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Abstract
The Fermi-Hubbardmodel is one of the keymodels of condensedmatter physics, which holds a
potential for explaining themystery of high-temperature superconductivity. Recent progress in
ultracold atoms in optical lattices has paved theway to studying themodel’s phase diagramusing the
tools of quantum simulation, which emerged as a promising alternative to the numerical calculations
plagued by the infamous sign problem.However, the temperatures achieved using elaborate laser
cooling protocols so far have been too high to show the appearance of antiferromagnetic(AF) and
superconducting quantumphases directly. In this work, we demonstrate that using themachinery
of dissipative quantum state engineering, one can observe the emergence of theAF order in the
Fermi-Hubbardmodel with fermions in optical lattices. The core of the approach is to add incoherent
laser scattering in such away that theAF state emerges as the dark state of the driven-dissipative
dynamics. The proposed controlled dissipation channels described in this work are straightforward to
add to already existing experimental setups.

1. Introduction

Experimental progress with ultracold fermions in optical lattices [1, 2] leads theway to achieving one of the key
goals of quantum simulation [3]—mimicking realistic condensedmatter systems. To date, the experiments
covered a broad range of systems and interaction regimes, fromprobing the BEC–BCS crossover in lattices [4],
to the observation of a fermionicMott insulator [5, 6], to studying short rangemagnetism [7] andmultiflavor
spin dynamics [8], to realizing topological Haldanemodel [9] and artificial graphene sheets [10]. These
discoveries pave theway to use ultracold atoms to reveal the properties of the repulsive Fermi-Hubbardmodel
[11, 12]. The latter is of particular importance since it represents a playground to get insight into the physics of
high-temperature superconductivity and related phenomena observed in the cuprates [13].

In the case of one particle per site and large on-site interaction,U, the Fermi-Hubbardmodel exhibits the
transition to theMott-insulating state [5, 6] around the temperature ~T U . If the temperature is decreased
further and reaches the so-called ‘Néel temperature,’ ~T t U4N

2 , where t gives the hopping rate between
neighboring sites, the transition to the antiferromagnetic (AF) phase is expected [14, 15]. Currently the
temperatures achievable in experiment are slightly above theNéel temperaturewhere AF correlations can
already be observed, for instance, »T T 1.42N has been reached in [14]. Ultimately, in order to study the
superconducting phase or other phenomena related to pairing in high-temperature superconductors, the
temperature needs to be substantially lower. Therefore, due to the experimental limitations inherent to the
standard laser cooling techniques, it is crucial to develop alternative approaches [16–28] to preparation of
quantumphases in optical lattices.

In this work, we propose an efficient scheme for the preparation of AF order in the Fermi-Hubbardmodel,
based on the ideas of dissipative state engineering, which have recently emerged in the context ofmany-particle
systems [19, 22, 25, 26, 29–45] and have been implemented experimentally [46–52]. In such scenarios, amany-
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body state of interest (here: states exhibiting AF order) is prepared as a steady state of the quantummaster
equation governing the open systemdynamics, as opposed to the ground state of theHamiltonian. Such steady
state can undergo quantumphase transitions to an ordered state ofmatter, which can be classified in close
analogy to equilibrium systems [22, 45, 53–59].

We start with a systemof fermions in an optical lattice as described by the Fermi-Hubbardmodel. The
parameters of theHamiltonian are left intact, insteadwe introduce dissipative channels on top of the unitary
evolution. As a result, fermions remainmobile in the optical lattice during the entire dissipative preparation
stage, which should helpwith retaining coherence after the dissipation channels are switched off. Furthermore,
the dissipation channels of our scheme are implemented using the level structure of fermionic 40K, currently
used in several laboratories [7, 8, 15, 60–62]. Consequently, the presented scheme can be readily implemented
into already existing experimental setups.

Theoretical description of openmany-body quantum systems represents a challenging task and is currently
an activefield of research [45, 63–68]. In our analysis of the dissipative Fermi-Hubbardmodel we use two
complementary techniques: theMonte Carlo wave function (MCWF) [69–71] and the variationalmethod
[45, 64], which is generalized here to the description of fermionic systems at half-filling. By using these two
methodswe demonstrate that a substantial AFmagnetization is present in the systemboth for an exact solution
on a 3×3 lattice, as well as in the thermodynamic limit.

2. The dissipative Fermi-Hubbardmodel

We start with the Fermi-HubbardHamiltonian

å å= +
s

s s  ˆ ˆ ˆ ˆ ˆ ( )†H t c c U n n , 1
i j

ij i j
i

i i
, ,

which has been experimentally realized in a range of systems such as 6Li [14] and 40K [6]. Our goal is to design
dissipative processes in such away that the statewith anAF order is the dark state of the dissipative dynamics and
the time evolution of the open systemwill drive it towards such a dark state.

The dynamics of an open quantum system is governed by themaster equation for the systemʼs density
matrix

år r r r= - + ¢ -
s a

s
a

s
a

s
a

s
a[ ˆ ] ˆ ˆ {ˆ ˆ } ( )( ) ( ) ( ) ( )† †
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⎞
⎠H j j j ji ,

1

2
, , 2

i j
ij ij ij ij

, , ,
, , , ,

wherewe set º 1and the primed sum runs over nearest-neighbor sites. Sincewe start with a disordered
sample, all possible nearest-neighbor configurations, including   ñ∣ ; ,   ñ∣ ; , and   ñ∣ ; 0 will be present. The
jumpoperators, therefore, need to convert the latter into thosewith the local AF order,   ñ∣ ; .

We choose the jumpoperators to be as follows:

g= - =      
ˆ ˆ ( ˆ ) ˆ ˆ ˆ (ˆ ) ( )( ) † ( ) ( ) †j n n c c j j1 , , 3
ij i j i j ij ij,

1
1 ,

2

,

1

g= - =      
ˆ ˆ ( ˆ ) ˆ ˆ ˆ (ˆ ) ( )( ) † ( ) ( ) †j n n c c j j1 , , 4
ij i j i j ij ij,

1
1 ,

2

,

1

g= -    ˆ ( ˆ ) ˆ ˆ ˆ ( )( ) †j n n c c1 , 5
ij i j i j

3
2

where g1, g2 are the dissipation rates. The resulting dissipative dynamics is visualized infigure 1(a): the jump

operators s
ˆ( )
jij,

1
(with s =  , ) turn the configurations on neighboring sites from s sñ∣ ; to   ñ∣ ; 0 , whereas s

ˆ( )
jij,

2

act in the opposite direction. These processes are labelled by the amplitude g1 in thefigure. Finally, the jump

operators ˆ( )
jij

3
turn the configurations   ñ∣ ; 0 , into thosewith the AF order,   ñ∣ ; (as labelled by g2). As a

result, the dissipative dynamics drives the system towards the AF phase.

We note that the jump operators ˆ( )
jij

3
break the SU(2) symmetry, as the down-spin atombecomesmore

mobile. This, however, does not constitute a limitation of our scheme.Moreover, it is possible to reestablish the
symmetry by using additional auxiliary states to induce hopping of the  ñ∣ -state atom away from the double-
occupancy configuration.

Aswe discuss in the following section, such choice of the jumpoperators is straighforward to realize in
experiment using incoherent laser scattering.

2
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3. Experimental implementation of the jumpoperators

Simulating the Fermi-Hubbardmodel requiresmapping the two spin states,  ñ∣ and  ñ∣ , onto thefine or
hyperfine components of the ground electronic statemanifold of an ultracold atom. The on-site interaction
between the spin components,U, can be tuned using a Feshbach resonance [72].We exemplify the scheme using

the atomic level structure of fermionic K40 [73], with the levels  ñ º = = -∣ F m; F
7

2

7

2
and

 ñ º -∣ ;9

2

7

2
. Furthermore, in order to realize the dissipative part of the dynamics, we introduce an

auxiliary state, ñ º -∣X ;9

2

9

2
, belonging to the S2

1 2 manifold, as well as an electronically excited P2
3 2

state, ñ º -∣e ;11

2

9

2
.

Thefirst-stage jump operators, s
ˆ( )
jij,

1
and s

ˆ( )
jij,

2
, can be implemented using Raman-assisted hopping, as

illustrated infigure 1(b). In such a process, transitions between two quantum states are induced using two laser
beams, which are detuned from some excited state (here the P2

3 2 state). For example, the Raman beams Wr1 and
Wr3 realize the Raman-assisted hopping between the   ñ∣ ; and   ñ∣0; states. If the Raman beams, W ¼r r1, , 3,
are not phase-locked such hopping processes are dissipative. Since the Raman-assisted hopping takes place
directly between the initial and final states of the jumpoperators, the related dissipative processes are
bidirectional. Therefore, we need to avoid populating the   ñ∣ ; state at this stage.Otherwise, the jump
operators would also lead from the   ñ∣ ; state back to the   ñ∣ ; and   ñ∣ ; states. The on-site interaction
energyU (whichwe assume to be on the order of a few kHz) can be used for this purpose.We note that this step
can be implemented in a coherent way aswell, however, the required phase-locking of the lasers would
introduce an additional complication into the experimental setup.

In order to implement the second-stage jump operators, ˆ( )
jij

3
, in a one-directional fashion, we use Raman-

assisted hopping (lasers Wr4 and Wr5) from the   ñ∣ ; 0 state to the  ñ∣ X; configurationwith an auxiliary ñ∣X
state. This ñ∣X state is then pumped (laserΩ) to an excited ñ∣e state, which can decay to the  ñ∣ state completing
the process, as illustrated infigure 1(c). The ñ∣e state cannot decay to the  ñ∣ state because of selection rules on
the F quantumnumber. The Zeeman splitting,D X , and the energy, + D U X , differentiate among the three
states from the lower band infigure 1(c). In order to resolve between these three states it is sufficient to use
selection rules. To resolve between the  ñ∣ X; and  ñ∣ X ; 0 states as the final states of the Raman-assisted
hopping process we need nonzero on-site interaction between the  ñ∣ and ñ∣X states. The typical values of the
background scattering lengths, =a a105 0, in units of the Bohr radius a0 [73, 74], should be sufficient for this
purpose. Spontaneous emission from the ñ∣e state ensures that the resulting dissipative processes are
unidirectional and take place from the   ñ∣ ; 0 to the   ñ∣ ; state withAF ordering.

In total our dissipative preparation scheme requires six lasers (Wr1, ..., Wr5, andΩ) in order to induce the
dissipative transitions, in addition to the lasers used to trap the atoms and prepare them in the  ñ∣ and  ñ∣
states. Due to the s-wave character of the S2

1 2 manifold, the optical lattice potential for the  ñ∣ ,  ñ∣ , and ñ∣X

Figure 1. Illustration of the dissipative processes. (a)Action of the jumpoperators on the nearest-neighbor sites; and (b), (c) their
implementation using Raman-assisted hopping. The Ramanbeams are labelled as W ¼ W, ,r r1 5, the pumping beambyΩ, and the decay
rate is given by γ;D gives the hyperfine splitting between the  ñ∣ and  ñ∣ states,D X gives the Zeeman splitting between the ñ∣X
and  ñ∣ states, whileU denotes the on-site interaction between the  ñ∣ and  ñ∣ states.

3
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states will be the same, provided the optical-trapping lasers are sufficiently far-detuned from the P2
3 2 states (see

the discussion in [75], section 2.B).
The values of g1 and g2 are unrelated to the nearest-neighbor hopping integral t, however, all three of them

are proportional to certain integrals involving twoWannier functions on the nearest-neighboring sites. As a safe
estimatewe consider t, g1, and g2 to be on the same order ofmagnitude.

Please note that the presented dissipative-preparation scheme is general and other states can be used as  ñ∣ ,
 ñ∣ , ñ∣X , and ñ∣e . In particular, it should be possible to use the states of 40K, for which the Feschbach resonance is

already known, i.e.  ñ = -∣ ;9

2

9

2
,  ñ = -∣ ;9

2

7

2
or  ñ = -∣ ;9

2

9

2
,  ñ = -∣ ;9

2

5

2
. In thefirst case

one could use ñ = -∣X ,7

2

7

2
and ñ = -∣e ,11

2

11

2
, which requires a two-photon process from ñ∣X to ñ∣e . This

could be realizedwith Raman beams detuned from the D2
5 2 state or directly as a two-photon excitation. In the

second case one could use ñ = -∣X ,9

2

7

2
and ñ = -∣e ,9

2

9

2
( ñ∣e is from the P2

3 2 manifold), whichwould

require resolving the ñ « ñ∣ ∣X e transition from  ñ « -∣ ,9

2

7

2
.

4. Time evolution and steady-state properties

In order to reveal the properties of the systemwe use two complementary techniques: theMCWF technique
[69–71] on a 3×3 lattice and the variationalmethod [45, 64] in the thermodynamic limit.While the latter was
originally formulated for bosons, herewe extend it to fermionic systems. In bothmethodswe start from the
Jordan–Wigner transformation in two spatial dimensions [76–79]. The related Jordan–Wigner strings restrict
the applicability of our variational scheme to the situationwith one particle per site (half-filling).
Experimentally, this is themost interesting regime as it corresponds to themaximalNéel temperature.

4.1.MonteCarlowave function
We study the dynamics of the driven-dissipative system governed by equation (2) using theMCWFmethod
implemented in theQuTiP numerical library [80, 81].We consider only the nearest-neighbor hopping º -t tij

(we use t as the unit of energy hereafter) and study the time evolution of the half-filled 3×3 lattice as a function
of the parameters g1, g2, andU. Since the lattice dimensions are odd numbers, we use the antiperiodic boundary
conditions. This is required in the presence of the AF ordering because a particle hopping to its nearest neighbor
across a boundary does not change the sublattice index, whereas for the same process within the boundaries such
a change occurs. Therefore, when the hopping process takes place across the boundary, we introduce an
additional spin-flip ( s sˆ ˆ†c ci j ), which ensures that hopping processes within and across the boundaries are
equivalent.We also introduce analogous corrections to the jumpoperators in equations (3)–(5).

The initial states for theMCWF realizations were chosenwith randomly-positioned spin-up or spin-down
particles (also allowing for double occupancies), however, the steady-state properties were found to be
independent on the initial conditions.

The time evolution of the systemʼs properties is shown infigure 2.One can see that the steady state is reached
for t ´ » –t 50 100, which corresponds to t = –1 2 s for t=50 Hz. Even for a large value of the on-site
interaction,U=100, a small number of double occupancies is still present in the system, »D 0.04, see
figure 2(a). These states are involved in the dissipation processes as an intermediate step towards preparation of
the AF ordered phase, see figure 1(a). Non-zero double occupancies can lead to inelastic losses of atoms [11],
which however aremore problematic for the attractive [82], than for the repulsive [6] potassium gas. In the latter
case the inelastic decay time for atoms on doubly occupied sites was reported [6] to exceed 850ms.
Consequently, such inelastic losses should not constitute a limitation of our scheme.

To quantify theAF ordering of the system, we evaluate the spin-structure factor, as defined by

å s sº á ñ-( ) ( )( )I
N

Q
4

e . 6z z

i j

R R Q
i j2

,

i i j

Here, Q is the ordering vector, which for the case of the AF phase is equal to p p= [ ]Q ,AF , Ri and R j are the

lattice site vectors,N is the number of particles (N = 9 in our system), and s = ( )
z
i j

1

2
is the z component of the

particles’ spin. In the case of theAF ordering, the relevant spin-structure factor is given by º ( )I I QAF AF . For the
steady-state it can be as large as »I 0.8AF (see alsofigure 3), quite close to the fully polarizedNéel state, for
which =I 1AF . Note that theNéel state is an ‘ideal’AF state, towhich the dissipative processes would drive the
system in the limit of g g U t, ,1 2  . This is because the jumpoperators suppress intersite coherence in the
system.However, the fact that fermions remainmobile in the optical lattice during the entire dissipative
preparation stage should helpwith retaining coherence after the dissipation channels are switched off.

Figure 2(b) illustrates the decrease of the systemʼs entropy per particle, r rº = -S S N N1 Tr logtot ,
with time. Due to the large size of the systemʼs densitymatrix ρ, in our numerical calculations we use the

4
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Figure 2. Formation of the steady state. (a)Time-evolution of the total number of spin-up, N , and spin-down, N , atoms per site, the
double occupancy probability,D, and the spin-structure factor, IAF, forU=100, g = 11 , and g = 22 . (b)The vonNeumann entropy
per particle, S, for selected values of g g( )U , ,1 2 , as labelled in the graph. The results have been averaged from256Monte Carlo
realizations. The grey areas around selected curves correspond to one-sigma confidence interval of the results. The results (IAF and S)
for theNéel phase are represented by flat dashed lines.

Figure 3. Steady-state properties: spin-structure factor, IAF, and entropy per particle, S, as a function ofmagnitudes of jumpoperators,
(a) g1 and (b) g2, and (c) the on-site repulsion energy,U. The error bars of IAF are calculated as the standard error for the results of
singleMonte Carlo realizations, whereas those of S are obtained using the standard deviation of theMonte Carlo results averaged over
time.

5
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equivalent formula, = -S A ATr logtot . Here y y= á ñ∣Aij i j is thematrix of overlaps of wave functions obtained
from single realizations of theMonte Carlo algorithm. The resulting steady-state entropy per particle can be as

low as » -S 0.1 0.3 (see alsofigure 3). For theNéel phase the entropy per particle is equal to »log 2 0.0771

9
due to the two-fold degeneracy corresponding toflipping of all spins. The relaxation time (usually below 1 s)
increases with the increasing on-site interaction,U. For larger systems the relaxation times can be longer, due to
possible formation of domains, as it is the case for coherent preparation strategies.

A slightly different number of spin-up, N , and spin-down, N , atoms in the steady state is related to

breaking of the SU(2) symmetry by the jump operators ˆ( )
jij

3
. As a result, the spin-down atombecomesmore

‘mobile’. Additionally, in the 3×3 lattice the number of sites is odd. Therefore, inherently in the steady state
there is a spin-direction imbalancewith > N N . For a larger system, aswell as for a systemwith even number of
sites wewould have » N N . This, however, does not preclude the formation of the AF order.

Figure 3 shows the steady-state properties: the entropy per particle and spin-structure factor as a function of
the parameters. In the employed range of parameters these features turn out to be strongly dependent on g2 and
U, see figures 3(b) and (c), however, onlyweakly dependent on g1, see figure 3(a). Furthermore, while IAF grows
substantially with increasingU and g2, for g1 a saturation effect is observed and increasing themagnitude above
g » 0.51 does not improve the efficiency of the scheme significantly. These observations can be qualitatively
understood from figure 1(a). Namely, when the system is close to the AF phasemost of the nearest-neighbor
configurations are of the   ñ∣ ; type. The processes that drive the system away from the ordered state are related
to coherent hopping from the   ñ∣ ; state to the   ñ∣ ; 0 state. In the large-U limit, the timescale of such
processes is given by t U4 2 . Therefore, increasingU reduces the contribution of the processes that destroy AF
ordering. Increase of IAF with g2 is expected, as the related dissipative processes drive the systemdirectly into the
AF ordered state. The saturation effect for g1 can be due to the bidirectional character of the related dissipative
processes. For sufficiently large g1, the value of the spin-structure factor is determined by an interplay between

the dissipative processes related to g2 and coherent hopping processes with a time scale governed by t U4 2 .
While the values ofU required for an efficient preparation of theAF order are quite large, they arewithin

experimental reach, e.g. =U t 180 was reported in [6]. IncreasingU even furthermight lead to appearance of
non-standard terms on top of the Fermi-Hubbardmodel [83].

4.2. Variational scheme
In order to describe the steady-state properties in the thermodynamic limit, we use a recently introduced
variational principle [45, 64]. In thismethod, one has tominimize a suitable variational norm3 of themaster
equation (2)

r r r= - +∣∣ ∣∣ ∣∣ [ ] ( )∣∣ ( )Hi , . 7

Here  is the dissipative part as given by equation (2). The variationalmethodwas originally formulated for
bosonic systemswhere a local ansatz on the densitymatrix can be used. For fermionic systems such a procedure
is not possible directly. However, the Jordan–Wigner transformation [76–79] can be used tomap the fermionic
creation and annihilation operators to spin operators (see appendix A for details). The resulting systemof spin-
1/2 particles is equivalent to a systemof hard-core bosons, however, with the fermionic statistics included.
Namely, the equivalence with the starting fermionic system is ensured by long-range interaction terms—the so-
called Jordan–Wigner strings—manifesting the anticommutation relations of the original fermionic particles.
To apply the variationalmethodwefirst need to approximate the ‘non-local’ parts of the Jordan–Wigner strings
and, thereby, transform themaster equation (2) to the formwith atmost two-site interactions (see appendix B
for details of this procedure).

We next consider variational states of the product-state type, r r r= = p i i andminimize the upper

bound of the norm

år r 
á ñ

∣∣ ˙∣∣ ∣ ˙ ∣ ( ) Tr min, 8
ij

ij

where the reduced two-site operators are defined as r r=˙ ˙Trij i j . It is sufficient tominimize the norm r∣∣ ˙ ∣∣ij of a
single bond, which for the case of anAF order can be expressed as

r r rº =∣∣ ∣∣ ∣∣ ∣∣ ∣ ∣ ( )Tr , 9AB ABij  

3
See [45, 64] for details including the discussion of the choice of the variational norm.
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HereA andB label the two sublattices and, e.g., r r rº ÄAB A B, r r r rº Ä Ä¢ ¢ABA A B A , while AB gives the
dissipative part with the jumpoperators acting on the sitesA andB. Thefirst two terms of equation (10)
correspond to an exact treatment of a single bond, which already goes beyond themean-field description,
whereas the next ones describe interactionwith the surrounding sites treated on themean-field level, as
visualized by the dashed lines infigure 4(a).

Infigure 4(b)we compare the spin-structure factor obtained fromour variational scheme and theMCWF
method as a function ofmagnitude of the jump operators (whichwe set equal herewithout the loss of
generality). According to the results of bothmethods, the system exhibits substantial ordering (e.g. with spin-
structure factor larger than 0.5)when g g=  11 2 . Although the variationalmethod contains terms going
beyondmeanfield, its results for AF ordering do not depend on the value ofU, as opposed to the exact approach.
This happens due to restriction of the densitymatrices to the formof product states.Moreover, the variational
method overestimates theAF ordering due to the absence offluctuations in our variationalmanifold. Therefore,
the employed approaches are complementary to each other, and both indicate the formation of anAF order of
substantialmagnitude in the steady state.

5. Conclusions

In this paper, we proposed a scheme for dissipative preparation of AF order in ultracold fermions trapped in an
optical lattice.We demonstrated that by using a combination of two dissipative processes based onRaman-
assisted hopping it is possible to engineer the dissipative dynamics in such away that the AF phase emerges as its
dark state. By using a combination of an exact and variational approaches, we observed the formation of a strong
AF order on the timescales achievable in present-day experiments.

We note that the technique presented here can be readily implemented in the setups already used to search
for the AF order [15], and thereby paves theway to an experimental realization of the AF phase in the Fermi-
Hubbardmodel.While we exemplified the approach using the atomic level structure of 40K [6], themethod is
general and can be also applied to other fermionic atoms currently available in laboratory, such as 6Li [14], Er
[84], Dy [85], Yb [86], andCr [87]. After preparation of the AF phase with low entropy it should be possible to
explore the phase diagramof theHubbardmodel, including the pseudogap regime, by coherently removing a
fraction of the atoms from the trap thereby introducing hole carriers into the system. Finally, extending these
ideas to single-site addressable lattices as offered by the fermionic quantumgasmicroscopes [60–62, 88], opens
the door to the preparation ofmore sophisticatedmany-particles states.
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AppendixA. Two-dimensional Jordan–Wigner transformation

The Jordan–Wigner transformation between fermionic operators sˆ†ci , sĉi and spin operators (s s s+ -ˆ ˆ ˆ, , z) for
spin-1/2 particles is defined as

s= å
s s

p+ + s<ˆ ˆ ( )†
( )

ˆ
( )c e , A.1k

n
i i,

i
l k li,

s= ås s
p- - s<ˆ ˆ ( )( )

ˆ
( )c e , A.2k

n
i i,

i
l k li,

s= + ºs s s sˆ ˆ ( ˆ ) ˆ ( )†
( ) ( )c c n

1

2
1 , A.3k

z
ki i i i, ,

where the function s( )k i, enumerates the fermionic particles for a given lattice site, = ( )i ii ,x y , and particleʼs
spin, s =  , . In thismanner, fermions are positioned on a chain, where the position along the chain is given
by s( )k i, . The factor p å s< ˆ( )e ni l k li, , where the summation runs over all fermions ‘before’ the one at site i with
spin s, evaluates to+ -( )1 1 for even (odd)number of fermions ‘before’ the given one. Thereby, the
anticommutation rules for the fermionic operators sˆ†ci , sĉi are fulfilled.We can also use the relation

s= P -p
s

 å
<s< ( ˆ )ˆ

( )( )e n
l k l

z
i

i
,l k li, , where s- ˆ l

z evaluates to−1when the lth spin is up (correspondingly, when there
is a fermionic particle in themode l) and to 1 in the opposite case.

For a one-dimensional system the function s( )k i, can be chosen simply as s d= + s ( ) ∣ ∣k i i, 2 , . In two
dimensions, however, there are a few possibilities to perform the Jordan–Wigner transformation [76–79] (see
[76] for a review). Here, we consider an ´N Nx y systemwith lattice site coordinates Î { }( ) ( )i N1, 2 ,...,x y x y and
use the following function to enumerate particles (with Î m )

s
d
d

=
- + - + = +
- + - + =

s

s




( )

[ ( ) ]
[ ( ) ] ( )

⎧⎨⎩k
N i i i m

N i N i i m
i,

2 1 1 , 2 1,

2 1 , 2 .
A.4

x y x y

x y x x y

,

,

The chain of fermions and the related Jordan–Wigner string goes from left to right in the first row of the system,
then in the second row goes to the left and forms a zig-zag (see figure 5(a)).

Appendix B. Variationalmethod for fermions

By performing the Jordan–Wigner transformation as described in appendix A, we can transform all terms of the
master equation (2), whichwe exemplify here by considering the hopping, s sˆ ˆ†c ci j . Using the transformation
(A.1)–(A.3) the hopping is expressed as

s s s= P -s s s s s s
+

< <
-ˆ ˆ ˆ [ ( ˆ )] ˆ ( )†

( ) ( ) ( ) ( )c c . B.1k k l k l
z

ki j i i j j, , , ,

If the hopping takes place between two sites in the same row, the Jordan–Wigner string is local (as illustrated in
figure 5(b)). For example, if = + ( )j i 1, 0 and s s<( ) ( )k ki j, , , we have

Figure 5. Illustration of the Jordan–Wigner transformation for a ´N Nx y system. (a) Jordan–Wigner string (in green) from site ( )1, 1
to site i . (b) and (c) illustration of the hopping terms and the related Jordan–Wigner strings along (b) and across (c) the ‘rows’ formed
by the strings. (d)The hopping term as in (c)with approximation of the ‘non-local’ (dashed) part of the string. The remaining
components of the string act only on the sites A andB (as visualized by the solid green arrow) and the hopping termhas the same form
as in (b).
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s s s= -  
+

 
-ˆ ˆ ˆ [ ˆ ] ˆ ( )†

( ) ( ) ( )c c , B.2k k
z

ki j i i j, , ,

s s s= -  
+

 
-ˆ ˆ ˆ [ ˆ ] ˆ ( )†

( ) ( ) ( )c c . B.3k k
z

ki j i j j, , ,

If the hopping takes place between two sites in different rows, the Jordan–Wigner string includes also sites
between the i j, pair and the (left or right) edge of the system (as illustrated infigure 5(c)). Note that the number
of these ‘non-local’ sites is always even due to our choice of the enumerating function s( )k i, . Consequently, at
half-filling, i.e. with one particle per site on average, there is an even number of particles, N2 1, along the ‘non-
local’ part of the Jordan–Wigner string. In such case, the string evaluates to the factor - =( )1 1N2 1 . In our
variationalmethodwe use this value as an approximation for the ‘non-local’ part of the string, whereas the local
terms are retained. Such a procedure is similar to the ‘mean-field’ treatment of the strings applied, e.g. in
[76, 78, 89]. As a result, the hopping between rows is expressed in the sameway as in equations (B.2) and (B.3),
which is visualized infigure 5(d).

For the jumpoperators we use the same approximation. Thereby, themaster equation (2) acquires the form
with atmost two-site interaction terms (site here refers to the original fermionic site), for which the variational
method can be readily applied. Note that in theMCWFcalculations the ‘non-local’ part of the strings needs to be
preserved.

Explicitly, the contribution from the hopping term to the normof a single bond, r r=∣∣ ∣∣ ∣∣ ∣∣TrAB A B  , on the
example of thefirst term in equation (10), is given by

r s s s

s s s r

- = -

+ +


+
 

-


+

 
-

[ ] [ ˆ ˆ ˆ
ˆ ˆ ˆ ]

( )( ) ( ) ( )

( ) ( ) ( )

H ti , i

h.c., ,
B.4

AB AB k A k A
z

k B

k A k B
z

k B AB

, , ,

, , ,

wherewe assumed s s<( ) ( )k A k B, , . The treatment of other terms in the norm is analogous and, similarly,
results in the appearance of parity factors ( s- sˆ ( )k A

z
, and s- sˆ ( )k B

z
, ), which originate from the fermionic

anticommutation rules.
Finally, let us note that the results of our variationalmethod do not depend on the system size, ´N Nx y

(however, theymake sense only for N N, 4x y ) and hence correspond to the thermodynamic limit.
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