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During the past 70 years, the quantum theory of angular momentum has been successfully applied to
describing the properties of nuclei, atoms, and molecules, and their interactions with each other as well as
with external fields. Because of the properties of quantum rotations, the angular-momentum algebra can be
of tremendous complexity even for a few interacting particles, such as valence electrons of an atom, not to
mention larger many-particle systems. In this work, we study an example of the latter: a rotating quantum
impurity coupled to a many-body bosonic bath. In the regime of strong impurity-bath couplings, the
problem involves the addition of an infinite number of angular momenta, which renders it intractable using
currently available techniques. Here, we introduce a novel canonical transformation that allows us to
eliminate the complex angular-momentum algebra from such a class of many-body problems. In addition,
the transformation exposes the problem’s constants of motion, and renders it solvable exactly in the limit of
a slowly rotating impurity. We exemplify the technique by showing that there exists a critical rotational
speed at which the impurity suddenly acquires one quantum of angular momentum from the many-particle
bath. Such an instability is accompanied by the deformation of the phonon density in the frame rotating
along with the impurity.
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I. INTRODUCTION

An important part of modern condensed matter physics
deals with so-called “impurity problems,” aiming to under-
stand the behavior of individual quantum particles coupled
to a complex many-body environment. The interest in
quantum impurities goes back to the classic works of
Landau, Pekar, Fröhlich, and Feynman, who showed that
propagation of electrons in crystals is largely affected by
the quantum field of lattice excitations and can be ration-
alized by introducing the quasiparticle concept of the
polaron [1–4]. In turn, the properties of a quantum many-
body system can be drastically modified by the presence of
impurities. The most well-known examples are the Kondo
effect [5]—suppression of electron transport due to mag-
netic impurities in metals—and the Anderson orthogonality
catastrophe,which leads to the edge singularities in the x-ray
absorption spectra of metals [6].
In many instances, the impurities—even those possess-

ing an internal structure—can be accurately described as

pointlike particles. The latter is justified by the separation
of the energy scales inherent to the impurity and the
surrounding bath. A well-known example is that of Bose
and Fermi polarons realized in cold atomic gases by a
number of groups [7–16]. There, the spherically symmetric
ground state of an alkali atom lies hundreds of THz lower
than any of its electronically excited states. Given ultracold
collision energies, such an energy gap renders all the
processes happening inside of an atom irrelevant.
More complex systems, such as molecules, are extended

objects and therefore possess a number of fundamentally
different types of internal motion. The latter stem from the
relative motion of the nuclei, such as rotation and vibration,
which couple to each other as well as to the electronic spin
and orbital degrees of freedom [17–20]. This results in a
rich low-energy dynamics which is highly susceptible to
external perturbations. Moreover, in many experimental
realizations molecular rotation is coupled to a phononic
bath pertaining to the surrounding medium, such as super-
fluid helium [21], a rare-gas matrix [22], or a Coulomb
crystal formed in an ion trap [23], which needs to be
properly accounted for by a microscopic theory.
The concept of orbital angular momentum, however,

goes far beyond physically rotating systems and is being
used to describe, e.g., the excited-state electrons in solids,
whose motion is perturbed by lattice vibrations [24], or
Rydberg atoms immersed into a Bose-Einstein condensate
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[25,26]. Despite the ubiquitous use of the angular-
momentum concept in various branches of physics, a
versatile theory describing the redistribution of orbital
angular momentum in quantum many-body systems has
not yet been developed.
Recently, we have undertaken the first step towards such

a theory by deriving a generic Hamiltonian that describes
the coupling of an SOð3Þ-symmetric impurity—a quantum
rotor—with a bath of harmonic oscillators [27]. We have
shown that the problem can be approached most naturally
by introducing the quasiparticle concept of the angulon—a
quantum rotor dressed by a quantum field. The angulon is
an eigenstate of the total angular momentum of the system,
which remains a conserved quantity in the presence of
the impurity-bath interactions. It was found that even
single-phonon excitations of the bath alone are capable
of drastically modifying the rotational spectrum of the
impurity, which manifests itself in the emerging many-
body-induced fine structure [27].
Here, we demonstrate that rotation of an anisotropic

impurity can, in turn, substantially alter the collective state
of a many-particle system. The effects are most significant
in the regime of strong correlations, which, however,
requires adding an infinite number of angular-momentum
vectors pertaining to possible many-body states. The result-
ing angular-momentum algebra involves Wigner 3nj sym-
bols [28] of an arbitrarily high order and is therefore
intractable using standard techniques. In order to overcome
this problem, here we introduce a canonical transformation,
which, to our knowledge, has never appeared in the literature
before. The transformation renders the Hamiltonian inde-
pendent of the impurity coordinates, thereby eliminating
the complex angular-momentum algebra from the many-
body problem. Furthermore, the transformation singles out
the conserved quantities of the many-body problem and
renders it solvable exactly in the limit of a slowly rotating
impurity.
The transformation makes it apparent that there exists a

critical rotational speed that leads to an instability, accom-
panied by a discontinuity in the many-particle spectrum.
Unlike in the vortex instability, originating from the
rotation of a condensate around a given axis [29], the
instability we uncover here corresponds to the finite
transfer of three-dimensional angular momentum between
the impurity and the bath. It exists solely due to the discrete
energy spectrum inherent to quantum rotation. We dem-
onstrate that the emerging instability is ushered by a
macroscopic deformation of the surrounding bath, i.e.,
the phonon density modulation in the frame corotating with
the impurity.

II. CANONICAL TRANSFORMATION

We start from the general Hamiltonian of the angulon
problem, as defined in Ref. [27]:

Ĥ ¼ BĴ2 þ
X
kλμ

ωkb̂
†
kλμb̂kλμ

þ
X
kλμ

UλðkÞ½Y�
λμðθ̂; ϕ̂Þb̂†kλμ þ Yλμðθ̂; ϕ̂Þb̂kλμ�; ð1Þ

where Yλμðθ̂; ϕ̂Þ are the spherical harmonics [28] depend-
ing on the molecular angle operators θ̂ and ϕ̂,

P
k ≡

R
dk,

and ℏ≡ 1.
The first term of Eq. (1) corresponds to the kinetic energy

of the translationally localized linear-rotor impurity, with B
the rotational constant and Ĵ the angular-momentum
operator. In the absence of an external bath, the impurity
eigenstates jj; mi are labeled by the angular momentum j
and its projection m onto the laboratory-frame z axis.
Unperturbed rotational states form ð2jþ 1Þ-fold degener-
ate multiplets with energies Ej ¼ Bjðjþ 1Þ [17,19,20].
The second term of Eq. (1) represents the kinetic energy

of the bosonic bath, where the corresponding creation and
annihilation operators, b̂†k and b̂k, are expressed in the
spherical basis, b̂†kλμ and b̂kλμ. Here, k ¼ jkj, while λ and μ

define, respectively, the boson angular momentum and its
projection onto the laboratory z axis; see Appendix A for
details.
The last term of Eq. (1) describes the interaction between

the impurity and the bath. The angular-momentum-
dependent coupling strength UλðkÞ depends on the micro-
scopic details of the two-body interaction between the
impurity and the bosons. For example, in Ref. [27] we
showed that, for a linear rotor immersed into a Bose gas,
the couplings are given by

UλðkÞ ¼ uλ

�
8k2ϵkρ

ωkð2λþ 1Þ
�
1=2 Z

drr2fλðrÞjλðkrÞ: ð2Þ

This assumes that in the impurity frame the interaction
between the rotor and a bosonic atom is expanded as

V imp-bosðr0Þ ¼
X
λ

uλfλðr0ÞYλ0ðΘ0;Φ0Þ; ð3Þ

with uλ and fλðr0Þ giving the strength and shape of the
potential in the corresponding angular-momentum channel.
The prefactor of Eq. (2) depends on the bath density ρ, the
kinetic energy of the bare atoms ϵk, and the dispersion
relation of the bosonic quasiparticles ωk. Since the angulon
Hamiltonian Eq. (1) describes the interactions between a
quantum rotor and a bosonic bath of, in principle, any kind,
we approach it from an entirely general perspective,
exemplifying the couplings by UλðkÞ of Eq. (2).
Many-body problems such as given by the Hamiltonian

Eq. (1) are typically hard to solve. The conventional
approaches to tackle them include, when applicable,
perturbation theory, renormalization group, or in principle
uncontrolled methods such as those based on the selective
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diagram resummations, as well as purely numerical tech-
niques. An alternative, actively used since the development
of classical mechanics, involves canonical transformations
of the underlying Hamiltonian [30,31]. Here, the idea is to
partially diagonalize the Hamiltonian and/or to expose the
constants of motion, which allows us to reveal some of the
eigenstates’ properties exactly. In the context of impurity
problems, typical approaches employ the collective bath
variables as a generator of the symmetry transformations,
as it has been used, e.g., in the polaron theory [32–34].
In the angulon problem discussed in this paper, the total

angular momentum is a good quantum number. However,
due to the coupling of bath degrees of freedom with the
impurity coordinates, as given by the third term of Eq. (1),
this conservation law is not apparent. Here, we introduce a
canonical transformation that makes this constant of motion
explicit and allows us to achieve several other goals listed
below. The corresponding operator Ŝ uses the composite
angular momentum of the bath as a generator of rotation,
which transfers the environment degrees of freedom into
the frame corotating along with the quantum rotor. The
transformation is given by

Ŝ ¼ e−iϕ̂⊗Λ̂ze−iθ̂⊗Λ̂ye−iγ̂⊗Λ̂z : ð4Þ

The angle operators ðϕ̂; θ̂; γ̂Þ act in the Hilbert space of the
rotor, and

Λ̂ ¼
X
kλμν

b̂†kλμσλμνb̂kλν ð5Þ

is the collective angular-momentum operator of the many-
body bath, acting in the Hilbert space of the bosons.
Here, σλ denotes the vector of matrices fulfilling the
angular-momentum algebra in the representation of angular
momentum λ.
The transformation brings the Hamiltonian Eq. (1) into

the following form:

Ĥ≡ Ŝ−1Ĥ Ŝ ¼ BðĴ0 − Λ̂Þ2 þ
X
kλμ

ωkb̂
†
kλμb̂kλμ

þ
X
kλ

VλðkÞ½b̂†kλ0 þ b̂kλ0�: ð6Þ

Here, VλðkÞ ¼ UλðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2λþ 1Þ=ð4πÞp

and Ĵ0 is the
“anomalous” angular-momentum operator acting in the
rotating frame of the impurity. Since the components of Ĵ0

act in the body-fixed frame, they obey anomalous com-
mutation relations [20,35] as opposed to the “ordinary”
angular-momentum operator, Ĵ of Eq. (1), which acts
in the laboratory frame. The details of the derivation, as
well as the properties of the Ĵ0 operator, are presented in
Appendix B.
We now discuss the physical meaning of the trans-

formation Ŝ. In order to describe the composite system, it is

natural to introduce two coordinate frames, as schemati-
cally shown in Fig. 1. The laboratory frame ðx; y; zÞ is
singled out by the collective state of the bosons, while the
rotating impurity frame ðx0; y0; z0Þ is defined by the instan-
taneous orientation of the molecular axes. The relative
orientation of the two frames is given by the eigenvalues of
the Euler angle operators ðϕ̂; θ̂; γ̂Þ acting in the impurity
Hilbert space. The Ŝ operator transforms the many-body
state of the bosons into the rotating molecular frame, using
Λ̂ as a generator of quantum rotations. In turn, as we show
below, the molecular state in the transformed frame
becomes an eigenstate of the total angular momentum of
the system, which is a constant of motion.
Introducing the body-fixed coordinate frame bound to

the impurity makes explicit an additional quantum number,
n, which gives the projection of the angular momentum
onto the rotor axis z0. The angular-momentum basis states
jj; m; ni are therefore the eigenstates of the Ĵ2, Ĵz, and Ĵ0z
operators, as given by Eqs. (C1)–(C3) of Appendix C.
For a linear-rotor molecule in the absence of a bath, the

total angular momentum L̂ ¼ Ĵþ Λ̂ coincides with Ĵ.
Therefore, L̂ is perpendicular to the molecular axis z0,
resulting in n ¼ 0. With the bosons present, the total
angular momentum is no longer perpendicular to z0,
providing the molecular state with nonzero n in the trans-
formed frame. In other words, the transformation Eq. (4)
converts a linear-rotor molecule into an effective “sym-
metric top” [20] by dressing it with a boson field.
Compared to the original Hamiltonian, Eq. (1), the

transformed Hamiltonian, Eq. (6), possesses the following
properties.
(1) Ĥ is explicitly expressed through the total angular

momentum, which is a constant of motion. Because

x’

y’

z’

y

x y

x

z

z
S
^

x’

y’

z’

J L+ = J 2 = L2

FIG. 1. Action of the canonical transformation, Eq. (4), on the
many-body system. Left: In the laboratory frame, ðx; y; zÞ, the
molecular angular momentum J combines with the bath angular
momentum Λ to form the total angular momentum of the system
L. Right: After the transformation, the bath degrees of freedom
are transferred to the rotating frame of the molecule, ðx0; y0; z0Þ.
As a result, the molecular angular momentum in the transformed
space coincides with the total angular momentum of the system in
the laboratory frame.

DEFORMATION OF A QUANTUM MANY-PARTICLE SYSTEM … PHYS. REV. X 6, 011012 (2016)

011012-3



of the isotropy of space, the eigenstates of the
original Hamiltonian Ĥ are simultaneous eigenstates
of the total angular-momentum operators L̂2 and L̂z,
and thus can be labeled as jL;Mi. The transformed
states Ŝ−1jL;Mi are hence the eigenstates of the
transformed Hamiltonian Ĥ. As detailed in Appen-
dix C, these transformed states are also eigenstates
of the Ĵ02 operator with the eigenvalues LðLþ 1Þ,
corresponding to the total angular momentum.
Consequently, the Ĵ02 operator in Eq. (6) can be
replaced by the classical number LðLþ 1Þ.

(2) Ĥ does not contain the impurity coordinates ðθ̂; ϕ̂Þ,
which allows us to bypass the intractable angular-
momentum algebra, arising from the impurity-
bath coupling. The angle operators of the original
Hamiltonian, Eq. (1), couple the impurity states with
every single boson excitation, which results in the
problem of adding an infinite number of angular
momenta in three dimensions. The latter involves
working with Wigner 3nj symbols of an arbitrarily
large order. In the transformed Hamiltonian, on the
other hand, the problem is reduced to adding the
angular-momentum projections of the impurity and
the bath. There, the impurity-bath coupling, Ĵ0 · Λ̂,
has the form of spin-orbit interaction and does not
lead to an involved angular-momentum algebra.

(3) Ĥ can be solved exactly in the limit of a slowly
rotating impurity, B → 0; see Sec. III.

(4) Ĥ allows us to find the eigenstates containing an
infinite number of phonon excitations, which is
crucial, e.g., to account for the macroscopic defor-
mation of the condensate. This follows directly from
point (2) above, and is detailed in Sec. III.

(5) Ĥ contains information about the deformation of the
condensate in the rotating impurity frame. Com-
pared to the laboratory frame, where the deformation
of the bath is averaged over the angles, this provides
an additional insight into the nature of the many-
body state and, consequently, into the origin of the
angulon instability, discussed in Sec. III.

III. MACROSCOPIC DEFORMATION OF THE
BATH AND THE EMERGING INSTABILITY

In the limit of a slowly rotating impurity, B → 0, the
Hamiltonian Eq. (6) can be solved exactly by means of an
additional canonical transformation:

ℋ̂ ¼ Û−1Ĥ Û; ð7Þ

where

Û ¼ exp

�X
kλ

VλðkÞ
Wkλ

ðb̂kλ0 − b̂†kλ0Þ
�
; ð8Þ

with Wkλ ¼ ωk þ Bλðλþ 1Þ. This transformation removes
the terms linear in the bosonic operators, replacing them by
the deformation energy of the bath:

Edef ¼ −X
kλ

VλðkÞ2=Wkλ: ð9Þ

As a consequence, in the limit of B ¼ 0, the vacuum of
phonon excitations j0i becomes the exact ground state of
Eq. (7). On the other hand, such a coherent shift trans-
formation corresponds to a macroscopic deformation of the
bath, and could not be easily performed on the original
Hamiltonian Eq. (1) where the impurity coordinates are
strongly coupled with the bath degrees of freedom.
Here, we are interested in the effect of a slowly rotating

impurity on the many-body state of the environment.
Therefore, we introduce a variational ansatz based on
single-phonon excitations on top of the bosonic state
macroscopically deformed by the operator Û:

jψi ¼ gLMj0ijLM0i þ
X
kλn

αkλnb̂
†
kλnj0ijLMni: ð10Þ

The states of an isolated symmetric-top molecule are
characterized by three quantum numbers: the angular
momentum L, its projection M onto the laboratory-frame
z axis, and its projection n onto the molecular symmetry
axis z0. For a linear-rotor molecule, the angular momentum
vector is always perpendicular to the molecular axis and
therefore n is identically zero. The transformation Eq. (4),
however, transfers the bosons to the molecular frame,
thereby creating an effective “many-body symmetric-top”
state. The latter consists of a linear-rotor impurity dressed
by the field of bosons carrying finite angular momentum.
As a result, the total angular momentum of such a
symmetric top is no longer perpendicular to the linear-
rotor axis and provides the finite values of the projection n.
See Appendix C for more details.
It is worth emphasizing that the nontransformed many-

body wave function corresponding to Eq. (10) is given by
jϕi ¼ Ŝ · Ûjψi. Therefore, it is a highly involved object
with an infinite number of degrees of freedom entangled
with each other. The simple ansatz of Eq. (10) is made
possible by the consecutive canonical transformations,
Eqs. (4) and (8). Furthermore, it is straightforward to
extend Eq. (10) to bath excitations of higher order, since
this does not generate any complexities related to the
angular-momentum algebra.
Performing the variational solution for the energy,

E ¼ hψ jℋ̂jψi=hψ jψi, we obtain the condition

−Eþ BLðLþ 1Þ − ΣLðEÞ ¼ 0; ð11Þ
which has the form of a Dyson equation with self-energy
ΣLðEÞ [36], as given by Eq. (D13); see Appendix D for a
detailed derivation. Equation (11) can be rewritten in terms
of the angulon Green’s function as ½GLðEÞ�−1 ¼ 0, where
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½GLðEÞ�−1 ¼ ½G0
LðEÞ�−1 − ΣLðEÞ; ð12Þ

with ½G0
LðEÞ�−1 ¼ −Eþ BLðLþ 1Þ.

The ground- and excited-state properties of the
system are contained in the spectral function, ALðEÞ¼
Im½GLðE þi0þÞ�. Without restricting the generality of what
follows, we assume potentials whose angular-momentum
expansion, Eq. (3), is given by the Gaussian form factors,
fλðrÞ ¼ ð2πÞ−3=2e−r2=ð2r2λÞ, and nonzero magnitudes, u0
and u1, in two lowest angular-momentum channels.
We assume an anisotropy ratio of u1=u0 ¼ 5, a range
r0 ¼ r1 ¼ 15ðmu0Þ−1=2, and set the interactions with λ > 1
to zero. Furthermore, we use a Bogoliubov-type dispersion
relation,ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵkðϵk þ 2gbbnÞ

p
, where ϵk ¼ k2=2mwithm

the mass of a boson.We choose the boson-boson interaction
gbb ¼ 418ðm3u0Þ−1=2 and density n ¼ 0.014ðmu0Þ3=2. This
choice of parameters reproduces the speed of sound in
superfluid 4He for u0 ¼ 2π × 100 GHz [37]. Figure 2
shows the dependence of the spectral function on the
rotational constant B for the three lowest rotational states.
The width of the lines reflects the lifetimes of the corre-
sponding levels. InRef. [27], we studied the nontransformed
Hamiltonian Eq. (1) using a variational ansatz based on
single-phonon excitations. Using this ansatz we found that
the angulon states become stable after crossing the phonon

threshold at zero energy. Here, this is no longer the case,
since the transformation Û of Eq. (8) introduces an infinite
number of phonon excitations into the variational ansatz.
This leads to an energetic renormalization of the phonon
emission threshold providing all the excited angulon states
with decay channels for phonon emission. This, in turn,
leads to a finite lifetime for any magnitude of the impurity-
bath coupling.
In the limit of B → 0 the molecule is not rotating and is

inducing an anisotropic deformation of the bath, corre-
sponding to themean-field-like deformation energy, Eq. (9).
The magnitude of the deformation energy decreases with B
monotonically and determines the general shape of the
spectrum. Apart from the deformation energy which is
identical for all L’s, the energy of the angulon acquires
an additional contribution due to phonon excitations in the
surrounding medium. The latter corresponds to the rota-
tional Lamb shift discussed in Ref. [27], which has been
observed as the renormalization of the rotational spectrum
for molecules in superfluid helium nanodroplets [21]. Most
importantly, we find that for the excited states with L > 0
there exists a critical rotational constant, where a disconti-
nuity in the rotational spectrum occurs. This effect corre-
sponds to a transfer of one quantum of angular momentum
from the bath to the impurity. One can see that the faster
the rotation (i.e., the larger L), the earlier this instability
occurs. Such an instability has been briefly discussed in
Ref. [27], where it was referred to as many-body-induced
fine structure of the second kind.
While the instability can be detected using spectroscopy

in the laboratory frame, an insight into its origin can be
gained by making use of the canonical transformation,
Eq. (4). Namely, in the frame corotating with the impurity,
the instability manifests itself as a change of the phonon
density hb̂†r b̂ri; for analytic expressions, see Appendix E.
Figure 3 shows the phonon density for L ¼ 1 and 2 at five
different values of the impurity rotational constant. Darker
shade corresponds to higher density. Far to the left of the
instability, Fig. 3(a), the impurity is rotating slowly and the
bosons are able to adiabatically follow its motion. As a
result, the surrounding bath becomes polarized, which
manifests itself in a highly asymmetric phonon density.
The shape of the density modulation is given by the first
spherical harmonic, which arises due to the λ ¼ 1 term in
the impurity-boson potential included in our model. Closer
to the instability, Fig. 3(b), the phonon density increases,
signaling the onset of the resonant phonon excitations.
At the right edge of the instability, Fig. 3(c), the phonon
density drops drastically. Farther away from the instability,
the density distribution becomes more symmetric the faster
the impurity rotates, as illustrated in Figs. 3(d) and 3(e).
In other words, when the rotational constant exceeds the
critical value given by the instability, it becomes energeti-
cally unfavorable for the bosons to follow the motion of
the impurity. As a consequence, the bosonic bath does not
possess finite angular momentum, which results in the
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–0.2

0

log[B/u  ]0

L = 0

L = 1

L = 2

/u
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0
ω
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0

ω

(a)

(b)

(c) (d)

–0.2

0

(a)

(b)

(c) (d)

FIG. 2. Change of the angulon spectral function ALðωÞ, where
ω ¼ E − BLðLþ 1Þ, with the rotational constant B, for three
lowest total angular-momentum states. The L > 0 states show
an instability in the spectrum. The red dashed line shows the
deformation energy, Eq. (9), which is independent of L.
The circles indicate the points for which the phonon density
modulation is shown in Fig. 3.

DEFORMATION OF A QUANTUM MANY-PARTICLE SYSTEM … PHYS. REV. X 6, 011012 (2016)

011012-5



spherically symmetric density distribution. Thus, the pho-
non density in the transformed frame can serve as a
fingerprint of the angular-momentum transfer from the bath
to the impurity which takes place at the instability point.
It is important to note that the “angulon instability” we

discuss here is fundamentally different from the vortex
instability [29], also associated with rotation. The com-
parison between the two is summarized in Table I. First, the
rotation of the impurity is inherently three dimensional and
does not involve any specific rotation axis. This is different
for a vortex line, which singles out a particular direction in
space. Second, the formation of a vortex requires a transfer
of one unit of angular momentum per particle in the bath. In
the angulon instability, on the other hand, a finite (small)
number of rotational quanta is shared between the impurity
and the collective state of the many-particle environment.
Finally, the vortex instability leads to a finite circulation
around the vortex line, which is absent for the angulon
instability.

IV. EXPERIMENTAL IMPLEMENTATION

The described effects can be observed experimentally
both with molecules trapped in strongly interacting super-
fluids, such as helium droplets [21], and with molecular
impurities immersed in weakly interacting Bose-Einstein
condensates [29]. The dependence of the angulon self-
energy, ΣL of Eq. (12), on the many-body parameters can
be revealed by measuring the relative shift between the
rotational states of a diatomic molecule. Since the effects
will be most pronounced for the molecular states possess-
ing a small rotational constant B, experiments involving
molecules in highly excited vibrational states provide the
most natural setup. In the context of ultracold gases, the
latter include photoassociation spectroscopy [38] and
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FIG. 3. Phonon density in the impurity frame for selected values
of log½B=u0�, which are specified in the right-hand top corner of the
panels and (a)–(d) as labeled in Fig. 2; (e) far to the right from the
instability, at log½B=u0� ¼ 3.5 for L ¼ 1 and at log½B=u0� ¼ 3.0

for L ¼ 2. The coordinates ðx; zÞ are in units of ðmu0Þ−1=2.

TABLE I. Comparison of the angulon instability with the
vortex instability.

Angulon Vortex

Corresponding rotation Spherical, L̂2 Planar, L̂z
Angular momentum transfer ℏ ℏ per particle
Circulation Zero integer × 2πℏ=m

L=2
L=0

(a)

L=0

(b)

ΣL

ΣL

closed channel

open channel

FIG. 4. Detection of the angulon self-energy ΣL using (a) photo-
association spectroscopy [38] and (b) shift of p- and d-wave
Feshbach resonances [39].
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measuring nonzero angular-momentum Feshbach resonan-
ces [39]. In both cases, the shifts of the spectroscopic lines
will be proportional to the angulon self-energy, as sche-
matically illustrated in Fig. 4. An alternative possibility is
measuring ΣL as a shift of the microwave lines in the
spectra of weakly bound molecules [40], prepared using
one of these techniques. In the frequency domain, at
sufficiently low temperatures the width of the lines will
correspond to the angulon lifetime. The instability shown in
Fig. 2 corresponds to the vanishing quasiparticle weight
with a related emergence of a broad incoherent background
and therefore can be detected as a line broadening with
increasing impurity-bath interactions. In the time domain,
on the other hand, the angulon Green’s function can be
detected using Ramsey and spin-echo techniques [41,42].
In such a measurement, the angulon instability leads to
dephasing dynamics with a related pronounced decay of the
Ramsey and spin-echo contrast [41,42].
While in superfluid helium the interactions cannot be

tuned as easily as in ultracold gases, the range of chemical
species amenable to trapping is essentially unlimited [21].
The latter, combined with advances in the theory of
molecule-helium interactions [43], paves the way to study-
ing angulon physics in a broad range of parameters.

V. CONCLUSIONS

In this paper, we study the redistribution of orbital
angular momentum between a quantum impurity and a
many-particle environment. We introduce a technique that
allows us to drastically simplify the problem of adding an
infinite number of angular momenta which occur in the
regime of strong interactions. The essence of the method—
a novel canonical transformation—paves the way to elimi-
nating the complex angular-momentum algebra from the
problem, as well as to exposing the problem’s constants of
motion. We exemplifiy the technique’s capacity by study-
ing an instability that occurs in the spectrum of the many-
particle system due to the interaction between the bath and
the rotating impurity. Such an instability should be detect-
able with molecules in superfluid helium droplets [21] and
might be responsible for the long time scales emerging in
molecular rotation dynamics in the presence of an environ-
ment [44], which presently lacks even a qualitative explan-
ation. Moreover, the rotating impurities can be prepared
experimentally in perfectly controllable settings, based on
ultracold molecules immersed into a Bose or Fermi gas
[17,18,45] and cold molecular ions inside Coulomb crystals
[23]. It is important to note that the transformation, as
defined by Eq. (4), is quite general, and can be applied to
extended Fröhlich Hamiltonians [36], to impurities with
complex rotational structure [20], Rydberg molecules
[25,46–48], as well as to the case of a fermionic bath [49].
The ultimate goal of our approach is to find a series of

canonical transformations that would lead to exact solu-
tions to the many-body Hamiltonians of the same class as

Eq. (1). This resonates with Wegner’s idea of the continu-
ous unitary transformations [50], which underlies one of
the Hamiltonian formulations of the renormalization group
approach [51].
Finally, the impurity problem we consider here can be

used as a building block of a general theory describing the
redistribution of orbital angular momentum in quantum
many-particle systems. This opens up a perspective of
applying the techniques of this article to the several
problems in condensed matter [24] and chemical [52]
physics.
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APPENDIX A: ANGULAR-MOMENTUM
REPRESENTATION

The creation and annihilation operators of Eq. (1) are
expressed in the angular momentum representation, which
is related to the Cartesian representation as

b̂†kλμ ¼
k

ð2πÞ3=2
Z

dΦkdΘk sinΘkb̂
†
ki

λY�
λμðΘk;ΦkÞ; ðA1Þ

b̂†k ¼ ð2πÞ3=2
k

X
λμ

b̂†kλμi
−λYλμðΘk;ΦkÞ: ðA2Þ

The quantum numbers λ and μ define, respectively, the
angular momentum of the bosonic excitation and its projec-
tion onto the laboratory-frame z axis. Equations (A1)
and (A2) correspond to the following commutation relations:

½b̂k; b̂†k0 � ¼ ð2πÞ3δð3Þðk − k0Þ; ðA3Þ

½b̂kλμ; b̂†k0λ0μ0 � ¼ δðk − k0Þδλλ0δμμ0 : ðA4Þ

In the coordinate space, the transformation between the
representations is defined as

b̂†rλμ ¼ r
Z

dΦrdΘr sinΘrb̂
†
riλY�

λμðΘr;ΦrÞ; ðA5Þ

b̂†r ¼
1

r

X
λμ

b̂†rλμi
−λYλμðΘr;ΦrÞ; ðA6Þ

with the corresponding commutation relations,

½b̂r; b̂†r0 � ¼ δð3Þðr − r0Þ; ðA7Þ
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½b̂rλμ; b̂†r0λ0μ0 � ¼ δðr − r0Þδλλ0δμμ0 : ðA8Þ

The operators in the coordinate and momentum space are
related through the Fourier transform,

b̂†r ¼
Z

d3k
ð2πÞ3 b̂

†
ke

ik·r; ðA9Þ

from which one can obtain the corresponding relation for
the angular-momentum components,

b̂†rλμ ¼ iλ
ffiffiffi
2

π

r
r
Z

kdkjλðkrÞb̂†kλμ; ðA10Þ

with jλðkrÞ the spherical Bessel function [53].

APPENDIX B: CANONICAL TRANSFORMATION

Here, we provide details on the derivation of the trans-
formed Hamiltonian, Eq. (6).
In the angular-momentum representation, the boson

creation and annihilation operators, b̂†kλμ and b̂kλμ,
are defined as irreducible tensors of rank λ [28].
Consequently, they are transformed by the Ŝ operator of
Eq. (4) in the following way:

Ŝ−1b̂†kλμŜ ¼
X
ν

Dλ�
μνðϕ̂; θ̂; γ̂Þb̂†kλν; ðB1Þ

Ŝ−1b̂kλμŜ ¼
X
ν

Dλ
μνðϕ̂; θ̂; γ̂Þb̂kλν: ðB2Þ

Here, Dλ
μνðϕ̂; θ̂; γ̂Þ are Wigner D matrices [28] whose

arguments are the angle operators defining the relative
orientation of the impurity frame with respect to the
laboratory frame. These expressions can also be derived
using the explicit expression for the angular momentum of
the bosons, Eq. (5).
The Wigner rotation matrix appearing in Eq. (B1) is

complex conjugate with respect to the one of Eq. (B2) and
therefore corresponds to an inverse rotation. As a result,

Ŝ−1
�X

μ

b̂†kλμb̂kλμ

�
Ŝ ¼

X
μ

b̂†kλμb̂kλμ; ðB3Þ

and the second term of Eq. (1) does not change under the
transformation.
Similarly, in the last term of Eq. (1) we use that

Yλμðθ̂; ϕ̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2λþ 1Þ=ð4πÞp

Dλ�
μ0ðϕ̂; θ̂; 0Þ, which leads to

cancellation of the Wigner D matrices. In such a way, the
transformation Ŝ eliminates the molecular angle variables
from the Hamiltonian.
The transformation of the molecular rotational

HamiltonianBĴ2 turns out to be slightly more cumbersome.

In the laboratory frame, the angular-momentum vector is
defined by its spherical components, Ĵ ¼ fĴ−1; Ĵ0; Ĵþ1g,
where

Ĵ0 ¼ Ĵz; ðB4Þ

Ĵþ1 ¼ − 1ffiffiffi
2

p ðĴx þ iĴyÞ; ðB5Þ

Ĵ−1 ¼
1ffiffiffi
2

p ðĴx − iĴyÞ; ðB6Þ

see Refs. [28,35]. We use the analogous notation for
the components of the total angular momentum of the
bosons Λ̂ ¼ fΛ̂−1; Λ̂0; Λ̂þ1g, Eq. (5). The operators,
Eqs. (B4)–(B6), obey the following commutation relations
with each other,

½Ĵi; Ĵk� ¼ − ffiffiffi
2

p
C1;iþk
1;i;1;kĴiþk; ðB7Þ

where i, k ¼ f−1; 0;þ1g, and with the rotation operators,

½Ĵk; Dλ
μνðϕ̂; θ̂; γ̂Þ�

¼ ð−1Þkþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þ

p
Cλ;μ−k
λ;μ;1;−kDλ

μ−k;νðϕ̂; θ̂; γ̂Þ; ðB8Þ

½Ĵk; Dλ�
μνðϕ̂; θ̂; γ̂Þ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þ

p
Cλ;μþk
λ;μ;1;kD

λ�
μþk;νðϕ̂; θ̂; γ̂Þ:

ðB9Þ

Here, Cl3;m3

l1;m1;l2;m2
are the Clebsch-Gordan coefficients [28].

By using the latter property, one can show that the
operators Eqs. (B4)–(B6) transform under Eq. (4) in the
following way:

Ĵ i ≡ Ŝ−1ĴiŜ ¼ Ĵi −
X

k¼−1;0;1
D1�

ik ðϕ̂; θ̂; γ̂ÞΛ̂k: ðB10Þ

After some angular-momentum algebra, we obtain the
following expression for the square of the angular momen-
tum in the transformed frame:

Ŝ−1Ĵ2Ŝ≡ Ĵ 2
0 − Ĵ þ1Ĵ −1 − Ĵ −1Ĵ þ1 ¼ ðĴ0 − Λ̂Þ2:

ðB11Þ

Here, Ĵ0 is the angular-momentum operator in the
rotating molecular (i.e., body-fixed) coordinate frame
[20,35], which can be expressed via the laboratory-frame
components as

Ĵ0i ¼
X
k

D1
k;iðϕ̂; θ̂; γ̂ÞĴk: ðB12Þ

The spherical components of Ĵ0 are expressed through the
Cartesian components using the relations analogous to
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Eqs. (B4)–(B6). Note that this makes the Ĵ0 operators
different from the so-called contravariant angular-
momentum components used by Varshalovich et al. [28].
The molecular-frame angular-momentum operators

obey the anomalous commutation relations with one
another [19,35],

½Ĵ0i; Ĵ0k� ¼
ffiffiffi
2

p
C1;iþk
1;i;1;kĴ

0
iþk; ðB13Þ

and the following commutation relations with the rotation
matrices,

½Ĵ0k; Dλ
μνðϕ̂; θ̂; γ̂Þ� ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðλþ 1Þ
p

Cλ;νþk
λ;ν;1;kD

λ
μ;νþkðϕ̂; θ̂; γ̂Þ;

ðB14Þ

½Ĵ0k; Dλ�
μνðϕ̂; θ̂; γ̂Þ� ¼ ð−1Þk ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðλþ 1Þ
p

Cλ;ν−k
λ;ν;1;−kDλ�

μ;ν−kðϕ̂; θ̂; γ̂Þ:
ðB15Þ

It is worth noting that, in the case of a linear-rotor
molecule, the molecule-boson interaction does not depend
on the third Euler angle, γ̂. However, this angle must be
preserved in Eq. (4), as well as in all the derivations
described above, in order to keep the transformation
unitary.

APPENDIX C: MOLECULAR STATES IN THE
TRANSFORMED SPACE

In the main text and Fig. 1 we introduce two coordinate
frames: the laboratory one, ðx; y; zÞ, and the molecular one,
ðx0; y0; z0Þ. A general molecular state, therefore, can be
characterized by three quantum numbers: the magnitude of
angular momentum j, its projection m onto the laboratory-
frame z axis, and its projection n onto the molecular-frame
z0 axis:

Ĵ2jj; m; ni ¼ jðjþ 1Þjj; m; ni; ðC1Þ

Ĵzjj; m; ni ¼ mjj; m; ni; ðC2Þ

Ĵ0zjj; m; ni ¼ njj; m; ni: ðC3Þ

In the angular representation, the corresponding wave
functions are given by [20]

hϕ; θ; γjj; m; ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

8π2

r
Dj�

mnðϕ; θ; γÞ: ðC4Þ

The action of the space-fixed and molecule-fixed com-
ponents of angular momentum is given by the general
formula [19,35],

Ĵkjj; m; ni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
Cj;mþk
j;m;1;kjj; mþ k; ni; ðC5Þ

Ĵ0kjj; m; ni ¼ ð−1Þk ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

p
Cj;n−k
j;n;1;−kjj; m; n − ki; ðC6Þ

where k ¼ f−1; 0;þ1g. Thus, in the molecular frame the
raising operators lower the projection quantum number n
and the lowering operators raise it.
Unlike for nonlinear polyatomic molecules [20], the

angular momentum of a linear rotor is always perpendicular
to the internuclear axis (defining z0), and therefore n is
identically zero. However, this is the case only before the
transformation Ŝ is applied. Let us consider the most
general many-body state in the nontransformed frame:

jL;Mi ¼
X
kλμ
jm;i

aikλjC
L;M
j;m;λ;μjjm0i ⊗ jkλμii: ðC7Þ

The molecular states jjm0i are the eigenstates of the
molecular angular-momentum operator, as given by
Eqs. (C1) and (C2). The same relations are fulfilled for
the collective bosonic states: Λ̂2jkλμi ¼ λðλþ 1Þjkλμi and
Λ̂zjkλμi ¼ μjkλμi, where Λ̂ is defined by Eq. (5), and k is
the linear momentum. The index i labels all the possible
boson configurations resulting in a collective state jkλμi,
spanning the complete many-body Hilbert space of the
bosonic bath.
It is straightforward to show that the state, Eq. (C7),

is an eigenstate of the total angular-momentum operator,
L̂ ¼ Ĵþ Λ̂:

L̂2jL;Mi ¼ LðLþ 1ÞjL;Mi; ðC8Þ

L̂zjL;Mi ¼ MjL;Mi: ðC9Þ

By acting on jL;Mi with Ŝ−1, after some angular-
momentum algebra, we obtain the state in the transformed
frame:

Ŝ−1jL;Mi ¼
X
kλni

fikλnjLMni ⊗ jkλnii; ðC10Þ

where the coefficients are given by

fikλn ¼ ð−1Þλþn
X
j

aikλjC
j;0
L;−n;λ;n: ðC11Þ

We see that the transformation effectively transfers the
angular momentum of the bosons to the molecular frame.
This is reflected by the fact that the transformed state,
Ŝ−1jL;Mi, becomes an eigenstate of the body-fixed angu-
lar momentum operator Ĵ02, with the eigenvalues of the total
angular-momentum operator L̂2; i.e.,

Ĵ02ðŜ−1jL;MiÞ ¼ LðLþ 1ÞðŜ−1jL;MiÞ: ðC12Þ

Each state jLMni in the superposition of Eq. (C10) is an
effective symmetric-top state [20], with the projection of
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total angular momentum on the molecular axis entirely
determined by the boson field.

APPENDIX D: DERIVATION OF THE DYSON
EQUATION FROM THE VARIATIONAL

PRINCIPLE

We minimize the energy obtained from the expectation
value of Eq. (7) with respect to the variational state:

jψi ¼ gLMj0ijLM0i þ
X
kλn

αkλnb̂
†
kλnj0ijLMni: ðD1Þ

Minimization with respect to α�kλn and g�LM yields the
following equations:

½−Eþ BLðLþ 1Þ�gLM þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

p X
kλ

ξkλαkλn ¼ 0

ðD2Þ
and

½−Eþ BLðLþ 1Þ þWkλ�αkλn − 2B
X
ν

σλnνηL
nναkλν

þ Bδn;�1ξkλ
X
k0λ0

ξk0λ0αk0λ0n

¼ −B ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

p
ξkλgLMδn;�1; ðD3Þ

where we define δn;�1¼δn;1þδn;−1, ξkλ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ1Þp

VλðkÞ=
Wkλ,Wkλ ¼ ωk þ Bλðλþ 1Þ, andηL

nν ¼ hLMnjĴ0jLMνi. In
what follows, we show that Eqs. (D2) and (D3) can be solved
in closed form.
First, the angular-momentum coupling term of Eq. (D3)

is given by

σλnνηL
nν ¼ n2δnν þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þ − νðνþ 1Þ

p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ − νðνþ 1Þ

p
δn;νþ1

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðλþ 1Þ − νðν − 1Þ

p

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ − νðν − 1Þ

p
δn;ν−1: ðD4Þ

Assuming that VλðkÞ ≠ 0 for λ ¼ 0, 1 only, we obtain that
Eqs. (D2) and (D3) are solved by αkλn ¼ 0 for λ ¼ 0.
Consequently, gLM, αk1�1, and αk10 are the only variational
parameters.
For αk10, we obtain

½−Eþ BLðLþ 1Þ þ ωk þ 2B�αk10
− B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðLþ 1Þ

p
ðαk11 þ αk1−1Þ ¼ 0: ðD5Þ

For the αk1�1 components, we find two identical
equations:

½−Eþ BLðLþ 1Þ þ ωk�αk1;�1 − B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðLþ 1Þ

p
αk10

þ Bξk1
X
k0
ξk01αk01;�1

¼ −B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

p
ξk1gLM: ðD6Þ

By symmetry we expect jαk11j ¼ jαk1−1j; however, if
αk11 ¼ −αk1−1 were true, Eq. (D5) would imply
αk10 ¼ 0. This in turn would lead to a contradiction in
Eq. (D6), which shows that αk11 ¼ αk1−1.
Thus, from Eq. (D5) we obtain

αk10 ¼
2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðLþ 1Þp

−Eþ ωk þ BLðLþ 1Þ þ 2B
αk11: ðD7Þ

Let us now define the inverse propagator,

PEðkÞ ¼ BLðLþ 1Þ − Eþ ωk

− 4B2LðLþ 1Þ
−Eþ ωk þ BLðLþ 1Þ þ 2B

; ðD8Þ

and rewrite Eq. (D6) as

αk11 ¼− Bξk1
PEðkÞ

X
k0
ξk01αk011−B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ1Þp

ξk1
PEðkÞ

gLM: ðD9Þ

In addition it is convenient to introduce the variable χ as

gLMχ ¼
X
k

ξk1αk11: ðD10Þ

After multiplying Eq. (D9) with ξk1 and integration over k,
we find

χ ¼ −B ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðLþ 1Þ

p R∞
0 dkξ2k1=PEðkÞ

1þ B
R∞
0 dkξ2k1=PEðkÞ

: ðD11Þ

Finally, this yields the Dyson equation:

−Eþ BLðLþ 1Þ − ΣLðEÞ ¼ 0; ðD12Þ

where the self-energy is given by

ΣLðEÞ ¼ B2LðLþ 1Þ
R∞
0 dkξ2k1=PEðkÞ

1þ B
R∞
0 dkξ2k1=PEðkÞ

ðD13Þ

and

ξk1 ¼
ffiffiffi
2

p V1ðkÞ
ωk þ 2B

: ðD14Þ

Furthermore, we absorb the deformation energy Edef,
Eq. (9), which is identical for all the L levels, into
the definition of E. Note that if B=uλ ≫ 1, the self-energy
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ΣL→BLðLþ1Þ and the Dyson equation is solved by E¼0.
This means that for weak interactions the impurity levels
are shifted by the mean-field deformation energy only.
The self-energy of Eq. (D13) can be partially evaluated

analytically. It is convenient to define

ω ¼ E − BLðLþ 1Þ ðD15Þ
and to rewrite the retarded self-energy, Σret

L ðωÞ≡
ΣLðωþi0þÞ, as

Σret
L ðωÞ ¼ 2B2LðLþ 1Þ χLðωÞ

1þ 2χLðωÞ
; ðD16Þ

where

χLðωÞ ¼
Z

∞

0

dk
V1ðkÞ2

½ωk þ 2B�2
1

Pωþi0þðkÞ
: ðD17Þ

The integrand of χLðωÞ possesses poles at the momenta k0
satisfying ωk0 ¼ ω for L ¼ 0 and at the momenta k1;2
satisfying ωk1 ¼ωþ2BL and ωk2 ¼ω−2BLðLþ1Þ for
states with L > 0. Using the relation 1=ðxþ i0þÞ ¼
Pð1=xÞ − iπδðxÞ, this reveals the onset of the scattering
continua in the spectral function.
For L ¼ 0, one finds

ImχL¼0ðωÞ ¼ πθðωÞζ0; ðD18Þ
where

ζ0 ¼
V1ðk0Þ2
½ωþ 2B�2

�∂ωk

∂k
�−1����

k¼k0

; ðD19Þ

while for L > 0, one has

ImχL>0ðωÞ ¼
π

2
θðωk1Þ

�
1 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4LðLþ 1Þp
�
ζ1

þ π

2
θðωk2Þ

�
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4LðLþ 1Þp
�
ζ2;

ðD20Þ

where

ζ1;2 ¼
V1ðk0Þ2
½ωþ 2B�2

�∂ωk

∂k
�−1����

k¼k1;2

: ðD21Þ

Finally, the real part of χLðωÞ follows from the principal
value integration.

APPENDIX E: DEFORMATION OF THE
PHONON DENSITY

From Eq. (A6) we obtain the expression for the phonon
density in the rotating impurity frame:

nðrÞ≡ hb̂†r b̂ri

¼ 1

r2
X
λμ
λ0μ0

i−λþλ0YλμðΘr;ΦrÞY�
λ0μ0 ðΘr;ΦrÞhb̂†rλμb̂rλ0μ0 i:

ðE1Þ

Using Eq. (A10), we evaluate the partial-wave
contributions:

hb̂†rλμb̂rλ0μ0 i ¼ iλ−λ0 2
π
r2
Z

kdk

×
Z

k0dk0jλðkrÞjλ0 ðk0rÞhb̂†kλμb̂k0λ0μ0 i: ðE2Þ

We calculate the expectation values h� � �i with respect
to the states in the transformed frame, jϕi ¼ Ûjψi,
where Û and jψi are given by Eqs. (8) and (10) of the
main text. Finally, the expectation values of hb̂†kλμb̂k0λ0μ0 i are
given by

hb̂†kλμb̂k0λ0μ0 i ¼ δμ0δμ00

�
3
VλðkÞ
Wkλ

Vλ0 ðk0Þ
Wk0λ0

− g�LMαk0λ00
VλðkÞ
Wkλ

− gLMα�kλ0
Vλ0 ðk0Þ
Wk0λ0

VλðkÞ
Wkλ

þ jαkλμj2
�
: ðE3Þ
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