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Abstract
We study graphs and two-player games in which rewards are assigned to states, and the goal of
the players is to satisfy or dissatisfy certain property of the generated outcome, given as a mean
payoff property. Since the notion of mean-payoff does not reflect possible fluctuations from the
mean-payoff along a run, we propose definitions and algorithms for capturing the stability of the
system, and give algorithms for deciding if a given mean payoff and stability objective can be
ensured in the system.
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1 Introduction

Finite-state graphs and games are used in formal verification as foundational models that
capture behaviours of systems with controllable decisions and possibly with an adversarial
environment. States correspond to possible configurations of a system, and edges describe
how configurations can change. In a game, each state is owned by one of two players, and
the player owning the state decides what edge will be taken. A graph is a game where only
one of the players is present. When the choice of the edges is resolved, we obtain an outcome
which is an infinite sequence of states and edges describing the execution of the system.

The long-run average performance of a run is measured by the associated mean-payoff,
which is the limit average reward per visited state along the run. It is well known that
memoryless deterministic strategies suffice to optimize the mean payoff, and the corres-
ponding decision problem is in NP ∩ coNP for games and in P for graphs. If the rewards
assigned to the states are multi-dimensional vectors of numbers, then the problem becomes
coNP-hard for games [21].

Although the mean payoff provides an important metric for the average behaviour of the
system, by definition it neglects all information about the fluctuations from the mean payoff
along the run. For example, a “fully stable” run where the associated sequence of rewards is
1, 1, 1, 1, . . . has the same mean payoff (equal to 1) as a run producing n, 0, 0, . . . , n, 0, 0, . . .
where a state with the reward n is visited once in n transitions. In many situations, the
first run is much more desirable that the second one. Consider, e.g., a video streaming
application which needs to achieve a sufficiently high bit-rate (a long-run average number of
bits delivered per second) but, in addition, a sufficient level of “stability” to prevent buffer
underflows and overflows which would cause data loss and stuttering. Similar problems
appear also in other contexts. For example, production lines should be not only efficient (i.e.,
produce the number of items per time unit as high as possible), but also “stable” so that the
available stores are not overfull and there is no “periodic shortage” of the produced items. A
food production system should not only produce a sufficiently large amount of food per day
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on average, but also a certain amount of food daily. These and similar problems motivate the
search for a suitable formal notion capturing the intuitive understanding of “stability”, and
developing algorithms that can optimize the performance under given stability constraints.
That is, we are still seeking for a strategy optimizing the mean payoff, but the search space
is restricted to the subset of all strategies that achieve a given stability constraint.

Since the mean-payoff mp(λ) of a given run λ can be seen as the average reward of a
state visited along λ, a natural idea is to define the stability of λ as sample variance of
the reward assigned to a state along λ. More precisely, let ri be the reward of the i-th
state visited by λ, and let c0, c1, . . . be an infinite sequence where ci = (mp(λ) − ri)2. The
long-run variance of the reward assigned to a state along λ, denoted by va(λ), is the limit-
average of c0, c1, . . . The notion of long-run variance has been introduced and studied for
Markov decision processes in [5]. If va(λ) is small, then large fluctuations from mp(λ) are
rare. Hence, if we require that a strategy should optimize mean-payoff while keeping the
long-run variance below a given threshold, we in fact impose a soft stability constraint which
guarantees that “bad things do not happen too often”. This may or may not be sufficient.

In this paper, we are particularly interested in formalizing hard stability constraints
which guarantee that “bad things never happen”. We introduce a new type of objectives
called window-stability multi-objectives that can express a rich set of hard stability con-
straints, and we show that the set of all strategies that achieve a given window-stability
multi-objective can be characterized by an effectively constructible finite-memory permissive
strategy scheme. From this we obtain a meta-theorem saying that if an objective (such as
mean-payoff optimization) is solvable for finite-state games (or graphs), then the same ob-
jective is solvable also under a given window-stability multi-objective constraint. We also
provide the associated upper and lower complexity bounds demonstrating that the time
complexity of our algorithms is “essentially optimal”.

More specifically, a single window-stability objective (inspired by [8], see Related work
below) is specified by a window lengthW ≥ 1, a checkpoint distance D ≥ 1, and two bounds
µ and ν. For technical reasons, we assume that D divides W . Every run λ = s0, s1, s2, . . .

then contains infinitely many checkpoints s0, sD, s2D, s3D, . . . The objective requires that the
average reward assigned to the states sj , . . . , sj+W−1, where sj is a checkpoint, is between
µ and ν. In other words, the “local mean-payoff” computed for the states fitting into a
window of length W starting at a checkpoint must be within the “acceptable” bounds µ
and ν. The role of W is clear, and the intuition behind D is the following. Since D divides
W , there are two extreme cases: D = 1 and D = W . For D = 1, the objective closely
resembles the standard “sliding window” model over data streams [13]; we require that the
local mean-payoff stays within the acceptable bounds “continuously”, like the “local bit-
rate” in video-streaming. If D = W , then the windows do not overlap at all. This is useful
in situations when we wish to guarantee some time-bounded periodic progress. For example,
if we wish to say that the number of items produced per day stays within given bounds,
we set W so that it represents the (discrete) time of one day and put D = W . However,
there can be also scenarios when we wish to check the local mean-payoff more often then
once during W transitions, but not “completely continuously”. In these cases, we set D to
some other divisor of W . A window-stability multi-objective is a finite conjunction of single
window-stability objectives, each with dedicated rewards and parameters. Hence, window-
stability multi-objectives allow for capturing more delicate stability requirements such as “a
factory should produce between 1500 and 1800 gadgets every week, and in addition, within
every one-hour period at least 50 computer chips are produced, and in addition, the total
amount of waste produced in 12 consecutive hours does not exceed 500 kg.”
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Our contribution

The results of this paper can be summarized as follows:
(A) We introduce the concept of window-stability multi-objectives.
(B) We show that there is an algorithm which inputs a game G and a window-stability
multi-objective ∆, and outputs a finite-state permissive strategy scheme for ∆ and G. A
finite-state permissive strategy scheme for ∆ and G is a finite-state automaton Γ which
reads the history of a play and constraints the moves of Player � (who aims at satisfying ∆)
so that a strategy σ achieves ∆ in G iff σ is admitted by Γ. Hence, we can also compute
a synchronized product G × Γ which is another game where the set of all strategies for
Player � precisely represents the set of all strategies for Player � in G which achieve the
objective ∆. Consequently, any objective of the form ∆ ∧Ψ can be solved for G by solving
the objective Ψ for G × Γ. In particular, this is applicable to mean-payoff objectives, and
thus we solve the problem of optimizing the mean-payoff under a given window-stability
multi-objective constraint. We also analyze the time complexity of these algorithms, which
reveals that the crucial parameter which negatively influences the time complexity is the
number of checkpoints in a window (i.e., W/D).
(C) We complement the upper complexity bounds of the previous item by lower complexity
bounds that indicate that the time complexity of our algorithms is “essentially optimal”.
Some of these results follow immediately from existing works [21, 8]. The main contribution
is the result which says that solving a (single) window-stability objective is PSPACE-hard
for games and NP-hard for graphs, even if all numerical parameters (W , D, µ, ν, and the
rewards) are encoded in unary. The proof is based on novel techniques and reveals that
the number of checkpoints in a window (i.e., W/D) is a crucial parameter which makes
the problem computationally hard. The window stability objective constructed in the proof
satisfies D = 1, and the tight window overlapping is used to enforce a certain consistency in
Player � strategies.
(D) For variance-stability, we argue that while it is natural in terms of using standard
mathematical definitions, it does not prevent unstable behaviours. In particular, we show
that the variance-stability objective may demand an infinite-memory strategy which switches
between two completely different modes of behaviour with smaller and smaller frequency.
We also show that the associated variance-stability problem with single-dimensional rewards
is in NP for graphs. For this we use some of the results from [5] where the variance-stability
is studied in the context of Markov decision processes. The main difficulty is a translation
from randomized stochastic-update strategies used in [5] to deterministic strategies.

Related work

Multi-dimensional mean-payoff games were studied in [21], where it was shown that the
lim-inf problem, relevant to our setting, is coNP-hard. Further, [11] studies memory re-
quirements for the objectives, and [20] shows that for a “robust” extension (where Boolean
combinations of bounds on the resulting vector of mean-payoffs are allowed) the problem
becomes undecidable. Games with quantitative objectives in which both lower and upper
bound on the target value of mean-payoff is given were studied in [15]. We differ from these
approaches by requiring the “interval” bounds to be satisfied within finite windows, making
our techniques and results very different.

As discussed above, we rely on the concept of windows, which was in the synthesis setting
studied in [8] (see also [14]), as a conservative approximation of the standard mean-payoff
objective. More concretely, the objectives in [8] are specified by a maximal window length



4 Stability in Graphs and Games

W and a threshold t. The task is to find a strategy that achieves the following property of
runs: a run can be partitioned into contiguous windows of length at most W such that in
each window, the reward accumulated inside the window divided by the window length is
at least t. The objective ensures a local progress in accumulating the reward, and it was
not motivated by capturing stability constraints. The fundamental difference between our
window-stability approach and windows in [8] is that in the latter one can easily get rid of
windows overlapping due to so called inductive window property, which does not hold under
stricter stability constraints. This results in different computational problems, as witnessed
by the fact that our PSPACE lower bound discussed in the point (C) above does not (most
likely) carry over to the setting of [8], where a similar-looking decision problem is in P.

The notion of finite-state permissive strategy scheme is based on the concept of permissive
strategies [1] and multi-strategies [4, 3].

The notion of long-run variance has been introduced and studied for Markov decision
processes in [5]. Since we consider deterministic strategies, none of our results is a special
case of [5], and we have to overcome new difficulties as it is explained in Section 4.

More generally, our paper fits into an active field of multi-objective strategy synthesis,
where some objectives capture the “hard” constraints and the other “soft”, often quantit-
ative, objectives. Examples of recent results in this area include [2], where a 2-EXPTIME
algorithm is given for the synthesis of combined LTL and mean-payoff objectives, [9], where
a combination of parity and mean-payoff performance objectives is studied, or [10], where
the controlling player must satisfy a given ω-regular objective while allowing the adversary
to satisfy another “environmental” objective.

2 Preliminaries

We use N, N0, and Q to denote the sets of positive integers, non-negative integers, and
rationals, respectively. Given a set M , we use M∗ to denote the set of all finite sequences
(words) overM , including the empty sequence. For a vector ~v = (v1, . . . , vk) of numbers and
a non-zero number a, we use ~v[i] for vi, and ~v/a for the vector given by (~v/a)[i] = ~v[i]/a.

A game is a tuple G = (S, (S�, S♦), E) where S is a non-empty set of states, (S�, S♦)
is a partition of S into two subsets controlled by Player � and Player ♦, respectively, and
E ⊆ S × S are the edges of the game such that for every s ∈ S there is at least one edge
(s, t) ∈ E. A graph is a game such that S♦ = ∅. A run in G is an infinite path in the
underlying directed graph of G. An objective Φ is a Borel property1 of runs. Note that the
class of all objectives is closed under conjunction.

A strategy for player �, where � ∈ {�,♦} is a function τ : S∗S� → S satisfying that
(s, τ(hs)) ∈ E for all s ∈ S� and h ∈ S∗. The sets of all strategies of Player � and Player ♦
are denoted by ΣG and ΠG, respectively. When G is understood, we write just Σ and Π.
A pair of strategies (σ, π) ∈ Σ × Π together with an initial state s induce a unique run
outcomeσ,πs in the standard way. We say that a strategy σ ∈ Σ achieves an objective Φ in a
state s if outcomeσ,πs satisfies Φ for every π ∈ Π. The set of all σ ∈ Σ that achieve Φ in s is
denoted by ΣΦ(s). An objective Φ is solvable for a given subclass G of finite-state games if
there is an algorithm which inputs G ∈ G and its state s, and decides whether ΣΦ(s) = ∅. If
ΣΦ(s) 6= ∅, then the algorithm also outputs a (finite description of) σ ∈ ΣΦ(s).

1 Recall that the set of all runs can be given the standard Cantor topology. A property is Borel if the set
of all runs satisfying the property belongs to the σ-algebra generated by all open sets in this topology.
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We often consider strategies of Player � tailored for a specific initial state. A finite
sequence of states s0, . . . , sn is consistent with a given σ ∈ Σ if s0, . . . , sn is a finite path in
the graph of G, and σ(s0, . . . , si) = si+1 for every 0 ≤ i < n where si ∈ V�. Given σ, σ′ ∈ Σ
and s ∈ S, we say that σ and σ′ are s-equivalent, written σ ≡s σ′, if σ and σ′ agree on all
finite sequences of states initiated in s that are consistent with σ. Note that if σ ≡s σ′, then
outcomeσ,πs = outcomeσ′,πs for every π ∈ Π.

A reward function % : S → Nk0 , where k ∈ N, assigns non-negative integer vectors to the
states of G. We use dim% to denote the dimension k of %, and max% to denote the maximal
number employed by %, i.e., max% = max{%(s)[i] | 1 ≤ i ≤ k, s ∈ S}. An objective is reward-
based if its defining property depends just on the sequence of rewards assigned to the states
visited by a run. For every run λ = s0, s1, . . . of G, let mp%(λ) = lim infn→∞ 1

n+1
∑n
i=0 %(si)

be the mean payoff of λ, where the lim infn→∞ is taken component-wise. A mean-payoff
objective is a pair (%, b), where % : S → Nk0 is a reward function and b ∈ Qk. A run λ satisfies
a mean-payoff objective (%, b) if mp%(λ) ≥ b.

Similarly, the long-run variance of the reward of a run λ is defined by va%(λ) =
lim supn→∞ 1

n+1
∑n
i=0(%(si)−mp(λ))2; intuitively, the long-run variance is a limit superior

of sample variances where the samples represent longer and longer run prefixes. A variance-
stability objective is a triple (%, b, c), where % : S → Nk0 is a reward function and b, c ∈ Qk.
A run λ satisfies a variance-stability objective (%, b, c) if mp%(λ) ≥ b and va%(λ) ≤ c.

Let W ∈ N be a window size and D ∈ N a checkpoint distance such that D divides W .
For every ` ∈ N0, the local mean payoff at the `th checkpoint in a run λ is defined by
lmpW,D,%,`(λ) = 1

W

∑W−1
i=0 %(s`·D+i). Thus, every run λ determines the associated infinite

sequence lmpW,D,%,0(λ), lmpW,D,%,1(λ), lmpW,D,%,2(λ), . . . of local mean payoffs. A window-
stability objective is a tuple Φ = (W,D, %, µ, ν), where W,D ∈ N such that D divides W ,
% : S → Nk0 is a reward function, and µ, ν ∈ Qk. A run λ satisfies Φ if, for all ` ∈ N, we
have that µ ≤ lmpW,D,%,`(λ) ≤ ν. A window-stability multi-objective is a finite conjunction
of window-stability objectives.

In this paper, we study the solvability of variance-stability objectives, window-stability
multi-objectives, and objectives of the form ∆ ∧ Ψ where ∆ is a window-stability multi-
objective and Ψ a mean-payoff objective.

3 The Window-Stability Multi-Objectives

This section is devoted to the window-stability multi-objectives and objectives of the form
∆∧Ψ, where ∆ is a window-stability multi-objective. In Section 3.1, we show how to solve
these objectives for finite-state games, and we derive the corresponding upper complexity
bounds. The crucial parameter which makes the problem computationally hard is the num-
ber of checkpoints in a window. In Section 3.2, we show that this blowup is unavoidable
assuming the expected relationship among the basic complexity classes.

3.1 Solving Games with Window-Stability Multi-Objectives
We start by recalling the concept of most permissive strategies which was introduced in
[1]. Technically, we define permissive strategy schemes which suit better our needs, but the
underlying idea is the same.

I Definition 1. Let G = (S, (S�, S♦), E) be a game. A (finite-memory) strategy scheme
for G is a tuple Γ = (Mem,Up,Const, Init), where Mem 6= ∅ is a finite set of memory
elements, Up : S ×Mem → Mem is a memory update function, Const : S� ×Mem → 2S is
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a constrainer such that Const(s,m) ⊆ {s′ ∈ S | (s, s′) ∈ E}, and Init : S ⇀ M is a partial
function assigning initial memory elements to some states of S.

We require2 that Const(s,m) 6= ∅ for all (s,m) ∈ Reach(Init) such that s ∈ S�. Here,
Reach(Init) is the least fixed-point of F : 2S×Mem → 2S×Mem where for all Ω the set F(Ω)
consists of all (s′,m′) such that either (s′,m′) ∈ Init, or there is some (s′′,m′′) ∈ Ω such that
(s′′, s′) ∈ E and Up(s′′,m′′) = m′; if s′′ ∈ S�, we further require s′ ∈ Const(s′′,m′′). J

We say that Γ is memoryless if the set Mem is a singleton. Every strategy scheme
Γ = (Mem,Up,Const, Init) for a game G = (S, (S�, S♦), E) determines a game GΓ =
(S×Mem, (S�×Mem, S♦×Mem), F ), where

for every (s,m) ∈ S♦×Mem, ((s,m), (s′,m′)) ∈ F iff Up(s,m) = m′ and (s, s′) ∈ E;
for every (s,m) ∈ S�×Mem where Const(s,m) 6= ∅, we have that ((s,m), (s′,m′)) ∈ F
iff Up(s,m) = m′ and (s, s′) ∈ Const(s,m);
for every (s,m) ∈ S�×Mem where Const(s,m) = ∅, we have that ((s,m), (s′,m′)) ∈ F
iff s = s′ and m = m′.

A strategy σ ∈ ΣG is admitted by Γ in a given s ∈ S if Init(s) 6= ⊥ and for every
finite path s0, . . . , sn in G initiated in s which is consistent with σ there is a finite path
(s0,m0), . . . , (sn,mn) in GΓ such that m0 = Init(s0) and si+1 ∈ Const(si,mi) for all
0 ≤ i < n where si ∈ S�. Observe that if σ is admitted by Γ in s, then σ naturally in-
duces a strategy τ [σ, s] ∈ ΣGΓ which is unique up to ≡(s0,m0). Conversely, every τ ∈ ΣGΓ

and every s ∈ S where Init(s) 6= ⊥ induce a strategy σ[τ, s] ∈ ΣG such that, for every finite
path (s0,m0), . . . , (sn,mn) initiated in (s, Init(s)) which is consistent with τ , we have that
σ[τ, s](s0, . . . , sn) = sn+1 iff τ((s0,m0), . . . , (sn,mn)) = (sn+1,mn+1) . Note that σ[τ, s] is
determined uniquely up to ≡s.

I Definition 2. Let G be a game, Γ a strategy scheme for G, ΛG ⊆ ΣG, ΛGΓ ⊆ ΣGΓ , and
s ∈ S. We write ΛG ≈s ΛGΓ if the following conditions are satisfied:

Every σ ∈ ΛG is admitted by Γ in s, and there is τ ∈ ΛGΓ such that τ [σ, s] ≡(s,Init(s)) τ .
For every τ ∈ ΛGΓ there is σ ∈ ΛG such that σ[τ, s] ≡s σ.

Further, we say that Γ is permissive for an objective Φ if ΣΦ
G (s) ≈s ΣGΓ(s) for all s ∈ S,

where ΣGΓ(s) is either ∅ or ΣGΓ , depending on whether Init(s) = ⊥ or not, respectively.

The next proposition follows immediately.

I Proposition 3. Let G be a game, Φ,Ψ objectives, and Γ a strategy scheme permissive
for Φ. Then, for every s ∈ S we have that ΣΦ∧Ψ

G (s) ≈s ΣΨ
GΓ

(s).

Another simple but useful observation is that the class of objectives for which a permissive
strategy scheme exists is closed under conjunction.

I Proposition 4. Let G = (S, (S�, S♦), E) be a finite-state game, and n ∈ N. Further, for
every 1 ≤ i ≤ n, let Γi = (Memi,Upi,Consti, Initi) be a strategy scheme for G which is
permissive for Φi. Then there is a strategy scheme for G with

∏n
i=1 |Memi| memory elements

computable in O(|S|2 · |E| ·
∏n
i=1 |Memi|2) time which is permissive for Φ1 ∧ · · · ∧ Φn.

2 Alternatively, we could stipulate Const(s,m) 6= ∅ for all (s,m) ∈ S� ×Mem, but this would lead to
technical complications in some proofs. The presented variant seems slightly more convenient.
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Figure 1 The information represented by the memory elements of Γ (for ` = 3).

As it was noted in [1], permissive strategy schemes do not exist for objectives which
admit non-winning infinite runs that do not leave the winning region of player �, such as
reachability, Büchi, parity, mean payoff, etc. On the other hand, permissive strategy schemes
exists for “time bounded” variants of these objectives. Now we show how to compute a
permissive strategy scheme for a given window-stability objective.

I Theorem 5. Let G = (S, (S�, S♦), E) be a finite-state game and Φ = (W,D, %, µ, ν)
a window-stability objective where dim% = k. Then there is a strategy scheme Γ with
W · (max% ·W )k·(W/D) memory elements computable in O(|S|2 ·|E|·W 2 ·(max% ·W )2k·(W/D))
time which is permissive for Φ.

Proof. Let ` = W/D and V = {0, . . . ,max% · (W−1)}k. We put

Mem = {0, . . . , D−1} × {0, . . . , `−1} × V`.

Our aim is to construct Γ so that for every run s0, s1, . . . in G, the memory elements in the
corresponding run (s0,m0), (s1,m1), . . . in GΓ, where (s0,m0) ∈ Init, satisfy the following.
Let n ∈ N0, and let mn = (i, j, α0, . . . , α`−1). Then

i = n mod D is the number of steps since the last checkpoint, and j = min{bn/Dc, `−1}
is a bounded counter which stores the number of checkpoint visited, up to ` − 1 (this
information is important for the initial W steps);
for every 0 ≤ r < `, we put cr = n − r ·D − (n mod D) if n − r ·D − (n mod D) ≥ 0,
otherwise cr = n. Intuitively, the state scr

is the r-th previous checkpoint visited along
s0, s1, . . . before visiting the state sn (see Figure 1). If the total number of checkpoints
visited along the run up to sn (including sn) is less than r, we put cr = n. The vector
αr stored in mn is then equal to the total reward accumulated between scr

and sn (not
including sn), i.e., αr =

∑n−1
t=cr

%(st) where the empty sum is equal to ~0. In particular
m0 = (0, 0,~0, . . . ,~0).

Note that by Definition 1, we are obliged to define Up(s,m) for all pairs (s,m) ∈ S×Mem,
including those that will not be reachable in the end. Let ‘⊕’ be a bounded addition over
N0 defined by a ⊕ b = min{a + b,max% · (W−1)}. We extend ‘⊕’ to V in the natural
(component-wise) way. The function Up is constructed as follows (consistently with the
above intuition):

For all i, j ∈ N0 such that 0 ≤ i ≤ D − 2 and 0 ≤ j ≤ ` − 1, we put
Up(s, (i, j, α0, . . . , α`−1)) = (i+1, j, α0 ⊕ %(s), . . . , αj ⊕ %(s), αj+1, . . . , α`−1).
For all j ∈ N0 such that 0 ≤ j ≤ ` − 2, we put Up(s, (D−1, j, α0, . . . , α`−1)) =
(0, j+1,~0, α0 ⊕ %(s), . . . , αj ⊕ %(s), αj+1, . . . , α`−2).
Up(s, (D−1, `−1, α0, . . . , α`−1)) = (0, `−1,~0, α0 ⊕ %(s), . . . , α`−2 ⊕ %(s)).
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For every (s,m) ∈ S ×Mem, let succ(s,m) be the set of all (s′,m′) ∈ S ×Mem such that
(s, s′) ∈ E and Up(s,m) = m′. Now we define a function F : 2S×Mem → 2S×Mem such that,
for a given Ω ⊆ S ×Mem, the set F(Ω) consists of all (s, (i, j, α0, . . . , α`−1)) satisfying the
following conditions:

if i = D−1 and j = `−1, then µ ·W ≤ α`−1 + %(s) ≤ ν ·W .
if s ∈ S♦, then succ(s, (i, j, α0, . . . , α`−1)) ⊆ Ω.
if s ∈ S�, then succ(s, (i, j, α0, . . . , α`−1)) ∩ Ω 6= ∅.

Observe that F is monotone. Let gfix(F) be the greatest fixed-point of F . For every
(s,m) ∈ S� × Mem, we put Const(s,m) = succ(s,m) ∩ gfix(F). Further, the set Init
consists of all (s, (0, 0,~0, . . .~0)) ∈ gfix(F). It follows directly from the definition of Γ that
Const(s,m) 6= ∅ for all (s,m) ∈ Reach(Init) such that s ∈ S�.

Since gfix(F) can be computed in O(|S|2 · |E| ·W 2 · (max% ·W )2k·(W/D)) time by the
standard iterative algorithm, the strategy scheme Γ = (Mem,Up,Const, Init) can also be
computed in this time. Further, observe the following:

(A) Let (s0,m0), (s1,m1), . . . be a run in GΓ such that (s0,m0) ∈ Init. Then s0, s1, . . . is a
run in G that satisfies the window-stability objective Φ.

(B) Let (s,m) 6∈ gfix(F), and let Γ∗ be a strategy scheme which is the same as Γ except
for its constrainer Const∗ which is defined by Const∗(s,m) = succ(s,m) for all (s,m) ∈
S� ×Mem. Then there is a strategy π∗ ∈ ΠGΓ∗ such that for every strategy σ∗ ∈ ΣGΓ∗

we have that outcomeσ
∗,π∗

(s,m) visits a configuration (t, (D − 1, ` − 1, α0, . . . , α`−1)) where
α`−1 + %(t) < µ ·W or α`−1 + %(t) > ν ·W .

Both (A) and (B) follow directly from the definition of F . Now we can easily prove that Γ
indeed encodes the window-stability objective Φ, i.e., ΣΦ

G (s) ≈s ΣGΓ(s) for all s ∈ S.
Let τ ∈ ΣGΓ(s). We need to show that σ[τ, s] achieves the objective Φ in s. So, let

π ∈ ΠG, and let s0, s1, . . . be the run outcomeσ[τ,s],π
s . Obviously, there is a corresponding

run (s0,m0), (s1,m1), . . . in GΓ initiated in (s, Init(s)), which means that s0, s1, . . . satisfies Φ
by applying (A). Now let σ ∈ ΣΦ

G (s). We need to show that σ is admitted by Γ in s. Suppose
it is not the case. If Init(s) = ⊥, then (s, (0, 0,~0, . . . ,~0)) 6∈ gfix(F), and hence σ 6∈ ΣΦ

G (s) by
applying (B). If Init(s) 6= ⊥, there is a finite path s0, . . . , sn, sn+1 of minimal length such
that s0 = s, sn ∈ S�, and the corresponding finite path (s0,m0), . . . , (sn,mn), (sn+1,mm+1)
in GΓ∗ , where m0 = Init(s) and mi+1 = Up(si,mi) for all 0 ≤ i ≤ n, satisfies that sn+1 6∈
Const(sn,mn). Note that for all si ∈ S� where i < n we have that si+1 ∈ Const(si,mi),
because otherwise we obtain a contradiction with the minimality of s0, . . . , sn, sn+1. Since
(sn+1,mn+1) 6∈ gfix(F), by applying (B) we obtain a strategy π∗ ∈ ΠGΓ∗ such that for
every σ∗ ∈ ΣGΓ∗ we have that outcomeσ

∗,π∗

(sn+1,mn+1) visits a configuration (t, (D − 1, ` −
1, α0, . . . , α`−1)) where α`−1 +%(t) < µ ·W or α`−1 +%(t) > ν ·W . Let π ∈ ΠG be a strategy
satisfying the following conditions:

outcomeσ,πs starts with s0, . . . , sn+1.
For all finite paths of the form s0, . . . , sn+1, . . . , st in G such that st ∈ S♦, let
(s0,m0), . . . , (sn+1,mn+1), . . . , (st,mt) be the unique corresponding finite path in GΓ∗ .
We put π(s0, . . . , sn, . . . st) = st+1, where π∗((sn+1,mn+1), . . . , (st,mt)) = (st+1,mt+1).

Clearly, the run outcomeσ,πs does not satisfy the objective Φ, which contradicts the assump-
tion σ ∈ ΣΦ

G (s). J
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For every window-stability multi-objective ∆ = Φ1 ∧ · · · ∧ Φn where we have Φi =
(Wi, Di, %i, µi, νi), we put M∆ =

∏n
i=1Wi · (max%i

·Wi)ki·(Wi/Di), where ki = dim%i
. As a

direct corollary to Theorem 5 and Proposition 4, we obtain the following:

I Corollary 6. Let G = (S, (S�, S♦), E) be a finite-state game and ∆ a window-stability
multi-objective. Then there is a permissive strategy scheme for ∆ withM∆ memory elements
constructible in time O(|S|2 · |E| ·M2

∆).

Now we can formulate a (meta)theorem about the solvability of objectives of the form
∆∧ψ, where ∆ is a window-stability multi-objective and ψ is a reward-based objective such
that the time complexity of solving Ψ for a game G = (S, (S�, S♦), E) and a reward function
% can be asymptotically bounded by a function f in |S|, |E|, max% , and dim% .

I Theorem 7. Let Ψ be a reward-based objective solvable in O(f(|S|, |E|,max% , dim%)) time
for every finite-state game G = (S, (S�, S♦), E) and every reward function % for Ψ. Further,
let ∆ be a window-stability multi-objective. Then the objective ∆ ∧Ψ is solvable in time

O(max{f(|S| ·M∆, |E| ·M∆,max% , dim%), |S|2 · |E| ·M2
∆})

for every finite-state game G = (S, (S�, S♦), E) and every reward function % for Ψ.

Note that Theorem 7 is a simple consequence of Corollary 6 and Proposition 3.
Since mean-payoff objectives are solvable in O(|S| · |E| ·max%) time when dim% = 1 [7]

and in O(|S|2 · |E| ·max% ·k · (k · |S| ·max%)k2+2k+1) time when dim% = k ≥ 2 [12], we finally
obtain:

I Theorem 8. Let G = (S, (S�, S♦), E) be a finite-state game, ∆ a window-stability multi-
objective, and Ψ = (%, b) a mean-payoff objective. If dim% = 1, then the objective ∆ ∧ Ψ is
solvable in time O(|S|2 · |E| ·M2

∆ · max%). If dim% = k ≥ 2, then the objective ∆ ∧ Ψ is
solvable in time O(|S|2 · |E| ·M3

∆ ·max% · k · (k · |S| ·M∆ ·max%)k2+2k+1).

Let us note that for a given window-stability multi-objective ∆ and a given one-dimensional
reward function %, there exists the maximal bound b such that the objective ∆ ∧ (%, b) is
achievable. Further, this bound b is rational and computable in time O(|S|2 ·|E|·M2

∆ ·max%).

3.2 Lower Bounds for Window-Stability Objectives
We now focus on proving lower bounds for solving the window-stability objectives. More
precisely, we establish lower complexity bounds for the problem whose instances are triples
of the form (G, s,Φ), where G is a game (or a graph), s is a state of G, Φ = (W,D, %, µ, ν)
is a window-stability objective, and the question is whether there exists a strategy σ ∈ Σ
which achieves Φ in s. The components of Φ can be encoded in unary or binary, which is
explicitly stated when presenting a given lower bound.

The main result of this section is Theorem 12 which implies that solving a window-
stability objective is PSPACE-hard for games and NP-hard for graphs even if dim% = 1,
D = 1, and W as well as the values %(s) for all s ∈ S are encoded in unary. Note that an
upper time complexity bound for solving these objectives is O(|S|2 · |E| ·W · (max% ·W )W/D)
by Corollary 6. Hence, the parameter which makes the problem hard is W/D.

As a warm-up, we first show that lower bounds for solving the window-stability objectives
where the reward function is of higher dimension, or W , D, and the rewards are encoded
in binary, follow rather straightforwardly from the literature. Then, we develop some new
insights and use them to prove the main result.
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I Theorem 9. Solving the window-stability objectives (where dim% is not restricted) is
EXPTIME-hard. The hardness result holds even if the problem is restricted to instances

1. where each component of each reward vector is in {−1, 0, 1}, or
2. where the reward vectors have dimension one (but the rewards are arbitrary binary-

encoded numbers).

Proof. The result can be proven by a straightforward adaptation of the proof of EXPTIME-
hardness of multi-dimensional fixed-window mean-payoff problem [8, Lemma 23 and 24].
The reductions in [8] that we can mimic are from the acceptance problem for polynomial-
space alternating Turing machines (item 1.) and countdown games [17] (item 2.). Although
the fixed-window mean-payoff problem differs from ours (see Section 1), an examination
of the proofs in [8] reveals that almost the same constructions work even in our setting.
In particular, while the problem to which countdown games are reduced in [8] assumes
two-dimensional rewards, in our setting we can restrict to single dimension due to window-
stability objective imposing both a lower and an upper bound on local mean payoff. J

The reductions in the previous theorem require that the window size W is encoded in
binary, as the windows need to be exponentially long in the size of the constructed graph.
For the case whenW is given in unary encoding, the following result can be adapted from [8].

I Theorem 10. Solving the window-stability objectives (where dim% is not restricted) where
the window size W is encoded in unary is PSPACE-hard, even if it is restricted to instances
where the components of reward functions are in {−1, 0, 1}.

A proof of Theorem 10 is obtained by adapting a proof from [8, Lemma 25], where a reduction
from generalized reachability games is given.

The results of [8] do not yield lower bounds for window-stability objectives with one-
dimensional reward functions in which either the windows size or the rewards are encoded
in unary. In our setting, for the case of binary rewards/unary window size one can come
up with NP-hardness for graphs and PSPACE-hardness for games via reductions from the
Subset-Sum problem and its quantified variant [18], respectively. Similarly, for unary reward-
s/binary window size a PSPACE-hardness for games via reduction from emptiness of 1-letter
alternating finite automata [16] seems plausible. We do not follow these directions, since we
are able to prove an even stronger and somewhat surprising result: solving window-stability
objectives with one-dimensional reward functions is PSPACE-hard for games and NP-hard
for graphs even if all the numbers in the input instance are encoded in unary. The proof of
this result requires a new proof technique sketched below.

We rely on reductions from special variants of the SAT and QBF problems. An instance
of the Balanced-3-SAT problem is a propositional formula ϕ in a 3-conjunctive normal form
which contains an even number of variables. Such an instance is positive if and only if ϕ
admits a satisfying assignment which maps exactly half of ϕ’s variables to 1 (true). We
can also define a quantified variant, a Balanced-QBF problem: viewing a quantified Boolean
formula ψ = ∃x1∀x2 · · · ∃xn−1∀xn ϕ (where ϕ is quantifier-free), as a game between player
controlling existentially quantified variables (who strives to satisfy ϕ) and player controlling
universal variables (who aims for the opposite), we ask whether the existential player can
enforce assignment mapping exactly half of the variables to 1 and satisfying ϕ (a formal
definition of Balanced-QBF is given in [6]. The following lemma is easy.

I Lemma 11. The Balanced-QBF problem is PSPACE-complete. The Balanced-3-SAT is
NP-complete.
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Figure 2 In the lower gadget, Player � must mimic the assignment she chose in the upper one.

Let G be a finite-state game and Φ = (W,D, %, µ, ν) a window-stability objective. An in-
stance (G, s,Φ) is small if dim%=1, andW , D, max% , and the numerators and denominators
of the fully reduced forms of µ and ν, are bounded by the number of states of G.

I Theorem 12. Solving the window-stability objectives with one-dimensional reward func-
tions is PSPACE-hard for games and NP-hard for graphs, even for small instances.

Proof (sketch). We proceed by reductions from Balanced-3-SAT for graphs and from
Balanced-QBF for games. As the reductions are somewhat technical, we explain just their
core idea. The complete reduction can be found in [6].

Assume a formula ϕ in 3-CNF with variables {x1, . . . , xn}, n being even. Consider the
graph G in Figure 2. Both the “upper” gadget (consisting of non-primed states) and the
“lower” gadget (with primed states) represent a standard “assignment choice” gadget, in
which Player � selects an assignment to variables in ϕ (e.g. choosing an edge going to t1
from s1 corresponds to setting variable x1 to true etc.). With no additional constraints, �
can choose different assignments in the two gadgets, and she may change the assignment
upon every new traversal of the lower gadget. Now assign reward 1 to states that correspond
to setting some variable to true and 0 to all the other states, let window size W = 2n,
checkpoint distance D = 1, µ = n

2 , and ν = n
2 + 1

3n (say). In order to satisfy the window-
stability objective (W,D, %, µ, ν) from s1, � has to select a balanced assignment in the upper
gadget and moreover, mimic this assignment in all future points in the lower gadgets. The
necessity of the first requirement is easy. For the second, assume that there is some ` such
that in the `-th step of the run λ the player chooses to go from, say, si to ti (or from s′i to t′i),
while in the (`+ 2n)-th step she goes from s′i to f ′i . Then the rewards accumulated within
windows starting in the `-th and (` + 1)-th step, respectively, differ by exactly one. Thus,
|lmpW,D,`(λ)− lmpW,D,`+1(λ)| = 1/2n > 1/3n, which means that the local mean payoffs at
the `-th and (`+ 1)-th checkpoint cannot both fit into the interval [µ, ν].

Note that we use the balanced variant of 3-SAT and QBF, as to set up µ and ν we need
to know in advance the number of variables assigned to true.

Once we force the player to commit to some assignment using the above insight, we
can add more copies of the “primed” gadget that are used to check that the assignment
satisfies ϕ. Intuitively, we form a cycle consisting of several such gadgets, one gadget per
clause of ϕ, the gadgets connected by paths of suitable length (not just by one edge as
above). In each clause-gadget, satisfaction of the corresponding clause C by the chosen
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assignment is checked by allowing the player to accrue a small additional reward whenever
she visits a state representing satisfaction of some literal in C. This small amount is then
subtracted and added again on a path that connects the current clause-gadget with the next
one: subtracting forces the player to satisfy at least one literal in the previous clause-gadget
(and thus accrue the amount needed to “survive” the subtraction) while adding ensures that
this “test” does not propagate to the next clause-gadget. Rewards have to be chosen in a
careful way to prevent the player from cheating. For PSPACE-hardness of the game version
we simply let the adversary control states in the initial gadget (but not in clause-gadgets)
corresponding to universally quantified variables. J

4 The variance-stability problem

In this section, we prove the results about variance-stability objectives promised in Section 1.

I Theorem 13. The existence of a strategy achieving a given one-dimensional variance-
stability objective for a given state of a given graph is in NP. Further, the strategy may
require infinite memory.

Let us now prove the above theorem. Consider a graph G = (S, (S, ∅), E) and an instance
of the variance-stability problem determined by a reward function % together with a mean-
payoff bound b ∈ Q and a variance bound c ∈ Q. We assume that all runs are initiated in a
fixed initial state s̄. A frequency vector is a tuple (fe)e∈E ∈ [0, 1]|E| with

∑
e∈E fe = 1 and∑

s′:(s′,s)∈E

f(s′,s) =
∑

s′:(s,s′)∈E

f(s,s′) (1)

for all s ∈ S. Now consider the following constraints:

mp :=
∑
s∈S

fs · %(s) ≥ a and va :=
∑
s∈S

fs · (%(s)−mp)2 ≤ b (2)

Here fs =
∑

(s′,s)∈E f(s′,s) for every s ∈ S. As every graph is a special case of a Markov
decision process, we may invoke Proposition 5. of [5] and obtain the following proposition.
I Proposition 14 ([5]). Assume that there is a solution to the given variance-stability
problem. Then there is a frequency vector (fe)e∈E satisfying the inequalities (2). All e ∈ E
satisfying fe > 0 belong to the same strongly connected component of G reachable from s̄.
The above inequalities (2) can be turned into a negative semi-definite program, using tech-
niques of [5], and hence their satisfiability can be decided in non-deterministic polynomial
time [19]. To finish our algorithm, we need to show that a solution to the above inequalities
can also be turned into a strategy which visits each e ∈ E with the frequency fe.

Let λ = s0s1 . . . be a run. Given e ∈ E and i ∈ N we define a random variable aei (λ) to
take value 1 if (si, si+1) = e, and 0 otherwise.

I Lemma 15. Suppose (fe)e∈E is a frequency vector such that all e ∈ E satisfying fe > 0
belong to the same strongly connected component reachable from the initial state s̄. Then
there is a strategy σf with limi→∞

1
i+1
∑i
j=0 a

e
i (λ) = fe for all e ∈ E, where λ is the run

induced by σf (initiated in s̄).

Proof. Let us assume, w.l.o.g., that G itself is strongly connected. If (fe)e∈E is rational and
all edges e satisfying fe > 0 induce a strongly connected graph, we may easily construct
the strategy σf as follows. We multiply all numbers fe with the least-common-multiple of
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Figure 3 One player game in which there is an infinite-memory strategy σ such that
mp(outcomeσ,πs ) ≥ 3/2 and va(outcomeσ,πs ) ≤ 9/4 (here π is the only “trivial” strategy of the
environment). However, there is no finite-memory σ with this property.

their denominators and obtain a vector of natural numbers f ′e that still satisfy the above
equation (1). Now we may imagine the game as a multi-digraph, where each edge e has the
multiplicity f ′e. It is easy to show that the flow equations are exactly equivalent to existence
of a directed Euler cycle. From this Euler cycle in the digraph we immediately get a cycle
in our game which visits each edge exactly f ′e times. By repeating the cycle indefinitely we
obtain a run with the desired frequencies fe of edges.

For vectors with irrational frequencies we adapt the above approach and use a sequence
of converging rational approximations. The proof is technical, and is given in [6]. J

This finishes the proof of Theorem 13.
We now show that variance-stability objectives may require strategies with infinite

memory. Consider the graph in Figure 3, and the variance-stability objective which re-
quires to achieve a mean payoff of at least 3/2 and long-run variance at most 9/4. Observe
that there is an infinite-memory strategy achieving the above bounds. It works as follows:
We start in the state A, the strategy proceeds in infinitely many phases. In the n-th phase
it goes n times from A to B and back. Afterwards it goes to D, makes 2n steps on the loop
on D, and then returns back to A. One can show that the mean payoff converges along this
run. The limit is 4/4 + 0/4 + 1/2 = 3

2 since the −10 reward is obtained with zero frequency.
The long-run variance is 1

4
(
− 3

2
)2 + 1

4
(
4− 3

2
)2 + 1

2
(
1− 3

2
)2 = 9

4 . Now we show that there
is no finite-memory strategy achieving a mean payoff of 3/2 and a long-run variance of 9/4.
Note that the maximal mean payoff achievable (without any constraints) in the graph is 2.
Assume that there is a finite memory strategy σ yielding mean payoff x with 3/2 ≤ x ≤ 2,
and variance at most 9/4. We first argue that σ visits C with zero frequency. Denote by fY
the frequency of state Y . Because x = 0 · fA + 4 · fB + (−10) · fC + 1 · fD by the definition of
mean payoff, and also fA = fB and fD = 1− fA − fB − fC by the definition of our graph,
we have fA = (x+ 11 · fC − 1)/2 and fD = 2− x− 12 · fC . Thus, the variance is

fA·(0− x)2 + fB · (4− x)2 + fC · (−10− x)2 + fD(1− x)2

= x− 1
2 ·

(
(0− x)2 + (4− x)2)+ (2− x) · (1− x)2

+ fC ·
(11

2 ·
(
(0− x)2 + (4− x)2)+ (−10− x)2 − 12 · (1− x)2

)
.

Using calculus techniques one can easily show that the first term is at least 9/4 for all
x ∈ [3/2, 2], while the parenthesized expression multiplied by fC is positive for all such
x. Hence fC = 0. But any finite-memory strategy that stays in C with frequency 0 either
eventually loops on D, in which case the mean payoff is only 1, or it eventually loops on A
and B, in which case the variance is 4.

Even finite-memory strategies that approximate the desired variance-stability (up to
some ε > 0) must behave in a peculiar way: Infinitely many times stay in {A,B} for a large
number of steps (depending on ε) and also stay in C for a large number of steps. Hence, in
a real-life system, a user would observe two repeating phases, one with low mean payoff but
high instability, and one with low stability and high mean payoff.
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