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Abstract

The Fermi-Hubbard model is one of the key models of condensed matter physics, which holds a
potential for explaining the mystery of high-temperature superconductivity. Recent progress in
ultracold atoms in optical lattices has paved the way to studying the model’s phase diagram using the
tools of quantum simulation, which emerged as a promising alternative to the numerical calculations
plagued by the infamous sign problem. However, the temperatures achieved using elaborate laser
cooling protocols so far have been too high to show the appearance of antiferromagnetic (AF) and
superconducting quantum phases directly. In this work, we demonstrate that using the machinery

of dissipative quantum state engineering, one can observe the emergence of the AF order in the
Fermi-Hubbard model with fermions in optical lattices. The core of the approach is to add incoherent
laser scattering in such a way that the AF state emerges as the dark state of the driven-dissipative
dynamics. The proposed controlled dissipation channels described in this work are straightforward to
add to already existing experimental setups.

1. Introduction

Experimental progress with ultracold fermions in optical lattices [1, 2] leads the way to achieving one of the key
goals of quantum simulation [3]—mimicking realistic condensed matter systems. To date, the experiments
covered a broad range of systems and interaction regimes, from probing the BEC-BCS crossover in lattices [4],
to the observation of a fermionic Mott insulator [5, 6], to studying short range magnetism [7] and multiflavor
spin dynamics [8], to realizing topological Haldane model [9] and artificial graphene sheets [10]. These
discoveries pave the way to use ultracold atoms to reveal the properties of the repulsive Fermi-Hubbard model
[11, 12]. The latter is of particular importance since it represents a playground to get insight into the physics of
high-temperature superconductivity and related phenomena observed in the cuprates [13].

In the case of one particle per site and large on-site interaction, U, the Fermi-Hubbard model exhibits the
transition to the Mott-insulating state [5, 6] around the temperature T ~ U. If the temperature is decreased
further and reaches the so-called ‘Néel temperature,” Ty ~ 4t%/U, where t gives the hopping rate between
neighboring sites, the transition to the antiferromagnetic (AF) phase is expected [14, 15]. Currently the
temperatures achievable in experiment are slightly above the Néel temperature where AF correlations can
already be observed, for instance, T/ Ty ~ 1.42 hasbeen reached in [14]. Ultimately, in order to study the
superconducting phase or other phenomena related to pairing in high-temperature superconductors, the
temperature needs to be substantially lower. Therefore, due to the experimental limitations inherent to the
standard laser cooling techniques, it is crucial to develop alternative approaches [16—28] to preparation of
quantum phases in optical lattices.

In this work, we propose an efficient scheme for the preparation of AF order in the Fermi-Hubbard model,
based on the ideas of dissipative state engineering, which have recently emerged in the context of many-particle
systems [19, 22, 25, 26, 29—45] and have been implemented experimentally [46—52]. In such scenarios, a many-

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft


http://dx.doi.org/10.1088/1367-2630/18/9/093042
mailto:jan.kaczmarczyk@ist.ac.at
mailto:mikhail.lemeshko@ist.ac.at
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/9/093042&domain=pdf&date_stamp=2016-09-22
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/18/9/093042&domain=pdf&date_stamp=2016-09-22
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

NewJ. Phys. 18 (2016) 093042 J Kaczmarczyk et al

body state of interest (here: states exhibiting AF order) is prepared as a steady state of the quantum master
equation governing the open system dynamics, as opposed to the ground state of the Hamiltonian. Such steady
state can undergo quantum phase transitions to an ordered state of matter, which can be classified in close
analogy to equilibrium systems [22, 45, 53-59].

We start with a system of fermions in an optical lattice as described by the Fermi-Hubbard model. The
parameters of the Hamiltonian are left intact, instead we introduce dissipative channels on top of the unitary
evolution. As a result, fermions remain mobile in the optical lattice during the entire dissipative preparation
stage, which should help with retaining coherence after the dissipation channels are switched off. Furthermore,
the dissipation channels of our scheme are implemented using the level structure of fermionic *’K, currently
used in several laboratories [7, 8, 15, 60—62]. Consequently, the presented scheme can be readily implemented
into already existing experimental setups.

Theoretical description of open many-body quantum systems represents a challenging task and is currently
an active field of research [45, 63—68]. In our analysis of the dissipative Fermi-Hubbard model we use two
complementary techniques: the Monte Carlo wave function (MCWEF) [69—71] and the variational method
[45, 64], which is generalized here to the description of fermionic systems at half-filling. By using these two
methods we demonstrate that a substantial AF magnetization is present in the system both for an exact solution
ona3 x 3lattice, as well as in the thermodynamic limit.

2. The dissipative Fermi-Hubbard model
We start with the Fermi-Hubbard Hamiltonian

H =Y 6858, + U g iy, )

ij,o i

which has been experimentally realized in a range of systems such as °Li [14] and *°K [6]. Our goal is to design
dissipative processes in such a way that the state with an AF order is the dark state of the dissipative dynamics and
the time evolution of the open system will drive it towards such a dark state.

The dynamics of an open quantum system is governed by the master equation for the system’s density
matrix

. LA ~a) ~a)f 1 A 2
P = —I[H, P] + Z/ (Jij,g p Jij,g - _{]ij)g ]ij’g > p})s (2)

i,j,0,a 2

where we set 7 = 1 and the primed sum runs over nearest-neighbor sites. Since we start with a disordered
sample, all possible nearest-neighbor configurations, including |15 T ), |l; | ),and| | T; 0) will be present. The
jump operators, therefore, need to convert the latter into those with the local AF order, |1; | ).

We choose the jump operators to be as follows:

~(1) ~ A yatoa ~(2) ~ (D)
Jij,T =N niT(l - njj,)cilcj% ]im = (]ij,T)T’ 3
~(1) ~ A At oA ~(2) ~ (D)
].j)l =.Jm nil(l — niT)CiICH’ ]ij>l = (]ij,l)T’ (4)
~(3) A NA AT A
i =N (= a6, ©)

where 7, ~, are the dissipation rates. The resulting dissipative dynamics is visualized in figure 1(a): the jump
operators ]AU(I; (with o = T1,]) turn the configurations on neighboring sites from |o; o) to| T |; 0), whereas ]Au&;
actin the opposite direction. These processes are labelled by the amplitude +; in the figure. Finally, the jump
operators jf) turn the configurations | T |; 0), into those with the AF order, |1; | ) (aslabelled by ~,). Asa
result, the dissipative dynamics drives the system towards the AF phase.

We note that the jump operators jf) break the SU(2) symmetry, as the down-spin atom becomes more
mobile. This, however, does not constitute a limitation of our scheme. Moreover, it is possible to reestablish the
symmetry by using additional auxiliary states to induce hopping of the | 1 )-state atom away from the double-
occupancy configuration.

As we discuss in the following section, such choice of the jump operators is straighforward to realize in
experiment using incoherent laser scattering.
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Figure 1. [llustration of the dissipative processes. (a) Action of the jump operators on the nearest-neighbor sites; and (b), (c) their
implementation using Raman-assisted hopping. The Raman beams are labelled as €2,4, ..., 2,5, the pumping beam by 2, and the decay
rate is given by 7; A gives the hyperfine splitting between the | T )and | | ) states, Ay, gives the Zeeman splitting between the |X)
and| | ) states, while U denotes the on-site interaction between the | T )and| | ) states.

3. Experimental implementation of the jump operators

Simulating the Fermi-Hubbard model requires mapping the two spin states,| T )and| | ), onto the fine or
hyperfine components of the ground electronic state manifold of an ultracold atom. The on-site interaction
between the spin components, U, can be tuned using a Feshbach resonance [72]. We exemplify the scheme using

the atomic level structure of fermionic *°K [73], with thelevels| T ) = ‘ F= %; mp = f%> and

[ 1) = 2; — 7). Furthermore, in order to realize the dissipative part of the dynamics, we introduce an
2> 2

auxiliary state, | X) = | %; — % >, belonging to the 2, ;, manifold, as well as an electronically excited 2P; ,

state, [e) = %; —%>.

The first-stage jump operators, ]:JU; and ]Au(zs) can be implemented using Raman-assisted hopping, as
illustrated in figure 1(b). In such a process, transitions between two quantum states are induced using two laser
beams, which are detuned from some excited state (here the 2P; /, state). For example, the Raman beams 2,; and
(2,5 realize the Raman-assisted hopping between the |T; T )and |0; T | ) states. If the Ramanbeams, 2,1, 3,
are not phase-locked such hopping processes are dissipative. Since the Raman-assisted hopping takes place
directly between the initial and final states of the jump operators, the related dissipative processes are
bidirectional. Therefore, we need to avoid populating the |T; | ) state at this stage. Otherwise, the jump
operators would also lead from the |T; | ) statebacktothe|T; T )and|]; | ) states. The on-site interaction
energy U (which we assume to be on the order of a few kHz) can be used for this purpose. We note that this step
can be implemented in a coherent way as well, however, the required phase-locking of the lasers would
introduce an additional complication into the experimental setup.

In order to implement the second-stage jump operators, jf), in a one-directional fashion, we use Raman-

assisted hopping (lasers €2,4 and €2,5) from the | T |; 0) state to the|1; X) configuration with an auxiliary | X)
state. This | X) state is then pumped (laser {2) to an excited |e) state, which can decay to the | | ) state completing
the process, as illustrated in figure 1(c). The |e) state cannot decay to the | T ) state because of selection rules on
the F quantum number. The Zeeman splitting, Ax|, and the energy, U + Ay, differentiate among the three
states from the lower band in figure 1(c). In order to resolve between these three states it is sufficient to use
selection rules. To resolve betweenthe | 7 ; X)and| T X; 0) states as the final states of the Raman-assisted
hopping process we need nonzero on-site interaction between the | T ) and |X) states. The typical values of the
background scattering lengths, a = 105 ay, in units of the Bohr radius a, [73, 74], should be sufficient for this
purpose. Spontaneous emission from the |e) state ensures that the resulting dissipative processes are
unidirectional and take place from the| T |; 0)tothe|T; | ) state with AF ordering.

In total our dissipative preparation scheme requires six lasers (£2,4, ..., {2,5, and €2) in order to induce the
dissipative transitions, in addition to the lasers used to trap the atoms and prepare them inthe| 7 Yand| | )
states. Due to the s-wave character of the 25 /, manifold, the optical lattice potential for the | 1 ),| | ),and |X)

3
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states will be the same, provided the optical-trapping lasers are sufficiently far-detuned from the 2P; /, states (see
the discussion in [75], section 2.B).

The values of +, and ~, are unrelated to the nearest-neighbor hopping integral ¢, however, all three of them
are proportional to certain integrals involving two Wannier functions on the nearest-neighboring sites. As a safe
estimate we consider ¢, ;, and -, to be on the same order of magnitude.

Please note that the presented dissipative-preparation scheme is general and other states canbe used as| 1 ),
| | ), |X),and |e). In particular, it should be possible to use the states of 40K for which the Feschbach resonance is
already known,ie.| | ) = ‘ %; f§>, | 1) = ‘ ;; 7%> or| | )= ‘ %; f§>, [ 7)Y = ‘ %; f%> In the first case

one could use | X) = ‘ %, —%>and|e> = ‘ %,

could be realized with Raman beams detuned from the 2D; , state or directly as a two-photon excitation. In the

- % >, which requires a two-photon process from | X) to |e). This

second case one could use [X) = ‘ %, - §> and|e) = ‘ %, - %> (le) is from the °P; /, manifold), which would

require resolving the | X) « |e) transition from| 1 ) < %, —§>

4. Time evolution and steady-state properties

In order to reveal the properties of the system we use two complementary techniques: the MCWEF technique
[69-71]ona3 x 3lattice and the variational method [45, 64] in the thermodynamic limit. While the latter was
originally formulated for bosons, here we extend it to fermionic systems. In both methods we start from the
Jordan—Wigner transformation in two spatial dimensions [76—79]. The related Jordan—Wigner strings restrict
the applicability of our variational scheme to the situation with one particle per site (half-filling).
Experimentally, this is the most interesting regime as it corresponds to the maximal Néel temperature.

4.1. Monte Carlo wave function

We study the dynamics of the driven-dissipative system governed by equation (2) using the MCWEF method
implemented in the QuTiP numerical library [80, 81]. We consider only the nearest-neighbor hopping t; = —¢
(we use tas the unit of energy hereafter) and study the time evolution of the half-filled 3 x 3 lattice as a function
of the parameters 7, 7,, and U. Since the lattice dimensions are odd numbers, we use the antiperiodic boundary
conditions. This is required in the presence of the AF ordering because a particle hopping to its nearest neighbor
across a boundary does not change the sublattice index, whereas for the same process within the boundaries such
achange occurs. Therefore, when the hopping process takes place across the boundary, we introduce an
additional spin-flip (& Cjz), which ensures that hopping processes within and across the boundaries are
equivalent. We also introduce analogous corrections to the jump operators in equations (3)—(5).

The initial states for the MCWF realizations were chosen with randomly-positioned spin-up or spin-down
particles (also allowing for double occupancies), however, the steady-state properties were found to be
independent on the initial conditions.

The time evolution of the system’s properties is shown in figure 2. One can see that the steady state is reached
for T x t & 50-100, which corresponds to 7 = 1-2 s for t = 50 Hz. Even for a large value of the on-site
interaction, U = 100, a small number of double occupancies is still present in the system, D =~ 0.04, see
figure 2(a). These states are involved in the dissipation processes as an intermediate step towards preparation of
the AF ordered phase, see figure 1(a). Non-zero double occupancies can lead to inelastic losses of atoms [11],
which however are more problematic for the attractive [82], than for the repulsive [6] potassium gas. In the latter
case the inelastic decay time for atoms on doubly occupied sites was reported [6] to exceed 850 m:s.
Consequently, such inelastic losses should not constitute a limitation of our scheme.

To quantify the AF ordering of the system, we evaluate the spin-structure factor, as defined by
e o). ©

i,j

1(Q) =

Here, Q is the ordering vector, which for the case of the AF phase is equal to Qzr = [7, 7], R;and R;are the
lattice site vectors, N is the number of particles (N = 9in our system), and o{;, = i% is the zcomponent of the
particles’ spin. In the case of the AF ordering, the relevant spin-structure factor is given by Iyg = I (Q4g). For the
steady-state it can be as large as Iy = 0.8 (see also figure 3), quite close to the fully polarized Néel state, for
which I = 1. Note that the Néel state is an ‘ideal’ AF state, to which the dissipative processes would drive the
system in the limit of ,, 7,, U >> t. This is because the jump operators suppress intersite coherence in the
system. However, the fact that fermions remain mobile in the optical lattice during the entire dissipative
preparation stage should help with retaining coherence after the dissipation channels are switched off.

Figure 2(b) illustrates the decrease of the system’s entropy per particle, S = Si,/N = —1/N Trplogp,
with time. Due to the large size of the system’s density matrix p, in our numerical calculations we use the

4
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Figure 2. Formation of the steady state. (a) Time-evolution of the total number of spin-up, N;, and spin-down, Nj, atoms per site, the
double occupancy probability, D, and the spin-structure factor, Ixp, for U = 100, v, = 1,and 7, = 2. (b) The von Neumann entropy
per particle, S, for selected values of (U, +,, 7,), as labelled in the graph. The results have been averaged from 256 Monte Carlo
realizations. The grey areas around selected curves correspond to one-sigma confidence interval of the results. The results (Ixr and S)
for the Néel phase are represented by flat dashed lines.
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Figure 3. Steady-state properties: spin-structure factor, Ig, and entropy per particle, S, as a function of magnitudes of jump operators,
(a) v, and (b) 7,,and (c) the on-site repulsion energy, U. The error bars of Ip are calculated as the standard error for the results of
single Monte Carlo realizations, whereas those of S are obtained using the standard deviation of the Monte Carlo results averaged over
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equivalent formula, S¢oy = —Tr A logA. Here Ay = <¢i|1/)j> is the matrix of overlaps of wave functions obtained
from single realizations of the Monte Carlo algorithm. The resulting steady-state entropy per particle can be as
lowas S ~ 0.1 — 0.3 (see also figure 3). For the Néel phase the entropy per particle is equal to é log2 ~ 0.077
due to the two-fold degeneracy corresponding to flipping of all spins. The relaxation time (usually below 1 s)
increases with the increasing on-site interaction, U. For larger systems the relaxation times can be longer, due to
possible formation of domains, as it is the case for coherent preparation strategies.

A slightly different number of spin-up, N, and spin-down, N|, atoms in the steady state is related to

breaking of the SU(2) symmetry by the jump operators ]2;3). As aresult, the spin-down atom becomes more
‘mobile’. Additionally, in the 3 x 3 lattice the number of sites is odd. Therefore, inherently in the steady state
there is a spin-direction imbalance with N; > N. For alarger system, as well as for a system with even number of
sites we would have N; ~ N]. This, however, does not preclude the formation of the AF order.

Figure 3 shows the steady-state properties: the entropy per particle and spin-structure factor as a function of
the parameters. In the employed range of parameters these features turn out to be strongly dependent on +, and
U, see figures 3(b) and (c), however, only weakly dependent on ~;, see figure 3(a). Furthermore, while Iyr grows
substantially with increasing Uand +,, for +, a saturation effect is observed and increasing the magnitude above
7 ~ 0.5 does not improve the efficiency of the scheme significantly. These observations can be qualitatively
understood from figure 1(a). Namely, when the system is close to the AF phase most of the nearest-neighbor
configurations are of the |1; | ) type. The processes that drive the system away from the ordered state are related
to coherent hopping fromthe | 7 ; | )statetothe| T |; 0) state. In the large- Ulimit, the timescale of such
processes is given by 4¢2/U . Therefore, increasing U reduces the contribution of the processes that destroy AF
ordering. Increase of Iyr with +, is expected, as the related dissipative processes drive the system directly into the
AF ordered state. The saturation effect for -, can be due to the bidirectional character of the related dissipative
processes. For sufficiently large +,, the value of the spin-structure factor is determined by an interplay between
the dissipative processes related to -y, and coherent hopping processes with a time scale governed by 4¢%/U.

While the values of Urequired for an efficient preparation of the AF order are quite large, they are within
experimental reach, e.g. U/t = 180 was reported in [6]. Increasing U even further might lead to appearance of
non-standard terms on top of the Fermi-Hubbard model [83].

4.2. Variational scheme

In order to describe the steady-state properties in the thermodynamic limit, we use a recently introduced
variational principle [45, 64]. In this method, one has to minimize a suitable variational norm° of the master
equation (2)

1ol = 1l = ilH, p] + D(p)Il. @)

Here D is the dissipative part as given by equation (2). The variational method was originally formulated for
bosonic systems where alocal ansatz on the density matrix can be used. For fermionic systems such a procedure
is not possible directly. However, the Jordan—Wigner transformation [76—79] can be used to map the fermionic
creation and annihilation operators to spin operators (see appendix A for details). The resulting system of spin-
1/2 particles is equivalent to a system of hard-core bosons, however, with the fermionic statistics included.
Namely, the equivalence with the starting fermionic system is ensured by long-range interaction terms—the so-
called Jordan—Wigner strings—manifesting the anticommutation relations of the original fermionic particles.
To apply the variational method we first need to approximate the ‘non-local’ parts of the Jordan—Wigner strings
and, thereby, transform the master equation (2) to the form with at most two-site interactions (see appendix B
for details of this procedure).

We next consider variational states of the product-state type, p = p, = [I; p; and minimize the upper

bound of the norm

||,0||<Z Tr|p;l — min, 3
(1)

where the reduced two-site operators are defined as pyj = Tryj p.1tis sufficient to minimize the norm || pij| |ofa
single bond, which for the case of an AF order can be expressed as

”Pl,” = ||pygll = Trl|pyl, 9)

3 See [45, 64] for details including the discussion of the choice of the variational norm.
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Figure 4. Results in the thermodynamic limit. (a) Single link and the surrounding sites in the presence of AF order. (b) The steady-state
magnitude of the AF spin-structure factor, as a function of the magnitude of the jump operators. The variational results (red solid line)
are compared to the MCWF method (blue dashed line).

pap = — i[Hap, pagl + Dap(pap)

+ > Tra{ —ilHpa» paparl + Dpar(papar)}
o (10)

+ > Trp{—ilHpas pgiagl + Doa(ppap)}-
5
Here A and Blabel the two sublatticesand, e.g., o, = P4 ® Pp> Papar = P4 © P © p4r» while Dyp gives the
dissipative part with the jump operators acting on the sites A and B. The first two terms of equation (10)
correspond to an exact treatment of a single bond, which already goes beyond the mean-field description,
whereas the next ones describe interaction with the surrounding sites treated on the mean-field level, as
visualized by the dashed lines in figure 4(a).

In figure 4(b) we compare the spin-structure factor obtained from our variational scheme and the MCWF
method as a function of magnitude of the jump operators (which we set equal here without the loss of
generality). According to the results of both methods, the system exhibits substantial ordering (e.g. with spin-
structure factor larger than 0.5) when , = , 2 1. Although the variational method contains terms going
beyond mean field, its results for AF ordering do not depend on the value of U, as opposed to the exact approach.
This happens due to restriction of the density matrices to the form of product states. Moreover, the variational
method overestimates the AF ordering due to the absence of fluctuations in our variational manifold. Therefore,
the employed approaches are complementary to each other, and both indicate the formation of an AF order of
substantial magnitude in the steady state.

5. Conclusions

In this paper, we proposed a scheme for dissipative preparation of AF order in ultracold fermions trapped in an
optical lattice. We demonstrated that by using a combination of two dissipative processes based on Raman-
assisted hopping it is possible to engineer the dissipative dynamics in such a way that the AF phase emerges as its
dark state. By using a combination of an exact and variational approaches, we observed the formation of a strong
AF order on the timescales achievable in present-day experiments.

We note that the technique presented here can be readily implemented in the setups already used to search
for the AF order [15], and thereby paves the way to an experimental realization of the AF phase in the Fermi-
Hubbard model. While we exemplified the approach using the atomic level structure of *°K [6], the method is
general and can be also applied to other fermionic atoms currently available in laboratory, such as °Li [14], Er
[84], Dy [85], Yb [86], and Cr [87]. After preparation of the AF phase with low entropy it should be possible to
explore the phase diagram of the Hubbard model, including the pseudogap regime, by coherently removing a
fraction of the atoms from the trap thereby introducing hole carriers into the system. Finally, extending these
ideas to single-site addressable lattices as offered by the fermionic quantum gas microscopes [60-62, 88], opens
the door to the preparation of more sophisticated many-particles states.
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Appendix A. Two-dimensional Jordan—-Wigner transformation

The Jordan—Wigner transformation between fermionic operators ¢ , &, and spin operators (5, 5, 5%) for
spin-1/2 particles is defined as

b, = e L0 ™, (A1)
i = 61:@,0)6‘”21@«,0) i, (A.2)
At A 1., .
CiTTCiU = E(sz(i,o) + 1) = ko) (A.3)

where the function k (i, o) enumerates the fermionic particles for a given lattice site, i = (iy, i,), and particle’s
spin, 0 = 1, |.Inthis manner, fermions are positioned on a chain, where the position along the chain is given
by k (i, o). The factor e*1™%i<ki. i, where the summation runs over all fermions ‘before’ the one at site i with
spin o, evaluates to +1(—1) for even (odd) number of fermions ‘before’ the given one. Thereby, the
anticommutation rules for the fermionic operators E;;, Ci, are fulfilled. We can also use the relation

e ek il = i<k ,0)(—57°), where — 67 evaluates to —1 when the Ith spin is up (correspondingly, when there
is a fermionic particle in the mode [) and to 1 in the opposite case.

For a one-dimensional system the function k (i, o) can be chosen simplyas k (i, o) = 2[i| + &5,|. Intwo
dimensions, however, there are a few possibilities to perform the Jordan—Wigner transformation [76-79] (see
[76] for areview). Here, we consider an N, x N, system with lattice site coordinates iy, € {1, 2,..., N(;)} and
use the following function to enumerate particles (with m € N)

. {Z[Nx(iy—l)—l—ix—l]—k&,,l, iy =2m+1,
k@, o) =

A4
2[Ne(y — 1) + Ny — ix] + 65, i, = 2m. S

The chain of fermions and the related Jordan—Wigner string goes from left to right in the first row of the system,

then in the second row goes to the left and forms a zig-zag (see figure 5(a)).

Appendix B. Variational method for fermions

By performing the Jordan—Wigner transformation as described in appendix A, we can transform all terms of the
master equation (2), which we exemplify here by considering the hopping, & &, Using the transformation
(A.1)—(A.3) the hopping is expressed as

&l Go = o) [Tk 6,0y <1< kG,0) (— 1) 10,0y (B.1)

If the hopping takes place between two sites in the same row, the Jordan—Wigner string is local (as illustrated in
figure 5(b)). For example,if j = i + (1, 0)and k (i, o) < k(j, o), we have
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&he1 = oo =086 10k, (8.2)
&\ 851 = 8k [— 06,1 10k, (B.3)

If the hopping takes place between two sites in different rows, the Jordan—Wigner string includes also sites
between the i, j pair and the (left or right) edge of the system (as illustrated in figure 5(c)). Note that the number
of these ‘non-local’ sites is always even due to our choice of the enumerating function k (i, o). Consequently, at
half-filling, i.e. with one particle per site on average, there is an even number of particles, 2Nj, along the ‘non-
local’ part of the Jordan—Wigner string. In such case, the string evaluates to the factor (—1)*™ = 1.In our
variational method we use this value as an approximation for the ‘non-local’ part of the string, whereas the local
terms are retained. Such a procedure is similar to the ‘mean-field’ treatment of the strings applied, e.g. in
[76,78, 89]. As aresult, the hopping between rows is expressed in the same way as in equations (B.2) and (B.3),
which is visualized in figure 5(d).

For the jump operators we use the same approximation. Thereby, the master equation (2) acquires the form
with at most two-site interaction terms (site here refers to the original fermionic site), for which the variational
method can be readily applied. Note that in the MCWEF calculations the ‘non-local’ part of the strings needs to be
preserved.

Explicitly, the contribution from the hopping term to the norm of a single bond, ||, 5| = [|Tr 4 5 pl|, on the
example of the first term in equation (10), is given by

— ilHaps papl = = 11600, 10k, 1) ki) B
+ Oia 0k Ok, ) T e pagls

where we assumed k (A, o) < k(B, o). The treatment of other terms in the norm is analogous and, similarly,
results in the appearance of parity factors (— &5 4, and — ;g ), which originate from the fermionic
anticommutation rules.

Finally, let us note that the results of our variational method do not depend on the system size, N, x N,
(however, they make sense only for Ny, N, > 4) and hence correspond to the thermodynamic limit.
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