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Abstract. We automatically compute a new class of environment as-
sumptions in two-player turn-based finite graph games which character-
ize an “adequate cooperation” needed from the environment to allow the
system player to win. Given an ω-regular winning condition Φ for the
system player, we compute an ω-regular assumption Ψ for the environ-
ment player, such that (i) every environment strategy compliant with
Ψ allows the system to fulfill Φ (sufficiency), (ii) Ψ can be fulfilled by
the environment for every strategy of the system (implementability), and
(iii) Ψ does not prevent any cooperative strategy choice (permissiveness).
For parity games, which are canonical representations of ω-regular games,
we present a polynomial-time algorithm for the symbolic computation of
adequately permissive assumptions and show that our algorithm runs
faster and produces better assumptions than existing approaches—both
theoretically and empirically. To the best of our knowledge, for ω-regular
games, we provide the first algorithm to compute sufficient and imple-
mentable environment assumptions that are also permissive.

Keywords: Synthesis · Two-player Games · Parity · Permissiveness.

1 Introduction

Two-player ω-regular games on finite graphs are the core algorithmic components
in many important problems of computer science and cyber-physical system
design. Examples include the synthesis of programs which react to environment
inputs, modal µ-calculus model checking, correct-by-design controller synthesis
for cyber-physical systems, and supervisory control of autonomous systems.

These problems can be ultimately reduced to an abstract two-player game
between an environment player and a system player, respectively capturing the
external unpredictable influences and the system under design, while the game
captures the non-trivial interplay between these two parts. A solution of the
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game is a set of decisions the system player needs to make to satisfy a given
ω-regular temporal property over the states of the game, which is then used to
design the sought system or its controller.

Traditionally, two-player games over graphs are solved in a zero-sum fashion,
i.e., assuming that the environment will behave arbitrarily and possibly adversar-
ially. Although this approach results in robust system designs, it usually makes
the environment too powerful to allow an implementation for the system to ex-
ist. However in reality, many of the outlined application areas actually account
for some cooperation of system components, especially if they are co-designed.
In this scenario it is useful to understand how the environment (i.e., other pro-
cesses) needs to cooperate to allow for an implementation to exist. This can be
formalized by environment assumptions, which are ω-regular temporal proper-
ties that restrict the moves of the environment player in a synthesis game. Such
assumptions can then be used as additional specifications in other components’
synthesis problems to enforce the necessary cooperation (possibly in addition to
other local requirements) or can be used to verify existing implementations.

For the reasons outlined above, the automatic computation of assumptions
has received significant attention in the reactive synthesis community. It has
been used in two-player games [8,6], both in the context of monolithic system
design [11,19] as well as distributed system design [18,13].

All these works emphasize two desired properties of assumptions. They should
be (i) sufficient, i.e., enable the system to win if the environment obeys its as-
sumption and (ii) implementable, i.e., prevent the system from falsifying the
assumption to vacuously win the game by not even respecting the original spec-
ification. In this paper, we claim that there is an important third property —
permissiveness, i.e. the assumption retains all cooperatively winning plays in the
game. This notion is crucial in the setting of distributed synthesis, as here as-
sumptions are generated before the implementation of every component is fixed.
Therefore, assumptions need to retain all feasible ways of cooperation to allow
for a distributed implementation to be discovered in a decentralized manner.

While the class of assumptions considered in this paper is motivated by
their use for distributed synthesis, this paper focuses only on their formalization
and computation, i.e., given a two-player game over a finite graph and an ω-
regular winning condition Φ for the system player, we automatically compute an
adequately permissive ω-regular assumption Ψ for the environment player that
formalizes the above intuition by being (i) sufficient, (ii) implementable, and
(iii) permissive. The main observation that we exploit is that such adequately
permissive assumptions (APA for short) can be constructed from three simple
templates which can be directly extracted from a cooperative synthesis game
leading to a polynomial-time algorithm for their computation. By observing page
constrains, we postpone the very interesting but largely orthogonal problem of
contract-based distributed synthesis using APAs to future work.

To appreciate the simplicity of the assumption templates we use, consider the
game graphs depicted in Fig. 1 where the system and the environment player
control the circle and square vertices, respectively. Given the specification Φ =
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Fig. 1: Game graphs with environment (squares) and system (circles) vertices.

♦�{p} (which requires the play to eventually only see vertex p), the system
player can win the game in Fig. 1 (a) by requiring the environment to fully disable
edge e1. This introduces the first template type—a safety template—on e1. On
the other hand, the game in Fig. 1 (b) only requires that e1 is taken finitely often.
This is captured by our second template type—a co-liveness template—on e1.
Finally, consider the game in Fig. 1 (c) with the specification Φ = �♦{p}, i.e.
vertex p should be seen infinitely often. Here, the system player wins if whenever
the source vertices of edges e1 and e2 are seen infinitely often, also one of these
edges is taken infinitely often. This is captured by our third template type—a
live group template—on the edge-group {e1, e2}.
Contribution. The main contribution of this paper is to show that APAs can
always be composed from the three outlined assumption templates and can be
computed in polynomial time.

Using a set of benchmark examples taken from SYNTCOMP [1] and a pro-
totype implementation of our algorithm in our new tool SImPA, we empirically
show that our algorithm is both faster and produces more desirable solutions
than existing approaches. In addition, we apply SImPA to the well known 2-
client arbiter synthesis benchmark from [21], which is known to only allow for
an implementation of the arbiter if the clients’ moves are suitably restricted. We
show that applying SImPA to the unconstrained arbiter synthesis problem yields
assumptions on the clients which are less restrictive but conceptually similar to
the ones typically used in the literature.
Related Work. The problem of automatically computing environment assump-
tions for synthesis was already addressed by Chatterjee et al. [8]. However, their
class of assumptions does in general not allow to construct permissive assump-
tions. Further, computing their assumptions is an NP-hard problem, while our
algorithm computes APAs in O(n4)-time for a parity game with n vertices. The
difference in the complexity arises because Chatterjee et al. require minimality
of the assumptions. On the other hand, we trade minimality for permissiveness
which allows us to utilize cooperative games, which are easier to solve.

When considering cooperative solutions of non-zerosum games, related works
either fix strategies for both players [7,14], assume a particularly rational behav-
ior of the environment [4] or restrict themselves to safety assumptions [18]. In
contrast, we do not make any assumption on how the environment chooses its
strategy. Finally, in the context of specification-repair in zerosum games multiple
automated methods for repairing environment models exist, e.g., [22,15,16,20,8].
Unfortunately, all of these methods fail to provide permissiveness. A recent work
by Cavezza et al. [6] computes a minimally restrictive set of assumptions but only
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for GR(1) specifications, which are a strict subclass of the problem considered
in our work. To the best of our knowledge, we propose the first fully automated
algorithm for computing permissive assumptions for general ω-regular games.

2 Preliminaries

Notation. We use N to denote the set of natural numbers including zero.
Given two natural numbers a, b ∈ N with a < b, we use [a; b] to denote the
set {n ∈ N | a ≤ n ≤ b}. For any given set [a; b], we write i ∈even [a; b] and
i ∈odd [a; b] as short hand for i ∈ [a; b] ∩ {0, 2, 4, . . .} and i ∈ [a; b] ∩ {1, 3, 5, . . .}
respectively. Given two sets A and B, a relation R ⊆ A × B, and an element
a ∈ A, we write R(a) to denote the set {b ∈ B | (a, b) ∈ R}.
Languages. Let Σ be a finite alphabet. The notations Σ∗ and Σω denote the
set of finite and infinite words over Σ, respectively, and Σ∞ is equal to Σ∗∪Σω.
For any word w ∈ Σ∞, wi denotes the i-th symbol in w. Given two words u ∈ Σ∗
and v ∈ Σ∞, the concatenation of u and v is written as the word uv.
Game graphs. A game graph is a tuple G = (V,E) where (V,E) is a finite
directed graph with vertices V and edges E, and V = V 0 ] V 1 be a partition
of V . Without loss of generality, we assume that for every v ∈ V there exists
v′ ∈ V s.t. (v, v′) ∈ E. For the purpose of this paper, the system and the
environment players will be denoted by Player 0 and Player 1, respectively. A
play is a finite or infinite sequence of vertices ρ = v0v1 . . . ∈ V∞. A play prefix
p = v0v1 · · · vk is a finite play.
Winning conditions. Given a game graph G, we consider winning conditions
specified using a formula Φ in linear temporal logic (LTL) over the vertex set V ,
that is, we consider LTL formulas whose atomic propositions are sets of vertices
V . In this case the set of desired infinite plays is given by the semantics of Φ
over G, which is an ω-regular language L(Φ) ⊆ V ω. Every game graph with an
arbitrary ω-regular set of desired infinite plays can be reduced to a game graph
(possibly with an extended set of vertices) with an LTL winning condition, as
above. The standard definitions of ω-regular languages and LTL are omitted for
brevity and can be found in standard textbooks [3].
Games and strategies. A two-player (turn-based) game is a pair G = (G,Φ)
where G is a game graph and Φ is a winning condition over G. A strategy of
Player i, i ∈ {0, 1}, is a partial function πi : V ∗V i → V such that for every
pv ∈ V ∗V i for which π is defined, it holds that πi(pv) ∈ E(v). Given a strategy
πi, we say that the play ρ = v0v1 . . . is compliant with πi if vk−1 ∈ V i implies
vk = πi(v0 . . . vk−1) for all k ∈ dom(ρ). We refer to a play compliant with πi and
a play compliant with both π0 and π1 as a πi-play and a π0π1-play, respectively.
We collect all plays compliant with πi, and compliant with both π0 and π1 in
the sets L(πi) and L(π0π1), respectively.
Winning. Given a game G = (G,Φ), a strategy πi is (surely) winning for
Player i if L(πi) ⊆ L(Φ), i.e., a Player 0 strategy π0 is winning if for every
Player 1 strategy π1 it holds that L(π0π1) ⊆ L(Φ). Similarly, a fixed strategy
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profile (π0, π1) is cooperatively winning if L(π0π1) ⊆ L(Φ). We say that a ver-
tex v ∈ V is winning for Player i (resp. cooperatively winning) if there exists a
winning strategy πi (resp. a cooperatively winning strategy profile (π0, π1)) s.t.
πi(v) is defined. We collect all winning vertices of Player i in the Player i win-
ning region 〈〈i〉〉Φ ⊆ V and all cooperatively winning vertices in the cooperative
winning region 〈〈0, 1〉〉Φ. We note that 〈〈i〉〉Φ ⊆ 〈〈0, 1〉〉Φ for both i ∈ {0, 1}.

3 Adequately Permissive Assumptions for Synthesis

Given a two-player game G, the goal of this paper is to compute assumptions on
Player 1 (i.e., the environment), such that both players cooperate just enough
to fulfill Φ while retaining all possible cooperative strategy choices. Towards a
formalization of this intuition, we define winning under assumptions.

Definition 1. Let G = (G = (V,E), Φ) be a game and Ψ be an LTL formula
over V . Then a Player 0 strategy π0 is winning in G under assumption Ψ , if for
every Player 1 strategy π1 s.t. L(π1) ⊆ L(Ψ) it holds that L(π0π1) ⊆ L(Φ). We
denote by 〈〈0〉〉ΨΦ the set of vertices from which such a Player 0 strategy exists.

We remark that the ’winning-under-assumption’ strategies π0 from Def. 1
satisfy two simple but interesting properties — anti-monotonicity (if π0 is win-
ning under an assumption, then it is so under every stronger assumption), and
conjunctivity (if π0 is winning under two different assumptions, then it is so un-
der their conjunction). However, it does not satisfy disjunctivity (see [2, Sec. 3.1]
for an example). In addition, we remark that the definition of ’winning-under-
assumption’ in terms of plays (rather than strategies) might seem more natural
to some readers. We refer these readers to the full version of the paper [2, Sec.
3.1] for an in-depth discussion on the differences of these definitions.

We now see that the assumption Ψ introduced in Def. 1 weakens the strategy
choices of the environment player (Player 1). We call assumptions sufficient if
this weakening is strong enough to allow Player 0 to win from every vertex in
the cooperative winning region.

Definition 2. An assumption Ψ is sufficient for (G,Φ) if 〈〈0〉〉ΨΦ ⊇ 〈〈0, 1〉〉Φ.

Unfortunately, sufficient assumptions can be abused to change the given syn-
thesis problem in an unintended way. Consider for instance the game in Fig. 2
(left) with Φ = �♦{v0} and Ψ = �♦e1. Here, there is no strategy π1 for Player 1
such that L(π1) ⊆ L(Ψ) as the system can always falsify the assumption by sim-
ply not choosing e1 infinitely often in v1. Therefore, any Player 0 strategy is
winning under assumption even if Φ is violated. The assumption Ψ , however,
is trivially sufficient, as 〈〈0〉〉ΨΦ = V . In order to prevent sufficient assumptions
to be falsifiable and thereby enabling vacuous winning, we define the notion of
implementability, which ensures that Ψ solely restricts Player 1 moves.

Definition 3. An assumption Ψ is implementable for (G,Φ) if 〈〈1〉〉Ψ = V .
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Fig. 2: Two-player games with Player 1 (squares) and Player 0 (circles) vertices.

A sufficient and implementable assumption ensures that the cooperative win-
ning region of the original game coincides with the winning region under that
assumption, i.e., 〈〈0〉〉ΨΦ = 〈〈0, 1〉〉Φ. However, all cooperative strategy choices
of both players might still not be retained, which is ensured by the notion of
permissiveness.

Definition 4. An assumption Ψ is permissive for (G,Φ) if L(Φ) ⊆ L(Ψ).

This notion of permissiveness is motivated by the intended use of assump-
tions for compositional synthesis. In the simplest scenario of two interacting
processes, two synthesis tasks—one for each process—are considered in parallel.
Here, generated assumptions in one synthesis task are used as additional speci-
fications in the other synthesis problem. Therefore, permissiveness is crucial to
not “skip” over possible cooperative solutions—each synthesis task needs to keep
all allowed strategy choices for both players intact to allow for compositional
reasoning. This scenario is illustrated in the following example to motivate the
considered class of assumptions. Formalizing assumption-based compositional
synthesis in general is however out of the scope of this paper.

Example 1. Consider the (non-zerosum) two-player game in Fig. 2 (middle)
with two different specifications for both players, namely Φ0 = ♦�{v1, v2}
and Φ1 = ♦�{v1}. Now consider two candidate assumptions Ψ0 = ♦�¬e1 and
Ψ ′0 = (�♦v1 =⇒ �♦e2) on Player 1. Notice that both assumptions are suffi-
cient and implementable for (G,Φ0). However, Ψ ′0 does not allow the play {v1}ω
and hence is not permissive whereas Ψ0 is permissive for (G,Φ0). As a conse-
quence, there is no way Player 1 can satisfy both her objective Φ1 and the
assumption Ψ ′0 even if Player 0 cooperates, since L(Φ1) ∩ L(Ψ ′0) = ∅. However,
under the assumption Ψ0 on Player 1 and assumption Ψ1 = ♦�¬e3 on Player 0
(which is sufficient and implementable for (G,Φ1) if we interchange the vertices
of the players), they can satisfy both their own objectives and the assumptions
on themselves. Therefore, they can collectively satisfy both their objectives.

We also remark that for this example, the algorithm in [9] outputs Ψ ′0 as the
desired assumption for game (G,Φ0) and their used assumption formalism is not
rich enough to capture assumption Ψ0. This shows that the assumption type we
are interested in is not computable by the algorithm from [9].

Definition 5. An assumption Ψ is called adequately permissive (an APA for
short) for (G,Φ) if it is sufficient, implementable and permissive.

4 Computing Adequately Permissive Assumptions (APA)

In this section, we present our algorithm to compute adequately permissive as-
sumptions (APA for short) for parity games, which are canonical representations
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of ω-regular games. For a gradual exposition of the topic, we first present algo-
rithms for simpler winning conditions, namely safety (Sec. 4.2), Büchi (Sec. 4.3),
and Co-Büchi (Sec. 4.4), which are used as building blocks while presenting the
algorithm for parity games (Sec. 4.5). All proofs omitted can be found in the full
version [2]. Let us first introduce some preliminaries.

4.1 Preliminaries

We use symbolic fixpoint algorithms expressed in the µ-calculus [17] to compute
the winning regions and to generate assumptions in simple post-processing steps.
Set Transformers. Let G = (V = V 0 ] V 1, E) be a game graph, U ⊆ V be a
subset of vertices, and a ∈ {0, 1} be the player index. Then we define two types
of predecessor operators:

preG(U) = {v ∈ V | ∃u ∈ U. (v, u) ∈ E} (1)
cpreaG(U) = {v ∈ V a | v ∈ preG(U)} ∪ {v ∈ V 1−a | ∀(v, u) ∈ E. u ∈ U} (2)

cprea,1G (U) = cpreaG(U) ∪ U (3)

cprea,iG (U) = cpreaG(cpre
a,i−1
G (U)) ∪ cprea,i−1G (U) with i ≥ 1 (4)

The predecessor operator preG(U) computes the set of vertices with at least one
successor in U . The controllable predecessor operators cpreaG(U) and cprea,iG (U)
compute the set of vertices from which Player a can force visiting U in at most
one and i steps respectively. In the following, we introduce the attractor operator
attraG(U) that computes the set of vertices from which Player a can force at least
a single visit to U in finitely many but nonzero3 steps:

attraG(U) =
(⋃

i≥1 cprea,i(U)
)
\U (5)

When clear from the context, we drop the subscript G from these operators.
Fixpoint Algorithms in the µ-calculus. µ-calculus [17] offers a succinct
representation of symbolic algorithms (i.e., algorithms manipulating sets of ver-
tices instead of individual vertices) over a game graph G. The formulas of the
µ-calculus, interpreted over a 2-player game graph G, are given by the grammar

φ := p | X | φ ∪ φ | φ ∩ φ | pre(φ) | µX.φ | νX.φ

where p ranges over subsets of V , X ranges over a set of formal variables, pre
ranges over monotone set transformers in {pre, cprea, attra}, and µ and ν denote,
respectively, the least and the greatest fixed point of the functional defined as
X 7→ φ(X). Since the operations ∪,∩, and the set transformers pre are all
monotonic, the fixed points are guaranteed to exist, due to the Knaster-Tarski
Theorem [5]. We omit the (standard) semantics of formulas (see [17]).

A µ-calculus formula evaluates to a set of vertices over G, and the set can be
computed by induction over the structure of the formula, where the fixed points
are evaluated by iteration. The reader may note that pre, cpre and attr can be
computed in time polynomial in number of vertices.
3 In existing literature, usually U ⊆ attra(U), i.e., attra(U) contains vertices from
which U is visited in zero steps. We exclude U from attra(U) for a technical reason.
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4.2 Safety Games

A safety game is a game G = (G,Φ) with Φ := �U for some U ⊆ V , and a play
fulfills Φ if it never leaves U . APAs for safety games disallow every Player 1
move that leaves the cooperative winning region in G w.r.t. Safety(U). This is
formalized in the following theorem.

Theorem 1. Let G = (G = (V,E),�U) be a safety game, Z∗ = νY.U ∩ pre(Y ),
and S =

{
(u, v) ∈ E |

(
u ∈ V 1 ∩ Z∗

)
∧ (v /∈ Z∗)

}
. Then Z∗ = 〈〈0, 1〉〉�U and 4

Ψunsafe(S) := �
∧
e∈S ¬e, (6)

is an APA for the game G. We denote by UnsafeA(G,U) the algorithm com-
puting S as above, which runs in time O(n2), where n = |V |.

We call the LTL formula in (6) a safety template and assumptions that solely
use this template safety assumptions.

4.3 Live Group Assumptions for Büchi Games

Büchi games. A Büchi game is a game G = (G,Φ) where Φ = �♦U for some
U ⊆ V . Intuitively, a play is winning for a Büchi game if it visits the vertex set
U infinitely often. We first recall that the cooperative winning region 〈〈0, 1〉〉�♦U
can be computed by a two-nested symbolic fixpoint algorithm [10]

Büchi(G,U) := νY.µX. (U ∩ pre(Y )) ∪ (pre(X)). (7)

Live group templates. Given the standard algorithm in (7), the set Xi com-
puted in the i-th iteration of the fixpoint variable X in the last iteration of Y
actually carries a lot of information to construct a very useful assumption for
the Büchi game G. To see this, recall that Xi contains all vertices which have an
edge to vertices which can reach U in at most i − 1 steps [10, sec. 3.2]. Hence,
for all Player 1 vertices in Xi \Xi−1 we need to assume that Player 1 always
eventually makes progress towards U by moving to Xi. This can be formalized
by a so called live group template.

Definition 6. Let G = (V,E) be a game graph. Then a live group H = {ej}j≥0
is a set of edges ej = (sj , tj) with source vertices src(H) := {sj}j≥0. Given a set
of live groups H` = {Hi}i≥0 we define a live group template as

Ψlive(H
`) :=

∧
i≥0

�♦src(Hi) =⇒ �♦Hi. (8)

4 We use e = (u, v) in LTL formulas as a syntactic sugar for u ∧©v, where © is the
LTL next operator. A set of edges E′ = {ei}i∈[0;k], when used as atomic proposition,
is a syntactic sugar for

∨
i∈[0;k] ei.
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The live group template says that if some vertex from the source of a live group is
visited infinitely often, then some edge from this group should be taken infinitely
often. We will use this template to give the assumptions for Büchi games.

Remark 1. Note that the assumptions computed by Chatterjee et al. [8] uses live
edges, i.e., singleton live groups, and hence, they are less expressive. In particular,
there are instances of Büchi games, where the permissive assumptions can not
be expressed using live edges but they can be using live groups, e.g., in Fig. 1 (c)
the live edge assumption �♦e1 ∧�♦e2 is sufficient but not permissive, whereas
the live group assumption �♦src(H) =⇒ �♦H with H = {e1, e2} is an APA.

In the context of the fixpoint computation of (7), we can construct live groups
H` = {Hi}i≥0 where each Hi contains all edges of Player 1 which originate in
Xi \ Xi−1 and end in Xi−1. Then the live group assumption in (8) precisely
captures the intuition that, in order to visit U infinitely often, Player 1 should
take edges in Hi infinitely often if vertices in src(Hi) are seen infinitely often.
Unfortunately, it turns out that this live group assumption is not permissive.
The reason is that it restricts Player 1 also on those vertices from which she will
anyway go towards U . For example, consider the game in Fig. 2 (right). Here
defining live groups through computations of (10), will mark e1 as a live group,
but then (v2v1v0)

ω will be in L(Φ) but not in the language of the assumption.
Here the permissive assumption would be Ψ = true.
Accelerated fixpoint computation. In order to provide permissiveness, we
use a slightly modified fixpoint algorithm that computes the same set Z∗ but
allows us to extract permissive assumptions directly from the fixpoint computa-
tions. Towards this goal, we introduce the together predecessor operator.

tpreG(U) = attr0G(U) ∪ cpre1G(attr
0
G(U) ∪ U). (9)

Intuitively, tpre adds all vertices from which Player 0 does not need any cooper-
ation to reach U in every iteration of the fixpoint computation. The interesting
observation we make is that substituting the inner pre operator in (7) by tpre
does not change the computed set but only accelerates the computation. This is
formalized in the next proposition and visualized in Fig. 3.

Proposition 1. Let G = (G,�♦U) be a Büchi game and

TBüchi(G,U) = νY.µX. (U ∩ pre(Y )) ∪ (tpre(X)). (10)

Then TBüchi(G,U) = Büchi(G,U) = 〈〈0, 1〉〉�♦U .

Prop. 1 follows from the correctness proof of (7) by using the observation
that for all U ⊆ V we have µX. U ∪ pre(X) = µX. U ∪ tpre(X).
Computing live group assumptions. Intuitively, the operator tpreG com-
putes the union of (i) the set of vertices from which Player 0 can reach U in
a finite number of steps with no cooperation from Player 1 and (ii) the set of
Player 1 vertices from which Player 0 can reach U with at most one-time coop-
eration from Player 1. Looking at Fig. 3, case (i) is indicated by the dotted line,
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v1
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Fig. 3: Computation of µX. U∪pre(X) (left) and µX. U∪tpre(X) (right). Each colored
region describes one iteration over X. The dotted region on the right is added by the
attr part of tpre, and this allows only the vertex v5 to be in front({v1}). Each set of
the same colored edges defines a live transition group.

while case (ii) corresponds to the last added Player 1 vertex (e.g., v5). Hence,
we need to capture the cooperation needed by Player 1 only from the vertices
added last, which we call the frontier of U in G and are formalized as follows:

front(U) := tpreG(U) \ attr0G(U). (11)

It is easy to see that, indeed front(U) ⊆ V 1, as whenever v ∈ front(U) ∩ V 0,
then it would have been the case that v ∈ attr0G(U) via (10).

Defining live groups based on frontiers instead of all elements in Xi indeed
yields the desired permissive assumption for Büchi games. By observing that we
additionally need to ensure that Player 1 never leaves the cooperative winning
region by a simple safety assumption, we get the following result, which is the
main contribution of this section.

Theorem 2. Let G = (G = (V,E), Φ = �♦U) be a Büchi game with Z∗ =
TBüchi(G,U) and H` = {Hi}i≥0 s.t.

∅ 6= Hi := (front(Xi)× (Xi+1 \ front(Xi))) ∩ E, (12)

where Xi is the set computed in the i-th iteration of the computation over X
and in the last iteration of the computation over Y in TBüchi. Then Ψ =
Ψunsafe(S) ∧ Ψlive(H

`) is an APA for G, where S = UnsafeA(G,U). We write
LiveA(G,U) to denote the algorithm to construct live groups H` as above, which
runs in time O(n3), where n = |V |.

In fact, there is a faster algorithm for computation of APAs for Büchi games,
that runs in time linear in the size of the graph, which we present in the full
version [2]. We chose to present the µ-calculus based algorithm here, because it
provides more insights into the nature of live groups.

4.4 Co-Liveness Assumptions in Co-Büchi Games

A co-Büchi game is the dual of a Büchi game, where a winning play should visit
a designated set of vertices only finitely many times. Formally, a co-Büchi game

220



Computing Adequately Permissive Assumptions for Synthesis

is a tuple G = (G,Φ) where Φ = ♦�U for some U ⊆ V . The standard symbolic
algorithm to compute the cooperative winning region is as follows:

CoBüchi(G,U) := µX.νY. (U ∩ pre(Y )) ∪ (pre(X)). (13)

As before, the sets Xi obtained in the i-th computation of X during the evalua-
tion of (13) carry essential information for constructing assumptions. Intuitively,
X1 gives precisely the set of vertices from which the play can stay in U with
Player 1’s cooperation and we would like an assumption to capture the fact
that we do not want Player 1 to go further away from X1 infinitely often. This
observation is naturally described by so called co-liveness templates.

Definition 7. Let G = (V,E) be a game graph and D ⊆ V × V a set of edges.
Then a co-liveness template over G w.r.t. D is defined by the LTL formula

Ψcolive(D) := ♦�
∧
e∈D ¬e. (14)

The assumptions employing co-liveness templates will be called co-liveness
assumptions. With this, we can state the main result of this section.

Theorem 3. Let G = (G = (V,E),♦�U), Z∗ = CoBüchi(G,U) and

D =
( [

(X1 ∩ V 1)× (Z∗ \X1)
]
∪
[⋃

i>1(X
i ∩ V 1)× (Z∗ \Xi−1)

])
∩E, (15)

where Xi is the set computed in the i-th iteration of fixpoint variable X in
CoBüchi. Then Ψ = Ψunsafe(S) ∧ Ψcolive(D) is an APA for G, where S =
UnsafeA(G,U). We write CoLiveA(G,U) to denote the algorithm construct-
ing co-live edges D as above which runs in time O(n3), where n = |V |.

We observe that X1 is a subset of U such that if a play reaches X1, Player 0
and Player 1 can cooperatively keep the play in X1. To do so, we ensure via the
definition of D in (15) that Player 1 can only leave X1 finitely often. Moreover,
with the other co-live edges in D, we ensure that Player 1 can only go away from
X1 finitely often, and hence if Player 0 plays their strategy to reach X1 and
then stay there, the play will be winning. The permissiveness of the assumption
comes from the observation that if co-liveness is violated, then Player 1 takes
a co-live edge infinitely often, and hence leaves X1 infinitely often, implying
leaving U infinitely often.

We again present a faster algorithm that runs in time linear in size of the
graph for computation of APAs for co-Büchi games in the full version [2].

4.5 APA Assumptions for Parity Games

Parity games. Let G = (V,E) be a game graph, and C = {C0, . . . , Ck} be a
set of subsets of vertices which form a partition of V . Then the game G = (G,Φ)
is called a parity game if

Φ = Parity(C) :=
∨
i∈odd[0;k]

�♦Ci =⇒
∨
j∈even[i+1;k] �♦Cj . (16)
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The set C is called the priority set and a vertex v in the set Ci, for i ∈ [1; k],
is said to have priority i. An infinite play ρ is winning for Φ = Parity(C) if the
highest priority appearing infinitely often along ρ is even.
Conditional live group templates. As seen in the previous sections, for games
with simple winning conditions which require visiting a fixed set of edges in-
finitely or only finitely often, a single assumption (conjoined with a simple safety
assumption) suffices to characterize APAs, as there is just one way to win. How-
ever, in general parity games, there are usually multiple ways of winning: for
example, in parity games with priorities {0, 1, 2}, a play will be winning if either
(i) it only infinitely often sees vertices of priority 0, or (ii) it sees priority 1 in-
finitely often but also sees priority 2 infinitely often. Intuitively, winning option
(i) requires the use of co-liveness assumptions as in Sec. 4.4. However, winning
option (ii) actually requires the live group assumptions discussed in Sec. 4.3 to
be conditional on whether certain states with priority 1 have actually been vis-
ited infinitely often. This is formalized by generalizing live group templates to
conditional live group templates.

Definition 8. Let G = (V,E) be a game graph. Then a conditional live group
over G is a pair (R,H`), where R ⊆ V and H` is a live group. Given a set of
conditional live groups H`, a conditional live group template is the LTL formula

Ψcond(H`) :=
∧

(R,H`)∈H`

(
�♦R =⇒ Ψlive(H

`)
)
. (17)

Again, the assumptions employing conditional live group templates will be
called conditional live group assumptions. With the generalization of live group
assumptions to conditional live group assumptions, we actually have all the
ingredients to define an APA for parity games as a conjunction

Ψ = Ψunsafe(S) ∧ Ψcolive(D) ∧ Ψcond(H`) (18)

of a safety, a co-liveness, and a conditional live group assumptions. Intuitively,
we use (i) a safety assumption to prevent Player 1 to leave the cooperative win-
ning region, (ii) a co-live assumption for each winning option that requires seeing
a particular odd priority only finitely often, and (iii) a conditional live group as-
sumption for each winning option that requires seeing an even priority infinitely
often if certain odd priority have been seen infinitely often. The remainder of
this section gives an algorithm (Alg. 1) to compute the actual safety, co-live
and conditional live group sets S, D and H`, respectively, and proves that the
resulting assumption Ψ (as in (18)) is actually an APA for the parity game G.
Computing APAs. The computation of unsafe, co-live, and conditional live
group sets S, D, and H` to make Ψ in (18) an APA is formalized in Alg. 1.
Alg. 1 utilizes the standard fixpoint algorithm Parity(G,C) [12] to compute
the cooperative winning region for a parity game G, defined as

Parity(G,C) := τXd · · · νX2 µX1 νX0.
⋃
i∈[0;d](Ci ∩ pre(Xi)), (19)

where τ is ν if d is even, and µ otherwise. In addition, Alg. 1 involves the
algorithms UnsafeA (Thm. 1), LiveA (Thm. 2), and CoLiveA (Thm. 3) to
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Algorithm 1 ParityAssumption
Input: G = (V,E) , C : V → {0, 1, . . .}
Output: Ψ
1: Z∗ ← Parity(G,C)
2: S ← UnsafeA(G,Z∗)
3: G← G|Z∗ , C ← C|Z∗
4: (D,H`)←ComputeSets((G,C), ∅, ∅)
5: return S,D,H`

6: procedure ComputeSets((G,C), D,H`)
7: d← max{i | Ci 6= ∅}
8: if d is odd then
9: W¬d ← Parity(G|V \Cd

, C)

10: D ← D ∪CoLiveA(G,W¬d)
11: else
12: Wd ← Büchi(G,Cd), W¬d ← V \Wd

13: for all odd i ∈ [0; d] do
14: H` ← H` ∪ (Wd ∩ Ci,LiveA(G|Wd

, Ci+1 ∪ Ci+3 · · · ∪ Cd))

15: if d > 0 then
16: G← G|W¬d , C0 ← C0 ∪ Cd, Cd ← ∅
17: ComputeSets((G,C), D,H`)
18: else
19: return (D,H`)

v1

c1

v2

c2

v3

c3

v4

c4

v5

c5

v6

c4

v7

c3

Fig. 4: A parity game, where a vertex with priority i has label ci. The dotted edges are
the unsafe edges, the dashed edges are the co-live edges, and every similarly colored
vertex-edge pair forms a conditional live group.

compute safety, live group, and co-liveness assumptions in an iterative manner.
In addition, G|U :=

(
U,U0, U1, E′

)
s.t. U0 := V 0 ∩ U , U1 := V 1 ∩ U , and

E′ := E ∩ (U × U) denotes the restriction of a game graph G :=
(
V, V 0, V 1, E

)
to a subset of its vertices U ⊆ V . Further, C|U denotes the restriction of the
priority set C from V to U ⊆ V .

We illustrate the steps of Alg. 1 by an example depicted in Fig. 4. In line 1,
we compute the cooperative winning region Z∗ of the entire game, to find that
the parity condition cannot be satisfied from vertex v7 even with cooperation,
i.e., Z∗ = {v1, . . . , v6}. So we put the edge (v6, v7) in a safety template, restrict
the game to G = G|Z∗ and run ComputeSets on the new restricted game.

In the new game G the highest priority is odd (d = 5), hence we execute
lines 9-10. Now a play would be winning only if eventually the play does not see
v5 any more. Hence, in step 9, we find the region W¬5 = {v1, . . . , v4, v6} of the
restricted graph G|V \C5

(only containing nodes vi with priority C(vi) < 5)) from
where we can satisfy the parity condition without seeing v5. We then make sure
that we do not leave W¬5 to visit v5 in the game G infinitely often by executing
CoLiveA(G,W¬5) in line 10, making the edges (v5, v5) and (v6, v5) co-live.

Once we restrict a play from visiting v5 infinitely often, we only need to focus
on satisfying parity without visiting v5 within W¬5. This observation allows us
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to further restrict our computation to the game G = G|W¬5 in line 16, where we
also update the priorities to only range from 0 to 4. In our example this step
does not change anything. We then re-execute ComputeSets on this game.

In the restricted graph, the highest priority is 4 which is even, hence we
execute lines 12-14. One way of winning in this game is to visit C4 infinitely
often, so we compute the respective cooperative winning region W4 in line 12.
In our example we have W4 =W¬5 = {v1, . . . , v4, v6}. Now, to ensure that from
the vertices from which we can cooperatively see 4, we actually win, we have
to make sure that every time a lower odd priority vertex is visited infinitely
often, a higher priority is also visited. This can be ensured by conditional live
group fairness as computed in line 14. For every odd priority i < 4, (i.e, for
i = 1 and i = 3) we have to make sure that either 2 or 4 (if i = 1) or 4 (if
i = 3) is visited infinitely often. The resulting live groups H`i = (Ri, H

`
i ) collect

all vertices in W4 with priority i in Ri and all live groups allowing to see even
priorities j with i < j ≤ 4 in H`

i , where the latter is computed using the fixed-
point algorithm LiveA to compute live groups. The resulting live groups for
i = 1 (blue) and i = 3 (red) are depicted in Fig. 4 and given by ({v1}, {(v1, v2)})
and ({v3}, {(v2, v4)}, {(v1, v2)}), respectively.

At this point we have W¬4 = ∅, making the game graph computed in line 16
empty, and the algorithm eventually terminates after iteratively removing all
priorities from C by running ComputeSets (without any computations, as G
is empty) for priorities 3, 2 and 1. In a different game graph, the reasoning done
for priorities 5 and 4 above can be repeated for lower priorities if there are other
parts of the game graph not contained in W4, from where the game can be won
by seeing priority 2 infinitely often. The main insight into the correctness of the
outlined algorithm is that all computed assumptions can be conjoined to obtain
an APA for the original parity game.

With Alg. 1 in place, we now state the main result of the entire paper.

Theorem 4. Let G = (G,Parity(C)) be a parity game such that (S,D,H`) =
ParityAssumption(G,C). Then Ψ = Ψunsafe(S) ∧ Ψcolive(D) ∧ Ψcond(H`) is
an APA for G. Moreover, Alg. 1 terminates in time O(n4), where n = |V |.

5 Experimental Evaluation

We have developed a C++-based prototype tool SImPA5 computing Sufficient,
Implementable and Permissive Assumptions for Büchi, co-Büchi, and parity
games. We first compare SImPA against the closest related tool GIST [9] in
Sec. 5.1. We then show that SImPA gives small and meaningful assumptions for
the well-known 2-client arbiter synthesis problem from [21] in Sec. 5.2.

5 Repository URL: https://gitlab.mpi-sws.org/kmallik/simpa
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Fig. 5: Running times of SImPA
vs GIST (in seconds, log-scale)

SImPA GIST
Mean-time 64.8s 1079.0s
Non-timeout
mean-time 64.8s 209.2s

Timeouts (1hr) 0(0%) 59(26%)
No assumption
generated 0(0%) 20(9%)

Faster 230(100%) 0(0%)

Table 1: Summary of the experimental re-
sults

5.1 Performance Evaluation

We compare the effectiveness of our tool against a re-implementation of GIST [9],
which is not available anymore 6. GIST originally computes assumptions only
enabling a particular initial vertex to become winning for Player 0. However, for
the experiments, we run GIST until one of the cooperatively winning vertices
is not winning anymore. Since GIST starts with a maximal assumption and
shrinks it until a fixed initial vertex is not winning anymore, our modification
makes GIST faster as the modified termination condition is satisfied earlier.
Owing to the non-dependence of our tool and dependence of GIST on a fixed
vertex, this modification allows a fair comparison.

We compared the performance and the quality of the assumptions computed
by SImPA and GIST on a set of parity games collected from the SYNTCOMP
benchmark suite [1], with a timeout of one hour per game. All the experiments
were performed on a computer equipped with Intel(R) Core(TM) i5-10600T
CPU @ 2.40GHz and 32 GiB RAM.

We provide all details of the experimental results in the full version [2] and
summarize them in Table 1. In addition, Fig. 5 shows a scatter plot, where
every instance of the benchmarks is depicted as a point, where the X and the
Y coordinates represent the running time for SImPA and GIST (in seconds),
respectively. We see that SImPA is computationally much faster than GIST in
every instance (all dots lie above the lower red line) – most times by one (above
the middle green line) and many times even by two (above the upper orange
line) orders of magnitude.

Moreover, in some experiments, GIST fails to compute a sufficient assumption
(in the sense of Def. 2), whereas SImPA successfully computes an APA (see the
row labeled ‘no assumption generated’ in Table 1). This is not surprising, as
the class of assumptions used by GIST are only unsafe edges and live edges
(i.e., singleton live groups) which are not expressive enough to provide sufficient
assumptions for all parity games (see Fig. 1(b) for a simple example where there
is no sufficient assumption that can be expressed using live edges). Furthermore,
6 The link provided in the paper is broken, and the authors informed us that the
implementation is not available.
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Fig. 6: Illustration of a relevant part of the game graph for the 2-client arbiter. Rect-
angles and circles represent Player 1 and Player 0 vertices, respectively. The labels
of the Player 0 states indicate the current status of the request and grant bits, and
in addition, remember if a request is currently pending using the atomic propositions
F1, F2. The double-lined vertices are Büchi vertices, i.e., ones with no pending requests.

we note that in all cases where the assumptions computed by GIST are actually
APAs, SImPA computes the same assumptions orders of magnitudes faster.

5.2 2-Client Arbiter Example

We consider the 2-client arbiter example from the work by Piterman et al. [21],
where clients i ∈ {1, 2} (Player 1) can request or free a shared resource by
setting the input variables ri to true or false, and the arbiter (Player 0) can set
the output variables gi to true or false to grant or withdraw the shared resource
to/from client i. The game graph for this example is implicitly given as part
of the specification (as this is a GR(1) synthesis problem [21]). The goal of the
arbiter is to ensure that always eventually the requests are granted. This can be
depicted by a Büchi game, part of which is presented in Fig. 6. It is known that
Player 0 can not win the game without constraining moves of Player 1.

Running SImPA (took 0.01s) on this example yields two live groups (edges
of one live group are indicated by thick red arrows in Fig. 6) that ensures that
the play eventually moves to vertices where the Player 0 can force a visit to
a Büchi vertex. These assumptions are similar to the ones used to restrict the
clients’ behavior in [21], but are more permissive. Furthermore, running GIST
(took 6.44s) yields several live edges (e.g., 2 − 3 , 7 − 1 ), which again is less
permissive than ours. It turns out that an APA for this example will unavoidably
require live groups — singleton live edges, as computed by GIST, will not suffice.
For a detailed discussion, we refer the reader to the full version [2].
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Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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