
Trap spaces of multi-valued networks: definition,
computation, and applications
Van-Giang Trinh 1,*, Belaid Benhamou1, Thomas Henzinger2, Samuel Pastva 2,*
1LIS, Aix-Marseille University, Marseille 13397, France
2Institute of Science and Technology, Klosterneuburg 3400, Austria

*Corresponding authors. LIS, Aix-Marseille University, Marseille, France. E-mail: trinh.van-giang@lis-lab.fr (V.-G.T.); Institute of Science and Technology,
Klosterneuburg, Austria. E-mail: samuel.pastva@ist.ac.at (S.P.)

Abstract
Motivation: Boolean networks are simple but efficient mathematical formalism for modelling complex biological systems. However, having
only two levels of activation is sometimes not enough to fully capture the dynamics of real-world biological systems. Hence, the need for multi-
valued networks (MVNs), a generalization of Boolean networks. Despite the importance of MVNs for modelling biological systems, only limited
progress has been made on developing theories, analysis methods, and tools that can support them. In particular, the recent use of trap spaces
in Boolean networks made a great impact on the field of systems biology, but there has been no similar concept defined and studied for MVNs
to date.

Results: In this work, we generalize the concept of trap spaces in Boolean networks to that in MVNs. We then develop the theory and the analy-
sis methods for trap spaces in MVNs. In particular, we implement all proposed methods in a Python package called trapmvn. Not only showing
the applicability of our approach via a realistic case study, we also evaluate the time efficiency of the method on a large collection of real-world
models. The experimental results confirm the time efficiency, which we believe enables more accurate analysis on larger and more complex
multi-valued models.

Availability and implementation: Source code and data are freely available at https://github.com/giang-trinh/trap-mvn.

1 Introduction

Boolean networks are simple but efficient mathematical for-
malism for modelling, analysing, and controlling complex bi-
ological systems (Schwab et al. 2020). Beyond systems
biology, they have been widely applied in various areas from
science to engineering (Schwab et al. 2020). Boolean network
models of biological systems represent genes (or other species)
as nodes that can take Boolean values: 1 (active) and 0 (inac-
tive). However, having only two levels of activation may not
be enough to fully capture the dynamics of real-world biologi-
cal systems (Schaub et al. 2007). There are many examples
(Schaub et al. 2007; Didier et al. 2011; Mushthofa et al.
2018) where the dynamics of the system can only be modelled
by considering more than two activation levels. Hence, there
is a crucial need to study multi-valued networks (MVNs),
which are a generalization of Boolean networks (Naldi et al.
2007; Schaub et al. 2007).

1.1 Related work

Despite the importance of MVNs, only limited progress has
been made on developing theories, analysis methods, and
tools that can support them (Mushthofa et al. 2018). First, be-
sides simulation, the analysis of logical models is mostly based
around ‘attractor’ computation, since those correspond
roughly to observable biological phenotypes (Schwab et al.
2020). For example, in gene regulatory and signalling net-
works, attractors can correspond to cell types, cell fates, and
cyclic behaviour (e.g. circadian rhythms and cell cycles).
Hence, analysis of attractors could provide new insights into

systems biology. However, finding all attractors of a logical
model (even for the Boolean case) is challenging due to the
complex dynamics of models (Schwab et al. 2020). The recent
study of trap spaces of Boolean networks (Klarner et al.
2017) made a real breakthrough in the field of systems biol-
ogy, as minimal trap spaces provide very good approxima-
tions of attractors and are much easier to compute. However,
there has been no similar concept defined and studied for
MVNs to date.

Furthermore, other biological properties, such as the grad-
ual commitment of a cell to a specific phenotype, can be
revealed through the lens of ‘succession diagrams’ constructed
from the networks’ ‘maximal’ trap spaces (Rozum et al. 2021,
2022). As such, minimal trap spaces are not the only relevant
form of a trap space. In the Supplementary Data (Section
S4.2), we give a more detailed discussion of trap space appli-
cations in biological modelling.

Second, most of the existing studies (see, e.g. Naldi et al.
2007; Schaub et al. 2007; Didier et al. 2011 ) focus on ‘uni-
tary’ MVNs, with only very few studies focusing on ‘general’
MVNs (see, e.g. Mushthofa et al. 2018). Third, to the best of
our knowledge, very few methods/tools [see, e.g. GINsim
(Naldi et al. 2007), BMA (Benque et al. 2012)] have been de-
veloped for MVNs. Most analysis methods/tools for logical
models are designed for Boolean networks only [see, e.g.
GINsim (Naldi et al. 2007), PyBoolNet (Klarner et al. 2017),
mpbn (Paulevé et al. 2020), and Trappist (Trinh et al. 2022)].

One notable issue is that the current supporting methods
for MVNs cannot handle large and complex models (Naldi
et al. 2007 ; Mushthofa et al. 2018). This issue also prevents

VC The Author(s) 2023. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2023, 39, i513–i522
https://doi.org/10.1093/bioinformatics/btad262

ISMB/ECCB 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://orcid.org/0000-0001-6581-998X
https://orcid.org/0000-0003-1993-0331
https://github.com/giang-trinh/trap-mvn
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


the modellers from building such models (Naldi et al. 2007),
which could provide more accurate insights. Finally, a popu-
lar research direction is to convert an MVN to a Boolean net-
work with similar dynamical behaviour, then applying the
rich set of analysis methods/tools designed for Boolean net-
works. However, the existing Boolean encoding methods (e.g.
the Van Ham Boolean mapping and its variants; Ham 1979;
Didier et al. 2011) may not cover the full set of dynamics of
the original MVN (Didier et al. 2011), and the encoding may
even hinder the efficiency of the Boolean network methods/
tools (Mushthofa et al. 2018). It is also worth noting that all
mentioned encoding methods support only unitary MVNs.
We believe that it is possible to develop direct and efficient
methods for MVNs.

1.2 Our contributions

In this work, we study both general and unitary MVNs. Note
that this inclusion of general networks is important not only
in theory, but also in many biological applications (see
Supplementary Section S1). First, we generalize the concept of
trap spaces in Boolean networks to that in MVNs. Second, we
prove several properties of trap spaces in MVNs including (i)
the separation of minimal trap spaces, (ii) their relation with
respect to the Van Ham Boolean mapping, and (iii) the char-
acterization of trap spaces through Petri net (PN) siphons.
Based on this characterization, we propose a new method uti-
lizing answer set programming (ASP; Gebser et al. 2011) for
computing different types of trap spaces of MVNs, including
generic trap spaces, maximal trap spaces, minimal trap
spaces, and fixed-points (a special sub-type of trap spaces).
For fixed-points, we also consider another new method,
which relies on the characterization of deadlocks of the PN
encoding (Liu and Barkaoui 2016). We evaluate the method
on a collection of real-world MVNs and show its applicability
in treatment prediction on a case study of Myc-deregulation
in breast cancer.

1.3 Paper outline

This article is structured as follows: In Section 2, we formalize
the notion of trap spaces in MVNs and their relationship to
the PN siphons. We propose a method based on answer-set
programming for computing such trap spaces efficiently. In
Section 3, we present a Python package trapmvn that imple-
ments this method for both SBML-qual and BMA models.
We demonstrate the practical performance of the method on
a wide selection of real-world models. We then use trapmvn
as part of a case study to identify viable intervention targets in
a model of Myc-associated deregulation in breast cancer.
Finally, Section 4 discusses the scalability of the method, its
future prospects, and highlights the role of trap spaces in reli-
able long-term behavioural analysis of logical models.

This article also has an associated supplement, in which we
include the non-essential technical details of our methodol-
ogy, as well as the full results of our benchmarks and case
study. This article refers to this supplement where
appropriate.

2 Methods

In this section, we define trap spaces of MVNs, discuss some
of their theoretical properties, and finally present a method
based on ASP for computing trap spaces of symbolically rep-
resented MVNs.

2.1 MVNs

DEFINITION 1. An MVN is a triple M¼ ðV;K; FÞ such that:

• V ¼ fv1; . . . ; vng is an indexed set of nodes (variables).
• K ¼ fK1; . . . ;Kng is an indexed set of integer intervals,

representing the domains of variables vi 2 V.
• F ¼ ff1; . . . ; fng is an indexed set of update functions of

variables vi 2 V. Each fi has a signature fi : Pn
j¼1Kj ! Ki.

With a slight abuse of notation, we write vi to denote both the
network node and the associated integer variable.
Furthermore, we can also write Kvi

and fvi
to denote the do-

main and update function of vi, respectively. We define x 2

Qn
j¼1

Kj as the ‘state’ of the MVN, with xi (or xvi
) denoting the

value of vi in the state x. We can also write x as a vector

½x1; . . . ;xn�. We then write SM ¼
Qn
j¼1

Kj to denote the set of all

states (‘state space’) of network M. Finally, note that there
are different possible formulations of update functions F, in-
cluding fuzzy logic (Mushthofa et al. 2018), rule-based
descriptions (Naldi et al. 2007; Delaplace and Ivanov 2020),
or arithmetic expressions (Benque et al. 2012). We will return
to this aspect when we discuss the encoding and manipulation
of networks by our method.

The dynamics of an MVN are studied through its ‘state-
transition graph’, STGM ¼ ðSM;!Þ. In particular, a ‘trap’
set of STGM is a set of states that is closed with respect to!.
A trap set is called an ‘attractor’ if it is minimal, i.e. there is
no other trap set that is a proper subset of this set. However,
there are different ways of defining STGM, possibly leading
to significantly different behavioural features.

First, we divide MVNs based on the variable update scheme
as ‘general’ (Mushthofa et al. 2018) and ‘unitary’ (Schaub
et al. 2007; Delaplace and Ivanov 2020). In the general net-
works, the variable changes follow the update functions ex-
actly. Meanwhile, in the unitary networks, the value of vi can
only change by ‘one level’ at a time (i.e. þ1 or –1). It has been
argued that unitary networks better capture the continuity of
biological interactions (Schaub et al. 2007), but is not true
universally (Sun et al. 2014).

Note that the stepwise notion of unitary update can be in
fact encoded directly into the update functions F. Specifically,
we define f̂ v to represent the update function which adheres
to the chosen variable update. That is, f̂ vðxÞ ¼ fvðxÞ for gen-
eral MVNs and f̂ vðxÞ ¼ xv þ d for unitary MVNs, where
d¼ 0 if xv ¼ fvðxÞ, d¼ 1 if xv < fvðxÞ, and d ¼ – 1 when
xv > fvðxÞ.

The second aspect of MVN semantics is the concurrency of
updates. Here, two prevalent approaches are the ‘synchro-
nous’ (all variables update together) and ‘asynchronous’ up-
date (exactly one variable updates non-deterministically in
each step).

Note that for the same MVN, different update schemes
may result in vastly different state-transition graphs (Thomas
1991). Consider the MVN M with V ¼ fv1; v2g,
K1 ¼ f0; 1g, and K2 ¼ f0; 1; 2g (Example 2 in the
Supplementary Data). Figure 1(a) shows the state transition

i514 Trinh et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


graph ofM under the general update scheme. This graph has
six trap sets: f[0 1]g, f[1 1]g, f[0 0], [0 2]g, f[0 1], [1 1]g, f[0
0], [0 1], [0 2]g, and f[0 0], [0 1], [0 2], [1 0], [1 1], [1 2]g.
Out of these, three are attractors (minimal trap sets): f[0 1]g,
f[1 1]g, and f[0 0], [0 2]g. Meanwhile, Fig. 1(b) shows the
state transition graph ofM using the unitary update scheme,
which admits only two attractors: f[0 1]g and f[1 1]g.

2.2 Trap spaces of MVNs

Overall, this variability under different update schemes moti-
vates the study of ‘trap spaces’. In the Boolean case, trap
spaces have been shown to be a good approximation of net-
work attractors, regardless of the chosen update concurrency
(Paulevé et al. 2020). Here, we thus establish trap spaces for
MVNs with a similar goal in mind:

DEFINITION 2. A space m of SM is a mapping which assigns
each vi 2 V a non-empty subset of Ki: mðviÞ � Ki. We
write S?M to denote the set of all spaces of M.

With a slight abuse of notation, we can also interpret m as
a subset of SM, writing x 2 m for a state x 2 SM when xv 2
mðvÞ for all v 2 V. Subsequently, we can define trap spaces as
follows:

DEFINITION 3. A trap space is a space m such that for every
state x 2 m and variable v 2 V, we have
f̂ vðxvÞ 2 mðvÞ.

In other words, in all states represented by m, all update
functions only produce values that stay within m, meaning no
STGM (regardless of the update concurrency) can contain a
transition which leaves m. Consequently, trap spaces of an
MVN are independent on its concurrency update, is not true
for the case of attractors. Note the use of f̂ v, meaning that the
notion of trap space respects the choice of unitary or general
variable update.

When interpreting spaces m 2 S?M as subsets of SM, we
can trivially establish a sub-space relation on S?M, which
allows us to reason about ‘minimal’ and ‘maximal’ trap
spaces:

DEFINITION 4. A trap space m is minimal if and only if there
is no trap space m0 2 S?M s.t. m0 � m. Analogously, a
trap space m is maximal if and only if m � SM, and
there is no trap space m0 2 S?M s.t. m � m0.

Note that for the notion of maximal subspace, we require
that m � SM. Otherwise, a trivial space m? which represents

all network states (i.e. m?ðvÞ ¼ Kv) is always a trap space,
and always a superset of all other trap spaces.

For illustration, reconsider the example MVN (Fig. 1). Its
general counterpart has six trap spaces as follows:

m1 ¼ f0gf1g;m2 ¼ f1gf1g;m3 ¼ f0gf0;2g;
m4 ¼ f0;1gf1g;m5 ¼ f0gf0; 1;2g;m6 ¼ f0; 1gf0;1;2g:

Out of these, three are minimal trap spaces (m1, m2, and
m3) and two are maximal trap spaces (m4 and m5).
Meanwhile, its unitary counterpart has two minimal trap
spaces (f0gf1g and f1gf1g) and three maximal trap spaces
(f0;1gf0;1g, f0; 1gf1; 2g, and f0gf0;1;2g). Finally, let us
observe the following:

THEOREM 1 (Separation of minimal trap spaces). Let m1 and
m2 be two distinct minimal trap spaces of M. Then
m1 \m2 ¼1.

The proof is available in the Supplementary Data as
Theorem 3.

By Definition 3 and the definition of a trap set, a trap space
is also a trap set of an MVN for any chosen update concur-
rency. As a consequence, each trap space must contain at least
one attractor of the MVN. By Theorem 1, any two distinct
minimal trap spaces are disjoint; thus, the attractors con-
tained in them are also disjoint. Hence, we can conclude that
regardless of the chosen update concurrency, minimal trap
spaces can be used as approximations of attractors in MVNs:
The number of minimal trap spaces under-approximates the
number of attractors (there can be other attractors that are
not contained in minimal trap spaces), and each minimal trap
space over-approximates at least a single attractor.
Supplementary Section S3.3 presents additional examples of
relations between attractors and minimal trap spaces.

2.3 Translation to Boolean networks

When Ki ¼ f0; 1g for all vi 2 V, we can refer to M as a
‘Boolean network’ N ¼ ðV; FÞ instead. For Boolean net-
works, the notion of trap spaces is well known, including effi-
cient tools for computation of minimal and maximal trap
spaces (Klarner et al. 2017; Paulevé et al. 2020; Trinh et al.
2022).

There are several works (Didier et al. 2011; Delaplace and
Ivanov 2020) attempting to encode the multi-valued dynamics
of an MVN into a Boolean network. Probably, the most
widely used being the Van Ham encoding (Ham 1979), imple-
mented in the tools GINsim (Chaouiya et al. 2011a, 2011b)
and bioLQM (Chaouiya et al. 2013). The core idea of the Van
Ham encoding is to expand each multi-valued variable v 2 V
into jKvj � 1 Boolean variables, such that an integer value
v¼ k is encoded as the truth value of the first k Boolean varia-
bles. The main advantage of this encoding is that any unitary
state change only involves a single Boolean variable. The dis-
advantage is that the encoding admits invalid states which do
not correctly encode any integer and may interfere with the
actual dynamics of the model. More details about the Van
Ham encoding are given in the Supplementary Section S2.3.

It is known that the Van Ham encoding preserves attractors
of unitary networks (Didier et al. 2011). Nevertheless, it is
unclear whether this mapping also preserves trap spaces in
general. To answer this question, we present the following

Figure 1. STGM of the example MVN under general (a) and unitary update

schemes (b). Attractors are highlighted in bold.

Trap spaces of multi-valued networks i515

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


proposition, the proofs for which can be found in the
Supplementary Data.

PROPOSITION 1. Let NM denote the Van Ham encoding of a
MVNM. Then, it holds that:

• There is a general MVN M for which neither the maximal
nor minimal trap spaces of NM correspond to the respec-
tive trap spaces of M.

• There is a unitary MVN M such that the maximal trap
spaces of NM do not correspond to the maximal trap
spaces of M.

• For every unitary MVN M, the minimal trap spaces of
NM correspond to the minimal trap spaces of M.

This proposition states that the Van Ham encoding is still
applicable for computation of minimal trap spaces of unitary
networks, but cannot be used beyond this particular problem
class.

2.4 Computing trap spaces through PN siphons

To tackle the problem of trap space computation of MVNs,
we instead propose a different approach, based on an encod-
ing of the problem into an answer-set programming query.

2.4.1 PN encoding of MVNs

First, let us establish a characterization of trap spaces through
conflict-free PN siphons.

DEFINITION 5. A one-safe PN is a bipartite-directed graph
P ¼ ðP;T;WÞ, where P and T are disjoint finite sets of
vertices called places and transitions, respectively. Set
W describes the arcs between places and transitions:
W � ðP� TÞ [ ðT � PÞ.

A marking M of a one-safe PN is a subset M � P.
For x 2 P [ T, we write pred(x) and succ(x) to denote the

predecessors and successors of x with respect to W (this nota-
tion naturally extends to subsets of P [ T). The dynamics of a
PN are dictated by the ‘firing of transitions’, such that a tran-
sition t 2 T can be fired non-deterministically in the marking
M if predðtÞ �M. The result is a new marking
M0 ¼ ðM n predðtÞÞ [ succðtÞ. This process defines a state-
transition graph with vertices as the possible markings.

In the appendix of Chatain et al. (2014), the authors pre-
sent a PN encoding of the ‘asynchronous’ MVN dynamics,
which we briefly recall here. Note that this is not the only PN
encoding of MVNs (see, e.g. Chaouiya et al. 2004, 2011a,
2011b), but to the best of our knowledge, the other encodings
are not particularly suitable for the characterization of trap
spaces.

Let PM denote the one-safe PN encoding of an MVN M
based on Chatain et al. (2014). The places P of PM contain
one place for every level of every MVN variable:
P ¼ [v2Vfpv¼iji 2 Kvg. The set of transitions and arcs is then
constructed such that the firing of a transition mirrors a possi-
ble update of an MVN variable. For example, let u; v 2 V be
such that for every x 2 SM, we have ðxv ¼ k ^ xu ¼ lÞ )
f̂ vðxÞ ¼ o (with o 6¼ k). We then create a transition t with
predðtÞ ¼ fpv¼k;pu¼lg and succðtÞ ¼ fpv¼o;pu¼lg. Such tran-
sition ‘moves’ a token from pv¼k to pv¼o under the assumption

u¼ l. Note that there are many possible combinations of sets
T and W that are valid for a particular M. Later, we show
how we compute these sets in our case.

Finally, let m 2 S?M be a space ofM. We write that a set of
places M½m� � P is the ‘mirror’ of m when for every v 2 V
and i 2 Kv; i 2 mðvÞ () pv¼i 62 S. That is, M½m� contains the
places corresponding to the ‘inverse’ of m. Observe that a
state x 2 SM is also a (trivial) space, and hence has a mirror
M½x�.

2.4.2 Siphon characterization of MVN trap spaces

DEFINITION 6. A PN siphon S � P is a set of places such that
for all t 2 T; ðS \ succðtÞÞ 6¼1 implies ðS \ predðtÞÞ
6¼1.

Intuitively, a siphon S preserves the condition that if all places
in S are unmarked (M \ S ¼1), the siphon remains
unmarked. Furthermore, for a PN PM, we say that a siphon
is ‘conflict-free’ when for all v 2 V, we have that
fpv¼iji 2 Kvg n S 6¼1. That is, a conflict-free siphon must not
contain ‘all’ places encoding a particular variable. Intuitively,
every conflict-free siphon of PM represents a mirror of ‘some’
space m 2 S?M (however, not all mirrors of spaces are
siphons).

With this knowledge, we can observe the following
theorem:

THEOREM 2. Let M be an MVN and PM its PN encoding.
Then a space m 2 S?M is a trap space if and only if its
mirror M½m� is a conflict-free siphon of PM.

The proof is available in the Supplementary Data as Theorem 5.
Finally, note that we can define a partial order on siphons

based on the subset relation, just as we did for trap spaces.
Based on the definition of a mirror and the correspondence
we just proved, we can easily deduce the following (see the
proofs of Theorems 6 and 7 in the Supplementary Data):

PROPOSITION 2. A trap space m of an MVN M is minimal if
M½m� is a maximal conflict-free siphon of PM. A trap
space m is maximal if M½m� is a minimal conflict-free
siphon.

Observe that there are existing methods based on ASP
(Trinh et al. 2022) and SAT solving (Nabli et al., 2016) that
can handle enumeration of maximal (respectively, minimal)
siphons and have been successfully used on Boolean networks
before (Trinh et al. 2022). Our result shows that these meth-
ods should be also applicable to MVNs. Specifically, we aim
to extend the ASP encoding from (Trinh et al. 2022) in order
to support both maximal and minimal trap spaces of both
general and unitary MVNs.

2.4.3 Siphon computation through ASP encoding

For now, we neglected the question of update function repre-
sentation for MVNs, as this depends strongly on the chosen
input format. In our work, we consider both SBML-qual
(Chaouiya et al. 2013) and BMA (BioModelAnalyzer)
(Benque et al. 2012) formats. These differ significantly in
terms of both format and capabilities.

Ultimately, we represent an update function fi using a series
of ‘binary decision diagrams’ (BDDs) (Bryant 1986)

i516 Trinh et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


B1; . . . ;Bk. The network variables are encoded into Boolean
variables [v2Vfpv¼iji 2 Kvg, just as in the case of the PN
encoding. Subsequently, each BDD in the series gives the nec-
essary and sufficient conditions for achieving a particular re-
sult level:

fiðxÞ ¼
(

y1 B1ðxÞ ¼ 1
. . .
yk BkðxÞ ¼ 1

Here, Ki ¼ ½y1; . . . ; yk� and Bi are individual BDDs, such
that each BDD can be interpreted as a Boolean function on
the encoded state x. We also require that for each state, there
is exactly one BDD Bj s.t. BjðxÞ ¼ 1, hence the whole function
is well defined. Also, note that such fi can be easily trans-
formed into f̂ i, respecting either general or unitary variable
update as desired.

This representation is relatively straightforward to obtain
for SBML-qual models, as each update function is given as a
list of Boolean terms over standard equality/inequality integer
propositions. In this representation, the output values can re-
peat across multiple terms, and the function is not required to
be exhaustive (there is a ‘default’ output value assigned to
remaining inputs). However, this is easy to amend once each
term is transformed into a symbolic BDD representation (see
Supplementary Data).

For BMA, the translation process is more involved, as up-
date functions are described through a language of algebraic
expressions including addition (þ), subtraction (–), multipli-
cation (�), and division (=), as well as other special functions
like average and rounding. Furthermore, BMA employs a nor-
malizing transformation on function inputs when the input
domain differs from the output domain. That is, an input var-
iable v in the range Kv ¼ ½x; y� is normalized to the range
Ku ¼ ½a;b� when used in the update function fu. As such,
while BMA only admits integer variables, the update func-
tions are more akin to rational functions.

While there are frameworks which partially support sym-
bolic evaluation of such functions, e.g. algebraic decision dia-
grams (Bahar et al. 1997), we are not aware of any
implementation that would support all the operations re-
quired by BMA. We thus opted to enumerate the whole func-
tion table and re-encode it back into individual BDDs.

Finally, to encode the dynamics of f̂ into a PN, we consider
all variable updates ðv ¼ lÞ ! ðv ¼ kÞ (with k being l61
whenM is unitary), and then enumerate all satisfying partial
valuations w of the BDD pv¼l ^ B̂k (B̂k being the BDD of f̂
for output level k). For every valuation w, a transition t 2 T is
created which moves the token from pv¼l to pv¼k while ensur-
ing that for every other relevant u 2 V, place pu¼wðuÞ contains
a token.

Note that the number of satisfying partial valuations w of a
BDD (and transitively, the number of PN transitions) depends
on the ‘ordering’ of Boolean variables within the BDD.
However, computing the optimal variable ordering is a
known non-trivial problem. To reduce the number of transi-
tions in the resulting PN, we always test k randomized order-
ings for every update function and pick the one which
produces the most compact PN.

Once the PN encoding PM is completed, the method pro-
ceeds based on the ASP encoding of the PN siphon problem
proposed by Trinh et al. (2022). This encoding produces a
query which can be processed by an ASP solver such as

clingo (Gebser et al. 2011), enumerating all maximal/mini-
mal siphons of PM. Technical aspects of this process are given
in the Supplementary Data.

3 Results

We now present the results of our computational experi-
ments. First, we establish the benchmark model dataset and
describe the overall implementation of our tool trapmvn. We
then present the performance evaluation of trapmvn in rela-
tion to the benchmark models and other tools (where applica-
ble). Finally, we use the trap spaces arising under a wide
range of therapeutic interventions in a Myc-deregulation
model of breast cancer to assess the viability and reliability of
such interventions.

3.1 Experiment setup

In our testing, we utilize SBML models from the BBM bench-
mark (https://github.com/sybila/biodivine-boolean-models/;
note that BBM primarily publishes Booleanized SBML mod-
els, but the original multi-valued SBML files are also avail-
able.), which includes models from the GINsim tool
(Chaouiya et al. 2011a, 2011b) repository as well as other in-
dependently sourced models. Furthermore, we include models
from the BMA tool (http://biomodelanalyzer.org) repository
(Benque et al. 2012). Disregarding trivial cases, we are left
with 26 benchmark models. To the best of our knowledge,
this is a highly representative sample of multi-valued models
currently available in literature. The details of each bench-
mark model, technical description of the performance testing,
as well as full results are given in Section 6 of the
Supplementary Data.

3.2 The trapmvn package

We implement our method as a stand-alone open-source
Python package trapmvn. The package provides a basic
parser for both SBML and BMA models (JSON or XML). It
implements the symbolic encoding for both formats using the
BDD data structure from the AEON.py package (Bene�s et al.
2022). From this symbolic encoding, we build either a ‘gen-
eral’ or a ‘unitary’ one-safe PN. Such PN can be then encoded
into the ASP query for the respective problem class and proc-
essed by the solver clingo (Gebser et al. 2011). All these
steps are available to the user through several Python classes,
but can be also handled directly by a simple command line in-
terface. Finally, we also support export of the symbolic model
representation back into SBML. This allows us to convert
BMA models to SBML (to the best of our knowledge, this is
not supported by any other tool).

3.3 Performance evaluation

Due to the lack of both theory and available tools, we are not
aware of any existing study of trap spaces in MVNs.
Nevertheless, as we have shown, the Van Ham encoding
(Ham 1979) preserves the ‘minimal’ trap spaces under unitary
semantics. Tools for computing minimal trap spaces of plain
Boolean networks can be thus used in this case. We use
bioLQM (Chaouiya et al. 2013) to compute the Van Ham
encoding when necessary.

We can also consider fixed-points as a special (simpler)
class of trap spaces. We can thus also compare with tools that
specialize in this type of problem. Consequently, our

Trap spaces of multi-valued networks i517

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://github.com/sybila/biodivine-boolean-models/
http://biomodelanalyzer.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


performance evaluation consists of three parts: ‘minimal’ and
‘maximal’ trap spaces, and ‘fixed-points’.

3.3.1 Minimal trap spaces

To test the performance of trapmvn when computing mini-
mal trap spaces, we compare its runtime to two state-of-the-
art tools for trap space computation in Boolean networks,
trappist (Trinh et al. 2022) and mpbn (Paulevé et al. 2020)
(using the Van Ham encoding). Because the number of trap
spaces can be large and the knowledge of all trap spaces is not
always required, we consider two experiment settings: com-
puting just ‘one’ and computing ‘all’ minimal trap spaces. The
full results of this analysis are available in Supplementary
Tables S5 and S6.

In general, trapmvn can handle all models in reasonable
time for both the general and unitary semantics. Focusing on
the unitary case, the difference in runtime when computing all
minimal trap spaces is summarized in Fig. 2. Here, we see that
trapmvn performs substantially better than mpbn, and is
also always faster than trappist. However, the exact
speed-up is hard to assess due to the presence of logarithmic
time scales. As such, we also provide a simple box plot com-
paring the actual speed-up in Fig. 3. Here, we see that
trapmvn outperforms both methods by a significant margin
in both scenarios (i.e. first result and all results). We also com-
pute the average speed-up weighted by the absolute runtime
of each benchmark (i.e. longer running benchmarks are given
higher weight), showing that when computing ‘all’ trap
spaces, trapmvn is 3� faster than trappist, and 58�
faster than mpbn.

3.3.2 Maximal trap spaces

The Van Ham encoding is not suitable for preserving ‘maxi-
mal’ trap spaces, and we are not aware of any existing
method that can efficiently transform this problem to the do-
main of Boolean networks. As such, we cannot compare
trapmvn to any other tool for this problem class.
Nevertheless, we show that trapmvn can easily compute all
maximal trap spaces of the considered benchmark models
(Supplementary Table S7).

3.3.3 Fixed-points

Finally, for the case of fixed-points, there are two viable ASP
encodings, one based on PN siphons and the other based on
PN deadlocks. The encoding based on deadlocks is generally
more efficient for this simpler problem class. As such, we im-
plement both variants in trapmvn and compare the results to
the Booleanized results from the tools trappist (Trinh et al.

2022) and mpbn (Paulevé et al. 2020), and multi-valued
results from AN-ASP (Abdallah et al. 2017). Overall, our
evaluation confirms the benefits of the deadlock-based encod-
ing, showing a 2:6� speed-up compared with the siphon
encoding (Supplementary Table S8). Furthermore, we show
that trapmvn also performs better than trappist or mpbn
on fixed-point computation, but is outperformed by AN-ASP
(1:3� speed-up), since AN-ASP is optimized solely for this
specific type of problem.

3.4 Therapeutic interventions of Myc-deregulation

To demonstrate the practical utility of trapmvn in biological
modelling, we present a case study expanding on the findings
of Kreuzaler et al. (2019). The authors of Kreuzaler et al.
(2019) use BMA (Benque et al. 2012) to explore viable thera-
peutic interventions in a large computational model of breast
cancer through the lens of network attractors. Here, we show
how to more reliably interpret the model by focusing on trap
spaces instead.

3.4.1 Modelling Myc heterogeneity in breast cancer

The Myc transcription factor is one of the key coordinators in
cell proliferation and regeneration (Kortlever et al. 2017). As
such, oncogenic deregulations of Myc are commonplace in
many cancers, breast cancer in particular (Vita and
Henriksson 2006).

Still, most tumours have been shown to consist of several
genetically distinct mutants, only some of which exhibit Myc
overexpression (Gerlinger et al. 2012; Heselmeyer-Haddad
et al. 2012). Such heterogeneity can impede some treatments,
but it can also enable new therapies that target the coopera-
tion between the mutants (Marusyk et al. 2014; Kreuzaler
et al. 2019).

In the case of Myc-related mutations, an overexpression of
Myc is linked to super-competitive behaviour that causes the
cancerous cells to outproliferate their healthy neighbours.
However, the same overexpression is also linked to greatly in-
creased predisposition to apoptosis. In Kreuzaler et al. (2019),
the authors reveal a mechanism by which Mychigh mutants
survive using a supply of Wnt1 transcription factor produced
by a different, Myclow mutant.

This process is demonstrated both experimentally on
in vivo mouse models, as well as in silico on a large-scale

Figure 2. Relative performance of trapmvn compared with trappist
and mpbn when counting all minimal trap spaces. The time scales are

logarithmic. Points at the edge of the graph represent timeouts.

Figure 3. Relative speed-up in runtime of trap-mvn compared with

trappist (top), res. mpbn (bottom).

i518 Trinh et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


multi-valued computational model. Based on the intervention
response observed in silico, the authors identify a viable ther-
apy targeting COX2 and MEK transcription factors and vali-
date this therapy in vivo.

The model itself consists of 72 variables, ranging from 4 to
7 levels (MYC IN-VIVO in Supplementary Table S5). It is
based on known literature, with additional validation and
tuning using several independent datasets. There are five
model variants: A healthy ‘wild-type’ (WT) model, Myclow

and Mychigh variants where the tumour consists homoge-
neously of a single mutant, and finally, mix-Myclow and mix-
Mychigh variants, which describe a heterogeneous tumour. In
this case, the interaction is given as an outside assumption;
there is no single model consisting of both Myclow and
Mychigh mutants sharing a state space.

To study the effects of possible therapeutic interventions,
the authors compare the ‘synchronous’ attractors approxi-
mated by BMA across a range of single and dual variable
knockouts. The effect of each intervention on the real-world
phenotypes is assessed through variables Apoptosis and
Proliferation which are directly embedded into the net-
work. While this methodology is viable, it has shortcomings
which we hope to address.

First, while BMA should be capable of computing the ‘exact’
synchronous attractors, the results in Kreuzaler et al. (2019)
are only based on an ‘approximate’ method, due to the (lack
of) scalability of the exact method. Second, the ‘synchronous’
update scheme can miss plausible model behaviour due to ar-
tificial synchronization between variables (Schwab et al.
2020). Meanwhile, trap spaces are universal regardless of the
chosen update scheme (Paulevé et al. 2020). Finally, for non-
trivial attractors, the case study in Kreuzaler et al. (2019) only
considers the ‘average’ values of Apoptosis and
Proliferation, which can be a poor approximation of the
model’s actual admissible behaviour. This is despite the fact
that BMA ‘can’ also compute the estimated attractor
intervals.

3.4.2 Single intervention effects

We start by replicating the single-variable knockout interven-
tions performed in Kreuzaler et al. (2019), but in the context
of trap spaces. Highlights from this analysis are presented in
Table 1 (full data are available in the Supplementary Data).
These results are in many aspects comparable to the original
results obtained through BMA, however, they often paint a
more complete picture of the model’s behaviour.

First, there are four instances where our ‘exact’ method ac-
tually improves the precision of the original ‘approximate’ re-
sult (marked with an asterisk). Note that the more specific
result is in all cases at the edge of the interval established by
BMA, which means that it substantially differs from the ‘aver-
age’ considered in Kreuzaler et al. (2019).

Second, there are clearly many cases where the intervention
causes the appearance of a non-trivial trap space, signified by
an interval instead of a fixed value. Knowledge of these inter-
vals is crucial when interpreting the effectiveness of
interventions.

For example, consider the value of Apoptosis for the
knockouts of Mcl1 and COX2 in mix-Myclow. The average
value is the same (i.e. 3), but the admissible interval is ½2; 4�
for Mcl1 and ½0;6� for COX2. The Mcl1 intervention guaran-
tees Apoptosis � 2, but we have no such expectation for
COX2: Even though the ‘best case’ outcome is higher (i.e.
6 > 4), the system is not guaranteed to visit these high-value
states sufficiently often to trigger apoptosis.

3.4.3 Dual interventions with reliable and opportunistic
effects

To systematically rank the high number of possible dual inter-
ventions, we propose to score each intervention I with two
metrics, ‘reliability’ and ‘opportunity’, denoted by rel(I) and
opp(I), respectively. The intuition is that these scores should
represent the ‘worst’ and ‘best’ case scenarios (in terms of
Apoptosis and Proliferation) admitted by the model
for each intervention, regardless of the considered update

Table 1. Effects of selected single-node perturbations on proliferation (left) and apoptosis (right).

Intervals show non-trivial trap spaces. Values with asterisk show improvements over BMA approximate result.

Trap spaces of multi-valued networks i519

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


concurrency. The exact definitions of these scores are given in
Supplementary Section S5.4.

We then focus on the admissible dual-knockout interven-
tions: both knockouts must be druggable (according to
Kreuzaler et al. 2019), and their combination cannot increase
Apoptosis beyond level three in the WT model. This leaves
995 interventions for which we compute both scores. For pre-
sentation purposes, we sort the interventions by the ‘average’
of these two scores.

The eight best and the eight worst interventions are shown
in Fig. 4. As we can see, some of the best interventions admit
a non-trivial trap space for the mix-Myclow variant. However,
even in this case, the reliability and opportunity scores are not
vastly different. This raises a natural question regarding the
prevalence of differences between reliability and opportunity
scores in general. We further study this question in the
Supplementary Data (Supplementary Section S5.4 and
Supplementary Fig. S6, in particular), where we show that
substantial differences between the two scores are in fact com-
mon even within the best scoring interventions.

4 Discussion

In this article, we formalized the notion of trap spaces in
MVNs, then explored and proved properties of such trap
spaces with applications in the analysis and control of MVNs.
One notable property is that trap spaces of MVNs are inde-
pendent to concurrency update schemes. We argued that,
akin to Boolean networks, trap spaces can serve as approxi-
mation of network attractors. Furthermore, we showed that
not all useful properties of trap spaces are preserved through
a Boolean encoding of an MVN. For example, maximal trap
spaces of unitary networks, crucial for the construction of the
network’s succession diagram (Rozum et al. 2021), are not
preserved. Next, we made a connection between trap spaces
of an MVN and siphons of its PN encoding. Based on this re-
lationship, we proposed and implemented a new ASP method
for computing different types of trap spaces of an MVN.

4.1 Method performance

We have evaluated the time efficiency of our method on real-
world models collected from the literature. We show that the
method scales well with the network size and it can handle
large-scale realistic models for both the general and unitary
semantics. The indirect approach (i.e. through a Boolean
encoding) is only applicable for the case of fixed-points and
minimal unitary trap spaces. In these cases, the direct ap-
proach (i.e. our method) outperforms the best indirect
method.

In particular, we discuss the factors that contribute to the
running time of each compared method (all are ASP-based)
with respect to the minimal trap space computation. Aside
from the absolute number of solutions, the practical complex-
ity of an ASP query is affected by its number of atoms and its
‘density’, i.e. the ratio between the number of ASP rules and
atoms. Through a systematic analysis (details are available in
Supplementary Section S6.1), we see that an increase in den-
sity is always accompanied by increased runtime. Query den-
sity is clearly not the only indicator of ASP problem
complexity. However, assuming we control for other relevant
factors (solution count, tool/method, update scheme, model
format, etc.), query density appears to be a relevant metric for
comparing the complexity of two minimal trap space compu-
tation problems.

We also analyse the runtime of our method trap-mvn in
the general and unitary cases. In general, trap-mvn needs
more time for the general case than for the unitary case, as the
PN encoding of a general MVN has more transitions than
that of its unitary counterpart. The detailed discussions are
given at the end of Section S6.1.

Finally, we have tried to also compare the performance of
trap-mvn to BMA. However, in its current state, we were
only able to run the ‘approximate’ attractor detection
method, which is (as expected), much faster than any of the
tested ‘exact’ methods. There appears to be no public docu-
mentation or reproducible artefact concerning the exact
solver-based approach for the currently available version of
BMA. However, the authors of Kreuzaler et al. (2019) note
that the exact method was not able to efficiently analyse the
Myc heterogeneity model. As such, it seems unlikely that it
would provide competitive performance on the remaining
models in our benchmark set.

4.2 Reliable identification of network interventions

Subsequently, we studied the practical applicability of our
method on a model of Myc-deregulation from Kreuzaler et al.
(2019). First, we indeed found instances where our exact
method can improve the approximate results obtained in
Kreuzaler et al. (2019). Furthermore, as we show in Table 1,
the behaviour of the model can often admit significant fluctu-
ations and uncertainty. These are not reflected in the average
value within attractor states, as considered in Kreuzaler et al.
(2019). This highlights the need for rigorous and exhaustive
analysis of such behaviour uncertainty.

With this goal in mind, we propose a ‘reliability’ and ‘op-
portunity’ score to assess the viability of therapeutic interven-
tions. Based on these scores, we see that even interventions
that introduce some amount of uncertainty can be safely con-
sidered among the most viable (Fig. 4). Furthermore, we study
how prevalent is the variability of intervention scores in our

Figure 4. Eight best and worst dual interventions (out of 995 tested),

together with their reliability and opportunity scores, as well as their effect

on the relevant model variables.

i520 Trinh et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data


dataset. As shown in Supplementary Fig. S6, for almost half
of the interventions (439/995), the difference is zero.
However, for 463/995 interventions, the model still admits a
difference of three or more points. Such difference can impact
the expected observed biological phenotypes if not taken into
account. Furthermore, our results reveal that even though the
highest score variability is associated with scores we would
not consider particularly viable, very viable interventions (e.g.
average score >5) can still exhibit high variability (	 6).

Notably, the COX2þMEK intervention chosen in
Kreuzaler et al. (2019) has a reliability and opportunity score
equal to 5, placing it on rows 65–149 of the table in Fig. 4
(there are 84 interventions with the same scores). While this is
not among the best scores, it is still better than 85%–93% of
interventions, meaning we retained the viability of this partic-
ular intervention. Furthermore, it should be noted that our
screening for ‘viable’ interventions is rather rudimentary: in
practice, some of the top perturbations might be ruled out due
to factors other than the WT Apoptosis result (e.g. other
side effects not captured by this model).

Overall, these results support the claim that logical models
can exhibit a high level of variability in their outcomes and it
is crucial to take this variability into account when drawing
conclusions. Due to their favourable computational and theo-
retical properties, trap spaces appear to be uniquely suited for
this task.

4.3 Applications and future prospects

Observe that the results we explored in this article can be also
useful for other types of MVN analysis. First, there is a trap
space-based model reduction technique. This relies on the fact
that, given a single trap space, we can obtain a simpler MVN
that captures the self-contained dynamics of the states within
this trap space. Second, the set of minimal trap spaces of an
MVN can be seen as an approximation of its attractors, re-
gardless of the update concurrency. Third, there are existing
control methods for Boolean networks based on trap spaces
(Fontanals et al. 2020; Rozum et al. 2022). It should be possi-
ble to extend these methods to control of MVNs. We discuss
the details of these applications in Section S3.3.

As a perspective, we also plan to attack the attractor detec-
tion problem for MVNs, as trap spaces only capture the net-
work’s static behaviour, whereas attractors can also capture
its more complex dynamical aspects. Exploiting the relation
between attractors and trap spaces of MVNs is a potentially
promising direction for this problem. Furthermore, we plan to
develop direct and efficient control methods for MVNs, be-
cause the control problem is crucial in systems biology.
Arguably, it can be seen as ‘a sequel’ of the trap space or at-
tractor analysis (Fontanals et al. 2020).

Supplementary data

Supplementary data are available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This work was supported by L’Institut Carnot STAR,
Marseille, France, and by the European Union’s Horizon

2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. [101034413].

Data availability

Source code and data are freely available at https://github.
com/giang-trinh/trap-mvn.

References

Abdallah EB, Folschette M, Roux O et al. ASP-based method for the

enumeration of attractors in non-deterministic synchronous and

asynchronous multi-valued networks. Algorithms Mol Biol 2017;12:

20–3. https://doi.org/10.1186/s13015-017-0111-2.
Bahar RI, Frohm EA, Gaona CM et al. Algebric decision diagrams and

their applications. Formal Methods Syst. Des 1997;10:171–206.

https://doi.org/10.1023/A:1008699807402.
Bene�s N, Brim L, Huvar O et al. AEON.py: python library for attractor

analysis in asynchronous Boolean networks. Bioinformatics 2022;

38:4978–80. https://doi.org/10.1093/bioinformatics/btac624.
Benque D, Bourton S, Cockerton C et al. BMA: visual tool for modeling

and analyzing biological networks. In: Madhusudan P, Seshia SA.

(eds.) Computer Aided Verification. Berlin, Germany: Springer,

2012, 686–692.

Bryant RE. Graph-based algorithms for boolean function manipulation.

IEEE Trans Comput 1986;C-35:677–91. https://doi.org/10.1109/

TC.1986.1676819.

Chaouiya C, Naldi A, Thieffry D. Logical modelling of gene regulatory

networks with GINsim. In: van Helden J, Toussaint A, Thieffry D.

(eds.) Bacterial Molecular Networks. New York, NY: Springer,

2011a, 463–79.
Chaouiya C, Remy E, Ruet P et al. Qualitative modelling of genetic net-

works: From logical regulatory graphs to standard Petri nets. In:

Cortadella J, Reisig W. (eds.) International Conference on

Applications and Theory of Petri Nets. Berlin, Germany: Springer,

2004, 137–56.

Chaouiya C, Bérenguier D, Keating SM et al. SBML qualitative models:

a model representation format and infrastructure to foster interac-

tions between qualitative modelling formalisms and tools. BMC Syst

Biol 2013;7:135. https://doi.org/10.1186/1752-0509-7-135.
Chaouiya C, Naldi A, Remy E et al. Petri net representation of multi-

valued logical regulatory graphs. Nat Comput 2011b;10:727–50.

https://doi.org/10.1007/s11047-010-9178-0.
Chatain T, Haar S, Jezequel L et al. Characterization of reachable attrac-

tors using petri net unfoldings. In: Mendes P, Dada JO, Smallbone K.

(eds.) Computational Methods in Systems Biology. Berlin, Germany:

Springer, 2014, 129–42.

Delaplace F, Ivanov S. Bisimilar booleanization of multivalued net-

works. Biosystems 2020;197:104205. https://doi.org/10.1016/j.bio

systems.2020.104205.

Didier G, Remy E, Chaouiya C et al. Mapping multivalued onto

Boolean dynamics. J Theor Biol 2011;270:177–84. https://doi.org/

10.1016/j.jtbi.2010.09.017.

Fontanals LC, Tonello E, Siebert H. Control strategy identification via

trap spaces in Boolean networks. In: Abate A, Petrov T, Wolf V.

(eds.) Computational Methods in Systems Biology. Berlin, Germany:

Springer, 2020, 159–75.
Gebser M, Kaufmann B, Kaminski R et al. Potassco: the Potsdam an-

swer set solving collection. AI Commun 2011;24:107–24. https://

doi.org/10.3233/AIC-2011-0491.
Gerlinger M, Rowan AJ, Horswell S et al. Intratumor heterogeneity and

branched evolution revealed by multiregion sequencing. N Engl J

Med 2012;366:883–92. https://doi.org/10.1056/NEJMoa1113205.
Ham PV. How to deal with variables with more than two levels. In:

Thomas R. (ed.) Lecture Notes in Biomathematics. Berlin, Germany:

Springer, 1979, 326–43.

Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A et al. Single-cell ge-

netic analysis of ductal carcinoma in situ and invasive breast cancer

Trap spaces of multi-valued networks i521

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad262#supplementary-data
https://github.com/giang-trinh/trap-mvn
https://github.com/giang-trinh/trap-mvn
https://doi.org/10.1186/s13015-017-0111-2
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1093/bioinformatics/btac624
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1186/1752-0509-7-135
https://doi.org/10.1007/s11047-010-9178-0
https://doi.org/10.1016/j.biosystems.2020.104205
https://doi.org/10.1016/j.biosystems.2020.104205
https://doi.org/10.1016/j.jtbi.2010.09.017
https://doi.org/10.1016/j.jtbi.2010.09.017
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.3233/AIC-2011-0491
https://doi.org/10.1056/NEJMoa1113205


reveals enormous tumor heterogeneity yet conserved genomic imbal-

ances and gain of myc during progression. Am J Pathol 2012;181:

1807–22. https://doi.org/10.1016/j.ajpath.2012.07.012.
Klarner H, Streck A, Siebert H et al. PyBoolNet: a python package for

the generation, analysis and visualization of Boolean networks.

Bioinformatics 2017;33:770–2. https://doi.org/10.1093/bioinformat

ics/btw682.

Kortlever RM, Sodir NM, Wilson CH et al. Myc cooperates with Ras by

programming inflammation and immune suppression. Cell 2017;

171:1301–15.e14. https://doi.org/10.1016/j.cell.2017.11.013.

Kreuzaler P, Clarke MA, Brown EJ et al. Heterogeneity of Myc expression

in breast cancer exposes pharmacological vulnerabilities revealed

through executable mechanistic modeling. Proc Natl Acad Sci USA

2019;116:22399–408. https://doi.org/10.1073/pnas.1903485116.
Liu G, Barkaoui K. A survey of siphons in petri nets. Inf Sci 2016;363:

198–220. https://doi.org/10.1016/j.ins.2015.08.037.

Marusyk A, Tabassum DP, Altrock PM et al. Non-cell-autonomous

driving of tumour growth supports sub-clonal heterogeneity. Nature

2014;514:54–8. https://doi.org/10.1038/nature13556.
Mushthofa M, Schockaert S, Hung LH et al. Modeling multi-valued biologi-

cal interaction networks using fuzzy answer set programming. Fuzzy Sets

Syst 2018;345:63–82. https://doi.org/10.1016/j.fss.2018.01.003.
Nabli F, Martinez T, Fages F et al. On enumerating minimal siphons in

Petri nets using CLP and SAT solvers: theoretical and practical com-

plexity. Constraints 2016;21:251–76. https://doi.org/10.1007/

s10601-015-9190-1.
Naldi A, Thieffry D, Chaouiya C. Decision diagrams for the representa-

tion and analysis of logical models of genetic networks. In: Calder

M, Gilmore S. (eds.) Computational Methods in Systems Biology.

Berlin, Germany: Springer, 2007, 233–47.

Paulevé L, Kol�cák J, Chatain T et al. Reconciling qualitative, abstract,
and scalable modeling of biological networks. Nat Commun 2020;

11:1–7. https://doi.org/10.1038/s41467-020-18112-5.
Rozum JC, Deritei D, Park KH et al. Pystablemotifs: python library for

attractor identification and control in Boolean networks.
Bioinformatics 2022;38:1465–6. https://doi.org/10.1093/bioinfor
matics/btab825.

Rozum JC, Gómez Tejeda Za~nudo J, Gan X et al. Parity and time rever-
sal elucidate both decision-making in empirical models and attractor
scaling in critical Boolean networks. Sci Adv 2021;7:eabf8124.

https://doi.org/10.1126/sciadv.abf8124.
Schaub MA, Henzinger TA, Fisher J. Qualitative networks: a symbolic

approach to analyze biological signaling networks. BMC Syst Biol
2007;1:1–21. https://doi.org/10.1186/1752-0509-1-4.

Schwab JD, Kühlwein SD, Ikonomi N et al. Concepts in Boolean net-

work modeling: what do they all mean? Comput Struct Biotechnol J
2020;18:571–82. https://doi.org/10.1016/j.csbj.2020.03.001.

Sun Z, Jin X, Albert R et al. Multi-level modeling of light-induced sto-
matal opening offers new insights into its regulation by drought.
PLoS Comput Biol 2014;10:e1003930. https://doi.org/10.1371/jour

nal.pcbi.1003930.
Thomas R. Regulatory networks seen as asynchronous automata: a logi-

cal description. J Theor Biol 1991;153:1–23. https://doi.org/10.
1016/S0022-5193(05)80350-9.

Trinh V, Benhamou B, Hiraishi K et al. Minimal trap spaces of logical

models are maximal siphons of their Petri net encoding. In: Petre I,
P�aun A. (eds.) Computational Methods in Systems Biology. Berlin,
Germany: Springer, 2022, 158–76.

Vita M, Henriksson M. The Myc oncoprotein as a therapeutic target for
human cancer. Semin Cancer Biol 2006;16:318–30. https://doi.org/

10.1016/j.semcancer.2006.07.015.

i522 Trinh et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/Supplem
ent_1/i513/7210466 by Institute of Science and Technology Austria user on 31 July 2023

https://doi.org/10.1016/j.ajpath.2012.07.012
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1016/j.cell.2017.11.013
https://doi.org/10.1073/pnas.1903485116
https://doi.org/10.1016/j.ins.2015.08.037
https://doi.org/10.1038/nature13556
https://doi.org/10.1016/j.fss.2018.01.003
https://doi.org/10.1007/s10601-015-9190-1
https://doi.org/10.1007/s10601-015-9190-1
https://doi.org/10.1038/s41467-020-18112-5
https://doi.org/10.1093/bioinformatics/btab825
https://doi.org/10.1093/bioinformatics/btab825
https://doi.org/10.1126/sciadv.abf8124
https://doi.org/10.1186/1752-0509-1-4
https://doi.org/10.1016/j.csbj.2020.03.001
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1371/journal.pcbi.1003930
https://doi.org/10.1016/S0022-5193(05)80350-9
https://doi.org/10.1016/S0022-5193(05)80350-9
https://doi.org/10.1016/j.semcancer.2006.07.015
https://doi.org/10.1016/j.semcancer.2006.07.015

	tblfn1

