors.  

Further, we tested if the stimulation of C/A synapses was selective without any 

contamination from mossy fiber inputs to CA3. Bath application of 1 µM DCG-4 

(a group II mGluR agonist), which is expected to block contaminating mossy 

fiber inputs (Kamiya et al., 1996) has no significant effect on the compound 

EPSPs (Fig. 11h). Cells in which DCG-4 inhibited the compound EPSP 

amplitude by more than 15% were excluded from further analysis.  

3.2 Synaptic Plasticity by high-frequency stimulation 

To examine whether synaptic responses of CA3–CA3 recurrent collaterals are 

able to undergo plastic changes, we first tested a standard HFS induction 

protocol, a paradigm expected to maximally potentiate synapses (Zalutsky and 

Nicoll, 1990). Four trains of 100 presynaptic stimuli at 100 Hz for one second 

repeated every 10 seconds were applied to presynaptic axons. HFS resulted in 
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a marked long-lasting potentiation of EPSP peak amplitude (Fig. 12a, b). On 

average, the amount of potentiation 20−30 min after the induction protocol was 

201 ± 21% (range: 253 – -4 %; 12 cells, P<0.01; Fig. 12b).  

 

 

Figure 12: HFS induced LTP at CA3–CA3 recurrent synapses 

(a) Plot of compound EPSP peak amplitude against experimental time before and after 
application of HFS (arrow) in a single experiment. Inset shows the average of 60 
EPSP responses before (gray) and 30 min after HFS (black).  
(b) Plot of average compound EPSP peak amplitude against experimental time before 
and after application of HFS (arrow) in 12 experiments (P = 0.0002). EPSP amplitude 
was normalized to the control value before HFS (dashed line).  
(c) Bath application of 20 µM the NMDAR antagonist D-AP5 prevented the increase of 
EPSP amplitude after HFS, showing that HFS-induced LTP induction required the 
activation of NMDARs. Single representative experiment.  
(d) Summary bar graph showing the effect of extracellular D-AP (20 µM; 6 cells), 
intracellular EGTA (20 mM; 5 cells), and extracellular nimodipine (10 µM; 5 cells). Note 
that antagonists of NMDARs, Ca2+ chelators, and blockers of voltage-gated Ca2+ 
channels all inhibit HFS-induced LTP.  
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LTP induction by HFS is generally NMDAR-dependent (Bliss and Collingridge, 

1993; Malenka and Nicoll, 1999). NMDAR blocker D-AP5 (20 µM) completely 

abolished HFS-induced potentiation (99 ± 11%; 6 cells; P = 0.001; Fig. 12c, d) 

suggesting LTP to be NMDAR-dependent.  

It is well established that activation of NMDARs during LTP induction leads to 

an influx of Ca2+ within the dendritic spine, a chemical process critical to LTP 

induction (Lynch et al., 1983; Malenka et al., 1988, 1992). To test the Ca2+ 

dependence of LTP induction, the postsynaptic cell was dialyzed with slow Ca2+ 

chelator EGTA (Hoffman et al., 2002; Fig. 12d). 20 mM EGTA completely 

abolished HFS-induced LTP (102 ± 11%; 5 cells; P = 0.003). These results 

show that a rise in postsynaptic Ca2+ concentration is necessary for LTP 

induction. Furthermore, since EGTA has slow Ca2+-binding kinetics, the results 

indicate that Ca2+ source (i.e. NMDAR) and Ca2+ sensor are relatively far away.  

 

 

Figure 13: HFS induced LTP at near physiological temperature 

(a) EPSP peak amplitude against experimental time before and after application of 
HFS (arrow) in a single experiment at ~33°C. Inset shows the average of 60 EPSP 
responses before (gray) and 30 min after HFS (black).   
(b) Normalized EPSP peak amplitude against experimental time before and after 
application of HFS (arrow) in 12 experiments (P = 0.002).  

 

It has been shown at Schaffer collateral (CA3)–CA1 synapses that LTP 

induction requires Ca2+ influx through either NMDARs or postsynaptic voltage 

gated Ca2+ channels (Grover and Teyler, 1990). To test whether LTP induction 
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at CA3–CA3 synapses also requires two independent Ca2+ sources, we 

examined the effect of L-type Ca2+ channel blocker on the potentiation. In the 

presence of 10 µM nimodipine, the extent of potentiation was 82 ± 8% (5 cells; 

P = 0.0007; Fig. 12d) suggesting a role of L-type Ca2+ channels in the LTP 

induction. 

The enzymatic machinery responsible for potentiation may function differently 

at physiological temperature. We tested whether LTP can be induced at near 

physiological temperature (~33° C). The magnitude of potentiation was 240 ± 

21% (6 cells, P=0.002; Fig.13). 

In summary HFS induces robust potentiation at CA3–CA3 recurrent synapses 

which requires influx of Ca2+ through at least two sources NMDARs and L-type 

Ca2+ channels (Table 1). 

3.3 Role of Na+ channels for HFS induced LTP 

We next examined whether postsynaptic spiking is necessary for induction of 

LTP by HFS. We divided our HFS data into two subsets. In the first subset we 

had cells where we observed postsynaptic spiking during HFS. No postsynaptic 

spiking was observed during HFS in the second subset (Fig. 14a).  

 

 

Figure 14: Axosomatic spikes are not required for HFS induced LTP  

(a) Voltage deflection during HFS. Note on the left HFS without any axosomatic 
spikes.  
(b) Summary bar graph shows LTP amplitude in both the conditions (HFS without 
spikes and HFS with spikes).  



43 

 

 

We analyzed the magnitude of potentiation between these two subsets. 

Interestingly, the extent of LTP was 200.0 ± 39.8 % in the first subset (HFS with 

postsynaptic spiking) and 201.6 ± 26 % in the second subset (HFS without 

postsynaptic spiking). There was no significant difference between the two 

groups (5 and 7 cells, respectively, P = 0.64; Fig. 14b). Thus, the induction of 

LTP by HFS at CA3–CA3 recurrent synapses did not require axosomatic 

spiking in the postsynaptic cell. An alternative to the axosomatic spike would be 

local dendritic spikes which might play a role in induction of LTP (Kim et al., 

2015).  

 

 

 
Figure 15: HFS- induced LTP at CA3–CA3 synapses requires Na+ channels 

 (a) Schematic of recording configuration where postsynaptic cell was dialyzed with 
QX-314 (10 mM) intracellularly. Plot of average compound EPSP peak amplitude 
against experimental time before and after HFS in the presence of intracellular QX-314 
(6 cells; P = 0.008). Intracellular application of QX-314 completely abolishes LTP. 
(c) Bath application of TTX (20 nM) also blocked LTP induction by HFS. Red line at the 
bottom shows the application of TTX (20 nM; 5 cells; P = 0.002). 
(d) Summary bar graph showing the effect of intracellular QX-314 (10 mM; 6 cells, P = 
0.008) and bath application of TTX (20 nM; 5 cells, P = 0.002) against control 
experiments. Both Na+ channel blockers completely abolish LTP suggesting that local 
active processes (e.g. dendritic Na+ spikes) may contribute to potentiation. 

 

These results appear to be consistent with the hypothesis that dendritic spikes, 

which occur prominently in the apical dendrites of CA3 pyramidal neurons (Kim 

et al., 2012), play an important role in LTP following the HFS induction protocol. 

To test the hypothesis that passive synaptic depolarization is enough for LTP 

a b c 
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induction, we employed different Na+ channel blockers (QX-314 and low 

concentration of TTX). We dialyzed the postsynaptic cell with 10 mM QX-314 

and applied the HFS for LTP induction. Significant reduction in magnitude of 

LTP from 201 ± 21 % under drug-free conditions to 98 ± 12 % was observed 

(6 cells; P = 0.008; Figure 15 a, c). In another set of experiments, bath 

application of low concentration of TTX (20 nM), which otherwise has no 

presynaptic effect; Kim et al., 2015), also abolished LTP induction by HFS (98 ± 

16 %; 5 cells; P = 0.002; Figure 15 b, c).  

These results indicate the role of Na+ channels in the induction of LTP. 

Therefore, we can conclude that in the absence of axosomatic spikes, dendritic 

spikes may contribute to the depolarization needed for Ca2+ entry through 

NMDARs. 

HFS is the most conventional protocol to induce LTP. However, it does not 

explain the temporal correlation between EPSP and postsynaptic AP. 

Postsynaptic AP propagates back very effectively into the dendritic tree in CA3 

pyramidal neurons (Kim et al., 2012) and thus would act as an associative 

signal for LTP induction (Stuart and Sakmann, 1994). An associative protocol, 

e.g. pairing presynaptic stimulation/spikes with postsynaptic AP/APs at low 

frequency, may provide the critical requirement of temporal correlation between 

presynaptic and postsynaptic activity (Markram et al., 1997; Magee and 

Johnston, 1997; Bi and Poo, 1998; Zhang et al., 1998; Sjöström et al., 2001; 

Feldman, 2012). Therefore, we studied the spike timing-dependent plasticity by 

pairing single EPSP with a postsynaptic AP. 

3.4 Spike timing-dependent plasticity rule at CA3–CA3 synapses 

Timing of spikes to synaptic input has a strong effect on synaptic strength 

(Magee and Johnston, 1997; Markram et al. 1997; Bi and Poo, 1998). In 

Hebbian STDP the order and time interval between presynaptic activity (EPSPs 

/ APs) and postsynaptic spikes determine the sign and magnitude of plasticity. 

A pre─postsynaptic sequence of activity leads to LTP whereas a 

post─presynaptic sequence results in LTD. Although STDP has been 

demonstrated in CA3 neurons in organotypic slice culture (Debanne et al., 
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1997; Montgomery et al., 2001), its properties in acute hippocampal 

preparations have remained unclear.  

 

Figure 16: STDP induction rules at CA3–CA3 recurrent synapses 

(a, b) Plot of compound EPSP peak amplitude against experimental time before and 
after pre–postsynaptic pairing (∆t=+10 ms). Single-cell data (a) and mean data (b; 9 
cells; P = 0.004). 
(c, d) Similar plot as in (a, b), but for post–presynaptic pairing (with ∆t=–10 ms). Single-
cell data (c) and mean data (d; 15 cells; P = 0.0004). Insets in a and c show the 
average of 60 evoked EPSPs before (black) and 20–30 min after induction (gray). In b 
and d, EPSP amplitude was normalized to the control value before LTP induction 
(dashed line). Gray vertical bars indicate the time intervals in which the induction 
paradigms were applied.  

 

Therefore, we tested the effects of a pairing paradigm, in which presynaptic 

stimulation (EPSP) and postsynaptic AP were paired at different time intervals 

(Fig. 16 and 17). We first tested the effects of a pairing paradigm in which 

single EPSP was followed by a postsynaptic current pulse at a 10-ms interval 

(i.e. a pre–postsynaptic sequence). This pairing protocol, repeated 300 times at 

a frequency of 1 Hz, induced a robust LTP (178.0 ± 22.1%, 9 cells; P = 0.004; 
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Fig. 16a, b; Table 1). LTP was associative, since neither EPSPs nor 

postsynaptic APs induced LTP when presented in isolation (isolated 

presynaptic stimulation: 107.9 ± 5.6%, 5 cells, P = 0.19; isolated postsynaptic 

stimulation: 92.9 ± 7.9%; 5 cells, P = 0.44; Fig. 18). Thus, CA3–CA3 recurrent 

synapses exhibited an associative form of LTP, with an extent of potentiation 

comparable to that of HFS induced LTP.  

 

 

 
 

Figure 17: STDP magnitude for different EPSP–AP time intervals (∆t) 

(a) Representative average traces (gray, before induction; black, 20–30 min after 
induction),  
(b) Plot of LTP magnitude (expressed as % increase over baseline) against ∆t.  
Red curve, Gaussian function fit to the data points. Note that the STDP window was 
broad and largely symmetric.  
Thus, timing of pre- and postsynaptic activity, but not its temporal order, determines 
the magnitude of STDP at CA3–CA3 synapses.  

 

Next, we tested pairing protocols with an inverse (i.e. post–presynaptic) 

sequence stimulation where postsynaptic AP was followed by EPSP at 10 ms 

time interval (Fig. 16c). Such a pairing protocol led to an increase of EPSP 

amplitude, to 148.0 ± 12.0% of the control value (15 cells; P = 0.0004; Fig. 16c, 

d).  

Since the order of pairing (pre─postsynaptic or post─presynaptic) at close time 

interval (10 ms) does not have any effect on the sign of plasticity and always 

led to LTP, we tested pairing protocols with different time intervals between pre- 

and postsynaptic stimulation (Fig. 17a, b). Plotting the magnitude of LTP 

a b 

∆t (ms, post–pre) 
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against pairing time interval ∆t revealed that the STDP induction curve was 

nearly symmetric and broad, with a maximum near ∆t = 0 and a half-duration of 

147 ms (Fig. 17b). Similar results were obtained at near-physiological 

temperature (~33°C); the maximal amount of LTP and the shape of the curve 

were comparable with only minimal variation in the half-width (133 ms; Fig. 20).  

 

 

 

Figure 18: Pairing-induced LTP at CA3–CA3 synapses is associative 

(a, b) Plot of average compound EPSP peak amplitude against experimental time 
before and after application of isolated presynaptic stimulation. Data from a single 
representative experiment (a) and mean from 5 experiments (b; P = 0.19).  
(c, d) Similar plot, before and after isolated postsynaptic stimulation. Data from a single 
representative experiment (c) and mean from 5 experiments (d; P = 0.44).  
Insets in a and c show the average of 60 evoked EPSPs before (gray) and 30 min after 
paradigm application (black). Gray vertical bars indicate the time intervals in which the 
induction paradigms were applied.  

a b 

d c 
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3.5 Mechanism of spike timing-dependent LTP at CA3–CA3 synapses 

Next, we compared the mechanisms of spike timing-dependent LTP induced by 

pre–postsynaptic versus post–presynaptic sequences. Pairing-induced LTP 

was abolished by bath-application of 20 µM D-AP5 (101.2 ± 5.2%, 7 cells; P = 

0.034; Fig. 19a for pre–postsynaptic sequence and (100.5 ± 4.2%, 6 cells, P = 

0.006, Fig. 19b for the post– presynaptic sequence). Thus, NMDAR activation 

was necessary for LTP induction.  

 

 

 

Figure 19: Pharmacology of STDP at CA3–CA3 synapses 

(a, b) Summary bar graph showing the effects of 20 µM extracellular D-AP5, 20 mM 
intracellular EGTA (8 and 5 cells), and 10 µM extracellular nimodipine (5 and 5 cells, 
respectively) on pairing-induced LTP for pre–postsynaptic (a) and post–presynaptic 
sequences (b) Circles represent data from individual cells, bars indicate mean ± 
S.E.M. LTP with both pairing paradigms was largely abolished by all manipulations, 
demonstrating that multiple Ca2+ sources are necessary for LTP induction.  

 
 

Furthermore, pairing-induced LTP was abolished by dialyzing postsynaptic cell 

with 20 mM Ca2+ chelator EGTA (101.8 ± 7.2%, 8 cells; P = 0.007; Fig. 19a for 

the pre–postsynaptic sequence and 103.0 ± 21.0%, 5 cells, P = 0.018, Fig. 19b 

for the post–presynaptic sequence). Thus, a rise in postsynaptic Ca2+ 

concentration was necessary for LTP induction.  
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Figure 20: STDP in CA3–CA3 synapses at near-physiological temperature 

Plot of STDP magnitude (expressed as % increase over baseline) against time interval 
of pairing between EPSP and AP (∆t) at near-physiological temperature (~33°C). Red 
curve, Gaussian function fit to the data points. Note that the STDP curve was broad 
and symmetric, similar to the STDP curve at room temperature (Fig. 17b). 

 

Finally, similar to HFS induced potentiation, pairing-induced LTP was also 

inhibited by bath application of 10 µM nimodipine (91.1 ± 6.0%, 5 cells; P = 

0.011; Figure 19a for the pre–postsynaptic sequence and 105.0 ± 6.1%, 5 cells, 

P = 0.019, Figure 19b for the post–presynaptic sequence). Thus, an elevation 

of postsynaptic Ca2+ through activation of either NMDARs or L-type Ca2+ 

channels was necessary for LTP induction by both pre–postsynaptic and post–

presynaptic pairing (Table 1). 

In conclusion, CA3–CA3 recurrent synapses exhibited robust spike timing-

dependent potentiation, the magnitude of which varies strongly with the pairing 

time interval. Thus, the STDP induction rule at CA3–CA3 recurrent synapses 

was unique, differing from previously reported STDP rules for glutamatergic 

synapses in a variety of circuits (Feldman, 2012).  

3.6 Potentiation at single synapses 

An increase in postsynaptic Ca2+ concentration is required for LTP of 

glutamatergic synapses (Bliss and Collingridge, 1993). This increase in Ca2+ 

concentration may be restricted to a single spine (Denk et al., 1995; Yuste and 

Denk, 1995). Since we know from our electrophysiology data that spike timing-

∆t (ms, post–pre) 
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dependent LTP at CA3–CA3 recurrent synapses depended on an increase in 

postsynaptic Ca2+ presumably in dendritic spines (Koester and Sakmann, 1998; 

Nevian and Sakmann, 2006), we measured [Ca2+] dynamics at a single spine. 

We employed confocal microscopy to measure summation of [Ca2+] transients 

on pairing time intervals of EPSP and AP in single spines of CA3 pyramidal 

neurons (Fig. 21, 22, 23). 

3.6.1 Properties of spine [Ca2+] transients 

Reactive dendritic spines were located 50–200 µm from the soma. [Ca2+] 

transients were evoked either by EPSPs following stimulation of nearby CA3 

cell axons, or by bAPs following somatic current pulses (Fig. 21a, b). We first 

examined the pharmacological properties of [Ca2+] transients. High-frequency 

AP waveform (5 APs at 100 Hz) revealed that the Ca2+ indicator Fluo-5F was 

not saturated under our experimental conditions (Fig. 22a). Synaptic stimulation 

and bAPs evoked [Ca2+] transients with comparable amplitude, but different 

spatial profiles (Fig. 21b). [Ca2+] transients evoked by synaptic stimulation were 

larger in the spine than in the adjacent shaft, whereas transients evoked by 

bAPs showed similar amplitudes in the two locations (Fig. 21b). [Ca2+] 

transients evoked by synaptic stimulation were enhanced by removal of Mg2+ 

from the bath solution and blocked by 20 µM CNQX and 20 µM D-AP5, 

suggesting a contribution of NMDA-type glutamate receptors (Fig. 22c, d). 

[Ca2+] transients evoked by bAPs were completely blocked by 200 µM Cd2+ or 

10 µM nimodipine, indicating that they were generated by Ca2+ inflow through 

voltage-gated Ca2+ channels (Fig. 22b).  

We next examined the effect of the pairing protocol that induced spike timing-

dependent LTP on single spine [Ca2+] transients. Pairing of EPSPs and bAPs 

with short time intervals (∆t either +10 ms or –10 ms) substantially enhanced 

the amplitude of the [Ca2+] transients (Fig. 23a). Using the peak amplitude for 

quantification, [Ca2+] transients evoked by pre–postsynaptic sequences (i.e. ∆t 

= +10 ms) were 2.96 ± 0.87-fold larger than those by EPSPs alone (Fig. 23b).  
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Figure 21: EPSP- and AP-induced [Ca2+] transients in spines of CA3 neurons 

(a) Fluorescence image of a CA3 pyramidal neuron loaded with Fluo-5F and Alexa 
Fluor 594 (maximum projection of stack of 48 1-µm confocal sections; excitation 
wavelength 594 nm). The region indicated by the box is shown on an expanded scale 
in inset.  
(b) Spine [Ca2+] transients evoked by synaptic stimulation and bAPs. Top, schematic 
illustration of the line scan configuration (dotted line, 400 Hz). Center, [Ca2+] transient 
during a synaptically evoked EPSP. Bottom, [Ca2+] transient during a bAP.  
In each panel, upper graph represents membrane potential trace, middle shows G 
fluorescence signal against distance (vertical axis) and time (horizontal axis), and 
bottom indicates ∆G / R versus time in the dendrite (black) and the spine (red).  

 

Similarly, [Ca2+] transients evoked by post–presynaptic sequences (i.e. ∆t = –

10 ms) were 2.80 ± 0.86-fold larger than those by isolated EPSPs (6 cells; Fig. 

23b). Similar results were obtained using the area under the [Ca2+] transients 

for quantification (Fig. 23c). [Ca2+] transients evoked by combined stimulation 

were significantly larger than the arithmetic sum of [Ca2+] transients evoked by 

APs or EPSPs in isolation. On average, the degree of nonlinearity was 131.1 ± 

6.0% for ∆t = +10 ms and 132.9 ± 4.3% for ∆t = –10 ms (P = 0.002 in both 

cases; Fig. 23d).  

 

a b 
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Figure 22: Pharmacological properties of spine and dendritic [Ca2+] transients 

(a) Dendritic [Ca2+] transients evoked by a single AP and a 100-Hz train of APs. Left, 
Average [Ca2+] transients. Right, summary bar graph of normalized peak amplitudes.  
(b) Dendritic [Ca2+] transients evoked by backpropagated APs are blocked by 200 µM 
Cd2+ (left) or 10 µM of the L-type Ca2+ channel blocker nimodipine (right). Black traces, 
control; red traces, in the presence of blocker.  
(c) Spine [Ca2+] transients evoked by synaptic stimulation are increased in Mg2+-free 
extracellular solution. Left, [Ca2+] transients in standard ACSF; right, [Ca2+] transients 
in Mg2+-free solution. Right, summary bar graph of normalized [Ca2+] transient integrals 
in the two conditions.  
(d) Spine [Ca2+] transients evoked by synaptic stimulation are blocked by 20 µM CNQX 
+ 20 µM D-AP5. Black traces, control; red trace, in the presence of blockers.  

 

Thus, pairing of EPSPs and APs led to a supralinear response in the spine 

[Ca2+] transients, explaining the associative nature of STDP (Fig. 16). 

We next measured the amount of summation at different pairing time intervals 

between EPSP and postsynaptic AP (Fig. 24a). The amplitude of the spine 

[Ca2+] transients were smaller at longer time intervals, which explains the lack 

of potentiation found in our electrophysiology data. A plot of spine [Ca2+] 

transient against pairing time interval ∆t revealed a symmetric and broad 

summation curve (Fig. 24a). The half-duration of the summation curve was 

81 ms, comparable to the STDP induction curve (Fig. 17b). 
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Figure 23: Summation of EPSP- and AP-induced [Ca2+] transients in CA3 spines 

(a) [Ca2+] transients during EPSPs (black traces), pre–postsynaptic pairing (∆t = 
+10 ms; red trace, top), and post–presynaptic pairing (∆t = –10 ms; red trace, bottom). 
Note that pairing markedly increased the peak amplitude of the [Ca2+] transient in 
comparison to isolated EPSPs.  
(b, c) Summary of the amplitude (b) and integral (c) of [Ca2+] transients evoked by 
single EPSPs, single APs, pre–postsynaptic pairing (∆t = +10 ms), and post–
presynaptic pairing (∆t = –10 ms). Data were normalized to the EPSP value. Circles 
represent data from individual cells, bars indicate mean ± S.E.M.  
(d) Summary of integral values, normalized to the arithmetic sum of EPSP and AP 
values. Note supralinearity of summation.  

 

 
Figure 24: Time-dependence of summation of [Ca2+] transients in CA3 spines 

(a) Peak amplitude of [Ca2+] transients during combined pre–postsynaptic or post–
presynaptic stimulation, normalized to that of isolated EPSPs, plotted against pairing 
time interval ∆t. Red curve, Gaussian function fit to the data points. Note that the [Ca2+] 
transient amplitude versus pairing interval curve was broad and symmetric, similar to 
the STDP curve.  
(b) Plot of change in EPSP amplitude against change of [Ca2+] transients during 
different pairing sequences. Numbers near symbols represent the values of ∆t 
between AP and EPSP (red, in ms). EPSP potentiation data were taken from Fig. 17.  

∆t (ms, post–pre) 
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To further quantify the relation between the peak amplitude of [Ca2+] transients 

and the extent of potentiation, we plotted the two parameters against each 

other for all ∆t values and fit the data with a power function (Fig. 24b). This 

analysis revealed a monotonically rising relation between potentiation and 

[Ca2+] transients, irrespective of the order of APs and EPSPs.  

Thus, temporally symmetric summation of the [Ca2+] transients in dendritic 

spines appears to be the mechanism underlying the temporal symmetry of 

STDP induction in CA3–CA3 recurrent synapses. 

3.7 A CA3 network model with a symmetrical STDP rule 

What are the implications of noncanonical STDP induction rules for the memory 

function of the CA3 network? To address this question, we simulated storage 

and recall in a network model of pattern completion (Fig. 25 and 26) based on 

previous models (Marr, 1971; Hopfield, 1982; Gibson and Robinson, 1992; 

Bennett et al., 1994; Fig. 25a), but additionally incorporated the time 

dependence of both spiking and plasticity. 3000 neurons were connected by 

excitatory synapses. Excitatory synapses were endowed with either symmetric 

(this study) or asymmetric plasticity rules (Bi and Poo, 1998; Fig. 25b). In the 

storage phase, a defined test pattern with temporal spread of activity was 

applied to the first 300 cells (corresponding to an activity of 0.1). Subsequently, 

several additional random patterns were applied, leading to potentiation of 

synapses in the synaptic matrix (Fig. 25c). In the recall phase, an incomplete 

test pattern was applied (Fig. 25d). For perfect recall, the original test pattern 

(i.e. the first 300 cells) should be selectively reactivated after a number of recall 

cycles. By contrast, for impaired recall, the number of valid firings would be 

reduced, while the number of spurious firings is expected to increase. Finally, 

we quantified the quality of recall as the correlation between original patterns 

and retrieved patterns, and capacity of the network as the maximal number of 

patterns that could be loaded without recall impairment (Methods; Table 2).    

When our new plasticity rule was implemented, the recall of the original 

patterns was robust, and the capacity of the network was 58.1 patterns (Fig. 

26a). In contrast, when an asymmetric LTP induction rule (Bi and Poo, 1998) 
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was incorporated, the recall of the pattern was markedly impaired (capacity 4.5 

patterns; Fig. 26b).  

 

 

  

Figure 25: An autoassociative network model of pattern completion 

(a) Schematic illustration of network topology. The model is composed of several 
principal neurons (large filled circles) and a single inhibitory interneuron (large filled 
triangle). Principal cells are interconnected by excitatory synapses (potentiated, small 
open circles; unpotentiated, small crosses). In the schematic shown, there are six 
pyramidal cells; the real model was composed of 3,000 pyramidal neurons. The mixture 
of potentiated and unpotentiated synapses in the matrix was generated by prior 
application of three binary activity patterns (001011, 101010, and 000111). Modified 
from McNaughton and Morris, 1987.  

(b) Plasticity rules. Top, symmetric plasticity rule, as supported by the present results 
for CA3–CA3 synapses. Bottom, asymmetric plasticity rule, as reported in other studies 

(Bi and Poo, 1998; Magee and Johnston, 1997; Markram et al., 1997). ∆t was given in 
normalized units, which could correspond to one theta oscillation cycle (~200 ms). For 
details, see Methods.  

(c) Storage of patterns in the synaptic matrix. Synaptic strength was represented as 
temperature map (red, maximal potentiation; blue, unpotentiated). A single test pattern 
in the first 300 neurons and 10 additional patterns in randomly selected neurons were 
applied during storage, with randomized spike time in both cases. Ordinate is index of 
presynaptic neuron; abscissa is index of postsynaptic neuron. Insets (right) show 
expanded views of the matrix for first 600 cells. Note that the symmetric plasticity rule 
(top) induces a higher average potentiation than the asymmetric rule (bottom).  

(d) Recall of patterns in the network model. Recall was triggered by the partial test 
pattern (50% valid firings, no spurious firings in comparison to the original pattern) with 
randomized spike timing. With the symmetric plasticity rule (top; g1 = 0.3), the original 
pattern was perfectly retrieved after three recall cycles. In contrast, with the asymmetric 
plasticity rule (bottom; g1 = 0.1), retrieval was only partial, with a decrease in the 
number of valid firings and an increase in the number of spurious firings. 
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Figure 26: Robust recall of original patterns with asymmetric STDP rule 

(a, b) Top, differential dependence of activity correlation (left) and spike-time correlation 
for active cells (right) for symmetric and asymmetric STDP rules on recall cycle number. 
Lines with different colors represent the pattern correlation trajectories for 10 patterns. 
For the symmetric STDP rule, activity correlation increases, whereas spike-time 
correlation is eliminated. For the asymmetric STDP rule, activity correlation declines, 
whereas spike-time correlation becomes inverted. Bottom, 3D-plot of activity correlation 
at the 5th recall cycle versus pattern load m and the proportionality factor g1 of inhibition 
for the symmetric (a) and the asymmetric (b) plasticity rule. For the symmetric plasticity 
rule, the capacity was 58.1, whereas for the asymmetric rule it was only 4.5.  

 

Thus, in our model, the symmetric STDP induction rule facilitated the storage 

and recall of information by incomplete input, conveying the ability of pattern 

completion. Remarkably, the symmetric STDP rule led to only minimal temporal 

correlation between spike times in the original patterns and the retrieved 

patterns, because synchronization of activity emerged during the recall 

phase(Fig. 26a, top right). In contrast, the asymmetric STDP rule generated a 

significant negative temporal correlation between original and retrieved patterns 

after the first five recall cycles (Fig. 26b, top right). Thus, the symmetric STDP 

rule is advantageous for pattern completion, whereas asymmetric rules may be 

superior for the storage and recall of temporal AP sequences, e.g. during 

spatial learning (Abbott and Blum, 1996). 
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Table 1: Synaptic plasticity at CA3–CA3 recurrent synapses 

Basic properties of compound EPSPs at hippocampal CA3–CA3 cell 

synapses 

 Property (n = 17)  Value 

 Peak EPSP (mV)  2.0 ± 0.3 

 Latency (ms)  2.9 ± 0.5 

 20–80% rise time (ms)  5.0 ± 0.2 

 Decay time constant (ms)   107.0 ± 5.0 

 

LTP induced by high-frequency stimulation (HFS)1  

Condition 
Value (% 

of 
baseline) 

Number 
of cells 

P 

HFS control  200 ± 21 12 0.0002 

HFS + D-AP5 (20 
µM, bath 
application) 

98 ± 11 6 0.01 

HFS + EGTA (20 
mM, intracellular) 

102 ± 11 5 0.003 

HFS + nimodipine 
(10 µM, bath 
application) 

82 ± 8  5 0.0007 

HFS + QX-314 
(10 mM, 
intracellular) 

99 ± 11 6 0.008 

HFS + TTX 
(20 nM, bath 
application) 

98 ± 16 5 0.002 

 

LTP induced by pairing of pre- and postsynaptic activity2 

Condition 
Value (% 

of 
baseline) 

Number 
of cells 

P 

STDP (+10 ms) 
control  

178 ± 22 9 0.004 

STDP (+10 ms) D- 101 ± 5. 7 0.01 
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AP5 (20 µM, bath 
application) 

STDP (+10 ms) 
EGTA (20 mM, 
intracellular) 

102 ± 7 8 0.007 

STDP (+10 ms) 
nimodipine (10 µM, 
bath application)  

91 ± 6 5 0.01 

STDP (–10 ms) 
control  

148 ± 12 15 
0.000

4 

STDP (–10 ms) D-
AP5 (20 µM, bath 
application) 

101 ± 4 6 0.006 

STDP (–10 ms) 
EGTA (20 mM, 
intracellular) 

103 ± 21 5 0.018 

STDP (–10 ms) 
nimodipine (10 µM, 
bath application) 

105 ± 6 5 0.019 

Presynaptic 

stimulation only  
  108 ± 6 5 0.19 

Postsynaptic APs 
only 

93 ± 8 5 0.44 

 

1 The HFS protocol consisted of 4 trains of 100 stimuli at 100 Hz delivered 
every 10 s. 
2 The pairing protocol consisted of 300 repetitions of a single presynaptic 
stimulation paired with a postsynaptic AP at different time intervals at 1 Hz.  
All data shown in table were obtained at room temperature. 
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Table 2: Parameters of the pattern completion model. 

Parameter Explanation  
Default value or 

range  

n  Number of neurons  3,000 

p  Connection probability  0.5 

a Total activity level  0.1  

g1 Inhibition factor  0 – 1  

m  

Pattern load (number of 

patterns applied in storage 

phase)  

0 – 200 

b1 

Proportion of valid firings in 

initial phase of recall (b1 = 

1  identity to initial 

pattern) 

0.5 

bn 

Proportion of spurious 

firings in initial phase of 

recall  (bn = 1  no 

spurious firing) 

1 

t 
Standard deviation of spike 

times in activity patterns 
0.2 cycles 

pot 
Synaptic potentiation time 

constant in the STDP rule 
1 cycle 

syn 
Synaptic decay time 

constant  
1 cycle 

 

For details, see Methods and Gibson and Robinson, 1992; Bennett et al., 1994.  
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4 Discussion 

CA3–CA3 recurrent synapses play a key role in learning and memory 

(Nakazawa et al., 2002). However, little is known about the properties of 

synaptic plasticity at these synapses in acute hippocampal slices. The results 

obtained in the present study reveal noncanonical plasticity rules at 

glutamatergic CA3–CA3 recurrent synapses. First, HFS induces cooperative 

LTP. Voltage-gated Na+ channels are required for HFS induced LTP but 

axosomatic spiking seems not to be essential. This result suggests that 

dendritic spikes may be involved in the induction of LTP at CA3–CA3 recurrent 

synapses. Second, an associative (pairing) protocol induces potentiation 

irrespective of the order of pairing. Increasing the time interval between 

pre─postsynaptic activities results in a temporally symmetric spike timing-

dependent plasticity window with a maximum potentiation at +10 ms and 

minimum at ±100 ms. Further, in our autoassociative network model, the new 

STDP rule resulted in an increased storage capacity with improved reliability of 

pattern completion (Marr, 1971). Thus, induction of synaptic plasticity with a 

broad range of activity patterns at CA3–CA3 recurrent synapses may facilitate 

the storage of information. 

4.1 Mechanisms of HFS-induced cooperative LTP at CA3–CA3 synapses 

HFS is a classical paradigm for LTP induction and is shown to be particularly 

effective for LTP induction at many synapses (Bliss and Lømo, 1973; Zalutsky 

and Nicoll, 1990). We found that HFS efficiently induces LTP at CA3–CA3 

recurrent synapses. The induction of LTP by HFS depended on the activation 

of NMDA-type glutamate receptors is in line with the previous studies (Harris 

and Cotman, 1986; Zalutsky and Nicoll, 1990). Further involvement of L-type 

Ca2+ channels in LTP induction suggests that there are at least two Ca2+ 

sources, one through postsynaptic NMDARs and the other through L-type Ca2+ 

channels. Our results with the slow intracellular Ca2+ chelator EGTA confirms 

that LTP induction leads to an influx of Ca2+ within the dendritic spines (Lynch 

et al., 1983; Malenka et al., 1988, 1992). These results also have implications 
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for the coupling distance between Ca2+ source and plasticity sensor (Lisman et 

al., 2012). Influx of Ca2+ following activation of NMDARs results into a region 

near the inner mouth of the channel called Ca2+ nanodomain 

(Schneggenburger and Neher, 2005). Ca2+ concentration in this region is very 

high. This increased Ca2+ then diffuses into the bulk of the spine head within 

microseconds. Since the process of diffusion of Ca2+ to the bulk of the spine is 

extremely fast, only a fast Ca2+ buffer (BAPTA) can block Ca2+ elevation in the 

nanodomain. On the other hand, either a fast or a slow buffer can block Ca2+ 

elevation in the bulk of the spine head. The effect of EGTA suggests that LTP 

induction at CA3–CA3 recurrent synapses is triggered by microdomains (spine 

head) rather than nanodomain (Eggermann et al., 2012; Hoffman et al., 2002). 

Thus, postsynaptic NMDARs and the molecular machinery for LTP induction 

seem to be spatially segregated within the compartment of a dendritic spine.  

4.2 Requirement of Na+ channels for HFS-LTP induction 

Removal of Mg2+ block of NMDAR requires postsynaptic depolarization which 

in turn leads to Ca2+ influx required for hebbian LTP to occur (Malenka and 

Nicoll, 1999). There are at least three different mechanisms by which 

postsynaptic depolarization could be achieved. First, postsynaptic AP reaches 

the spines retrogradely as the bAP (Stuart and Sakmann, 1994). The time-

dependent association of EPSP and bAP cooperatively activates NMDARs to 

achieve LTP induction (Magee and Johnston, 1997; Markram et al., 1997; 

Stuart and Sakmann, 1994; Yuste and Denk, 1995). Second, localized passive 

synaptic depolarization itself is sufficient enough for depolarization (Bliss and 

Lømo, 1973). Third, localized passive synaptic depolarization is not able to 

generate sufficient depolarization instead activates dendritic spikes (Kim et al., 

2015). 

Interestingly, our results show that postsynaptic APs are not strictly required for 

HFS-induced LTP. Thus, initiation of axosomatic APs does not appear to be the 

mechanism underlying LTP induction. However, application of the intracellular 

Na+ channel blocker QX-314 or low concentration of TTX abolished LTP 

induction completely. The most likely interpretation of these data is that voltage-
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gated Na+ channels are blocked by channel blockers (QX-314 and TTX) and 

thereby suppress dendritic spikes in CA3 pyramidal neurons (Kim et al., 2012) 

which, in turn, abolishes LTP induction (Kim et al., 2015). Thus, the uniquely 

high level of excitability of CA3 pyramidal neurons and the abundance of 

dendritic spikes (Kim et al., 2012) may explain the specific properties of HFS 

induced LTP at CA3–CA3 recurrent synapses.  

4.3 A novel form of STDP rule at CA3–CA3 recurrent synapses 

In this study we have identified a novel STDP induction rule at CA3–CA3 

recurrent synapses. The new STDP rule is temporally symmetric and does not 

show any long-term depression (LTD). This finding is different from previously 

reported STDP rules at other synapses which are all temporally asymmetric 

(Feldman, 2012). Similar to the HFS-induced LTP both blockers of NMDARs 

and L-type Ca2+ channels block STDP. These findings suggest that two 

independent Ca2+ sources are required for induction of LTP at these synapses 

(Magee and Johnston, 1997; Nevian and Sakmann, 2006). Spine [Ca2+] 

transients mediated by NMDARs and L-type Ca2+ channels show temporally 

symmetric summation when compared for different pairing time intervals. Thus, 

the properties of spine Ca2+ signaling may provide a mechanistic explanation 

for the temporally symmetric plasticity rule.  

bAPs function as associative signals in STDP induction (Kampa et al., 2007; 

Sjöström et al., 2008). Local application of TTX to stop bAPs to propagate to 

the synapse can prevent LTP induction (Magee and Johnston, 1997). In a pre–

postsynaptic activity sequence, bAPs provide the depolarization needed for 

activation of the NMDAR and the subsequent Ca2+ influx necessary for LTP 

induction (Kampa et al., 2004). This mechanism may also operate in CA3–CA3 

synapses. An active AP backpropagation caused by the high dendritic Na+ 

channel density in these cells (Kim et al., 2012) may be particularly effective. 

What could be the possible mechanism for post–presynaptic pairing? One 

possibility would be after-depolarization (ADP; Metz et al., 2005, 2007; Brown 

and Randall, 2009), a hallmark of CA3 pyramidal neuron excitability. What 

makes ADP suitable as an associative signal? ADP propagates into dendrites 
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without attenuation and it effectively summates with subsequent EPSPs (Kim, 

unpublished data). These properties enable a post–presynaptic sequence in 

CA3 neurons to produce large compound depolarizations. This depolarization 

would be particularly effective in removal of Mg2+ block and subsequent 

activation of NMDARs and voltage-gated Ca2+ channels. These summation 

properties appear to be specific for CA3 pyramidal neurons, since in layer 5 

neocortical cells APs shunt subsequent EPSPs, rather than boosting their 

amplitude (Häusser et al., 2001).  

One caveat with our symmetric STDP rule at CA3–CA3 synapses is the lack of 

depression (LTD). How is the stability achieved in the absence of a 

compensatory mechanism? Several additional regulatory mechanisms may be 

at work in the absence of depression. For example, homeostatic plasticity at 

CA3–CA3 synapses may counteract saturation in the network (Turrigiano and 

Nelson, 2004; Mitra et al., 2011). Homeostatic plasticity at mossy fiber 

synapses on CA3 pyramidal neurons could be an alternative or additional 

mechanism (Lee et al., 2013). Finally, LTD has been reported in CA3 pyramidal 

neurons early in development (Lei et al., 2003; Ho et al., 2007). Whether and 

how such LTD mechanisms can be reactivated in the mature brain remains to 

be determined.  

Our autoassociative network model shows that the novel STDP rule enhances 

the computational power of the network. The storage capacity and the reliability 

of pattern completion (Marr, 1971) is increased. The temporally symmetric 

STDP rule addresses two major issues of previous models. First, it solves the 

problem that synchronous activity in ensembles generates LTD via a post–

presynaptic sequence, because the time for dendritic propagation is shorter 

than that for axonal propagation of the AP (Kim et al., 2012). Second, it 

addresses how autoassociative network models can work under conditions of 

slightly asynchronous activity in CA3 pyramidal neuron ensembles. In 

particular, the broad and temporally symmetric STDP rule could be useful for 

the reactivation of cell assembly patterns of freely moving animals in open 

fields (O’Neill et al., 2008), and for the incorporation of contralateral CA3 

pyramidal neurons into long-range neuronal assemblies.  



64 

 

4.4 Implications for network function 

Diverse glutamatergic synapses are reported to show temporally asymmetric 

learning rules (Markram et al., 1997; Magee and Johnston, 1997; Bi and Poo, 

1998; Feldman, 2012). The asymmetric learning rules are highly suitable for the 

learning of temporal sequences related to places or events in hippocampal 

networks (Abbott and Blum, 1996). What could be the function of temporally 

symmetric learning rules, as observed in CA3–CA3 cell recurrent synapses? 

CA3 pyramidal neurons are activated by the dentate gyrus via hippocampal 

mossy fiber synapses, which have a detonator / teacher function in the circuit 

(Henze et al., 2002; Bischofberger et al., 2006; Vyleta and Jonas, 2014). If we 

assume STDP rule to be asymmetric, mossy fiber activation would result in a 

post–presynaptic activity sequence, since dendritic AP backpropagation in CA3 

pyramidal axon dendrites (Kim et al., 2012) will be faster than AP forward 

propagation in axons. This will result into long-term depression at CA3–CA3 

recurrent synapses. In contrast, with the temporally symmetric STDP rule 

described in the present study, potentiation of glutamatergic synapses would 

occur. Additionally, the broadness of the STDP window may compensate for 

jitter in the AP timing of coactive cells in neuronal assemblies. This could be 

useful for the reactivation of cell assembly patterns acquired in open fields 

(O’Neill et al., 2008) and for pattern completion, a major function of the CA3 

region (Marr, 1971; McNaughton and Morris, 1987). Broad, temporally 

symmetric STDP rules may be also relevant to strengthen synapses between 

CA3 cells in different hemispheres, which will show longer synaptic latencies 

and larger temporal jitter. Thus, the specific rules of induction of synaptic 

plasticity at CA3–CA3 recurrent synapses will translate into a unique capacity 

for storage of information in the CA3 cell network.  
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