
Runtime Monitoring of Dynamic Fairness Properties
Thomas A. Henzinger

Institute of Science and Technology Austria (ISTA)

Klosterneuburg, Austria

tah@ist.ac.at

Mahyar Karimi

Mahyar.Karimi@ist.ac.at

Institute of Science and Technology Austria (ISTA)

Klosterneuburg, Austria

Konstantin Kueffner

konstantin.kueffner@ist.ac.at

Institute of Science and Technology Austria (ISTA)

Klosterneuburg, Austria

Kaushik Mallik

kaushik.mallik@ist.ac.at

Institute of Science and Technology Austria (ISTA)

Klosterneuburg, Austria

ABSTRACT
A machine-learned system that is fair in static decision-making

tasks may have biased societal impacts in the long-run. This may

happen when the system interacts with humans and feedback pat-

terns emerge, reinforcing old biases in the system and creating

new biases. While existing works try to identify and mitigate long-

run biases through smart system design, we introduce techniques

for monitoring fairness in real time. Our goal is to build and de-

ploy a monitor that will continuously observe a long sequence of

events generated by the system in the wild, and will output, with

each event, a verdict on how fair the system is at the current point

in time. The advantages of monitoring are two-fold. Firstly, fair-

ness is evaluated at run-time, which is important because unfair

behaviors may not be eliminated a priori, at design-time, due to

partial knowledge about the system and the environment, as well

as uncertainties and dynamic changes in the system and the envi-

ronment, such as the unpredictability of human behavior. Secondly,

monitors are by design oblivious to how the monitored system

is constructed, which makes them suitable to be used as trusted

third-party fairness watchdogs. They function as computationally

lightweight statistical estimators, and their correctness proofs rely

on the rigorous analysis of the stochastic process that models the

assumptions about the underlying dynamics of the system. We

show, both in theory and experiments, how monitors can warn us

(1) if a bank’s credit policy over time has created an unfair distri-

bution of credit scores among the population, and (2) if a resource

allocator’s allocation policy over time has made unfair allocations.

Our experiments demonstrate that the monitors introduce very low

overhead. We believe that runtime monitoring is an important and

mathematically rigorous new addition to the fairness toolbox.

CCS CONCEPTS
• Computing methodologies→ Machine learning; • Social and
professional topics→ Computing / technology policy.

This work is licensed under a Creative Commons Attribution International

4.0 License.

FAccT ’23, June 12–15, 2023, Chicago, IL, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0192-4/23/06.

https://doi.org/10.1145/3593013.3594028

KEYWORDS
algorithmic fairness, dynamic fairness, runtime monitor, online

statistical estimator

ACM Reference Format:
Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik

Mallik. 2023. Runtime Monitoring of Dynamic Fairness Properties. In 2023
ACM Conference on Fairness, Accountability, and Transparency (FAccT ’23),
June 12–15, 2023, Chicago, IL, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3593013.3594028

1 INTRODUCTION
A majority of works in the fairness literature have considered fair-

ness in static decision making problems, such as classification, re-

gression, etc [10, 13, 17]. Recent results suggest that fairness itself

is not static, but rather dynamic: a system that is fair in its static

decision-making tasks may become biased in its overall societal

impacts over time [9, 20, 25, 26, 30, 39, 40]. This happens when

the system makes sequential decisions about humans, and every

decision of the system is met with some human reaction in re-

turn, possibly changing the parameters and the future decisions

of the system. Such feedback patterns often reinforce historical

biases in the dataset and introduce new biases in the society in the

long-run as well. While there are many works that have proposed

analysis and mitigation techniques for long-run biases, to our best

knowledge, there does not exist any technique that could detect

such biases in real-time. We propose runtime monitoring, as a new
addition to the fairness toolbox, for the real-time detection of dy-

namic social biases in deployed machine-learned decision makers,

whose models are unknown and may change over time (e.g., due to

retraining, changes in parameters, etc.).

The goal of runtime monitoring is to design amonitor which will
observe the sequential interactions between the decision-maker

and its environment, and, after each observation, will output a

quantitative, statistically rigorous estimate of how fair or biased

the system is at that point in time. Unlike most existing approaches

[26, 30, 39], our monitors do not require any assumption or explicit

knowledge of the system model.

Monitoring can help us in twoways. Firstly, by detecting biases in

real-time, it can trigger corrective measures or retraining, whenever

necessary. Statically designed fairness interventions are based on an

assumed dynamicmodel of the system. In practice, models are rarely

perfect due to imperfect knowledge of the systems and the involved

uncertainties, making it often impossible to predict if a long-run

fairness intervention is going to work in practice. Moreover, the

604

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593013.3594028
https://doi.org/10.1145/3593013.3594028
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593013.3594028&domain=pdf&date_stamp=2023-06-12

FAccT ’23, June 12–15, 2023, Chicago, IL, USA Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik

underlying environment conditions may change over time, making

static interventions even harder. Monitoring offers an additional,

complementary tool that enables us to close this gap by warning

us of the presence of biases in real-time, so that we can adapt our

intervention techniques whenever necessary. There is an analogy to

control theory, where it is well-known that closed-loop (feedback)

controllers fare much better against modeling uncertainties than

open-loop (feed-forward) controllers [31, Sec. 1.3].

The other area where monitoring can help us is in the creation

of trusted third-party watchdogs for overseeing the fairness of

decision-makers. They can work neutrally in public interest, since

they are by-design independent of the implementation of the sys-

tem.

Consider the following situation where fairness is dynamic, and

we show that monitoring will be useful. Consider a bank that gives

loans to individuals based on their credit scores. The population

is divided into two groups, with one group having higher average

credit score than the other. A policy of the bank that gives loans to

the eligible individuals from each group with equal probabilities

(equalized opportunity [17]) may seem fair and noble. However, in

doing so, the bank may end up giving more loans to less eligible

individuals from the disadvantaged group. If the credit score dis-

tribution of the disadvantaged group is heavily skewed towards a

higher default rate, then there will be many loan defaults, causing

a further drop in average credit score of the disadvantaged group

[40]. For this example, we present a monitor which observes a sin-

gle long sequence of lending events, consisting of sampling of an

applicant, the decision made by the bank on this applicant, and

if the loan was granted then whether it was repaid or not. After

each observation, the monitor computes a quantitative statistical

estimate of the difference between the average credit scores of the

two groups. It does so by being completely oblivious to the bank’s

policy and by not assuming any prior knowledge about the humans’

behaviors (whether they repay or not).

Now consider the following situation. It has been shown that

voice assistants, such as Amazon Alexa and Google Home, are bi-

ased towards the English accents of native speakers, where the

native speakers experience significantly higher quality service than

the non-native speakers [18]. This happens when there is an im-

balance between group representations in the dataset, with more

data available for one demographic group than the other. If over

time, more and more non-native speakers stop using the service

out of dissatisfaction, then the dataset gets more skewed towards

the native speakers, intensifying the biases further [19]. Similar

representation-driven biases were reported in other areas as well,

such as recommendation systems [7], credit market [15], and crime

prediction [12]. While, in theory, there are remedies that work if

the reactions of the humans can be perfectly predicted, in practice,

they may worsen the situation whenever the modeling assumptions

do not align well with the true intentions of the humans [39]. This

demonstrates that it is difficult to design a static fairness interven-

tion that will always work in the long run. Monitoring can help

us to, firstly, detect such dynamic biases and warn us in time, and,

secondly, to change the interventions whenever necessary.

We consider time-varying social fairness properties, as a class of
dynamic fairness properties. They can bewritten as the difference in

expected values of a given function over unknown time-varying fea-

ture distributions across two demographic groups. Such properties

can capture many existing aspects of long-run fairness properties

in the society, such as the time-varying difference in expected credit

scores across two groups [40], the time-varying difference in group

representations [19], etc.

Our monitors perform statistical estimations to obtain a PAC-

style estimate of the value of the social fairness properties in real-

time. We do not make any assumptions about the policies of the

already deployed machine-learned agent and the human users (i.e.,

the environment). The only assumption wemake is that the monitor

can observe the features of the selected individual, the actions of the

agent, and the reactions of the individual. Moreover, we assume the

availability of a change function, such that from each observation

the monitor can infer the resulting change in the expected value

of the unknown distribution. For instance, in the lending example,

we assume the observability of the credit scores and the group

memberships of the sampled individuals, the bank’s decisions, and

the reactions of repaying or defaulting of loans by the individuals.

At any time, if the individual is selected from a group with size 𝑁 ,

then the change function tells us that a repayment of the loan will

increase the credit score of the individual by, say, 1 point, thereby

increasing the average credit score of their group by
1/𝑁 . Similarly,

a loan default will decrease the credit score of the individual by,

say, 1 point, thereby decreasing the average credit score of their

group by
1/𝑁 . Our monitor observes one long sequence of lending

events, and, after each new observation and based on the given

history of past lending events and the past valuations of the change

function, computes an updated PAC-style estimate of the disparity

in average credit scores across the two groups.

Computationally, our monitors are extremely lightweight, and

their implementations required only a few lines of code. Yet, the

mathematical analysis of their correctness is nontrivial. The diffi-

culty stems from the fact that the samples observed on any given

sequence are all statistically dependent on each other. For instance,

the probability of sampling an individual with a certain credit score

will depend on whether the previous individual who was from the

same group and had the same credit score repaid the loan or not.

As our monitor, we present an unbiased statistical estimator as well

as PAC-style bounds for its estimates. The bounds are obtained by

constructing a martingale from the estimates, analyzing the cor-

responding martingale difference sequence, and applying suitable

concentration inequalities for martingale difference sequences.

We implemented our monitors in a prototype tool. Using this

implementation, we designed monitors for two practical examples

from the literature. The first example concerns the lending problem
that we discussed earlier, where we monitored, in real-time, to what

degree the lending policy of the bank has widened the disparity

of average credit scores across the two demographic groups. The

second example is an attention allocation problem [9], where inci-

dents keep occurring at every step in multiple locations, and we

have a machine-learned allocator for allocating its limited units

of attention to the locations to discover the incidents. The rate at

which incidents occur at each location is inversely proportional

to the amount of attention allocated to that location in the pre-

vious step. Real-world applications of this example include child

605

Runtime Monitoring of Dynamic Fairness Properties FAccT ’23, June 12–15, 2023, Chicago, IL, USA

services, pest control, etc. We monitored, in real-time, to what de-

gree the allocator’s allocation policy has widened the disparity of

discovery probability of incidents among two of the given locations.

Implementations of these systems were already available in the tool

ml-fairness-gym [9]. We executed our monitors on the simula-

tion traces of the systems as extracted from ml-fairness-gym. We

demonstrate that our monitors are able to produce tight statistical

estimates of the considered fairness properties in real-time.

We believe that runtime monitors will be an important new

addition to the fairness toolbox. On one hand, they will complement

the existing model-based analysis and design tools by checking

dynamic fairness in real-time, and helping us to trigger on-demand

corrective measures. On the other hand, they will be useful in

building trusted third-party fairness watchdogs.

All the technical proofs have been omitted for the lack of space;

they can be found in the longer version of our paper [22].

Related Work
Fairness in automated decisionmaking has become an active field of

research in recent years. Early works only considered fairness in the

static decision making settings, where the decision maker needs to

be fair with respect to a time-invariant distribution. Several group

fairness [13, 17] and individual fairness [10] criteria were proposed,

and measures for implementing them were invented. The proposed

measures in this setting can be grouped into three categories: (a)

ones which pre-process the training dataset to eliminate historical

biases [6, 16, 24, 38], (b) ones which design training algorithms that

are more robust to biases (called in-processing) [1, 4, 36, 37], and (c)

ones which post-process the decision-maker’s output to eliminate

biases [17].

Later, it was observed by many authors that, surprisingly, deci-

sion policies that are statically fair may lead to unfair behavior in

the sequential setting. In this regard, the simplest sequential setting

studied in the literature is the two-stage one: in the first stage, the

agent makes decisions on humans from two groups, which may

cause the humans to take certain actions, and the resulting impact

on the groups are then examined in the second stage [20, 25]. In

the more general long-term setting, the agent is allowed to retrain

its decision policy over time, which may be affected by a change or

bias in the dataset, caused by the reactions of humans to decisions

made by the agent in the past. This closed feedback was shown

to self-reinforce biases that were present in the dataset as well as

introduce new biases. Relevant works on the sequential setting can

be found in a recent survey [40]. While most of the existing works

attempt to eliminate biases at design-time and assume information

about the model [26, 30, 39], we detect them at runtime with lit-

tle knowledge about the model. There are also simulation-based

studies which study long-term impacts of static fairness measures

[9]. They are also incomparable to our monitoring setup: in sim-

ulations, it is shown how bias changes over time for an assumed

model of interactions, whereas we make almost no assumptions on

the model and use the concrete measurements to estimate the bias

in the system.

Our monitors are designed to operate in a dynamic setting.

Hence, static systems or systemswhere the decisions of the agent do

not affect the parameters of the underlying population, which have

been studied extensively in the literature (see Mehrabi et.al. [29]),

are a special case of our setting. Therefore, monitoring could be

applied. A natural setting would be the deployment of monitors to

check whether an agent in a bandit setting is fair [8, 23].

Runtimemonitoring is awell-studied subject in the area of formal

methods in computer science [3]. The goal is to check, at runtime,

if an unknown system satisfies or violates a given safety property.

For instance, a monitor may be used to detect traffic congestion in

the roads of a smart city [27], or safety violation of autonomous

vehicles [28]. The outputs of monitors are usually passed to a safety-

supervisory control layer, which takes necessary actions to prevent

damages, for example through a default fail-safe action [5].

Unfortunately, a majority of the existing works in runtime moni-

toring cannot handle statistical properties, such as fairness. Notable

exceptions include the work by Ferrère et al. [14], which develops

efficient techniques for monitoring statistical properties of sys-

tems. However, they do not consider fairness properties. Moreover,

their monitors’ outputs are correct only asymptotically, whereas

our monitors output PAC-style error bounds for every observed

sequence of finite length.

The closest to our work are the papers by Albarghouthi et al. [2]

and a recent paper by us [21]. Albarghouthi et al. [2] presented an

approach for monitoring fairness in sequential decision-making

tasks, which we generalized to monitoring fairness over Markov

chains using techniques from both frequentist and Bayesian statis-

tics [21]. These works can be used to monitor only group fairness

and individual fairness properties in static decision-making prob-

lems, whereas we monitor time-varying social fairness properties

in dynamic decision-making problems.

There is a body of research that is ideologically similar to ours,

and developed sequential statistical tests to evaluate the perfor-

mance of already deployed machine-learned systems at runtime.

Podkopaev et al. [32] proposed an algorithm for monitoring the

expected loss of a given classifier due to shift in the dataset distri-

bution. The expected loss is based on the misclassification rate of a

classifier, and is uncomparable to fairness properties that we con-

sider in this work. Waudby-Smith et al. [34] proposed a sequential

estimation algorithm that was used to estimate the time-varying

average treatment effect (ATE) in a randomized experiment, which

gives a measure of the expected difference in outcome between

an individual chosen from the population receiving a treatment

(like a medical drug that is being tested) and not receiving the

treatment. Although there are some structural similarities between

ATEs and fairness properties, they estimate how much the ATE

was on an average until the present time, whereas we estimate how

much fair the system is at the present time. Moreover, their esti-

mates are asymptotically correct, whereas we provide finite-sample

correctness guarantees.

2 PROBLEM SETUP
2.1 The Sequential

Agent-Environment-Interaction Model
We call a machine-learned decision maker an agent, and the popula-
tion of the subjects of its decisions the environment. For example, in

a lending scenario, a bank’s machine-learned lending policy is the

agent, and the population of the loan applicants is the environment.

606

FAccT ’23, June 12–15, 2023, Chicago, IL, USA Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik

We use a setup similar to the work of D’Amour et al. [9], where

an agent engages in a sequential interaction with its environment,

and as a result the parameters of the environment change. The

environment contains a distribution over the individuals, where

each individual is represented by a real-valued (scalar) feature of

interest, such as their credit score, and a sensitive attribute, such as

their ethnicity. In this work we only consider fairness properties

that depend on the single available feature of the individuals; ex-

tension to fairness with respect to feature vectors is left open for

future work. In general, we allow the individuals to have additional

features, though they do not influence the fairness. For simplicity of

notation, we suppress such additional unimportant features when

considering the individuals.

At each step 𝑡 , the environment samples a single individual with
feature 𝑋𝑡 and the group membership𝐺𝑡 , where 𝑋𝑡 is a real-valued

random variable and𝐺𝑡 is a random variable which is assumed to

have a binary support {𝐴, 𝐵} for simplicity. We use the shorthand

notations P𝐴 (𝑋𝑡 = 𝑥𝑡) and P𝐵 (𝑋𝑡 = 𝑥𝑡) to denote, respectively,

the conditional probabilities P(𝑋𝑡 = 𝑥𝑡 | 𝐺𝑡 = 𝐴) and P(𝑋𝑡 =

𝑥𝑡 | 𝐺𝑡 = 𝐵). Moreover, for any two random variables 𝑊 and

𝑉 with their respective outcomes 𝑤 and 𝑣 , we use the shorthand

notation P(𝑤 | 𝑣) and E(𝑊 | 𝑣) instead of P(𝑊 = 𝑤 | 𝑉 = 𝑣) and
E(𝑊 | 𝑉 = 𝑣), respectively.

At time 𝑡 , the agent performs an action𝑌𝑡 , which is also treated as
a random variable. Given the agent’s action, the environment may

react by using its own reactions, which we denote using the random

variable 𝑍𝑡 . The randomness in 𝑌𝑡 and 𝑍𝑡 capture the modeling

uncertainties, such as unknown factors that influence the agent’s

actions and unpredictability in the environment’s reactions. In the

lending example, the agent’s (i.e., the bank’s) actions are granting

or rejecting the loan to the selected individual, whereas the environ-

ment’s reactions are repaying or defaulting of the loan by the same

individual. Some problems, such as the attention allocation exam-

ple, do not require environment’s reactions. (Although, in practice,

𝑍𝑡 may lag from 𝑌𝑡 , for simplicity, we assume that they happen

at the same time step.) This completes one round of interaction

between the agent and the environment, and a sequence contains

many such interaction rounds.

The interactions between the agent and the environment form

a sequence of (tuples of) random variables, i.e., a stochastic pro-

cess ®𝑂 = ((𝐺𝑡 , 𝑋𝑡 , 𝑌𝑡 , 𝑍𝑡))𝑡>0. For every 𝑡 , the tuple of concrete

values that the random variables take is called an observation, de-
noted as 𝑜𝑡 B (𝑔𝑡 , 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡). The sequence

#„𝑜 𝑡= (𝑜𝑠)𝑠∈[1..𝑡] =

((𝑔𝑠 , 𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠))𝑠∈[1..𝑡] is called an observation sequence.
In the process ®𝑂 , the feature distribution𝑋𝑡 is subject to changes

over time; 𝑌𝑡 and 𝑍𝑡 may also change, but that is irrelevant for us.

We assume that the monitor can infer, from the observations, the

resulting change in the current expected value of 𝑋𝑡 (given the

history of observations). For instance, in the lending scenario, if at

any time the selected individual fails to repay the loan, then the

credit score of that individual goes down, and so the distribution of

credit scores in the population shifts. We assume that we can infer

the shift in expected credit scores from the lending decision of the

bank and the event of repayment/default. We formalize this in the

following.

Assumption 1. Runtime monitors have access to a function Δ,
called the change function, which maps every concrete observation 𝑜𝑡
to a change in the expected value of 𝑋𝑡 , such that for each group 𝑔 ∈
{𝐴, 𝐵}, for every time 𝑡 , and for every past sequence of observations
®𝑜𝑡 , we have: (i) E𝑔 (𝑋𝑡+1 |®𝑜𝑡) = E𝑔 (𝑋𝑡 |®𝑜𝑡−1) + Δ(𝑜𝑡); (ii) E𝑔 (|𝑋𝑡 | |
®𝑜𝑡−1) < ∞; (iii) 𝑋𝑡 , when centered, is a sub-exponential random
variable with parameters (𝜎2, 𝜈).

Assump. 1 imposes mild technical restrictions that are fulfilled

by many real-world problems, including the lending example and

the attention allocation example that we consider here. When-

ever clear from the context, for simplicity, we write Δ𝑡 instead of

Δ(𝑔𝑡 , 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡).

2.2 Time-Varying Social Fairness Properties
Let 𝑓 : 𝑜𝑡 = (𝑔𝑡 , 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡) ↦→ R be a function, called the well-being
function, which is a measure of the well-being of the individual

(𝑔𝑡 , 𝑥𝑡) who was subjected to the agent’s action 𝑦𝑡 to which they

reacted with 𝑧𝑡 . In the lending example, 𝑓 maps an observation to

the credit score of the selected individual. In the attention allocation

example, 𝑓 maps an observation to the ratio of the attention (action)

to the number of incidents (reaction).

For each group 𝑔, and for every observation sequence ®𝑜𝑡 , we
define the (group-specific) expected well-being as:

𝜔𝑔 (®𝑜𝑡) B E𝑔 (𝑓 (𝑂𝑡) | ®𝑜𝑡−1, 𝑦𝑡 , 𝑧𝑡). (1)

Observe that the expectation is with respect to the randomness in

the feature distribution𝑋𝑡 , which makes𝑂𝑡 also random.We do not

condition on the currently observed feature 𝑥𝑡 , as it would make the

expectation trivially equal to 𝑓 (𝑜𝑡). In other words, the expectation

in the well-being is only with respect to the past observations of

credit scores in the lending example, and is only with respect to the

past observations of incidents in the attention allocation example.

We consider a class of fairness properties, which we call the

time-varying social fairness properties, defined as the difference in

expected well-beings of the two groups for a given observation

sequence ®𝑜𝑡 :
𝜑 (®𝑜𝑡) B 𝜔𝐴 (®𝑜𝑡) − 𝜔𝐵 (®𝑜𝑡) . (2)

Time-varying social fairness properties capture many interesting

properties that were already studied in the context of sequential

decision-making, such as the time-varying disparity in average

credit score [25], time-varying disparity in the discovery probability

of incidents [11, 12], etc.

In (2), we present the general class of time-varying fairness

properties that we consider, and the exact property will depend on

the application and the definition of the function 𝑓 . For instance,

in the lending example, 𝑓 (𝑜𝑡) will be independent of 𝑔𝑡 , 𝑦𝑡 , 𝑧𝑡 and
will give us the credit score of the individual sampled at time 𝑡 .

We point out that we do not impose any assumption on the

agent’s and the environment’s policies for choosing their respec-

tive actions and reactions. However, following Assumption 1, (re-

)actions at each time influence the expected observation at the next

step. Hence, it is impossible to statically predict the conditional

expectation in advance. Intuitively, this means that without observ-

ing the loan decisions of the bank and the subsequent repayment

or default events, we cannot predict what the expected credit score

will be at a particular point in the future.

607

Runtime Monitoring of Dynamic Fairness Properties FAccT ’23, June 12–15, 2023, Chicago, IL, USA

As a result, we cannot statically predict the social fairness in the

system in the long-run, even if we knew its initial value. Thereby,

it is only possible to measure social fairness retrospectively, which

is what we do using runtime monitoring. To our best knowledge,

no prior work in the fairness literature considered this problem.

2.3 The Monitoring Problem
A monitor is a function that maps every observation sequence to a

real interval, where the output interval computed by the monitor is

a PAC-style statistical estimate of the given social fairness property.

We summarize the monitoring problem in the following.

Problem 1. Let ®𝑂 be a stochastic process, 𝜑 be a social fairness
property, and 𝛿 ∈ [0, 1] be a parameter. Design a monitor 𝑀 such
that for every time 𝑡 , the following holds:

P
(
𝜑 (®𝑂𝑡) ∈ 𝑀 (®𝑂𝑡)

)
≥ 1 − 𝛿.

The probabilistic uncertainty in themonitor’s output is due to the

non-availability of the parameters of the initial feature distribution:

were the initial parameters known to the monitor, at every time, a

precise value of the fairness property could be calculated from the

net change in the parameters as deduced from the change function.

On the other hand, a naïve PAC estimate of 𝜑 (®𝑂𝑡) at each time

step is also not feasible, since the feature distribution is constantly

changing.

For the fixed observation sequence ®𝑜𝑡 , the estimate [𝑙, 𝑢] =

𝑀 (®𝑜𝑡) is called the (1 − 𝛿) · 100% confidence interval for 𝜑 (𝑜𝑡).
The radius, given by 𝜀 = 0.5 · (𝑢 − 𝑙), is called the estimation er-
ror, and the quantity 1 − 𝛿 is called the confidence. The estimate

gets more precise as the error gets smaller and the confidence gets

higher. For the lending example, Prob. 1 asks us to design a monitor

which will observe a sequence of lending events, and, after each

observation, will output a (1 − 𝛿) · 100% confidence interval for the

estimated disparity in average credit scores.

While our monitors output interval estimates of fairness proper-
ties in the form of confidence intervals, internally, they first com-

pute point estimates of the expected feature of each group 𝑔 for a

given observation sequence
#„𝑜 𝑡−1, defined as:

𝜓𝑔 (#„𝑜 𝑡−1) B E𝑔 (𝑋𝑡 | #„𝑜 𝑡−1) . (3)

Note that the quantity,𝜓𝑔(#„𝑜 𝑡−1) gives us only the expected feature,
which will be an intermediate step for estimating the well-being.

Notice that the expected feature at time 𝑡 only depends on the

past observations until time 𝑡 − 1, whereas the well-being at time

𝑡 requires the action and the reactions, such as units of attentions

allocated by the attention allocator at the current time 𝑡 . A point
estimator 𝐸 of 𝑋𝑡 for a given

#„𝑜 𝑡 and a given group 𝑔 is a function

𝐸 : ®𝑜𝑡 ↦→ R. Additionally, 𝐸 will be called unbiased, if for every
observation sequence ®𝑜𝑡−1 that may occur with positive probability,

we have:

E𝑔

(
𝐸 (®𝑂𝑡)

��� ®𝑜𝑡−1) = 𝜓𝑔 (®𝑜𝑡−1) .
Intuitively, unbiasedness guarantees that, for any given history ®𝑜𝑡−1
of loan events that may occur with positive probability, the expected

credit score of a group at time 𝑡 will be equal to the expected output

of the estimator at time 𝑡 .

While unbiasedness guarantees that the estimator 𝐸’s output

coincides with𝜓𝑔 (®𝑜𝑡−1) in expectation, we also require that the out-
put error remains statistically bounded at all time. To this end, we

bound the estimation error by computing confidence intervals for

𝜓𝑔 (®𝑜𝑡−1), obtained through application of concentration inequali-

ties around the point estimate. These confidence intervals of group-

specific expected features are then used to obtain confidence inter-

vals for group-specific expected well-beings (i.e., 𝜔𝑔 (®𝑜𝑡)), which
are then subtracted from each other to finally obtain the output

confidence interval of the monitor for the time-varying social fair-

ness property 𝜑 (®𝑜𝑡). We illustrate this sequence of steps in Fig. 1,

along with references to the sections where they are described.

While we provide a general procedure for estimating𝜓𝑔 (®𝑜𝑡−1)
in the first step, a general overall estimation procedure for any

arbitrary 𝜑 (®𝑜𝑡) is difficult to derive and is left open. This is because

the final confidence interval for 𝜑 (®𝑜𝑡) depends on the structure of

the well-being function, which is problem-specific.

As a convention, by “monitor,” we will exclusively refer to the

final interval estimator of 𝜑 (®𝑜𝑡), though it is not the only interval

estimator that we will use.

3 AN INTERVAL ESTIMATOR FOR THE
TIME-VARYING EXPECTED FEATURE

For any group 𝑔 and an arbitrary observation ®𝑜𝑡 , in this section,

we construct an interval estimator for the group-specific expected

feature 𝜓𝑔 (®𝑜𝑡−1) = E𝑔 (𝑋𝑡 | #„𝑜 𝑡−1) (defined in (3)). As 𝜓𝑔 (®𝑜𝑡−1)
does not depend on the fairness metric, hence the estimator is

not tied to the fairness monitoring problem and can have other

use. The estimator for 𝜓𝑔 (®𝑜𝑡−1) will be the essential component

of the monitors (i.e., the interval estimator for the social fairness

property 𝜑 (®𝑜𝑡)), which will be presented later in the respective

example sections. The interval estimate of𝜓𝑔 (®𝑜𝑡−1) is obtained by

first computing a point estimate of it, and then using concentration

inequalities to bound the estimation error. The first part, i.e., the

point estimation part, is explained using a coin-toss analogy.

3.1 Warm-Up: A Coin-Toss Puzzle
Suppose we have a coin with unknown initial bias. After each toss,

its bias changes in a predefinedmanner as a function of the outcome

of the previous toss. How to compute a point estimate of the bias

of the coin at any given point in time, based on the given sequence

of the observed past outcomes?

Let, us formalize the problem first. Let, at time 𝑡 , the probability

that the coin shows 1 (heads) be 𝑝𝑡 , and the probability that the

coin shows 0 (tails) be 1− 𝑝𝑡 . The toss outcome at time 𝑡 is denoted

using the random variable 𝑋𝑡 . Let 𝑝1 be the initial bias which is

fixed but unknown. After every toss, the coin’s bias shifts by a

constant 𝜖 ∈ [0, 1], and the direction of the shift depends on the

outcome of the previous toss: if we see 𝑋𝑡 = 1 at time 𝑡 , the bias

shifts to 𝑝𝑡+1 = 𝑝𝑡 + 𝜖 in the next step, whereas if we see 𝑋𝑡 = 0 at

time 𝑡 , the bias shifts to 𝑝𝑡+1 = 𝑝𝑡 − 𝜖 . Let’s assume for simplicity

that the true initial bias is not too close to the boundaries 0 and 1,

and moreover 𝜖 is small enough and the observed sequence is short

enough that the true bias never reaches the boundaries. We can

succinctly write 𝑝𝑡+1 = 𝑝𝑡 + Δ𝑡 , where Δ𝑡 = 𝑥𝑡𝜖 + (1 − 𝑥𝑡) (−𝜖) is
the change of bias recorded at time 𝑡 . Then the estimation problem

608

FAccT ’23, June 12–15, 2023, Chicago, IL, USA Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik

Point estimate of

𝜓𝐴 (®𝑜𝑡)
Interval estimate of

𝜓𝐴 (®𝑜𝑡)
Interval estimate of

𝜔𝐴 (®𝑜𝑡)

Point estimate of

𝜓𝐵 (®𝑜𝑡)
Interval estimate of

𝜓𝐵 (®𝑜𝑡)
Interval estimate of

𝜔𝐵 (®𝑜𝑡)

Interval estimate of

diff. in expectations

𝜑 (®𝑜𝑡)

®𝑜𝑡
Input

obs.

Output

Sec. 3 Sec. 4, 5 (lending and attention examples)

Figure 1: The operational diagram of the monitor and the sections of this paper where the components are presented.

asks: for any given sequence 𝑥1, . . . , 𝑥𝑡 of toss outcomes, how to

compute a point estimate of the unknown parameter 𝑝𝑡 , i.e., the

value of E(𝑋𝑡 | 𝑥1, . . . , 𝑥𝑡−1)?
Observe that even if we knew 𝑝1, without seeing the observations

𝑥1, . . . , 𝑥𝑡 , the value of 𝑝𝑡 would only be probabilistically known.

Thus a static analysis would not be possible even in that case.

For the trivial case of 𝜖 = 0, i.e., when we know that the bias

remains fixed at 𝑝1 throughout, we can compute an unbiased point

estimate of 𝑝𝑡 = 𝑝1 by simply computing the empirical average of

the observed sequence as 𝑝𝑡 =
1

𝑡

∑𝑡
𝑠=1 𝑥𝑠 .

When 𝜖 > 0, we show (proof in the longer version [22]) that,

for the given observation sequence 𝑥1, . . . , 𝑥𝑡 , the following is an

unbiased point estimator of 𝑝1:

𝑝1 =
1

𝑡

𝑡∑︁
𝑠=1

(
𝑥𝑠 −

𝑠−1∑︁
𝑟=1

Δ𝑟

)
. (4)

Once an estimate of 𝑝1 is known, we can obtain an unbiased point

estimate for E(𝑋𝑡 | 𝑥1, . . . , 𝑥𝑡−1) by accounting for the observed

changes up to time 𝑡 :

𝑝𝑡 =
1

𝑡

𝑡∑︁
𝑠=1

(
𝑥𝑠 −

𝑠−1∑︁
𝑟=1

Δ𝑟

)
+
𝑡−1∑︁
𝑠=1

Δ𝑠 . (5)

While there are techniques to estimate the non-time-varying

mean of a statistical process from sequential observations [35], to

our best knowledge, the problem we consider and the solution we

propose are completely novel.

3.2 The Interval Estimator for Expected
Features

Now we extend the coin-toss analogy to the point estimation, fol-

lowed by the interval estimation, of the expected features𝜓𝑔 (·). For
simpler notation, in the rest of this section, we assume that there is

only one group, so that all the past observations correspond to that

group only. We drop the superscript 𝑔 from the property𝜓𝑔 (·).
Drawing comparison with the coin-toss setting, the bias 𝑝𝑡 of

the coin at every 𝑡 is now replaced by E(𝑋𝑡 | ®𝑜𝑡−1), and the bias

shift Δ𝑡 of the coin at time 𝑡 is now replaced by the value of the

change function Δ(𝑜𝑡). We make these adjustments in the point

estimator of bias of the coin in (5), and obtain the following point

estimator for𝜓𝑔 (®𝑜𝑡−1):

𝐸 (®𝑜𝑡) B
1

𝑡

𝑡∑︁
𝑠=1

(
𝑥𝑠 −

𝑠−1∑︁
𝑟=1

Δ(𝑜𝑟)
)
+
𝑡−1∑︁
𝑠=1

Δ(𝑜𝑠).

From this point estimator, we can obtain an interval estimator

𝜓 (®𝑜𝑡−1) by applying a suitable version of Azuma-style inequality

(see Theorem 3.3) to compute a (1 − 𝛿) · 100% confidence interval

around 𝐸 (®𝑜𝑡) for any given 𝛿 . We call the interval estimator of𝜓 (·)
ExpEstimator, and present its pseudocode in Alg. 1. In the function
Init, the monitor first initializes various internal registers. After

each new observation (𝑔, 𝑥,𝑦, 𝑧), the monitor invokes the function

Compute to compute a new (1 − 𝛿) · 100% confidence interval for

the expected features𝜓𝑔 (®𝑜𝑡−1).

3.3 Soundness of the Interval Estimator
For soundness, we need to show that (a) the point estimator of

𝜓 (®𝑜𝑡−1) is unbiased, and that (b) the interval estimate computed

using the Azuma-style inequality is statistically sound. Claim (a)

follows from the definition of unbiasedness. For claim (b), we show

that the sequence of the expected point estimates, conditioned on

the increasingly longer sequence of prefixes of a given observation,

is a Doob martingale. Furthermore, we show that the difference

between any two consecutive elements of the Doob martingale

is a sub-exponential random variable, which enables us to use

an Azuma-style concentration inequality to compute the desired

confidence interval from the point estimate. Below, we present the

highlights of the soundness proof (details in the longer version [22]),

which can be skipped over without any loss of continuity.

Unbiasedness: To demonstrate that the estimator 𝐸 (®𝑂𝑡) is unbi-
ased, we first show:

Lemma 3.1. The estimator 𝐸1 (®𝑜𝑡) B 1

𝑡

∑𝑡
𝑠=1

(
𝑥𝑠 −

∑𝑠−1
𝑟=1 Δ(𝑜𝑟)

)
is an unbiased estimator of E (𝑋1).

Then we utilize the change function Δ and the definition of

conditional expectation to transfer the result to 𝐸 (®𝑂𝑡).

E
(
𝑋𝑡

��� ®𝑂𝑡−1
)
= E(𝑋1) +

𝑡−1∑︁
𝑠=1

Δ(𝑂𝑠) (6)

= E
(
𝐸1 (®𝑂𝑡)

)
+
𝑡−1∑︁
𝑠=1

Δ(𝑂𝑠) = E
(
𝐸 (®𝑂𝑡)

��� ®𝑂𝑡−1
)

(7)

609

Runtime Monitoring of Dynamic Fairness Properties FAccT ’23, June 12–15, 2023, Chicago, IL, USA

Algorithm 1 ExpEstimator

1: function Init(Δ, 𝛿, 𝜎, 𝜈)
2: Δ← Δ ⊲change function

3: 𝛿 ← 𝛿 ⊲target confidence level

4: (𝜎, 𝜈) ← (𝜎, 𝜈) ⊲sub-exp. parameters

5: 𝑡 ← 0 ⊲clock counter

6: 𝐸1 ← 0 ⊲curr. estimate of the initial expected value

7: 𝑑 ← 0 ⊲net distribution shift

1: function Compute(𝑥,𝑦)
2: 𝑡 ← 𝑡 + 1
3: 𝐸1 ← 1

𝑡

(
𝐸 · (𝑡 − 1) + (𝑥 − 𝑑)

)
⊲update

4: 𝐸 ← 𝐸1 + 𝑑 ⊲curr. estimate

5: 𝑑 ← 𝑑 + Δ(𝑥,𝑦) ⊲update net shift

6: 𝜀 ← Azuma(𝑡, 𝛿, 𝜎, 𝜈) ⊲see Theorem 3.3

7: return [𝐸 − 𝜀, 𝐸 + 𝜀]

Proving concentration around the mean using martingales:
To demonstrate that the estimator 𝐸 (®𝑂𝑡) concentrates around its
mean, we construct the Doob martingale: (E(𝐸1 (®𝑂𝑡) | ®𝑂𝑠))𝑠∈[0..𝑡] .
Intuitively, this martingale is a step-by-step approximation pro-

cess. That is, it starts from the quantity we want to estimate, i.e.

E(𝐸1 (®𝑂𝑡)) which due to Lemma 3.1 is equal to E(𝑋1), and ends

at E(𝐸1 (®𝑂𝑡) | ®𝑂𝑡) which given the definition of the conditional

expectation is the complete random variable, i.e. our estimator

𝐸1 (®𝑂𝑡).
Applying an Azuma-style concentration inequality: To bound
the distance between the first and last step of the martingale we

want to apply some form of Azuma-style concentration inequal-

ity. However, this requires knowledge about the behavior of the

difference between two consecutive martingale steps.

Lemma 3.2. The martingale difference for any 𝑠 ∈ [1..𝑡]

E
(
𝐸1 (®𝑂𝑡)

��� ®𝑂𝑠+1
)
− E

(
𝐸1 (®𝑂𝑡)

��� ®𝑂𝑠

)
=

1

𝑡

(
𝑋𝑠+1 − E

(
𝑋𝑠+1

��� ®𝑂𝑠

))
and therefore it is a sub-exponential random variable with parameter
(𝜎2

𝑡2
, 𝜈𝑡).

Hence, we can bound the probability that E(𝑋1) is within an

𝜀 > 0 interval around the estimator 𝐸1 (®𝑂𝑡), i.e. P(|E(𝐸1 (®𝑂𝑡)) −
E(𝑋1) | ≥ 𝜀). This directly translates into a bound of the difference

between E(𝑋𝑡 | ®𝑂𝑡−1) and 𝐸 (®𝑂𝑡),

P

(�����E (
𝐸1 (®𝑂𝑡)

)
− E(𝑋1) +

𝑡−1∑︁
𝑠=1

Δ(𝑂𝑠) − Δ(𝑂𝑠)
����� ≥ 𝜀

)
= P

(���E (
𝐸 (®𝑂𝑡)

)
− E

(
𝑋𝑡

��� ®𝑂𝑡−1
)��� ≥ 𝜀)

Thus we finally obtain the soundness theorem of our expected value

estimator.

Theorem 3.3. Let 𝛿 ∈ [0, 1]. Let ®𝑂 be a stochastic process as
specified in Assumption 1. For every time step 𝑡 ,���𝜓 (®𝑂𝑡−1) − 𝐸 (®𝑂𝑡)

��� ≤ max


√︄

2𝜎2

𝑡
· log

(
2

𝛿

)
,
2𝜈

𝑡
log

(
2

𝛿

)
holds with probability 1 − 𝛿 . We define Azuma(𝑡, 𝛿, 𝜎2, 𝜈) to refer to
this bound.

4 A DYNAMIC LENDING PROBLEM
Now we present a monitoring algorithm for the lending example

that we took from the literature [25]. Suppose we have a bank that

lends money to individuals by taking into account their credit score

and group membership information. Every individual has a credit

score that may change over time, and let [0..𝑐max] be the set of

all possible credit scores of every individual. Also, the population

is divided into groups 𝐴 and 𝐵, as usual, and let the number of

individuals in the groups be 𝑁𝐴 and 𝑁𝐵 , respectively. At every

step, the bank gets the credit score and the group information of

a randomly chosen individual, and decides whether to accept or

reject the loan application. If the loan is granted and is subsequently

repaid, then the respective individual’s credit score increases by

1, provided her initial credit score was smaller than 𝑐max. On the

other hand, if the loan is granted but defaulted, then the credit

score decreases by 1, provided her initial credit score was greater

than 0. If the loan is rejected, then the individual’s credit score

remains unchanged. We want to monitor, after each observation, if

the bank’s policy leads to unfair distribution of the expected credit

score among the individuals of the two groups 𝐴 and 𝐵.

4.1 Problem Formulation
We assume a uniform distribution over the set of individuals at

every time step. Given a (random) individual with features 𝑋𝑡 and

group𝐺𝑡 sampled uniformly at time 𝑡 , the bank’s (random) action𝑌𝑡
of rejecting or accepting the individual is given by 𝑌𝑡 = 0 or 𝑌𝑡 = 1,

respectively. Once the bank has chosen an action, the individual

reacts as follows: if𝑌𝑡 = 0 then the individual’s action is immaterial,

and if 𝑌𝑡 = 1 then the individual performs (random) action 𝑍𝑡 ,

i.e., they can pick either 𝑍𝑡 = 1 or 𝑍𝑡 = 0 denoting, respectively,

whether they repay the loan or not. The resulting change in the

distribution is specified using the change function Δ defined as

below:

Δ(𝑥𝑡 , 𝑔𝑡 , 𝑦𝑡 , 𝑧𝑡) =


+ 1

𝑁𝑔𝑡
if 𝑐 < 𝑐max, 𝑦𝑡 = 1, 𝑧𝑡 = 1,

− 1

𝑁𝑔𝑡
if 𝑐 > 0, 𝑦𝑡 = 1, 𝑧𝑡 = 0,

0 otherwise.

That is, if the loan is granted and the individual repays the loan,

the expected credit score increases by
1

𝑁𝑔𝑡
; if the loan is granted

and the individual fails to repay the loan, the expected credit score

decreases by
1

𝑁𝑔𝑡
; otherwise the expected credit score remains the

same.

The well-being function 𝑓 maps to the credit score (i.e., the

feature itself), and the time-varying social fairness criteria is given

by the disparity in expected credit scores of the two groups, i.e.,

𝜑𝑡 = E𝐴 (𝑋𝑡 | ®𝑜𝑡−1) − E𝐵 (𝑋𝑡 | ®𝑜𝑡−1) .

4.2 The Runtime Monitor
The monitor for the lending problem, called LendingMoni-
tor, is shown in Alg. 2. Internally, LendingMonitor runs two

610

FAccT ’23, June 12–15, 2023, Chicago, IL, USA Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik

ExpEstimator (see Alg. 1) sub-monitors 𝑀𝐴 and 𝑀𝐵 in parallel,

which compute the interval estimates for the expected credit scores

of the two groups respectively. After each new observation, de-

pending on the group information of the selected individual, the

respective monitor’s Compute function is invoked, and a new es-

timate for that group is computed. This is possible because 𝑋𝑡 is

a bounded random variable, making it sub-gaussian with param-

eter 𝑐2max (which implies it is sub-exponential with 𝜈 = 0). The

output of LendingMonitor is the difference between the two in-

terval estimates computed by 𝑀𝐴 and 𝑀𝐵 . Observe that each of

𝑀𝐴 and 𝑀𝐵 uses higher confidence level 1 − 𝛿
2
, so that the final

confidence of the output estimate becomes 1 − 𝛿 , after applying
the union bound. For simplicity, we chose union bound to compute

the overall confidence, however, tighter interval estimates can be

computed by observing that the group-specific stochastic processes

are statistically independent, thereby allowing us to use the sharper

bounds from the Hoeffding’s inequality (see [33, p. 24]).

Algorithm 2 LendingMonitor
1: function Init(Δ, 𝛿, 𝑐max)

2: 𝑀𝐴 ← ExpEstimator.Init(Δ, 𝛿
2
, 𝑐max, 0)

3: 𝑀𝐵 ← ExpEstimator.Init(Δ, 𝛿
2
, 𝑐max, 0)

4: 𝐸𝐴 ← 0

5: 𝐸𝐵 ← 0

1: function Compute(𝑥, 𝑔,𝑦, 𝑧)

2: 𝐸𝑔 ← 𝑀𝑔 .Compute(𝑥,𝑔,𝑦, 𝑧)
3: 𝜑 ← 𝐸𝐴 − 𝐸𝐵 ⊲interval difference

4: return 𝜑

4.3 Experimental Outcome
We summarize the outputs of our monitor in Fig. 2. We observe

that our monitor’s outputs match with the correct value of bias in

the system at every point in time. Moreover, the monitor Lending-
Monitor took on an average 3 µs to compute a new estimate after

receiving every new observation.

Interestingly, we note that the MaxRwrd agent’s policy becomes

more fair in the long run compared to the EqOpp agent’s policy.

This phenomenon has already been demonstrated in the existing

literature [9]. With our monitors, it is actually possible to detect

such biases in real-time, without any information or assumption

about what policy the bank is using or how the individuals will

react (i.e., whether they repay or not).

5 A DYNAMIC ATTENTION ALLOCATION
PROBLEM

Now we consider the attention allocation problem. Suppose there

are 𝐿 ≥ 2 locations, and at each location and at each time step,

a number of incidents take place. There is a machine-learned al-

locator who needs to allocate its limited amount of resources to

the locations in order to discover the incidents, where every event

needs one unit of attention to be discovered. We design a runtime

monitor to check, in real-time, if the allocator is fair in allocating its

limited amount of attention among two particular locations 𝐴 and

𝐵. Suppose in each location and at every time step, some number of

events appear according to the Poisson distribution with unknown

parameters. At any location and at any given time, the rate with

which events appear is inversely proportional to the number of

attention units allocated to that location at the last time step; the

exact relationship will be formalized in Sec. 5.1. We assume that

the allocator has knowledge about this relationship. The fairness

criteria that we wish to monitor requires that the probability with

which any event will be discovered across the two locations should

be close to each other.

We streamline our exposition on a simpler instance of the orig-

inal problem that was studied by D’Amour et al. [9], where they

considered the fairness measure as the maximum pairwise disparity

in discovery probabilities. We point out that this general property

can also be handled using our monitors, by simply having a sepa-

rate monitor for each pair of locations, and then aggregating the

outputs of all the monitors using interval arithmetic and union

bound.

5.1 Problem Formulation
The agent and the environment: Here, the two locations 𝐴 and

𝐵 are the two groups, as well as the only members in the respective

groups. The feature of each location is the number of events (in N).
At every time step 𝑡 , the environment samples a pair of (random) fea-

tures 𝑋𝐴
𝑡 and 𝑋𝐵

𝑡 for the two locations, such that 𝑋
𝑔
𝑡 ∼ Poisson(𝜆𝑔𝑡),

where Poisson(𝜆𝑔𝑡) represents the Poisson distribution with param-

eter 𝜆
𝑔
𝑡 . The numbers of incidents in the two locations are given by

𝑋𝐴
𝑡 + 1 and 𝑋𝐵

𝑡 + 1, ensuring that the minimum number of events is

1, which is necessary for technical reasons (will be explained later).

Observe that, we slightly deviate from the setting that we intro-

duced in Sec. 2, in that we obtain features of two individuals (i.e.,

the locations) from both groups simultaneously at each time step.

Technique-wise, this is not a problem since we are going to use two

separate ExpEstimator monitors for the two locations. Notation-

wise, this is simpler, as otherwise we would need vectors-valued
features.

The agent’s action is a (random) vector (𝑌𝐴𝑡 , 𝑌𝐵
𝑡) ∈ N2 to allocate

its 𝐾 units of attention to the respective locations, i.e. 𝑌𝐴𝑡 +𝑌𝐵
𝑡 ≤ 𝐾 .

The entry 𝑌
𝑔
𝑡 represents the number of attention units allocated to

location𝑔 at time 𝑡 . In this example, the reaction of the environment

to the agent’s action has no role, i.e., we set 𝑍𝑡 = ⊥ (a dummy

symbol).

As usual, we assume a change function Δ𝑡 is given (defined

below) that causes a shift in the expected value of 𝑋𝑡 . Since the

expected value of Poisson(𝜆𝑔𝑡) is 𝜆
𝑔
𝑡 , this corresponds to a change in

the Poisson parameter, causing changes in the rate at which events

appear in the respective locations in the next step. Given a fixed

parameter 𝛾 > 0, which controls how dynamic the system is, the

change function is defined as:

∀𝑔 ∈ {𝐴, 𝐵} . Δ(𝑔, 𝑥𝑔𝑡 , 𝑦
𝑔
𝑡) =

{
𝛾 if 𝑦

𝑔
𝑡 = 0,

−𝛾 · 𝑦𝑔𝑡 otherwise,

where we drop the fourth argument 𝑧𝑡 from Δ𝑡 as it has no role.

The fairness property: The well-being function 𝑓 in (1) in this

example is called the discovery probability, and we want to monitor

its disparity between the two locations. The discovery probability

at time 𝑡 and in location 𝑔 can be formalized as the expected value

611

Runtime Monitoring of Dynamic Fairness Properties FAccT ’23, June 12–15, 2023, Chicago, IL, USA

Figure 2: Output estimates of the monitors at each time step on simulated trajectories for the lending example obtained
from ml-fairness-gym. The three plots are ordered from left to right in the increasing order of initial bias. For each case, we
considered two different policies of the agent: the MaxRwrd agent (blue) maximizes its own reward without trying to optimize
any fairness criterion, whereas the EqOpp agent (red) also tries to ensure equalized opportunity statically (i.e., in its one-shot
decisions). The shaded regions are the intervals computed by the monitor LendingMonitor, whereas the solid lines are the
(unknown to the monitor) true values of the properties. The horizontal dashed line corresponds to the perfectly fair scenario
(i.e., 𝜑𝑡 = 0).

of the ratio of the discovered events 𝑋
𝑔
𝑡 = min{𝑋𝑔

𝑡 + 1, 𝑌
𝑔
𝑡 } to the

the actual number of events 𝑋
𝑔
𝑡 + 1. Notice that had we defined the

number of events as 𝑋
𝑔
𝑡 , discovery probability would be undefined

(since𝑋
𝑔
𝑡 can be zero). The discovery probability at time 𝑡 for a given

observation sequence ®𝑜𝑡 can also be represented as the following

conditional expectation:

𝜔
𝑔
𝑡 B E𝑔

(
𝑋
𝑔
𝑡

𝑋
𝑔
𝑡 + 1

�����®𝑜𝑡−1, 𝑦𝑔𝑡
)
.

The time-varying social fairness criteria at every time 𝑡 is given by

𝜑𝑡 B 𝜔𝐴
𝑡 − 𝜔𝐵

𝑡 .

5.2 The Runtime Monitor
We show that 𝜔

𝑔
𝑡 has a closed-form expression 𝜂 (𝑦𝑔𝑡 , 𝜆

𝑔
𝑡) for a given

concrete 𝜆
𝑔
𝑡 and 𝑦

𝑔
𝑡 , where

𝜂 (𝑦, 𝜆) B 𝑒−𝜆
𝑦−1∑︁
𝑘=0

𝜆𝑘

𝑘!

(
1 − 𝑦

𝑘 + 1

)
+ 𝑦
𝜆

(
1 − 𝑒−𝜆

)
. (8)

Furthermore, we show that, for a fixed 𝑦, the function 𝜂 (𝑦, ·) is
strictly decreasing everywhere in the positive reals (proof is in the

longer version [22]). This property of 𝜂 (𝑦, ·) enables us to efficiently

compute an interval estimate of 𝜂 (𝑦, ·) and, in turn 𝜔
𝑔
𝑡 , from an

interval estimate of 𝜆.

Using these auxiliary results, we construct themonitor as follows.

We first use the general monitor ExpEstimator from Alg. 1 to esti-

mate, for each location 𝑔, the expected value E𝑔 (𝑋𝑔
𝑡), which is the

same as 𝜆
𝑔
𝑡 (follows from the property of the Poisson distributions).

We make two mild assumptions: First, we assume that the Poisson

parameters in both locations are bounded between two positive

reals 𝜆 < 𝜆, allowing us to establish that 𝑋
𝑔
𝑡 is a sub-exponential

random variable with parameters (2𝜆, 2) (proof is in the longer

version [22]). Second, we assume that the sequence of observations

are such that the parameter would not reach zero no matter what

its true initial value was. Otherwise the function Δ would no longer

reflect the differences in the expected values. This can be checked

by the monitor at runtime, by checking if the parameter would

reach zero had it started from 𝜆 in the worst case (the value closest

to zero). We omit the check for simplicity.

Suppose [𝜆𝑔min, 𝜆
𝑔
max] is the interval output by ExpEstimator

as the estimate of 𝜆
𝑔
𝑡 . Then from 𝜔

𝑔
𝑡 = 𝜂 (𝑦𝑔𝑡 , 𝜆

𝑔
𝑡) and the strictly

decreasing property of 𝜂, we obtain the corresponding interval

estimate for 𝜔
𝑔
𝑡 as [𝜂 (𝑦𝑔𝑡 , 𝜆max), 𝜂 (𝑦𝑔𝑡 , 𝜆min)]. From the interval es-

timates for the discovery probability of each group, we obtain the

overall fairness estimate by computing the interval difference, as

we did for the lending monitor. The pseudocode of the monitor is

in Alg. 3.

Algorithm 3 AttentionMonitor

1: function Init(Δ, 𝛿, 𝜆)

2: 𝑀𝐴 ← ExpEstimator.Init(Δ, 𝛿
2
, 2𝜆, 2)

3: 𝑀𝐵 ← ExpEstimator.Init(Δ, 𝛿
2
, 2𝜆, 2)

1: function Compute((𝑥𝐴, 𝑥𝐵), (𝑦𝐴, 𝑦𝐵))
2: [𝜆𝐴min, 𝜆

𝐴
max] ← 𝑀𝐴 .Compute(𝑥𝐴, 𝐴,𝑦𝐴,⊥)

3: [𝜆𝐵min, 𝜆
𝐵
max] ← 𝑀𝐵 .Compute(𝑥𝐵, 𝐵,𝑦𝐵,⊥)

4: 𝐸𝐴 ←
[
𝜂 (𝑦𝐴, 𝜆𝐴max), 𝜂 (𝑦𝐴, 𝜆𝐴min)

]
5: 𝐸𝐵 ←

[
𝜂 (𝑦𝐵, 𝜆𝐵max), 𝜂 (𝑦𝐵, 𝜆𝐵min)

]
6: 𝜑 ← 𝐸𝐴 − 𝐸𝐵 ⊲interval difference

7: return 𝜑

5.3 Experimental Outcome
We summarize the outputs of our monitor in Fig. 3. We consider

three types of agent, uniform, greedy, and fair-constrained greed

(with 𝛼 = 0.75). While the uniform agent behaves randomly, with-

out taking into account the actual incidence rate, the greedy agent

tries to minimize the chances of missed discoveries by keeping

an estimate of the incidence rates. The constrained greedy agent

needs to additionally ensure a fairness criteria. Our experiments

empirically show that no matter what the experimental conditions

are, our monitor is able to provide real-time information about the

time-varying biases in the system. Moreover, the monitor Attention-
Monitor took on an average 28 µs to compute a new estimate after

612

FAccT ’23, June 12–15, 2023, Chicago, IL, USA Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik

receiving every new observation. The experiments demonstrate

the practical usefulness of our monitors.

6 CONCLUSION AND FUTUREWORK
We present an approach for real-time monitoring of the long-run

fairness of machine-learned agents deployed in dynamic environ-

ments. Our monitors observe a long sequence of events generated

from the interactions between the agent and its environment, and

output, after each new observation, a quantitative PAC-style esti-

mate of how fair or biased the agent’s policy was until that point

in time. The strength of our monitors is their ability to compute

interval estimates of fairness values in the face of frequent changes

in the underlying distribution, a setting that prevents a static esti-

mation of fairness at each time step. The presented method allows

for the computation of confidence intervals when the monitored

random variable is sub-exponential. By extension, they can handle

sub-Gaussian random variables as well. Using a prototype imple-

mentation, we demonstrated the practical usefulness of the moni-

toring approach on examples taken from the literature.

We took great effort to ensure that the interval estimates com-

puted by the monitor hold non-asymptotically. Consequently, we

avoided a direct comparison with methods that rely on the central

limit theorem. However, we acknowledge that loosening this re-

striction will allow for a wider range of applications. Furthermore,

we showed computations of PAC estimates on fairness properties

with some specific well-being functions, such as the expected credit

score in the lending problem and the discovery probability in the

dynamic attention allocation problem, etc. Although an extension

to general well-being functions is difficult, a generalization to re-

stricted classes of well-being functions is conceivable: for instance,

when the well-being function is in the form of arithmetic expres-

sions, we can use interval arithmetic to deduce the overall PAC

bound, or when the well-being function is convex, we can use

convex optimization to deduce tight PAC estimates, etc.

We see several immediate future directions. Firstly, we consid-

ered only one particular class of fairness properties, namely the

ones which can be written as a difference between expected values

of a given function of population parameters across two groups.

Investigating other classes of properties will be an important goal.

We will be able to extend our monitors to handle individuals with

multiple features, i.e. feature vectors, without adding any additional

technical machinery. Secondly, we assumed perfect observability

about the actions of the agent and the environment, whereas in real-

ity actions are often either partially observable or the observations

are noisy (e.g., the college admission example in D’Amour et al.

[9]). Thus extensions to partially observed and noisy models will be

helpful. Thirdly, our monitors require, at least partially, information

about the changes in the system. A natural extension, would be to

relax this condition. Finally, we only considered the monitoring, i.e.,

the problem of checking fairness in real-time. The next step will

be to combine monitoring and intervention, so that we obtain an

automated procedure for controlling dynamic fairness properties

of a machine-learned agent.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

valuable comments and helpful suggestions. This work is supported

by the European Research Council under Grant No.: ERC-2020-AdG

101020093.

REFERENCES
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna

Wallach. 2018. A reductions approach to fair classification. In International
Conference on Machine Learning. PMLR, 60–69.

[2] Aws Albarghouthi and Samuel Vinitsky. 2019. Fairness-aware programming.

In Proceedings of the Conference on Fairness, Accountability, and Transparency.
211–219.

[3] Ezio Bartocci and Yliès Falcone. 2018. Lectures on Runtime Verification. Springer.
[4] Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns,

Jamie Morgenstern, Seth Neel, and Aaron Roth. 2017. A convex framework for

fair regression. arXiv preprint arXiv:1706.02409 (2017).
[5] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and Chao Wang. 2015.

Shield synthesis: Runtime enforcement for reactive systems. In Tools and Algo-
rithms for the Construction and Analysis of Systems: 21st International Conference,
TACAS 2015, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2015, London, UK, April 11-18, 2015, Proceedings 21. Springer,
533–548.

[6] Toon Calders and Indrė Žliobaitė. 2013. Why unbiased computational processes

can lead to discriminative decision procedures. Discrimination and Privacy in the
Information Society: Data mining and profiling in large databases (2013), 43–57.

[7] Allison JB Chaney, Brandon M Stewart, and Barbara E Engelhardt. 2018. How

algorithmic confounding in recommendation systems increases homogeneity

and decreases utility. In Proceedings of the 12th ACM conference on recommender
systems. 224–232.

[8] Yifang Chen, Alex Cuellar, Haipeng Luo, Jignesh Modi, Heramb Nemlekar, and

Stefanos Nikolaidis. 2020. The fair contextual multi-armed bandit. In Proceed-
ings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems.

[9] Alexander D’Amour, Hansa Srinivasan, James Atwood, Pallavi Baljekar, David

Sculley, and Yoni Halpern. 2020. Fairness is not static: deeper understanding of

long term fairness via simulation studies. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency. 525–534.

[10] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd innovations in
theoretical computer science conference. 214–226.

[11] Hadi Elzayn, Shahin Jabbari, Christopher Jung, Michael Kearns, Seth Neel, Aaron

Roth, and Zachary Schutzman. 2019. Fair algorithms for learning in alloca-

tion problems. In Proceedings of the Conference on Fairness, Accountability, and
Transparency. 170–179.

[12] Danielle Ensign, Sorelle A Friedler, Scott Neville, Carlos Scheidegger, and Suresh

Venkatasubramanian. 2018. Runaway feedback loops in predictive policing. In

Conference on Fairness, Accountability and Transparency. PMLR, 160–171.

[13] Michael Feldman, Sorelle A Friedler, JohnMoeller, Carlos Scheidegger, and Suresh

Venkatasubramanian. 2015. Certifying and removing disparate impact. In pro-
ceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining. 259–268.

[14] Thomas Ferrère, Thomas A. Henzinger, and Bernhard Kragl. 2020. Monitoring

Event Frequencies. In 28th EACSL Annual Conference on Computer Science Logic
(CSL 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 152),
Maribel Fernández and Anca Muscholl (Eds.). Schloss Dagstuhl–Leibniz-Zentrum

fuer Informatik, Dagstuhl, Germany, 20:1–20:16. https://doi.org/10.4230/LIPIcs.

CSL.2020.20

[15] Andreas Fuster, Paul Goldsmith-Pinkham, Tarun Ramadorai, and Ansgar Walther.

2022. Predictably unequal? The effects of machine learning on credit markets.

The Journal of Finance 77, 1 (2022), 5–47.
[16] Paula Gordaliza, Eustasio Del Barrio, Gamboa Fabrice, and Jean-Michel Loubes.

2019. Obtaining fairness using optimal transport theory. In International Confer-
ence on Machine Learning. PMLR, 2357–2365.

[17] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in

supervised learning. Advances in neural information processing systems 29 (2016).
[18] Drew Harwell. 2018. Amazon’s Alexa and Google Home show accent bias, with

Chinese and Spanish hardest to understand. http://bit.ly/2QFA1MR. Accessed:

05.02.2023.

[19] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy Liang.

2018. Fairness without demographics in repeated loss minimization. In Interna-
tional Conference on Machine Learning. PMLR, 1929–1938.

[20] Hoda Heidari, Vedant Nanda, and Krishna P Gummadi. 2019. On the long-term

impact of algorithmic decision policies: Effort unfairness and feature segregation

through social learning. arXiv preprint arXiv:1903.01209 (2019).

613

https://doi.org/10.4230/LIPIcs.CSL.2020.20
https://doi.org/10.4230/LIPIcs.CSL.2020.20
http://bit.ly/2QFA1MR

Runtime Monitoring of Dynamic Fairness Properties FAccT ’23, June 12–15, 2023, Chicago, IL, USA

Figure 3: Output estimates of the monitors at each time step on simulation traces for the attention allocation example obtained
from ml-fairness-gym. Left: 𝐿 = 5 (no. of locations), 𝐾 = 6 (total units of attention), 𝛾 = 0 (change in the Poisson parameters).
Middle: 𝐿 = 5, 𝐾 = 6, 𝛾 = 0.0025. Right: 𝐿 = 10, 𝐾 = 10, 𝛾 = 0.0025. For each case, we considered three different policies of the agent
(description in the text). The shaded regions are the intervals computed by the monitor AttentionMonitor, whereas the solid
lines are the (unknown) true values of the properties.

[21] Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik Mallik.

2023. Monitoring Algorithmic Fairness. In Computer Aided Verification. (to

appear).

[22] Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, and Kaushik

Mallik. 2023. Runtime Monitoring of Dynamic Fairness Properties.

arXiv:2305.04699 [cs.CY]

[23] Safwan Hossain, Evi Micha, and Nisarg Shah. 2021. Fair algorithms for multi-

agent multi-armed bandits. Advances in Neural Information Processing Systems
34 (2021), 24005–24017.

[24] Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for

classification without discrimination. Knowledge and information systems 33, 1
(2012), 1–33.

[25] Lydia T Liu, Sarah Dean, Esther Rolf, Max Simchowitz, and Moritz Hardt. 2018.

Delayed impact of fair machine learning. In International Conference on Machine
Learning. PMLR, 3150–3158.

[26] Lydia T Liu, Ashia Wilson, Nika Haghtalab, Adam Tauman Kalai, Christian Borgs,

and Jennifer Chayes. 2020. The disparate equilibria of algorithmic decision

making when individuals invest rationally. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency. 381–391.

[27] Meiyi Ma, John A Stankovic, and Lu Feng. 2017. Runtime monitoring of safety

and performance requirements in smart cities. In Proceedings of the 1st ACM
Workshop on the Internet of Safe Things. 44–50.

[28] Jianhui Mao and Liqian Chen. 2012. Runtime monitoring for cyber-physical

systems: a case study of cooperative adaptive cruise control. In 2012 Second
International Conference on Intelligent System Design and Engineering Application.
IEEE, 509–515.

[29] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram

Galstyan. 2021. A survey on bias and fairness in machine learning. ACM Com-
puting Surveys (CSUR) 54, 6 (2021), 1–35.

[30] Hussein Mouzannar, Mesrob I Ohannessian, and Nathan Srebro. 2019. From fair

decision making to social equality. In Proceedings of the Conference on Fairness,

Accountability, and Transparency. 359–368.
[31] Katsuhiko Ogata et al. 2010. Modern control engineering. Vol. 5. Prentice hall

Upper Saddle River, NJ.

[32] Aleksandr Podkopaev and Aaditya Ramdas. 2021. Tracking the risk of a deployed

model and detecting harmful distribution shifts. arXiv preprint arXiv:2110.06177
(2021).

[33] Martin J Wainwright. 2019. High-dimensional statistics: A non-asymptotic view-
point. Vol. 48. Cambridge university press.

[34] Ian Waudby-Smith, David Arbour, Ritwik Sinha, Edward H Kennedy, and Aa-

ditya Ramdas. 2021. Time-uniform central limit theory, asymptotic confidence

sequences, and anytime-valid causal inference. arXiv preprint arXiv:2103.06476
(2021).

[35] Ian Waudby-Smith and Aaditya Ramdas. 2020. Estimating means of bounded

random variables by betting. arXiv preprint arXiv:2010.09686 (2020).
[36] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P

Gummadi. 2017. Fairness beyond disparate treatment & disparate impact: Learn-

ing classification without disparate mistreatment. In Proceedings of the 26th
international conference on world wide web. 1171–1180.

[37] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P

Gummadi. 2019. Fairness constraints: A flexible approach for fair classification.

The Journal of Machine Learning Research 20, 1 (2019), 2737–2778.

[38] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013.

Learning fair representations. In International conference on machine learning.
PMLR, 325–333.

[39] Xueru Zhang, Mohammadmahdi Khaliligarekani, Cem Tekin, et al. 2019. Group

retention when using machine learning in sequential decision making: the in-

terplay between user dynamics and fairness. Advances in neural information
processing systems 32 (2019).

[40] Xueru Zhang and Mingyan Liu. 2021. Fairness in learning-based sequential

decision algorithms: A survey. In Handbook of Reinforcement Learning and
Control. Springer, 525–555.

614

https://arxiv.org/abs/2305.04699

	Abstract
	1 Introduction
	2 Problem Setup
	2.1 The Sequential Agent-Environment-Interaction Model
	2.2 Time-Varying Social Fairness Properties
	2.3 The Monitoring Problem

	3 An Interval Estimator for the Time-Varying Expected Feature
	3.1 Warm-Up: A Coin-Toss Puzzle
	3.2 The Interval Estimator for Expected Features
	3.3 Soundness of the Interval Estimator

	4 A Dynamic Lending Problem
	4.1 Problem Formulation
	4.2 The Runtime Monitor
	4.3 Experimental Outcome

	5 A Dynamic Attention Allocation Problem
	5.1 Problem Formulation
	5.2 The Runtime Monitor
	5.3 Experimental Outcome

	6 Conclusion and Future Work
	Acknowledgments
	References

