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ABSTRACT
Crossing fitness valleys is one of the major obstacles to func-
tion optimization. In this paper we investigate how the
structure of the fitness valley, namely its depth d and length
`, influence the runtime of different strategies for crossing
these valleys. We present a runtime comparison between the
(1+1) EA and two non-elitist nature-inspired algorithms,
Strong Selection Weak Mutation (SSWM) and the Metropo-
lis algorithm. While the (1+1) EA has to jump across the
valley to a point of higher fitness because it does not accept
decreasing moves, the non-elitist algorithms may cross the
valley by accepting worsening moves.

We show that while the runtime of the (1+1) EA algo-
rithm depends critically on the length of the valley, the run-
times of the non-elitist algorithms depend crucially only on
the depth of the valley. In particular, the expected runtime
of both SSWM and Metropolis is polynomial in ` and expo-
nential in d while the (1+1) EA is efficient only for valleys
of small length. Moreover, we show that both SSWM and
Metropolis can also efficiently optimize a rugged function
consisting of consecutive valleys.

Keywords
fitness valley; valley path; non-elitism; runtime analysis;
natural evolution; theory; strong selection weak mutation
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1. INTRODUCTION
Randomised search heuristics (RSHs) are general purpose

optimisation tools typically used when no good problem spe-
cific algorithm is known for the problem at hand.
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Families of RSHs mainly differ in the way new solutions
are generated (i.e. variation operators), how solutions are
chosen for the next iterations (i.e. selection) and how many
solutions are used by the heuristic in each iteration (i.e. pop-
ulation). Deciding which strategy to use to overcome local
optima is crucial in global optimisation on multimodal prob-
lems. Two different approaches are commonly used. One
strategy is to rely on variation operators such as mutation
to produce new solutions of high fitness outside the basin of
attraction of the local optimum. Elitist algorithms mainly
rely on such strategies when stuck in a local optimum. A
different approach is to attempt to escape by accepting so-
lutions of lower fitness in the hope of eventually leaving the
basin of attraction of the local optimum. This approach is
the main driving force behind non-elitist algorithms. While
both approaches may clearly be promising, it is unclear when
one should be preferred to the other.

In this paper we investigate this topic by considering gen-
eral fitness valleys of arbitrary length ` and depth d. We
define a valley on a Hamming path (a path of Hamming
neighbours) to ensure that mutation has the same probabil-
ity of going forward on the path as going backwards. The
valley is composed of a slope of length `1 descending towards
a local minimum from which a slope of increasing fitness of
length `2 can be taken to reach the end of the valley. The
steepness of each slope is controlled by parameters d1 and
d2, respectively indicating the fitness of the two local optima
at the extreme left and extreme right of the valley. Our aim
is to analyse how the characteristics of the valley impact the
performance of elitist versus non-elitist strategies.

We point out that understanding how to cross fitness
valleys efficiently is a very important problem also in bi-
ology [12]. From a biological perspective, crossing fitness
valleys represents one of the major obstacles to the evolu-
tion of complex traits. Many of these traits require accumu-
lation of multiple mutations that are individually harmful
for their bearers; a fitness advantage is achieved only when
all mutations have been acquired—a fitness valley has been
crossed.

We consider the simple elitist (1+1) EA and compare
its ability to cross fitness valleys with the recently intro-
duced non-elitist Strong Selection Weak Mutation (SSWM)
algorithm inspired by a model of biological evolution in the
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‘strong selection, weak mutation regime‘ [9]. This regime ap-
plies when mutations are rare enough and selection is strong
enough that the time between occurrences of new mutations
is long compared to the time a new genotype takes to replace
its parent genotype, or to be lost entirely [3]. Mutations
occur rarely, therefore only one genotype is present in the
population most of the time, and the relevant dynamics can
be characterized by a stochastic process on one genotype.

Recently, Paixão et al. investigated SSWM on Cliffd [9],
a function defined such that non-elitist algorithms have a
chance to jump down a “cliff” of height roughly d and to
traverse a fitness valley of Hamming distance d to the op-
timum. The function is a generalised construction of the
unitation function introduced by Jägersküpper and Storch
to give an example class of functions where a (1,λ) EA
outperforms a (1+λ) EA [6]. This analysis revealed that
SSWM can cross the fitness valley. However, upon com-
parison with the (1+1) EA, SSWM achieved only a small

speed-up: the expected time of SSWM is at most nd/eΩ(d),
while the (1+1) EA requires Θ(nd) [9].

In this manuscript, we show that greater speed-ups can be
achieved by SSWM on fitness valleys. Differently to the work
in [9] where global mutations were used, here we only allow
SSWM to use local mutations because we are interested in
comparing the benefits of escaping local optima by using
non-elitism to cross valleys against the benefits of jumping
to the other side by large mutations.

After presenting some Preliminaries, we build upon Gam-
bler’s Ruin theory [2] in Section 3 to devise a general math-
ematical framework for the analysis of non-elitist algorithms
using local mutations for crossing fitness valleys. We use it
to rigorously show that SSWM is able to efficiently perform a
random walk across the valley using only local mutations by
accepting worse solutions, provided that the valley is not too
deep. On the other hand, the (1+1) EA cannot accept worse
solutions and therefore relies on global mutations to reach
the other side of the valley in a single jump. As a result, the
runtime of the (1+1) EA is exponential in the length of the
valley while the runtime of SSWM depends crucially only on
the depth of the valley. We demonstrate the generality of the
presented mathematical tool by using it to prove that the
same asymptotic results achieved by SSWM also hold for the
well-known Metropolis algorithm. Jansen and Wegener [7]
previously compared the performance of the (1+1) EA and
Metropolis for a fitness valley encoded as a unitation func-
tion where the slopes are symmetric and of the same length.
They used their fitness valley as an example where the per-
formance of the two algorithms is asymptotically equivalent.
The function class considered herein is more general since it
allows for arbitrary slopes.

The framework also allows the analysis for concatenated
“paths” of several consecutive valleys, creating a rugged fit-
ness landscape that loosely resembles a“big valley”structure
found in many problems from combinatorial optimisation.
In particular, in Section 4 we use it to prove that SSWM
and Metropolis can cross consecutive paths in expected time
that only depends crucially on the depth and number of the
valleys.

In this extended abstract many proofs are omitted due to
space restrictions.

2. PRELIMINARIES

2.1 Algorithms
In this paper we present a runtime comparison between

the (1+1) EA and two non-elitist nature-inspired algorithms,
SSWM and Metropolis. While they match the same basic
scheme shown in Algorithm 1, they differ in the way they
generate new solutions (mutate(x) function), and in the ac-
ceptance probability of these new solutions (pacc function).

Algorithm 1 General scheme

Choose x ∈ {0, 1}n uniformly at random
repeat
y ← mutate(x)
∆f = f(y)− f(x)
Choose r ∈ [0, 1] uniformly at random
if r ≤ pacc(∆f) then
x← y

end if
until stop

The (1+1) EA relies on global mutations to cross the fit-
ness valley and the function mutate(x) flips all bits with
uniform probability 1/n. Conversely, SSWM and Metropo-
lis analysed here use local mutations, hence the function
mutate(x) flips a single bit chosen uniformly at random.

Furthermore, the (1+1) EA always accepts a better solu-
tion, with ties resolved in favour of the new solution. The
probability of acceptance is formally described by

pEA
acc(∆f) =

{
1 if ∆f ≥ 0

0 if ∆f < 0.

SSWM accepts candidate solutions with probability

pSSWM
acc (∆f) = pfix(∆f) =

1− e−2β∆f

1− e−2Nβ∆f
(1)

(see Figure 1) where ∆f 6= 0 is the fitness difference between
the new and the current solution, N ≥ 1 is the size of the un-
derlying population and β represents the selection strength.
For ∆f = 0 we define pacc(0) := lim∆f→0 pacc(∆f) = 1

N
.

If N = 1, this probability is pacc(∆f) = 1, meaning that
any offspring will be accepted, and if N → ∞, it will only
accept solutions for which ∆f > 0. SSWM’s acceptance
function depends on the absolute difference in fitness be-
tween genotypes. It introduces two main differences com-
pared to the (1+1) EA: first, solutions of lower fitness may
be accepted with some positive probability, and second, so-
lutions of higher fitness can be rejected. The formula (1),
first derived by Kimura [8], represents the probability that
a gene that is initially present in one copy in a population
of N individuals is eventually present in all individuals (the
probability of fixation).

The acceptance function pacc is strictly increasing with
limits lim∆f→−∞ pacc(∆f) = 0 and lim∆f→∞ pacc(∆f) = 1.
The same limits are obtained when β tends to ∞, and thus
for large |β∆f | the probability of acceptance is close to the
one in the (1+1) EA, as long asN > 1, defeating the purpose
of the comparison, with the only difference being the tie-
breaking rule: SSWM only accepts the new equally good
solution with probability 1/N [9].

Finally, the Metropolis algorithm is similar to SSWM in
the sense that it is able to accept mutations that decrease
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fitness with some probability. However, unlike SSWM, for
fitness improvements it behaves like the (1+1) EA in that
it accepts any fitness improvement. Formally, Metropolis’
acceptance function can be described by:

pMET
acc (∆f) =

{
1 if ∆f ≥ 0

eα∆f if∆f < 0

where α is the reciprocal of the “temperature”. Temper-
ature in the Metropolis algorithm plays the same role as
population size in SSWM: increasing the temperature (de-
creasing α) increases the probability of accepting fitness de-
creases. The acceptance functions of all three algorithms are
shown in Figure 1.

∆f
−1−2−3

1

0

pacc

1 2

1/N

SSWMMetropolis

(1 + 1) EA

Figure 1: Probability of acceptance. Red - Metropo-
lis, Blue - (1+1) EA, Green - SSWM.

2.2 Long Paths
Previous work on valley crossing [6, 9, 7] used functions

of unitation to encode fitness valleys, with 1n being a global
optimum. The drawback of this construction is that the
transition probabilities for mutation heavily depend on the
current position. The closer an algorithm gets to 1n, the
larger the probability of decreasing the number of ones and
moving away from the optimum.

We follow a different approach to avoid this mutational
bias, and to ensure that the structure of the fitness valley
is independent of its position in the search space. This also
allows us to easily concatenate multiple valleys.

We base our construction on so-called long k-paths, paths
of Hamming neighbors with increasing fitness whose length
can be exponential in n [5, 10, 1]. An example is shown in
Table 1; for a formal definition we refer to [11, page 2517].

An exponential length implies that the path has to be
folded in {0, 1}n in a sense that there are i < j such that the
i-th and the j-th point on the path have Hamming distance
H(·, ·) smaller than j − i. Standard bit mutations have a
positive probability of jumping from the i-th to the j-th
point, hence there is a chance to skip large parts of the path
by taking a shortcut. However, long k-paths are constructed
in such a way that at least k bits have to flip simultaneously
in order to take a shortcut. The probability of such an event
is exponentially small if k = Θ(

√
n), in which case the path

still has exponential length.
Long k-paths turn out to be very useful for our purposes.

If we consider the first points of a long k-path and assign in-
creasing fitness values to them, we obtain a fitness-increasing
path of any desired length.

P0: 000000000 P6 : 000111111 P12: 111111000 P18: 111000111
P1: 000000001 P7 : 000111011 P13: 111111001 P19: 111000011
P2: 000000011 P8 : 000111001 P14: 111111011 P20: 111000001
P3: 000000111 P9 : 000111000 P15: 111111111 P21: 111000000
P4: 000001111 P10: 001111000 P16: 111011111
P5: 000011111 P11: 011111000 P17: 111001111

Table 1: Example of a long k-path with n = 9, k = 3.

Given two points Ps,Ps+i for i > 0, Ps+i is called the i-th
successor of Ps and Ps is called a predecessor of Ps+i. Long
k-paths have the following properties.

Lemma 1 (Long paths).

1. For every i ∈ N0 and path points Ps and Ps+i, if i < k
then H(Ps,Ps+i) = i, otherwise H(Ps,Ps+i) ≥ k.

2. The probability of a standard bit mutation turning Ps
into Ps+i (or Ps+i into Ps) is 1/ni · (1 − 1/n)n−i for
0 ≤ i < k and the probability of reaching any Ps+i
from Ps for i ≥ k is at most 1/(k!).

Proof. The first statement was shown in [11, page 2517] (re-
fining a previous analysis in [1, page 73]). The second state-
ment follows from the first one, using that the probability
of mutating at least k bits is at most

(
n
k

)
n−k ≤ 1/(k!).

In the following, we fix k :=
√
n such that the probability

of taking a shortcut on the path is exponentially small. We
assign fitness values such that all points on the path have a
higher fitness than those off the path. This fitness difference
is made large enough such that the considered algorithms
are very unlikely to ever fall off the path. Assuming that we
want to use the first m path points P0, . . . ,Pm−1, then the
fitness is given by

f(x) :=

{
h(i) if x = Pi, i < m

−∞ otherwise

where h(i) gives the fitness (height) of the i-th path point.
Then, assuming the algorithm is currently on the path,

the fitness landscape is a one-dimensional landscape where
(except for the two ends) each point has a Hamming neigh-
bour as predecessor and a Hamming neighbour as successor
on the path. Local mutations will create each of these with
equal probability 1/n. If we call these steps relevant and
ignore all other steps, we get a stochastic process where in
each relevant step we create a mutant up or down the path
with probability 1/2 each (for the two ends we assume a
self-loop probability of 1/2). The probability whether such
a move is accepted then depends on the fitness difference
between these path points.

It then suffices to study the expected number of relevant
steps, as we obtain the expected number of function evalua-
tions by multiplying with the expected waiting time n/2 for
a relevant step.

Lemma 2. Let E (T ) be the expected number of relevant
steps for any Algorithm 1 with local mutations finding a
global optimum. Then the respective expected number of
function evaluations is n/2 ·E (T ), unless the algorithm falls
off the path.

In the following, we assume that all algorithms start on
P0. This behaviour can be simulated from random initiali-
sation with high probability by embedding the path into a
larger search space and giving hints to find the start of the
path within this larger space [11]. As such a construction
is cumbersome and does not lead to additional insights, we
simply assume that all algorithms start in P0.
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3. CROSSING SIMPLE VALLEYS
In this section we consider paths consisting of two slopes

of lengths `1, `2 ∈ {2, 3, ...} respectively. On the first slope
starting at point P0 the fitness decreases from the initial
height d1 ∈ R+ until the path point P`1 of minimal fitness.
Then the second slope begins with fitness increasing up to
the path point P`1+`2 of fitness d2 ∈ R+. The total length
of the path is ` = `1 + `2. We call such a path Valley.

h(i)Valley :=

{
d1 − i · d1`1 if i ≤ `1
(i− `1) · d2

`2
if `1 < i ≤ `.

Here, d1
`1

and d2
`2

indicate the steepness of the two slopes (see

Figure 2).

i0

0

fitness

`1 `

d1

d2

`1 `2

Figure 2: Sketch of the function Valley.

3.1 Analysis for the (1+1) EA
We first show that the runtime of the (1+1) EA depends

on the length of the valley. Here we restrict parameters
to `1 + `2 ≤

√
n/4, as then the probability of the (1+1) EA

taking a shortcut is no larger than the probability of jumping

by a distance of `1 + `2: 1
(
√
n)!
≤ n−

√
n/4 for n ≥ 4.

Theorem 3. Assume `1 + `2 ≤
√
n/4 and d1 ≤ d2. The

expected time for the (1+1) EA starting in P0 to cross the
fitness valley is Θ(nh) where h = `1 + dd1`2/d2e.

Proof sketch. To cross the fitness valley the (1+1) EA needs
a jump of distance at least h, which needs in expectation
Θ
(
nh
)

iterations to occur. The algorithm might jump back
to P0 but this event is very unlikely. Finally, the time to
climb the remaining steps is negligible.

3.2 A general framework for local search al-
gorithms

We introduce a general framework to analyse the expected
number of relevant steps of non-elitist local search algo-
rithms (Algorithm 1 with local mutations) for the Valley
problem. As explained in Section 2.2, in a relevant step
mutation creates a mutant up or down the path with proba-
bility 1/2, and this move is accepted with a probability that
depends only on the fitness difference. For slopes where the
gradient is the same at every position, this resembles a gam-
bler’s ruin process.

To apply classical gambler ruin theory [2] two technical-
ities need to be taken into account. Firstly, two different
gambler ruin games need to be considered, one for descend-
ing down the first slope and another one for climbing up the
second slope. The process may transition between these two
ruin games as the extreme ends of each game at the bottom

of the valley are not absorbing states. Secondly, the prob-
abilities of winning or losing a dollar (i.e., the probabilities
of moving one step up or down a slope) do not necessarily
add up to one, but loop probabilities of neither winning or
losing a dollar need to be taken into account when estimat-
ing expected times (winning probabilities are unaffected by
self-loops). In order to simplify the calculations we have
developed the following notation.

Definition 1 (Framework’s Notation). The Valley
problem can be considered as a Markov chain with states
{P0, P1, . . . , P`1−1, P`1 , P`1+1, . . . , P`1+`2}. For simplicity we
will sometimes refer to these points only with their sub-
indices {0, 1, . . . , `1 − 1, `1, `1 + 1, . . . , `1 + `2}.

We will denote respectively by pi→j and E (Ti→j) the prob-
ability and expected time of moving from state i to j ∈
{i− 1, i, i+ 1} in one iteration. Analogously, we will denote
by pGR

i→k the probability of a Gambler’s Ruin process starting
in i finishing in k before reaching the state i − 1. And by
E
(
TGR
i,k

)
we denote the expected duration of such process.

The following lemmas simplify the runtime analysis of any
algorithm that matches the scheme of Algorithm 1 for local
mutations and some reasonable conditions.

A common feature of optimisation algorithms is that the
selection operator prefers fitness increases over decreases e.g.
Randomized Local Search, (1+1) EA or Metropolis. Then,
the bottleneck of Valley seems to be climbing down the
first `1 steps since several fitness decreasing mutations have
to be accepted.

Once in the bottom of the valley P`1 the process may
keep moving. It could be the case that the algorithm climbs
up again to P0. But under some mild conditions it will
only have to repeat the experiment a constant number of
times. Finally, the algorithm will have to climb up to P`1+`2 .
This will take linear time in `2, provided the probability of
accepting an improvement of ∆f is by a constant greater
than accepting a worsening of the same size.

Lemma 4. Consider any algorithm described by Algorithm 1
with local mutations and the following properties on Valley
with `1, `2 ∈ {2, 3, ...} and d1, d2 ∈ R+

(i) p`1→`1−1, p`1→`1+1 = Ω(1)

(ii) p2
`1→`1+1 > p`1+1→`1

(iii) pacc(∆f) is non-decreasing

(iv) p`1→`1+1 ≥ (1 + ε) · p`1+1→`1 , for ε > 0 a constant.

Then the expected number of relevant steps for such process
to reach the point P`1+`2 starting from P0 is

E (T0→`1+`2) = Θ (E (T1→`1)) + Θ(`2).

In order to prove this we will make use of the following
lemma that shows some implications of the conditions from
the previous lemma.

Lemma 5. In the context of Lemma 4, properties (i) and
(ii) imply that

(i) p`1→`1−1 + p`1→`1+1 = 1
c1

for some constant c1 ≥ 1

(ii) 1− c1 · pGR
`1+1→`1 = 1

c2
for some constant c2 > 1

(iii) 1− c1c2 · p`1→`1−1 = 1
c3

for some constant c3 > 1.
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The proof of Lemma 5 is omitted.

Proof of Lemma 4. Since the algorithm only produces points
in the Hamming neighbourhood it will have to pass through
all the states on the path. We break down the set of states
in three sets and expand the total time as the sum of the
optimisation time for those three sets:

E (T0→`1+`2) = E (T0→1) + E (T1→`1) + E (T`1→`1+`2) . (2)

Note that the lower bound follows directly. Let us now
consider the upper bound. We start using a recurrence re-
lation for the last term: once in state `1, after one iteration,
the algorithm can either move to state `1 + 1 with probabil-
ity p`1→`1+1, move to state `1−1 with probability p`1→`1−1

or stay in state `1 with the remaining probability (if the
mutation is not accepted).

E (T`1→`1+`2) = 1 + p`1→`1+1 · E (T`1+1→`1+`2)

+ p`1→`1−1 · E (T`1−1→`1+`2) + p`1→`1 · E (T`1→`1+`2)

≤ 1 + p`1→`1+1 · E (T`1+1→`1+`2)

+ p`1→`1−1 · E (T0→`1+`2) + p`1→`1 · E (T`1→`1+`2) .

Solving the previous expression for E (T1→`1+`2) leads to

E (T`1→`1+`2)

≤ 1 + p`1→`1+1 · E (T`1+1→`1+`2) + p`1→`1−1 · E (T0→`1+`2)

p`1→`1−1 + p`1→`1+1
.

Property (i) of Lemma 4 implies that the denominator is a
constant 1/c1, then

E (T`1→`1+`2) (3)

≤ c1 (1 + p`1→`1+1 · E (T`1+1→`1+`2) + p`1→`1−1 · E (T0→`1+`2)) .

Since the acceptance probability is a function of ∆f , for
both sides of the valley the probabilities of moving to the
next or previous state remains constant during each slope
and we can cast the behaviour as a Gambler’s Ruin problem.
Then, when the state is P`1+1 a Gambler’s Ruin game (with
self-loops) occurs. The two possible outcomes are: (1) the
problem is optimised or (2) we are back in P`1 .

E (T`1+1→`1+`2) = E
(
TGR
`1+1,`1+`2

)
+pGR

`1+1→`1 ·E (T`1→`1+`2) .

(4)
Now we introduce (4) in (3), obtaining

E (T`1→`1+`2) ≤ c1 (1 + p`1→`1−1 · E (T0→`1+`2))

+ c1 · p`1→`1+1 ·
(

E
(
TGR
`1+1,`1+`2

)
+ pGR

`1+1→`1 · E (T`1→`1+`2)
)
.

Solving for E (T`1→`1+`2) yields

E (T`1→`1+`2)

≤
c1
(
1 + p`1→`1+1 · E

(
TGR
`1+1,`1+`2

)
+ p`1→`1−1 · E (T0→`1+`2)

)
1− c1 · pGR

`1+1→`1
.

By Lemma 5, properties (i) and (ii) of Lemma 4 imply
that the denominator is a constant 1/c2. Hence,

(c2c1)−1 · E (T`1→`1+`2)

≤ 1 + p`1→`1+1 · E
(
TGR
`1+1,`1+`2

)
+ p`1→`1−1 · E (T0→`1+`2)

≤ 1 + E
(
TGR
`1+1,`1+`2

)
+ p`1→`1−1 · E (T0→`1+`2) .

We introduce this into (2), leading to

E (T0→`1+`2) ≤ E (T0→1) + E (T1→`1)

+ c2c1
(

1 + E
(
TGR
`1+1,`1+`2

)
+ p`1→`1−1 · E (T0→`1+`2)

)
.

Solving for E (T0→`1+`2) leads to

E (T0→`1+`2)

≤
E (T0→1) + E (T1→`1) + c2c1 + c1c2 · E

(
TGR
`1+1,`1+`2

)
1− c1c2 · p`1→`1−1

.

Again by Lemma 5, properties (i) and (ii) of Lemma 4 imply
that the denominator is a constant 1/c3. Hence,

E (T0→`1+`2) (5)

≤ c3
(

E (T0→1) + E (T1→`1) + c2c1 + c1c2 · E
(
TGR
`1+1,`1+`2

))
.

Now we consider the last term. Due to property (iv) of
Lemma 4 once in `1 + 1 there is a constant probability of
moving towards the optimum, then E

(
TGR
`1+1,`1+`2

)
= Θ(`2).

Plugging this into (5) proves the claimed upper bound.

Now we estimate the time to move from P0 to P`1 . As
in the previous proof, the main arguments are a recurrence
relation and a Gambler’s Ruin game.

Lemma 6. Consider any algorithm described by Algorithm 1
with local mutations on Valley with `1, `2 ∈ {2, 3, ...} and
d1, d2 ∈ R+. Then the number of relevant steps to go from
the state P1 to P`1 is

E (T1→`1) =
1

pGR
1→`1

·
(

E
(
TGR

1,`1

)
+
pGR

1→0

p0→1

)
.

Proof. At the state P1 a Gambler’s Ruin game (with self-
loops) occurs. The two possible outcomes are: (1) we have
reached the valley P`1 or (2) we are back to P0.

E (T1→`1) = E
(
TGR

1,`1

)
+ pGR

1→0 · E (T0→`1)

= E
(
TGR

1,`1

)
+ pGR

1→0 · (E (T0→1) + E (T1→`1)) .

Solving for E (T1→`1) leads to

E (T1→`1) =
E
(
TGR

1,`1

)
+ pGR

1→0 · E (T0→1)

1− pGR
1→0

Which using 1− pGR
1→0 = pGR

1→`1 simplifies to

E (T1→`1) =
1

pGR
1→`1

·
(

E
(
TGR

1,`1

)
+
pGR

1→0

p0→1

)
.

3.3 Application to SSWM
In this subsection we make use of the previous framework

to analyse the SSWM for the Valley problem. To apply this
framework we need to know how a Gambler’s Ruin with the
fixation probabilities of the SSWM behaves. When dealing
with these probabilities the ratio between symmetric fitness
variations appears often. The next lemma will be very help-
ful to simplify this ratio.

Lemma 7. For every β ∈ R+, ∆f ∈ R and N ∈ N+

pfix(−∆f)
pfix(+∆f)

= e−2(N−1)β∆f .
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Proof. The proof follows from the definition of pfix and ap-
plying the relation ex = (ex − 1)/(1− e−x).

The following lemma contains bounds on the expected du-
ration of the game and winning probabilities for SSWM.
Although Valley has slopes of d1/`1 and d2/`2, SSWM
through the action of the parameter β sees an effective gra-
dient of β ·d1/`1 and β ·d2/`2. Varying this parameter allows
the algorithm to accommodate the slope to a comfortable
value. We have set this effective gradient to β|∆f | = Ω(1)
so that the probability of accepting an improvement is Ω(1).

Lemma 8 (SSWM Gambler’s Ruin). Consider a Gam-
bler’s Ruin problem where in each iteration player one wins
a dollar with probability p1 = 1

2
· pfix(∆f) and player two

with probability p2 = 1
2
· pfix(−∆f).

Let player one start with n1 = 1 dollar and player two
start with n2 = ` − 1 dollars, ∆f < 0 and (N − 1)β|∆f | =
Ω(1). Then the winning probability of player one can be
bounded as follows

−2(N − 1)β∆f

e−2(N−1)βk∆f
≤ P1 ≤

e−2(N−1)β∆f

e−2(N−1)β(n1+n2)∆f − 1

and the expected number of evaluations until the end of the
game is E (Tf ) = O(1).

Proof. The main difference with the classical Gambler’s Ruin
is that we have self-loop probabilities (because in general
1
2
· pfix(∆f) + 1

2
· pfix(−∆f) < 1).

Obviously, this only affects the duration of the game but
not the winning probabilities. Using Lemma 7 and the well-
known Gambler’s Ruin results [2] we get:

P1 =
1−

(
p2
p1

)n1

1−
(
p2
p1

)n1+n2
=

1−
(
pfix(−∆f)
pfix(∆f)

)n1

1−
(
pfix(−∆f)
pfix(∆f)

)n1+n2

=
1− e−2(N−1)βn1∆f

1− e−2(N−1)β(n1+n2)∆f
.

Notice that this is the same expression as the fixation
probability if we change β for (N − 1)β and N for `. Then
we can apply the bounds for the original fixation probabil-
ities from Lemma 1 in [9] to obtain the inequalities of the
theorem’s statement.

For the expected duration of the game, we use the result
of a classic Gambler’s Ruin [2] and divide by the probability
of having a relevant step p1 + p2.

E (Tf ) =
1

p2 + p1
· n1 − (n1 + n2) · P1

p2 − p1

≤ 1− ` · P1

p2
2 − p2

1

≤ 1

p2
2 − p2

1

.

Using Lemma 7 with (N − 1)β|∆f | = Ω(1) leads to p2 =
Ω(1). Finally, using p2 > p1 the constant upper bound
follows, E (Tf ) = O(1).

While the optimisation time of the (1+1) EA grows expo-
nentially with the length of the valley, the following theorem
shows that for the SSWM the growth is exponential in the
depth of the valley. This means that the SSWM can effec-
tively cross long valleys with moderate gradients. On the
other hand even if the length is short it cannot efficiently
optimise cliffs where the depth is large.

Theorem 9. The expected number of function evaluations
Tf for SSWM with local mutations to reach P`1+`2 from P0

on Valley with `1, `2 ∈ {2, 3, ...} and d1, d2 ∈ R+ is

E (Tf ) = O
(
n · e2Nβd1(`1+1)/`1

)
+ Θ(n · `2) and

E (Tf ) = Ω
(
n · e2(N−1)βd1(`1−1)/`1

)
+ Θ(n · `2)

provided βd1/`1, βd2/`2, N = Ω(1).

Proof. The first part of the proof consists of estimating E (T1→`1)
by using the statement of Lemma 6. Then we will check
that the conditions from Lemma 4 are met and we will add
the Θ(`2) term. Finally, we will take into account the time
needed for a relevant step in the long path to obtain the n
factor in the bounds.

As just described above we start considering E (T1→`1) by
using Lemma 6. Let us start with the upper bound.

E (T1→`1) = O

(
1

pGR
1→`1

·
(

E
(
TGR

1,`1

)
+

1

p0→1

))

using Lemma 8 we bound pGR
1→`1 yielding

E (T1→`1) = O

(
e2(N−1)βd1

2(N − 1)βd1/`1
·
(
O(1) +

1

p0→1

))
.

Since pfix for ∆f < 0 decreases when the parameters N , β
and |∆f | increase and Nβd1/`1 = Ω(1), we get p−1

0→1 = Ω(1)

and O(1) + 1
p0→1

= O
(

1
p0→1

)
. Hence,

E (T1→`1) = O

(
e2(N−1)βd1

2(N − 1)βd1/`1
· 1

p0→1

)
Using Lemma 1 in [9] to lower bound p0→1 we get

E (T1→`1) = O

(
e2(N−1)βd1

2(N − 1)βd1/`1
· e

2Nβd1/`1

2β d1
`1

)
.

Using (N − 1)βd1/`1 = Ω(1) and βd1/`1 = Ω(1) leads to

E (T1→`1) = O
(
e2Nβd1(`1+1)/`1

)
.

We now consider the lower bound. Starting again from
Lemmas 4 and 6 and bounding pGR

1→`1 with Lemma 8

E (T1→`1) = Ω

(
1

pGR
1→`1

)
= Ω

(
e2(N−1)βd1 − 1

e2(N−1)βd1/`1

)
= Ω

(
e

2(N−1)βd1
`1−1
`1 − 1

e2(N−1)βd1/`1

)
= Ω

(
e

2(N−1)βd1
`1−1
`1

)
.

Now we need to apply Lemma 4 to add the Θ(`2) term in
both bounds. We start checking that all the conditions are
satisfied. Firstly, since pfix for ∆f > 0 increases when the
parameters (N , β and ∆f) increase, then Nβd2/`2 = Ω(1)
implies p`1→`1+1 = Ω(1). Analogously for p`1→`1−1 with
Nβd1/`1 = Ω(1) satisfying the first property.

Secondly, property (ii) is satisfied if

p2
`1→`1−1 > p`1+1→`1 ⇔ p2

fix(d2/`2) > 4 · pfix(−d2/`2).
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Using Lemma 7 leads to

p2
`1→`1−1 > p`1+1→`1 ⇔ pfix(d2/`2) · e2(N−1)βd2/`2 > 4

⇔ 1− e−2βd2/`2

1− e−2Nβd2/`2
· e2(N−1)βd2/`2 > 4

⇐ e2(N−1)βd2/`2 − e2β(N−2)d2/`2 > 4.

Since all the parameters are positive the condition holds for
N being a large enough constant.

The third property is satisfied since for N > 1 the fixa-
tion probability is strictly increasing with ∆f . The proof
for the fourth condition follows directly from Lemma 7 and
the condition Nβd2/`2 = Ω(1). Considering the time for a
relevant step from Lemma 2 completes the proof.

3.4 Application to Metropolis
We now apply the framework from Section 3.2 to the

Metropolis algorithm. The analysis follows very closely the
one of SSWM and we omit the proofs for the sake of brevity.
We first cast Metropolis on Valley as a Gambler’s Ruin
problem. Like SSWM, Metropolis can make use of its pa-
rameter α to accommodate the gradient of Valley.

Lemma 10 (Metropolis Gambler’s Ruin downhill).
Consider a Gambler’s Ruin problem where in each iteration
player one loses a dollar with probability p2 = 1

2
and player

two with p1 = 1
2
·e−α∆f , where ∆f < 0. Let player one start

with 1 dollar, player two with `−1 dollars and α|∆f | = Ω(1).
Then, the probability that player one wins can be bounded by:

−α∆f

e−α`∆f
< PGR−Met

1 <
e−α∆f

e−α`∆f − 1

and the expected number of function evalutations of the game
is E (Tf ) = O(1).

Lastly, we make use of the previous lemma and the frame-
work presented in Section 3.2 to determine bounds on the
runtime of Metropolis on Valley.

Theorem 11. The expected number of function evalua-
tions for Metropolis to reach P`1+`2 from P0 on Valley with

`1, `2 ∈ {2, 3, ...} and d1, d2 ∈ R+ is O
(
n · eαd1(1+1/`1)

)
+

Θ(n·`2) and Ω
(
n · eαd1(1−1/`1)

)
+Θ(n·`2) provided αd1/`1,

αd2/`2 = Ω(1).

4. CROSSING CONCATENATED VALLEYS
We now define a class of functions called ValleyPath

consisting of m consecutive valleys of the same size. Each
of the consecutive valleys is shifted such that the fitness at
the beginning of each valley is the same as that at the end
of the previous valley. Fitness values from one to the next
valley increase by an amount of d2 − d1 > 0. Formally:

h(i, j)ValleyPath :=

{
j · (d2 − d1) + d1 − i · d1`1 if i ≤ `1
j · (d2 − d1) + (i− `1) · d2

`2
if `1 < i ≤ `.

Here 0 < j ≤ m indicates a valley while 0 ≤ i ≤ `1 + `2 = `
indicates the position in the given valley. Hence, the global
optimum is the path point Pm·`.

0
0

fitness

`1 `

d1

d2

`1 `2

Figure 3: Sketch of the function ValleyPath.

ValleyPath represents a rugged fitness landscape with
many valleys and many local optima (peaks). It loosely re-
sembles a “big valley” structure found in many real-world
problems: from a high-level view the concatenation of val-
leys indicates a “global” gradient, i. e. the direction towards
valleys at higher indices. The difficulty for optimisation al-
gorithms is to overcome these many local optima and to
still be able to identify the underlying gradient. We show
here that both SSWM and Metropolis are able to exploit
this global gradient and find the global optimum efficiently.
Note that ValleyPath is a very broad function class in that
it allows for many shapes to emerge, from few deep valleys
to many shallow ones. Our results hold for all valley paths
with d1 < d2.

As in the analysis for Valley, instead of considering the
whole Markov chain underlying ValleyPath we take a high-
level view and consider the Markov chain that describes
transitions between neighbouring peaks. Since the peaks
have increasing fitness this chain is quite simple and we will
use drift arguments. The idea of the next theorem is simple:
if we can find constant bounds for the drift we will only need
to repeat the Valley experiment for as many peaks as there
are in ValleyPath.

Theorem 12. Consider any Algorithm 1 with local mu-
tations on ValleyPath. Consider the points in time where
the algorithm is on a peak and focus on transitions between
different peaks. Let Xt be a random variable describing the
number of peaks to the right of the current valley at the t-th
time a different peak is reached. If the drift over peaks can
be bounded by positive constants such that

0 < c1 ≤ E (Xt −Xt+1 | Xt = i > 0) ≤ c2

then the expected number of function evaluations for the al-
gorithm is

E (Tf ) = O
(
m · E

(
TOValley

))
and Ω

(
m · E

(
TΩ
Valley

))
where E

(
TOValley

)
and E

(
TΩ
Valley

)
are the upper and lower

bounds for Valley respectively.

Proof. Follows directly from the application of the standard
additive drift theorem [4].

We need a net positive drift towards the optimum to be
able to apply Theorem 12. The following lemma (proof omit-
ted) shows some conditions on the acceptance probability
pacc(∆f) that are sufficient to obtain this constant drift.
First, the acceptance probability for deleterious mutations
must decrease rapidly. Also the probability of accepting an
improvement of ∆f must be much bigger than accepting a
worsening of the same size with −∆f . Finally, pacc(∆f)
must be a non-decreasing function of ∆f .
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Lemma 13. Consider any algorithm described by Algo-
rithm 1 with local mutations on ValleyPath with `2 ≥ 2
and an acceptance probability such that for δ, α, β ≥ 1

(i) pacc(∆f) ≥ eαδ · pacc(∆f − δ) for ∆f < 0

(ii) pacc(∆f)
pacc(−∆f)

≥ eβδ

(iii) pacc(∆f) is non-decreasing.

Let Xt be a random variable describing the number of
peaks at the right of the current valley (see Theorem 12).
Then the drift between peaks E (Xt −Xt+1 | Xt = i > 0) can
be lower bounded by 2/c, for a constant c > 0.

4.1 SSWM
We analyse the runtime of SSWM on ValleyPath. The

following lemma shows that the fixation probability decreases
exponentially for deleterious mutations. This will be needed
to obtain a lower bound for the drift between peaks in order
to apply Theorem 12.

Lemma 14. Let δ, β ∈ R+ and ∆f ≤ 0. Then pfix(∆f) ≥
eδ · pfix(∆f − δ). Provided 2β(N − 1) ≥ 1 + 2 ·max

(
1, 1

δ

)
.

The previous lemma together with Lemma 13 allow to show
constant bounds for the drift between peaks. Then it is
straightforward to obtain the runtime of SSWM on ValleyPath.

Theorem 15. The expected number of function evalua-
tions for SSWM on ValleyPath with δ = d2/`2−d1/`1 ≥ 1,
`2 ≥ 2 and 2β(N − 1) ≥ 3 is

E (Tf ) = O
(
m · n ·

(
e2Nβd1(l1+1)/l1 + Θ(l2)

))
and

E (Tf ) = Ω
(
m · n ·

(
e2(N−1)βd1(l1−1)/l1 + Θ(l2)

))
.

Proof. Due to Lemmas 14 and 7, SSWM fits in Lemma 13
and we can apply Theorem 12 taking into account the opti-
misation time for Valley.

4.2 Metropolis
An equivalent result to that of the SSWM for ValleyPath

is shown for Metropolis in the following theorem.

Theorem 16. The expected number of function evalua-
tions for Metropolis on ValleyPath with δ = d2/`2−d1/`1 ≥
1, `2 ≥ 2 and δα > 1 is

E (Tf ) = O
(
m · n ·

(
eαd1(l1+1)/l1 + Θ(l2)

))
and

E (Tf ) = Ω
(
m · n ·

(
eαd1(l1−1)/l1 + Θ(l2)

))
.

Proof. Due to the exponential decrease of the acceptance
probability for deleterious mutations, Metropolis fits in
Lemma 13 and we can apply Theorem 12 taking into ac-
count the optimisation time for Valley.

Note that our approach can be extended to concatenations
of valleys of different sizes, assuming d1 < d2 for each valley.

5. CONCLUSIONS
We presented an analysis of randomised search heuris-

tics for crossing fitness valleys where no mutational bias
exists and thus the probability for moving forwards or back-
wards on the path depends only on the fitness difference

between neighbouring search points. Our focus was to high-
light characteristics of valleys where an elitist selection strat-
egy should be preferred to a non-elitist one and vice versa.
To achieve our goals we presented a mathematical frame-
work to allow the analysis of non-elitist algorithms on valleys
and paths of concatenated valleys. We rigorously proved
that while the (1+1) EA is efficient for valleys and valley
paths up to moderate lengths, both SSWM and Metropo-
lis are efficient when the valleys and valley paths are not
too deep. A natural direction for future work is to extend
the mathematical framework to allow the analysis of SSWM
with global mutations, thus highlighting the benefits of com-
bining both non-elitism and global mutations for overcoming
local optima.
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