
716  |  Nature  |  Vol 618  |  22 June 2023

Article

Density-wave ordering in a unitary Fermi gas 
with photon-mediated interactions

Victor Helson1,2, Timo Zwettler1,2, Farokh Mivehvar3, Elvia Colella3, Kevin Roux1,2,4, 
Hideki Konishi1,2,5, Helmut Ritsch3 & Jean-Philippe Brantut1,2 ✉

A density wave (DW) is a fundamental type of long-range order in quantum matter  
tied to self-organization into a crystalline structure. The interplay of DW order with 
superfluidity can lead to complex scenarios that pose a great challenge to theoretical 
analysis. In the past decades, tunable quantum Fermi gases have served as model 
systems for exploring the physics of strongly interacting fermions, including most 
notably magnetic ordering1, pairing and superfluidity2, and the crossover from a 
Bardeen–Cooper–Schrieffer superfluid to a Bose–Einstein condensate3. Here, we 
realize a Fermi gas featuring both strong, tunable contact interactions and photon- 
mediated, spatially structured long-range interactions in a transversely driven high- 
finesse optical cavity. Above a critical long-range interaction strength, DW order is 
stabilized in the system, which we identify via its superradiant light-scattering 
properties. We quantitatively measure the variation of the onset of DW order as the 
contact interaction is varied across the Bardeen–Cooper–Schrieffer superfluid and 
Bose–Einstein condensate crossover, in qualitative agreement with a mean-field 
theory. The atomic DW susceptibility varies over an order of magnitude upon tuning 
the strength and the sign of the long-range interactions below the self-ordering 
threshold, demonstrating independent and simultaneous control over the contact 
and long-range interactions. Therefore, our experimental setup provides a fully 
tunable and microscopically controllable platform for the experimental study of the 
interplay of superfluidity and DW order.
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Quantum gas experiments provide a unique opportunity to create 
complex quantum many-body systems from the bottom up by start-
ing from a dilute gas and adding interactions in a controlled way. This 
was initially enabled by the precise control of the intrinsic contact 
interaction between atoms using Feshbach resonances4. Recent years 
have seen tremendous efforts to engineer more complex many-body 
systems using tailored longer-range interactions5. As a key extension 
in this direction, dipolar interactions between atoms with large per-
manent magnetic moment were successfully used to create supersolid 
phases of bosons6. For fermions, stronger interactions promised in 
polar molecules7 or transiently realized using Rydberg dressing8 could 
further lead to exotic quantum phases.

Cavity quantum electrodynamics provides a flexible platform 
for engineering non-local, all-to-all interactions among polarizable 
particles mediated by cavity photons9–11. By loading atoms inside a 
high-finesse cavity and driving them with a transverse pump beam in 
the far-detuned, dispersive regime, an effective interaction between the 
atoms is produced, described by an effective interaction Hamiltonian11,

Dr r r r r r�H n n^ = d d ′ ( , ′) ^( ) ^( ′), (1)int
3 3

where n̂( )r  is the local density operator at position r. In a single- 
mode cavity, this interaction has a spatially periodic, infinite-range  

structure of the form ( , ′) = cos( ⋅ )cos( ⋅ )cos( ⋅ ′)cos( ⋅ ′)0 p c p cD Dr r k r k r k r k r , 
which arises from the interference of the pump and the cavity mode12. 
Here, D U V ∆= /0 0 0 c is the interaction strength, with U0 being the cav-
ity potential depth per photon and V0 being the light shift induced by 
the pump, proportional to the intensity of the pump laser. Δc is the 
detuning of the pump from the cavity resonance, whose sign deter-
mines the attractive or repulsive nature of the interaction (Methods). 
The wave vectors of pump and cavity photons are denoted by kp and 
kc, respectively. Physically, the interaction Hamiltonian (equation (1)) 
describes the correlated recoils from the scattering of a pump pho-
ton off an atom into the cavity mode and back into the pump by a 
second atom.

This photon-mediated density–density interaction leads to the 
self-organization into a density-wave (DW) phase, as was first observed 
in thermal atoms13, then in Bose–Einstein condensates (BECs)14,15 and 
lattice Bose gases16,17, and recently, in non-interacting Fermi gases18. In 
weakly interacting BECs, the DW self-ordering is a manifestation of the 
Dicke superradiant phase transition, and it allowed for the quantum 
simulation of supersolidity19. By exploiting more atomic internal levels 
and many cavity modes, a variety of rich phenomena ranging from 
magnetic ordering20,21 to dynamic gauge fields22 and self-ordering in 
elastic optical lattices23 were observed in bosonic systems. Even more 
intriguing phenomena ranging from threshold-less self-ordering in low 
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dimensions to cavity-induced superconducting pairing and topological 
states have been predicted for fermions24–32.

Here, we realize a doubly tunable Fermi gas combining simultane-
ously and independently the control over contact and photon-mediated 
long-range interactions. We explore the regime where both interactions 
are strong, the latter leading to DW ordering. For fermionic particles, 
the Pauli principle restricts the effects of interactions to the Fermi 
surface; thus, the resonant s-wave contact interactions yield Cooper 
pairing at low temperatures. By contrast, the photon-mediated interac-
tion couples particle-hole excitations on the Fermi surface at discrete 
wave vectors k± = kc ± kp, imposed by the pump-cavity geometry as 
illustrated in Fig. 1a. In our three-dimensional system, the low-energy 
physics is associated with scattering processes with the wave vector 
k−, which is smaller than the Fermi wave vector kF, leading to a broad 
particle-hole spectrum (in contrast to ref. 18). This is described by the 
Lindhard function for free fermions, which is maximum at zero fre-
quency for low momenta close to k−. This contrasts with large momenta, 
where the Pauli principle does not restrict the available phase space 
unless the Fermi surface is deformed18. We find that even in the pres-
ence of strong contact interactions, photon-mediated interactions 
modify the zero-frequency particle-hole susceptibility and lead to 
the spontaneous formation of a DW pattern above a critical strength 
in the attractive case.

In the experiment, we prepare a degenerate Fermi gas of N = 3.5 × 105  
Li atoms equally populating the two lowest hyperfine states, trapped 
within a mode of a high-finesse optical cavity33,34 and in the vicinity 
of a broad Feshbach resonance at 832 G. We turn on the photon- 
mediated interactions by illuminating the cloud from the side using 
a retro-reflected pump beam. The pump and the neighbouring cavity  
resonance are detuned with respect to the atomic D2 transition by 
−2π × 138.0 GHz. There, the atoms induce a dispersive shift of the cavity 

resonance by δc = U0N/2 = −2π × 280 kHz, exceeding the cavity line width 
κc = 2π × 77(1) kHz. The pump beam intersects the cavity at an angle of 
18°, such that two discrete density-fluctuation modes at momenta k± 
are coupled to light, as illustrated in Fig. 1b. The low incidence angle 
results in the hierarchy ∣k−∣ ≪ ∣k+∣, so that only the mode at k− contributes 
to the low-energy physics (Methods). We use pump-cavity detunings 
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Fig. 1 | Concept of the experiment. a, A strongly interacting Fermi gas trapped 
inside a high-finesse optical resonator is illuminated by a standing-wave pump 
laser with wave vector kp, polarized along the direction of the magnetic field B, 
which intersects the axis of the cavity mode (x direction) with wave vector kc at 
an angle of 18°. The pump beam couples dispersively to atomic motion. Off- 
resonant scattering of pump photons by the atoms into the cavity mode and 
vice versa leads to an effective infinite-range interaction between atoms. Above 
a critical strength, the infinite-range interaction results in a superradiant phase 
transition to a DW-ordered state with spatial modulation at 2π/k−. b, In the left 
panel, photon scattering from the pump into the cavity and vice versa via the 
atoms imparts momentum kicks k± = kc ± kp onto the latter, displacing the Fermi 
surface. In the right panel, since ∣k−∣ < kF, the photon-mediated interactions 
induce particle-hole excitations at the Fermi surface in addition to Cooper 
pairing arising from the contact interactions.
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Fig. 2 | Phase diagrams of the system. a, Photon traces recorded at fixed 
Δc = −2π × 2 MHz as a function of the linearly increasing pump strength V0 for 
different values of the short-range interaction parameter 1/kFa spanning the 
strongly interacting regime of the BCS–BEC crossover. Each measurement 
features a sharp increase of the photon count rate above a critical value of the 
pump strength V0C (dashed vertical lines). b, Phase diagram of the unitary Fermi 
gas in the V0–Δc plane, exhibiting DW self-ordering. The solid line is a theory 
estimate of the phase boundary (in the text). c, Measurement of the critical 
long-range interaction strength D0C as a function of the contact interaction 
parameter at fixed Δc = 6δc. Above the critical value, the system exhibits a 
modulated density, depicted by the oblique stripes. The solid line is the critical 
interaction strength calculated from theory. Insets display phase diagrams 
measured in the BCS and BEC regimes for the same parameter range as the one 
of b. Error bars represent standard deviations.
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∣Δc∣/2π between 1 and 10 MHz for which ∣Δc∣ ≫ ∣δc∣, κc, and the cavity field 
adiabatically follows the atomic dynamics, ensuring that the system is 
accurately described by the Hamiltonian (equation (1)).

DW ordering
We observe DW ordering upon increasing the strength of the photon- 
mediated interaction above a critical threshold. Experimentally, at 
fixed scattering length, we linearly ramp up the pump power and 
monitor the intracavity photon number by recording the photon flux 
leaking through one of the cavity mirrors while keeping all other param-
eters fixed. In Fig. 2a, we show typical photon traces for different scat-
tering lengths, as V0 is linearly increased up to 2.5 Er over 5 ms, with 
E ħ m h= /2 = × 73.67r

2
c
2k  kHz the recoil energy. The build-up in the cav-

ity field above a critical pump strength V0C marks the onset of DW order-
ing (Methods).

Repeating this measurement as a function of Δc, we construct the 
phase diagram of the system in the V0–Δc plane, presented in Fig. 2b 
for the unitary gas. For small ∣Δc∣, the phase boundary is a straight line, 
corresponding to a constant ratio V0/Δc, showing that the boundary is 
determined only by D0. For ∣Δc∣ ≲ ∣δc∣, we observe instabilities likely due 
to optomechanical effects. For ∣Δc∣ > 2π × 3 MHz, we observe a system-
atic deviation from the linearity, probably due to the lattice formed by 
the pump, changing the gas properties35. This single-particle effect is 
not captured by the effective interaction Hamiltonian (equation (1)). 

The structures arising at Δc ≈ −2π × 7 MHz and −2π × 8 MHz originate 
from the presence of high-order transverse modes of the cavity, with 
mode functions overlapping with the atomic density33.

We acquire similar phase diagrams at different scattering lengths 
and find a transition to the DW-ordered phase for sufficiently strong 
pumps throughout the entire BEC and Bardeen–Cooper–Schrieffer 
superfluid (BCS) crossover. While the phase diagrams are qualitatively 
similar, with a linear phase boundary at small Δc, we observe a system-
atic shift of the DW phase boundary toward larger pump strengths as 
the system crosses over from the BEC to the BCS regime. In the regime 
0.7 MHz < Δc /2π < 3 MHz, the linear phase boundary observed at uni-
tarity persists for all scattering lengths. This allows us to describe the 
DW self-ordering transition in terms of the single long-range interaction 
parameter N E/0 FD . Figure 2c presents the phase diagram in the param-
eter plane of the short-range versus long-range interaction strength. 
We observe a smooth dependence of the phase boundary on the 
short-range interaction, with a systematically lower critical long-range 
interaction strength in the BEC side.

To understand this phase diagram, we start from the critical point 
D χ= − 1/20C 0, expected from the mean-field and random-phase approx-
imations applied to the long-range interaction (Methods). Here, χ0 is 
the zero-frequency susceptibility of the gas in the absence of the 
long-range interaction. To predict quantitatively the phase boundary 
in the BCS–BEC crossover, we disregard the effects of the pump lattice 
and the contribution of the density response at ±k+ and approximate 
χ0 by its long-wavelength limit, the compressibility. The latter is 
obtained from accurate measurements of the equation of state as a 
function of the scattering length36,37. The resulting predictions for the 
phase boundary are presented as solid lines in Fig. 2b,c. This simple, 
parameter-free theory captures very well the relative changes of the 
critical point across the crossover (Extended Data Fig. 3). It, however, 
underestimates the absolute threshold by approximately a factor of 
two for all short-range interaction strengths, indicating that the 
zero-temperature compressibility overestimates the actual suscepti-
bility. We indeed expect that finite wave vector and finite temperature 
should generally decrease the susceptibility.

Susceptibility measurement
While the measurement of the cavity field allows for the identifica-
tion of the onset of DW order, it does not yield information on the 
photon-mediated interactions below the transition. Nevertheless, 
the long-range interactions strongly modify properties of the gas even 
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Fig. 3 | Zero-frequency DW susceptibility χDW(0) measurement. a, Photon 
trace acquired while a weak on-axis probe beam is sent inside the cavity after 
the pump strength has been ramped over 5 ms to a value below the critical one. 
The solid line is a fit to the data (Methods), from which we extract the zero- 
frequency DW susceptibility χDW(0). The shaded area highlights the interval 
during which the probe is on. b, Measured DW susceptibility as a function of the 
long-range interaction strength below the critical value for both attractive  
(red dots) and repulsive (blue diamonds) long-range interactions and for three 
different values of the contact interaction parameter (1/kFa = −0.75, 0 and 0.69 
from light to dark). The measurements were performed at constant absolute 
detuning ∣Δc − δc∣ = 2π × 1.7 MHz. In the inset, the same data are displayed in 
logarithmic scale. Error bars represent standard deviations.

0 2 4 6 8 10
Δp/2π (kHz)

0

5

10

15
0.1 0.9

0C
χ D

W
 (Δ

p
)

0/ 0C

Fig. 4 | Measurement of the DW response χDW(Δp) of a unitary Fermi gas as a 
function of Δp and for values of  /0 0C between 0.1 and 0.9. The absence of 
structure at finite frequency confirms the absence of mode softening. The data 
are taken for Δc = −2π × 2 MHz. Error bars represent standard deviations.
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far below the ordering transition via virtual cavity photons. We now 
explore this by directly measuring the DW response function χDW(ω) 
as a function of the long- and short-range interaction strengths. To 
this end, we drive the cavity on axis using a very weak probe laser in 
addition to the transverse pump38, imposing a DW pattern at k±. The 
resulting photon-leakage rate yields χDW from the linear response theory 
(Methods).

In practice, the atomic response depends on the relative phase of 
the pump and the probe. This is intimately connected to the underlying 
Z2 symmetry of the model, which is broken in the ordered phase, as 
observed in earlier experiments on BECs13,39. We circumvent this issue 
by introducing a small detuning Δp between the pump and the probe, 
such that the phase winds adiabatically during the probing time, lead-
ing to slowly oscillating intracavity photon numbers. In the limit Δp → 0, 
the amplitude of the oscillations observed in an experimental realiza-
tion provides a direct measure of the zero-frequency DW response 
function χDW(0) (Methods).

Experimentally, we first fix the long- and short-range interaction 
strengths by, respectively, fixing the pump power and offset magnetic 
field, and then, we shine the probe for 10 ms with Δp = 2π × 200 Hz. A 
typical signal is shown in Fig. 3a for Δc = −2π × 2 MHz and V0 = 0.75 Er, 
exhibiting the expected oscillations at 2Δp together with damping, likely 
due to heating resulting from the large oscillating signal. The amplitude 
of the initial oscillation can be directly fitted to yield the value of χDW(0). 
For attractive photon-mediated interactions, the intracavity photon 
number is strongly enhanced by the presence of the atoms, as the gas 
coherently transfers photons from the pump to the cavity, similar to 
an optical parametric amplifier.

In Fig. 3b, we show the measured values of χDW(0) for D0 up to 0.9 0CD  
at Δc = 5δc < 0 and 1/kFa = −0.75, 0 and 0.69 (red dots). We observe an 
increase of the susceptibility over more than one order of magnitude 
with increasing D0, which is the expected feature of second-order phase 
transitions. This was observed for self-organization and supersolid 
transitions in non-interacting BECs38,40. For repulsive photon-mediated 
interactions (Δc > 0, blue diamonds), no ordering is expected or 
observed, and we observe a reduction of the susceptibility by up to a 
factor of approximately three over the same range of 0D . Up to nor-
malization of χDW(0) and D0 by 0CD , we observe that for attractive or 
repulsive long-range interactions, the variations of the susceptibility 
are identical within error bars for all scattering lengths in the BCS–BEC 
crossover. This highlights the versatility of our system in independently 
tuning the short- and long-range interactions, therefore addressing 
separately pairing and particle-hole channels.

The attractive (repulsive) photon-mediated interactions lower (raise) 
the energy cost of particle-hole excitations. For bosons with a sharp 
single-frequency excitation spectrum, this leads to a mode softening 
of the corresponding excitation mode, touching zero at the critical 
point38,41. Free fermions at low momenta, in contrast, feature a con-
tinuous, incoherent gapless particle-hole spectrum42, such that no 
soft mode is expected.

We now investigate this effect for a strongly interacting Fermi gas 
by extending our susceptibility measurements to finite frequenc
ies by systematically scanning Δp up to 2π × 10 kHz, larger than 
ħ m h/2 = × 7.22

−
2k  kHz, the recoil energy associated with k−. We then 

extract χDW(Δp) from the amplitude of the photon trace oscillations at 
2Δp. For the unitary Fermi gas, the results are presented in Fig. 4 for 0D  
up to 0.9 0CD , all showing that χDW(Δp) monotonically decreases with 
frequency Δp. The low-frequency susceptibility increases upon 
approaching the transition, while the higher-frequencies parts of the 
spectrum remain unchanged. We observe such a behaviour for all acces-
sible scattering lengths in the BCS–BEC crossover. This contrasts with 
the mode softening observed with weakly interacting BECs. While this 
would be expected in our geometry for free fermions, due to the broad 
particle-hole spectrum, it is surprising that this feature is also present 
for the unitary Fermi gas, which is known to also display a phonon 

spectrum at low momentum43,44. This might be due to the strongly 
interacting nature of the system leading to the damping of the excita-
tions but could also originate from the combination of finite tempera-
ture and trap averaging.

Discussion
We operate with atoms in the deeply degenerate regime with tempera-
tures on the order of T = 0.08 TFh, with TFh the Fermi temperature calcu-
lated for a harmonic trap, where for all interaction strengths, the system 
is superfluid in the absence of the photon-mediated interactions. For a 
wide range of the short-range interaction strength, the system enters 
the DW-ordered phase upon increasing the photon-mediated interac-
tion strength and returns to the superfluid phase when the long-range 
interaction is ramped back to zero, with limited heating (Extended Data 
Fig. 1). However, this leaves open the fascinating question of whether 
the system remains paired and superfluid in the presence of strong 
long-range interactions and in the DW-ordered state.

Compared with condensed-matter systems showing an interplay of 
charge DW and superfluidity45, our system has a fully controllable micro-
scopic Hamiltonian. The photon-induced DW order shares similarities 
with type II charge-DW compounds46, with cavity photons playing the 
role of phonons in real materials. In this context, the real-time weakly 
destructive measurement channel through the cavity field opens the 
possibility of gaining insight into the interplay of structural effects and 
strong interactions in complex quantum materials.

Our platform complements ongoing research in the field of cavity- 
coupled strongly correlated materials, where the cavity photons couple 
to the kinetic energy of charges through the Peierls phase47,48 or indi-
rectly via interband transitions or collective modes. Interestingly, a 
direct two-photon density coupling similar to ours has been predicted 
for side-pumped two-dimensional materials, originating from diamag-
netic interactions between charges and light and leading to enhanced 
superconductivity49.

Natural extensions of our experiment include the use of several 
pumping frequencies addressing multiple cavity modes, providing 
further control over the long-range interaction potential12,23, and the 
study of retardation effects due to our cavity line width being compara-
ble with the photon recoil energy at kc (ref. 15). A fascinating perspective 
is to operate the pump in the vicinity of a photo-association transition50, 
offering the possibility to induce long-range pair–pair interactions.
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Methods

Experimental procedure
We produce a strongly interacting Fermi gas of 6Li following the method 
described in refs. 33,34. This procedure produces deeply degener-
ate, balanced mixtures of the two lowest hyperfine states trapped in 
a crossed dipole trap elongated along the cavity axis, formed by two 
Gaussian laser beams with waists of 33 μm intersecting each other 
with an angle of 36°.

Thermometry is performed by releasing the cloud into a hybrid trap, 
formed by one of the arms of the dipole trap and the residual curvature 
of the magnetic field34. An in situ absorption image is then taken with 
a light intensity optimized for the signal-to-noise ratio, and the density 
profile is obtained from the image using finite-saturation corrections. 
The reduced temperature in this trap is deduced from the shape of the 
cloud at unitarity. This yields a T/TFh with T ħω N= (3 )Fh

1/3 , with N the 
total number of atoms and ω ω ω ω= ( ) = 2π × 106x y z

1/3   Hz is the geo-
metric mean of the oscillation frequencies in the hybrid trap. This 
provides us with an upper bound of the degree of degeneracy in the 
crossed dipole trap.

The hybrid trap is harmonic and allows for both precise thermometry 
and calibration of each beam geometry. To reach the lowest tempera-
tures, we found out that the crossed dipole trap operates in a regime 
where the anharmonicity is too strong to allow for harmonic approxima-
tion. For the purpose of evaluating the theoretical phase boundary, we 
instead use the full crossed-Gaussian beam trap shape deduced from 
trap frequencies measured in each beam separately. We then deduce 
the density distribution using the zero-temperature equation of state 
in the BEC–BCS crossover36,37.

The pump beam is linearly polarized along the magnetic-field 
direction, and we estimate its waist to be 120 μm, much larger than 
the Thomas–Fermi radii of the cloud. We calibrate the depth of the 
pump lattice using Kapitza–Dirac diffraction on a molecular BEC at 
B = 695 G (ref. 51). The photons leaking from one of the cavity mirrors 
are detected using a single-photon counting module with an efficiency 
of approximately 3% (ref. 52).

Heating due to the side pumping
We estimate the heating due to the pump by measuring the temperature 
of the cloud after linearly ramping up the pump lattice depth to varying 
end values at a constant rate and then, ramping it back to zero with the 
same rate. With increasing pump power, we observe a monotonically 
increasing temperature of the cloud shown in Extended Data Fig. 1. Inter-
estingly, temperature shows no particular feature when the pump power 
reaches and exceeds the DW-ordering threshold. At the critical point, 
we measure a temperature of T = 0.12(2)TFh, an increase by a factor of 
50% compared with the initial one. Heating is sufficient to heat the cloud 
above the superfluid critical temperature of 0.21TFh (ref. 53) for a strength 
of the long-range interactions exceeding D2 0C , deep in the ordered 
phase. By extracting the atom number from the density profiles, we 
verify that the losses display the same trend with varying pump strength.

Theoretical model
The Fermi gas is coupled to a single standing-wave mode designated 
by the operator â of the cavity with the single atom-photon coupling 
strength g g( ) = cos( ⋅ )0 cr k r , where kc = ∣kc∣ex = kcex is the cavity wave 
vector. The atomic cloud is also transversely pumped by an incident, 
back-reflected pump laser with the wave vector kp, where kp = ∣kp∣ ≃ kc 
and frequency ωp = ckp. In the dispersive regime, the atoms experience 
an effective lattice potential11, identical for the two hyperfine compo-
nents of the gas:

r k r k r

k r k r

V V U a a

η a a

ˆ ( ) = cos ( ⋅ ) + ˆ ˆcos ( ⋅ )

+ ( ˆ + ˆ )cos( ⋅ )cos( ⋅ ),
(2)
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2

p 0
† 2

c

0
†

p c

where η V U=0 0 0. This potential is added to the external trap potential 
V ( )tr r .

In the frame rotating at the pump-laser frequency, the system is 
described by the Hamiltonian (we set ħ = 1 throughout this section),
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where the first term is the free cavity Hamiltonian with the pump- 
cavity detuning Δc = ωp − ωc, Ψ̂ ( )σ r  is the fermionic annihilation-field 
operator for spin σ = {↓, ↑}, μσ is the chemical potential, and V ( − ′)sr r r  
is a pseudopotential yielding the s-wave scattering length a between 
two atoms54. For later use, we have also included an on-axis probe  
with strength β, the pump-probe detuning Δp = ωp − ωprobe and an  
initial phase ϕ0. In the experiment, β = 0, except for the purpose  
of measuring the DW response function χDW(ω) (see the main  
text and Linear response theory and the DW response function  
χDW(ω)).

The Hamiltonian equation (3) can be recast in the form

∼
H H a a η a a

β ae

ˆ = ˆ − ∆̂ ˆ ˆ + ( ˆ + ˆ )Θ̂

+ [ ˆ + H.c.],
(4)

φ

at c
†

0
†

−i(∆ t− )p 0

where Ĥat is the Hamiltonian of an interacting, trapped two-component 
Fermi gas with a classical lattice potential V V( ) = cos ( ⋅ )p 0

2
pr k r  formed 

by the pump. Here, ∼ ∫δ U d n∆̂ = ∆ − ˆ = ∆ − cos ( ⋅ ) (̂ )c c c c 0
2

cr k r r , with 
∑ ∑n n(̂ ) = ˆ ( ) = Ψ̂ ( )Ψ̂ ( )σ σ σ σ σ

†
r r r r  being the total density operator, is the 

dispersively shifted pump-cavity detuning and
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with ∫n d n eˆ = (̂ ) i ⋅r rq
q r being the Fourier component of the total density 

operator, is the atomic DW operator describing the modulation of the 
atomic density at wave vectors k± = kp ± kc.

In the Hamiltonian equation (4) describing our experiment, Δc is 
much larger than all other energy scales (including the dispersive shift 
δ δ= � ˆ �c c , so that ∆ = �∆̂ � ∆c c c≃∼ ∼ ), so that the cavity-field dynamics is very 
fast and follows the atomic dynamics. The steady-state cavity-field 
operator can, therefore, be obtained through the Heisenberg equation 
of motion, yielding

 a
iκ

η βeˆ =
1

∆ +
Θ̂ + . (6)φ

c c
0

i(∆ t− )p 0

Substituting the steady-state cavity-field operator (6) in the Hamil-
tonian (4) and ignoring a constant term yields an effective, atom-only 
description of the system (up to the inverse square of the detuning of 
the pump laser with respect to the atomic transition)11:

H H
β

η
t φˆ = ˆ + Θ̂ +

2
Θ̂cos(∆ − ), (7)eff−at at 0

2

0
0 p 0D D

where η κ η= ∆ /(∆ + ) /∆0 c 0
2

c
2

c
2

0
2

cD ≃  is the strength of the cavity-mediated 
long-range density–density interaction. In the last equality, we asserted 
κc ≪ Δc, as realized in the experiment. The last term in equation (7) is 
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the driving of the Fermi gas due to the interference between the pump 
and the on-axis probe.

Theoretical phase boundary
We identify the critical pump threshold η V U=0C 0C 0  that separates 
the superradiant phase from the normal state through perturbation 
theory55 by integrating out the atomic degrees of freedom and expand-
ing the resultant free energy in powers of the order parameter Θ̂. Up 
to second order in the order parameter, we obtain the free energy as 
in Landau theory,

F η η≈ ( − )Θ̂ + O(Θ̂ ), (8)
0C
2

0
2 2 4

where η κ χ χ= −(∆ + )/2∆ − ∆ /20C
2

c
2

c
2

c 0 c 0≃ . This corresponds to the crit-
ical long-range interaction strength χ= −1/20C 0D , where χ0 denotes the 
atomic susceptibility representing the response of the interacting 
Fermi gas to density perturbations at the wave vectors k± in the absence 
of the pump and cavity lattices:

q
q k

∑χ χ=
1

16
( ). (9)0

=±
0
R

±

Here, χ ( )0
R q  is the retarded density–density response function at 

zero frequency and wave vector q, calculated at a fixed finite scattering 
length. It coincides with the Lindhard function for a non-interacting 
Fermi gas.

To compare with the experiment, we first note that the short- 
wavelength contributions to χ0 at ±k+ are negligible compared with the 
low momentum one. Indeed, for ∣k+∣ ≫ kF, the density response can be 
evaluated in the BCS–BEC crossover using operator product expan-
sion52, yielding to lowest order χ N �( ) ≈ 2 /0

R
+ +

k k  with kk� ħ m= /22
+
2

+
.  

Throughout the BCS–BEC crossover, the ratio k kχ χ( )/ ( )0
R

− 0
R

+  is the 
smallest in the far-BCS regime and bounded from below by k� E3 /4 F+

, 
which is approximately 12 for our parameters.

We then evaluate the long-wavelength contributions q kχ ( = ± )0
R

− . 
For q → 0, the compressibility sum rule gives χ n µ n κ(0) = ∂ /∂ =0

R 2 , with 
κ being the compressibility. For low but finite q = ± k−, hydrodynamics 
is expected to provide a good description of the density response, 
which suggests that χ ( )0

R q  is essentially independent of momentum56. 
We therefore use the compressibility κ inferred from the thermody-
namic equation of state as an estimate of χ (± )0

R
−k  in the BCS–BEC 

crossover. The equation of state of a homogeneous Fermi gas has been 
measured accurately as a function of the contact interaction 
strength36,37. We use the interpolation formula for the universal ther-
modynamic functions provided in ref. 36 to deduce the compressibil-
ity of the homogeneous Fermi gas. We then use the local density 
approximation to perform trap averaging and to relate it to the Fermi 
energy EF at the centre of the trap.

Linear response theory and the DW response function χDW(ω)
We now turn our attention to the last term of equation  (7) aris-
ing from the on-axis pumping of the cavity mode. We calculate the 
response of the DW order operator to first order using the Kubo  
formula,

D ∫
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t χ t t t φ
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+
2
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(10)

0

0

0
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where the DW response function χ t t( − ′)DW  is given by

χ t t iθ t t t t( − ′) = − ( − ′)�[Θ̂( ), Θ̂( ′)]� . (11)DW 0

Here, θ(t) is the unit step function and ⟨...⟩0 implies averaging with β = 0.

Introducing the Fourier transform ∫χ dτχ τ e(∆ ) = ( ) τ
DW p −∞

∞

DW
−i∆ p  and 

noting that χ χ(∆ ) = * (−∆ )DW p DW p , equation (10) can be recast as
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where δ t t�Θ̂( )� ≡ �Θ̂( )� − �Θ̂�0 . In the low-frequency limit Δp ≪ cs∣k−∣, 
where cs is the speed of sound, the dynamical response function is 
purely real and χ χ O c(∆ ) (0) + ((∆ / ) )DW p DW p s −

2≃ ∣ ∣k  such that we obtain
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β
η
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2
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D
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Below the superradiant threshold, �Θ̂� = 00 , and the intracavity pho-
ton signal to first order then reads

Da a
β

χ t φ� ˆ �̂ =
∆

[1 + 4 (0)cos (∆ − )], (14)†
2

c
2 0 DW

2
p 0

relating the oscillation in the intracavity photon number to the DW 
susceptibility χDW(0).

Data analysis
The value of the critical pump depth V0C at which the system undergoes 
the phase transition is inferred from photons leaking out of the cav-
ity while the pump depth is increased. For a single realization of the 
experiment, we construct the histogram of arrival times of photons on 
the detector as a function of the pump depth, which increases linearly 
with time. Then, V0C is determined from the point at which the slope of 
the reconstructed photon trace is the highest, obtained from taking 
its numerical derivative.

We extract χDW(0) from a fit of measured photon traces to the model 
described by equation (14). We account for the amplitude decay of 
the oscillation through the addition of a factor e−t/τ to the oscillatory 
term of the model. This may in particular capture heating and atomic 
losses during the measurement. Interestingly, the damping factor 
1/τ of the measured response features a continuous increase as the 
pump power approaches the threshold, as shown in Extended Data 
Fig. 2. The phase offset ϕ0 is distributed uniformly over [0, π] for dif-
ferent realizations, as expected for a random relative phase between 
the pump and the probe. We verified that for all values of pump 
power, the fitted amplitude of the response varies linearly with the 
probe power, validating the linear response hypothesis underlying  
the fit.

Data availability
All data files are available from the corresponding author upon request. 
Accompanying data, including those for figures, are available from the 
Zenodo repository (https://zenodo.org/record/7733304).
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Extended Data Fig. 1 | Measurement of heating due to the pump beam.  
The vertical line depicts the location of threshold for the self-organizing phase 
transition and the horizontal dashed one marks the superfluid transition for a 
homogeneously trapped unitary fermi gas. As the pump power is increased, we 
observe a smooth increase of the gas temperature showing no dramatic behavior 
around the self-organization phase transition. Error bars represent a standard 
deviation.



Extended Data Fig. 2 | Measured damping of the oscillatory behavior 
predicted by Eq. (14), which is accounted for by an additional e−t/τ factor  
in the equation. The signal becomes strongly damped as the critical value for 
the long-range interaction strength is approached. The data shown is part of 
the set displayed in Fig. 3 of the main text, here taken at unitarity and for Δc < 0. 
In inset, we display the measured phase offset ϕ0 which features a uniform 
distribution. Error bars represent a standard deviation.
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Extended Data Fig. 3 | Critical long-range interaction strength as a function 
of short-range interaction strength, normalized with respect to the critical 
strength at unitarity (black circles), compared with the theoretical 
prediction based on the compressibility (solid orange line). The data are 
identical to that of Fig. 2c. Error bars represent a standard deviation.
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