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1 EQUILIBRIUM EQUATIONS OF A KIRCHHOFF ROD
We assume kinematic, or double-clamped, boundary conditions: both

𝛾 and 𝐹 are fixed at 𝑠 = 0 and 𝑠 = ℓ . These boundary conditions are

often encountered in architectural and interior design applications,

and they make for the richest design space of equilibrium states.

To set up the variational problem, we choose 𝐹 as the primary vari-

able, so fixing 𝐹 at both ends imposes Dirichlet boundary conditions.

Assuming that 𝛾 (0) coincides with the origin, we can express 𝛾 as

a function of 𝐹 via 𝛾 (𝑠) =
∫ 𝑠

0
𝛾 ′ =

∫ 𝑠

0
𝐹𝑒3. Thus, the endpoint con-

straint𝛾 (ℓ) = 𝛾ℓ takes the form of an integral constraint

∫ ℓ

0
𝐹𝑒3 = 𝛾ℓ .

Constrained extremals of the Kirchhoff energy are characterized by

extremals of the Lagrangian

L =

∫ ℓ

0

(
1

2

⟨𝑘, 𝐾𝑘⟩ − ⟨𝑐, 𝐹𝑒3⟩
)
,

with Lagrange multiplier 𝑐 ∈ R3
.

To derive the Euler–Lagrange equations, we first discuss admissi-

ble variations of 𝐹 . Any one-parametric family of variations takes

the form 𝐹 (𝑠, 𝜀), such that 𝐹 (𝑠, 0) = 𝐹 (𝑠), and 𝐹 (𝑠, 𝜀) ∈ SO(3)
for all 𝑠 ∈ (0, ℓ) and 𝜀 ∈ (−𝜀0, 𝜀0). To characterize the variation

𝛿𝐹 (𝑠) := (𝜕/𝜕𝜀)𝐹 (𝑠, 𝜀) |𝜀=0, we differentiate the equation 𝐹𝐹
𝑇 = id

with respect to 𝜀. This shows that 𝛿𝐹 𝐹𝑇 is skew-symmetric, so there

exists some 𝜂 : (0, ℓ) → R3
such that 𝛿𝐹 = [𝜂]×𝐹 .

Next, we discuss variations 𝛿𝑘 induced by 𝜂. From differentiating

𝛿𝐹 with respect to 𝑠 , we get 𝛿𝐹 ′ = [𝜂′]×𝐹 + [𝜂]×𝐹 ′, and, from skew-

symmetry of [𝜂]× , we arrive at 𝛿𝐹𝑇 = −𝐹𝑇 [𝜂]× . Then, we take the
variation of [𝑘]× = 𝐹𝑇 𝐹 ′:

[𝛿𝑘]× = −𝐹𝑇 [𝜂]×𝐹 ′ + 𝐹𝑇
(
[𝜂′]×𝐹 + [𝜂]×𝐹 ′

)
= 𝐹𝑇 [𝜂′]×𝐹 = [𝐹𝑇𝜂′]× .

This implies 𝛿𝑘 = 𝐹𝑇𝜂′.
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Now, we can compute the variation of the Lagrangian:

𝛿L =

∫ ℓ

0

(⟨𝐹𝑇𝜂′, 𝐾𝑘⟩− ⟨𝑐, [𝜂]×𝐹𝑒3⟩) =
∫ ℓ

0

(⟨𝐹𝐾𝑘, 𝜂′⟩+ ⟨𝑐×𝛾 ′, 𝜂⟩).

According to the fundamental lemma of variational calculus, we

have 𝛿L = 0 for all test functions 𝜂 if and and only if (𝐹𝐾𝑘)′ = 𝑐×𝛾 ′.
We can integrate this equation to arrive at the equilibrium equation

𝐹𝐾𝑘 = 𝑐 × 𝛾 + 𝑐, (1)

with integration constant 𝑐 ∈ R3
. This shows that (𝛾, 𝐹 ) represents a

static equilibrium of a Kirchhoff rod with stiffness 𝐾 and kinematic

boundary conditions if and only if Eq. 1 holds for some 𝑐, 𝑐 ∈ R3
.

2 PROOF OF PROPOSITION 1
We show that zero is the tight lower bound of the torsional rigidity

for any given bending rigidity. In other words, given 𝐼 ∈ 𝑆2

++ and

𝜀 > 0, we can find a bounded (and simply-connected) domain D ⊂
R2

with bending rigidity equal to 𝐼 and torsional rigidity 𝐽 ≤ 𝜀. For
convenience, we repeat the definitions of 𝐼 and 𝐽 :

𝐼 =

∫
D

(
𝑦2 −𝑥𝑦
−𝑥𝑦 𝑥2

)
𝑑𝐴(𝑥,𝑦),

𝐽 = 4

∫
D

∥∇𝜒 ∥2, with

Δ𝜒 = −1 in D,
𝜒 = 0 on 𝜕D .

Proof. Choose 𝐼 ∈ 𝑆2

++ and 𝑟 > 0, and construct a domain Ω ⊂ R2

as follows: Starting from an elliptical disk with bending rigidity 𝐼 ,

add linear cuts from the boundary to the interior in such a way that

the domain remains simply connected and that the incircle radius

(the supremum of the radii of all circles contained in Ω) falls below
𝑟 , as illustrated in Fig. 6 (right) of the main text. Let 𝜒 ∈ 𝐻1

0
(Ω)

be the solution to Δ𝜒 = −1 in Ω and 𝜒 = 0 on 𝜕Ω, where 𝐻1

0
(Ω)

denotes the Sobolev space of weakly differentiable functions in

𝐿2 (Ω) supported in Ω.

Partition the axis-aligned bounding rectangle of Ω into a rectilinear

grid such that every cell has side lengths greater than 2𝑟 and at most

3𝑟 (which is always possible for small enough 𝑟 ). This guarantees

that every cell intersects Ω𝑐
in a set containing a line segment

of positive length, on which 𝜒 = 0. By the Poincaré–Friedrichs

inequality [Braess 2007, II.1.5-6], we have

∥𝜒 ∥𝐿2 (𝐶 ) ≤ 3𝑟 ∥∇𝜒 ∥𝐿2 (𝐶 )

for every cell 𝐶 of the partition, and by summing over all cells,

∥𝜒 ∥𝐿2 (Ω) ≤ 3𝑟 ∥∇𝜒 ∥𝐿2 (Ω) .

By Green’s first identity, we have

∥∇𝜒 ∥2

𝐿2 (Ω) =
∫
𝜕Ω

𝜒 𝜕𝑛 𝜒 −
∫
Ω
𝜒 Δ𝜒 =

∫
Ω
𝜒 ≤ ∥𝜒 ∥𝐿1 (Ω) ,
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and by the Cauchy–Schwarz inequality,

∥1 · 𝜒 ∥𝐿1 (Ω) ≤ ∥1∥𝐿2 (Ω) ∥𝜒 ∥𝐿2 (Ω) =
√︁
𝜇 (Ω)∥𝜒 ∥𝐿2 (Ω) ,

where 𝜇 denotes the Lebesgue measure. Altogether, this gives

∥∇𝜒 ∥2

𝐿2 (Ω) ≤ ∥𝜒 ∥𝐿1 (Ω) ≤
√︁
𝜇 (Ω)∥𝜒 ∥𝐿2 (Ω) ≤ 3𝑟

√︁
𝜇 (Ω)∥∇𝜒 ∥𝐿2 (Ω) .

Cancelling ∥∇𝜒 ∥𝐿2 (Ω) and squaring gives

𝐽 = 4∥∇𝜒 ∥2

𝐿2 (Ω) ≤ 36𝑟2𝜇 (Ω) .

Choosing 𝑟 such that 36𝑟2𝜇 (Ω) ≤ 𝜀 gives the statement. □

3 PROOF OF LEMMA 2
We show that the map𝜓 : 𝑆2

++ → R>0 : 𝑋 ↦→ det𝑋
tr𝑋

is concave.

Proof. Let 𝑋,𝑌 ∈ 𝑆2

++ and 𝑡 ∈ (0, 1). We need to show that (1 −
𝑡)𝜓 (𝑋 ) + 𝑡𝜓 (𝑌 ) ≤ 𝜓 ((1 − 𝑡)𝑋 + 𝑡𝑌 ), which expands to

(1 − 𝑡) tr𝑌 det𝑋 + 𝑡 tr𝑋 det𝑌

tr𝑋 tr𝑌
≤ det((1 − 𝑡)𝑋 + 𝑡𝑌 )

(1 − 𝑡) tr𝑋 + 𝑡 tr𝑌
.

We multiply through by the product of the denominators, which

is strictly positive, expand det((1 − 𝑡)𝑋 + 𝑡𝑌 ) in terms of the com-

ponents of 𝑋 and 𝑌 , and divide by 𝑡 (1 − 𝑡), which is also positive.

Most terms cancel, and we arrive at the equivalent statement

(tr𝑋 )2
det𝑌 + (tr𝑌 )2

det𝑋 ≤ tr𝑋 tr𝑌 (𝑋11𝑌22 − 2𝑋12𝑌12 +𝑋22𝑌11),

which can be factorized to give

0 ≤ (𝑋11𝑌22 − 𝑋22𝑌11)2 + (𝑌12 tr𝑋 − 𝑋12 tr𝑌 )2 .

This shows that𝜓 is concave. □

4 PROOF OF PROPOSITION 7
For convenience, we restate the proposition:

Proposition 7. Let 𝛾 be an arc-length parametrized curve in R3.
Then the following are equivalent:

(1) There exist 𝑐, 𝑐 ∈ R3 such that 𝛾 satisfies

⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ = 0, (2a)

⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩ > 0, (2b)

(2) There exist 𝑐, 𝑐 ∈ R3 such that the ordered set {𝛾 ′, 𝛾 ′′, 𝑐 × 𝛾 + 𝑐}
is a right-handed orthogonal basis at every point.

(3) There exist 𝑐, 𝑐 ∈ R3 and𝑚 : (0, ℓ) → R>0 such that

𝛾 ′′ (𝑠) =𝑚(𝑠) · (𝑐 × 𝛾 (𝑠) + 𝑐) × 𝛾 ′ (𝑠) (3)

and ⟨𝛾 ′ (0), 𝑐 × 𝛾 (0) + 𝑐⟩ = 0. It holds that 𝜅 =𝑚 · ∥𝑐 × 𝛾 + 𝑐 ∥.

Proof. (1)⇒ (2): By differentiating ⟨𝛾 ′, 𝛾 ′⟩ = 1, we get ⟨𝛾 ′, 𝛾 ′′⟩ = 0,

and by differentiating Eq. 2a,

0 = ⟨𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩ + ⟨𝛾 ′, 𝑐 × 𝛾 ′⟩ = ⟨𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩.

Eq. 2a and these two new equations give the three orthogonality

conditions. Eq. 2b shows right-handedness.

(2)⇒ (3): Eq. 3 with𝑚 > 0 and the initial condition are immediately

implied by the right-handed orthogonal basis assumption. Using

⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ = 0, we compute

𝜅 = ∥𝛾 ′ × 𝛾 ′′∥ =𝑚 · ∥𝛾 ′ × ((𝑐 × 𝛾 + 𝑐) × 𝛾 ′)∥ =𝑚 · ∥𝑐 × 𝛾 + 𝑐 ∥ .

(3) ⇒ (1): To show that ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ remains constant, compute

⟨𝛾 ′, 𝑐 ×𝛾 + 𝑐⟩′ = ⟨𝛾 ′′, 𝑐 ×𝛾 + 𝑐⟩ =𝑚 · ⟨(𝑐 ×𝛾 + 𝑐) ×𝛾 ′, 𝑐 ×𝛾 + 𝑐⟩ = 0,

so Eq. 2a follows from the initial condition. Eqs. 2a and 3 imply

Eq. 2b because 𝛾 ′ and 𝑐 × 𝛾 + 𝑐 are both non-zero. □

5 HELICAL SYMMETRY OF CONSTANT-CURVATURE
PARALLEL EQUILIBRIUM CURVES

We give a sketch of the proof that solutions to

𝛾 ′′ (𝑠) = 𝐵(𝛾 (𝑠)) × 𝛾 ′ (𝑠), with 𝐵(𝑥) = 𝜅 𝑐 × 𝑥 + 𝑐
∥𝑐 × 𝑥 + 𝑐 ∥ ,

with 𝑐 = 𝑒3, 𝑐 = 𝑝𝑒3, and constant 𝜅 > 0 have a discrete helical

symmetry with axis 𝑒3, i.e., there exist ℎ, 𝜁 ∈ R and 𝜎 > 0, such that,

for all 𝑠 ∈ R,

𝛾 (𝑠 + 𝜎) =
(

cos 𝜁 − sin 𝜁 0

sin 𝜁 cos 𝜁 0

0 0 1

)
𝛾 (𝑠) +

(
0

0

ℎ

)
.

To show this, we note that 𝐵 is divergence-free, so the equation

𝛾 ′′ = 𝐵 × 𝛾 ′ describes the trajectory of a charged particle in a

magnetic field. In cylindrical coordinates with radius 𝜚 , azimuth 𝜃 ,

and height 𝑧, we define the vector potential

𝐴(𝜚, 𝜃 ) = 𝜅𝑝

𝜚

(√︃
𝜚2 + 𝑝2 − 1

)
𝑒𝜃 (𝜃 ) + 𝜅

(√︃
𝜚2 + 𝑝2 − 1

)
𝑒3,

such that div𝐴 = 0 and curl𝐴 = 𝐵, where 𝐵 is given by

𝐵(𝜚, 𝜃 ) = 𝜅√︁
𝜚2 + 𝑝2

(𝜚𝑒𝜃 (𝜃 ) + 𝑝𝑒3)

in cylindrical coordinates. The Lagrangian for a charged particle in

a magnetic field is given by
1

2
⟨𝛾 ′, 𝛾 ′⟩ + ⟨𝛾 ′, 𝐴 ◦𝛾⟩, which we can use

to extract invariants of our differential equation by using Noether’s

theorem. Symmetry under time translation gives the arc-length

condition 𝜚 ′2 + (𝜚𝜃 ′)2 + 𝑧′2 = 1, and symmetry under translation

along 𝑒3 and rotation around 𝑒3 gives two new invariants

𝐼𝑧 = 𝑧′ + 𝜅
√︃
𝜚2 + 𝑝2, 𝐼𝜃 = 𝜚2𝜃 ′ − 𝜅𝑝

√︃
𝜚2 + 𝑝2,

which show that 𝑧′ and 𝜃 ′ only depend on 𝜚 (but not on 𝜃 and 𝑧).

We compute 0 = ⟨𝛾 ′, 𝑐 ×𝛾 + 𝑐⟩ = 𝜚2𝜃 ′ + 𝑝𝑧′ = 𝐼𝜃 + 𝑝𝐼𝑧 , showing that
𝐼𝜃 = −𝑝𝐼𝑧 . Next, we substitute 𝜃 ′ and 𝑧′ in the arc-length condition

for the invariants, which gives (for 𝜚 ≠ 0),

𝜚 ′2 = 1 − 𝜚2 + 𝑝2

𝜚2

(
𝐼𝑧 − 𝜅

√︃
𝜚2 + 𝑝2

)
2

, (4)

showing that 𝜚 ′ only depends on 𝜚 , up to sign. To determine zeros

of 𝜚 ′, substitute 𝜚 =
√︁
𝜚2 + 𝑝2 ≥ |𝑝 |, which gives

𝜚2 (1 − (𝐼𝑧 − 𝜅𝜚 )2) = 𝑝2 .

On 𝜚 > |𝑝 |, this equation has either two distinct real solutions, or

one real double solution (which corresponds to the special case of

a helical solution). In the former case, we have 𝜚 ′ (𝜚 ) = 0 exactly

for some 𝜚 = 𝑅1 and 𝜚 = 𝑅2, with 0 < 𝑅1 < 𝑅2. Then, 𝜚 consists of
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alternating, mirror-symmetric segments, on which 𝜚 monotonically

increases from 𝑅1 to 𝑅2, and then monotonically decreases from 𝑅2

to 𝑅1. To show that the sign of 𝜚 ′ actually changes at 𝑅1 and 𝑅2, one

verifies 𝜚 ′′ ≠ 0 at these points. Furthermore, 𝜃 ′ and 𝑧′ only depend

on 𝜚 , so every pair of alternating segments will give a copy of the

same curve segment, which is translated along and rotated around

𝑒3 with respect to the previous one. This shows the discrete helical

symmetry of 𝛾 .
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