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Abstract
Synchronous programs are easy to specify because the side effects of an operation are finished
by the time the invocation of the operation returns to the caller. Asynchronous programs, on
the other hand, are difficult to specify because there are side effects due to pending computation
scheduled as a result of the invocation of an operation. They are also difficult to verify because
of the large number of possible interleavings of concurrent computation threads. We present
synchronization, a new proof rule that simplifies the verification of asynchronous programs by
introducing the fiction, for proof purposes, that asynchronous operations complete synchronously.
Synchronization summarizes an asynchronous computation as immediate atomic effect. Modular
verification is enabled via pending asynchronous calls in atomic summaries, and a complementary
proof rule that eliminates pending asynchronous calls when components and their specifications
are composed. We evaluate synchronization in the context of a multi-layer refinement verification
methodology on a collection of benchmark programs.
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1 Introduction

This paper focuses on the deductive verification of asynchronous concurrent programs, an
important class that includes distributed fault-tolerant protocols, message-passing programs,
client-server applications, event-driven mobile applications, workflows, device drivers, and
many embedded and cyber-physical systems. A key aspect of such programs is that (long-
running) operations complete asynchronously. A process that invokes an operation does not
block for the operation to finish. Instead, the result from the completion of the operation
is communicated later, e.g., via a callback message. Asynchronous completion not only
introduces concurrency and nondeterminism into the program semantics, but also makes the
task of specifying the correct behavior of operations difficult. The behavior of a synchronous
operation can be specified with a precondition and a postcondition because there is no
ambiguity about the state just before and just after the operation executes. The behavior of
an asynchronous operation is harder to specify because multiple operations can be in flight
at the same time and partial results from other operations may have already affected the
state before the operation finishes.
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21:2 Synchronizing the Asynchronous

In this paper, we propose that reasoning about asynchronous computation can be
simplified via synchronization, a program transformation that generalizes reduction [15, 6].
While reduction allows the creation of a coarse-grained atomic action from a sequence
of fine-grained atomic actions performed by a single thread, synchronization allows the
creation of a coarse-grained atomic action from an asynchronous computation executed by a
potentially unbounded number of concurrent threads. Synchronization reduces the number
of interleavings; it allows us to pretend, for the purposes of proof, that asynchronous calls
complete synchronously and atomically, which leads to significantly simpler invariants.

Synchronization, similar to reduction, relies on commutativity properties of low-level
atomic actions. Establishing commutativity may be difficult if these atomic actions access
shared state that is also accessed by other, interfering concurrent computations. To enable
synchronization in the presence of interference, we leverage the observation that commutativity
properties among a set of atomic actions can be established by abstracting these actions [5].
In particular, we incorporate synchronization as a program transformation in the verification
methodology of program layers [12], which allows the programmer to chain together a
sequence of increasingly abstract concurrent programs containing atomic actions that are
increasingly coarse-grained. Since program layers allow history variables to be introduced,
history variables are sufficient for converting an arbitrary safety property into assertions, and
the synchronization transformation preserves all assertion failures, our technique is applicable
to the proof of arbitrary safety properties of asynchronous programs.

Synchronization, if used naively, leads to summaries that are not modular and hence not
reusable. Consider a scenario where a client invokes an operation S of a service, upon whose
completion a callback function C is invoked asynchronously. If the code of C is synchronized
into S, the summary of S will be cluttered by the effects of C, making reuse across a different
client impossible. To solve this problem, we generalize atomic summaries to support pending
asynchronous calls (pending asyncs in short). Using pending asyncs, we can synchronize
asynchrony internal to the service, while leaving the asynchronous callback to C as pending
in the summary of S, thus enabling the reuse across different clients. Once the summary of S
has been absorbed into the client, we need a mechanism to replace the pending async with
the effect of the concrete implementation of C. For that we provide a second proof rule to
eliminate pending asyncs from specifications.

We integrated our proof rules in the CIVL verifier [9] which provided a baseline framework
of program layers. We report on our experience verifying a collection of benchmark pro-
grams, showing that our technique enables elegant specifications and proofs of asynchronous
programs.

2 Overview

We start with an overview of our new verification technique based on the two concepts
synchronization and pending asyncs. In our examples we follow the convention of writing
procedure names capitalized (e.g., Acquire), and atomic action names in all caps (e.g.,
ACQUIRE). We use the notation [...] to denote unnamed atomic actions, i.e., the statements
inside square brackets are considered to execute indivisibly.

2.1 Asynchronous Increments and Decrements
Consider the program in Figure 1 (a). The program comprises a single procedure Main
that uses a global variable x and a local variable i. Every iteration of the while loop in
Main creates two new threads, one executing an atomic increment [x := x + 1], and one
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(a)
global var x

proc Main(n):
i := 0
while i < n:
async [x := x + 1]
async [x := x - 1]
i := i + 1

(b)

proc Main:
async Foo
assert false

proc Foo:
call Foo

(c)
global var x

proc Main(n):
i := 0
while i < n:

async [x := x + 1]
async [x := x - 1]
if *: i := i + 1

Figure 1 Asynchronous increments and decrements

executing an atomic decrement [x := x - 1]. Due to asynchronous thread creation, the
execution of individual increments and decrements can be interleaved arbitrarily. However,
once all threads finish, the value in variable x is equal to its initial value. Thus, Main refines
the atomic action [skip], which does nothing.

A standard noninterference-based proof of this program requires an invariant that states
that “x is equal to its original value, plus the number of finished increment threads, minus
the number of finished decrement threads”. Stating this invariant requires ghost code that
tracks the progress of each thread. In contrast, our synchronization proof rule (Section 4)
allows us to consider both asynchronous calls in Main as regular synchronous calls. Then
sequential reasoning suffices to prove that the procedure leaves the variable x unchanged.
Synchronization is justified by the commutativity of atomic actions on shared state. Specifi-
cally, both increment and decrement are left movers in the context of our program. Thus
the asynchronous computation steps in an interleaved execution can be rearranged to obtain
a corresponding synchronous execution that preserves final states.

However, commutativity alone is not sufficient! We also need to ensure that synchro-
nization preserves failing behaviors. Consider the program in Figure 1 (b) where Main
asynchronously calls a procedure Foo (which calls itself recursively) followed by a failing
assertion. The program has failing executions; the assertion can be scheduled any time
between steps of Foo. If we synchronize the call to Foo, however, the nontermination of Foo
makes the assertion unreachable and thus synchronization must not be allowed. We could
require termination of the synchronized program, but this would be unnecessarily restrictive.
We propose a weaker condition called cooperation, which only requires the possibility to
terminate. In other words, it must be impossible for the synchronized program to reach a
state where nontermination is inevitable. To illustrate cooperation, consider Figure 1 (c), a
modification of (a) which nondeterministically increments the loop counter i. The program
does not terminate because it may loop forever, but it cooperates because it can always
increment i. By synchronization we can show analogously to (a) that (c) also refines [skip].

2.2 Lock Service
Figure 2 (a) shows a simple lock service implementation. A client requests the lock by
asynchronously invoking Acquire, which is implemented as spinlock using the atomic
compare-and-swap (CAS) operation on the global variable l. Once successful, the client of
the lock service is notified via an asynchronous callback. Summarizing Acquire as atomic
action via synchronization of the callback is not desirable, because it would drag in the effect
of the client into the specification of Acquire. Instead, we propose the modular, reusable,
and client-independent atomic action specifications ACQUIRE and RELEASE shown in (b).
Notice how we represent guarded atomic transitions as program code. But more importantly,
observe that the atomic action specification ACQUIRE contains a pending async to Callback.
That is, we allow the effect of asynchronous thread creation as part of atomic actions. Now, to
make use of such specifications, our technique is complemented with a proof rule to eliminate
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(a)
global var l

proc Acquire (tid):
b := false
while !b:
call b := CAS(l, nil, tid)

async Callback(tid)

proc Release (tid):
call [l := nil]

(b)
global var l

action ACQUIRE (tid):
assert tid != nil
assume l == nil
l := tid
async Callback(tid)

action RELEASE (tid):
assert tid != nil && l == tid
l := nil

(c)
global var x

proc Callback(tid):
call [t := x]
call [x := t + 1]
async Release(tid)

(d)
global var x, l

action CALLBACK(tid):
assert tid != nil
assert l == tid
x := x + 1
l := nil

(e)
global var x, l

action ACQUIRE’ (tid):
assert tid != nil
assume l == nil
l := tid
x := x + 1
l := nil

(f)
global var x

action ACQUIRE’’ (tid):
x := x + 1

Figure 2 Lock service

pending asyncs (Section 6), once an atomic action specification for the target is available.
For example, consider the callback implementation in (c) that reads and writes a shared
variable x, and then releases the lock. Since the callback is only supposed to be invoked
with the lock held, we strengthen [t := x] and [x := t + 1] with the gate assert tid
!= nil && l == tid, which makes the operations commutative. Together with RELEASE
being a left mover, we use synchronization to show that Callback refines the atomic action
CALLBACK in (d). Now that we have an atomic action specification for Callback, we use it
to eliminate the pending async in ACQUIRE and obtain the atomic action ACQUIRE’ in (e).
Notice how the gates of CALLBACK are discharged by the code preceding the pending async
in ACQUIRE. Finally, we can abstract away the lock acquire and release, such that the client
of the lock service only sees the atomic action ACQUIRE” in (f).

2.3 Layered Refinement Proofs
Our proof rules connect a lower-level, more fine-grained program with a higher-level, more
coarse-grained program (both a bottom-up and top-down interpretation is possible), and
repeated applications lead to a hierarchy of connected programs. However, due to the
structure-preserving nature of our rules, in practice (Section 7) the programmer only writes
a single program with layer annotations [12] that encode the program on multiple layers of
abstraction. Our verifier automatically extracts the hierarchy of programs and generates the
necessary verification conditions to justify their connection.

3 An Asynchronous Programming Language

In this section we define a core asynchronous programming language on which we formalize
our verification technique, and recall the notion of mover types and reduction.

Variables and stores. Let V be a set of variables partitioned into global variables VG and
local variables VL, and VR ⊆ VL is a set of return variables. A store is a mapping σ : V → D
that assigns a value from a domain D to every variable. Similarly, g : VG → D is a global store
and ` : VL → D is a local store. Let g·` denote the combination of g and ` into a store. To
model return values from a procedure with local store `1 to a caller procedure with local store
`2, we define the resulting store at the caller as `1 B `2 = λv. if v ∈ VR then `1(v) else `2(v).
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(g,TC [`][skip; s] ] T )⇒ (g,TC [`][s] ] T ) Seq

P.A = (ρ, α) g·` ∈ ρ (g·`, g′·`′,Ω) ∈ α T ′ = {(`′′, call P ) | (`′′, P ) ∈ Ω}
(g,TC [`][call A] ] T )⇒ (g′,TC [`′][skip] ] T ′ ] T ) ActionStep

P.A = (ρ, α) g·` 6∈ ρ
(g,TC [`][call A] ] T )⇒  

ActionFail
s′ = if (` ∈ le) then s1 else s2

(g,TC [`][if le then s1 else s2] ] T )⇒ (g,TC [`][s′] ] T ) If

(g,TC [`][call P ] ] T )⇒ (g, (`,P.P )·TC [`][skip] ] T ) Call

(g, (`1, skip)·TC [`2][s] ] T )⇒ (g,TC [`1 B `2][s] ] T ) Return

(g,TC [`][async P ] ] T )⇒ (g,TC [`][skip] ] (`, call P ) ] T ) Async (g, (`, skip) ] T )⇒ (g, T ) End

Figure 3 Small-step operational semantics

Atomic actions. We generalize gated actions introduced in [5] with the idea of pending
asyncs. An atomic action is a pair (ρ, α), where the gate ρ is a set of stores and the update
α is a set of transitions (σ, σ′,Ω) where σ,σ′ are stores and Ω is a finite multiset of pending
asyncs (`, P ) consisting of a local store and a procedure name. If an atomic action is executed
in a store σ with σ 6∈ ρ, the program “fails”; otherwise, if σ ∈ ρ, a transition (σ, σ′,Ω) ∈ α
atomically updates the store to σ′ and creates new threads according to Ω.

command gate update
x := x+ y true x′ = x+ y ∧ y′ = y
havoc x true y′ = y
assert x < y x < y x′ = x ∧ y′ = y
assume x < y true x < y ∧ x′ = x ∧ y′ = y

Atomic actions subsume many standard
programming language statements. In particu-
lar, (nondeterministic) assignments, assertions,
and assumptions. The table on the right shows
some examples ranging over variables x and y.
Syntax. A program P is a finite mapping from atomic action names A to atomic actions,
and procedure names P to statements s of the form

s ::= skip | s; s | if le then s else s | call A | call P | async P.

A program contains a dedicated procedure Main that serves as an entry point for executions,
and every atomic action name respectively procedure name appearing in a call statement
must be properly mapped to an atomic action respectively statement. We will write P.A
and P.P for P(A) and P(P ), and A,P ∈ P for A,P ∈ dom(P). We identify the conditional
expression le with the set of local stores that satisfy it.
Semantics. A frame f is a pair (`, s) of local store ` and statement s. A thread t is a
sequence of frames ~f , denoting a call stack. A state (g, T ) is a pair of global store g and a
finite multiset of threads T . By slight abuse of notation we will identify a thread t with the
singleton multiset {t}, and thus write T ] t for adding t to T . Let statement contexts SC ,
frame contexts FC , and thread contexts TC be defined as follows:

SC ::= •Stmt | SC ; s FC ::= (•LStore,SC ) TC ::= FC · ~f

TC [`][s] denotes the thread obtained by filling the two unique holes •Stmt and •LStore in TC
with statement s and local store `, respectively. Thus, TC [`][s] executes s from ` as next
step. The operational semantics is formalized in Figure 3 as a transition relation ⇒ between
states. An execution π is a sequence of states x0 ⇒ x1 ⇒ . . . , and we write π : x0 ⇒∗ xn to
denote that π is an execution that starts in x0 and ends in xn.
Refinement. Given a program P, we are interested in executions that start with a single
thread executing Main from some initial store σ = g·`, i.e., executions that start in a state
(g, (`, call Main)). In particular, we are interested in executions that either fail or terminate.
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We define Bad(P) to be the set of initial stores associated with failing executions, and Good(P)
to be the relation between initial and final stores associated with terminating executions:
Bad(P) =

{
g·̀ |

(
g, (`, call Main)

)
⇒∗  

}
; Good(P) =

{
(g·̀ , g′) |

(
g, (`, call Main)

)
⇒∗ (g′,∅)

}
.

A program P1 refines a program P2, denoted P1 4 P2, if (1) Bad(P1) ⊆ Bad(P2) and
(2) Bad(P2) ◦Good(P1) ⊆ Good(P2); · is set complement, ◦ is relation composition. The
first condition states that P2 has to preserve failing executions of P1. The second condition
states that P2 has to preserve terminating executions of P1 for initial states that cannot fail.
That is, P2 can fail more often than P1.
Reduction. Let M be a mapping from atomic action names to mover types [6]: B (both
mover), L (left mover), R (right mover), N (non-mover). Intuitively, an atomic action
is a right mover, if it commutes to the right (i.e., later in time) with respect to all other
atomic actions in P. A left mover is symmetric, and an atomic action can be both a left
and right mover. Reduction has traditionally been applied to multithreaded programs to
convert a sequence of atomic actions performed by a single thread into an atomic block.

A

RM LM
B,R,L,N

B,R B,L
The sequence of mover types of the atomic actions in this block
must be a valid run of the nondeterministic atomicity automaton
A on the right. In this paper, we exploit and extend this work to
synchronize asynchronous computation spanning multiple threads.

We define the predicate MoverValid(P,M) which holds whenever the atomic actions
in P satisfy the mover types indicated by M . Formally, MoverValid(P,M) holds if for
all A1, A2 ∈ P with P.A1 = (ρ1, α1) and P.A2 = (ρ2, α2), the following conditions hold
(generalizing [10] to support pending asyncs).

Commutativity: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the effect of executing
A1 followed by A2 in two different threads can also be achieved by A2 followed by A1.

∀g, ḡ, g′, `1, `′1,
`2, `

′
2,Ω1,Ω2

∃ĝ,Ω′1,Ω′2
:

 ∧
∧
∧

g·`1 ∈ ρ1

g·`2 ∈ ρ2

(g·`1, ḡ·`′1,Ω1) ∈ α1

(ḡ·`2, g′·`′2,Ω2) ∈ α2

 =⇒

 ∧
∧

(g·`2, ĝ·`′2,Ω′2) ∈ α2

(ĝ·`1, g′·`′1,Ω′1) ∈ α1

Ω1 ] Ω2 = Ω′1 ] Ω′2


Forward preservation: If M(A1) ∈ {R,B} or M(A2) ∈ {L,B}, then the failure of A2
after the execution of A1 implies that A2 must also fail before the execution of A1.
∀g, g′, `1, `′1, `2,Ω1 : (g·`1 ∈ ρ1 ∧ g·`2 ∈ ρ2 ∧ (g·`1, g′·`′1,Ω1) ∈ α1) =⇒ g′·`2 ∈ ρ2

Backward preservation: IfM(A2) ∈ {L,B}, then the failure of A1 before the execution
of A2 implies that A1 must also fail after the execution of A2.
∀g, g′, `1, `2, `′2,Ω2 : (g·`2 ∈ ρ2 ∧ (g·`2, g′·`′2,Ω2) ∈ α2 ∧ g′·`1 ∈ ρ1) =⇒ g·`1 ∈ ρ1

Nonblocking: If M(A2) ∈ {L,B}, then A2 must be nonblocking.
∀σ ∈ ρ2 ∃σ′,Ω : (σ, σ′,Ω) ∈ α2

Async freedom: If M(A1) ∈ {R,B}, then A1 cannot have pending asynchronous calls.
∀σ, σ′,Ω : σ ∈ ρ1 ∧ (σ, σ′,Ω) ∈ α1 =⇒ Ω = ∅

4 Synchronizing Asynchrony

In this section, we formalize the synchronization proof rule which allows us to transform a
procedure into an atomic action that summarizes asynchronous effects, either directly or via
pending asyncs. Synchronization requires two technical innovations. First, we extend the com-
mutativity conditions required for reduction to account for asynchronous thread creation. Sec-
ond, we impose a new cooperation condition necessary for the soundness of our transformation.
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Figure 4 Synchronizing asynchronous executions

Given a procedure Q, a mover typing M , and a set of procedures Σ to synchronize in Q
(asynchronous calls to procedures not in Σ are treated as pending asyncs), the Synchronize
rule transforms procedure Q into an atomic action (ρ, α) with fresh name A:

Synchronize
MoverValid(P,M) Sync(P,M,Q,Σ) Refinement(P, Q,Σ, ρ, α)

P  P[Q 7→ call A] ∪ [A 7→ (ρ, α)]
Q ∈ P
A 6∈ P

We already defined MoverValid in the previous section. Now we informally discuss the sound-
ness of Synchronize, and formally defined the other two premises Sync and Refinement.
In the next section we show how all premises can be efficiently checked in practice.

I Theorem 1. If P1  P2 using the Synchronize rule, then P1 4 P2.

Intuition. The core idea of Theorem 1 is the rewriting of a P1-execution π1 into an equivalent
P2-execution π2. Concretely, (1) if π1 fails then π2 must fail, and (2) if π1 terminates then
π2 must either terminate with the same final state or fail. We illustrate this transformation
in Figure 4. On the left, ¬ shows part of an asynchronous execution, initially comprising
two threads t0 and t1. Thread t1 executes the transformed procedure Q (the call and
return are indicated with black bars), which makes an asynchronous call to spawn t2, and
t2 asynchronously spawns t3. Notice that t2 terminates after three steps. We consider the
procedure of t2 to be in Σ (i.e., to be synchronized), while the procedure of t3 is not in Σ
(i.e., to be treated as pending async). Our goal is to transform execution ¬ into execution
­, which has the following properties: (1) Q executes without interruption from t0, (2) t2
terminates without interruption before t1 continues, and (3) t3 only starts after Q returns. To
permit this transformation, Sync requires that Q, including asynchronous calls to procedures
in Σ, executes a sequence of right movers, followed by at most one non-mover, followed by a
sequence of left movers. Furthermore, the asynchronous calls to procedures in Σ must only
execute left movers. The steps of t1 and t2 in ¬ are labeled with mover types that satisfy
this conditions. When moving the right mover to the right and the left movers to the left to
obtain ­, the commutativity, forward preservation, and backward preservation properties of
MoverValid guarantee that the executions stay equivalent. Now, as shown in ®, the steps of
t2 can be considered to execute synchronously in its parent t1. Finally, Refinement ensures
that the synchronized behavior of Q is summarized by the atomic action A in ¯, which
captures the creation of t3 as pending async.

On the right of Figure 4, ¶ shows an execution where Q started, but then t0 failed. Notice
that, if all steps of Q before the failure are right movers, these steps can be removed from
the execution (by moving them to the right, “past” the failure), and the failure occurs before
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21:8 Synchronizing the Asynchronous

Q even starts. In ¶, however, Q already executed a left mover. Even if we move the steps
of Q together, the partial execution of Q is not summarized by A. However, we know that
only left movers can follow in t1 and t2. Since left movers are non-blocking and backward
preserving, they can be inserted at the end of the execution, right before the failure. The
cooperation condition (part of Sync) ensures that this can be done so that Q is completed,
as shown in ·. Then we can again arrive at an execution where Q is replaced by A (see ¸).
Concurrent tracking semantics. The execution in ¬ is labeled with mover types that
allowed us to rearrange the steps of Q to obtain the execution in ­. To characterize the
executions for which such a rearrangement is possible in general, we define the concurrent
tracking semantics M,Q,Σ====⇒ (Figure 5) that is similar to⇒, except that we additionally track a

A∗

RM LM
L,N

B,R B,L

>

*

⊥

*

N,R

mover phase m in frames, which is one of the states
of the tracking automaton A∗ on the right: > (no
tracking), RM (right-mover phase), LM (left-mover
phase), ⊥ (violation). Call transitions from > to
RM on a top-level call to Q, or otherwise propagates the mover phase of the caller to the
callee. Conversely, Return transitions back to > when returning from a top-level call to Q,
or otherwise propagates the mover phase of the callee to the caller. ActionStep follows a
transition in A∗ according to the mover type of the invoked atomic action. In particular, if
we are tracking (m 6= >), we stay in RM until a non-right mover (L or N) causes a transition
to LM. In LM only left movers should follow, and thus the occurrence of a non-left mover (N
or R) causes a transition to the violation state ⊥. Notice that the async freedom condition of
MoverValid forces a thread that executes an atomic action with pending asyncs to LM. This
is important to ensure that only left movers can follow, which can be moved before the steps
of any pending async. Similarly, Async transitions the parent thread of an asynchronous
call to LM. The child thread is set to LM if we want to synchronize the call, otherwise
it is not tracked. In both ActionStep and Async, if an untracked child thread executes
call Q, the subsequent application of Call will start to track the child tread separately.
Sequential synchronized semantics. In ® we are concerned with the sequential execution
of Q, with asynchronous calls to procedures in Σ being synchronized. We formally define the
sequential synchronized semantics Σ−→ (Figure 5) that executes a single thread and stores a
multiset of pending asyncs. In ActionStep, the pending asyncs of an atomic action are
added to the already existing pending asyncs. For an asynchronous call to P , Async records
a pending thread creation if P 6∈ Σ, and synchronizes the call if P ∈ Σ. The synchronized
stack frame is marked with ] such that it is popped in AsyncReturn without writing
return variables to the caller. This technicality is necessary in our formalization. In practice,
asynchronously called procedures simply cannot have return parameters.

With the concurrent tracking semantics and the sequential synchronized semantics we
can now formally define Sync and Refinement.
Sync. Sync(P,M,Q,Σ) comprises the following two conditions:
S1 (g, (`, call Main,>)) M,Q,Σ====⇒∗ (g′,TC [`′][s][m] ] T ) implies m 6= ⊥;
S2 (g, (`, call Main,>)) M,Q,Σ====⇒∗ (g′,TC [`′][call P ][LM] ] T ) implies

(g′, (`′, call P ),∅) Σ−→∗ (g′′, (`′′, skip),Ω′′).

S1 states that executions respect the required mover sequences, i.e., no violation is reachable
in the tracking semantics. S2 (the cooperation condition) states that every procedure call in
the left-mover phase can be completed. The repeated application of S1 allows us to complete
partial executions of Q. Note that S2 also captures asynchronous calls to procedures P with
P ∈ Σ, since the operational semantics rewrites async P into call P .
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M,Q,Σ====⇒
(g,TC [`][skip; s][m] ] T ) M,Q,Σ=====⇒ (g,TC [`][s][m] ] T ) Seq

P.A = (ρ, α) g·` ∈ ρ (g·`, g′ ·`′,Ω) ∈ α m′ = A∗(m,M(A)) T ′ = {(`′′, call P,>) | (`′′, P ) ∈ Ω}

(g,TC [`][call A][m] ] T ) M,Q,Σ=====⇒ (g′,TC [`′][skip][m′] ] T ′ ] T )
ActionStep

P.A = (ρ, α) g·` 6∈ ρ

(g,TC [`][call A][m] ] T ) M,Q,Σ=====⇒  
ActionFail

s′ = if (` ∈ le) then s1 else s2

(g,TC [`][if le then s1 else s2][m] ] T ) M,Q,Σ=====⇒ (g,TC [`][s′][m] ] T )
If

m′ = if (m = > ∧ P = Q) then RM else m

(g,TC [`][call P ][m] ] T ) M,Q,Σ=====⇒ (g, (`,P.P,m′)·TC [`][skip][m] ] T )
Call

m′ = if (m2 = >) then > else m1

(g, (`1, skip,m1)·TC [`2][s][m2] ] T ) M,Q,Σ=====⇒ (g,TC [`1 B `2][s][m′] ] T )
Return

m′ = if (m 6= >) then LM else > m′′ = if (m 6= > ∧ P ∈ Σ) then LM else >

(g,TC [`][async P ][m] ] T ) M,Q,Σ=====⇒ (g,TC [`][skip][m′] ] (`, call P,m′′) ] T )
Async

(g, (`, skip,m) ] T ) M,Q,Σ=====⇒ (g, T ) End

Σ−→
(g,TC [`][skip; s],Ω) Σ−→ (g,TC [`][s],Ω) Seq

P.A = (ρ, α) g·` ∈ ρ (g·`, g′ ·`′,Ω) ∈ α

(g,TC [`][call A],Ω′) Σ−→ (g′,TC [`′][skip],Ω ] Ω′)
ActionStep

P.A = (ρ, α) g·` 6∈ ρ

(g,TC [`][call A],Ω) Σ−→  
ActionFail

s′ = if (` ∈ le) then s1 else s2

(g,TC [`][if le then s1 else s2],Ω) Σ−→ (g,TC [`][s′],Ω)
If

(g,TC [`][call P ],Ω) Σ−→ (g, (`,P.P )·TC [`][skip],Ω) Call

(g, (`1, skip)·TC [`2][s],Ω) Σ−→ (g,TC [`1 B `2][s],Ω) Return

(g,TC [`][async P ],Ω) Σ−→

{
(g,TC [`][skip], (`, P ) ] Ω) if P 6∈ Σ
(g, (`, call P )] ·TC [`][skip],Ω) if P ∈ Σ

Async

(g, (`, skip)] · ~f,Ω) Σ−→ (g, ~f,Ω) AsyncReturn

Figure 5 Concurrent tracking semantics M,Q,Σ====⇒ and sequential synchronized semantics Σ−→

Refinement. Refinement(P, Q,Σ, ρ, α) comprises the following two conditions:
R1 ρ ∩ {g·` | (g, (`,P.Q),∅) Σ−→∗  } = ∅;
R2 ρ ◦ {(g·`, g′·`′,Ω) | (g, (`,P.Q),∅) Σ−→∗ (g′, (`′, skip),Ω)} ⊆ α.

R1 states that the gate of A is strong enough to filter out all failures of Q, and R2 states
that the transition relation of A captures all non-failing executions of Q.

5 Verifying Synchronization

In this section we show how the premises of the Synchronize rule can be efficiently checked
in practice. The MoverValid and Refinement premises both lead to standard verification
conditions. In particular, the constraints of MoverValid state the commutativity of individual
atomic actions, and the constraints of Refinement state that a sequential procedure is
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summarized by a transition relation, which can be readily handed off to logical reasoning
engines. Thus we focus on Sync which we decompose as follows:

StaticSync(P,M,Q,Σ,Pre) Safe(P,Pre) Terminates(P,Σ,Pre, Red)
Sync(P,M,Q,Σ)

We establish Sync in three steps. First, StaticSync is a static control-flow analysis that
over-approximates the tracking semantics. It uses the domain of a precondition mapping
Pre, a partial mapping from procedure names to sets of stores. If StaticSync succeeds, it
guarantees S1 (i.e., that ⊥ cannot be reached) and that all procedures P called with mover
phase LM in S2 are in dom(Pre). Second, we over-approximate the possible stores g′ ·`′
at these calls. For that, Safe requires that Pre denotes valid preconditions, i.e., if call P
is reachable with store g′ ·`′, then g′ ·`′ ∈ Pre(P ) for all P ∈ dom(Pre). Then finally, to
establish S2, it remains to show that there is some terminating sequential execution from
(g′, (`′, call P ),∅) for every P ∈ dom(Pre) and g′ ·`′ ∈ Pre(P ). Terminates reduces these
cooperation checks to standard termination checks on a restricted program. In particular,
the restriction function Red limits the nondeterministic behavior of some atomic actions.
Then showing that all executions in the restricted program terminate implies that there is
some terminating execution in the original program (given that Red is not allowed to make
atomic actions blocking).
StaticSync. Let E be the function that maps a mover type to the corresponding set of
edges in A, e.g., E(R) = {RM → RM,RM → LM}. We define an interprocedural control
flow analysis that lifts E to a mapping Ê on statements, corresponding to the paths a
statement may take in the tracking semantics. We write StaticSync(P,M,Q,Σ,Pre) if there
is a solution Ê(P.Q) 6= ∅ to the following equations w.r.t. M , Σ and Pre:

Ê(skip) = E(B)

Ê(call A) = E(M(A))

Ê(s1; s2) = Ê(s1) ◦ Ê(s2)

Ê(if le then s1 else s2) = Ê(s1) ∩ Ê(s2)

Ê(call P ) =
{
Ê(P.P ) if P ∈ dom(Pre)
Ê(P.P ) ∩ {RM}2 if P 6∈ dom(Pre)

Ê(async P ) =

{
{LM}2 if P 6∈ Σ
{LM}2 ∩ Ê(P.P ) if P ∈ Σ ∩ dom(Pre)
∅ if P ∈ Σ \ dom(Pre)

The equations on the left capture regular control-flow propagation. The equation for call P
has two cases. If P ∈ dom(Pre), we do not restrict the call since P is cooperative. However,
if P 6∈ dom(Pre) we must restrict the call to stay in the right-mover phase, because we
cannot rely on the cooperation condition to complete partial executions of Q. The equation
for async P has three cases. If P 6∈ Σ, we do not synchronize P and thus only require the
caller to be followed by only left movers. If P ∈ Σ ∩ dom(Pre), we additionally require the
invoked procedure P to be only left movers. For synchronized procedures we always have to
establish cooperation, thus the case P ∈ Σ \ dom(Pre) is not allowed.

If StaticSync(P,M,Q,Σ,Pre), then S1 holds and for every call P reachable with LM in
S2 we have P ∈ dom(Pre). Hence, we must check cooperation for all procedures in dom(Pre).
Safe. Now that we know the procedures that need to be checked for cooperation, we want
to know the stores from which to check cooperation. For that, Pre must denote valid
preconditions. We write Safe(P,Pre), if (g, (`, call Main)) ⇒∗ (g′,TC [`′][call P ] ] T )
implies g′·`′ ∈ Pre(P ) for all P ∈ dom(Pre).
Terminates. Finally, we establish S2 by showing that all procedures P in dom(Pre)
cooperate from states in Pre(P ). Suppose that cooperation holds, but termination (which
is stronger) does not. Such a difference between termination and cooperation must be
due to nondeterminism. Thus, if we suitably restrict the nondeterminism to eliminate
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nonterminating behaviors, proving termination for the restricted program implies cooperation
for the original program. Formally, a restriction function Red is a partial mapping from
atomic action names to atomic actions, such that for all A ∈ dom(Red) with P.A = (ρ, α)
it holds that Red(A) = (ρ, α′) with α′ ⊆ α and Red(A) is nonblocking. Let PRed be the
program equal to P, except that PRed.A = Red(A) for A ∈ dom(Red).

We write Terminates(P,Σ,Pre, Red), if for all P ∈ dom(Pre) and g·` ∈ Pre(P ), there is
no infinite sequential synchronized PRed-execution (g, (`, call P ),∅) Σ−→ · · · . Notice that
these termination checks can now be solved by a standard termination checker for sequential
programs. While it is possible for the programmer to explicitly provide restricted atomic
actions, in practice we did not found this necessary for any of our examples. Instead, a
fixed policy to resolve nondeterministic branching (e.g., always take the then branch) was
enough. For example, recall the program in Figure 1 (c). Always taking the then branch
(i.e., resolving the nondeterministic choice to true) allows us to prove termination and thus
implies cooperation of the original program.

I Theorem 2. If we have StaticSync(P,M,Q,Σ,Pre), Safe(P,Pre), and
Terminates(P,Σ,Pre, Red), then Sync(P,M,Q,Σ) holds.

6 Eliminating Pending Asynchrony

In the previous two sections we showed how the Synchronize rule allows to summarize
procedures to atomic actions, by either directly synchronizing asynchronous calls or keeping
them as pending asyncs. In this section we present the complementary PendingAsyncElim
rule to eliminate pending asyncs from atomic actions.

Let A be an atomic action with pending asyncs to a procedure P . Eliminating those
pending asyncs requires that (1) P is summarized to an atomic action, say B, and (2) B
must be a left mover, since we will directly compose its effect with A. Now we show the
construction of the new gate and update for A. The new gate is obtained by filtering out all
states from the gate of A that can cause B to fail. In other words, we strengthen A’s gate
such that it cannot make a transition to a state where B fails:

Gt(ρA, αA, ρB , P ) =
{
σ ∈ ρA | ∀

g′, `′,
`P ,Ω

: (σ, g′·`′, (`P , P ) ] Ω) ∈ αA

=⇒ g′·`P ∈ ρB

}
The new update consists of two parts. First, we take all transitions without pending asyncs
to P :

Upd1 (αA, P ) = {(σ, σ′,Ω) ∈ αA | ¬∃`P : (`P , P ) ∈ Ω}

Second, we compose all transitions with a pending async to P with the transitions of B:

Upd2 (αA, αB , P ) =
{

(σ, g′′·`′,Ω ] Ω′) | ∃ g′, `P ,

Ω, `′′ : ∧ (σ, g′·`′, (`P , P ) ] Ω) ∈ αA

(g′·`P , g′′·`′′,Ω′) ∈ αB

}
Notice that the transitions of B can have pending asyncs that are absorbed into the resulting
transition. Combining all pieces, we obtain the following rule for eliminating pending asyncs:

PendingAsyncElim
P.P = call B P.B = (ρB , αB) M(B) ∈ {L,B}

ρ′A = Gt(ρA, αA, ρB , P ) α′A = Upd1 (αA, P ) ∪Upd2 (αA, αB , P )
P ] [A 7→ (ρA, αA)] P ] [A 7→ (ρ′A, α′A)]
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I Example 3. Recall our motivating lock service example from Section 2.2. Eliminating
the pending async in ACQUIRE is a formal application of PendingAsyncElim with P =
Callback, A = ACQUIRE, and B = CALLBACK. The resulting action (the new A) is ACQUIRE’.

I Theorem 4. If P1  P2 using the PendingAsyncElim rule, then P1 4 P2.

PendingAsyncElim eliminates a single pending async to P in A. Iterative application of
the rule allows us to eliminate finitely many pending asyncs. In theory, PendingAsyncElim
can be generalized with an induction schema to eliminate unboundedly many pending asyncs,
but we did not find this necessary in practice.

7 Evaluation

We implemented our verification method in CIVL [9], a verification system for concurrent
programs based on automated and modular refinement reasoning. In CIVL, a program is
specified and verified across multiple layers of refinement. At each layer, procedures can be de-
clared to refine atomic actions and henceforth appear atomic to higher layers. This means that
an input program with layer annotations implicitly describes the program at multiple levels of
abstraction, and CIVL automatically checks refinement between programs on adjacent layers.

We implemented and verified a collection of nine benchmarks, of which five expand on our
motivating example from Section 2.1, one is a ping-pong agreement protocol that exercises the
notion of cooperation, and the remaining three examples are discussed in the remainder of this
section to illustrate (1) the interaction with CIVL and modular verification via pending asyncs,
(2) the applicability to challenging concurrency, and (3) one-shot synchronization of nested
asynchronous calls. Overall, our benchmarks capture realistic patterns of asynchronous
computation. All benchmarks are verified by our tool in less than three seconds. The
implementation and benchmarks are available at https://github.com/boogie-org/boogie.

The proof rules introduced in this paper are crucial to preserving the layered verification
approach in CIVL and exploiting it to construct compact and highly-automated proofs
with simple invariants [12]. Without our new rules, CIVL proofs of our benchmarks would
amount to single-layer proofs with monolithic invariants in a style similar to classical proofs
of distributed systems in modeling frameworks such as TLA+ [13].

7.1 Lock Service
In this section we illustrate how synchronization and pending async elimination are offered
to a programmer in CIVL by revisiting the lock service example from Section 2.2.

Figure 6 shows a fragment of our CIVL implementation. First, let us understand the layer
annotations in more detail. A procedure has a single layer number x that denotes the layer
at which the procedure is shown to refine an atomic action. At all layers up to x calls to the
procedure behave according to its implementation, and at layers higher than x calls to the
procedure behave according to its refined atomic action. Atomic actions have an associated
layer range [x, y], which denotes at which layers the action is “available”. For each layer, the
set of available atomic actions is subject to pairwise commutativity checks. In Figure 6, the
procedure Acquire is declared to refine the atomic action ACQUIRE at layer 1, which causes
CIVL to apply synchronization. The implementation makes two calls, a synchronous call to
a compare-and-swap operation which is already atomic at layer 1, and an asynchronous call
to Callback. Since Callback is refined at the higher layer 2, the asynchronous call results
in a pending async in the atomic action ACQUIRE. Thus, at layer 2, ACQUIRE is exactly the
client-independent specification of Acquire we presented in Figure 2 (b).

https://github.com/boogie-org/boogie
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action {:atomic}{:layer 1,1}
CAS_l (oldval:Tid, newval:Tid) returns (b:bool) {
if (l == oldval) { l := newval; b := true; }
else { b := false; }

}

procedure {:layer 1}{:refines ACQUIRE}
Acquire (tid:Tid) {
var b:bool;
b := false;
while (!b) call b := CAS_l(nil, tid);
async call Callback(tid);

}

action {:atomic}{:layer 2,3} ACQUIRE (tid:Tid) {
assert tid != nil;
assume l == nil;
l := tid;
async call Callback(tid);

}

procedure {:layer 2}{:refines CALLBACK}
Callback (tid:Tid) { /* not shown */ }

action {:left}{:layer 3} CALLBACK (tid:Tid) {
assert tid != nil && l == tid;
x := x + 1;
l := nil;

}

Figure 6 Lock service in CIVL (excerpt)

Now Callback (whose implementation is not shown) is declared to refine CALLBACK
at layer 2. This causes CIVL to apply pending async elimination in ACQUIRE at layer 3;
the pending async to Callback is replaced with the effect of CALLBACK. Thus, at layer 3,
ACQUIRE corresponds to ACQUIRE’ in Figure 2 (e).

This example illustrates two important aspects of our proof method and its integration
into CIVL. First, on the conceptual side, our method enables independent and modular
reasoning about the lock service implementation and its client. The atomic action ACQUIRE
can be (1) proved for a different implementation of the lock without the need to re-verify the
client, and (2) used to reason about a different client by letting CIVL apply pending async
elimination for a different client (i.e., Callback implementation). Second, on the practical
side, the application of synchronization and pending async elimination in CIVL is driven
by layer annotations. The programmer does not have to explicitly write the program under
consideration at every layer of abstraction and specify the transformation that connects them.
Instead, CIVL automatically constructs per-layer versions of procedures and atomic actions.

7.2 Two-phase Commit
In this section we show that our method applies to realistic programs with intricate concur-
rency by verifying full functional correctness of the two-phase commit (2PC) protocol. The
protocol employs a coordinator process to consistently replicate transactions among a set of
participant processes. In the first phase, the coordinator broadcasts incoming request to all
participants, which respond either with a “yes” vote to commit, or a “no” vote to abort. In
the second phase, the coordinator processes incoming votes as follows: (1) If all participants
voted “yes” it broadcasts a “commit” message, or (2) as soon as a single participant votes “no”
it broadcasts an “abort” message. Due to asynchrony and message reordering, the protocol
implementation must be robust against unexpected situations. For example, a participant
can receive an abort message before it receives the corresponding vote request.

C_TransReq

C_VoteYes

C_VoteNo

P_VoteReq

P_Commit

P_Abort

synchronizesynchronizesynchronize

Figure 7 2PC call hierarchy (from left to right) and proof outline (right to left)
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Figure 7 shows the message handlers of the protocol we implemented in CIVL, together
with the asynchronous communication structure. For example, P_VoteReq is a participants
handler for vote requests, which asynchronously invokes either the coordinators C_VoteYes or
C_VoteNo handler. To reason about the protocol, we use a variable state such that for every
transaction xid and process pid, state[xid][pid] is one of INIT, COMMIT, or ABORT. We
prove a top-level atomic action specification for C_TransReq that states that for a fresh xid,
state[xid] is consistently updated, i.e., there are no two processes such that one is COMMIT
and the other one ABORT. Figure 7 also shows the proof outline, making repeated use of
synchronization. Here we focus on the first synchronization of P_Commit and P_Abort, which
requires them to be left movers. A priori these operations do not commute, because they
write the conflicting values COMMIT and ABORT to state[xid][pid], respectively. However,
by making it explicit that the coordinator has to decide on a transaction first, the following
abstractions are commutative:

action P_Commit (pid,xid):
assert state[xid][C] == COMMIT
state[xid][pid] := COMMIT

action P_Abort (pid,xid):
assert state[xid][C] == ABORT
state[xid][pid] := ABORT

Our proof of 2PC confirms that the benefit of reduced invariant complexity in structured
multi-layer refinement proofs [9] carries over to the asynchronous setting. In particular, we
could state the central correctness invariant in terms of the protocol mechanism (i.e., voting
and phases) after hiding low-level implementation details (i.e., counting).

7.3 Task Distribution Service
Finally, we verified a task distribution service inspired by a set of benchmarks from [1].
This example captures a whole class of similar benchmarks, where a set of independent
tasks is processed by passing through a sequence of stages. The result of every stage is
asynchronously communicated to the next stage, and different tasks can run through different
stages. However, concurrent tasks do not interfere with each other. With this key difference
to examples like 2PC, we can avoid the overhead of stepwise synchronization over several
layers. Instead, synchronization can be applied to eliminate long (and even unbounded)
chains of asynchronous calls in a single layer.

To summarize, synchronization is applicable to tightly interfering programs using program
layers, and less interference leads to even simpler proofs.

8 Related Work

The idea of taming concurrency through synchrony is also at the heart of other works.
Brisk [1] computes canonical sequentializations of message-passing programs by matching
sends with corresponding receives. Our work differs in the programming model (dynamic
thread creation vs. parametric processes with blocking receives) and the verification goal
(deductive functional correctness vs. automatic deadlock-freedom). The work in [2] proposes
the notion of robustness against concurrency as correctness condition for a class of event-
driven programs. That is, the sequential behavior of a program is the underlying specification,
and asynchronous executions are checked to conform to sequential executions. In contrast,
we use synchronization to simplify the verification of safety properties.

There are several recent papers on mechanized verification of distributed systems. Iron-
Fleet [8] embeds TLA-style state-machine modeling [13] into the Dafny verifier [14] to refine
high-level distributed systems specifications into low-level executable implementations. They
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use a fixed 3-layer design and one-shot reductions to atomic actions, while our program
layers are more flexible. Ivy [18] organizes the search for an inductive invariant as a col-
laborative process between automatic verification attempts and user guided generalizations
of counterexamples to induction in a graphical model. They use a restricted modeling and
specification language that makes their verification conditions decidable. We rely on small
partitioned verification conditions that can be discharged by an SMT solver [3]. PSync [4]
uses a synchronous round-based model of communication for the purpose of program design
and verification, shifting the complexity of efficient asynchronous execution to a runtime
system. We allow explicit control over low-level details at the potential cost of increased
verification effort. Verdi [21] lets the programmer provide a specification, implementation,
and proof of a distributed system under an idealized network model. Then the application
is automatically transformed into one that handles faults via verified system transformers.
The rely-guarantee rule of [7] and the ALS types of [11] target a weaker form of asynchrony,
where a single task queue atomically executes one task at a time.

Concurrent separation logic (CSL) [16] was devised for modular reasoning about multi-
threaded shared-memory programs, focusing on the verification of fine-grained concurrent data
structures. CSL adequately addresses the problem of reasoning about low-level concurrency
related to dynamic memory allocation, but still suffers from the complications of a monolithic
approach to invariant discovery for protocol-level concurrency. Recently, CSL has been
applied to message-passing programs. The approach in [17] uses CSL to link implementation
steps to atomic actions, and then relies on a model checker to explore the interleavings of
those atomic actions. The work in [19] addresses the composition of verified protocols using
ideas from separation logic. The actor services of [20] focus on compositional verification of
response properties of message-passing programs.

9 Conclusion

The contribution of this paper are proof rules to simplify the reasoning about asynchronous
concurrent programs. The impact of our work must be understood in the context of our two-
pronged strategy for aiding interactive and automated verification of asynchronous programs.
First, our proof rules enable asynchronous computation to be summarized analogous to the
summarization of synchronous computation by pre- and post-conditions. This capability
enables the construction of syntax-driven and structured proofs of asynchronous programs.
Second, the program simplification enabled by our proof rules attacks the nemesis of complex
invariants induced by a large number of interleaved executions. Instead of writing a large
and complex invariant justifying the overall correctness of the program, the programmer may
now write a sequence of simpler invariants, each justifying a program simplification.

Our proof method decomposes the task of proving the correctness of a large asynchronous
program into formulating and automatically discharging smaller independent proof obligations.
These proof obligations show that an atomic action commutes with other atomic actions;
that an atomic action summarizes the effect of a statement in a given context; and that an
assertion is an inductive invariant for a simpler program, where asynchronous procedure calls
are replaced by synchronous (immediate) atomic actions. Using our method, the automatable
part of a concurrent verification problem—i.e., the safety proof given an inductive invariant—
remains automatable, and the creative part—i.e., the discovery of an appropriate invariant—is
greatly simplified by structuring it into smaller proof obligations, each of which can still be
discharged automatically.
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