
Form Methods Syst Des
DOI 10.1007/s10703-016-0256-5

From non-preemptive to preemptive scheduling using
synchronization synthesis

Pavol Černý1 · Edmund M. Clarke2 · Thomas A. Henzinger3 ·
Arjun Radhakrishna4 · Leonid Ryzhyk5 · Roopsha Samanta6 ·
Thorsten Tarrach3

© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We present a computer-aided programming approach to concurrency. The
approach allows programmers to program assuming a friendly, non-preemptive scheduler,
and our synthesis procedure inserts synchronization to ensure that the final program works
even with a preemptive scheduler. The correctness specification is implicit, inferred from
the non-preemptive behavior. Let us consider sequences of calls that the program makes
to an external interface. The specification requires that any such sequence produced under

This work was published, in part, in Computer Aided Verification (CAV) 2015 [4].

B Thorsten Tarrach
ttarrach@ist.ac.at

Pavol Černý
pavol.cerny@colorado.edu

Edmund M. Clarke
emc@cs.cmu.edu

Thomas A. Henzinger
tah@ist.ac.at

Arjun Radhakrishna
arjunrad@cis.upenn.edu

Leonid Ryzhyk
l.ryzhyk@samsung.com

Roopsha Samanta
roopsha@cs.purdue.edu

1 University of Colorado Boulder, 425 UCB, Boulder, CO 80309, USA

2 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

3 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria

4 University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104, USA

5 Samsung Research America, 665 Clyde Avenue, Mountain View, CA 94043, USA

6 University of Purdue, 610 Purdue Mall, West Lafayette, IN 47907, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-016-0256-5&domain=pdf
http://orcid.org/0000-0003-4409-8487

Form Methods Syst Des

a preemptive scheduler should be included in the set of sequences produced under a non-
preemptive scheduler. We guarantee that our synthesis does not introduce deadlocks and
that the synchronization inserted is optimal w.r.t. a given objective function. The solution
is based on a finitary abstraction, an algorithm for bounded language inclusion modulo an
independence relation, and generation of a set of global constraints over synchronization
placements. Each model of the global constraints set corresponds to a correctness-ensuring
synchronization placement. The placement that is optimal w.r.t. the given objective function
is chosen as the synchronization solution. We apply the approach to device-driver program-
ming, where the driver threads call the software interface of the device and the API provided
by the operating system. Our experiments demonstrate that our synthesis method is pre-
cise and efficient. The implicit specification helped us find one concurrency bug previously
missedwhenmodel-checking using an explicit, user-provided specification.We implemented
objective functions for coarse-grained and fine-grained locking and observed that different
synchronization placements are produced for our experiments, favoring a minimal number
of synchronization operations or maximum concurrency, respectively.

Keywords Synthesis · Concurrency · NFA language inclusion · MaxSAT

1 Introduction

Programming for a concurrent shared-memory system, such as most common computing
devices today, is notoriously difficult and error-prone. Program synthesis for concurrency
aims to mitigate this complexity by synthesizing synchronization code automatically [5,6,9,
15]. However, specifying the programmer’s intent may be a challenge in itself. Declarative
mechanisms, such as assertions, suffer from the drawback that it is difficult to ensure that the
specification is complete and fully captures the programmer’s intent.

We propose a solution where the specification is implicit. We observe that a core diffi-
culty in concurrent programming originates from the fact that the scheduler can preempt the
execution of a thread at any time. We therefore give the developer the option to program
assuming a friendly, non-preemptive, scheduler. Our tool automatically synthesizes synchro-
nization code to ensure that every behavior of the program under preemptive scheduling is
included in the set of behaviors produced under non-preemptive scheduling. Thus, we use
the non-preemptive semantics as an implicit correctness specification.

The non-preemptive scheduling model (also known as cooperative scheduling [26]) can
simplify the development of concurrent software, including operating system (OS) kernels,
network servers, database systems, etc. [21,22]. In the non-preemptive model, a thread can
only be descheduled by voluntarily yielding control, e.g., by invoking a blocking operation.
Synchronization primitivesmay be used for communication between threads, e.g., a producer
thread may use a semaphore to notify the consumer about availability of data. However, one
does not need to worry about protecting accesses to shared state: a series of memory accesses
executes atomically as long as the scheduled thread does not yield.

A user evaluation by Sadowski and Yi [22] demonstrated that this model makes it easier
for programmers to reason about and identify defects in concurrent code. There exist alterna-
tive implicit correctness specifications for concurrent programs. For example, for functional
programs one can specify the final output of the sequential execution as the correct output.
The synthesizer must then generate a concurrent program that is guaranteed to produce the
same output as the sequential version [3]. This approach does not allow any form of thread
coordination, e.g., threads cannot be arranged in a producer–consumer fashion. In addition,

123

Form Methods Syst Des

it is not applicable to reactive systems, such as device drivers, where threads are not required
to terminate.

Another implicit specification technique is based on placing atomic sections in the source
code of the program [14]. In the synthesized program the computation performed by an
atomic section must appear atomic with respect to the rest of the program. Specifications
based on atomic sections and specifications based on the non-preemptive scheduling model,
used by our tool, can be easily expressed in terms of each other. For example, one can simulate
atomic sections by placing yield statements before and after each atomic section, as well as
around every instruction that does not belong to any atomic section.

We believe that, at least for systems code, specifications based on the non-preemptive
scheduling model are easier to write and are less error-prone than atomic sections. Atomic
sections are subject to syntactic constraints. Each section is marked by a pair of matching
opening and closing statements, which in practice means that the section must start and end
within the same program block. In contrast, a yield can be placed anywhere in the program.

Moreover, atomic sections restrict the use of thread synchronization primitives such as
semaphores. An atomic section either executes in its entirety or not at all. In the former case,
all wait conditions along the execution path through the atomic section must be simultane-
ously satisfied before the atomic section starts executing. In practice, to avoid deadlocks, one
can only place a blocking instruction at the start of an atomic section. Combined with syn-
tactic constraints discussed above, this restricts the use of thread coordination with atomic
sections—a severe limitation for systems code where thread coordination is common. In
contrast, synchronization primitives can be used freely under non-preemptive scheduling.
Internally, they are modeled using yields: for instance, a semaphore acquisition instruction
is modeled by a yield followed by an assume statement that proceeds when the semaphore
becomes available.

Lastly, our specification defaults to the safe choice of assuming everything needs to be
atomic unless a yield statement is placed by the programmer. In contrast, code that uses
atomic sections can be preempted at any point unless protected by an explicit atomic section.

In defining behavioral equivalence between preemptive and non-preemptive executions,
we focus on externally observable program behaviors: two program executions are observa-
tionally equivalent if they generate the same sequences of calls to interfaces of interest. This
approach facilitates modular synthesis where amodule’s behavior is characterized in terms of
its interaction with other modules. Given a multi-threaded program C and a synthesized pro-
gram C ′ obtained by adding synchronization to C ,C ′ is preemption-safe w.r.t. C if for each
execution of C ′ under a preemptive scheduler, there is an observationally equivalent non-
preemptive execution ofC . Our synthesis goal is to automatically generate a preemption-safe
version of the input program.

We rely on abstraction to achieve efficient synthesis of multi-threaded programs. We pro-
pose a simple, data-oblivious abstraction inspired by an analysis of synchronization patterns
in OS code, which tend to be independent of data values. The abstraction tracks types of
accesses (read or write) to each memory location while ignoring their values. In addition,
the abstraction tracks branching choices. Calls to an external interface are modeled as writes
to a special memory location, with independent interfaces modeled as separate locations. To
the best of our knowledge, our proposed abstraction is yet to be explored in the verification
and synthesis literature. The abstract program is denoted as Cabs.

Two abstract program executions are observationally equivalent if they are equal mod-
ulo the classical independence relation I onmemory accesses. Thismeans that every sequence
ω of observable actions is equivalent to a set of sequences of observable actions that are
derived from ω by repeatedly commuting independent actions. Independent actions are

123

Form Methods Syst Des

accesses to different locations, and accesses to the same location iff they are both read
accesses. Using this notion of equivalence, the notion of preemption-safety is extended to
abstract programs.

Under abstraction, we model each thread as a nondeterministic finite automaton (NFA)
over a finite alphabet, with each symbol corresponding to a read or a write to a particular
variable. This enables us to construct NFAsNPabs, representing the abstraction of the original
program C under non-preemptive scheduling, and Pabs , representing the abstraction of the
synthesized program C ′ under preemptive scheduling. We show that preemption-safety of
C ′ w.r.t. C is implied by preemption-safety of the abstract synthesized program C ′

abs w.r.t.
the abstract original program Cabs, which, in turn, is implied by language inclusion modulo I
of NFAs Pabs andNPabs. While the problem of language inclusion modulo an independence
relation is undecidable [2], we show that the antichain-based algorithm for standard language
inclusion [11] can be adapted to decide a bounded version of language inclusion modulo an
independence relation.

Our synthesis works in a counterexample-guided inductive synthesis (CEGIS) loop that
accumulates a set of global constraints. The loop starts with a counterexample obtained
from the language inclusion check. A counterexample is a sequence of locations in Cabs

such that their execution produce an observation sequence that is valid under the preemptive
semantics, but not under the non-preemptive semantics. From the counterexample we infer
mutual exclusion (mutex) constraints, which when enforced in the language inclusion check
avoid returning the same counterexample again.We accumulate themutex constraints fromall
counterexamples iteratively generated by the language inclusion check. Once the language
inclusion check succeeds, we construct a set of global constraints using the accumulated
mutex constraints and constraints for enforcing deadlock-freedom. This approach is the key
difference to our previous work [4], where a greedy approach is employed that immediately
places a lock to eliminate a bug. The greedy approach may result in a suboptimal lock
placement with unnecessarily overlapping or nested locks.

The global approach allows us to use an objective function f to find an optimal lock place-
ment w.r.t. f once all mutex constraints have been identified. Examples of objective functions
include minimizing the number of lock statements (leading to coarse-grained locking) and
maximizing concurrency (leading to fine-grained locking).We encode such an objective func-
tion, together with the global constraints, into a weighted maximum satisfiability (MaxSAT)
problem, which is then solved using an off-the-shelf solver.

Since the synthesized lock placement is guaranteed not to introduce deadlocks our solution
follows good programming practices with respect to locks: no double locking, no double
unlocking and no locks locked at the end of the execution.

We implemented our synthesis procedure in a new prototype tool called Liss (Language
Inclusion-based Synchronization Synthesis) and evaluated it on a series of device driver
benchmarks, including an Ethernet driver for Linux and the synchronization skeleton of a
USB-to-serial controller driver, as well as an in-memory key-value store server. First, Liss
was able to detect and eliminate all but two known concurrency bugs in our examples; these
included one bug that we previously missed when synthesizing from explicit specifications
[6], due to a missing assertion. Second, our abstraction proved highly efficient: Liss runs an
order of magnitude faster on the more complicated examples than our previous synthesis tool
based on the CBMCmodel checker. Third, our coarse abstraction proved surprisingly precise
for systems code: across all our benchmarks, we only encountered three program locations
where manual abstraction refinement was needed to avoid the generation of unnecessary
synchronization. Fourth, our tool finds a deadlock-free lock placement for both a fine-grained
and a coarse-grained objective function. Overall, our evaluation strongly supports the use of

123

Form Methods Syst Des

the implicit specification approach based on non-preemptive scheduling semantics as well as
the use of the data-oblivious abstraction to achieve practical synthesis for real-world systems
code. With the two objective functions we implemented, Liss produces an optimal lock
placements w.r.t. the objective.
Contributions First, we propose a new specification-free approach to synchronization
synthesis. Given a program written assuming a friendly, non-preemptive scheduler, we auto-
matically generate a preemption-safe version of the program without introducing deadlocks.
Second, we introduce a novel abstraction scheme and use it to reduce preemption-safety to
language inclusion modulo an independence relation. Third, we present the first language
inclusion-based synchronization synthesis procedure and tool for concurrent programs. Our
synthesis procedure includes a new algorithm for a bounded version of our inherently unde-
cidable language inclusion problem. Fourth, we synthesize an optimal lock placement w.r.t.
an objective function. Finally, we evaluate our synthesis procedure on several examples. To
the best of our knowledge, Liss is the first synthesis tool capable of handling realistic (albeit
simplified) device driver code, while previous tools were evaluated on small fragments of
driver code or on manually extracted synchronization skeletons.

2 Related work

This work is an extension of our work that appeared in CAV 2015 [4].We included a proof for
Theorem3 that shows that language inclusion is undecidable for our particular construction of
automata and independence relation. Further, we introduced a set of global mutex constraints
that replace the greedy approach of our previous work and enables optimal lock placement
according to an objective function.

Synthesis of synchronization is an active research area [3,5,6,8,12,15,17,23,24]. Closest
to our work is a recent paper by Bloem et al. [3], which uses implicit specifications for
synchronization synthesis. While their specification is given by sequential behaviors, ours is
given by non-preemptive behaviors. This makes our approach applicable to scenarios where
threads need to communicate explicitly. Further, correctness in Bloem et al. [3] is determined
by comparing values at the end of the execution. In contrast, we compare sequences of
events, which serves as a more suitable specification for infinitely-looping reactive systems.
Further, Khoshnood et al. developed ConcBugAssist [18], similar to our earlier paper [15],
that employs a greedy loop to fix assertion violations in concurrent programs.

Our previous work [5,6,15] develops the trace-based synthesis algorithm. The input is a
programwith assertions in the code,which represent an explicit correctness specification. The
algorithmproceeds in a loopwhere in each iteration a faulty trace is obtained using an external
model checker. A trace is faulty if it violates the specification. The trace is subsequently
generalized to a partial order [5,6] or a formula over happens-before relations [15], both
representing a set of faulty traces. A formula over happens-before relations is basically a
disjunction of partial orders. In our earlier previous work [5,6] the partial order is used to
synthesize atomic sections and inner-thread reorderings of independent statements. In our
laterwork [15] the happens-before formula is used to obtain locks,wait-signal statements, and
barriers. The quality of the synthesized code heavily depends on how well the generalization
steps works. Intuitively the more faulty traces are removed in one synthesis step the more
general the solution is and the closer it is to the solution a human would have implemented.

The drawback of assertions as a specification is that it is hard to determine if a given
set of assertions represents a complete specification. The current work does not rely on an
external model-checker or an explicit specification. Here we are solving language inclusion,

123

Form Methods Syst Des

a computationally harder problem than reachability. However, due to our abstraction, our
tool performs significantly better than tools from our previous work [5,6], which are based
on a mature model checker (CBMC [10]). Our abstraction is reminiscent of previously used
abstractions that track reads and writes to individual locations (e.g., [1,25]). However, our
abstraction is novel as it additionally tracks some control-flow information (specifically, the
branches taken) giving us higher precision with almost negligible computational cost. For the
trace generalization and synthesis we use the technique from our previous work [15] to infer
looks. Due to our choice of specification no other synchronization primitives are needed.

In Vechev et al. [24] the authors rely on assertions for synchronization synthesis and
include iterative abstraction refinement in their framework. This is an interesting extension
to pursue for our abstraction. In other related work, CFix [17] can detect and fix concurrency
bugs by identifying simple bug patterns in the code.

The concepts of linearizability and serializability are very similar to our implicit specifi-
cation. Linearizability [16] describes the illusion that every method of an object takes effect
instantaneously at some point between the method call and return. A set of transactions
is serializable [13,20] if they produce the same result, whether scheduled in parallel or in
sequential order.

There has been a body of work on using a non-preemptive (cooperative) scheduler as
an implicit specification. The notion of cooperability was introduced by Yi and Flanagan
[26]. They require the user to annotate the program with yield statements to indicate thread
interference. Then their system verifies that the yield specification is complete meaning that
every trace is cooperable. A preemptive trace is cooperable if it is equivalent to a trace under
the cooperative scheduler.

3 Illustrative example

Figure 2 contains our running example, a part of a device driver. A driver interfaces the
operating system with the hardware device (as illustrated in Fig. 1) and may be used by
different threads of the operating system in parallel. An operating system thread wishing to
use the device must first call the open_dev procedure and finally the close_dev procedure
to indicate it no longer needs the device. The driver keeps track of the number of threads that
interact with the device. The first thread to call open_dev will cause the driver to power up

OS Thread 1

OS Thread 2

Driver
open dev
close dev

Device
power on
power off

Fig. 1 Interaction of the device driver with the OS and the device

procedure OPEN DEV

1 if (open== 0) then
2 POWER UP

3 open := open+1
4 yield

procedure CLOSE DEV

5 if (open> 0) then
6 open := open−1
7 if (open == 0) then
8 POWER DOWN

9 yield

Fig. 2 Running example

123

Form Methods Syst Des

procedure OPEN DEV ABS

1a read(open)
1b if (∗) then
2 write(dev)

3a read(open)
3b write(open)
4 yield

procedure CLOSE DEV ABS

5a read(open)
5b if (∗) then
6a read(open)
6b write(open)
7a read(open)
7b if (∗) then
8 write(dev)

9 yield

Fig. 3 Abstraction of the running example

the device, the last thread to call close_dev will cause the driver to power down the device.
The interaction between the driver and the device are represented as procedure calls in lines
�2 and �8. From the device’s perspective, the power-on and power-off signals alternate. In
general, we must assume that it is not safe to send the power-on signal twice in a row to
the device. If executed with the non-preemptive scheduler the code in Fig. 2 will produce a
sequence of a power-on signal followed by a power-off signal followed by a power-on signal
and so on.

Consider the case where the procedure open_dev is called in parallel by two operating
system threads that want to initiate usage of the device. Without additional synchronization,
there could be two calls to power_up in a row when executing under a preemptive scheduler.
Consider two threads (T1 and T2) running the open_dev procedure. The corresponding
trace is T1.�1; T2.�1; T1.�2; T2.�2; T2.�3; T2.�4; T1.�3; T1.�4. This sequence is not
observationally equivalent to any sequence that can be produced when executing with a
non-preemptive scheduler.

Figure 3 contains the abstracted versions of the two procedures, open_dev_abs and
close_dev_abs. For instance, the instruction open := open + 1 is abstracted to the two
instructions labeled �3a and �3b. The calls to the device (power_up and power_down) are
abstracted as writes to a hypothetical dev variable. This expresses the fact that interactions
with the device are never independent. The abstraction is coarse, but still captures the problem.
Consider two threads (T1 andT2) running theopen_dev_abs procedure. The following trace
is possible under a preemptive scheduler, but not under a non-preemptive scheduler: T1.�1a;
T1.�1b; T2.�1a; T2.�1b; T1.�2; T2.�2; T2.�3a; T2.�3b; T2.�4; T1.�3a; T1.�3b; T1.�4.
Moreover, the trace cannot be transformed by swapping independent events into any trace
possible under a non-preemptive scheduler. This is because instructions �3b : write(open)

and �1a : read(open) are not independent. Further, �2 : write(dev) is not independent with
itself. Hence, the abstract trace exhibits the problem of two successive calls to power_up
when executing with a preemptive scheduler. Our synthesis procedure finds this problem, and
stores it as a mutex constraint: mtx([�1a :�3b], [�2:�3b]). Intuitively this constraint expresses
the fact if one thread is executing any instruction between �1a and �3b no other thread may
execute �2 or �3b.

While this constraint ensures two parallel calls to open_dev behave correctly, two parallel
calls to close_devmay result in the device receiving two power_down signals. This is rep-
resented by the concrete trace T1.�5; T1.�6; T2.�5; T2.�6; T2.�7; T2.�8; T2.�9; T1.�7;
T1.�8; T1.�9. The corresponding abstract trace is T1.�5a; T1.�5b; T1.�6a; T1.�6b; T2.�5a;
T2.�5b; T2.�6a; T2.�6b; T2.�7a; T2.�7b; T2.�8; T2.�9; T1.�7a; T1.�7b; T1.�8; T1.�9.
This trace is not possible under a non-preemptive scheduler and cannot be transformed to a
trace possible under a non-preemptive scheduler. This results in a second mutex constraint
mtx([�5a :�8], [�6b:�8]). With both mutex constraints the program is correct. Our lock place-

123

Form Methods Syst Des

procedure OPEN DEV
lock(LkVar)

1 if (open== 0) then
2 POWER UP

3 open := open+1
unlock(LkVar)

4 yield

procedure CLOSE DEV
lock(LkVar)

5 if (open> 0) then
6 open := open−1
7 if (open == 0) then
8 POWER DOWN

unlock(LkVar)
9 yield

Fig. 4 Running example with the synthesized locks

ment procedure then encodes these constraints in SMT and the models of the SMT formula
are all the correct lock placements. In Fig. 4 we show open_dev and close_dev with the
inserted locks.

4 Formal framework and problem statement

We present the syntax and semantics of a concrete concurrent while language W . For our
solution strategy to be efficient we require an abstraction and we also introduce the syntax
and semantics of the abstract concurrent while language Wabs. While W (and our tool)
permits non-recursive function call and return statements, we skip these constructs in the
formalization below. We conclude the section by formalizing our notion of correctness for
concrete concurrent programs.

4.1 Concrete concurrent programs

In our work, we assume a read or a write to a single shared variable executes atomically and
further assume a sequentially consistent memory model.

4.1.1 Syntax of W (Fig. 5)

A concurrent program is a finite collection of threads 〈T1, . . . ,Tn〉 where each thread is a
statement written in the syntax of W . Variables in W can be categorized into

– shared variables ShVari ,
– thread-local variables LoVari ,
– lock variables LkVari ,
– condition variables CondVari for wait-signal statements, and
– guard variables GrdVari for assumptions.

The LkVari ,CondVari and GrdVari variables are also shared between all threads. All vari-
ables range over integers with the exception of guard variables that range over Booleans
(true,false). Each statement is labeled with a unique location identifier �; we denote by
stmt(�) the statement labeled by �.

The language W includes standard sequential constructs, such as assignments, loops,
conditionals, and goto statements. Additional statements control the interaction between
threads, such as lock, wait-notify, and yield statements. In W , we only permit expressions
that read from at most one shared variable and assignments that either read from or write to

123

Form Methods Syst Des

exactly one shared variable.1 The language also includes assume, assume_not statements
that operate on guard variables and become relevant later for our abstraction. The yield
statement is in a sense an annotation as it has no effect on the actual program running under
a preemptive scheduler. We still present it here because it has a semantic meaning under the
non-preemptive scheduler.

Language W has two statements that allow communication with an external system:
input(ch) reads from and output(ch, ShExp) writes to a communication channel ch. The
channel is an interface between the program and an external system. The external system
cannot observe the internal state of the program and only observes the information flow on
the channel. In practice, we use the channels to model device registers. A device register is
a special memory address, reading and writing from and to it is visible to the device. This
is used to exchange information with a device. In our presentation, we assume all channels
communicate with the same external system.

4.1.2 Semantics of W

We first define the semantics of a single thread in W , and then extend the definition to
concurrent non-preemptive and preemptive semantics.

4.1.2.1 Single-thread semantics (Fig. 6) Let us fix a thread identifier tid. We use tid inter-
changeably with the program it represents. A state of a single thread is given by 〈V , �〉where
V is a valuation of all program variables, and � is a location identifier, indicating the statement
in tid to be executed next. A thread is guaranteed not to read or write thread-local variables
of other threads.

We define the flow graph Gtid for thread tid in a manner similar to the control-flow graph
of tid. Every node of Gtid represents a single statement (basic blocks are not merged) and the
node is labeled with the location � of the statement. The flow graph Gtid has a unique entry
node and a unique exit node. These two may coincide if the thread has no statements. The
entry node is the first labeled statement in tid; we denote its location identifier by firsttid . The
exit node is a special node corresponding to a hypothetical statement lasttid : skip placed at
the end of tid.

We define successors of locations of tid using Gtid . The location last has no successors.
We define succ(�) = �′ if node � : stmt in Gtid has exactly one outgoing edge to node
�′ : stmt′. Nodes representing conditionals and loops have two outgoing edges. We define
succ1(�) = �1 and succ2(�) = �2 if node � : stmt in Gtid has exactly two outgoing edges to
nodes �1 : stmt1 and �2 : stmt2. Here succ1 represents the then or the loop branch, whereas
succ2 represents the else or the loopexit branch.

We can now define the single-thread operational semantics. A single execution step
〈V , �〉 α−→ 〈V ′, �′〉 changes the program state from 〈V , �〉 to 〈V ′, �′〉, while optionally out-
putting an observable symbol α. The absence of a symbol is denoted using ε. In the following,
e represents an expression and e[v/V [v]] evaluates an expression by replacing all variables
v with their values in V . We use V [v := k] to denote that variable v is set to k and all other
variables in V remain unchanged.

1 An expression/assignment statement that involves reading from/writing to multiple shared variables can
always be rewritten into a sequence of atomic read/atomic write statements using local variables. For example
the statement x := x + 1, where x is a global variable can be translated to l = x; x = l + 1, where l is a
fresh local variable.

123

Form Methods Syst Des

LbStmt ::= Labeled Statement
: stmt Statement annotated with a location

LbStmt1;LbStmt2 Sequence of statements
stmt ::= Statement

skip marks the end of the thread
ShVar := LoExp Assignment to shared variable
LoVar := ShExp Assignment to local variable
ShVar := havoc Assign non-deterministic value
ShVar := input(ch) Read a value from channel ch
output(ch,ShExp) Write value of ShExp to channel ch
if (ShExp) then LbStmt1 else LbStmt2 conditional
while (ShExp) LbStmt while loop
lock(LkVar) Locks the mutex lock
unlock(LkVar) Unlocks the mutex lock
wait(CondVar) Waits for CondVar to be signaled
wait not(CondVar) Waits for CondVar to be reset
signal(CondVar) Notifies condition variable
reset(CondVar) Resets condition variable
wait reset(CondVar) Waits and resets in an atomic operation
assume(GrdVar) Assume guard to be true
assume not(GrdVar) Assume guard to be false
GrdVar ← GrdExpr Assigns GrdVar the result of GrdExpr
yield Allow current thread to be descheduled
goto() Set the instruction pointer to

LoExp ::= Local-variable expression
c Integer constant
LoVar Thread-local variable
op(LoExp1, . . . ,LoExpn) Operator application

ShExp ::= Shared-variable expression
LoExp Local-variable expression
ShVar Shared variable
op(ShVar,LoExp1, . . . ,LoExpn) Operator application with shared variable

GrdExpr ::= Expression over guard variables
true/false Boolean constant
GrdVar Guard variable
boolop(GrdExpr1, . . . ,GrdExprn) Boolean operation

Fig. 5 Syntax of W

InFig. 6,wepresent the rules for single execution steps.Each step is atomic, no interference
can occur while the expressions in the premise are being evaluated. The only rules with an
observable output are:

1. Havoc: Statement � : ShVar := havoc assigns shared variable ShVar a non-
deterministic value (say k) and outputs the observable (tid,havoc, k, ShVar).

123

Form Methods Syst Des

2. Input,Output: � : ShVar := input(ch) and � : output(ch, ShExp) read and write values
to the channel ch, and output (tid, in, k, ch) and (tid,out, k, ch), where k is the value
read or written, respectively.

Intuitively, the observables record the sequence of non-deterministic guesses, as well as
the input/output interaction with the tagged channels. The semantics of the synchronization
statements shown in Fig. 6 is standard. The lock and unlock statements do not count and
do not allow double (un)locking. There are no rules for goto and the sequence statement
because they are already taken care of by the flow graph.

4.1.3 Concurrent semantics

Astate of a concurrent program is givenby 〈V , ctid, (�1, . . . , �n)〉whereV is a valuationof all
program variables, ctid is the thread identifier of the currently executing thread and �1, . . . , �n
are the locations of the statements to be executed next in threads T1 to Tn , respectively. There
are two additional states: 〈terminated〉 indicates the program has finished and 〈failed〉
indicates an assumption failed. Initially, all integer program variables and ctid equal 0, all
guard variable equal false and for each i ∈ [1, n] : �i = firsti . We introduce a non-
preemptive and a preemptive semantics. The former is used as a specification of allowed
executions, whereas the latter models concurrent sequentially consistent executions of the
program.

4.1.3.1 Non-preemptive semantics (Fig. 7) The non-preemptive semantics ensures that a sin-
gle thread from the program keeps executing using the single-thread semantics (Rule Seq)
until one of the following occurs: (a) the thread finishes execution (Rule Thread_end)
or (b) it encounters a yield, lock, wait or wait_not statement (Rule Nswitch). In these
cases, a context-switch is possible, however, the new thread must not be blocked. We con-
sider a thread blocked if its current instruction is to acquire an unavailable lock, waits for
a condition that is not signaled, or the thread reached the last location. Note the difference
between wait/wait_not and assume/assume_not. The former allow for a context-switch
while the latter transitions to the 〈failed〉 state if the assume is not fulfilled (rule
Assume/Assume_not). A special rule exists for termination (Rule Terminate), which
requires that all threads finished execution and also all locks are unlocked.

4.1.3.2 Preemptive semantics (Figs. 7, 8) The preemptive semantics of a program is obtained
from the non-preemptive semantics by relaxing the condition on context-switches, and allow-
ing context-switches at all program points. In particular, the preemptive semantics consist of
the rules of the non-preemptive semantics and the single rule Pswitch in Fig. 8.

4.2 Abstract concurrent programs

The state of the concrete semantics contains unbounded integer variables, which may result
in an infinite state space.We therefore introduce a simple, data-oblivious abstractionWabs for
concurrent programs written in W communicating with an external system. The abstraction
tracks types of accesses (read or write) to each memory location while abstracting away
their values. Inputs/outputs to a channel are modeled as writes to a special memory location
(dev). Even inputs are modeled as writes because in our applications we cannot assume that
reads from the external interface are free of side-effects in the component on the other side
of the interface. Havocs become ordinary writes to the variable they are assigned to. Every
branch is taken non-deterministically and tracked. Given C written inW , we denote by Cabs

the corresponding abstract program written in Wabs.

123

Form Methods Syst Des

stmt() = ShVar := LoExp LoExp[v/V [v]] = k

V
ε− V [ShVar := k],succ()

ASSIGNMENT

stmt() = ShVar := havoc k ∈ Z
V

(tid,havoc,k,ShVar)
V [ShVar := k],succ()

HAVOC

stmt() = ShVar := input(ch) k ∈ Z
V

(tid,in,k,ch)
V [ShVar := k],succ()

INPUT

stmt() = output(ch,ShExp) ShExp[v/V [v]] = k

V
(tid,out,k,ch)

V ,succ()
OUTPUT

stmt() = if (ShExp) then LbStmt1 else LbStmt2 ShExp[v/V [v]] = 0
V

ε− V ,succ1()
IF1

stmt() = if (ShExp) then LbStmt1 else LbStmt2 ShExp[v/V [v]] = 0
V

ε− V ,succ2()
IF2

stmt() = while (ShExp) LbStmt
ShExp[v/V [v]] = 0
V

ε− V ,succ1()
WHILE1

stmt() = while (ShExp) LbStmt
ShExp[v/V [v]] = 0
V

ε− V ,succ2()
WHILE2

stmt() = lock(LkVar) V [LkVar] = 0
V

ε− V [LkVar := tid],succ()
LOCK

stmt() = unlock(LkVar) V [LkVar] = tid

V
ε− V [LkVar := 0],succ()

UNLOCK

stmt() = wait(CondVar)/wait not(CondVar)
V [CondVar] = 1/0
V

ε− V ,succ()
WAIT/WAIT NOT

stmt() = wait reset(CondVar) V [CondVar] = 1
V

ε− V [CondVar := 0],succ()
WAIT RESET

stmt() = signal(CondVar)/reset(CondVar)

V
ε− V [CondVar := 1/0],succ()

SIGNAL/RESET

stmt() = assume(GrdVar)/assume not(GrdVar)
V [GrdVar] = true/false

V
ε− V ,succ()

ASSUME/ASSUME NOT

stmt() = GrdVar ← GrdExpr GrdExpr[v/V [v]] = k k ∈ {false,true}
V

ε− V [GrdVar := k],succ()
SET GUARD

Fig. 6 Single-thread semantics of W

4.2.1 Abstract syntax (Fig. 9)

In the figure, var denotes all shared program variables and the dev variable. The syntax of all
synchronization primitives and the assumptions over guard variables remains unchanged. The
purpose of the guard variables is to improve the precision of our otherwise coarse abstraction.

123

Form Methods Syst Des

ctid = i V i
α− V i

V ,ctid,(i, . . .)
α− V ,ctid,(i, . . .)

SEQ

ctid = i i = lasti ctid ∈ {1, . . . ,n} ¬blocked(ctid ,V)
V ,ctid,(i, . . .)

ε− V ,ctid ,(i, . . .)
THREAD END

stmt(i) = lock(lk)/wait(cv)/wait not(cv)/wait reset(cv)/yield
ctid = i ctid ∈ {1, . . . ,n} ¬blocked(ctid ,V)

V ,ctid,(i, . . .)
ε− V ,ctid ,(i, . . .)

NSWITCH

∀i i = lasti ∀ j. V [lk j] = 0
V ,ctid,(1 n)

ε− terminated
TERMINATE

ctid = i stmt(i) = assume(gv)/assume not(gv)
V [gv] = 0/1

V ,ctid,(1 n)
ε− failed

ASSUME/ASSUME NOT

blocked(V) = (stmt() = lock(LkVar)∧V [LkVar] = 0)
∨ (stmt() = wait(CondVar)∧V [CondVar] = 0)
∨ (stmt() = wait not(CondVar)∧V [CondVar] = 1)
∨ (stmt() = wait reset(CondVar)∧V [CondVar] = 0)
∨ (∃i : = lasti))

Fig. 7 Non-preemptive semantics

ctid ∈ {1, . . . ,n} ¬blocked(ctid ,V)

V ,ctid,(1 n)
ε− V ,ctid ,(1 n)

PSWITCH

Fig. 8 Additional rule for preemptive semantics

Currently, they are inferred manually, but can presumably be inferred automatically using an
iterative abstraction-refinement loop. In our current benchmarks, guard variables needed to
be introduced in only three scenarios.

4.2.2 Abstraction function (Fig. 10)

A thread in W can be translated to Wabs using the abstraction function 〈〈〉〉. The abstraction
replaces all global variable access with read(var) and write(var) and replaces branching
conditions with nondeterminism (∗). All synchronization primitives remain unaffected by
the abstraction. The abstraction may result in duplicate labels �, which are replaced by fresh
labels. goto statements are reordered accordingly. Our abstraction records branching choices
(branch tagging). If one were to remove branch-tagging, the abstraction would be unsound.
The justification and intuition for this can be found further below in Theorem 1. For example
in our running example in Fig. 2 the abstraction of �1 results in two abstract labels �1a and
�1b in Fig. 3.

123

Form Methods Syst Des

var ::= Variables
ShVar Shared variable
dev Variable for interaction with channels

LbStmt ::= Labeled Statement
: stmt Statement annotated with a location

LbStmt1;LbStmt2 Sequence of statements
stmt ::= Statement

skip marks the end of the thread
read(var) Read a shared variable var
write(var) Write to shared variable var
if (∗) then LbStmt1 else LbStmt2 conditional
while (∗) LbStmt while loop
lock(LkVar) Locks the mutex lock
. . . remaining statements as in Fig. 5

Fig. 9 Syntax of Wabs

Fig. 10 Abstraction function from W to Wabs

4.2.3 Abstract semantics

As before, we first define the semantics of Wabs for a single-thread.

4.2.3.1 Single-thread semantics (Fig. 11) The abstract state of a single thread tid is
given simply by 〈Vo, �〉 where Vo is a valuation of all lock, condition and guard vari-
ables and � is the location of the statement in tid to be executed next. We define
the flow graph and successors for locations in the abstract program tid in the same
way as before. An abstract observable symbol is of the form: (tid, θ, �), where θ ∈
{(read, ShVar), (write, ShVar), then,else, loop,exitloop}. The symbol θ records the type
of access to variables along with the variable name ((read, v), (write, v)) and records non-
deterministic branching choices {if,else, loop,exitloop}. Fig. 11 presents the rules for
statements unique to Wabs; the rules for statements common to Wabs and W are the same.

4.2.3.2 Concurrent semantics A state of an abstract concurrent program is either
〈terminated〉, 〈failed〉, or is given by 〈Vo, ctid, (�1, . . . , �n)〉 where Vo is a valuation
of all lock, condition and guard variables, ctid is the current thread identifier and �1, . . . , �n
are the locations of the statements to be executed next in threads T1 to Tn , respectively.
The non-preemptive and preemptive semantics of a concurrent program written in Wabs are
defined in the same way as that of a concurrent program written in W .

123

Form Methods Syst Des

stmt() = read(var) = succ()

Vo
(tid,(read,var))

Vo
READ

stmt() = write(var) = succ()

Vo
(tid,(write,var))

Vo
WRITE

stmt() = if (∗) then ls1 else ls2 = succ1()

Vo
(tid,then)

Vo
IF1

stmt() = if (∗) then ls1 else ls2 = succ2()

Vo
(tid,else)

Vo
IF2

stmt() = while (∗) ls = succ1()

Vo
(tid,loop)

Vo
WHILE1

stmt() = while (∗) ls = succ2()

Vo
(tid,exitloop)

Vo
WHILE2

Fig. 11 Partial set of rules for single-thread semantics of Wabs

4.3 Program correctness and problem statement

LetW,Wabs denote the set of all concurrent programs in W ,Wabs, respectively.

4.3.1 Executions

A non-preemptive/preemptive execution of a concurrent program C in W is an alternat-
ing sequence of program states and (possibly empty) observable symbols, S0α1S1 . . . αk Sk ,
such that (a) S0 is the initial state of C , (b) ∀ j ∈ [0, k − 1], according to the non-

preemptive/preemptive semantics of W , we have S j
α j+1−−→ S j+1, and (c) Sk is the state

〈terminated〉. A non-preemptive/preemptive execution of a concurrent program Cabs in
Wabs is defined in the same way, replacing the corresponding semantics of W with that of
Wabs.

4.3.2 Observable behaviors

Let π be an execution of program C in W, then we denote with ω = obs(π) the
sequence of non-empty observable symbols in π . We use [[C]]NP, resp. [[C]]P , to denote
the non-preemptive, resp. preemptive, observable behavior of C , that is all sequences
obs(π) of all executions π under the non-preemptive, resp. preemptive, scheduling.
The non-preemptive/preemptive observable behavior of program Cabs in Wabs, denoted
[[Cabs]]NP/[[Cabs]]P , is defined similarly.

We specify correctness of concurrent programs inW using two implicit criteria, presented
below.

4.3.3 Preemption-safety

Observable behaviors ω1 and ω2 of a program C inW are equivalent if: (a) the subsequences
of ω1 and ω2 containing only symbols of the form (tid, in, k, t) and (tid,out, k, t) are equal

123

Form Methods Syst Des

and (b) for each thread identifier tid, the subsequences of ω1 and ω2 containing only symbols
of the form (tid,havoc, k, x) are equal. Intuitively, observable behaviors are equivalent if
they have the same interaction with the interface, and the same non-deterministic choices in
each thread. For sets O1 and O2 of observable behaviors, we write O1 � O2 to denote that
each sequence in O1 has an equivalent sequence in O2.

Given concurrent programs C and C ′ in W such that C ′ is obtained by adding locks to
C ,C ′ is preemption-safe w.r.t. C if [[C ′]]P � [[C]]NP.

4.3.4 Deadlock-freedom

A state S of concurrent programC inW is a deadlock state under non-preemptive/preemptive
semantics if

(a) The repeated application of the rules of the non-preemptive/preemptive semantics from
the initial state S0 of C can lead to S,

(b) S 	= 〈terminated〉,
(c) S 	= 〈failed〉, and
(d) ¬∃S′: 〈S〉 α−→ 〈S′〉 according to the non-preemptive/preemptive semantics of W .

Program C in W is deadlock-free under non-preemptive/preemptive semantics if no non-
preemptive/preemptive execution of C hits a deadlock state. In other words, every non-
preemptive/preemptive execution of C ends in state 〈terminated〉 or 〈failed〉. The
〈failed〉 state indicates an assumption did not hold, which we do not consider a deadlock.
We say C is deadlock-free if it is deadlock-free under both non-preemptive and preemptive
semantics.

4.3.5 Problem statement

We are now ready to state our main problem, the optimal synchronization synthesis problem.
We assumewe are given a cost function f from a programC ′ to the cost of the lock placement
solution, formally f : W �→ R. Then, given a concurrent program C in W, the goal is to
synthesize a new concurrent program C ′ inW such that:

(a) C ′ is obtained by adding locks to C ,
(b) C ′ is preemption-safe w.r.t. C ,
(c) C ′ has no deadlocks not present in C , and,
(d) C ′ = arg min

C ′′∈W satisfying (a)-(c) above
f (C ′′)

5 Solution overview

Our solution framework (Fig. 12) consists of the following main components. We briefly
describe each component below and then present them in more detail in subsequent sections.

5.1 Reduction of preemption-safety to language inclusion

To ensure tractability of checking preemption-safety, we build the abstract program Cabs

from C using the abstraction function described in Sect. 4.2. Under abstraction, we model
each thread as a nondeterministic finite automaton (NFA) over a finite alphabet consisting of

123

Form Methods Syst Des

Compute Cabs

Construct NPabsConstruct Pabs

Language
inclusion?

Generalize cex
into HB-formula

Infer mutex constraints

Construct new Pabs:
enforce mutex constraints

Construct global lock
placement con-

straints for correctness

Compute optimal
lock placement

Synthesize C :
Place optimal locks in C

YesNo
cex

mutex constraints

fC

C

Fig. 12 Solution overview

abstract observable symbols. This enables us to construct NFAs NPabs and P′
abs accepting

the languages [[Cabs]]NP and [[C ′
abs]]P , respectively. We proceed to check if all words of P′

abs
are included in NPabs modulo an independence relation I that respects the equivalence of
observables. We describe the reduction of preemption-safety to language inclusion and our
language inclusion check procedure in Sect. 6.

5.2 Inference of mutex constraints from generalized counterexamples

If P′
abs and NPabs do not satisfy language inclusion modulo I , then we obtain a counterex-

ample cex. A counterexample is a sequence of locations an observation sequence that is in
[[Cabs]]P , but not in [[C ′

abs]]NP. We analyze cex to infer constraints on L (P′
abs) for eliminat-

ing cex. We use nhood(cex) to denote the set of all permutations of the symbols in cex that
are accepted by P′

abs. Our counterexample analysis examines the set nhood(cex) to obtain
an hbformula φ—a Boolean combination of happens-before ordering constraints between
events—representing all counterexamples in nhood(cex). Thus cex is generalized into a larger
set of counterexamples represented as φ. From φ, we infer possiblemutual exclusion (mutex)
constraints onL (P′

abs) that can eliminate all counterexamples satisfying φ. We describe the
procedure for finding constraints from cex in Sect. 7.1.

5.3 Automaton modification for enforcing mutex constraints

Once we have the mutex constraints inferred from a generalized counterexample, we enforce
them in P′

abs, effectively removing transitions from the automaton that violate the mutex
constraint. This completes our loop and we repeat the language inclusion check of P′

abs and
NPabs. If another counterexample is found our loop continues, if the language inclusion check

123

Form Methods Syst Des

succeeds we proceed to the lock placement. This differs from the greedy approach employed
in our previous work [4] that modifies C ′

abs and then constructs a new automaton P′
abs from

C ′
abs before restarting the language inclusion. The greedy approach inserts locks into C ′

abs
that are never removed in a future iteration. This can lead to inefficient lock placement. For
example a larger lock may be placed that completely surrounds an earlier placed lock.

5.4 Computation of an f -optimal lock placement

Once P′
abs and NPabs satisfy language inclusion modulo I , we formulate global constraints

over lock placements for ensuring correctness. These global constraints include all mutex
constraints inferred over all iterations and constraints for enforcing deadlock-freedom. Any
model of the global constraints corresponds to a lock placement that ensures program cor-
rectness. We describe the formulation of these global constraints in Sect. 8.

Given a cost function f , we compute a lock placement that satisfies the global constraints
and is optimal w.r.t. f . We then synthesize the final output C ′ by inserting the computed
lock placement in C . We present various objective functions and describe the computation
of their respective optimal solutions in Sect. 9.

6 Checking preemption-safety

6.1 Reduction of preemption-safety to language inclusion

6.1.1 Soundness of the abstraction

Formally, twoobservable behaviorsω1 = α0 . . . αk andω2 = β0 . . . βk of an abstract program
Cabs inWabs are equivalent if:

(A1) For each thread tid, the subsequences ofα0 . . . αk andβ0 . . . βk containing only symbols
of the form (tid, a, �), for all a, are equal,

(A2) For each variable var , the subsequences of α0 . . . αk and β0 . . . βk containing only
write symbols (of the form (tid, (write, var), �)) are equal, and

(A3) For each variable var , the multisets of symbols of the form (tid, (read, var), �)
between any two write symbols, as well as before the first write symbol and after the last
write symbol are identical.

Using this notion of equivalence, the notion of preemption-safety is extended to abstract pro-
grams: Given abstract concurrent programs Cabs and C ′

abs inWabs such that C ′
abs is obtained

by adding locks to Cabs,C
′
abs is preemption-safe w.r.t. Cabs if [[C ′

abs]]P �abs [[Cabs]]NP.
For the abstraction to be sound we require only that whenever preemption-safety does

not hold for a program C , then there must be a trace in its abstraction Cabs feasible under
preemptive, but not under non-preemptive semantics.

To illustrate this we use the program in Fig. 13, which is not preemption-safe. To see this
consider the observation (T1,out, 10,ch) that cannot occur in the non-preemptive semantics
because x is always 0 at �4. Note that �3 is unreachable because the variable y is initialized to
0 and never assigned. With the preemptive semantics the output can be observed if thread T2
interrupts thread T1 between lines �1 and �4. An example trace would be �1; �6; �2; �4; �5.

If we consider the abstract semantics, we notice that under the non-preemptive abstract
semantics �3 is reachable because the abstraction makes the branching condition in �2
non-deterministic. However, since our abstraction is sound there must still be an obser-

123

Form Methods Syst Des

Fig. 13 Example showing how
the abstraction works

x := 0; y := 0
Thread T1

1 x := 0
2 if (y) then
3 yield

4 if (x) then
5 output(ch,10)

Thread T2
6 x := 1

vation sequence that is observable under the abstract preemptive semantics, but not under
the abstract non-preemptive semantics. This observation sequence is (T1, (write,x), �1),

(T2, (write,x), �6), (T1, (read,y), �2), (T1,else, �2), (T1, (read,x), �4), (T1, then, �2),

(T1, (write,dev), �5). The branch tagging records that the else branch is taken in �2. The
non-preemptive semantics cannot produce this observation sequences because it must also
take the else branch in �2 and can therefore not reach the yield statement and context-switch.
As a site note, it is also not possible to transform this observation sequence into an equivalent
one under the non-preemptive semantics because of the write to x at �6 and the accesses to
x in �1 and �4.

This example illustrates why branch tagging is crucial to soundness of the abstrac-
tion. If we assume a hypothetical abstract semantics without branch tagging we would
get the following preemptive observation sequence: (T1, (write,x), �1), (T2, (write,x), �6),

(T1, (read,y), �2), (T1, (read,x), �4), (T1, (write,dev), �5). This sequencewould also be
a valid observation sequence under the non-preemptive semantics, because it could take the
then branch in �2 and reach the yield statement and context-switch.

Theorem 1 (soundness) Given concurrent program C and a synthesized program C ′
obtained by adding locks to C , [[C ′

abs]]P �abs [[Cabs]]NP �⇒ [[C ′]]P � [[C]]NP.
Proof It is easier to prove the contrapositive: [[C ′]]P 	� [[C]]NP �⇒ [[C ′

abs]]P 	�abs

[[Cabs]]NP.
[[C ′]]P 	� [[C]]NP means that there is an observation sequence ω′ of [[C ′]]P with no

equivalent observation sequence in [[C]]NP. We now show that the abstract sequence ω′
abs in[[C ′

abs]]P corresponding to the sequence ω′ has no equivalent sequence in [[Cabs]]NP.
Towards contradiction we assume there is such an equivalent sequence ωabs in [[Cabs]]NP.

We show that if ωabs indeed existed it would correspond to a concrete sequence ω that is
equivalent to ω′, thereby contradicting our assumption.

By (A1) ωabs would have the same control flow as ω′
abs because of the branch tagging. By

(A2) and (A3) ωabs would have the same data-flow, meaning all reads from global variables
are reading the values written by the same writes as in ω′

abs . Since all interactions with
the environment are abstracted to write(dev) the order of interactions must be the same
between ωabs and ω′

abs . This means that, assuming all inputs and havocs are returning the
same value, in the execution ω corresponding to ωabs all variables valuation are identical to
those in ω′. Therefore, ω is feasible and its interaction with the environment is identical to
ω′ as all variable valuations are identical. Identical interaction with the environment is how
equivalence between ω and ω′ is defined. This concludes our proof. ��

6.1.2 Language inclusion modulo an independence relation

Wedefine the problemof language inclusionmodulo an independence relation. Let I be a non-
reflexive, symmetric binary relation over an alphabet Σ . We refer to I as the independence

123

Form Methods Syst Des

relation and to elements of I as independent symbol pairs. We define a symmetric binary
relation≈I overwords inΣ∗: for allwordsσ, σ ′ ∈ Σ∗ and (α, β) ∈ I, (σ ·αβ·σ ′, σ ·βα·σ ′) ∈
≈I . Let ≈t

I denote the reflexive transitive closure of ≈I .2 Given a language L over Σ , the
closure ofL w.r.t. I , denoted CloI (L), is the set {σ ∈ Σ∗: ∃σ ′ ∈ L with (σ, σ ′) ∈ ≈I }.
Thus, CloI (L) consists of all words that can be obtained from someword inL by repeatedly
commuting adjacent independent symbol pairs from I .

Definition 1 (Language inclusion modulo an independence relation) Given NFAs A, B over
a common alphabetΣ and an independence relation I overΣ , the language inclusion problem
modulo I is: L (A) ⊆ CloI (L (B))?

6.1.3 Data independence relation

We define the data independence relation ID over our observable symbols. Two symbols
α = (tidα, aα, �α) and β = (tidβ, aβ, �β) are independent, (α, β) ∈ ID , iff (I0) tidα 	= tidβ

and one of the following hold:

(I1) aα or aβ in {then,else, loop, loopexit}
(I2) aα and aβ are both (read, var)
(I3) aα is in {(write, varα), (read, varα)} and aβ is in {(write, varβ), (read, varβ)} and

varα 	= varβ

6.1.4 Checking preemption-safety

Under abstraction, we model each thread as a nondeterministic finite automaton (NFA) over
a finite alphabet consisting of abstract observable symbols. This enables us to construct
NFAs NPabs and P′

abs accepting the languages [[Cabs]]NP and [[C ′
abs]]P , respectively. Cabs

is the abstract program corresponding to the input program C and C ′
abs is the program

corresponding to the result of the synthesis C ′. It turns out that preemption-safety of C ′
w.r.t. C is implied by preemption-safety of C ′

abs w.r.t. Cabs, which, in turn, is implied by
language inclusion modulo ID of NFAs P′

abs and NPabs. NFAs P′
abs and NPabs satisfy

language inclusion modulo ID if any word accepted by P′
abs is equivalent to some word

obtainable by repeatedly commuting adjacent independent symbol pairs in a word accepted
by NPabs.

Proposition 1 Given concurrent programs C and C ′, [[C ′
abs]]P �abs [[Cabs]]NP iff L (P′

abs)⊆ CloID (L (NPabs)).

Proof By constructionP′
abs, resp.NPabs, accept exactly the observation sequences thatC ′

abs ,
resp. Cabs , may produce under the preemptive, resp. non-preemptive, semantics (denoted by
[[C ′

abs]]P , resp. [[Cabs]]NP). It remains to show that two observation sequences ω1 = α0 . . . αk

and ω2 = β0 . . . βk are equivalent iff ω1 ∈ CloID ({ω2}).
We first show that ω1 ∈ CloID ({ω2}) implies ω1 is equivalent to ω2. The proof proceeds

by induction: The base case is that no symbols are swapped and is trivially true. The inductive
case assumes that ω′ is equivalent to ω2 and we needs to show that after one single swap
operation in ω′, resulting in ω′′, ω′ is equivalent to ω′′ and therefore by transitivity also
equivalent to ω2. Rule (A1) holds because ID does not allow symbols of the same thread to
be swapped (I0). To prove (A2) we use the fact that writes to the same variable cannot be

2 The equivalence classes of ≈t
I are Mazurkiewicz traces.

123

Form Methods Syst Des

Thread T1
1 while (*) do
2 signal(ch-sym) choose symbol
3 wait reset(ch-sym-compl)
4 sA1 ← Δ1

A(sA
1, . . . ,sAn,τ1, . . . ,τ p)

5 . . .

6 sAn ← Δn
A(sA

1, . . . ,sAn,τ1, . . . ,τ p)
7 sB1 ← Δ1

B(sB
1, . . . ,sBm,τ1, . . . ,τ p)

8 . . .

9 sBm ← Δm
B (sB

1, . . . ,sBm,τ1, . . . ,τ p)

10 final← simA =⇒
q∈FA(sA

1 = q1 ∧·· ·∧sAn = qn)
∧ ¬simA =⇒
q∈FB(sB

1 = q1 ∧·· ·∧sBm = qm)
11 assume(final)

Thread T2
12 simA ← true

13 simA ← false

Thread Tα

14 while (*) do
15 wait reset(ch-sym)
16 τ1 ← α1

17 . . .

18 τ p ← α p

o1 write(v{α ,α1})
. . .

ok write(v{α ,αk})
19 signal(ch-sym-compl)

Fig. 14 Simulator algorithm

swapped (I2), (I3). To prove (A3) we use the fact that reads and writes to the same variable
are not independent (I2), (I3).

It remains to show that ω1 is equivalent to ω2 implies ω1 ∈ CloID ({ω2}). Clearly ω1 and
ω2 consist of the same multiset of symbols (A1). Therefore it is possible to transform ω2 into
ω1 by swapping adjacent symbols. It remains to show that all swaps involve independent
symbols. By (A1) the order of events in each thread does not change, therefore condition
(I0) is always fulfilled. Branch tags can swap with every other symbol (I1) and accesses to
different variables can swap with each other (I3). For each variables ShVar (A2) ensures that
writes are in the same order and (A3) allows reads in between to be reordered. These swaps
are allowed by (I2). No other swaps can occur. ��
6.2 Checking language inclusion

We first focus on the problem of language inclusion modulo an independence relation (Def-
inition 1). This question corresponds to preemption-safety (Theorem 1, Proposition 1) and
its solution drives our synchronization synthesis.

Theorem 2 For NFAs A, B over alphabet Σ and a symmetric, irreflexive independence
relation I ⊆ Σ × Σ , the problem L (A) ⊆ CloI (L (B)) is undecidable [2].

We now show that this general undecidability result extends to our specific NFAs and
independence relation ID .

Theorem 3 For NFAs P′
abs and NPabs constructed from Cabs, the problem L (P′

abs) ⊆
CloID (L (NPabs)) is undecidable.

Proof Our proof is by reduction from the language inclusion modulo an independence rela-
tion problem (Definition 1). Theorem 3 follows from the undecidability of this problem
(Theorem 2).

Assume we are given NFAs A = (QA,Σ,ΔA, Qι,A, FA) and B = (QB ,Σ,ΔB , Qι,B ,

FB) and an independence relation I ⊆ Σ × Σ . Without loss of generality we assume A and

123

Form Methods Syst Des

B to be deterministic, complete, and free of ε-transitions, meaning from every state there is
exactly one transition for each symbol. We show that we can construct a program Cabs that
is preemption-safe iff L (A) ⊆ CloI (L (B)).

For our reduction we construct a program Cabs that simulates A or B if run with a pre-
emptive scheduler and simulates only B if run with a non-preemptive scheduler. Note that
L (A)∪L (B) ⊆ CloI (L (B)) iffL (A) ⊆ CloI (L (B)). For every symbol α ∈ Σ our sim-
ulator produces a sequence ωα of abstract observable symbols. We say two such sequences
ωα and ωβ commute if ωα · ωβ ≈t

ID
ωβ · ωα , i.e, if ωβ · ωα can be obtained from ωα · ωβ by

repeatedly swapping adjacent symbol pairs in ID .
We will show that (a) Cabs simulates A or B if run with a preemptive scheduler and

simulates only B if run with a non-preemptive scheduler, and (b) sequences ωα and ωβ

commute iff (α, β) ∈ I .
The simulator is shown in Fig. 14. States and symbols of A and B are mapped to natural

numbers and represented as bitvectors to enable simulation using the language Wabs. In
particular we use Boolean guard variables from Wabs to represent the bitvectors. We use
true to represent 1 and false to represent 0. As the state space and the alphabet are
finite we know the number of bits needed a priori. We use n,m, and p for the number of
bits needed to represent QA, QB , and Σ , respectively. The transition functions ΔA and ΔB

likewise work on the individual bits. We represent bitvector x of length n as x1 . . . xn .
Thread T1 simulates both automata A and B simultaneously. We assume the initial states

of A and B are mapped to the number 0. In each iteration of the loop in thread T1 a symbol
α ∈ Σ is chosen non-deterministically and applied to both automata (we discuss this step
in the next paragraph). Whether thread T1 simulates A or B is decided only in the end:
depending on the value of simAwe assert that a final state of A or B was reached. The value
of simA is assigned in thread T2 and can only be true if T2 is preempted between locations
�12 and �13. With the non-preemptive scheduler the variable simA will always be false
because thread T2 cannot be preempted. The simulator can only reach the 〈terminated〉
state if all assumptions hold as otherwise it would end in the 〈failed〉 state. The guard
finalwill only be assigned true in �10 if either simA is false and a final state of B has
been reached or if simA is true and a final state of A has been reached. Therefore the valid
non-preemptive executions can only simulate B. In the preemptive setting the simulator can
simulate either A or B becausesimA can be eithertrue orfalse. Note that the statement in
location �10 executes atomically and the value of simA cannot change during its evaluation.
This means that P′

abs simulates L (A) ∪ L (B) and NPabs simulates L (B).
We use τ to store the symbol used by the transition function. The choice of the next

symbol needs to be non-deterministic to enable simulation of A, B and there is no havoc
statement in Wabs. We therefore use the fact that the next thread to execute is chosen non-
deterministically at a preemption point. We define a thread Tα for every α ∈ Σ that assigns
to τ the number α maps to. Threads Tα can only run if the conditional variable ch-sym is
set to 1 by the notify statement in �2. Thewait_reset(ch-sym-compl) in �3 is a preemption
point for the non-preemptive semantics. Then, exactly one thread Tα can proceed because
the wait_reset(ch-sym) statement in �15 atomically resets ch-sym to 0. After setting τ

and outputting the representation of α thread Tα , notifies thread T1 using condition variable
ch-sym-compl. Another symbol can only be produced in the next loop iteration of T1.

To produce an observable sequence faithful to I for each symbol in Σ we define a homo-
morphism h that maps symbols from Σ to sequences of observables. Assuming the symbol
α ∈ Σ is chosen, we produce the following observables:

123

Form Methods Syst Des

– Loop tag To output α the thread Tα has to perform one loop iteration. This implicitly
produces a loop tag (Tα, loop, �14).

– Conflict variables For each pair of (α, αi) /∈ I , we define a conflict variable v{α,αi }.
Note that v{α,αi } = v{αi ,α} and two writes to v{α,αi } do not commute under ID . For each
αi , we produce a tag (Tα, (write, v{α,αi }, �oi)). Therefore if two variables α1 and α2 are
dependent the observation sequences produced for each of them will contain a write to
v{α1,α2}.

Formally, the homomorphism h is given by h(α) = (Tα, loop, �14); (Tα, (write, v{α,α1}),
�o1); · · · ; (Tα, (write, v{α,αk }), �ok). For a sequence σ = α1 . . . αn use define h(σ) =
h(α1) . . . h(αn).

We show that (α1, α2) ∈ I iff h(α1) and h(α2) commute. The loop tags are independent
iff α1 	= α2. If α1 = α2 then (α1, α2) /∈ I and h(α1) and h(α2) do not commute due to
the loop tags. Assuming (α1, α2) ∈ I then h(α1) and h(α2) commute because they have
no common conflict variable they write to. On the other hand, if (α1, α2) /∈ I , then both
h(α1) and h(α2) will contain (Tα{1,2} , (write, v{α1,α2}), �oi) and therefore cannot commute.
We extend this result to sequences and have that h(σ ′) ≈t

ID
h(σ) iff σ ′ ≈t

I σ .
This concludes our reduction. It remains to show that Cabs is preemption-safe iffL (A) ⊆

CloI (L (B)). By Proposition 1 it suffices to show thatL (A) ⊆ CloI (L (B)) iffL (P′
abs) ⊆

CloID (L (NPabs)).

1. We assume that L (A) ⊆ CloI (L (B)). Then, for every word σ ∈ L (A) we have that
σ ∈ CloI (L (B)). By construction h(σ) ∈ L (P′

abs). It remains to show that h(σ) ∈
CloID (L (NPabs)). By σ ∈ CloI (L (B)) we know there exists a word σ ′ ∈ L (B), such
that σ ′ ≈t

I σ . Therefore also h(σ ′) ≈t
ID

h(σ) and by construction h(σ ′) ∈ L (NPabs).
2. Weassume thatL (A) � CloI (L (B)). Then, there exists awordσ ∈ L (A) such thatσ /∈

CloI (L (B)). By construction h(σ) ∈ L (P′
abs). Let us assume towards contradiction

that h(σ) ∈ CloID (L (NPabs)). Then there exists a word ω in L (NPabs) such that
ω ≈t

ID
h(σ). By construction, this implies there exists some σ ′ ∈ L (B) such that

ω = h(σ ′) and h(σ ′) ≈t
ID

h(σ). Thus, there exists σ ′ ∈ L (B) such that σ ′ ≈t
I σ . This

implies σ ∈ CloI (L (B)), which is a contradiction. ��
Fortunately, a bounded version of the language inclusion modulo I problem is decidable.

Recall the relation ≈I over Σ∗ from Sect. 6.1. We define a symmetric binary relation ≈i
I

over Σ∗: (σ, σ ′) ∈≈i
I iff ∃(α, β) ∈ I : (σ, σ ′) ∈≈I , σ [i] = σ ′[i + 1] = α and σ [i + 1] =

σ ′[i] = β. Thus≈i
I consists of all words that can be obtained from each other by commuting

the symbols at positions i and i + 1. We next define a symmetric binary relation � over Σ∗:
(σ, σ ′) ∈� iff ∃σ1, . . . , σt : (σ, σ1) ∈≈i1

I , . . . , (σt , σ
′) ∈≈it+1

I and i1 < . . . < it+1. The
relation � intuitively consists of words obtained from each other by making a single forward
pass commuting multiple pairs of adjacent symbols. We recursively define �k as follows:
�0 is the identity relation id . For k > 0 we define �k=� ◦ �k−1, the composition of �
with �k−1. Given a language L over Σ , we use Clok,I (L) to denote the set {σ ∈ Σ∗ :
∃σ ′ ∈ L with (σ, σ ′) ∈� }. In other words, Clok,I (L) consists of all words which can be
generated from L using a finite-state transducer that remembers at most k symbols of its
input words in its states. By definition we have Clo0,I (L) = L .

Example 1 We assume the language L = {a, b}∗, where (a, b) ∈ I .

– aaab �1
I aaba because one can swap the letters as position 3 and 4.

– aaab 	�1
I abaa because one can only swap the letters as position 3 and 4 in one pass, but

not after that swap 2 and 3.

123

Form Methods Syst Des

– However, aaab �2
I abaa, as two passes suffice to do the two swaps.

– baaa �1
I aaba because in a single pass one can swap 1 and 2 and then 2 and 3.

Definition 2 (Bounded language inclusion modulo an independence relation) Given
NFAs A, B over Σ, I ⊆ Σ × Σ and a constant k ≥ 0, the k-bounded language inclu-
sion problem modulo I is: L (A) ⊆ Clok,I (L (B))?

Theorem 4 For NFAs A, B over Σ, I ⊆ Σ × Σ and a constant k ≥ 0,L (A) ⊆
Clok,I (L (B)) is decidable.

We present an algorithm to check k-bounded language inclusion modulo I , based on the
antichain algorithm for standard language inclusion [11].

6.3 Antichain algorithm for language inclusion

Given a partial order (X,�), an antichain over X is a set of elements of X that are incom-
parable w.r.t. �. In order to check L (A) ⊆ L (B) for NFAs A = (QA,Σ,ΔA, Qι,A, FA)

and B = (QB ,Σ,ΔB , Qι,B , FB), the antichain algorithm proceeds by exploring A and B
in lockstep. Without loss of generality we assume that A and B do not have ε-transitions.
While A is explored nondeterministically, B is determinized on the fly for exploration. The
algorithm maintains an antichain, consisting of tuples of the form (sA, SB), where sA ∈ QA

and SB ⊆ QB . The ordering relation � is given by (sA, SB) � (s′
A, S′

B) iff sA = s′
A and

SB ⊆ S′
B . The algorithm also maintains a frontier set of tuples yet to be explored.

Given state sA ∈ QA and a symbol α ∈ Σ , let succα(sA) denote {s′
A ∈ QA :

(sA, α, s′
A) ∈ ΔA}. Given set of states SB ⊆ QB , let succα(SB) denote {s′

B ∈ QB :
∃sB ∈ SB : (sB , α, s′

B) ∈ ΔB}. Given tuple (sA, SB) in the frontier set, let succα(sA, SB)

denote {(s′
A, S′

B) : s′
A ∈ succα(sA), S′

B = succα(SB)}.
In each step, the antichain algorithm explores A and B by computing α-successors of

all tuples in its current frontier set for all possible symbols α ∈ Σ . Whenever a tuple
(sA, SB) is found with sA ∈ FA and SB ∩ FB = ∅, the algorithm reports a counterexample
to language inclusion. Otherwise, the algorithm updates its frontier set and antichain to
include the newly computed successors using the two rules enumerated below. Given a
newly computed successor tuple p′, if there does not exist a tuple p in the antichain with
p � p′, then p′ is added to the frontier set or antichain (Rule R1). If p′ is added and there
exist tuples p1, . . . , pn in the antichain with p′ � p1, . . . , pn , then p1, . . . , pn are removed
from the antichain (Rule R2). The algorithm terminates by either reporting a counterexample,
or by declaring success when the frontier becomes empty.

6.4 Antichain algorithm for k-bounded language inclusion modulo I

This algorithm is essentially the same as the standard antichain algorithm, with the automaton
B above replaced by an automaton Bk,I accepting Clok,I (L (B)). The set QBk,I of states of
Bk,I consists of triples (sB , η1, η2), where sB ∈ QB and η1, η2 are words over Σ of up to k
length. Intuitively, the words η1 and η2 store symbols that are expected to be matched later
along a run. The word η1 contains a list of symbols for transitions taken by Bk,I , but not
yet matched in B, whereas η2 contains a list of symbols for transitions taken in B, but not
yet matched in Bk,I . We use ∅ to denote the empty list. Since for every transition of Bk,I ,
the automaton B will perform one transition, we have |η1| = |η2|. The set of initial states
of Bk,I is {(sB ,∅,∅) : sB ∈ Qι,B}. The set of final states of Bk,I is {(sB ,∅,∅) : sB ∈ FB}.
The transition relation ΔBk,I is constructed by repeatedly performing the following steps, in

123

Form Methods Syst Des

q0 start

q1

q2

B:

α

β

β

q0, /0, /0 start

q1, /0, /0 q2,β ,α q2, /0, /0 q1,α,β

q2,β ,α q2, /0, /0 q2, /0, /0 q2,α,β

B1,{(α,β)}:

α α β β

α β α β

Fig. 15 Example for illustrating construction of Bk,I for k = 1 and I = {(α, β)}

order, for each state (sB , η1, η2) and each symbol α. In what follows, η[\i] denotes the word
obtained from η by removing its i th symbol.
Given (sB , η1, η2) and α

– Step S1 Pick new s′
B and β ∈ Σ such that (sB , β, s′

B) ∈ ΔB

– Step S2

(a) If ∀i : η1[i] 	= α and α is independent of all symbols in η1,
η′
2 := η2 · α and η′

1 := η1,
(b) else, if ∃i : η1[i] = α and α is independent of all symbols in η1 prior to i, η′

1 := η1[\i]
and η′

2 := η2
(c) else, go to S1

– Step S3

(a) If ∀i : η′
2[i] 	= β and β is independent of all symbols in η′

2, η
′′
1 :=η′

1 ·β and η′′
2 := η′

2,
(b) else, if ∃i : η′

2[i] = β and β is independent of all symbols in η′
2 prior to i, η

′
2 := η′

2[\i]
and η′′

1 := η′
1

(c) else, go to S1

– Step S4 Add ((sB , η1, η2), α, (s′
B , η′′

1 , η
′′
2)) to ΔBk,I and go to 1.

Example 2 In Fig. 15, we have an NFA B with L (B) = {αβ, β}, I = {(α, β)} and k = 1.
The states of Bk,I are triples (q, η1, η2), where q ∈ QB and η1, η2 ∈ {α, β}∗. We explain
the derivation of a couple of transitions of Bk,I . The transition shown in bold from (q0,∅,∅)

on symbol β is obtained by applying the following steps once: S1. Pick q1 following the
transition (q0, α, q1) ∈ ΔB . S2(a). η′

2 := β, η′
1 := ∅. S3(a). η′′

1 := α, η′′
2 := β. S4. Add

((q0,∅,∅), β, (q1, α, β)) to ΔBk,I . The transition shown in bold from (q1, α, β) on symbol
α is obtained as follows: S1. Pick q2 following the transition (q1, β, q2) ∈ ΔB . S2(b).
η′
1 := ∅, η′

2 := β. S3(b). η′′
2 := ∅, η′′

1 := ∅. S4. Add ((q1, α, β), β, (q2,∅,∅)) to ΔBk,I . It can
be seen that Bk,I accepts the language {αβ, βα, β} = Clok,I (L (B)).

Proposition 2 Given k ≥ 0, the automaton Bk,I accepts at least Clok,I (L (B)).

Proof The proof is by induction on k. The base case is trivially true, as L (B0,I) =
L (B) = Clo0,I (L (B)). The induction case assumes that Bk,I accepts at least Clok,I (L (B))

and we want to show that Bk+1,I accepts at least Clok+1,I (L (B)). We take a word
ω ∈ Clok+1,I (L (B)). It must be derived from a word ω′ ∈ Clok,I (L (B)) by one addi-
tional forward pass of swapping. Bk+1,I accepts ω: In step S1 we pick the same transitions
in ΔB as to accept ω′. Steps S2 and S3 will be identical as for ω′ with the exception of those

123

Form Methods Syst Des

adjacent symbol pairs that are newly swapped in ω. For those pairs the symbols are first
added to η2 and η1 by S2 and S3. In the next step they are removed because the swapping
only allows adjacent symbols to be swapped. This also shows that the bound k + 1 suffices
to accept ω. ��

In general NFA Bk,I can accept words not in Clok,I (L (B)). Intuitively this is because
Bk,I has two stacks and can also accept words where the swapping is done in a backward
pass (instead of a forward pass required in our definition). For our purposes it is sound to
accept more words as long as they are obtained only by swapping independent symbols.

Proposition 3 Given k ≥ 0, the automaton Bk,I accepts at most CloI (L (B)).

Proof We need to show that ω′ ∈ Bk,I �⇒ ω′ ∈ CloI (L (B)). For this we need to
show that ω′ is a permutation of a word ω ∈ L (B) by repeatedly swapping independent,
adjacent symbols. The word ω′ must be a permutation of ω because Bk,I only accepts if η1
and η2 are empty and the stacks represent exactly the symbols not matched yet in NFA B.
Further, we need to show only independent symbols may be swapped. The stack η1 contains
the symbols not yet matched by B and η2 the symbols that were instead accepted by B, but
not yet presented as input to Bk,I . Before adding a new symbol to the stack we ensure it is
independent with all symbols on the other stack because once matched later it will have to
come after all of these. When a symbols is removed it is ensured that it is independent with
all symbols on its own stack because it is practically moved ahead of the other symbols on
the stack. ��
6.5 Language inclusion check algorithm

We develop a procedure to check language inclusion modulo I (Sect. 6.4) by iteratively
increasing the bound k. The procedure is incremental: the check for k+1-bounded language
inclusionmodulo I only explores paths alongwhich the bound k was exceeded in the previous
iteration.

The algorithm for k-bounded language inclusionmodulo I is presented as function Inclu-
sion in Algorithm 1 (ignore Lines 22–25 for now). The antichain set consists of tuples of
the form (sA, SBk,I), where sA ∈ QA and SBk,I ⊆ QB × Σk × Σk . The frontier consists of
tuples of the form (sA, SBk,I , cex), where cex ∈ Σ∗. The word cex is a sequence of symbols
of transitions explored in A to get to state sA. If the language inclusion check fails, cex is
returned as a counterexample to language inclusion modulo I . Each tuple in the frontier set
is first checked for equivalence w.r.t. acceptance (Line 18). If this check fails, the function
reports language inclusion failure and returns the counterexample cex (Line 18). If this check
succeeds, the successors are computed (Line 20). If a successor satisfies rule R1, it is ignored
(Line 21), otherwise it is added to the frontier (Line 26) and the antichain (Line 27). When
adding a successor to the frontier the symbol α it appended to the counterexample, denoted as
cex ·α. During the update of the antichain the algorithm ensures that its invariant is preserved
according to rule R2.

We need to ensure that our language inclusion honors the bound k by ignoring states
that exceed the bound. These states are stored for later to allow for a restart of the language
inclusion algorithm with a higher bound. Given a newly computed successor (s′

A, S′
Bk,I

) for

an iteration with bound k, if there exists some (sB , η1, η2) in S′
Bk,I

such that the length of

η1 or η2 exceeds k (Line 22), we remember the tuple (s′
A, S′

Bk,I
) in the set overflow (Line

23). We then prune S′
Bk,I

by removing all states (sB , η1, η2) where |η1| > k ∨ |η2| > k (line

123

Form Methods Syst Des

Algorithm 1 Checking language inclusion modulo I
Require: Automata A = (QA,Σ,ΔA, Qι,A, FA), B = (QB ,Σ,ΔB , Qι,B , FB) and inde-

pendence relation I ⊆ Σ × Σ

Ensure: true iff L (A) ⊆ CloI (L (B))

1 frontier ← {(sA, {(Qι,B ,∅,∅)},∅) : sA ∈ Qι,A}
2 No tuple in frontier is dirty
3 antichain ← frontier
4 overflow ← ∅
5 k ← 2
6 while true do
7 cex ← inclusion(k)
8 if cex 	= true ∧ cex is spurious then
9 k ← k + 1
10 frontier ← {(sA, SBk,I) ∈ frontier : SBk,I not dirty} ∪ overflow
11 antichain ← {(sA, SBk,I) ∈ antichain : SBk,I not dirty} ∪ overflow
12 overflow ← ∅
13 else
14 return cex

15 function inclusion(k)
16 while frontier 	= ∅ do
17 remove a tuple (sA, SBk,I , cex) from frontier
18 if sA ∈ FA ∧ (SBk,I ∩ FB) = ∅ then return cex

19 for all α ∈ Σ do
20 (s′

A, S′
Bk,I

) ← succα(sA, SBk,I)

21 if �p ∈ antichain : p � (s′
A, S′

Bk,I
) then � Rule R1

22 if ∃(sB , η1, η2) ∈ S′
Bk,I

: |η1| > k ∨ |η2| > k then
23 if S′

Bk,I
not dirty then overflow ← overflow ∪ {(s′

A, S′
Bk,I

)}
24 S′

Bk,I
← {(sB , η1, η2) ∈ S′

Bk,I
: |η1| ≤ k ∧ |η2| ≤ k}

25 Mark S′
Bk,I

dirty

26 frontier ← frontier ∪ {(s′
A, S′

Bk,I
, cex · α)}

27 antichain ← (antichain\{p : (s′
A, S′

Bk,I
) � p})∪

{(s′
A, S′

Bk,I
)} � Rule R2

28 return true

24) and mark S′
Bk,I

as dirty (line 24). If we find a counterexample to language inclusion we
return it and test if it is spurious (Line 8). In case it is spurious we increase the bound to
k + 1, remove all dirty items from the antichain and frontier (lines 10–11), and add the items
from the overflow set (Line 12) to the antichain set and frontier. Intuitively this will undo all
exploration from the point(s) the bound was exceeded and restarts from that/those point(s).

We call a counterexample cex from our language inclusion procedure spurious if it is not a
counterexample to the unbounded language inclusion, formally cex ∈ CloI (L (B)). This test
is decidable because there is only a finite number of permutations of cex. This spuriousness
arises from the fact that the bounded language-inclusion algorithm is incomplete and every
spurious example can be eliminated by sufficiently increasing the bound k. Note, however,

123

Form Methods Syst Des

that there exists automata and independence relations for which there is a (different) spurious
counterexample for every k. In practice we test if a cex is spurious by building an automata
A that accepts exactly cex and running the language inclusion algorithm with k being the
length of cex. This is very fast because there is exactly one path through A.

Theorem 5 (bounded language inclusion check) The procedure inclusion of Algorithm 1
decides L (A) ⊆ L (Bk,I) for NFAs A, B, bound k, and independence relation I .

Proof Our algorithm takes as arguments automata A and B. Conceptually, the algorithm
constructs Bk,I and uses the antichain algorithm [11] to decide the language inclusion. For
efficiency, we modify the original antichain language inclusion algorithm to construct the
automaton BI on the fly in the successor relation succ (line 20). The bound k is enforced
separately in line 22. ��
Theorem 6 (preemption-safety problem) If program C is not preemption-safe ([[C]]P 	�
[[C]]NP), then Algorithm 1 will return false.

Proof By Theorem 1 we know [[Cabs]]P 	�abs [[Cabs]]NP. From Proposition 1 we get
L (Pabs) � CloID (L (NPabs)). From Proposition 3 we know that for any k this is equivalent
toL (Pabs) � L (Bk,I), where B = NPabs. Theorem 5 shows that Algorithm 1 decides this
for any bound k. ��

7 Finding and Enforcing Mutex Constraints in P′
abs

If the language inclusion check fails it returns a counterexample trace. Using this coun-
terexample we derive a set of mutual exclusion (mutex) constraints that we enforce in P′

abs
to eliminate the counterexample and then rerun the language inclusion check with the new
P′
abs.

7.1 Finding mutex constraints

The counterexample cex returned by the language inclusion check is a sequence of observ-
ables. Since our observables record every branching decision it is easy to reconstruct from
cex a sequence of event identifiers: tid0.�0; . . . ; tidn .�n , where each �i is a location identifier
from Cabs. In this section we use cex to refer to such sequences of event identifiers. We define
the neighborhood of cex, denoted nhood(cex), as the set of all traces that are permutations of
the events in cex and preserve the order of events from the same thread. We separate traces in
nhood(cex) into good and bad traces. Good traces are all traces that are infeasible under the
non-preemptive semantics or that produce an observation sequence that is equivalent to that of
a trace feasible under the non-preemptive semantics. All remaining traces in nhood(cex) are
bad. The goal of our counterexample analysis is to characterize all bad traces in nhood(cex)
in order to enable inference of mutex constraints.

In order to succinctly represent subsets of nhood(cex), we use ordering constraints
between events expressed as happens-before formulas (HB-formulas) [15]. Intuitively, order-
ing constraints are of the following forms: (a) atomic ordering constraints ϕ = A < B where
A and B are events from cex. The constraint A < B represents the set of traces in nhood(cex)
where event A is scheduled before event B; (b) Boolean combinations of atomic constraints
ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ1. We have that ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 respectively represent the
intersection and union of the set of traces represented by ϕ1 and ϕ2, and that ¬ϕ1 represents
the complement (with respect to nhood(cex)) of the traces represented by ϕ1.

123

Form Methods Syst Des

7.1.1 Non-preemptive neighborhood

First, we define functionΦ to extract a conjunction of atomic ordering constraints from a trace
π , such that all traces π ′ inΦ(π) produce an observation sequence equivalent to π . Then, we
obtain a correctness constraint ϕ that represents all good traces in nhood(cex). Remember,
that the good traces are those that are observationally equivalent to a non-preemptive trace.
The correctness constraint ϕ is a disjunction over the ordering constraints from all traces in
nhood(cex) that are feasible under non-preemptive semantics: ϕG = ∨

π∈non-preemptive Φ(π).
Φ(π) enforces the order between conflicting accesses in the abstract trace π :

Φ(π) =
∧

{Ti.� j <Tk.�l : i 	= k ∧ Ti.� j precedes Tk.�l in π∧
Ti.� j ,Tk.�l access same variable ∧ Ti.� j or Tk.�l is a write}

Example Recall the counterexample trace from the running example in Sect. 3: cex =
T1.�1a; T1.�1b; T2.�1a; T2.�1b; T1.�2; T2.�2; T2.�3a; T2.�3b; T2.�4; T1.�3a; T1.�3b;
T1.�4. There are two traces in nhood(cex) that are feasible under non-preemptive semantics:

– π1 = T1.�1a; T1.�1b; T1.�2; T1.�3a; T1.�3b; T1.�4; T2.�1a; T2.�1b; T2.�2; T2.�3a;
T2.�3b; T2.�4 and

– π2 = T2.�1a; T2.�1b; T2.�2; T2.�3a; T2.�3b; T2.�4; T1.�1a; T1.�1b; T1.�2; T1.�3a;
T1.�3b; T1.�4.

We represent

– π1 as Φ(π1) = ({T1.�1a,T1.�3a,T1.�3b} < T2.�3b) ∧ (T1.�3b < {T2.�1a,T2.�3a,
T2.�3b}) ∧ (T1.�2 < T2.�2) and

– π2 as Φ(π2) = (T2.�3b < {T1.�1a,T1.�3a,T1.�3b}) ∧ ({T2.�1a,T2.�3a,T2.�3b} <

T1.�3b) ∧ (T2.�2 < T1.�2).

The correctness specification is ϕG = Φ(π1) ∨ Φ(π2).

7.1.2 Counterexample enumeration and generalization

We next build a quantifier-free first-order formula ΨB over the event identifiers in cex such
that any model of ΨB corresponds to a bad, feasible trace in nhood(cex). A trace is feasible
if it respects the preexisting synchronization, which is not abstracted away. Bad traces are
those that are feasible under the preemptive semantics and not in ϕG . Further, we define a
generalization function G that works on conjunctions of atomic ordering constraints ϕ by
iteratively removing a constraint as long as the intersection of traces represented by G(ϕ)

and ϕG is empty. This results in a local minimum of atomic ordering constraints in G(ϕ), so
that removing any remaining constraint would include a good trace in G(ϕ). We iteratively
enumerate models ψ of ΨB , building a constraint ϕB′ = Φ(ψ) for each model ψ and
generalizing ϕB′ to represent a larger set of bad traces using G. This results in an ordering
constraint in disjunctive normal form ϕB = ∨

ψ∈ΨB
G(Φ(ψ)), such that the intersection of

ϕB and ϕG is empty and the union equals nhood(cex).
Algorithm 2 shows how the algorithm works. For each model ψ of ΨB a trace σ is

extracted in Line 6. From the trace the formula ϕB′ is extracted using Φ described above
(Line 8). Line 10 describes the generalization function G, which is implemented using an
unsat core computation. We construct a formula ϕB′ ∧ Ψ ∧ ϕG , where Ψ ∧ ϕG is a hard
constraint andϕ′

B are soft constraints. A satisfying assignment to this formulamodels feasible
traces that are observationally equivalent to a non-preemptive trace. Since σ is a bad trace

123

Form Methods Syst Des

Algorithm 2 Counterexample enumeration and generalization algorithm
Require: Trace π , formula of good traces ϕG in nhood(π)

Ensure: HB-formula of bad traces ϕB

1: Ψ ← quantifier-free first-order formula representing all feasible traces in nhood(π)

2: ΨB ← Ψ ∧ ¬ϕG

3: ϕB ← false
4: while ΨB ∧ ¬ϕB is satisfiable do
5: ψ ← satisfying assignment for ΨB ∧ ¬ϕB

6: σ ← trace represented by ψ

7: � Conflicting access analysis
8: ϕB′ ← Φ(σ)

9: � Unsat-core computation
10: ϕB′′ ← MinUNSATCore(Sof t ← ϕB′ ,
11: Hard ← Ψ ∧ ϕG)

12: ϕB ← ϕB ∨ ϕB′′

13: return ϕB

the formula ϕB′ ∧ Ψ ∧ ϕG must be unsatisfiable. The result of the unsat core computation is
a formula ϕB′′ that is a conjunction of a minimal set of happens-before constraints required
to ensure all trace represented by ϕB′′ are bad.

Example Our trace cex from Sect. 3 is generalized to G(Φ(cex)) = T2.�1a < T1.�3b ∧
T1.�3b < T2.�3b. This constraint captures the interleavings where T2 interrupts T1 between
locations �1a and �3b. Any trace that fulfills this constraint is bad. All bad traces in nhood(cex)
are represented as ϕB = (T2.�1a < T1.�3b ∧ T1.�3b < T2.�3b) ∨ (T1.�1a < T2.�3b ∧
T2.�3b < T1.�3b).

7.1.3 Inferring mutex constraints

From each clause ϕ in ϕB described above, we infer mutex constraints to eliminate all bad
traces satisfying ϕ. The key observation we exploit is that atomicity violations show up in
our formulas as two simple patterns of ordering constraints between events.

1. The first pattern tid1.�1 < tid2.�2 ∧ tid2.�′
2 < tid1.�′

1 (visualized in Fig. 16a) indicates
an atomicity violation (thread tid2 interrupts tid1 at a critical moment).

2. The second pattern is tid1.�1 < tid2.�′
2 ∧ tid2.�2 < tid1.�′

1 (visualized in Fig. 16b).
This pattern is a generalization of the first pattern in that either tid1 interrupts tid2 or the
other way round.

For both patterns the corresponding mutex constraint is mtx(tid1.[�1:�′
1], tid2.[�2:�′

2]).

Example The generalized counterexample constraint T2.�1a < T1.�3b ∧ T1.�3b < T2.�3b
yields the constraint mutex mtx(T2.[�1a :�3b],T1.[�3b:�3b]). In the next section we show how
this mutex constraint is enforced in P′

abs.

7.2 Enforcing mutex constraints

To enforcemutex constraints inP′
abs, we prune paths inP

′
abs that violate themutex constraints.

123

Form Methods Syst Des

Thread tid1 Thread tid2

1

1

2

2

(a)

Thread tid1 Thread tid2

1

1

2

2

(b)

Fig. 16 Atomicity violation patterns

7.2.1 Conflicts

Given a mutex constraint mtx(tidi .[�1:�′
1], tid j .[�2:�′

2]), a conflict is a tuple (�
pre
i , �mid

i , �
post
i ,

�
cpre
j , �

cpost
j) of location identifiers satisfying the following:

(a) �
pre
i , �mid

i , �
post
i are adjacent locations in thread tidi ,

(b) �
cpre
j , �

cpost
j are adjacent locations in the other thread tid j ,

(c) �1 ≤ �
pre
i , �mid

i , �
post
i ≤ �′

1 and

(d) �2 ≤ �
cpre
j , �

cpost
j ≤ �′

2.

Intuitively, a conflict represents aminimal violation of amutex constraint due to the execution
of the statement at location �

cpre
j in thread j between the two statements at locations �

pre
i and

�mid
i in thread i . Note that a statement at location � in thread tid is executed when the current
location of tid changes from � to succ(�).

Given a conflict c = (�
pre
i , �mid

i , �
post
i , �

cpre
j , �

cpost
j), let pre(c) = �

pre
i ,mid(c) =

�mid
i , post(c) = �

post
i , cpre(c) = �

cpre
j and cpost(c) = �

cpost
j . Further, let tid1(c) = i and

tid2(c) = j . To prune all interleavings prohibited by the mutex constraints from P′
abs we

need to consider all conflicts derived from all mutex constraints. We denote this set as C and
let K = |C|.
Example We have an example program and its flow-graph in Fig. 17 (we skip the statement
labels in the nodes here). Suppose in some iteration we obtain mtx(T1.[�1:�2],T2.[�3:�6]).
This yields 2 conflicts: c1 given by (�3, �4, �5, �1, �2) and c2 given by (�4, �5, �6, �1, �2). On
an aside, this example also illustrates the difficulty of lock placement in the actual code. The
mutex constraint would naïvely be translated to the lock lock(T1.[�1 : �2],T2.[�3 : �6]).
This is not a valid lock placement; in executions executing the else branch, the lock is never
released.

7.2.2 Constructing new P′
abs

Initially, let NFA P′
abs be given by the tuple (Qold,Σ ∪ {ε},Δold, Qι,old, Fold), where

(a) Qold is the set of states 〈Vo, ctid, (�1, . . . , �n)〉 of the abstract programCabs corresponding
to C , as well as 〈terminated〉 and 〈failed〉,

(b) Σ is the set of abstract observable symbols,
(c) Qι,old is the initial state of Cabs,
(d) Fold = {〈terminated〉} and
(e) Δold ⊆ Qold ×Σ ∪{ε}×Qold is the transition relation with (q, α, q ′) ∈ Δold iff q

α−→ q ′
according to the abstract preemptive semantics.

123

Form Methods Syst Des

Thread T1
1 write(v)
2 read(x)

Thread T2
3 read(v)
4 if (*) then
5 write(v)
6 read(x)
7 else
8 read(x)

a1

a2

b1

b2

b3 b5

b4

T1: T2:

Fig. 17 Example: mutex constraints and conflicts

To enable pruning paths that violate mutex constraints, we augment the state space of
P′
abs to track the status of conflicts c1, . . . , cK using four-valued propositions p1, . . . , pK ,

respectively. Initially all propositions are 0. Proposition pk is incremented from 0 to 1 when
conflict ck is activated, i.e., when control moves from �

pre
i to �mid

i along a path. Proposition
pk is incremented from 1 to 2 when conflict ck progresses, i.e., when thread tidi is at �mid

i and

control moves from �
cpre
j to �

cpost
j . Proposition pk is incremented from 2 to 3 when conflict

ck completes, i.e., when control moves from �mid
i to �

post
i . In practice the value 3 is never

reached because the state is pruned when the conflict completes. Proposition pk is reset to 0
when conflict ck is aborted, i.e., when thread tidi is at �mid

i and either moves to a location

different from �
post
i , or moves to �

post
i before thread tid j moves from �

cpre
j to �

cpost
j .

Example In Fig. 17, c1 is activated when T2moves from b1 to b2; c1 progresses if now T1
moves from a1 to a2 and is aborted if instead T2 moves from b2 to b3; c2 completes after
progressing if T2 moves from b2 to b3 and is aborted if instead T2 moves from b2 to b5.

Formally, the new P′
abs is given by the tuple (Qnew,Σ ∪{ε},Δnew, Qι,new, Fnew), where:

(a) Qnew = Qold × {0, 1, 2}K ,
(b) Σ is the set of abstract observable symbols as before,
(c) Qι,new = (Qι,old, (0, . . . , 0)),
(d) Fnew = {(Q, (p1, . . . , pK)) : Q ∈ Fold ∧ p1, . . . , pK ∈ {0, 1, 2}} and
(e) Δnew is constructed as follows:

add ((Q, (p1, . . . , pK)), α, (Q′, (p′
1, . . . , p

′
K))) to Δnew iff

(Q, α, Q′) ∈ Δold and for each k ∈ [1, K], the following hold:

1. Conflict activation: (the statement at location pre(ck) in thread tid1(ck) is executed)
if pk = 0, ctid = ctid′ = tid1(ck), �ctid = pre(ck) and �′

ctid = mid(ck), then p′
k = 1 else

p′
k = 0,

2. Conflict progress: (thread tid1(ck) is interrupted by tid2(ck) and the conflicting statement
at location cpre(ck) is executed)
else if pk = 1, ctid = ctid′ = tid2(ck), �tid1(ck) = �′

tid1(ck)
= mid(ck), �ctid = cpre(ck)

and �′
ctid = cpost(ck), then p′

k = 2,
3. Conflict completion and state pruning: (the statement at location mid(ck) in thread

tid1(ck) is executed and that completes the conflict)
else if pk = 2, ctid = ctid′ = tid1(ck), �ctid = mid(ck) and �′

ctid = post(ck), then delete
state (Q′, (p′

1, . . . , p
′
K)),

123

Form Methods Syst Des

4. Conflict abortion 1: (tid1(ck) executes alternate statement)
else if pk = 1 or 2, ctid = ctid′ = tid1(ck), �ctid = mid(ck) and �′

ctid 	= post(ck), then
p′
k = 0,

5. Conflict abortion 2: (tid1(ck) executes statement at location mid(ck)without interruption
by tid2(ck))
else if pk = 1, ctid = ctid′ = tid1(ck), �ctid = mid(ck) and �′

ctid = post(ck), �tid2(ck) =
�′
tid2(ck)

= cpre(ck), then p′
k = 0

In our implementation, the new P′
abs is constructed on-the-fly. Moreover, we do not main-

tain the entire set of propositions p1, . . . , pK in each state of P′
abs. A proposition pi is added

to the list of tracked propositions only after conflict ci is activated. Once conflict ci is aborted,
pi is dropped from the list of tracked propositions.

Theorem 7 We are given a program Cabs and a sequence of observable symbols ω that is
a counterexample to preemption-safety, formally ω ∈ L (P′

abs) ∧ ω /∈ CloI (L (NPabs)). If
a pattern P eliminating ω is found, then, after enforcing all resulting mutex constraints in
P′
abs, the counterexample ω is no longer accepted by P′

abs, formally ω /∈ L (P′
abs).

Proof The pattern P eliminating ω represents a mutex constraint mtx(tidi .[�1:�′′
1], tid j .[�2:

�′′
2]), such that the trace ω is no longer possible. Mutex constraints represent conflicts of the

form (�
pre
i , �mid

i , �
post
i , �

cpre
j , �

cpost
j). Each such conflict represents a context switch that is not

allowed: �prei → �mid
i → �

cpre
j → �

cpost
j → �mid

i → �
post
i . Because P eliminates ω we know

that ω has a context switch from tidi .�′
1 to tid j .�

′
2, where �1 ≤ �′

1 ≤ �′′
1 and �2 ≤ �′

2 ≤ �′′
2.

One of the conflicts representing themutex constraint is (�
pre
i , �mid

i , �
post
i , �

cpre
j , �

cpost
j), where

�mid
i = �′

1 and �
pre
i and �

post
i are the locations immediately before and after �′

1. Further,

�
cpre
j = �′

2 and �
cpost
j the location immediately following �′

2. If now a context switch happens
at location �′

1 switching to location �′
2, this triggers the conflict and this trace will be discarded

in P′
abs. ��

8 Global lock placement constraints

Our synthesis loop will keep collecting and enforcing conflicts P′
abs until the language inclu-

sion check holds. At that point we have collected a set of conflictsCall that need to be enforced
in the original program source code. To avoid deadlocks, the lock placement has to conform
to a number of constraints.

We encode the global lock placement constraints for ensuring correctness as an SMT3

formula LkCons. Let L denote the set of all location and Lk denote the set of all locks
available for synthesis. We use scalars �, �′, �1, . . . of type L to denote locations and scalars
LkVar,LkVar′,LkVar1, . . . of type Lk to denote locks. The number of locks is finite and
there is a fixed locking order. Let Pre(�) denote the set of all immediate predecessors in
node � : stmt(�) in the flow-graph of the original concrete concurrent program C . We use
the following Boolean variables in the encoding.

3 The encoding of the global lock placement constraints is essentially a SAT formula. We present and use this
as an SMT formula to enable combining the encoding with objective functions for optimization (see Sect. 9).

123

Form Methods Syst Des

LockBefore(�, LkVar) lock(LkVar) is placed just before the statement represented by �

LockAfter(�, LkVar) lock(LkVar) is placed just after the statement represented by �

UnlockBefore(�, LkVar) unlock(LkVar) is placed just before the statement represented by �

UnlockAfter(�, LkVar) unlock(LkVar) is placed just after the statement represented by �

For every location � in the source code we allow a lock to be placed either immediately
before or after it. If a lock LkVar is placed before �, than � is protected by LkVar. If LkVar
is placed after �, than � is not protected by LkVar, but the successor instructions are. Both
options are needed, e.g. to lock before the first statement of a thread and to unlock after the
last statement of a thread. We define three additional Boolean variables:

(D1) InLock(�,LkVar): If location � has no predecessor than it is protected by LkVar if there
is a lock statement before �.

InLock(�,LkVar) = LockBefore(�,LkVar)

If there exists a predecessor �′ to � than � is protected by LkVar if either there is a lock
statement before � or if �′ is protected by LkVar and there is no unlock in between.

InLock(�,LkVar) = LockBefore(�,LkVar)

∨ (¬UnlockBefore(�,LkVar) ∧ InLockEnd(�′,LkVar))

Note that either all predecessors are protected by a lock or none. We enforce this in Rule
C (C7) below.

(D2) InLockEnd(�,LkVar): The successors of � are protected by LkVar if either location �

is protected by LkVar or lock(LkVar) is placed after �.

(InLock(�,LkVar) ∧ ¬UnlockAfter(�,LkVar)) ∨ LockAfter(�,LkVar)

(D3) Order(LkVar,LkVar′): We give a fixed lock order that is transitive, asymmetric, and
irreflexive.Order(LkVar,LkVar′) = true iff LkVar needs to be acquired before LkVar′.
This means that an instruction lock(LkVar) cannot be place inside the scope of LkVar′.
We describe the constraints and their SMT formulation constituting LkCons below. All

constraints are quantified over all �, �′, �1, . . . ∈ L and all LkVar,LkVar′,LkVar1, . . . ∈ Lk.
(C1) All locations in the same conflict in Call are protected by the same lock.

∀C ∈ Call : �, �′ ∈ C ⇒ ∃LkVar. InLock(�,LkVar) ∧ InLock(�′,LkVar)

(C2) Placing lock(LkVar) immediately before/after unlock(LkVar) is disallowed. Doing so
would make (C1) unsound, as two adjacent locations could be protected by the same lock
and there could still be a context-switch in between because of the immediate unlocking
and locking again. If � has a predecessor �′ then

UnlockBefore(�,LkVar) ⇒(¬LockAfter(�′,LkVar))
LockBefore(�,LkVar) ⇒(¬UnlockAfter(�′,LkVar))

(C3) We enforce the lock order according to Order defined in (D3).

LockAfter(�,LkVar) ∧ InLock(�,LkVar′) ⇒ Order(LkVar′,LkVar)

LockBefore(�,LkVar) ∧
⎛

⎝
∨

�′∈Pre(x)

InLockEnd(�′,LkVar′)

⎞

⎠ ⇒ Order(LkVar′,LkVar)

123

Form Methods Syst Des

(C4) Existing locks may not be nested inside synthesized locks. They are implicitly ordered
before synthesized locks in our lock order.

(stmt(�) = lock(. . .)) ⇒ ¬InLock(�,LkVar)

(C5) No wait statements may be in the scope of synthesized locks to prevent deadlocks.

(stmt(�) = wait(. . .)/wait_not(. . .)/wait_reset(. . .)) ⇒ ¬InLock(�,LkVar)

(C6) Placing both lock(LkVar) and unlock(LkVar) before/after � is disallowed.

(¬LockBefore(�,LkVar) ∨ ¬UnlockBefore(�,LkVar)) ∧
(¬LockAfter(�,LkVar) ∨ ¬UnlockAfter(�,LkVar))

(C7) All predecessors must agree on their InLockEnd status. This ensures that joining
branches hold the same set of locks. If � has at least one predecessor then

⎛

⎝
∧

�′∈Pre(x)

InLockEnd(�′,LkVar)

⎞

⎠ ∨
⎛

⎝
∧

�′∈Pre(x)

¬InLockEnd(�′,LkVar)

⎞

⎠

(C8) unlock(LkVar) can only be placed only after a lock(LkVar).

UnlockAfter(�,LkVar) ⇒ InLock(�,LkVar)

If � has a predecessor �′ then also

UnlockBefore(�,LkVar) ⇒ InLockEnd(�′,LkVar)

else if � has no predecessor then

UnlockBefore(�,LkVar) = false

(C9) We forbid double locking: A lock may not be acquired if that location is already
protected by the lock.

LockAfter(�,LkVar) ⇒ ¬InLock(�,LkVar)

If � has a predecessor �′ then also

LockBe f ore(�,LkVar) ⇒ ¬InLockEnd(�,LkVar)

(C10) The end state lasti of thread i is unlocked. This prevents locks from leaking.

∀i : ¬InLock(lasti , lk)

According to constraints (C4) and (C5) no locks may be placed around existing wait
or lock statements. Since both statements are implicit preemption points, where the non-
preemptive semantics may context-switch, it is never necessary to synthesize a lock across
an existing lock or wait instruction to ensure preemption-safety.

We have the following result.

Theorem 8 Let concurrent program C ′ be obtained by inserting any lock placement satisfy-
ing LkCons into concurrent program C . Then C ′ is guaranteed to be preemption-safe w.r.t.
C and not to introduce new deadlocks (that were not already present in C).

123

Form Methods Syst Des

Proof To show preemption-safety we need to show that language inclusion holds (Propo-
sition 1). Language inclusion follows directly from constraint (C1), which ensures that all
mutex constraints are enforced as locks. Further, constraints (C2) and (C6) ensure that there
is never a releasing and immediate reacquiring of locks in between statements. This is crucial
because otherwise a context-switch in between two instructions protected by a lock would
be possible.

Let as assume towards contradiction that a newdeadlocked state s=〈V , ctid, (�1, . . . , �n)〉
is reachable in C ′. By definition this means that none of the rules of the preemptive semantics
ofW (Figs. 7, 8) are applicable in s. Remember, that an infinite loop is considered a lifelock.
We proceed to enumerate all rules of the preemptive semantics that may block:

– All threads reached their last location, then the Terminate rule is the only one that
could be applicable. If it is not, then a lock is still locked. This deadlock is prevented by
condition (C10).

– The rule Nswitch is not applicable because the other thread is blocked and Seq is
not applicable because none of the rules of the single-thread semantics (Fig. 6) apply.
The following sequential rules have preconditions that may prevent them from being
applicable.

– Rule Lock may not proceed if the lock LkVar is taken. If LkVar = ctid we have a case
of double-locking that is prevented by constraint (C9). Otherwise LkVar = j 	= ctid. In
this case tidctid is waiting for tid j . This may be because of

(a) a circular dependency of locks. This cannot be a new deadlock because of constraints
(C4) and (C3) enforcing a strict lock order even w.r.t. existing locks.

(b) another deadlock in tid j . This deadlock cannot be new because we can make a
recursive argument about the deadlock in tid j .

– Rule Unlock may not proceed if the lock is not owned by the executing thread. In this
case we either have a case of double-unlock (prevented by constraint (C8)) or a lock is
unlocked that is not held by tidctid at that point. The latter may happen because the lock
was not taken on all control flow paths leading to �ctid. This is prevented by constraints
(C7) and (C8).

– RulesWait/Wait_not/Wait_resetmay not proceed if the condition variable is not in
the right state. According to constraint (C5) �ctid cannot be protected by a synthesized
lock. This means the deadlock is either not new or it is caused by a deadlock in a different
thread making it impossible to reach signal(CondVar)/reset(CondVar). In that case a
recursive argument applies.

– The Thread_end rule is not applicable because all other threads are blocked. This is
impossible by the same reasoning as above. ��

9 Optimizing lock placement

Theglobal lockplacement constraintLkCons constructed inSect. 8 often hasmultiplemodels
corresponding to very different lock placements. The desirability of these lock placements
varies considerably due to performance considerations. For example a coarse-grained lock
placement may be useful when the cost of locking operations is relatively high compared to
the cost of executing the critical sections, while a fine-grained lock placement should be used
when locking operations are cheap compared to the cost of executing the critical sections.
Neither of these lock placement strategies is guaranteed to find the optimally performing

123

Form Methods Syst Des

program in all scenarios. It is necessary for the programmer to judge when each criterion is
to be used.

Here, we present objective functions f to distinguish between different lock placements.
Our synthesis procedure combines the function f with the global lock placement constraints
LkCons into a single maximum satisfiability modulo theories (MaxSMT) problem and the
optimal model corresponds to the f -optimal lock placement. We present objective functions
for coarse- and fine-grained locking.

9.1 Objective functions

We say that a statement � : stmt in a concurrent program C is protected by a lock LkVar if
InLock(�,LkVar) is true. We define the two objective functions as follows:

1. Coarsest-grained locking This objective function prefers a program C1 over C2 if the
number of lock statements in C1 is fewer than in C2. Among the programs having the
same number of lock statements, the ones with the fewest statements protected by any
lock are preferred. Formally, we can define Coarse(Ci) to be λ + ε · StmtInLock(Ci)

whereλ is the count oflock statements inCi ,StmtInLock(Ci) is the count of statements
in Ci that are protected by any lock and ε is given by 1

2k where k is the total number of
statements in Ci .
The reasoning behind this formula is that the total cost is always dominated by the number
of lock statements. So if all statements are protected by a lock this fact contributes 1

2
to the total cost.

2. Finest-grained locking This objective function prefers a program C1 over C2 if C1 allows
more concurrency than C2. Concurrency of a program is measured by the number of
pairs of statements from different threads that cannot be executed together. Formally, we
define Fine(Ci) to be the total number of pairs of statements �1 : stmt1 and �2 : stmt2
from different threads that cannot be executed at the same time, i.e., are protected by the
same lock.

9.2 Optimization procedure

The main idea behind the optimization procedure for the above objective functions is to build
an instance of the MaxSMT problem using the global lock placement constraint LkCons
such that (a) every model of LkCons is a model for the MaxSMT problem and the other
way round; and (b) the cost of each model for the MaxSMT problem is the cost of the
corresponding locking scheme according to the chosen objective function. The optimal lock
placement is then computed by solving the MaxSMT problem.

A MaxSMT problem instance is given by 〈Φ, 〈(Ψ1, w1), . . .〉〉 where Φ and each Ψi are
SMT formulas and each wi is a real number. The formula Φ is called the hard constraint,
and each Ψi is called a soft constraint with associated weight wi . Given an assignment V of
variables occurring in the constraints, its cost c is defined as the sum of the weights of soft
constraints that are falsified by V : c = ∑

i :V 	|�Ψi
wi . The objective of the MaxSMT problem

is to find a model that satisfies Φ with minimal cost. Intuitively, by minimizing the cost we
maximize the sum of the weights of the satisfied soft constraints.

In the following, we write InLock(�) as a short-hand for
∨

LkVar InLock(�,LkVar), and
similarly LockBefore(�) and LockAfter(�). For each of our two objective functions, the
hard constraint for the MaxSMT problem is LkCons and the soft constraints and associated
weights are as specified below:

123

Form Methods Syst Des

– For the coarsest-grained locking objective function, the soft constraints are of three
types: (a) ¬LockBefore(�) with weight 1, (b) ¬LockAfter(�) with weight 1, and (c)
¬InLock(�) with weight ε, where ε is as defined above.

– For the finest-grained locking objective function, the soft constraints are given by∧
lk ¬InLock(�, lk) ∨ ¬InLock(�′, lk), for each pair of statements � and �′ from dif-

ferent threads. The weight of each soft constraint is 1.

Theorem 9 For the coarsest-grained and finest-grained objective functions, the cost of the
optimal program is equal to the cost of the model for the corresponding MaxSMT problem
obtained as described above.

10 Implementation and evaluation

In order to evaluate our synthesis procedure, we implemented it in a tool called Liss, com-
prised of 5400 lines of C++ code. Liss uses Clang/LLVM 3.6 to parse C code and insert
locks into the code. By using Clang’s rewriter, Liss is able to maintain the original format-
ting of the source code. As a MaxSMT solver, we use Z3 version 4.4.1 (unstable branch).
Liss is available as open-source software along with benchmarks.4 The language inclusion
algorithm is available separately as a library called Limi.5 Liss implements the synthesis
method presented in this paper with several optimizations. For example, we take advantage
of the fact that language inclusion violations can often be detected by exploring only a small
fraction of NPabs and P′

abs, which we construct on the fly.
Our prototype implementation has some limitations. First, Liss uses function inlining

during the analysis phase and therefore cannot handle recursive programs. During lock place-
ment, however, functions are taken into consideration and it is ensured that a function does
not “leak” locks. Second, we do not implement any form of alias analysis, which can lead
to unsound abstractions. For example, we abstract statements of the form “*x = 0” as
writes to variable x, while in reality other variables can be affected due to pointer aliasing.
We sidestep this issue by manually massaging input programs to eliminate aliasing. This is
not a limitation of our technique, which could be combined with known aliasing analysis
techniques.

We evaluate our synthesis method w.r.t. the following criteria: (1) Effectiveness of syn-
thesis from implicit specifications; (2) Efficiency of the proposed synthesis procedure; (3)
Effectiveness of the proposed coarse abstraction scheme; (4) Quality of the locks placed.

10.1 Benchmarks

We ran Liss on a number of benchmarks, summarized in Table 1. For each benchmark we
report the complexity [lines of code (LOC), number of threads (Th)], the number of iterations
(It) of the language inclusion check (Fig. 12) and the maximum bound k (MB) that was used
in any iteration of the language inclusion check. Further we report the total time (TT) taken
by the language inclusion check loop and the time for solving the MaxSMT problem for
the two objective functions (Coarse, Fine). Finally, we report the maximum resident set size
(Memory). All measurements were done on an Intel core i5-3320M laptop with 8 GB of
RAM under Linux.

4 https://github.com/thorstent/Liss.
5 https://github.com/thorstent/Limi.

123

https://github.com/thorstent/Liss
https://github.com/thorstent/Limi

Form Methods Syst Des

10.1.1 Implicit versus explicit specification

In order to evaluate the effectiveness of synthesis from implicit specifications, we apply Liss
to the set of benchmarks used in our previous ConRepair tool for assertion-based synthesis
[6]. In addition,we evaluateLiss andConRepair on several new assertion-based benchmarks
(Table 1). We report the time ConRepair took in Table 2. We added yield statements to the
source code of the benchmarks to indicate where a context-switch in the driver would be
expected by the developer. This is a very light-weight annotation burden compared to the
assertions required by ConRepair.

Table 1 Experiments

Name LOC Th It MB TT (s) Coarse (s) Fine (s) Memory (MB) CR (s)

ConRepair benchmarks

ex1.c 18 2 1 1 <1 <1 <1 29 <1

ex2.c 23 2 1 1 <1 <1 <1 29 <1

ex3.c 37 2 1 1 <1 <1 <1 29 <1

ex5.c 42 2 4 1 <1 <1 <1 32 <1

lc-rc.cc 35 4 0 1 <1 N/A N/A 15 9

dv1394.c 37 2 2 1 <1 <1 <1 32 17

em28xx.c 20 2 1 1 <1 <1 <1 29 <1

f_acm.c 54 3 6 1 <1 <1 <1 35 1872

i915_irq.c 17 2 1 1 <1 <1 <1 29 2.6

ipath.c 23 2 1 3 <1 <1 <1 29 12

iwl3945.c 26 3 0 1 <1 <1 <1 15 5

md.c 35 2 1 1 <1 <1 <1 30 1.5

myri10ge.cc 60 4 0 3 <1 N/A N/A 16 1.5

usb-serial.bug1.c 357 7 2 1 6.1 <1 <1 267 ∞b

usb-serial.bug2.c 355 7 2 1 4.5 <1 <1 175 3563

usb-serial.bug3.c 352 7 2 1 2.8 <1 <1 105 ∞b

usb-serial.bug4.c 351 7 2 1 3.8 <1 <1 130 ∞b

usb-serial.ca 357 7 0 3 31.9 N/A N/A 792 1200

CPMAC driver benchmark

cpmac.bug1.c 1275 5 1 2 6 1.6 1.1 156

cpmac.bug2.c 1275 5 4 10 152.9 63 41.4 1210

cpmac.bug3.c 1270 5 9 4 11.1 16.2 9.6 521

cpmac.bug4.c 1276 5 4 7 107.3 10.5 6.5 5392

cpmac.bug5.c 1275 5 4 4 136.5 11 7.7 3549

cpmac.ca 1276 5 0 1 2.1 N/A N/A 114

memcached benchmark

memcached.c 294 2 104 2 22.8 6.2 2.1 114

Th threads, It iterations, MB max bound, TT time for language incl. loop, CR ConRepair time
a Bug-free example
b Timeout after 3h
c Race not detected, as it was present under non-preemptive scheduling

123

Form Methods Syst Des

Table 2 Lock placement statistics: the number of synthesized lock variables, lock and unlock statements, and
the number of abstract statements protected by locks for different objective functions

Name No objective Coarse Fine

Locks locks/
unlocks

Protected
instr

Locks locks/
unlocks

Protected
instr

Locks locks/
unlocks

Protected
instr

cpmac.bug1 2 6/6 11 1 3/3 11 1 3/3 9

cpmac.bug2 2 22/23 119 1 4/4 98 1 6/7 95

cpmac.bug3 1 4/4 29 1 2/3 29 1 5/6 28

cpmac.bug4 4 16/16 53 1 4/4 53 1 6/6 26

cpmac.bug5 3 15/15 30 1 4/4 30 1 5/5 30

memcached 2 5/5 26 1 1/1 28 1 2/2 24

The set includes synthetic microbenchmarks modeling typical concurrency bug patterns
in Linux drivers and the usb-serial macrobenchmark, which models a complete syn-
chronization skeleton of the USB-to-serial adapter driver. For Liss we preprocess these
benchmarks by eliminating assertions used as explicit specifications for synthesis. In addition,
we replace statements of the form assume(v) with await(v), redeclaring all variables
v used in such statements as condition variables. This is necessary as our program syntax
does not include assume statements.

We use Liss to synthesize a preemption-safe, deadlock-free version of each benchmark.
This method is based on the assumption that the benchmark is correct under non-preemptive
scheduling and bugs can only arise due to preemptive scheduling. We discovered two bench-
marks (lc-rc.c and myri10ge.c) that violated this assumption, i.e., they contained bugs
that manifested under non-preemptive scheduling; Liss did not detect these bugs. Liss was
able to detect and fix all other known races without relying on assertions. Furthermore, Liss
detected a new race in the usb-serial family of benchmarks, which was not detected by
ConRepair due to a missing assertion.

10.1.1.1 Performance and precision ConRepair uses CBMC for verification and coun-
terexample generation. Due to the coarse abstraction we use, both are much cheaper with
Liss. For example, verification of usb-serial.c, which was the most complex in our set
of benchmarks, took Liss 103 s, whereas it took ConRepair 20 min [6].

TheMaxSMT lock placement problem is solved in less than 65s for our choice of objective
functions. It is clear that without an objective function the lock placement problem is in SAT,
and Z3 solves it in less than 1s in each case. The coarse- and fine-grained lock placement are
natural choices, we did not attempt other more involved objective functions.

The loss of precision due to abstraction may cause the inclusion check to return a coun-
terexample that is spurious in the concrete program, leading to unnecessary synchronization
being synthesized. On our existing benchmarks, this only occurred once in theusb-serial
driver, where abstracting away the return value of a function led to an infeasible trace.
We refined the abstraction manually by introducing a guard variable to model the return
value.

123

Form Methods Syst Des

10.1.2 Simplified real-world benchmarks

In this section we present two additional benchmarks derived from real-world concurrent
programs. Both benchmarks were manually preprocessed to eliminate pointer aliasing.

10.1.2.1 CPMAC benchmark This benchmark is based on a complete Linux driver for
the TI AR7 CPMAC Ethernet controller. The benchmark was constructed as follows. We
combined the driver with a model of the OS API and the software interface of the device
written in C. We modeled most OS API functions as writes to a special memory location.
Groups of unrelated functions weremodeled using separate locations. Slightly more complex
models were required for API functions that affect thread synchronization. For example,
the free_irq function, which disables the driver’s interrupt handler, blocks, waiting for
any outstanding interrupts to finish. Drivers can rely on this behavior to avoid races. We
introduced a condition variable tomodel this synchronization. Similarly,most device accesses
were modeled as writes to a special ioval variable. Thus, the only part of the device that
required a more accurate model was its interrupt enabling logic, which affects the behavior
of the driver’s interrupt handler thread.

Our original model consisted of eight threads. Liss ran out of memory on this model, so
we simplified it to five threads by eliminating parts of driver functionality. Nevertheless, we
believe that the resulting model represents the most complex synchronization synthesis case
study, based on real-world code, reported in the literature.

TheCPMACdriver used in this case study did not contain any known concurrency bugs, so
we artificially simulated five typical concurrency bugs that commonly occur in drivers of this
type [5]: a data race where two threads could be concurrently modifying the hardware packet
queue, leaving it in invalid state; an IRQ race where driver resources were deallocated while
its interrupt handler could still be executing, leading to a use-after-free error; an initialization
race where the driver’s request queue was enabled before the device was fully initialized, and
two races between interrupt enable and disable operations, causing the driver to freeze. Liss
was able to detect and automatically fix each of these defects (bottom part of Table 1). We
only encountered two program locations wheremanual abstraction refinement was necessary.
These results support our choice of data-oblivious abstraction and confirm the conjecture that
synchronization patterns in OS code rarely depend on data values. At the same time, the need
for manual refinements indicates that achieving fully automatic synthesis requires enhancing
our method with automatic abstraction refinement.

10.1.2.2 Memcached benchmark Finally, we evaluate Liss on memcached, an in-memory
key-value store version 1.4.5 [19]. The core of memcached is a non-reentrant library of
store manipulation primitives. This library is wrapped into the thread.c module that
implements a thread-safe API used by server threads. EachAPI function performs a sequence
of library calls protected with locks. In this case study, we synthesize lock placement for a
fragment of the thread.c module. In contrast to our other case studies, here we would
like to synthesize locking from scratch rather than fix defects in existing lock placement.
Furthermore, optimal locking strategy in this benchmark depends on the specific load. We
envision that the programmermay synthesize both a coarse-grained and a fine-grained version
and at deployment the appropriate version is selected.

123

Form Methods Syst Des

10.1.3 Quality of synthesis

Next,we focus on the quality of synthesized solutions for the two real-world benchmarks from
our benchmark set. Table 2 compares the implementation synthesized for these benchmarks
using each objective functions in terms of (1) the number of locks used in synthesized code,
(2) the number of lock and unlock statements generated, and (3) total number of program
statements protected by synthesized locks.

We observe that different objective functions produce significantly different results in
terms of the size of synthesized critical sections and the number of lock and unlock oper-
ations guarding them: the fine-grained objective synthesizes smaller critical sections at the
cost of introducing a larger number of lock and unlock operations. Implementations synthe-
sized without an objective function are clearly of lower quality than the optimized versions:
they contains large critical sections, protected by unnecessarily many locks. These obser-
vations hold for the CPMAC benchmarks, where we start with a program that has most
synchronization already in place, as well as the memcached benchmark, where we synthe-
size synchronization from scratch.

To summarize our experiments, we found that (1) while our coarse abstraction is highly
precise in practice, automatic abstraction refinement is required to further reduce manual
effort involved in synchronization synthesis; we leave such extension to future work; (2)
additional work is required to improve the performance of our method to be able to handle
real-world systems without simplification; (3) the objective functions allow specializing
synthesis to a particular locking scheme; (4) the time required to solve theMaxSMT problem
is small compared to the analysis time.

11 Conclusion

We introduced a technique to synthesize locks using an implicit specification. The implicit
specification relieves the programmer of the burden of providing sufficient assertions to
specify correctness of the program. Our synthesis is guaranteed not to introduce deadlocks
and the lock placement can be optimized using a static optimization function.

In ongoingwork [7] we aim to optimize lock placement notmerely using syntactic criteria,
but by optimizing the actual performance of the program running on a specific system. In this
approach we start with a synthesized program that uses coarse locking and then profile the
performance on a real system. Using those measurements we adjust the locking to be more
fine-grained in those areas where a high contention was measured.

Acknowledgments Open access funding provided by Institute of Science and Technology (ISTAustria). This
work was published, in part, in Computer Aided Verification (CAV) 2015 [4] This research was supported
in part by the European Research Council (ERC) under Grant 267989 (QUAREM), by the Austrian Science
Fund (FWF) under Grants S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), by NSF under award
CCF 1421752 and the Expeditions award CCF 1138996, by the Simons Foundation, and by a gift from the
Intel Corporation.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Form Methods Syst Des

References

1. Alglave J, Kroening D, Nimal V, Poetzl D (2014) Don’t sit on the fence—a static analysis approach to
automatic fence insertion. In: CAV, pp 508–524

2. BertoniA,MauriG, SabadiniN (1982)Equivalence andmembership problems for regular trace languages.
In: Automata, languages and programming. Springer, Heidelberg, pp 61–71

3. Bloem R, Hofferek G, Könighofer B, Könighofer R, Außerlechner S, Spörk R (2014) Synthesis of
synchronization using uninterpreted functions. In: FMCAD, pp 35–42

4. Černý P, Clarke EM, Henzinger TA, Radhakrishna A, Ryzhyk L, Samanta R, Tarrach T (2013) From
non-preemptive to preemptive scheduling using synchronization synthesis. In: CAV, pp 180–197. https://
github.com/thorstent/Liss

5. Černý P, Henzinger T, Radhakrishna A, Ryzhyk L, Tarrach T (2013) Efficient synthesis for concurrency
by semantics-preserving transformations. In: CAV, pp 951–967

6. Černý P, Henzinger T, Radhakrishna A, Ryzhyk L, Tarrach T (2014) Regression-free synthesis for con-
currency. In: CAV, pp 568–584. https://github.com/thorstent/ConRepair

7. Černý P, Clarke EM,Henzinger TA, Radhakrishna A, Ryzhyk L, Samanta R, Tarrach T (2015) Optimizing
solution quality in synchronization synthesis. ArXiv e-prints. ArXiv:1511.07163

8. Cherem S, Chilimbi T, Gulwani S (2008) Inferring locks for atomic sections. In: PLDI, pp 304–315
9. Clarke EM, Emerson EA (1982) Design and synthesis of synchronization skeletons using branching time

temporal logic. Springer, Berlin
10. Clarke E, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: TACAS, pp 168–176.

http://www.cprover.org/cbmc/
11. De Wulf M, Doyen L, Henzinger TA, Raskin JF (2006) Antichains: a new algorithm for checking uni-

versality of finite automata. In: CAV. Springer, Heidelberg, pp 17–30
12. Deshmukh J, Ramalingam G, Ranganath V, Vaswani K (2010) Logical concurrency control from sequen-

tial proofs. In: Programming languages and systems. Springer, Heidelberg, pp 226–245
13. Eswaran KP, Gray JN, Lorie RA, Traiger IL (1976) The notions of consistency and predicate locks in a

database system. Commun ACM 19(11):624–633
14. Flanagan C, Qadeer S (2003) Types for atomicity. In: ACM SIGPLAN notices, vol 38. ACM, New York,

pp 1–12
15. Gupta A, Henzinger T, Radhakrishna A, Samanta R, Tarrach T (2015) Succinct representation of concur-

rent trace sets. In: POPL15, pp 433–444
16. Herlihy MP, Wing JM (1990) Linearizability: a correctness condition for concurrent objects. ACM Trans

Progr Lang Syst (TOPLAS) 12(3):463–492
17. Jin G, ZhangW, Deng D, Liblit B, Lu S (2012) Automated concurrency-bug fixing. In: OSDI, pp 221–236
18. Khoshnood S, Kusano M, Wang C (2015) ConcBugAssist: constraint solving for diagnosis and repair of

concurrency bugs. In: International symposium on software testing and analysis
19. Memcached distributed memory object caching system. http://memcached.org. Accessed 01 Jul 2015
20. Papadimitriou C (1986) The theory of database concurrency control. Computer Science Press, Rockville
21. Ryzhyk L, Chubb P, Kuz I, Heiser G (2009) Dingo: Taming device drivers. In: Eurosys
22. Sadowski C, Yi J (2010) User evaluation of correctness conditions: a case study of cooperability. In:

PLATEAU, pp 2:1–2:6
23. Solar-Lezama A, Jones C, Bodík R (2008) Sketching concurrent data structures. In: PLDI, pp 136–148
24. Vechev M, Yahav E, Yorsh G (2010) Abstraction-guided synthesis of synchronization. In: POPL, pp

327–338
25. Vechev MT, Yahav E, Raman R, Sarkar V (2010) Automatic verification of determinism for structured

parallel programs. In: SAS, pp 455–471
26. Yi J, Flanagan C (2010) Effects for cooperable and serializable threads. In: Proceedings of the 5th ACM

SIGPLAN workshop on types in language design and implementation. ACM, New York, pp 3–14

123

https://github.com/thorstent/Liss
https://github.com/thorstent/Liss
https://github.com/thorstent/ConRepair
http://arxiv.org/abs/1511.07163
http://www.cprover.org/cbmc/
http://memcached.org

	From non-preemptive to preemptive scheduling using synchronization synthesis
	Abstract
	1 Introduction
	2 Related work
	3 Illustrative example
	4 Formal framework and problem statement
	4.1 Concrete concurrent programs
	4.1.1 Syntax of mathcalW (Fig. 5)
	4.1.2 Semantics of mathcalW
	4.1.3 Concurrent semantics

	4.2 Abstract concurrent programs
	4.2.1 Abstract syntax (Fig. 9)
	4.2.2 Abstraction function (Fig. 10)
	4.2.3 Abstract semantics

	4.3 Program correctness and problem statement
	4.3.1 Executions
	4.3.2 Observable behaviors
	4.3.3 Preemption-safety
	4.3.4 Deadlock-freedom
	4.3.5 Problem statement

	5 Solution overview
	5.1 Reduction of preemption-safety to language inclusion
	5.2 Inference of mutex constraints from generalized counterexamples
	5.3 Automaton modification for enforcing mutex constraints
	5.4 Computation of an f-optimal lock placement

	6 Checking preemption-safety
	6.1 Reduction of preemption-safety to language inclusion
	6.1.1 Soundness of the abstraction
	6.1.2 Language inclusion modulo an independence relation
	6.1.3 Data independence relation
	6.1.4 Checking preemption-safety

	6.2 Checking language inclusion
	6.3 Antichain algorithm for language inclusion
	6.4 Antichain algorithm for k-bounded language inclusion modulo I
	6.5 Language inclusion check algorithm

	7 Finding and Enforcing Mutex Constraints in P'abs
	7.1 Finding mutex constraints
	7.1.1 Non-preemptive neighborhood
	7.1.2 Counterexample enumeration and generalization
	7.1.3 Inferring mutex constraints

	7.2 Enforcing mutex constraints
	7.2.1 Conflicts
	7.2.2 Constructing new P'abs

	8 Global lock placement constraints
	9 Optimizing lock placement
	9.1 Objective functions
	9.2 Optimization procedure

	10 Implementation and evaluation
	10.1 Benchmarks
	10.1.1 Implicit versus explicit specification
	10.1.2 Simplified real-world benchmarks
	10.1.3 Quality of synthesis

	11 Conclusion
	Acknowledgments
	References

