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1 Introduction

The extension of extremal combinatorics to the setting of exterior algebra is a work
in progress that gained attention recently. The incorporation of exterior algebra
into combinatorics has yielded substantial advancements in various areas, including
hypergraph theory, convexity, and extremal set theory [I, 0, 13, [4]. In 1977, Lovéasz
[1] employed exterior algebra technique to prove an extension of Bollobds’ two families
theorem [2]. The original two families theorem states the following:

Theorem 1.1 (Two Families Theorem [2]). Let Ay, ..., A, be k-element sets and
By, ..., By, be l-clement sets such that

1. A;NBi=0fori=1,...,m;

Then m < (kzz). Furthermore, if m = (kze) then there is some set S of cardinality

k + € such that the A; are all subsets of S of size k, and B; = S\ A; for each i.

Lovész proved the following extension of Theorem 1.1 using exterior algebra
method which allows the relaxation of condition (2): instead of requiring A; and
B; to intersect for all pairs with ¢ # j, it only requires that the intersection is
non-trivial when 7 < j.

Theorem 1.2 (Skew Two Families [1]). Let Ay, ..., A,, be k-element sets and By, . .., By
be (-element sets such that

1. AiﬂBi:@forizl,...,m;
2. 4, N Bj#0 forl1 <i<j<m.

Then m < (kzé)

We will present Lovasz’s proof of Theorem 1.2 in Section 3.

An exemplary application of exterior algebra in tackling combinatorial problems
can be observed in the study of intersecting convex sets. Kalai [11] made notable
contributions by employing the exterior algebra method to investigate the properties
of intersecting convex sets. Building upon this approach, a recent paper by Bulavka,
Goodarzi, and Tancer [0] further utilized the exterior algebra framework introduced
by Kalai in their work on finding optimal bounds for the standard fractional Helly
theorem. However, most of these results use exterior algebra as a tool to study com-
binatorics rather than using combinatorics as a tool to study the geometric structure



of the subspaces of exterior algebra. Our approach focuses on exploring the connec-
tion between exterior algebra and combinatorics by utilizing combinatorial results to
investigate the geometric properties inherent in exterior algebra.

In recent results, Scott—Willmer [1] and Woodroofe [5] explored the application of
combinatorics in exterior algebra. Through this connection, they proved an analog
for the upper bound in Erdos—Ko-Rado theorem. Let us first formulate the original
Erdos-Ko-Rado theorem.

Theorem 1.3 (Erdés-Ko-Rado [3]). Suppose k < n/2. If A is an intersecting
family of k-element subsets of {1,...,n} i.e. any two subsets in A shares at least
one common element, then |A| < (’;j) If k < n/2, then the equality holds only if
all sets in A share a common element.

It was later shown by Hilton and Milner [9] that the upper bound decreases
significantly when the intersecting family is not maximal.

Theorem 1.4 (Hilton-Milner [9]). Suppose that k < n/2. If A is an intersecting

family of k-element subsets of {1,...,n} such that there is no common element for

all sets of A, then |A| < (Zj) - (";T) + 1.

Building upon these theorems, recent papers by Scott—Willmer [1] and Woodroofe
[5] showed the following result.

Theorem 1.5 (Exterior Algebra E.K.R. [4, 5]). Suppose that k < n/2. If W is a
subspace of /\k R™ such that v Aw =0 for all v,w € W, then dim W < (Zj)

We will define the operator A and the space of k-forms /\k R™ in Section 2 and
later we will explain why Theorem 1.5 is an extension of Erdos—Ko-Rado theorem.
However, unlike the original Erdos-Ko—-Rado theorem which has the characterization
of the equality case, the equality case in Theorem 1.5 is an open problem. A desired
result for this problem is the following conjecture.

Conjecture 1.6. Suppose k < n/2 and let W be a subspace of /\k R"™ such that for
allv,w e W vAw=0. Then dimW = (Z:l) if and only if there is an a € R™ such
that for all w € W, a ANw = 0.

In this thesis, we aim to study the combinatorial structure of exterior algebra
by introducing a dictionary that translates the notions from the set systems into
the framework of exterior algebra. We prove the conjecture regarding subspaces of
two-forms and further extend the result to Hilton—Milner theorem in the exterior
algebra setting. Specifically, we prove the following theorem.



Theorem 1.7 (EKR and Hilton-Milner for Two Forms [10]). Suppose n > 5, and
W is a subspace of /\2 R™ such that for all v,w € W v Aw = 0. Then

(i) dimW < n —1, and the equality holds if and only if Ja € R™ s.t. a Aw =0
Yw e W.

(11) If there is no a € R" such that a ANw =0 for all w € W, then dimW < 3 and
the equality holds if and only if W = span{zi A x2, x5 N 23,23 A\ x1} for some
linearly independent 1, xq, r3 € R™.

This thesis is organized as follows: In Section 2, we introduce notations and
preliminaries on exterior algebra and provide some results on the geometric structure
of exterior algebra. In Section 3, we build the connection between combinatorics and
exterior algebra. Section 4 is dedicated to Erdos—Ko—Rado theorem and its exterior
algebra analog. We present a proof of the original Erdos-Ko-Rado theorem and give
a potential proof idea for the equality case of the Exterior Algebra Erdos—Ko—Rado
theorem, which closely follows the methodology used in the proof of the original
Erdos-Ko-Rado theorem. In Section 5, we present our main result, which is the
proof of Theorem 1.7. Finally in Section 6, we discuss exterior algebra analogs
of other well-known combinatorial problems such as deBruijn—Erdos theorem and
Frankl’s conjecture.

2 Notations and preliminaries

We denote the set {1,2,...,n} by [n] and the set of all k-sets of I C [n] by (;). The
linear hull of a set S of vectors is denoted by span{S}.

We will use /\k’ R™ to denote the space of k-forms over R™. For a sequence of k
vectors {vy, ..., vx} € R", a k-form vy A ... A vy is defined by its evaluation on vectors
{wy, ..., wx} € R™ given by

V1 A o Avg(wy, ... wy) = det(vi(w;)),  where 4, j € [k].

Here we only provide concise definitions, intending to give a brief overview of
exterior algebra. We refer the reader to Greub’s book [17] for a proper introduction
to multilinear algebra.

Following directly from the definition of a k-form, we have the following proper-
ties:

(i) vy A ... Avg = 0 whenever the vectors vy, ..., v € R™ are linearly dependent .



(i) If o is a permutation of the integers {1,...,k},
V(1) A oo AN Ug(r) = Sgn(0)v1 A ... A vy,
where sgn(o) is the sign of the permutation o.

The space of k-forms /\k R™ is a vector space spanned by k-forms. Let W C R" be
a subspace. Then it follows that A*(W) is a subspace of A" R". We define W+ as the
subspace of R™ consisting of all vectors v that are orthogonal to W, i.e., (v,w) =0
for all w € W. Extending this notion to k-forms, we have A*(W+) € A"R™.

A k-form v € /\k R™ is called decomposable if it can be written in the form
v1 A ... A vy, for some vy, ..., v, € R™.

FExample. For a given orthogonal basis f1, ..., f,, of R™, a 2-form fi A fs is decomposable
whereas fiA fo+ f3A fyisnot. To see that, assume f = fiA fa+ f3A f4 is decomposable.
Then f can be written in the form v Aw for some v, w € R™. Then fAf = vAwAvAw
should be zero. However, we have

INF=(finfot faNf)N(FiAfat faNfa) =2(fi A fa N fa A fa) #0.

Remark. Note that f' = fAfs = fi NfaAfs+ fs A fa A fs5 is still non-decomposable,
however f' A f' = 0.

To gain intuition regarding the geometric meaning of k-forms, we provide the
following lemma.

Lemma 2.1 (Geometric Interpretation of decomposable forms). Let vy, ..., vg, wy, . ..

R™. If span{vy,...,vx} = span{ws, ..., wx}, then
VIA AUy =Awi A+ Awy
for some \ € R.

Proof. We can express each v; as a linear combination of w;’s. Expanding each
component linearly, we find that v; A --- A v, is a linear combination of the forms

wi, A -+ Aw;, where iy,...,7; € [k]. The ones whose indices are not all different
vanish by the property of k-forms. The rest k! many forms are +w; A --- A wy, the
sign depending on the parity of the permutation (i1, ..., ). O

By Lemma 2.1, we observe that decomposable k-forms in /\k R"™ correspond to
k-dimensional linear subspaces of R™. This implies that a decomposable form v; A
-+« Ay, is the volume form on span{vy, ..., v} up to a multiplicative factor. In other

, Wi €



words, it captures the k-dimensional volume of the subspace spanned by the vectors
V1yeoo, Uk

For a fixed basis {v1,...,v,} € R" and a set I = {iy,...,ix} € ([Z’]), we will use
vy to denote the k-form v;, A ... A v;, for the sake of convenience. Fix the standard
basis {ei,...,e,}. Then the set {e; | I € ([Z])} is a standard basis of A"R™. If
{f1, -, [n} is another basis of R™, then it is easy to see that {f; | I € ([Z})} is also

a basis of \"R™. It follows that dim A*R" = (3)-

In order to further explore the properties and applications of k-forms, we will
introduce additional fundamental notions of multilinear algebra.

2.1 Inner Product

We can define the inner product of two k-forms vy A -+ A v, and wy A -+ - A wy by
(VI A= AN,y A - Awg) = det((v;, w,)),

where (v;,w;) is the inner product of vectors v; and w; in R™. We can also extend
the definition of the inner product to the entire space of k-forms by linearity.

The inner product on the space of k-forms is a fundamental tool in the study of
exterior algebra, and it plays a crucial role in defining other important notions such
as the interior product and the Hodge star operator.

2.2 Interior Product

Definition 2.2. The interior product with a form a is defined to be the transpose of
the wedge product with a, that is

(via,w) = (v,w A a)
for any a € NR*, v e N'R* and w € N7' R,
Corollary 2.3. Forv=v A ... Av and a =a1 \ ... \q

vLa = Z sgn(o)ar(Vo(ry) -+ - - a1(Vo(t)) * Vo(i41) A - A Ug(t)-

where the sum over all permutations that preserve the order of {l +1,....k}.

Lemma 2.4. Let v e A\"R”, v € N R for some k,1 € [n] and let a,b € R™ be unit
vectors. Then the following properties hold.



1. For any orthonormal basis ey, ..., e, of R",

erler — :i:ej\'] ZfJCI
7o if J ¢ 1.

. (v AV )La = (via) AV + (=1)Fv A (v'La)
iti. vi(a Ab) = (vLb)La.
w. ((vea) Aa)ia = (1) oLa.

Proof.

i. For any subset L, (ejLey,er) = (er,ep Aey). If J C I, then (e, er Aey) is non-zero
if and only if LU J = I, and hence L = I\ J. Thus, we have e;Le; = tep . If
J ¢ I, then (er,er A ey) =0 for any L, meaning that e;Le; = 0.

ii. It suffices to prove this for decomposable forms since the operator L is linear on
/\k R™ Let v =v; A+ Avg and v/ = vgq A -+ A vgyy. By Corollary 2.3,

(v AV )La = Z a(Vo(1)) * Vo@) A+ A Vg (k1)
0’6877,

Observe that we can split the permutations into two as S; = {o € S,, | o(1) €
{L,...k}}and So ={o €S, | o(1) e {k+1,...,k+1}} where S, denotes the set
of all permutations of {1,...,n}. Then we have,

(VA )ea =" alve(n) - Vo) A= Avaiiiny + Y @(Ve(1) - Vo) A+ A Vg(iisy

o€ST oESs
= Z (l(vg(1)) V@) A AUy N v+ Z a(va(l)) V@) A AUy AU
o€S] gESH

= (vLa) AV + (=) A (VLa).

iii. For any w, (ve(a Ab),w) = (v,wA (aAb)) = (vLb,wAa) = ((vLb)La,w).

iv. For any w such that w A a # 0, we have:

{((vea) A a)ea,w) = {(vea) Aa,w Aa) = (=) via, w).



Remark. Note that in general, (v Aa)La # (vea) A a. This can be easily seen by the
following counter-example,

((61 N 62) A 63)|_€3 = €1 N €9 7é 0= ((61 AN eg)l_eg) VAN €3.

Claim 2.5. Let v € /\k R™ be a k-form and a € R™ be a unit vector, then vLa €
N at) C AR

Proof. 1t suffices to prove the claim for decomposable forms since the operator L is
linear on /\k R Let v = vy A ... Avg. If v; € at for all i, then a(v;) = 0 for all i
and so vLa € N°'(a') by the definition of interior product. If not, since {vy, ..., v}
is a linearly independent set in V', we can assume without loss of generality that
vy = a + A\ b where b € at and v; = \; b for i # 1 where );, 1 < i < k are some real
constants. Then,

via = Z sgn(0)a(Vs1)) - Vo) A - A Vo(r)

k-1
=2, A A € /\ (a™).
O

Definition 2.6. Let a be a unit vector in R™ and k be a non-negative integer. Define
the operator AT : NFR™ — A\"R™ by:

Al (v) = (via) A a;
and AY : \*R™ = N*R™ by:
A (v) = (v A a)La.

Now, we will show that (—1)*A%(v) is the orthogonal projection of v onto the
subspace /\k(al), which consists of k-forms generated by all vectors orthogonal to a.

Lemma 2.7 (Geometric meaning of AY). For a unit vector a € R™, (—1)* A% is the
orthogonal projection onto /\k(cﬁ).

Proof.
(—1)FA*(=1)" A ()

((vAa)La) ANa)La
(—=D)*(w Aa)a
(—1)FA ()



This proves that (—1)¥A% is a projection. Notice that it is also self-adjoint,

Hence, (—1)* A% is an orthogonal projection of v onto A*(at). O
Lemma 2.8. (A'(aY)" = {aAve N'R" | ve N (ah)}).

Proof. Consider the definition of the orthogonal complement:

N @ ) ={ve AR | (n,0) =0 vwe (@)}

For any a Av € A'R" and w € A°(at), it is clear that (a A v,w) = 0 for all

w € A'(at). Note that the dimension of A*(at) is (™.1), while the dimension of
{anve NR" | ve N (ah)} is (7~1). These dimensions sum up to (}), which
is the dimension of the entire space /\]~C R"™. Therefore, we conclude that {a A v €
N'R" | v e N (at)} is the orthogonal complement of A"(a').

O

It follows that (—1)*** AT (v) is the orthogonal projection of v onto the subspace
{farwe N'R" | we N at)} € N"R™. Then, we can show that any k-form can
be written as the sum of its projections A™(v) and A**(v).

Corollary 2.9. For any unit vector a € R"™ and any k-form v € /\k R™, we have the
following partitioning:

v = (=1 AT () — A(v)).

Proof. We will prove it for decomposable forms as before since it can be generalized
for non-decomposable forms by the linearity of L. Then,

(vea) Na— (v Aa)a = (Z 5gn(0)a(Ve(1)) - Vo2) A - A Vgiy) A
- (Z sgn(0")a(Vgr(1y) - Vor(2) A oo A Vgr(iy A @+ (=Dka(a) - v1 A ... Ag)

=0—(=D¥a(a) - v1 A ... Ay,
— (—1)k+11}.



2.3 Hodge Star Operator

The Hodge star operator is a linear operator defined on the space endowed with
Euclidean structure. Recall from Lemma 2.1 that decomposable k-forms represent
the k-dimensional subspaces of R™. The Hodge star operator maps k-dimensional
volume forms (k-forms) to (n — k)-dimensional volume forms in the complementary
space. To define the Hodge star operator, we start by defining a mapping ¢,, for each
w € /\"_k R"™, which takes a k-form and maps it to a scalar. Using this mapping,
we construct a linear map ¢ that maps (n — k)-forms to the dual space of k-forms.
We then show that this map is an isomorphism, which allows us to define the Hodge
star operator as an isometry map from k-forms to (n — k)-forms.

Folf each w € /\"7]“ R™, define the mapping ¢,, : /\]g R™ — R such that for all
ve N'R,

VAW = (V) ey

In other words, ¢,,(v) is the coefficient of ef,) in the expansion of v Aw. Note that
the map ¢,, is well-defined because v A w is a scalar multiple of the basis element
€[n], which implies that the coefficients of the wedge product of v and w with respect
to e, are uniquely determined. The linearity of ¢,, follows from the multilinearity
of the wedge product. Then, the map

o: N TR 5 (N R

w = Gy

is also linear. The map ¢ allows us to relate the space of k-forms to the dual space
of /\k R™, which will be useful in defining the Hodge star operator. Now we prove
that ¢ is an isomorphism.

Claim 2.10. ¢ is injective.

Proof. Suppose ¢, = 0. Then for all v € /\k R"™, ¢,,(v) = 0. By the definition of ¢,,,
it implies that for all v € /\k R"™, v Aw = 0. But this is true if and only if w = 0

because for any w = > ¢ e\ where ¢; € R, we can take v = > c¢rer . Then
(%) ()
v Aw =Y (c;)?* which is zero if and only if ¢; = 0 for all T i.e. w = 0. O

1



Since dim A" "R" = dim A*R™ = dim(A" R™)*, we obtain that ¢ is an isomor-
phism.

We can define a linear map from k-forms to (n — k)-forms as follows:

Definition 2.11. The Hodge star operator = : N'R" — N "R" is the unique
linear operator such that

v A (xw) = (v, w) epy
for all v,w € /\k R"™.
In particular, *w is the unique element in A" " R" such that
Pow = (- W)
Then for any v, w € /\lC R™,
VA KW = Dy (V) ) = (V, W) €.

Lemma 2.12. Let I be a k-element subset of [n]. Then, xe; = Fep,)\;, where the
sign depends on the order of indices in I.

Proof. By the definition above,
er A (xer) = (er,er)epm-

Since (er,er) = 1, we have e A (xey) = ep,). Let xe; = e for some J € (n[f]k) Then
er A\ (xer) = ey Aey # 0 if and only if J = [n] \ I which implies xe; = % ep,)\ 1. O

Lemma 2.13. The Hodge star operator satisfies the following relation:
k k Kt
*o*:/\ R"—>/\ R" = (—1)k=h)1
Proof. For e; € N°'R™ and e; = emp s € N PR let e;; € {#1} be a sign function

such that e; A ey = g7 5e1 A ... Ae,. Notice that €577, = (—=1)¥™%. Then by
Lemma 2.12, xe; = €7 jep,\; which implies

k(n—k
**BJ:€[7J*€[n]\]:€J7]€[7J€J:(_1> (n )eJ.

10



Lemma 2.14. Let w € /\k R"™. Then the following identities hold for any form v
and vector a € R".

b *W = €p)LW.
. v A x(wAa) = (via) A xw.
it v Ax(wLa) = v A a A *xw.
Proof.
i. For any v € " "R”, we have
(v, eprw) = (v Aw, ep)) = ((v,*%w) ey, ep)) = (U, ¥w)(ep) , ep)) = (v, *w)

implying *w = ep,Lw.
i vAx(wAa)=(v,wAa)ep = (vLa,w) ey = (vLa) A *w.

iii. v A*(wea) = (v, wea) ey = (VA a,w) ep = v Aa A *w.

3 Combinatorics and Exterior Algebra

In this section, we aim to establish a connection between combinatorics and exterior
algebra. We will translate the combinatorial objects and operations into the geomet-
ric notions in exterior algebra, which we have discussed in the previous section.

3.1 Sets to Subspaces

Fix a basis {v1,...,v,} € R". With every k-set I C [n], we associate the wedge
product

vy = /\Ui S /\kRn (1)

In other words, we have an embedding from set systems into the space of forms.
This relation allows us to build the correspondence between combinatorial structures
and geometrical structures in exterior algebra. To establish the link between wedge
products and intersection conditions, we introduce the following lemma:

11



Lemma 3.1. Let A, B C [n]. Then,

o A 40 ANB=0
AP =20 ANB#0

Proof. In the first case, we have the wedge product of linearly independent vectors.
In the second, the vectors corresponding to the elements in the intersection A N B
repeat, hence the terms are linearly dependent. Consequently, the wedge product is
Z€r0. O

Drawing upon the connection between intersecting set systems and exterior al-
gebra, Lovész proved the skew version of Bollobéds’ two families theorem (Theorem
1.2), using exterior algebra methods. This method justifies our choice of embedding
in (1). Lovéasz’s proof of Theorem 1.2 is as follows.

Proof. (Lovész, 1977) Let X be a finite set containing all the sets A; and B;. Asso-
ciate each i € X with vectors v; € R¥! such that the vectors are in general position.
By the conditions of the theorem and Lemma 3.1, we have

A0 i=j
VAN g i<

m

Now we show that vy,,...,va,, are linearly independent. Let Y \;v4, = 0 and
i=1

assume that for some j, A; = 0 for all 7 > j. Consider the exterior product 0 A vp,

and rewrite it as
m m
0Avp, = (Z)‘Z va,) Nvp, = Z)\i (va, Nup,;) = Ajva, ANvg,.
i=1 i=1
Since va; Avp; # 0, A; = 0. This implies that va,,...,va, are linearly independent.

Consequently, m < dim A* R = (%) H

It is worth noting that this proof admits a generalization to subspaces of a linear
subspace.

Theorem 3.2 (Subspace Two Families [1]). Let Vi,...,V,, and Wy ..., W,, be two
families of linear subspaces such that

1. dimV; <k, and dimW; < /{ fori=1,...,m;

12



2. VinW, =0 fori=1,...,m;
3. VinW; #0 for1 <i<j<m.

Then m < (k:e)

3.2 Intersection and Annihilation

Using the idea in Lemma 3.1, we can identify a property of subspaces in exterior
algebra that mirrors the concept of intersection in set systems. In exterior algebra,
two k-forms v,w € /\k R™ are annihilating if their wedge product vanishes, i.e.,
v Aw=0. A subspace W C /\k R™ is self-annihilating if every pair of k-forms in W
is annihilating. This notion of self-annihilating subspaces was introduced in previous
works such as [1, 5] as an exterior analog of intersection in set systems.

Recall that Theorem 1.5 states that for k < n/2, if W is a subspace of A"R"
such that v Aw = 0 for all v,w € W, then the dimension of W is bounded by
(7~]). Using the embedding in (1), we can associate each subset A € A of an
intersecting family of k-element subsets of [n] with the k-form v4 € A"R". Then, we
observe that the subspace spanned by {v4 | A € A} is a self-annihilating subspace of
/\k R"™. Therefore, Theorem 1.5 implies the inequality in the original Erdés—-Ko-Rado
theorem, that is |A| < (Zj)

This analogy becomes more tricky when considering non-decomposable forms, as
there is no clear correspondence between non-decomposable k-forms and k-sets of [n].
One issue is that the property v A v = 0 does not hold for some non-decomposable
forms, as exemplified by e; A es + e3 A e4. Intuitively one would expect a form to
“intersect” with itself analogically but in this case, self-annihilation may not always
have a clear geometric interpretation.

Therefore, a more nuanced approach is needed when studying this relationship.
To address this issue, we introduce another annihilation property, called strong an-
nihilation.

Definition 3.3. Two k-forms v,w € /\kV are strongly annihilating if there exists
a vector a € R™ such that v ANa = wAa = 0. A subspace W C /\k V' s strongly
self-annihilating if every pair of k-forms in W is strongly annihilating.

It is worth noting that strong annihilation implies annihilation, but not the other
way around. However, the self-annihilating subspaces spanned by decomposable
forms with respect to a certain basis, like {va | A € A}, are also strongly annihi-
lating as each pair has to have a common factor. Therefore, strong annihilation is
compatible with the embedding defined in (1).

13



3.3 Subtraction and Interior Product

The interior product is a fundamental operation in exterior algebra that allows us to
extract a lower-dimensional form from a higher-dimensional one. Interestingly, when
we restrict our attention to decomposable k-forms, the interior product has a close
correspondence with set subtraction which was first discovered by Kalai in [11].

In the context of the interior product, the projection operation acts as an analogy
for set subtraction. Recall from the properties of the interior product in Lemma
2.4 that for an orthonormal basis {ei,...,e,} of V, we have ejLe; = epy; where
i € I C [n]. Thus, the interior product of e; with e; corresponds to removing the
i-th element from the set I if i € I.

Geometrically, the interior product with a vector a represents the contraction of
a k-form v with a along the direction of v. In the case of a decomposable form, this
corresponds to removing the component in the direction of a. The result is a (k—1)-
form that lives in the subspace spanned by the remaining basis vectors. This makes
intuitive sense as the subspace spanned by these remaining basis vectors corresponds
to the hyperplane orthogonal to a as we have seen in Claim 2.5.

Building on this intuition we observe that the images of the forms under the
operators A** and A™ correspond to the partitioning of a family of subsets. Take
a vector e; € R™ from the standard basis {ey,...,e,} and consider the subspace
V ={es | Ae A € N'R", where A is a family of sets. When we apply the
operator A to V, it gives us the subspace spanned by {e4 | i ¢ A}. On the other
hand, the operator A™ applied to V' yields the subspace spanned by {es | i € A}.
Therefore, these operators correspond to partitioning the family A into two parts:
{AcA|i¢gAand {Ac A |iec A}

It’s worth noting that these correspondences are not so trivial for non-decomposable
forms again. Nevertheless, the interior product has a rich geometric interpretation
even for non-decomposable forms, allowing us to extract lower-dimensional parts of
these forms that capture important geometric information. Therefore we believe
that it can be still useful to extend the natural correspondence to non-decomposable
forms.

Following this relation, we can also define the “shadow” of a subspace. We first
introduce the definition of a shadow for a subset in a set system.

Definition 3.4. For a family of sets A, its s-shadow 05 A denotes the family of
s-subsets of its members 0sA :={S | |S|=s,dJA € A, S C A}.

In exterior algebra, we can define the shadow of a subspace. More precisely, given
a subspace of k-forms W, the s-shadow of W where s < k, denoted as 0,/ is the
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subspace of s-forms that comprises all possible contractions of elements from W.
More formally, we can express d;W as follows:

OW := span{wre; | I € (l{:[ﬁ]s) we Wh.

It easily follows that this definition is again consistent with our embedding (1).

3.4 Complement and Hodge Star Operator

We observe that the Hodge star operator is intimately related to the set complement
operation since the Lemma 2.12 shows that for any k-element subset I C [n], the
Hodge star of the k-form e; is given by *xe; = £ ep,)\ ;-

Intuitively, the Hodge star operator maps a k-form to its complementary (n — k)-
form, much like set complement maps a subset of [n] to its complementary subset.
Therefore we believe that extending this relation to all k-forms can be still meaning-
ful.

4 FErdos—Ko—Rado Theorem in Exterior Algebra

In this section, we will present the proof of the original Erdés—Ko—Rado theorem and
state our conjecture on the exterior algebra extension of Erdés—Ko—Rado theorem.
Using the correspondences we built in the previous section, we will give a potential
proof idea that follows the same methods as the proof of the original Erdos—Ko—
Rado theorem. We will begin by providing proof of the original EKR (Theorem 1.3),
as presented in [16]. The proof utilizes Katona’s shadow theorem for intersecting
families.

Theorem 4.1 (Katona, [15]). Let A be a family of m-sets such that |[ANA'| > 1> 0
for all A, A" € A. Then |A| < |0p—1 A|. Equality holds if and only if m =1 or A =0
or A= ([mel]).

m

We will skip the proof of Theorem 4.1 and proceed to prove Theorem 1.3.

Proof of Theorem 1.3. [10] Define the partitions of A such that 4y :={A € A|1l ¢
A} and Ay :={Ac A|le A}

Now let By := {A\ {1} |A € A} and By := {[2,n] \ A| A € Ap}. Let B €
B1NOk_1By. Then B = Ay \ {1} = [2,n] \ Ay for some Ay € Ay and A; € A;. This
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implies AgNA; = 0 but this contradicts with the intersection property of A. Hence
we obtain

BiMNO_1By =10

By and 0_1B; are (k — 1)-uniform, non-intersecting subfamilies of [2,n] so we
have

n—1
<
B+ ool < ()

For any B, B’ € By,
|IBN\B'| = [([2,n] \ Ao)N([2,n] \ 45)| = (n — 1) — 2k + |AoNAY| > n — 2k.
Then takingm =n—k —1and [ =n — 2k > 0 in Theorem 4.1, we get
1Bo| < [Or—1By].

To conclude,

n—1
|A| = |Ao| + |A1] = |Bo| + |B1] < |0k—1Bo| + | B1] < <k B 1).
Equality implies |By| = |0x—1Bo|. By Theorem 4.1, for n > 2k this is true if and
only if either By = () and so each set in A contains 1, or By = (f’_"l__lli) and so each
set in A contains n. O

Theorem 1.5, which is the extension of Erdos-Ko-Rado theorem, was proven by
Scott and Willmer in [!] and also independently by Woodroofe in [5]. While both
papers provide different approaches to the proof, they both fail on explaining the
behavior in the equality case. To approach this problem, we propose to change the
self-annihilation property in the conjecture to the strong annihilation we defined in
the previous chapter.

Conjecture 4.2. Suppose k < n/2 and let W a strongly annihilating subspace of
/\k R™. Then dimW = (Zj) if and only if there is an a € R"™ such that for all
weW,aNw=0.
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4.1

A Reduction for the Exterior EKR Conjecture

Based on the dictionary we have constructed, we propose an approach that follows
the same methods as Frankl and Fiiredi’s proof of the original Erdés-Ko-Rado (EKR)
theorem.

Let V C /\k R™ be a strongly intersecting subspace i.e. for any u,v € V, there
exists a vector a € R™ such that uAa =vAa =0. Let a € R" be a fixed unit vector.
We define the following partitions:

1.

ot

Vo :=span{(v A a)La|v € V} C N'(ab):

The subspace V, captures the part of the elements of V' that do not have a as a
linear factor, i.e., Vj is the orthogonal projection of v € V onto /\k(aL). Hence,
it is the image of V under the map A*®. Notice that this corresponds to the
set Ap in the proof of the original EKR.

Vi :=span{(vLa) Aa|v € V}:

V, is the image of V under the map A'™, and it corresponds to the set A, in
the original proof.

C Wo =%V € N (ab):

Wy is obtained by applying the Hodge star operator to V with respect to the
space \'(a). Therefore, it consists of (n — k — 1)-forms. It corresponds to the
“complement” of V; in the subspace A"(a'), and hence it corresponds to the
set By in the original proof.

Wy := span{via|v e V} C A7 (ab):

W, captures the parts of the elements in V' that have a as a factor without
including a itself. Naturally, it corresponds to the set B.

. O 1 Wy := span{(xvg)rey | I € (n[j’“%k), vy € Vo}:

Ok—1Wj is the space spanned by all (k—1)-forms obtained by taking the interior
product with all (n — 2k)-forms. The resulting space corresponds to the set
Or_1By in the original proof.

Notice that we have V' = V[, & V; by Lemma 2.9. We would like to show that
there is a unit vector a € R™ such that V = V;, which would imply the Conjecture
4.2. We begin with the following lemma that can be easily proven by the initial ideal
method of Scott and Wilmer in [1].
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Lemma 4.3. dim Wy < dim (0x_1Wy) and equality holds if and only if Wy = {0} or
Wo = N"""""(ah).

We propose the following conjecture that is a reduction of the Conjecture 4.2.
Conjecture 4.4. Wy (0 1Wo = 0 for some unit vector a € R™.
Lemma 4.5. Conjecture 4.4 implies Conjecture 4.2.

Proof. Define the partitions Vj, Vi, Wy, Wi as above. Since dim Wy, dim 0,1 Wy <

(Zj) and Conjecture 4.4 implies that dim (0_1Wy) = dim W}, we have

1
dim Wy + dim 8y,_, W, < <Z 1).

Then,

-1
dimV = dim Vy 4+ dim V; = dim Wy, 4+ dim W, < dim (9x—; Wp) + dim W < (Z 1).
Equality holds if and only if W, = {0} or Wy = A" " '(at) which implies that
vAa=0foralvelV. O

5 Main Result

In this section, we present our main result on Exterior EKR and Hilton—Milner for
two-forms. Specifically, we provide the proof of Theorem 1.7. We show that for the
case of two-forms, both the characterization of the extremal case in the Erdos—Ko—
Rado theorem and the extension of the Hilton—Milner theorem follow.

The proof of the Theorem 1.7 uses a result from symplectic geometry that gives
a precise way to express two forms.

Theorem 5.1 ([I1]). Any two-form can be written in the standard form fi A fo +
oo+ fors1 A forso in some orthogonal basis {f1,..., fn}.

We are now able to present the proof of our main result.

Proof of Theorem 1.7. By Lemma 5.1, a two-form w can be written in the form

w= >, fiA fix1 where i is odd and m < n, in some orthogonal basis {fi,..., fu}.
1<i<m
If w satisfies w A w = 0, then we have

wWAW = 22]2 A fi-l—l N fj A fj+1~
i#j
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Since f;, fit1, fj, fi+1 are basis elements, the wedge product f;A fipa AfiAfj41 # 0.
Moreover, since { f1,..., f,} is an orthogonal basis, the set of forms {f; A fiz1 A f; A
fi+1,| @ # j} are linearly independent. Therefore, w A w = 0 if and only if w is
decomposable, that is, w = v1 A ve for some vy, vs € R™. Consequently, all elements
of W are decomposable. That is, they correspond to two-dimensional subspaces of
R™ or, equivalently, to lines in RP"™!. Then, the proof follows from the classical
result on the structure of sets of lines in projective space:

Folklore lemma. Let L be a set of lines in RP"! such that any two of them
intersect. Then either all lines pass through one point, or all lines lie in a two-
dimensional subspace.

Proof of Folklore Lemma. Let {1 and /5 be two arbitrary lines in L and L, be the
two-dimensional subspace containing both ¢; and ¢5. Any line that doesn’t intersect
{1 and {5 at their intersection point must have at least two points on L. This implies
that the line lies entirely within Ls. O

By Folklore lemma, there are two cases:

1. All the lines pass through one point. Then there are at most n — 1 linearly
independent of them, which easily yields the first part of the theorem, (i).

2. All the lines belong to some two-dimensional subspace. Then there are at most
3 of them that can be lincarly independent, and we have (ii).

O

Note that in the case of £ > 2, such a relation does not exist because most
self-annihilating subspaces of k-forms for k£ > 3 are spanned by non-decomposable
forms.

6 Other extremal problems

In this section, we propose conjectures analog to known extremal combinatorics
problems.

6.1 deBruijn—Erdos Theorem

Theorem 6.1. If A is an intersecting family of subsets of [n] such that for each
A,Be A |ANB| =1, then |A| <n.
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Proof of Theorem 6.1. Let |A| = m. For the m sets in the family Ay, ..., 4,, let
(@ij)mxn be a matrix such that a;; = 1 if ¢ € A; and a;; = 0 otherwise for all
1 <i<mnandl<j<m. Note that if there cxists a set A; such that |A;| = 1,
it implies that all sets have one common clement. Then maximum possible family
would look like {{1}, {1,2},{1,3},...,{1,n}} which has cardinality exactly n.

Claim 6.2. The columns of the matriz (a;j)mxn are linearly independent.

Proof of Claim 6.2. Let cq, ..., ¢, be the columns of (a;;)mxn. We can assume that
each set has a cardinality of at least 2. Let s = > a;c;. Then,

(s,8) = ZZO@O@(Q./ cj)-

Note that (c;,¢;) =1 for i # j and (¢;, ¢;) = |A;|. Therefore,

(5,5) = (Y0 + Y a2(Ad = 1)

This equation is equal to zero if and only if o; = 0 for all 1 < ¢ < m which implies
that ¢y, ..., ¢, are linearly independent. This proves the claim. [l

As a corollary of the Claim 6.2, we get m < n and this proves Theorem 6.1.
O
In the exterior algebra setting, an analogy of Theorem 6.1 can be stated as follows.

Conjecture 6.3. Let V' be a strongly annihilating graded vector subspace of )\ R"
such that for each pair v,w € V', there exists a unit vector a € R such that (vi,a) A
(wea) # 0. Then dimV < n.

6.2 Cross-union and Frankl’s Conjecture

Definition 6.4 (Cross Union). A collection of families Fy, ..., Fs of subsets in ([Z])
are called (s + 1)-cross union if there is no choice of Fy, ..., Fs where F; € F; for all
0 <i<s such that Fy U ...U F, = [n].

Frankl proposed the following conjecture in [12].
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Conjecture 6.5 (Frankl, [12]). Let n = sk + ¢ with 1 < ¢ < k. Suppose that
Fo, ey Fs C ([Z]) are non-empty and (s+1)-cross-union. Then there exists sg = so({)
such that the following holds for all s > sy:

[Fol + [ Faf + . + 15l _ (n—1
s+1 “\k—-1)

We can define cross-union for the subspaces of A*R" similarly.

Definition 6.6 (Exterior Cross Union). The subspaces Vy, ..., Vs of N°R™ are called
cross-union if there is no choice of vg € Vo, ...,vs € Vs such that for some basis
{f1,.., fu} of R", for all f; there exists a v; such that v; A f; = 0.

A natural analogy of Frankl’s conjecture on exterior algebra can be stated as
follows.

Conjecture 6.7. Let n = sk + { with 1 < ¢ < k. Supposed that Vj, ..., Vs are cross-
union proper subspaces of /\k R™. Then there exists so = so({) such that the following
holds for all s > sq:

dimVy + dimVy + ... + dimV, - (n — 1)

s+ 1 k—1
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