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Abstract

This paper deals with the large-scale behaviour of dynamical optimal transport on Z¢ -periodic
graphs with general lower semicontinuous and convex energy densities. Our main contribu-
tion is a homogenisation result that describes the effective behaviour of the discrete problems
in terms of a continuous optimal transport problem. The effective energy density can be
explicitly expressed in terms of a cell formula, which is a finite-dimensional convex pro-
gramming problem that depends non-trivially on the local geometry of the discrete graph
and the discrete energy density. Our homogenisation result is derived from a I"-convergence
result for action functionals on curves of measures, which we prove under very mild growth
conditions on the energy density. We investigate the cell formula in several cases of interest,
including finite-volume discretisations of the Wasserstein distance, where non-trivial limiting
behaviour occurs.
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1 Introduction

In the past decades there has been intense research activity in the field of optimal transport,
both in pure mathematics and in applied areas [35, 39,41, 42]. In continuous settings, a central
result in the field is the Benamou—Brenier formula [6], which establishes the equivalence
of static and dynamical optimal transport. It asserts that the classical Monge—Kantorovich
problem, in which a cost functional is minimised over couplings of given probability measures
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o and w1, is equivalent to a dynamical transport problem, in which an energy functional is
minimised over all solutions to the continuity equation connecting jo and 1.

In discrete settings, the equivalence between static and dynamical optimal transport breaks
down, and it turns out that the dynamical formulation [11, 30, 32] is essential in applications
to evolution equations, discrete Ricci curvature, and functional inequalities [15-20, 33].
Therefore, it is an important problem to analyse the discrete-to-continuum limit of dynamical
optimal transport in various setting.

This limit passage turns out to be highly nontrivial. In fact, seemingly natural discreti-
sations of the Benamou—Brenier formula do not necessarily converge to the expected limit,
even in one-dimensional settings [25]. The main result in [26] asserts that, for a sequence of
meshes on a bounded convex domain in R?, an isotropy condition on the meshes is required to
obtain the convergence of the discrete dynamical transport distances to W,. This is in sharp
contrast to the scaling behaviour of the corresponding gradient flow dynamics, for which
no additional symmetry on the meshes is required to ensure the convergence of discretised
evolution equations to the expected continuous limit [12, 21].

The goal of this paper is to investigate the large-scale behaviour of dynamical optimal
transport on graphs with a Z“-periodic structure. Our main contribution is a homogenisation
result that describes the effective behaviour of the discrete problems in terms of a continuous
optimal transport problem, in which the effective energy density depends non-trivially on the
geometry of the discrete graph and the discrete transport costs.

Main results

We give here an informal presentation of the main results of this paper, ignoring several
technicalities for the sake of readability. Precise formulations and a more general setting can
be found from Sect. 2 onwards.

Dynamical optimal transport in the continuous setting

For 1 < p < oo, let W, be the Wasserstein—Kantorovich—Rubinstein distance between
probability measures on a metric space (X, d): for u°, u! € P(X),

1/p

Wy p') = inf { / d(x, )P dy (x, y)} :
yelwouh) L/ xxx

where I'(10, 1) denotes the set of couplings of 10 and 11!, i.e., all measures y € P(X x X)

with marginals ° and ;! On the torus T (or more generally, on Riemannian manifolds), the

Benamou-Brenier formula [3, 6] provides an equivalent dynamical formulation for p > 1,

namely
1/p
W, (u0, u') = inf {/ / ”’(f)lp dxdt’ , (1.1)
(.J) ™ pP ™ (x)

where the infimum runs over all solutions (p, j) to the continuity equation d;p +V - j =0
with boundary conditions pg(x) dx = /Lo(dx) and p;(x)dx = /,L] (dx).

In this paper we consider general lower semicontinuous and convex energy densities
f iRy x R? - RU {+o00} under suitable (super-)linear growth conditions. (The Benamou—
Brenier formula above corresponds to the special case f(p, j) = |’| ). For sufficiently

regular curves of measures p : (0, 1) — M+(Td), we consider the contmuous action
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. ! du,  dy .
A(p) = 1r‘}f{/0 /Ird f(dfd’ d$d>dth D (u,v) e (CIE}. (1.2)

Here, the infimum runs over all time-dependent vector-valued measures v : (0,1) —
MA(T?) satisfying the continuity equation (CE) 9;u; + V - v, = 0 in the sense of dis-
tributions.

Dynamical optimal transport in the discrete setting

A natural discrete counterpart to (1.2) can be defined on finite (undirected) graphs (X, £).
For each edge (x, y) € & we fix a lower semicontinuous and convex energy density' Fyy :
R4+ xRy xR — R, For sufficiently regular curvesm : (0, 1) — M (X) we then consider
the discrete action

1
A(m) = inf{/ Z Fy(my(x), me(y), Jy(x, y))dr = (m,J) eCS}. (1.3)
/ 0 (x,y)e€

Here, the infimum runs over all time-dependent ‘“discrete vector fields”, i.e., all anti-
symmetric functions J : (0,1) — R satisfying the discrete continuity equation (C&)
ormy(x) + divJy;(x) = 0 for all x € X, where div J;(x) := Zy:(x,y)es Ji(x, y) denotes
the discrete divergence. Variational problems of the form (1.3) arise naturally in the formu-
lation of jump processes as generalised gradient flows [37].

Dynamical optimal transport on 7.%-periodic graphs

In this work we fix a Z?-periodic graph (X, £) embedded in R?, as in Fig. 1. For sufficiently
small ¢ > 0 with 1/e € N, we then consider the finite graph (X, &) obtained by scaling
(X, ) by a factor ¢, and wrapping the resulting graph around the torus, so that the resulting
graph is embedded in T?. We are interested in the behaviour of the rescaled discrete action,
defined for curves m : (0, 1) — M (&) by

1
Aq (m) ;=n}f{/ 3 ede,,(m;ix),m;gy), JIS(;_’]y)>dt : (m,J)eCES}. (1.4)

O (x.yet.

As above, the infimum runs over all time-dependent “discrete vector fields” J : (0, 1) — RE
satisfying the discrete continuity equation (CE;) on the rescaled graph (X, &).

Convergence of the action

One of our main results (Theorem 5.1) asserts that, as ¢ — 0, the action functionals A,
converge to a limiting functional A = Apey of the form (1.2), with an effective energy
density f = fhom Which depends non-trivially on the geometry of the graph (X, £) and the
discrete energy densities Fy,. We only require a very mild linear growth condition on the
energy densities Fyy:

As & — 0, the functionals A; T'-converge to Anom in the weak (and vague) topology of
M4 (0, 1) x T?).

U In the sequel we consider more general discrete energy densities F (m, J), not necessarily sums of edge-
energies.

@ Springer



Homogenisation of dynamical optimal transport on periodic... Page50f75 143

Fig.1 A fragment of a 74 -periodic graph (X, £). The unit cube Q := [0, 14 c RY is shown in red. In blue
and in orange, respectively, X’ Q and £9 (color figure online)

The precise formulation of this result involves an extension of Ap,y, to measures on
0,1) x Td; see Sect. 3 below.

Let us now explain the form of the effective energy density fhom, Which is given by a cell
formula. For given p > 0 and j € RY, fiom(p, j) is obtained by minimising the discrete
energy per unit cube among all periodic mass distributions m : X — R representing p,
and all periodic divergence-free discrete vector fields J : £ — R representing j in the
following sense. Set X¢ := XN [0, DY and €2 = {(x,y) € € : x € X2} Then
from : Ry x R — R, is given by

Jhom (0, J) := rlnn’f; Z Fyy(m(x), m(y), J(x,y)) : (m,J) € Rep(p, J')}, (1.5)
T (el

where the set of representatives Rep(p, j) consists of all Zd-periodic functionsm : X — R4
and all Z?-periodic discrete vector fields satisfying

1
Y m@x)=p, div/=0, and Eff(J):= 5 Yo Ty -x=j. (16
xex? (x,y)e€?
Boundary value problems
Our second main result deals with the corresponding boundary value problems, which arise

by minimising the action functional among all curves with given boundary conditions, as in
the Benamou—Brenier formula (1.1). We define
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MA(m°, m"y = i;lnf{Ag(m) tmp=m", my=m'} form®, m' € P(X,),

MAnom (1", 1) = inf {Anom(R) : o =, w1 =p'}  foru®, ' € P(TY.

We then obtain the following result (Theorem 5.10):

As ¢ — 0, the minimal actions M A, T'-converge to MApom
in the weak topology of M4 (T¢) x M (T%).

This result is proved under a superlinear growth condition on the discrete energy densities,
which holds for discretisations of the Wasserstein distance W, for p > 1.

A special case of interest is the case where M., is a Riemannian transport distance
associated to a gradient flow structure for Markov chains as in [30, 32]. In this situation, we
show that the discrete transport distances converge to a 2-Wasserstein distance on the torus
(Corollary 5.3). Interestingly, the underlying distance is induced by a Finsler metric, which
is not necessarily Riemannian.

We also investigate transport distances with nonlinear mobility [13], [29] and their
finite-volume discretisations on the torus T¢. In the spirit of [26], we give a geometric char-
acterisation of finite-volume meshes for which the discretised transport distances converge
to the expected limit.

Compactness

The results for boundary value problems are obtained by combining our first main result with
a compactness result for sequence of measures with bounded action, which is of independent
interest. We obtain two results of this type.

In the first compactness result (Theorem 5.4) we assume at least linear growth of the
discrete energies Fy, at infinity. Under this condition we prove compactness in the space
BVkr ((O, 1); M4 (T¢ )), which consists of curves of bounded variation, with respect to the
Kantorovich—Rubinstein (KR) norm on the space of measures. The convergence holds for
almost every ¢ € (0, 1).

In the second compactness result (Theorem 5.9), which is used in the analysis of the
boundary value problems, we assume a stronger condition of at least superlinem growth on
the energy densities Fy,. We then obtain compactness in the space W11<k ((0, 1); M+(']I‘d)),
which consists of absolutely continuous curves with respect to the KR-norm. The convergence
is uniform for ¢ € (0, 1). We refer to the “Appendix” for precise definitions of these spaces.

Related works

For a classical reference to the study of flows on networks, we refer to Ford and Fulkerson
[22].

Many works are devoted to discretisations of continuous energy functionals in the frame-
work of Sobolev and BV spaces, e.g., [1, 4, 5, 36]. Cell formulas appear in various discrete
and continuous variational homogenisation problems; see, e.g., [4, 7, 9, 27, 31].

The large scale behaviour of optimal transport on random point clouds has been studied
by Garcia—Trillos, who proved convergence to the Wasserstein distance [23].
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Organisation of the paper

Sects. 2 and 3 contain the necessary definitions as well as the assumptions we use throughout
the article in the discrete and continuous settings. Section4 deals with the definition of the
homogenised action functional. In Sect.5 we present the rigorous statements of our main
results, including the I'-convergence of the discrete energies to the effective homogenised
limit and the compactness theorems for curves of bounded discrete energies. The proof of
our main results can be found in Sect.6 (compactness and convergence of the boundary
value problems) and Sects.7 and 8 (I"-convergence of A, ). Finally, in Sect.9, we discuss
several examples and apply our results to some common finite-volume and finite-difference
discretisations.

1.1 Sketch of the proof of Theorem 5.1

In the last part of this section, we sketch the proof of our main result on the convergence of
A, to the homogenised limit (Theorem 5.1). Crucial tools to show both the lower bound and
the upper bound in Theorem 5.1 are regularisation procedures for solutions to the continuity
equation, both at the discrete and at the continuous level.

In this section, we use the informal notation < and Z to mean that the corresponding
inequality holds up to a small error in ¢ > 0, e.g., Ay < B, means that A, < B, + 0,(1)
where 0.(1) — O as e — 0.

For ¢ > 0 and z € Z¢ (or more generally, for z € Rd), we set Q% 1= ez + [0, &)l c .
Forx € X, C T, we denote by x, the unique element of Zg satisfying x € Q3?. Note that
{Q% : ze Z‘Z} defines a partition of .

To compare discrete and continuous objects, we consider embeddings of probability mea-
sures m € P(X,) and anti-symmetric functions J : & — R defined by

Lem = P Z m(x).Zd|Q§z € P(Td),

xeXe

_ T,y (!
1eJ i =¢ d+1 Z > Y (/ $d|Q£]—.v)xz+:yz ds J(y; — xz) € Md(Td).
(x.y)€Es 0 ‘

These embeddings preserve the continuity equation in the following sense: if (m, J) € C&,
then (tom, 1. J) € CE.
We also use the notation F (m, J) 1= 3, ) ce. e Fyy (’"(x) ma(}), J;f;f)).

ed

Sketch of the liminf inequality. For ¢ > 0 with % € N, consider the curve (m¥),c0,1) S
M (Xe)andletm® € M4 ((0, 1)x Xg) be the corresponding measure on space-time defined
bym®(dx, dt) = m; (dx) dt. Suppose that ;,m® — p vaguely in /\/l+((0, 1) x Td) ase — 0.
The goal is to show the liminf inequality

lim inf Ae(m®) = Anom (R). (1.7)

Without loss of generality we assume that A, (m®) = A.(m®, J¢) < C < oo for every
& > 0, for some sequence of vector fields J¢ such that (m®, J¢) € CE,. As we will see in
(4.11), the embedded solutions to the continuity equation (t.m?, (. J¢) € CE define curves
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of measures with densities with respect to 2 on T¢ of the form

1
prw)=e=1 Ym0 and i) =S Y0 I 000 (e — %)

e, (x.y)€E

Xz=2 Xz=2Z

for every u € Qg c T, Here, th u € R is a convex combination of the functions {Jf ( .
—ez) 1 2€ 7Y, |zlo0 < Ro + 1}.

As we will estimate the discrete energies at any time ¢t € (0, 1), for simplicity we drop
the time dependence and write p = p;, j = ji, m* = m;, J® = Jf, JE = Jf,. A crucial
step is to construct, for every u € QF, a representative

iy T )
(’Z—d [;T_l) € Rep (p(u). j(w)) (1.8)

which is approximately equal to the values of (m?, J?) close to XN {x; = z}. The lower
bound (1.7) would then follow by time-integration of the static estimate

Moz (x) ez(y) Jez(x, y)
Fem* IVZ Y Y e F( FR ly)
zeZd (x,y)e€2 (1.9)

é /Td fhom(p(’/l), j(u)) du = Fhom([5m87 ngE),

together with the lower semicontinuity of Apom . In the last inequality we used the definition of
the homogenised density fhom (p ), j (u)), which corresponds to the minimal microscopic
cost with total mass p(«) and flux j(u).

To find the sought representatives in (1.8), it may seem natural to define 7, € Rf and
Ju € Rf by taking the values of m and J, in the e-cube at z, and insert these values at every
cube in (X, &), so that the result is Zd—periodic. Precisely:

M (x) = m(ex), Ju(x,y) = Ju(eX, e(y —x, +2)), for (x,y) €&,

where ¥ := x — x; + Z. This would ensure that e/, € Rep (,o (u)). Unfortunately,
this construction produces a vector field 6‘_(d_1).7,:, which does not in general belong to
Rep (ji()): indeed, while J, has the desired effective flux (i.e., Eff(e =@~V J,) = j(u), as
given in (1.6)), it is not in general divergence-free.

To deal with this complication, we introduce a corrector field J,, associated to Z,, i.e., an
anti-symmetric and Zd—periodic function J, : £ — R satisfying

divJ, =—div, Eff(J)=0, and [J]meo, < 3]dVI],i00)  (1.10)

whose existence we prove in Lemma 7. 3.
It is clear that if we set Ju = J,, + J, by construction we have div Ju = 0 and
Eff (=@~ 7J,) = j(), thus

+J .
‘S\di—l = ?lu (S Rep (ju)

To carry out this program and prove a lower bound of the form (1.9), we need to quantify
the error we perform passing from (m®, J¢) to {(fﬁu, Z,) L u € ']I‘d}. It is evident by
construction and from (1.10) that spatial and time regularity of (m®, J¢) are crucial to this
purpose. For example, an £°°-bound on the time derivative of the form ||9;m; ||oc < C e (or,
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in other words, a Lipschitz bound in time for p;) together with (m®, J¢) € CE, would imply
a control on div J and thus a control of the error in (1.10) of the form ||} =% J,||o < Ce.
This is why the key first step in our proof is a regularisation procedure at the discrete level:
for any given sequence of curves { (m®,J%) eCE : &> 0} of (uniformly) bounded action
A, we can exihibit another sequence {(1718, 76) eC& : &> 0}, quantitatively close as
measures and in action A, to the first one, which enjoy good Lipschitz and [°*° properties
and for which the above explained program can be carried out.
This result is the content of Proposition 7.1 and it is based on a three-fold regularisation,
that is in energy, in time, and in space (see Sect.7.1).
Sketch of the limsup inequality. Fix (u, v) € CE. The goal is to findm® € M ((0, 1) x X)
such that (;m® — p weakly in M ((0, 1) x T9) and

lim sup A, (m®) < Apom (1, v). (1.11)

e—0

As in the the proof of the liminf inequality, the first step is a regularisation procedure, this
time at the continuous level (Proposition 8.26). Thanks to this approximation result, we can
assume without loss of generality that

Aom(i.v) <00 and {(0r(x), (1) ¢ (4, ) € 0. 1) x T!} € D(foom)°,  (1.12)

where (p;, ji); are the smooth densities of (i, v) € CE with respect to 291 6n (0, 1) x T,
and D(fhom)° denotes the interior of the domain of fhom (see “Appendix 17). The convexity
of fhom ensures its Lipschitz-continuity on every compact set K € D( fhom)°, hence the
assumption (1.12) allows us to assume such regularity for the rest of the proof.

We split the proof of the upper bound into several steps. In short, we first discretise the
continuous measures (¢, v) and identify an optimal discrete microstructure, i.e., minimisers
of the cell problem described by fhom, on each e-cube Q%, z € Zf. A key difficulty at
this stage is that the optimal selection does not preserve the continuity equation, hence an
additional correction is needed. For this purpose, we first apply the discrete regularisation
result Proposition 7.1 to obtain regular discrete curves and then find suitable small correctors
that provide discrete competitors for A, i.e., solutions to C€, which are close to the optimal
selection.

Let us explain these steps in more detail.

Step 1: Forevery z € Z‘;, t € (0, 1), and each cube Q% we consider the natural discretisation
of (;, v), that we denote by (Pgu; (2), PSW(Z))z.z C Ry x RY, given by

z+e;

d
ji - e de”) )
0iNdQ; i=1

Pepr(2) == i (Q7), Pevi(2) = (/
b
An important feature of this construction is that the continuity equation is preserved from T
to Zg, in the sense that
d
0Py () + Y (Pevi(2) = Pevy(z —€)) e =0
i=1

fort € (0, 1) and z € Z¢.
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Step 2: We build the associated optimal discrete microstructure for the cell problem for each
cube QZ, meaning we select (m, J) = (m,, J; )te(o 1),zez¢ such that

mé U7 R Pepis(z) Povi(2)
wi gt ) <Fep (<o )

where Rep, denotes the set of optimal representatives in the definition of the cell-formula
(1.5). Using the smoothness of p and v, one can in particular show that

mi(x) mi(y) Ji(x,y)
>y dexy< it ’Edy, fgd,ly < Fhom (s, v1). (1.13)

zeZ¢ (x,y)e&?

Step 3: The next step is to glue together the microstructures (m, J) defined for every z € Zg
via a gluing operator G, (Definition 8.4) to produce a global microstructure (m¢, 78) €
M0, 1) x Xe) x M((0, 1) x &). As the gluing operators are mass preserving and m?; €
Rep(P.u;(z)), it is not hard to see that (,;m® — u weakly in /\/l+((0 1) x 'JI‘d) ase — 0.
Step 4: In contrast to P, the latter operation produces curves (m°*, J° ) which do not in general
solve the discrete continuity equation CE, . Therefore, we seek to find suitable corrector vector
fields in order to obtain a discrete solution, and thus a candidate for A, (m®). For this purpose
we regularise (m°, 78) using Proposition 7.1 below. This yields a regular curve which is close
in the sense of measures and in energy to the original one. Note that no discrete regularity
is guaranteed for (m?, 76), despite the smoothness assumption on (f, v), due to possible
singularities of Fy,.

For the sake of the exposition, we shall discuss the last steps of the proof assuming that

(mé,J 8) already enjoy the Lipschitz and £°°—regularity properties ensured by Proposition
7.1.
Step 5: For sufﬁc1ently regular (m*, Je ), we seek a discrete competitor for A, (m®) which is
close to (m*, T’ ). As the latter does not necessary belong to C&,, we find suitable correctors
V¢ such that the corrected curves (m?, J+ve ) belong to C&,, with V¢ small in the sense
that it satisfies the bound

sup [e' v Ce. (1.14)

<
Sup lewie <

The proof of existence of the corrector V¢, together with the quantitative bound relies on
a localisation argument (Lemma 8.22) and a study of the divergence equation on periodic
graphs (Lemma 8.16), performed at the level of each cube Q%, forevery z € Zg. The regularity
of (m?, 78) is crucial in order to obtain the estimate (1.14).
Step 6: The final step consists of estimating the action of the measures defined by mé =
m® — p weakly as ¢ — 0, and the vector fields J¢ := I+ Ve,

Using the regularity assumption on (m*®, 75), the smoothness (1.12) of (u, v), and the
convexity of fhom, together with the bounds (1.13) and (1.14) for the corrector, we obtain

Z 4 Zz
fé‘(m;:v Jte)éff‘(fﬁ?’ /})< Z Z 8dF)Cy <mt(X)5 mt(y)? Jt (x’ y)>

d d a—1
e & &
224 (x,y)ee?

é Fhom (s, ve).
Using this bound and the fact that (m?, J¢) € C&,, an integration in time yields
lim sup A, (m®) < limsup A, (m®, J®) < Apom (1, v),

e—0 e—0
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which is the sought upper bound (1.11).

2 Discrete dynamical optimal transport on 79-periodic graphs

This section contains the definition of the optimal transport problem in the discrete periodic
setting. In Sect. 2.1 we introduce the basic objects: a Z?-periodic graph (X, £) and an admis-
sible cost function F. Given a triple (X, £, F), we introduce a family of discrete transport
actions on rescaled graphs (X;, &) in Sect.2.2.

2.1 Discrete Zd-periodic setting

Our setup consists of the following data:
Assumption 2.1 (X, &) is alocally finite and Z?-periodic connected graph of bounded degree.
More precisely, we assume that
X=7%xV,
where V is a finite set. The coordinates of x = (z, v) € X will be denoted by
Xz:=2, Xy:i=0.
The set of edges £ € X x X'is symmetric and Z9-periodic, in the sense that
(x,y) € £ iff (S7(x), $%(y)) € Eforall z € Z9.
Here, $? : X — Xis the shift operator defined by
§%(x) = (Z+2z,v) forx =(z,v) € X.

We write x ~ y whenever (x, y) € £.
Let Rp := max(x y)ee [Xz — ¥zl e, be the maximal edge length, measured with respect to

the supremum norm | - | ¢d, On R. Tt will be convenient to use the notation
X={xeX:x,=0 and &9 ::{(x,y)eé’ : xZ:O}.

Remark 2.2 (Abstract vs. embedded graphs) Rather than working with abstract 74 -periodic
graphs, it is possible to regard X as a Z¢-periodic subset of R?, by choosing V to be a subset
of [0, 1)¢ and using the identification (z, v) = z + v, see Fig. 2. Since the embedding plays
no role in the formulation of the discrete problem, we work with the abstract setup. Note that
edges between nodes that are not in adjacent cells are also allowed.

Assumption 2.3 (Admissible cost function) The function F' : ]Rf X Rg — R U {+o00} is
assumed to have the following properties:

(a) F is convex and lower semicontinuous.
(b) Fislocal in the sense that there exists Ry < oo suchthat F(m, J) = F(m’, J') whenever
m,m’ € ]Rf and J,J € Rf agree within a ball of radius R, i.e.,

m(x) = m'(x) forallx € Xwith |x;[, < Ri, and

Jx,y)=J'(x,y) forall (x, y) € & with [xz[pa . Yzl < R
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Vdl i
el
i i

b

Fig.2 A fragmentofa 74 -periodic graph (X, &). The blue nodes represent " Q and the orange edges represent

&9 (color figure online)

(c) F is of at least linear growth, i.e., there exist ¢ > 0 and C < oo such that

F(m,J)>c¢ Z |J(x,y)|—C<1+ Z m(x)) 2.1
Gry)ee? Ikl <R
=

for any m € Rf and J € Rf. Here, R := max{Ry, R1}.
(d) There exist a Z?-periodic function m° € Rf and a Z4-periodic and divergence-free
vector field J° € RE such that

(m°, J°) € D(F)°. (2.2)

Remark 2.4 As F is local, it depends on finitely many parameters. Therefore, D(F)°, the
topological interior of the domain D(F') of F is defined unambiguously.

Remark 2.5 In many examples, the function F takes one of the following forms, for suitable
functions Fy and Fy,:
Fon = Y F(me. (@), ). Fon=5 3 Fu(n@.mo). 1@ p).
s 3 s y~x)° ) 2 y ) 3 3
xeX? (x,y)e&2
We then say that F is vertex-based (respectively, edge-based).
Remark 2.6 Of particular interest are edge-based functions of the form

1 J(x, 1P
Fm, 1) =5 > 7 ) = (2.3)
(x,y)e&? A(qum(x), nym(y))
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where 1 < p < 00, the constants gy, gy, > 0 are fixed parameters defined for (x, y) € &9,
and A is a suitable mean (i.e., A : R4 x Ry — Ry is a jointly concave and 1-homogeneous
function satisfying A(1, 1) = 1). Functions of this type arise naturally in discretisations of
Wasserstein gradient-flow structures [11, 30, 32].

We claim that these cost functions satisfy the growth condition (2.1). Indeed, using Young’s

inequality |J| < 1 I 4 pT_lA we infer that

N
P
S Uenls Y .
(x,y)EEQ p (x,y)e€Q A(qum(x)a nym(y))
p—1
+— Z A(‘Ixym(x)sCIyxm(y))
(x,y)e?

IA

%F(m, H+C Z m(x),

xed|xl,q <Ro
o0

with constant C > 0 depending on max, ,(gxy + gyx). This shows that (2.1) is satisfied.

2.2 Rescaled setting

Let (X, £) be a locally finite and Zd—periodic graph as above. Fix ¢ > 0 such that é e N.
The assumption that % € N remains in force throughout the paper.

The rescaled graph. Let ']I‘ff = (¢Z/Z)? be the discrete torus of mesh size &. The corre-

sponding equivalence classes are denoted by [¢z] for z € Z¢. To improve readability, we
occasionally omit the brackets. Alternatively, we may write Tg = sZ? where Zg = (Z / éZ)d.

The rescaled graph (X, &) is constructed by rescaling the Z?-periodic graph (X, &) and
wrapping it around the torus. More formally, we consider the finite sets

Xo:=T¢xV and & :={(T2x), T2() : (x,y) € &}
where, for 7 € Z?,
TP X=X, (z,v) = ([eG+ 2] ). (2.4)

Throughout the paper we always assume that eRp < %, to avoid that edges in £ “bite
themselves in the tail” when wrapped around the torus. For x = ([8Z], v) e X, we will write

xz::zer, xy =veV.

The rescaled energies. Let F : Rf X ]Rf — R U {400} be a cost function satisfying
Assumption 2.3. For ¢ > 0 satisfying the conditions above, we shall define a corresponding
energy functional F in the rescaled periodic setting.

First we introduce some notation, which we use to transfer functions defined on X, to X
(and from &, to £). Let 7 € Zg. Each function ¥ : X — R induces a éZd—periodic function

Ty X =R, (Y)) =y (Ti(x) forx € X.
see Fig.3. Similarly, each function J : & — R induces a %Zd—periodic function

I E— R, () (x,y) = J(TE(x), T2 (y))  for (x,y) € &
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[ ] L] [ ] L]
. ° . °
° L] ° ° ° L] ° L]
° ] ° ] ° ° ° °
° ° L] ° L] ° L] L
° ~ . ) . ° 0 ° ° °
> —
g . ° 1 . °
L] [ ] L] [ ]

Fig.3 On the left, the values of a function ¥ : Xy — R correspond to different colors over the nodes. On the
right, the corresponding values of 72y : X — R (color figure online)

Definition 2.7 (Discrete energy functional) The rescaled energy is defined by

2 Z
wm TiJ
gd 7 gd—1

Fe RY xRE - RU{+00},  (m,J) > de<

d
Z€Z

Remark 2.8 We note that F,(m, J) is well-defined as an element in R U {4-00}. Indeed, the
(at least) linear growth condition (2.1) yields

B dofTEm T2 d im(x)
Fe(m, J) = E 8F<8d’8d—l —CE g\ 1+ E p
d
zezd zeZ4 |XC’Z,A;R

v

—C(l + QR+ 1) Z m(x)) > —o0.

xekX

Forz e Zg’ it will be useful to consider the shift operator SsZ 1 Xy —> Xy and Sf & — &
defined by

Si(x) = ([ +2)],v) forx = ([ez]. v) € A,
S, y) = (i), SE()) for (x, y) € &.
Moreover, for ¢ : X; — Rand J : & — R we define
oiY X — R, (o29) (x) == Y (SZ(x)) for x € X,

i : - (2.5
ofJ & — R, (ang)(x, y) = J(Si(x,y)) for (x,y) €&.

Definition 2.9 (Discrete continuity equation) A pair (m, J) is said to be a solution to the
discrete continuity equationifm : 7 — ]Rf is continuous, J : 7 — Rfs is Borel measurable,
and

dmi(x) + Y Ji(x,y) =0 (2.6)

y~x
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for all x € X, in the sense of distributions. We use the notation
(m,J) e CEL.
Remark 2.10 We may write (2.6) as d;m; + div J; = 0 using the notation (B.15).

Lemma 2.11 (Mass preservation) Let (m,J) € Cz‘g. Then we have mg(X,) = m;(X,) for
all s,t € I.

Proof Without loss of generality, suppose that s,t € Z with s < t. Approximating the
characteristic function x[; ;] by smooth test functions, we obtain, for all x € X,

15
my(x) —my(x) = / > Je(x,y)dr.

S y~x
Summing the above over x € X and using the anti-symmetry of J, the result follows.

We are now ready to define one of the main objects in this paper.

Definition 2.12 (Discrete action functional) For any continuous functionm : Z — ]Rffg such
thatr — ) cx, M (x) € LY(Z) and any Borel measurable function J : 7 — ]Rfé‘, we define

Aaz(m, J) = /]-'g(m,, Jy)dt € RU {+o0}.
v
Furthermore, we set

AL(m) := inf [AZm, 0y =m0y e ceT}.

Remark 2.13 We claim that ASI (m, J) is well-defined as an element in R U {4oc}. Indeed,
the (at least) linear growth condition (2.1) yields as in Remark 2.8

Fe(my, Jp) > —C(l +QR+ 1D mt(x)).

xeX,

for any ¢ € 7. Since t er)(g my(x) € LY(Z), the claim follows.
In particular, Af (m, J) is well-defined whenever (m, J) € CSSI ,sincer — ) x, M (x)
is constant by Lemma 2.11.

Remark 2.14 1If the time interval is clear from the context, we often simply write C€, and A,.

The aim of this work is to study the asymptotic behaviour of the energies Af ase — 0.

3 Dynamical optimal transport in the continuous setting

We shall now define a corresponding class of dynamical optimal transport problems on the
continuous torus T¢. We start in Sect.3.1 by defining the natural continuous analogues of
the discrete objects from Sect.2. In Sect. 3.2 we define generalisations of these objects that
have better compactness properties.
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3.1 Continuous continuity equation and action functional

First we define solutions to the continuity equation on a bounded open time interval Z.

Definition 3.1 (Continuity equation) A pair (g, v) is said to be a solution to the continuity
equation o, + V - v = 0 if the following conditions holds:

G p:7— M+(']I‘d) is vaguely continuous;
(i) v:Z— M T?) is a Borel family satisfying fI [y |(’JI‘d) dr < oo;
(iii) The equation

O (x) + Vv (x) =0 (3.1

holds in the sense of distributions, i.e., for all ¢ € Cl (I X ’]I‘d),

// 3t¢’t(x)dﬂt(x)df+// Vo (x) - dv(x)de = 0.
zJ1¢ zJ1¢

We use the notation
(m,v) € cer.
We will consider the energy densities f with the following properties.

Assumption 3.2 Let f : Ry X RY > RU {400} be a lower semicontinuous and convex
function, whose domain has nonempty interior. We assume that there exist constants ¢ > 0
and C < oo such that the (at least) linear growth condition

flp, j)zcljl=Clp+1) (3.2)
holds for all p € Ry and j € RY.

The corresponding recession function £ : Ry x RY — R U {400} is defined by

. . fpo+tp, jo+1j)
f<(p, j) = lim ,
t—>—+00 t

where (po, jo) € D(f) is arbitrary. It is well known that the function f°° is lower semicon-
tinuous and convex, and it satisfies

>, j) = cljl = Cp. (3.3)

We refer to [2, Section 2.6] for a proof of these facts.
Let ¢ denote the Lebesgue measure on T¢. For u € M, (T%) and v € M4 (T?) we
consider the Lebesgue decompositions given by

p=pLput,  v= 2l gyt

for some p € Llr(’]l‘d) and j € LY (T RY). It is always possible to introduce a measure
o € My (T?) such that

for some pt € LL(U) and j1 € L'(o; Rd). (Take, for instance, o = ut + [vL]) Using
this notation we define the continuous energy as follows.
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Definition 3.3 (Continuous energy functional) Let f : Ry x R?Y — R U {400} satisfy
Assumption 3.2. We define the continuous energy functional by

F: M (T x M4 (T?) — RU {400},

F(u,v) 1= /T F (o). j() dx + /T £ (Pt (0, () do ().

Remark 3.4 By 1-homogeneity of f°°, this definition does not depend on the choice of the
measure o € M+(Td).

Definition 3.5 (Action functional) For any curve gt : 7 — M. (T) with [, j1,(T¢) dt < oo
and any Borel measurable curve v : 7 — /\/ld('JI‘d) we define

AZ(, v) 1= / F(jur, vp) dr.
T
Furthermore, we set

Alp) = ir‘}f {AI(;L, v) : (u,v) € (CEI}.

Remark 3.6 As f(p,j) = —C(1 + p) by (3.2), the assumption fzu,(']l‘d) dr < oo ensures
that AI(;L, v) is well-defined in R U {4-00}.

Remark 3.7 (Dependence on time intervals) Remark 2.14 applies in the continuous setting
as well. If the time interval is clear from the context, we often simply write CE and A.

Under additional assumptions on the function f, it is possible to prove compactness for
families of solutions to the continuity equation with bounded action; see [13, Corollary 4.10].
However, in our general setting, such a compactness result fails to hold, as the following
example shows.

Example 3.8 (Lack of compactness) To see this, let y*(¢) be the position of a particle of mass

m that moves from O to y € [0, %]d in the time interval (a., b,) = (1—58, lzﬁ) with constant

speed ‘;—' At all other times in the time interval Z = (0, 1) the particle is at rest:

0, t €10, a.],
Y =1(—-30—8)e7'y. 1€ (abe).
y t € [be, 11.

The associated solution (u?, v®) to the continuity equation 9, u® + V - v¥ = 0 is given by

pE(dx) 1= mye(dx), v (dx) = @x(ag,bg)(r>aye<t><dx).
Let f(p, j) = |j| be the total momentum, which satisfies Assumption 3.2. We then have
F(uf, vy) = @l(as.bg)(t), hence AI([LS, v®) = my, independently of ¢.
However, as ¢ — 0, the motion converges to the discontinuous curve given by u; = &o
for t € [0, %) and u, = 65 fort € (%, 1]. In particular, it does not satisfy the continuity
equation in the sense above.
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3.2 Generalised continuity equation and action functional
In view of this lack of compactness, we will extend the definition of the continuity equation
and the action functional to more general objects.

Definition 3.9 (Continuity equation) A pair of measures (g, v) € M (Z x T¢) x M?(Z x
T¢ ) is said to be a solution to the continuity equation

IR+V-v=0 (3.4)
if, for all ¢ € C}(Z x T?), we have

/ 8,<pdu+/ Vo - dv =0.
IxT¢ IxT¢

As above, we use the notation (u, v) € CEZ.

Clearly, this definition is consistent with Definition 3.5.

Let us now extend the action functional AZ as well. For this purpose, let £ *! denote the
Lebesgue measure on Z x T?. For p € M+(I X Td) andv € ./\/ld(I X Td) we consider the
Lebesgue decompositions given by

p=p ™ put,  v= et ppt

for some p € LY (Z x T?) and j € L'(Z x T?; RY). As above, it is always possible to
introduce a measure 0 € M (Z x Td) such that

pt=pto, vt=jlo, (3.5)
for some pt € L1+(0) and jJ- e LY(o; Rd).
Definition 3.10 (Action functional) We define the action by

AT My (T x T9) x MHT x T?) — R U {+00},

A, v) = / F(pr(x), je(x)) dx dt + / (i), ji-(x)) da (2, x).
IxTY IxTY

X

Furthermore, we set
AT(u) = inf (AT (r, ) : (n,v) € CE7).
v
Remark 3.11 This definition does not depend on the choice of g, in view of the 1-homogeneity

of f°.As f(p,j) > —C( + p)and fx(p, j) = —Cp from (3.2) and (3.3), the fact that
n(Z x T?) < oo ensures that AI(;L, v) is well-defined in R U {4-00}.

Example 3.12 (Lack of compactness) Continuing Example 3.8, we can now describe the
limiting jump process as a solution to the generalised continuity equation. Consider the
measures u° € M4 (Z x T4y and v¢ € M4 (Z x T?) defined by

pf(dx, dr) = pf (dx)de, v®(dx, dr) = v; (dx) dz.

Then we have ¢ — p and v¢ — v weakly, respectively, in M (Z x T%) and M?(Z x T9),
where p represents the discontinuous curve

o, tel0,d),

p(dx, dr) = du,(x)dr, where p; = | ° [ 1 2)

6)_7, 1t e (i’ 1]
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The measure v does not admit a disintegration with respect to the Lebesgue measure on Z;
in other words, it is not associated to a curve of measures on T, We have

v(dx, dr) = m|5|2"j0,5)(dx)812(dr).

Here 7! 10,51 denotes the 1-dimensional Hausdorff measure on the (shortest) line segment
connecting 0 and y.

Note that (g, v) solves the continuity equation, as CE’ is stable under joint weak-
convergence. Furthermore, we have AT (m,v) =my.

The next result shows that any solution to the continuity equation (g, v) € CE” induces
a (not necessarily continuous) curve of measures (u;); € Z. The measure v is not always
associated to a curve of measures on Z; see Example 3.12. We refer to “Appendix 1” for the
definition of BVgg (Z; M (T%)).

Lemma 3.13 (Disintegration of solutions to CE?) Let (n,v) € CEL. Then du(t,x) =
dus(x)dt for some measurable curve t +— pu; € M+(Td) with finite constant mass. If
AI(;L) < 00, then this curve belongs to BVgr (Z; M+(Td)) and

d
||’L||BVKR(I;M+(’]1"I)) =< |v|(IX T ) (3.6)

Proof Let A € M4 (Z) be the time-marginal of u, i.e., A := (e1)sp where ey : Z X T — 7,

e1(t,x) = t. We claim that A is a constant multiple of the Lebesgue measure on Z. By the

disintegration theorem (see, e.g., [3, Theorem 5.3.1]), this implies the first part of the result.
To prove the claim, note that the continuity equation CE* yields

/&(p(t)dk(t):/ Orp(t)dp(r, x) =0 3.7
7 IxT¢

forall ¢ € C°(2). )

Write Z = (a, b), let € CZ°(Z) be arbitrary, and set  := ﬁ fII//(l‘) dt. We define
o(t) = fa’ Y(s)ds — (t —a)y. Then ¢ € CX (D) and 0,9 = ¢ — V. Applying (3.7) we
obtain fI(w — 1/7) dA = 0, which implies the claim, and hence the first part of the result.

To prove the second part, suppose that p € M (Z X T?) has finite action, and let
v e M? (I X ’JI‘d) be a solution to the continuity equation (3.4). Applying (3.4) to a test

function ¢ € C!(Z; C'(T9)) < C}(Z x T?) such that max;ez [l || o1 (r4) < 1, we obtain

/ da,go,du,dt=—/ dV(p-dvflvl(Ix T?) < oo, (3.8)
IxT IxT

which implies the desired bound in view of (B.14).

The next lemma deals with regularity properties for curves of measures with finite action
and fine properties for the functionals A defined in Definition 3.10 with f = fhom-

Lemma 3.14 (Properties of AT) Let T c R be a bounded open interval. The following
statements hold:

(i) The functionals (p, v) — AT(w, v) and p — AZ(p) are convex.
(ii) Let p € M (T x Td). Let {I,}, be a sequence of bounded open intervals such that
o S Tand |I\Z,| - 0asn — oo. Let p" € M4 (Z, x Td) be such that*

w" — wvaguely in M (T x Td) and (L, x Td) — w(@ x Td).

2 We regard measures on Z,, X T4 as measures on the bigger set Z x T by the canonical inclusion.
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asn — o0o. Then:

liminf A% (u™) > AZ(p). (3.9)
n—oo

If. additionally, v € M%(Z x T and v* € M* (T, x T¢) satisfy v — v vaguely in
MY x TY), then we have

liminf AT (u", v") > AL(u, v). (3.10)
n—oo

In particular, the functionals (., v) — AI(M, v) and p — AI(;L) are lower semicon-
tinuous with respect to (joint) vague convergence.

Proof (i): Convexity of A follows from convexity of f, £, and the linearity of the
constraint (3.4).

(ii): First we show (3.10). Consider the convex energy density g(p, j) = f(p,j) +
C(p + 1), which is nonnegative by (2.1). Let A, be the corresponding action functional
defined using g instead of f. Using the nonnegativity of g, the fact that |7\Z,| — 0, and the
lower semicontinuity result from [2, Theorem 2.34], we obtain

liminf AZ (u", v") = liminf AZ(", »") = AL(p, v).
n—oo n—oo

for every open interval Tel Taking the supremum over 7, we obtain

liminf A2 (", v") > AL(n, v). (3.11)
n—oo

Since we have (I,, x T¢ ) — ;L(Z x T¢ ) by assumption, the desired result (3.10) follows
from (3.11) and the identity

AL (") = AT (") 4 C (0 (T, X T4 +1).

Let us now show (3.9). Let {u""},, € M+(In X Td) be such that sup,, A% (") < 0o and
n' — pvaguely in My (Z x TY). Let v* € M?4(Z, x T9) be such that (u", v") € CE®
and

1
AT ("0 < AT +

From Lemma 3.13, we infer that du”(r, x) = duf(x)dr where (u});ez, is a curve of
constant total mass ¢, := uy (']I‘d). Moreover, M := sup, ¢, < 400, since " — p vaguely.
The growth condition (3.2) implies that

sup [v"|(Z" x Td) < %supAI"(u") + %I'(M +1) < oo.
n n
Hence, by the Banach—Alaoglu theorem, there exists a subsequence of {v"}, (still indexed
by n) such that v* — v vaguely in MUT x T¢) and (p, v) € CE~. Another application
of Lemma 3.13 ensures that du(z, x) = du,(x) dr where (u;)se7 is of constant mass ¢ :=
1 (T4) = Timy o0 €.
We can thus apply the first part of (ii) to obtain

Al(w) < AT(w, v) < liminf AT (u”, v") = liminf AT (u"),
n—00 n—o00

which ends the proof.
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4 The homogenised transport problem

Throughout this section we assume that (X, £) safisfies Assumption 2.1 and F safisfies
Assumption 2.3.

4.1 Discrete representation of continuous measures and vector fields

To define fhom, the following definition turns out to be natural.

Definition 4.1 (Representation)
(i) We say thatm € Rf represents p € Ry if m is Z?-periodic and

Z m(x) = p.

xex?
(i) We say that J € Rg represents a vector j € R? if
(a) Jis Zd—periodic;

(b) J is divergence-free (i.e., div J(x) = 0 for all x € X);
(c) The effective flux of J equals j; i.e., Eff(J) = j, where

1
Eff(J) := 5 Z J(x, ) (yz — x7). (4.1)
(x,y)eg?

We use the (slightly abusive) notation m € Rep(p) and J € Rep(j). We will also write
Rep(p, j) = Rep(p) x Rep(j).
Remark 4.2 Let us remark that x, = 0 in the formula for Eff(J), since x, € X2.
Remark 4.3 The definition of the effective flux Eff(J) is natural in view of Lemmas 4.9 and
4.11 below. These results show that a solution to the continuous continuity equation can be

constructed starting from a solution to the discrete continuity equation, with a vector field of
the form (4.1).

Clearly, Rep(p) # @ for every p € R.. Itis also true, though less obvious, that Rep(j) #
@ for every j € RY. We will show this in Lemma 4.5 using the Z¢-periodicity and the
connectivity of (&, £).

To prove the result, we will first introduce a natural vector field associated to each simple
directed path P on (X, &), For an edge e = (x, y) € &, the corresponding reversed edge will
be denoted by ¢ = (y, x) € .

Definition 4.4 (Unit flux through a path; see Fig. 4) Let P := {x;}/_, be a simple path in
(X, &), thus ¢; = (xj—1,x;) € Efori = 1,...,m, and x; # xi fori # k. The unit flux
through P is the discrete field Jp € Rg given by

1 if e = e; for some i,
Jp(e) = {—1 ife=r¢; forsomei, 4.2)
0  otherwise

The periodic unit flux through P is the vector field i p € ]Rg defined by
Tp(e)="Y_ Jp(T:e) foreek. (4.3)

zez4
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. 1 - 1 L
Tm Im

Fig. 4 In the first figure, in red, the (directed) path P from xq to x,, support of the vector field Jp. In the
second one, in red, the support of the vector field Jp and its values (color figure online)

In the next lemma we collect some key properties of these vector fields. Recall the defi-
nition of the discrete divergence in (B.15).

Lemma 4.5 (Properties of Jp) Let P := {x;}"_, be a simple path in (X, &).
(i) The discrete divergence of the associated unit flux Jp : £ — R is given by
divip = 1) — s, ). (4.4)
(ii) The discrete divergence of the periodic unit flux J~p : & — Ris given by
div Jp (x) = L () — L{(ge) (v), X € X. (4.5)
In particular, div Jp = = 0 iff (x0)v = (Xm)v-

(iii) The periodic unit flux Jp &€ — R satisfies Eff(Jp) (xm)z — (x0)2-
(iv) Forevery j € R? we have Rep(j) # 9.

Proof (i) is straightforward to check, and (ii) is a direct consequence.
To prove (iii), we use the definition of Jp to obtain

Yo T (a—x) = Y Y Ie(Tx, Ty (32— x2)

(x,y)e&l (x,y)e€Q zezd
= > Jp(. (v — x2).
(x,y)e€

By construction, we have

1 m
5 2 TP (= x) = Y () = ()2 = Com)z — (10)z,
(x,y)e€ j=1
which yields the result.

For (iv), taking j = e;, we use the connectivity and nonemptyness of (X, £) to find a simple
path connecting some (v, z) € X'to (v, z+e;) € X. Theresulting Jp € Rg is divergence-free
by (ii) and Ef‘f(fp) = ¢; by (iii), so that .71: € Rep(e;). For a general j = Z;i:] Jjiei we have
Rep(j) 2 X1 Ji Rep(e)) # 0.
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4.2 The homogenised action

We are now in a position to define the homogenised energy density.

Definition 4.6 (Homogenised energy density) The homogenised energy density fhom : R4 X
R? > RU {400} is defined by the cell formula

from(p, j) = inf {F(m, J) : (m, J) € Rep(p, j)}. 4.6)

For (p, j) € Ry x RY, we say that (m, J) € Rep(p, j) is an optimal representative if
F(m, J) = fhom(p, j). The set of optimal representatives is denoted by

Rep, (0, j)-

In view of Lemma 4.5, the set of representatives Rep(p, j) is nonempty for every (p, j) €
R, x R?. The next result shows that Rep,(p, j) is nonempty as well.

Lemma 4.7 (Properties of the cell formula) Let (p, j) € Ry X RY. If fhom(p, J) < 400,
then the set of optimal representatives Rep,(p, j) is nonempty, closed, and convex.

Proof This follows from the coercivity of F and the direct method of the calculus of variations.

Lemma4.8 (Properties of foom and fis.) The following properties hold:

(i) The functions fhom and fis. are lower semicontinuous and convex.
(ii) There exist constants ¢ > 0 and C < oo such that, forall p > 0 and j € RY,

Jhom (0, j) Zcljl =Clp+ 1), figm(p, j) = cljl —Cp. 4.7

(iii) The domain D(from) S Ry x R? has nonempty interior. In particular, for any pair
(m®, J°) satisfying (2.2), the element (p°, j°) € (0, 00) X R? defined by

1
(0%, j°) = ( 2om, 5 Do T —xz)) (4.8)

xex? (x,y)egQ

belongs to D( fhom)°®-

Proof (i): The convexity of fhom follows from the convexity of F and the affinity of the
constraints. Let us now prove lower semicontinuity of fhom-

Take (p, j) € Ry x R and sequences {0, }, € Ry and {j,}, R converging to p and
J respectively. Without loss of generality we may assume that L := sup,, fhom (0n, Ju) <
oo. By definition of fjom, there exist (m,, J,) € Rep(pn, jn) such that F(m,, J,) <
Jfhom (On» jn) + % From the growth condition (2.1) we deduce that, for some C < oo,

sup Z mu(x) =supp, <oo and sup Z |Jn(x, M| < C(1+ L+ supr,) < oo.
" xex? " " (x,y)eEQ "

From the Bolzano—Weierstrass theorem we infer subsequential convergence of {(m,, J,)}»
to some Z?-periodic pair (m, J) € ]Rf x RE. Therefore, by lower semicontinuity of F, it
follows that

F(m, J) <liminf F(m,, J,) <liminf fhom(0n, ju) 4.9)
n—o0 n—o00

Since (m, J) € Rep(p, j), we have from(p, j) < F(m, J), which yields the desired result.
Convexity and lower semicontinuity of f*  follow from the definition, see [2, Section 2.6].
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(ii) Take p € Ry and j € RY. It Jhom(p, j) = 400, the assertion is trivial, so we
assume that fhom(p, j) < +oo. Then there exists a competitor (m, J) € Rep(p, j) such that
F(m,J) < fhom(p, j) + 1. The growth condition (2.1) asserts that

Fm,J)=c Y [J@yI—=C Y mkx) -
(x,y)eSQ xex?

Therefore, the claim follows from the fact that

Ry > J.»l=1ljl and Y mx)=r,
(x.y)ec? xex?

where Ry = maxy y)ee |Xz — y2|l‘§o'

(iii): Let (m°, J°) € D(F)° satisfy Assumption 2.3, and define (p°, j°) € (0, 00) X R4
by (4.8). Fori =1, ...,d,lete; be the coordinate unit vector. Using Lemma 4.5 (iv) we take
J' € Rep(e;). For a € R with |«/| sufficiently small, and g = Z?:l Biei € RY we define

mq (x) :=m°(x) + #(XQ) x € X,

Tp(x, y) = J°(x,y>+2ﬁ,»f"(x,y) (x.y) €&
i=1

It follows that (mq, Jg) € Rep(p° + «, j° + B), and therefore, fhom(0° + o, j° + B) <
F(mg, Jg). By Assumption 2.3, the right-hand side is finite for |a| + || sufficiently small.
This yields the result.

The homogenised action Afom can now be defined by taking f = fhom in Definition 3.10.

4.3 Embedding of solutions to the discrete continuity equation

Fore > 0 and z € Z% (or more generally, for z € RY) let Q% :=ez+|0, e)? € T¢ denote
the cube of side-length ¢ based at ez. Form € Rfe and J € ]Rgf we define (;m € M+(T‘1)
and 1, J € M4(T?) by

em =&Y " mx) L gz, (4.10a)
xeXe
J
d =Y @, y)(/ A a— ds)(yz—xz) (4.10b)
(x,y)e&s

The embeddings (4.10) are chosen to ensure that solutions to the discrete continuity
equation are mapped to solutions to the continuous continuity equation, as the following
result shows.

Lemma4.9 Let (m,J) € CE:SZ solve the discrete continuity equation and define |, = tgmy
and vy = 1. J;. Then (j, v) solves the continuity equation (i.e., ()L, v) € (CIEI).
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Proof Let ¢ : T x T¢ — R be smooth with compact support. Then:

/I/Trde.dvtdt

1 ! 4
=07 2 /I Ji(x, y) / / i VO(X) £z — x) 2 ds di
(x.y)ete 0 70
1 ! 4
= ﬁ( X):g /IJ,(x,y)/O as</Q(”)xwz<pd$ >dsdt
x,y)€€e €
1
=57 > /J,(x,y)(/v (pd.i”d—/t (pd,zﬂd)dt.
€ (x,y)€8s T 0* 0;*

On the other hand, the discrete continuity equation yields

1
odu,dt = — B dz?) ar
/I/T“’ 1§ ALy 8dx§£/zmt(x) ’(/ngw )

1 / d d
= — E J(x,y)(/ 0dZ —/ odZ“ | dt.
264 ! 0 0¥

(x,y)€&e

Comparing both expressions, we obtain the desired identity d; ¢ + V - v = 0 in the sense of
distributions.

The following result provides a useful bound for the norm of the embedded flux.

Lemma4.10 For J € ]R(ff we have

|t J|(T9) < |7 (x, p)l.

eRov/d
— X
(x,y)€&

Proof This follows immediately from (4.11), since .2 (08 ™"*"%) = ¢4 and |y, — x,| <
Ro+/d for (x, y) € &,.

Note that both measures in (4.10) are absolutely continuous with respect to the Lebesgue
measure. The next result provides an explicit expression for the density of the momentum
field. Recall the definition of the shifting operators o7 in (2.5).

Lemma 4.11 (Density of the embedded flux) Fix e < 2170. ForJ € ]Rgs we have 1, J = jg.fd
where jg : T — R? is given by

1
Jewy =g~ 3" ng<u>(§ > Ju<x,y>(yz—xz)> forueT!.  (411)
zezd (x V)€

Here, J,(x, y) is a convex combination of{asz.l(x, y)}ZeZd’ Le.,
£

Ju(x,y) = Z )\Z’Z(x, y)af](x, y),

zezd
where Ai‘z (x,y) > 0and Zzezd Af,’z(x, y) = 1. Moreover,

AZ’Z(X, y) =0 wheneveru € 03, |Z|oc > Ro + 1. (4.12)
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Proof Fix ¢ < ZLRO, letz € Z‘EI and u € Q%. We have

I(x, 1
Jewy ==t N (x2 Y (/0 Xgti-sove () dS>(yz — x7)

(x,y)e&e

_ oZJ(x,y) [ [!
= 5 5 ([ agpamenr s o

(x.y)€& ze7d
Xz=Z .

which is the desired form (4.11) with

B 1
At (x,y) = ( / X pit(i-9ztsiz (u) dS)
0 &

for (x, y) € & with x, = z. Since the family of cubes {Q§+”'2+<1‘”"Z}

T¢, it follows that Y- 5 A" (x, y) = L.

To prove the final claim, let (x, y) € & with x; = z as above and take 7 € Z‘g with
|Z]oo > Ro + 1. Since |x; — y;| < Ry, the triangle inequality yields

« 1s a partition of

)

Z€Z

H(E +syz + (1 _s)xz) _xZHoo > [1Zlloe = (1 = )[1yz — Xzlloo > 1,

for s € [0, 1]. Therefore, u € Q% implies X giti-snz+orz (u) = 0, hence Ai'z(x, y) =0as
desired.

5 Main results

In this section we present the main result of this paper, which asserts that the discrete action
functionals A, converge to a continuous action functional A = Ao, with the nontrivial
homogenised action density function f = fhom defined in Sect.4.

5.1 Main convergence result

We are now ready to state our main result. We use the embedding ¢, : Rf — M (T
defined in (4.10a). The proof of this result is given in Sects.7 and 8.

Theorem 5.1 (T-convergence) Let (X, £) be alocally finite and zd -periodic connected graph
of bounded degree (see Assumption 2.1). Let F : Rf X ]Rg — R U {400} be a cost function
satisfying Assumption 2.3. Then the functionals ASI I"-converge to A%om as ¢ — 0 with
respect to the weak (and vague) topology. More precisely:

(i) (liminf inequality) Let p € M4 (Z x T4). For any sequence of curves {m¢}, with
mé = (mf);er C ng such that t.m® — p vaguely in M4 (Z x T as & — 0, we have
the lower bound

lim inf ALm®) > AL (). (5.1)

hom

(ii) (limsup inequality) For any p € M (I x T¢) there exists a sequence of curves {m®},
withm® = (mf);e7 C ng such that tm® — p weakly in M4 (T X T as & — 0, and
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we have the upper bound

lim sup AZ(m®) < AL (n). (5.2)

e—0

Remark 5.2 (Necessity of the interior domain condition) Assumption 2.3 is crucial in order
to obtain the I"-convergence of the discrete energies. Too see this, let us consider the one-
dimensional graph X = Z and the edge-based cost associated with
Jx,v)? .
i m(x) = m(y) #0,

Fry(m(x), m(y), J(x,y)) :== 10 if J(x,y) =m(x) =m(y) =0,

00 otherwise.

Clearly F satisfies conditions (a) — (c¢) from Assumption 2.3, but (d) fails to hold. The
constraint m(x) = m(y) on neighbouring x,y € X forces everym : 7 — Rf‘ with
Ag(m) < oo to be constant in space (and hence in time, by mass preservation). Therefore,
the I'-limit of the A, is finite only on constant measures g = o.2?*!, with @ € Ry. On
the other hand, we have? that Jhom(p, j) = %, which corresponds to the W5 action on the
line.

It is interesting to note that if the constraint “m(x) = m(y)” is replaced by a weaker one
of the form “|m(x) — m(y)| < §” for some 6 > 0, then all the assumptions are satisfied
and our theorem can be applied. Intuitively speaking, the constraint which forces admissible
curves to be constant is replaced by a constraint that merely forces admissible curves to be
Lipschitz; in this case the limit coincides with the W, action.

See also Sect.9.2 for a general treatment of the cell formula on the integer lattice X = 7.

5.2 Scaling limits of Wasserstein transport problems

For 1 < p < oo, recall that the energy density associated to the Wasserstein metric W, on

RY is given by f(p, j) = l‘){f, . This function satisfies the scaling relations f(ip, Aj) =

Af(p, j)and f(p,Aj) = IAlP f(p, j) fork € R.

In discrete approximations of W, on a periodic graph (&, &), it is reasonable to assume
analogous scaling relations for the function F, namely F(Am,AJ) = AF(m,J) and
F(m,\J) = |A|P F(m, J). The next result shows that if such scaling relations are imposed,
we always obtain convergence to W, with respect to some norm on RY. This norm does not
have to be Hilbertian (even in the case p = 2) and is characterised by the cell problem (4.6).

Corollary 5.3 Let 1 < p < oo, and suppose that F has the following scaling properties for
m e ]Rf and j € RE:

(i) F(Am,AJ) = AF(@m, J) forall » > 0;
(it) Fm,AJ) = |AMPF(m, J) forall » € R.

Then fhom(p, Jj) = l“){,—ll’;for some norm || - || on RY.

Proof Fix p > 0and j € RY. The scaling assumptions imply that

Jrom(ko, 2j) = A fhom (P, j) and  fhom(p, AJ) = A" fhom (P, ). (5.3)

3 See also Sect.9.2.
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Consequently,

fhom(la ])

Jhom (0, J) = pfhom(L, j/p) = 1
o

We claim that fhom(1, j) > O whenever j # 0. Indeed, it follows from (4.7) that
Jhom(1, j) > O whenever |j| is sufficiently large. By homogeneity (5.3), the same holds
for every j # 0. It also follows from (5.3) that fyom (1, 0) = 0.

We can thus define ||j|| := fhom(1, j)l/P € [0, 00). In view of the previous comments,
we have ||0]] = O and ||j|| > O forall j € R \ {0}. The homogeneity (5.3) implies that
IAjll = Al 1j]l for j € RY and A € R.

It remains to show the triangle inequality || j1 + j2ll < |lj1ll + |l j21l for ji, jo € RY.
Without loss of generality we assume that || ji|| + || j2|| > 0. For A € (0, 1), the convexity of
Jfhom (see Lemma 4.8) and the homogeneity (5.3) yield
foom (Lt 4 2) = (1= 2 foom (1. 725 + 2 foom (1.

2 _ Jhom (1, j1) Jhom (1, j2)
7) B G

Substitution of A = TRl yields the triangle inequality.

5.3 Compactness results

As we frequently need to compare measures with unequal mass in this paper, it is natural
to work with the the Kantorovich—Rubinstein norm. This metric is closely related to the
transport distance W; see “Appendix 1.

The following compactness result holds for solutions to the continuity equation with
bounded action. As usual, we use the notation p(dx, df) = u,(dx) dr.

Theorem 5.4 (Compactness under linear growth) Letm® : T — ng be such that

supAEI(ms) <oo and supm®(Z x X) < oo.
e>0 >0
Then there exists a curve (jiy)re7 € BVkr (Z; M+(Td)) such that, up to extracting a subse-
quence,
(i) tzm® — p weakly in M4 (I x T%);
(ii) tem; — u; weakly in M+(Td)f0r almost every t € I;
(iii) t — (Td) is constant.

The proof of this result is given in Sect. 6.
Under a superlinear growth condition on the cost function F, the following stronger
compactness result holds.

Assumption 5.5 (Superlinear growth) We say that F is of superlinear growth if there exists

a function 6 : [0, c0) — [0, o0) with lim;_, o @ = oo and a constant C € R such that
Jo
F(m,J) = (mo+ 1)0 —C(mp+ 1) (54
mo + 1
forall m € Rf andall J € Rf, where
mo= Y m@x) and Jo= Y Il (5.5)
iy <R (ryee?
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with R = max{Rp, R} as in Assumption 2.3.

Remark 5.6 The superlinear growth condition (5.4) implies the linear growth condition (2.1).
To see this, suppose that F has superlinear growth. Let vo > 0 be such that 6(v) > v for

Jo
v > . If o T > vp, we have

J
F(m,J) > (mo + 1)9< 0
mo +

1) —C@mo+1)>Jp—C(mo+1). (5.6)
On the other hand, if # < v, the nonnegativity of 6 implies that

C
F(m,J)>—-C(my+1) > —Jy—2C(mg + 1). (5.7)
vo
Combining (5.6) and (5.7), we have

C
F(m,J)Zmin{ }JO—ZC(mO—i-l),

1, —
Vo

which is of the desired form (2.1).

Example 5.7 The edge-based costs

1
Fon,Jy=5 37 1@yl

(x.y)ec?

have superlinear growth if and only if 1 < p < oo (with 6(t) = ct” and ¢ = |EC|1-P),
Indeed,
p

J, Jo
2F(m, J) = Ja, P >cJl >c—90 _ — 1o )
" <;gg| itz el = g e — el D <m0+1>
X,y)€

Example 5.8 The functions (2.3) arising in discretisation of p-Wasserstein distances have
superlinear growth if and only if p > 1 (with 6(¢) = 7).

To see this, consider the function G(w, B, y) = %#A;,,
increasing in (o, ), and positively one-homogeneous, we obtain

Fm, J)y= Y G(quymx), guum(y), J(x,y))

Since G is convex, non

(x,y)e€?
=G| Y qom@), Y gum(), Y, 1)
(x,y)eE? (x,y)eE? (x,y)e€?
c JP c Jo
> cG(mo,mo, Jo) > - —— 20— = = 16 ,
= ¢G(mo, mo, Jo) = 2 Gmo & Dp-1 5 mo + 1) (mo—i—l)

where ¢ > 0 depends on R, the maximum degree and the weights g, .

Theorem 5.9 (Compactness under superlinear growth) Suppose that Assumption 5.5 holds.
Letm?® : 7 — Rf‘g be such that

supAgI(ma) <00 and supm®(T x X;) < oo.
>0 >0

Then there exists a curve ([t)ieT € W&ﬁ Z, M+('I[‘d)) such that, up to extracting a subse-
quence,
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(i) tem® — p weakly in M (Z x T4y,
(ii) |tem? — ,Ll,t||KR(Td) — O uniformly fort € 1I;
(iii) t — /L,(Td) is constant.

This is proven in Sect.6.2. B
Note that curve t — u; € W]é’Rl Z; M+(Td)) can be continuously extended to Z. There-
fore, it is meaningful to assign boundary values to these curves.

5.4 Result with boundary conditions

Under Assumption 5.5, we are able to obtain the following result on the convergence of
dynamical optimal transport problems. Fix Z = (a, b) C R an open interval. Define for
mé, mb e Rf" with m?(X,) = m?(X,) the minimal action as

MAL(m®, mb) := inf {Af(m) g =m® my = mb)}. (5.8)

Similarly, define the minimal homogenised action for u¢, ub e M+(']I‘d) with ¢ (T% =
b d
w”(T?) as
AT (1, 1) = inf | A1) + 10 = 1, 1y = )} (5.9
Note that in general, both MAfom and M.Ag may be infinite even if the two measures have
equal mass. Here, the values u, and p; are well-defined under Assumption 5.5 by Theorem
5.9. Under linear growth, u, and pp can still be defined using the trace theorem in BV, but
we cannot prove the following statement in that case (see also Remark 6.2). We prove this
in Sect.6.3.

Theorem 5.10 (T"-convergence of the minimal actions) Assume that Assumption 5.5 holds.
Then the minimal actions MAEI I"-converge to MAfom in the weak topology of M 4 (T%) x
M (T). Precisely:

(i) For any sequences mg, m’a’ € ng such that Lgmé — ! weakly in M+(']Td) ase — 0
fori = a, b, we have
lim ingAZ(mg ,m?y > MAL | (u®, u1?). (5.10)
E—>
(ii) Forany (u“, Mb) € M+(']I‘d) X M+(Td), there exist two sequences m¢, mlg’ € ng such
that Lgmé — u! weakly in M+(Td) ase — Ofori =a,band

lim sup MAZ(m4, mb) < MAL  (u?, ub). (5.11)

hom
e—0

6 Proof of compactness and convergence of minimal actions

This section is divided into three sub-parts: in the first one, we prove the general compactness
result Theorem 5.4, which is valid under the linear growth assumption 2.3.

In the second and third part, we assume the stronger superlinear growth condition 5.5
and prove the improved compactness result Theorem 5.9 and the convergence results for the
problems with boundary data, i.e. Theorem 5.10.
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6.1 Compactness under linear growth
The only assumption here is the linear growth condition 2.3.

Proof of Theorem 5.4 For ¢ > 0, letm® : 7 — Rf‘“‘ be a curve such that

sup.ASI(ms) <oo and supm®(Z x X;) < oo. (6.1)

>0 e>0

We can find a solution to the discrete continuity equation (m®, J¢) € CS{ , such that

sup AgI(mg, J?) < oc.
e>0
Set (uf, vy) := (tem;, 1 Jf), where i, is defined in (4.10). Lemma 4.9 implies that (u°, v®) €
CE? for every & > 0.
Using Lemma 4.10, the growth condition (2.1), and the bounds (6.1) on the masses and
the action, we infer that

sup |v¥](Z x Td)§ sups/ > 1 y)lde < oo (6.2)

>0 e>0 (y)€Es

Up to extraction of a subsequence, the Banach—Alaoglu Theorem yields existence of a mea-
sure ¥ € M4T x T9) such that v* — ¥ weakly in M (Z x T¢). It also follows that
P|(Z x T) < liminfe_ |v¢|(Z x T¢) < o00; see, e.g., [8, Theorem 8.4.7].

Furthermore, (6.1) and (6.2) imply that the BV-seminorms of u* are bounded:

SUP [|6° [y, (2t miy) < SUP V1T x TY) < o0, (6.3)
>0 e>0

In particular, sup, . o u°(Z x T?) < 0o. Thus, by another application of the Banach—Alaoglu
Theorem, there exists a measure g € M+(T X ']I‘d) and a subsequence (not relabeled) such
that u* — p weakly in M (Z x T9).

We claim that g does not charge the boundary (Z7\7) x T and that p(dx, dr) = u,(dx) dr
for a curve (i4;);e7 of constant total mass in time. To prove the claim, write e (¢, x) := ¢, and
note that each curve t > uf is of constant mass. Therefore, the time-marginals (ej)#pu® €
M (Z) are constant multiples of the Lebesgue measure. Since these measures are weakly-
convergent to the time-marginal (e1)#u, it follows that the latter is also a constant multiple
of the Lebesgue measure, which implies the claim. See also the proof of Lemma 3.13 for a
similar discussion.

By what we just proved, s can be identified with a measure on the open set M (Z x T¢).
Let v be the restriction of  to Z x T¢. Since pu® (resp. v¥) converges vaguely to u (resp. v),
it follows that (u, v) belongs to CEZ.

In view of (6.3), we can apply the BV-compactness theorem (see, e.g., [34, Theorem
B.5.10]) to obtain a further subsequence such that ||pf — u; ”KR(’]I‘d) — 0 for almost every

t € 7, and the limiting curve p belongs to BVkr(Z; M+(Td)). Proposition A.5 yields
u; — u; weakly in M+(Td) for almost every ¢ € 7. O

6.2 Uniform compactness under superlinear growth

In the last two sections, we shall work with the stronger growth condition from Assumption
5.5.
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Remark 6.1 (Property of fhom, superlinear case) Let us first observe that under Assumption
5.5, one has superlinear growth of fhom:

lJ]

Shom (0, J) = 9<m

Jo+D=Clo+1), Vp=0, jer,

where we recall 6 : [0, o0) — [0, 00) is such that lim;_, @ = +o00.
In addition for all j # 0 we have

(S
Jrom (0. ) = 1im — fhom (00, jo +1j) = lim = o0. (6.4)
t—00 t t—00 t

In particular, if Al (r, v) < oo, then v <« p + £4t1 Indeed, fix 0 € M (T x T%) as

hom

in (3.5) and suppose that (u + L4t (A) = 0 for some A C T x . By positivity of the
measures, this implies that p(A) = L4t (A) = 0, thus by construction

pt(A)=0 and v(A) =v(A).

From the first condition and pu+ = pLo, we deduce that p* (¢, x) = 0 for o-a.e. (¢, x) € A.
From the assumption of finite energy and (6.4), writing v = j~o, weinferthat j~(r,x) =0
for o-a.e. (1, x) € A as well. It follows that v(A) = v1(A) = 0, which proves the claim.

We are ready to prove Theorem 5.9.

Proof of Theorem 5.4 (Proof of Theorem 5.9) Let {m®}, be a sequence of measures such that

M :=supm®*T x X;)+1<oo and A := supAf(mg) < 0. (6.5)
& &

Thanks to Remark 6.1, we have that v < p + .2t for all solutions (u, v) € CE? with
Agom (r) < oo. Applying Lemma 3.13 we can write g = df ® u; and because £4+! =
dr ® 29, we also have disintegration v = dt ® v; with v, < s + 24 for almost every
tel.

Moreover, it follows from the definition of CEZ that, for any test function ¢ €
Cg (Z; C1(T?)) we have

d\)[

42V >dt.

(. ) = (v, V9 = | |

This shows that dr ® u; € Wé‘Rl (T; M+(']I‘d)), with weak derivative

d\)[

_ +2%) € KR(TY) forae.t eT.
G0 s g e+ 2D) KR

o =V (

We are left with showing uniform convergence of t,m; — p; in KR(’JI‘d). We claim that
the curves {t — .m; }, are equicontinuous with respect to the Kantorovich—Rubinstein norm

Il ”KR('JI‘d)'
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To show the claimed equicontinuity, take ¢ € c! (Td) and s,t € Z with s < t. Since
(tem?f, 1. Jf) € CE? we obtain using Lemma 4.10,

t
‘/ wd(tsmf)—/ @ d(tems3) =‘/ / Vo - d@Jf)dr
¢ ¢ s J1d

t
1Vl / e JE1(T) dr 66)

R()«/g 4
> ||V¢||C(Td)/ > elJf e yldr,

5oy)es

IA

IA

To estimate the latter integral, we consider for z € Zf the quantities

mi) = > mi(x) and J@:= Y [J@ )l

xeXe (x,y)e&
|XZ_Z|[d <R Xz=2
o0

We fix a “velocity threshold” vy > 0, and split Zf into the low velocity region Z_ = {z €
f m?t)(i)ld < v} and its complement Z = Zf \ Z_. Then:
Do ek@ <vo Y (mi@) + ) < Cr(my(Xe) + 1)wo, (6.7)
z€Z_ z€Z_

where Cg := 2R + 1)?.Forz € Z we use the growth condition (5.4) to estimate

el (2) v
e)i(z) < (Mi(z) + e¥)o( ——2— ) sup ——
r@ < (@) +ef) (mi(z)+8d)v>g)9(v)
< <J mé(z) v
<ed(p( M T c(™r | v
=¢ < gd 7 gd—1 + ( ed + ) USBE) 0(v)

Since (5.4) implies non-negativity of the term in brackets, we obtain
. d iim tiJ mé(z) v
ZeJr(z)fX:s(F(gd,sd_l +C( o +1) Usllgom
ely zeT (6.8)

< Fe(ml, J) + C(mi(X.) + 1) sup )
V>0 0(v)

Integrating in time, we combine (6.7) and (6.8) with (6.5) to obtain

t t
[ X e =[ ¥ et@ar =g -.

Foyeg: " zezd

(6.9)

where g(r) := inf {rCrMuy+ (A +CM + |I|)) sup —— V.
vo>0 v>1) 0(v)

Combining (6.6) and (6.9) we conclude that

/d(pd(%mf) _/i(l)d(lsmf)
T T

sup [|temf — tpmé ”KR(T") <sup sup

>0 e>0 el (rd)=<1
Rovd
< Ozf gt —s).
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To prove the claimed equicontinuity, it suffices to show that g(r) — 0 as r — 0. But this
follows from the growth properties of # by picking, e.g., vo := r~1/2.

Of course the masses are uniformly bounded in € and 7. The Arzela-Ascoli theorem implies
that every subsequence has a subsequence converging uniformly in (M+(’]I‘d), Il - ||KR). m}

6.3 The boundary value problems under superlinear growth

The last part of this section is devoted to the proof of the convergence of the minimal actions,
under the assumption of superlinear growth, i.e. Theorem 5.10. The proof is a straightforward
consequence of the stronger compactness result Theorem 5.9 (and the general convergence
result Theorem 5.1) proved in the previous section, which ensures the stability of the boundary
conditions as well. We fix Z = (a, b).

Proof of Theorem 5.10 We shall prove the upper and the lower bound.
Liminfinequality. Pick any tem;, — %, tzmj — w? weakly in M (T9), and let (m¢, J¢) €
CEL with the same boundary data such that

lim AZ(m®, J*) = lim MAZ(m¢, m$) < oo.
e—0 e—0

By Theorem 5.9, there exists a (non-relabeled) subsequence of m* such that [|cem; —pu, [|lkr —
0, uniformly for ¢ € Z. In particular, u, = pu, up = ub . We can then apply the lower bound
of Theorem 5.1, and conclude

hom hom

MAfom (1, 1) < Ao (1) < Tim inf MAZ(mg,, mj).

Limsup inequality. Fix u, ub € M+(Td) such that MAfom (u?, ub) < 00. By the definition
of MAZ o and the lower semicontinuity of Apom (Lemma 3.14), there exists p € M (Zx ’]I’d)
with Afon () = MAL L (19, 1b) and pg = p, iy = pl.

We can then apply Theorem 5.1 and find a recovery sequence (m®, J¢) € CEZ such that
tem® — pu weakly and

lim sup ALme, J°) < AL () = MAL (u?, u?).
£—>

By the improved compactness result Theorem 5.9, t,m; — u; in KR(T?) for everyt € I,

in particular for ¢ = a, b. This allows us to conclude
lim sup MAZ(mé, m§) < MAL, (u®, %), and  mé — ' weakly

hom
e—0

for i = a, b, which is the sought recovery sequence for MAfom (u?, /ﬂ’).

Remark 6.2 1tis instructive to see that under the simple linear growth condition 2.3, the above
written proof cannot be carried out. Indeed, by the lack of compactness in W1 (Z; M (T%))
(but rather only in BV by Theorem 5.4), we are not able to ensure stability at the level of the
initial data, i.e. in general, ;t, # ©“ (and similarly for ¢ = b).

7 Proof of the lower bound

In this section we present the proof of the lower bound in our main result, Theorem 5.1. The
proof relies on two key ingredients. The first one is a partial regularisation result for discrete

@ Springer



Homogenisation of dynamical optimal transport on periodic... Page350f75 143

measures of bounded action, which is stated in Proposition 7.1 and proved in Sect. 7.1 below.
The second ingredient is a lower bound of the energy under partial regularity conditions on
the involved measures (Proposition 7.4). The proof of the lower bound in Theorem 5.1, which
combines both ingredients, is given right before Sect.7.1.

First we state the regularisation result. Recall the Kantorovich—Rubinstein norm || - |gkr
(see “Appendix 17).

Proposition 7.1 (Discrete Regularisation) Fix ¢ < ﬁ and let (m,J) € CSZ be a solution
to the discrete continuity equation satisfying

M :=mo(X,) <oo and A:=ALm,J) < oo,

Then, for any n > O there exists an interval I C T := (0, T) with |I\Z"| < n and a solution
(m,J) e 05{7 such that:

(i) the following approximation properties hold:
(measure approximation) e (m — m)”KR(ﬁXTd) <n, (7.1a)
(action approximation) A? m,J) < Af(m, J) +n. (7.1b)

(ii) the following regularity properties hold, uniformly for any t € " and any 7 € Tf:

(boundedness) ”ﬁ, ”ZOO(Xg) + SH]V,HZOO(&) < Cpé?, (7.2a)

(time-reg.) | div 7| ooy < Cre, (7.2b)

(space-reg.) HGEZ%, - ’%f”ew(xg) + 8”0‘52.7; — .ZHZOO&S& < Cslzle®!,  (7.20)

(domain reg.) <r§;n,’ tfj;]i) e K. (7.2d)
ed g

The constants Cp, Ct, Cs < 00 and the compact set K C D(F)° depend on n, M and
A, but not on ¢.

Remark 7.2 The £°*°-bounds in (7.2a) are explicitly stated for the sake of clarity, although
they are implied by the compactness of the set K in (7.2d).
Since (m, J) € CS?, inequality (7.2b) in effect bounds ”8,%, ”ZOQ(X y = Cred.

In the next result, we start by showing how to construct Z?-periodic solutions to the static
continuity equation by superposition of unit fluxes. Additionally, we can build these solutions
with vanishing effective flux and ensure good £°°-bounds.

Lemma 7.3 [Periodic solutions to the divergence equation] Letg : X — Rbea z° -periodic
function with )" 10 g(x) = 0. There exists a Zd-periodic discrete vector field J : £ - R

satisfying

div/ =g, Eff())=0, and |7, e, < 5lgl, 0
Iil:oof F(g any v, w € V, fix a simple path P*" in (X, £) connecting (0, v) and (0, w). Let
Jyw := Jpvw be the associated periodic unit flux defined in (4.3). Since D .y £(0,v) =0,

we can pick a coupling I' between the negative part and the positive part of g. More precisely,
we may pick a function " : V x V — R, with ) v, w)= %||g||el(XQ) such that

v,weV

Z yw =g-(0,v) forveV, and Z Fyw =g+0,w) forwe V.

weV veV
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We then define
J = Z Cyw -7vw~
v,weV
It is straightforward to verify using Lemma 4.5 that J has the three desired properties.
The following result states the desired relation between the functionals F, and Fpom

under suitable regularity conditions for the measures involved. These regularity conditions
are consistent with the regularity properties obtained in Proposition 7.1.

Proposition 7.4 (Energy lower bound for regular measures) Let Cp, Ct,Cs < o0 and let
K C D(F)° be a compact set. There exists a threshold ey > 0 and a constant C < 0o such
that the following implication holds for any ¢ < go: if m € Rf’ and J € Rf” satisfy the
regularity properties (7.2a)—(7.2d), then we have the energy bound

Fhom(tem, teJ) < Fe(m, J) + Ce.

Proof Recall from (4.11) that t;m = p.#% and 1,J = j.i”d, where, for 7 € Zg andu € Qg,

1
pay=e~! Y mx) and j@) = Y Juln ) (3 - %),

)CE.)C:_g (x,y)€&
Xz=Z Xz=2

where J, (x, y) is a convex combination of {J(T7x, T7y) }zezf’ ie.,

Ju(x,y) = Z )‘iﬁz(x’ y)J(Ter* Tezy)’

d
7€Z4

where 157 (x, y) > 0, > ezd Mit(x, y) = 1,and A% (x, y) = 0 whenever |z| > Ry.

Step 1. Construction of a representative. Fix 7 € Zf and u € QZ. Our first goal is to
construct a representative

i Ju .
(’j—d F) € Rep (p(w), j(w)).

For this purpose we define candidates m, € ]Rf and J, € Rg as follows. We take the values
of m and J, in the e-cube at z, and insert these values at every cube in (X, £), so that the
result is Zd—periodic. In formulae:

iy (z, v) = m(ez, v) for (z,v) € X
T(@n. @) = d(EE . e+ =) for (@), @) e,

see Fig.5.
We emphasise that the right-hand side does not depend on z, hence m, and J, are Z9-
periodic. Our construction also ensures that

e Y ) = pw),
xeXx?

hence e 47, € Rep (p (u)) . However, the vector field e~ (¢~ .7,; does (in general) not belong

to Rep (j(u)): indeed, while J,, has the desired effective flux (i.e., Eff (6 =@~V J,) = j(u)),
Jy, is not (in general) divergence-free.
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Fig. 5 On the left, using different colors for different values, the measures m and J,. On the right, the
corresponding 771, and J,, for u € QZ (color figure online)

To remedy this issue, we introduce a corrector field Jyu, i.e., an anti-symmetric and 74
periodic function J,, : £ — R satisfying

divJ, = —div], Eff(J)=0 and [JL]meo, < 5ldVIi],ia0)  (73)

The existence of such a vector field is guaranteed by Lemma 7.3. It immediately follows that
Ty = J, + J, satisfies div J, = 0 and Eff (=~ D7, ) = j(u), thus

Jo_ Jut .
od 1= a1 cRep (i)

Step 2. Density comparison. We will now use the regularity assumptions (7.2a)-(7.2d) to
show that the representative (in,,, J,,) is not too different from the shifted density (zzm, tzJ).
Indeed, for x = (z, v) € A with |z| < R; we obtain using (7.2¢),

[Tim(x) — i, ()| = |m(e(Z + 2), v) — m(eZ, v)| < CsedH|z). (7.4)

Let us now turn to the momentum field. For (x, y) = ((z. v), (z/, v)) € Ewith |z], /] <
R1, we have, using (7.2¢),

2270, ) = Tulx, )|
- ‘J((S(Z +2,0), (G +2),0)) = (2 0). (G +2 = 2), v’)))

= ’ >, y){J((s(Z +2),v), (G +2), v/)>

zezd
(G +D0). (G +T+ — 2, v’))H
< C58d|z = R1C58d.

Moreover, using (7.3), (7.2c), and (7.2b), we obtain

[, )1 < 31 div Tl a0y < cr(u div J e, + ed) <ce?,
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for some C < 0o not depending on . Combining these bounds we obtain
T2, y) = Tue W S 15T y) = TG )L+ [ ) = Cee (75)

z b4
im 1]

- ﬁ> € K by assumption, it follows from
£ £

Step 3. Energy comparison. Since (

iy
*gd—1
set, possibly slightly larger than K, contained in D(F)°.

Since F is convex, it is Lipschitz continuous on compact subsets in the interior of its
domain. In particular, it is Lipschitz continuous on K’. Therefore, there exists a constant
C1 < oo depending on F and K’ such that

5 (S))

(7.4) and (7.5) that (m—; ) € K’ for ¢ > 0 sufficiently small. Here K is a compact
&

w2 — T,
ed—1

Z o~
Tim —my

ed

tim TiJ I
Fl =2, == )>F 2, 22 ) —-C ‘
< od 8d—1> = <€d ed—1 L
iy
> F( = -c
= <8d 8d—1> €
> fhom (0 (), j(w)) — Ce,

with C < oo depending on Cy, Cs, Cr, and R, but not on . Here, the subscript R; in
K%‘i (&) and Z%‘: (&) indicates that only elements with |x;| < R are considered.

i
5

Integration over QF followed by summation over z € Z¢ yields

Fem, )= f(’f;", ;,fl) =Y /Q (rom (o). @) = Ce) du

zezd zezd

= /]Td fhom(ﬂ(“), ](”)) du — Ce = Fhom (tem, te J) — Ce,
which is the desired result.

We are now ready to give the proof of the lower bound in our main result, Theorem 5.1.
We use the notation A < B to denote the inequality A < C B for some constant C < oo that
only depends on the geometry of the graph (X, £), on the function F (see Assumption 2.3),
and on the length of the time interval 7.

Proof of Theorem 5.1 (lower bound) Let p € M (Z x 11“’) and let (mf),ez € Rf‘ be such
that the induced measures m® € M+(I X Xa) defined by dm® (¢, x) = dm? (x) dt satisfy
1em® — p vaguely in M (Z x T¢) as ¢ — 0. Observe that

M :=supm®(Z x X,) < oc.

e>0

Without loss of generality, we may assume that

A :=sup A, (m®) < oo.

>0

Step 1 (Regularisation): Fix n > 0. Let (J/)ier C ]R(‘;:‘E be an approximately optimal
discrete vector field, i.e.,

m®,J%) e CE% and A, (m®,J°) < A, (m®) + 1. (7.6)
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Using Proposition 7.1 we take aninterval Z" C Z := (0, T),|Z\Z"| < n and an approximating
. o~e FE I c o
pair (m®, J ) € C&;" satisfying

lee @8 — m) g zgpay <0 and AT @, T) < Acm®, I 40, (07

together with the regularity properties (7.2) for some constants Cp, Cr,Cs < 00 and a
compactset K € D(F)° depending on 1] but not on ¢. By virtue of these regularity properties,
we may apply Proposition 7.4 to (m?, J ). This yields

AL em®, T = /Z” Fhom (tei , 1 Jf) dt < /In Fe(@it, JF)dt + Ce, (1.8)
with C < oo depending on 7, but not on €.

Step 2 (Limit passage ¢ — 0): It follows by definition of the Kantorovich—Rubinstein
norm that

sup t,m® (Zﬁ77 X ']I‘d) < sup (LSmS(Z X ']I‘d) + e (m® — m5)||KR(ﬁde))
& &
<M+n.

It follows from the growth condition (2.1) and (7.7) that

sup‘t,jﬂ(ﬁ X ']I‘d) < sup/ EH‘ZEHZ'(&) dr
& & e

< su 14 ||mé + Fe(m ,J )
~ EP/ﬂ( l t||el(X5) e (m t ) (7.9)

IA

sup <T + Lgﬁs(I” X ’]Fd) + A? (m?®, 76)>
&

IA

T+ M+n)+(A+2n).

Therefore, there exist measures JTRS M (ﬁ X Td) andv, € ./\/ld(ﬁ X Td) and convergent
subsequences satisfying

tem® — , and L — v, weakly in M (T" x T¢) and M4 (T" x T?) as & — 0.
(7.10)

The vague lower semicontinuity of the limiting functional (see Lemma 3.14), combined with
(7.6), (7.7), and (7.8) thus yields

AL (s ,7)<11m1anh0m(cs ngs)fligrlj(r)lfAs(mg)-i-Zn. (7.11)

Step 3 (Limit passage n — 0): Let ¢ € Lipl(Zi77 X 'H‘d), lellc < 1. For brevity, write
(9. ) = [n,pa ¢ dp. Since from (7.10) t,m® — p and (;m® — p,, weakly, and ||co (m° —
ms)”KR(ﬁXTd) < n we obtain

(@, my — p) < lim s(l),lp (|(<p my = L£ﬁ5)| + |(¢; e (m® _mS))| + |(¢; Lem® — ﬂ)|)
e—
<0+4+n+0.
It follows that ||k, — [L||KR(17,XT,1) < 2n, which together with |[Z\Z"7| < 5 implies "y —>

p € My (T x T?) vaguely as n — 0.

@ Springer



143 Page 40 of 75 P. Gladbach et al.

Furthermore, (7.9) implies that sup, |v’7 | (I” X ']I‘d) < o0. Therefore, we may extract a

subsequence so that v, — v vaguely in ./\/ld(I X ']I‘d) as n — 0. It thus follows from (7.11)
and the joint vague-lower semicontinuity of Apomy (see Lemma 3.14) that

Apom (s, v) < lim 1(r)1f A (m®).
e—
To conclude the desired estimate Apom () < liminf,_, o A, (m?®), it remains to show that

(., v) solves the continuity equation. To show this, we first note that (1.m°®, 15.78) e CE”
in view of Lemma 4.9. It then follows from the weak convergence in (7.10) that (i,, v;) €

CE”". Since R~y — R, vy — v vaguely, and |Z — 77| < nitholds (u,v) € CEZ, which
completes the proof.

7.1 Proof of the discrete regularisation result

This section is devoted to the proof of main discrete regularisation result, Proposition 7.1.

The regularised approximations are constructed by a three-fold regularisation: in time,
space, and energy. Let us now describe the relevant operators. Recall the definition of m°
and J° as given in Assumption 2.3.

7.1.1 Energy regularisation
First we embed m° and J° into the graph (X;, & ). We thus define m? € Rf and J? € Rfﬁ
by
mg(ez,v) 1= £4m°(0, v) Jo(ez,v) == 471 7°(0, v).
It follows that (mg, J7) € D(F;)° (by continuity of 7, z € Z‘g) and
Fe(m, J2) = F(@m°, J°).

We then consider the energy regularisation operators defined by

Rs : RY — R, Rym := (1 — 8)m + sm?,

Rs : R& — RZ, RsJ == (1—8)J +8J0.

Lemma 7.5 (Energy regularisation) Let § € (0, 1). The following inequalities hold for any
£ < ﬁ, m e ng, and J € Rgg:

Fe(Rsm, RsJ) < (1 = 8)Fe(m, J) + 8Fc(mg, J?),
IRsmlle ) < (1= 8)llmllee,) + 86 lm e,
IRs T e,y < (1= 81 llewe,) + 867 1T eoe)-
Proof The proof is straightforward consequence of the convexity of F and the periodicity of
m° and J°.
7.1.2 Space regularisation

Our space regularisation is a convolution in the z-variable with the discretised heat kernel. It is
of crucial importance that the regularisation is performed in the z-variable only. Smoothness
in the v-variable is not expected.
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For A > Oand x € T¢, let h; (x) be the heat kernel on T¢. We consider the discrete version

Hf:2 >R, Hi([z]) ::/ By (x) dx,
0i

where the integration ranges over the cube Q% := ez +[0, £)¢ C T¢. Using the boundedness
and Lipschitz properties of /5, we infer that for z € Zf,

inif Hf = C)Lgdy ”I_I}:E ”Z"O(Zd) =< C)Lgda (7.12)
7 ¢
1H llg1 g0y = 1. | HS -+ €2) = HY || oo gty < Cae™ 'zl (7.13)

for some non-negative constant C; < oo depending only on A > 0. We then define

S : Rf — ng, S,m = Z H; (z)olm,
zezd

S, : R — RS, SiJ =Y Hf (o],
ze2d

where o/ is defined in (2.5).
Lemma 7.6 (Regularisation in space) Let A > 0. There exist constants c;, > 0 and C) < o0
such that the following estimates hold, for any & < 2170, m € Rf, J e M4E), andz € Zg:

(i) Energy bound: F¢(Sym, Sy J) < Fe(m, J).
(ii) Gain of integrability:

1 Samlleex,) < Cx8d||m||zl(xg) and ||SyJ |leee,) < CA8d||J||zl(gg)-

(iii) Density lower bound: inf S;m(x) > c;\sdllmH@(X).
xeX
(iv) Spatial regularisation:
|ZSim = Sim oo ) < Crezllmlgr ) and
”‘L'SZS)LJ — S,\

1
I geoiey < Cre™ Mzl N1 e,

Proof Using the convexity of F and the identity ) H; (z) = 1 we obtain

rZS;Lm ‘L'ZS)\J
Fe(Spm, i)=Y adF< ~ ;di_l)

zezZd

+z7/ z+7'
dyre .[62 m Tg J
PIDIT Hk(z)F( ed  gd—1 )

d d
7€ 7€l

> (Y HG —z’))de(’f;", ;fl) = F(M.J),

——
€Ly 7€l

IA

where in the last equality we used (7.13). This shows (i). Properties (ii), (iii), and (iv) are
straightforward consequence of the uniform bounds (7.12), (7.13) for the discrete kernels
Hé‘

i
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7.1.3 Time regularisation

Fix an interval Z = (a, b) C R and a regularisation parameter t > 0. For (m, J) € Cé'f, we
define fort € 7; ;== (a+t,b — 1)

141 1+T
(Tym), := ][ my ds, (T: J); ::][ J, ds.
-7 -7

Note that, thanks to the linearity of the continuity equation we get (Tom, T J) € C££If.
We have the following regularisation properties for the operator 7.

Lemma 7.7 (Regularisation in time) Let T € (0,2 25%). The following estimates hold for all
e < m and all Borel curvesm = (m;)e7 < ]R+ andJ = (Ji)tez M (&e):

(i) Energy estimate: for some 0 < C < oo depending only on (2.1) we have
AL (Tom, T ) < Ag(m, J) + Ct(m(Z x X,) + 1).

(ii) Mass estimate: sup ||(Tem)¢ller(x,) < SUP lmeller (x,)-
tel,

(iii) Momentum estimate: sup || (Tt J)¢|ler(x,) < f/||J,||gp(;(€)dt

tel;

1
(iv) Time regularity: sup H 8,(Trm)t||“,(x) < - sup lmsller,)-
tel;

Proof Set w-(s) := (2r)~! |[(s —7)Vva,(s+1)A b]‘ for s € Z. Then we have

1+t
Agr(Trm’TrJ) EA ][ Fe(myg, Js)det:/Iw(s)}—e(msv Js)ds, (7.14)
L Ji—t

as a consequence of Jensen’s inequality and Fubini’s theorem. Using that 0 < w, < 1,
J7(I — w(s)) ds = 27, and the growth condition (2.1) we infer

/(1 — we () Fe(mg, J)ds = —Ct(m(Z x X;) + 1),
A

which together with (7.14) shows (i).

Properties (ii), (iii) follow directly from the convexity of the £,,-norms and the subaddi-
tivity of the integral.

Finally, (iv) follows from the direct computation o, (Tym); = 21—1(m,+f — My_z).

7.1.4 Effects of the three regularisations

We start with a lemma that shows that the effect of the three regularising operators is small
if the parameters are small.
Recall the definition of the Kantorovich-Rubinstein norm as given in “Appendix 1”.

Lemma 7.8 (Bounds in KR-norm) Let T C R an interval and (m;);c7 C ng be a Borel
measurable curve of constant total mass (i.e., t — m,(X;) is constant), and letm € M (T x
X;) be the associated measure on space-time defined by m := dt ® m;. Then there exists a
constant C < 0o depending on || such that:

(i) NlteTem — tem|gg 7, pay < CT sup |mel 1, for any T < 1Z1/2.
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(ii) llteSm — Lem”KR(jXTd) =< C\/Xf':g ”mt ||41(X8)f0r any A > 0.

(iii) |lte Rsm — tem|| g 7,y < C8(m°(XQ) sup ||mt||g1(Xg))for any 8 € (0, 1).

Proof (i): Forany u € M(Z x ’]I‘d) and any Lipschitz function ¢ : T; X T > R (and, in
fact, for any temporally Lipschitz function) we have

/7 @, x)dp(r, x) — /7 @1, x) d(Trpu)(2, x)
T, xT9 d

I, xT

< tleluipn(Z x T9).

t+1
/ ][ o(s,x) —@(t,x)dsdu(t, x)
ide t—1

Since (.m (I X Td) < |Z| sup;c7 Hm, ’ o) We obtain the result.
. . €
(ii): In view of mass-preservation, we have

llte Sum — tem g 7oy < /I HLSSAm, — lgm[”KR(Td) dr
=< ?lelg me (Xe) ; HLSH)L —teHy H KR(T4) dr

<CV/Asupm;(X,).
el

Here in the last inequality we used scaling law of the heat kernel.
(iii): Letus write mg := dr ® m; for brevity. By linearity, we have

llte (Rsm _m)”KR(fx'IFd) = 8”[8('”: _m)”KR(fx’]I‘d)
<5(1 + |I|)(mg(zx T) + m (T x Tg’))

= SITI(1 + 17D (m® (X9) + supm, (X,)).
tel

Proof of Proposition 7.1 We define
i i= (R0 S0 )m and Ji=(Ryo0S,0Tc)J.

We will show that the desired inequalities hold if §, A, T > 0 are chosen to be sufficiently
small, depending on the desired accuracy n > 0. Set Z; := (7, T — 7).
(i): We use the shorthand notation KR; := KR(Z; x T ). Using Lemma 7.8 we obtain

lltem — temllxr, < lltem — teTemllkRr, + llte Tem — 1o (S To)m||xR,
+ llee ($.Tr)m — 1o (Rs S). T )m||kR, (7.15)
<Mt + VA +8) +m°(X9)s.
Furthermore, using Lemma 7.5, Lemma 7.6(i), and Lemma 7.7(i) we obtain the action bound
AL @1, T) = & ((Rs 0 S5 0 Tom, (Ry 0 Sy, 0 T0)J )
<(1- 5),48((& o To)m, (Sy o TT)J) ST Fo(mS, I9) (7.16)
<(1—=8)A:m,J)+3TFm°, J°)+ Ct(M +1).

The desired inequalities (7.1) follow by choosing §, A, and 7 sufficiently small.
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(i7): We will show that all the estimates hold with constants depending on 7 through the
parameters §, A, and t.

Boundedness: We apply Lemma 7.5, Lemma 7.6(ii), and Lemma 7.7(ii)&(iii) and obtain
the uniform bounds on the mass

sup |7 [le=x,) < € ((I—S)Cx SUP IImzllzl(XF)Jr(Sllm ||l°°(2()>

tel; tel0 (7 ]7)
ed(cAM + 8||m°||ewg)>
as well as the uniform bounds on the momentum
~ a—1f{1—38 o
sup [[Jrller,) < € Cr osup [ ellJellgra,y df + 811 e, )
tel, T tel0, 71/ (7.18)

e
< o 1< (T + M) +E) +510° ||eoo(gg)>

Time-regularity: From Lemma 7.7(iv), together with Lemma 7.5 and Lemma 7.6(ii), we
obtain the uniform bound on the time derivative

~ 1-6
sup |13t [l () < & (2 Cy sup “mt”ﬂ()(g) + 8llm®|leoe () )
tel, T t€l0,T
(7.19)

Cy o
< g (27M +8||lm ||ZOC(XQ)>.
Space-regularity: For z, 7' € Zf and v € V, Lemma 7.6(iv) and Lemma 7.7(ii) yield
i1 (2, v) — (2, 0)] < (1= 8)|(Sx 0 Te)me(z, v) — (S 0 Ty )my (2, v)|

< Gz = ||| Tom|

d+1
<Gtz -7 t:{g?ﬂ ||mt “zl(Xs)’

which shows that

~ ~ d+1 d+1
sup oz, — fislle () < Cre® 'z Sgp Il 1y = Cre®*Hizim. (7.20)
tel; el

Similarly, using the growth condition (2.1) we deduce

Cy
sup o2 J; — Jillessqe,) < —8"+‘| I / 5]l g1, ds
= (7.21)

C
< %adm(m + M)+ E)
Domain-regularity: For all t € 7, reasoning as in (7.17) and (7.18), we observe that

87d||(SATrm)t||£°°(XS) < Cull(Tem)illgra,y < Coo sup lmyllgrey < M
tel0,T]

_ C; Cy
STl = CulTamlloey = 2 [ 1l dr = 2 (Ta +M)+E).
A

We infer that

ng (8. Trm);
ed

e ($1Te )
gd—1

c
<C.M and < —’\<T(1 + M)+ E)
T

£99(%)

(6
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Since

o T2\ T2 (S Tem), TE(S,TcJ), o o
<ST’ gd—l - (1 _8) 8d ) Sd—l +8(m 7‘] )a

the claim follows by an application of Lemma C.1 to the product of balls in £°°(X) and
£%° (&), taking into account that F is defined on a finite-dimensional subspace by the locality
assumption.

8 Proof of the upper bound

In this section we present the proof of the I"-limsup inequality in Theorem 5.1. The first step
is to introduce the notion of optimal microstructures.

8.1 The optimal discrete microstructures

Let Z be an open interval in R. We will make use of the following canonical discretisation
of measures and vector fields on the cartesian grid Z¢.

Definition 8.1 (Z¢-discretisation of measures) Let 1 € M (T¢) and v € M9 (T?) have
continuous densities p and j, respectively, with respect to the Lebesgue measure. Their
74 -discretisations Pzt : Z¢ — Ry and Pov : Z¢ — R? are defined by

Peri(2) == j(Q3), Pev(z) = </d

z+e;

0iNdQ;
An important feature of this discretisation is the preservation of the continuity equation,
in the following sense.

Definition 8.2 (Continuity equation on Z‘;) Fix Z C R an open interval. We say that r :
Ix Zg — Ryandu : T x Z‘gl — R satisfy the continuity equation on Z‘!, and write
(r,u) e CESI 4 1fr is continuous, u is Borel measurable, and the following discrete continuity
equation is satisfied in the sense of distributions:

d
o)+ Y () —u(z —e)) - e; =0, forzeZl. 8.1)
i=1

Lemma 8.3 (Discrete continuity equation on Z? ) Let (u,v) € CE? have continuous densi-
ties with respect to the space-time Lebesgue measure on L X T. Then (P, i, P.v) e CE{ d

Proof This follows readily from the Gauss divergence theorem.

The key idea of the proof of the upper bound in Theorem 5.1 is to start from a (smooth)
solution to the continuous equation CEZ, and to consider the optimal discrete microstructure
of the mass and the flux in each cube Q%. The global candidate is then obtained by gluing
together the optimal microstructures cube by cube.

We start defining the gluing operator. Recall the operator Ta0 defined in (2.4).

Definition 8.4 (Gluing operator) Fix ¢ > 0. Foreach z € Z?, let

z X z &
m*e€RY and J® eR,
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be Zd-periodic. The gluings of m = (mz)zezg and J = (JZ)ZEzg are the functions Gom € Rffg
and G, J € ]ng defined by
Gem (T2 (x)) := m™2(x) forx € &,

1 (8.2)
GoJ (TO(x), TO(y)) = §<Jx1(x, y) + J(x, y)) for (x, y) € &.

Remark 8.5 (Well-posedness) Note that G.m and G.J are well-defined thanks to the Zf—
periodicity of the functions m* and J*.

Remark 8.6 (Mass preservation and KR-bounds) The gluing operation is locally mass-
preserving in the following sense. Let 1 € ./\/l+(’]1'd) and consider a family of measures
m=(m?), s C R satisfying m® € Rep (Pz/4(2)) for some z € Z¢. Then:
Gom (X, 1 x2 = 7)) = (0%
for every ¢ > 0. Consequently,
leeGem — pllggzerey < (T x T)Vde (8.3)

for all weakly continuous curves u = (i4;),.7 C M+(Td) and allm = (m})
that m? € Rep (Psj;(2)) forall # € Zand z € Z¢.

1€Z,zeZ¢ such

8.1.1 Energy estimates for Lipschitz microstructures

The next lemma shows that the energy of glued measures can be controlled under suitable
regularity assumptions.

Lemma 8.7 (Energy estimates under regularity) Fix ¢ > 0. For each z € Zg, let m* € Rf
and J* € Rf be Zd-periodic functions satisfying:
(i) (Lipschitz dependence): For all 7,7 € Z‘;
Z Z > d+1
|m* — mZ”ewm S PARS JZ”@OO(&) = Llz —z]e"".

(ii) (Domain regularity): There exists a compact and convex set K € D(F)° such that, for

all z € 72,
mZ JZ

Then there exists ey > 0 depending only on K, F such that for ¢ < &g
m* Jt
Fe(Gem,Ged) < Y de<57, 5?1) +ce, (8.5)
zezd

where ¢ < oo depends only on L, the (finite) Lipschitz constant Lip(F'; K), and the locality
radius R;.

P d . d T A
Proof Fix z € Z7. As m is Z®-periodic, (i) yields for x = (z, v) € Xk,

[T2Gem(x) — m*(x)| = |m*T%(x) — m*(x)| < LRye™, (8.6)
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Similarly, using the Zd-periodicity of J, (i) yields for (x, y) € Ewithx = (z, v) € X, and
y=(Z,7) € &g,

173G d (6, ) = Fir, )| = | (3775 4+ 305 = P o) < LRt 87)

Hence the domain regularity assumption (i7) imply a domain regularity property for the

glued measures, namely
(rfgjm’ r§f£11> c®
e gd=

forall 7 € Z‘j and e < gp := %dist(K, d D(F)) € (0, 400), where Ke D(F)° is a slightly
bigger compact set than K.

Consequently, we can use the Lipschitzianity of F' on the compact set K and its locality
to estimate the energy as

F rszgsm rgggj _F E J?
J od " gd—1
~ (ITiGem — m*||pox, I172Ged — I leooce
SLip(F;K)( o= = M) | T 7e = (R‘)>,

where Xp :={x e X |X|L’§c <R}and &g :={(x,y) €& leego, |y|zgo < R}.
Combining the estimate above with (8.6) and (8.7), we conclude that

t2Gem TiGeJ J/ENE S
‘F< Sd B 8d_] - F 87,8(17_1 §2LR1Llp(F, K)S

for ¢ < g9. Summation over 7 € Zg yields the desired estimate (8.5).

We now introduce the notion of optimal microstructure associated with a pair of measures
(u,v) € M+(']I‘d) X Md(']l‘d). First, let us define regular measures.

Definition 8.8 (Regular measures) We say that (u, v) € M+(’H‘d) X Md(Td) is a regular
pair of measures if the following properties hold:

(1) (Lipschitz regularity): With respect to the Lebesgue measure on T?, the measures x and
v have Lipschitz continuous densities p and j respectively.
(ii) (Compact inclusion): There exists a compact set K € D( fhom)° such that

(p(x), j(x)) € K forallx e T¢.

We say that (uy, v;)rer € M+(']1'd) x M4 (T?) is a regular curve of measures if (u;, v;) are
regular measures for every ¢ € Zand ¢ — (p;(x), j;(x)) is measurable for every x € .

Definition 8.9 (Optimal microstructure) Let (u, v) € M+(Td) x M4(T9) be a regular pair
of measures.

(1) We say that (m*, JZ)Zeztg - Rf X ]Rf is an admissible microstructure for (u, v) if

Pe P.
(mz’ JZ) c Rep( :Ld(Z) ’ 8;_(?))

d
for every z € Zg.
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(i1) If, additionally, (m*, J*) € Rep, (%, %) for every z € Z‘;, we say that

(m*, JZ)zerj is an optimal microstructure for (u, v).

Remark 8.10 (Measurable dependence) If # — (i, v;) is a measurable curve in M+('I[‘d ) X
M4(T?), it is possible to select a collection of admissible (resp. optimal) microstructures
that depend measurably on ¢. This follows from Lemma 4.7; see e.g. [38, Theorem 14.37].
In the sequel, we will always work with measurable selections.

The next proposition shows that each optimal microstructures associated with a regular
pair of measures (i, v) has discrete energy which can be controlled by the homogenised
continuous energy Fhom (i, v).

Proposition 8.11 (Energy bound for optimal microstructures) Let (m*, J%)__7a C ]Rf X Rg

be an optimal microstructure for a regular pair of measures (ju, v) € M+(']I‘d) x M(T9).
Then:

m*  J?
Z el F <87, gdi—l> < Fhom (i, v) + Ce,
zezd

where C < oo depends only on Lip( fhom; E) and the modulus of continuity of the densities
p and j of u and v.

Proof Let us denote the densities of 1 and v by p and j respectively. Using the regularity of
p and v, and the fact that fpon, is Lipschitz on K, we obtain

s Pou(z) P |
S elr (Z% 87_,) _ Zdedfhom< v, 8;_(?) < /w From(p1(@), ji(@)) da + Cé,
Z€Z

d
€l

which is the desired estimate.

Remark 8.12 (Lack of regularity) Suppose that m := G.m and J = G.J are constructed
by gluing the optimal microstructure (m, J) = (m*, J%)__za from the previous lemma. It is
then tempting to seek for an estimate of the form

~ N d m* J*
Fe(m, J) < %8 F<€7, P + {small error}.
zeZ¢

However, (m, J) does not have the required a priori regularity estimates to obtain such a
bound. Moreover, the gluing procedure does not necessarily produce solutions to the discrete
continuity equation if we start with solutions to the continuous continuity equation.

We conclude the subsection with the following L! and L™ estimates.

Lemma8.13 (L! and L™ estimates) Let (j;, v¢)rer C M+(Td) x M4(T?) be a regular
curve of measures satisfying

M :=sup (T < 0o and A:= Al _(u,v) < oo. (8.8)
tel

Let (m?, J,Z)ZeZd - M+(']I‘d) X ./\/ld('JTd) be corresponding optimal microstructures. Then:
(i) (Peu,Peov) satisfies the uniform estimate
sup sup ||Pg 1¢¢ ”Kl(Zﬁ) =M. (8.9)

e>01eZ
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(i) (my, J;)ie7 satisfies the uniform estimate

sup sup Y mi(x) <M (8.10)
e>0 (t,x)eIxX ezd

sup sup e/ YO Fx|d SA+ M. (8.11)
e>0 (x,y)e€ Z‘l

Proof The first claim follows since ||Pg |1 @dy = Hi (']I'd) by construction.
To prove (ii), note that

S Y miw = Y Pen(@) = u (T4,
zeZ8 xex? zezd

which yields (8.10).
To prove (8.11), we use the growth condition on F, the periodicity of J7, and (i) to obtain
for (x,y) e Eandt € T:

SZMZ(X»Y) Z Z ‘J(x )’)} dF<’:7£78;’i1)+M

zeZ‘gl zeZd *x, y)eSQ zeZ
d dj
/ fhom( o l)dx—i—M,
x X

where in the last inequality we applied Proposition 8.11. Integrating in time and taking the
supremum in space and ¢ > 0, we obtain (8.11).

8.2 Approximation result

The goal of this subsection is to show that despite the issues outlined in Remark 8.12, we
can find a solution to Cé'f with almost optimal energy that is || - |[gkr-close to a glued optimal
microstructure.

In the following result, Z, = (a — n, b + n) denotes the n-extension of the open interval
Z=(a,b)forn > 0.

Proposition 8.14 (Approximation of optimal microstructures) Let (., v) € CE" be a reg-
ular curve of measures sastisfying

M= uo(T) < oo and A:=AY (u,v) < oo.

hom

Let (m;, J}) zd S Rf X Rg be a measurable family of optimal microstructures asso-

tel,ze
ciated to (s, vi)rez and consider their gluing (my, Z),EI - ng X Rgf. Then, for every
n > 0, there exists g > 0 such that the following holds for all 0 < & < g¢: there exists a
solution (m*, J*) € Cé’SI satisfying the bounds

(measure approximation) |t (m — m*)IIKR(jXTd) <7, (8.12a)

(action approximation) .AI(m J*) < Ahom (m,v) +1n +Ce, (8.12b)

where C < 00 depends on M, A, |Z|, and v/, but not on «.
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Remark 8.15 1t is also true that
ALm*, J*) < AL@m, T) +n' + Ce,

but this information is not “useful”, as we do not expect to be able to control ASI (m, 7) in
terms of Afom (m, v); see also Remark 8.12.

The proof consists of four steps: the first one is to consider optimal microstructures asso-
ciated with (u, v) on every scale ¢ > 0 and glue them together to obtain a discrete curve
(m*, J*) (we omit the e-dependence for simplicity). The second step is the space-time reg-
ularisation of such measures in the same spirit as done in the proof of Proposition 7.1.
Subsequently, we aim at finding suitable correctors in order to obtain a solution to the con-
tinuity equation and thus a discrete competitor (in the definition of A, ). Finally, the energy
estimates conclude the proof of Proposition 8.14.

Let us first discuss the third step, i.e. how to find small correctors for (m*, J*) in order
to obtain discrete solutions to CESI which are close to the first ones. Suppose for a moment
that (m*, J*) are "regular"”, as in the outcome of Proposition 7.1. Then the idea is to consider
how far they are from solving the continuity equation, i.e. to study the error in the continuity
equation

gr(x) == dm(x) +divJi(x), xe€ X,
and find suitable (small) correctors .7 to J* in such a way that (m™*, J* + .7) € CE{ .
This is based on the next result, which is obtained on the same spirit of Lemma 7.3

in a non-periodic setting. In this case, we are able to ensure good £°°-bounds and support
properties.

Lemma 8.16 (Bounds for the divergence equation) Let g : X, — R with er)(g gx)=0.
There exists a vector field J : £ — R such that

div/i =g and [l < 318l ) (8.13)
Moreover, supp V C conv supp g + B¢, with C depending only on X.

Proof Let g be the positive part of g, and let g_ be the negative part. By assumption, these
functions have the same £!-norm N := | g_ ety = 18+l ca,)- Let I' be an arbitrary
coupling between the discrete probability measures g_ /N and g4 /N.

For any x, y € supp g: take an arbitrary path Py, connecting these two points. Let J, y be
the unit flux field constructed in Definition 4.4. Then the vector field J := ) oy L'(x, y)Jxy
has the desired properties. O

Remark 8.17 (Measurability) It is clear from the previous proof that one can choose the
vector field J : & — R in such a way that the function g — J is a measurable map.

The plan is to apply Lemma 8.16 to a suitable localisation of g;, in each cube QZ, for
every z € Z;’. Precisely, the goal is to find g,(z; -) for every z € Zf such that

Doa@o =g, Y &lzx) =0, (8.14)

z€ Z? xeXe
which is small on the right scale, meaning

Supp g (2: -) C Boo(2, Re),  Ilgi(z: Voo < Ce?. (8.15)
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Remark 8.18 Note that erxg g:(x) = 0 for all ¢ € Z, since m* has constant mass in time
and J* is skew-symmetric. However, an application of Lemma 8.16 without localisation
would not ensure a uniform bound on the corrector field, as we are not able to control the
¢'-norm of g, a priori.

Remark 8.19 A seemingly natural attempt would be to define g;(z; x) = g/(x)1(;)(xz).
However, this choice is not of zero-mass, due to the flow of mass across the boundary of the
cubes.

Recall that we use the notation (r, u) € CEf 4 to denote solutions to the continuity equation

on Zg in the sense of Definition 8.2. We shall later apply Lemma 8.22 to the pair (r,u) =
P, Pev) € CEEI_d, thanks to Lemma 8.3.

The notion of shortest path in the next definition refers to the £-distance on fo .

Definition 8.20 For all 7/, z” € Z¢, we choose simultaneously a shortest path p(z/, z”) =
(20, - -, zn) of nearest neighbors in Z¢ connecting zo = z’ to zy = z” such that p(z’ +
7,7 +72) = p(,7")+Zforall7 € ZZ. Then define for z, 7/, 7" € Z‘: andi =1,...,dthe

signs af;z/’z” e {-1,0,1} as

—1 if (zx_1, zx) = (z, z — ¢;) for some k within p(z’, z),
BT 1 if (zx—1, zx) = (z — e;, z) for some k within p(z’, z”),
0  otherwise.

Note that since the paths p(z’, z”) are simple, each pair of nearest neighbours appears at

I
22,2

most once in any order, so that o; is well-defined.
It follows readily from Definition 8.20 that
Y ot =" =) e (8.16)
zeZ4
forallz/,z” € Z¢ andi = 1,...,d.

Remark 8.21 A canonical choice of the paths p(z’, z”) is to interpolate first between z| € z}!
andz € 7! one step at a time, then between 75 and z)), and so on. The precise choice of path is
irrelevant to our analysis as long as paths are short and satisfy p(z'+7Z, z/+72) = p(z/, 2/)+7Z.
Since the paths are invariant under translations, so are the signs, i.e.

-~ 3
O,iZ,Z +z,2"+2 — O,iZ ;2,2 (817)

forallz,7,7.7" € Z‘;, which is used in the prof of Lemma 8.22 below.

Lemma 8.22 shows that if we start from a solution to the continuity equation (u, v) €
CE? and consider an admissible microstructure (m,J) = (m}, Jf)t T zezd associated to
e s

(P, P.v), then it is possible to localise the error in the continuity equation arising from the
gluing (G:M, G.U) as in (8.14).

Lemma 8.22 (Localisation of the error to Cc‘,’f) Let (r,u) € CESZJ and suppose that m; :=
(mf)zezg - Rf and J; 1= (Jrz)zez‘g’ C Rf satisfy

(m}, J7) € Rep (r/(2), us(2))
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foreveryt € Tand z € Zg. Consider their gluings m, = Gem, and Z = G J; and define,
forz € Zg and x € X,

g (x) == iy (x) + div J; (x), (8.18)

d
_ 1 rena [ -
81(z ) 1= 3y (1 () + 5 D o7 = (T y) = Tie —eixy). (8.19)

y~x =1

where J,(z; +) : & — Risthe ']I“g—periodicmap satisfyingf,(z; Teo(x’), Tgo(y’)) =Jr ', y)
Sforall (x',y") € E Then the following statements hold for every t € I:

(i) g:(z; x) is a localisation of the error g;(x) of (i, .7)from solving CSZ, ie.,

Z 81(z;x) = gi(x) forallx € X,.

zezd

(ii) Each localised error g;(z; -) has zero mass, i.e.,

Z g(z;x) =0 forallz € Zg_

xeX;

Proof (i): For (x,y) € &, consider the path p(xz, y,) = (zo,...,zn) constructed in
Definition 8.20. For all ¢ € 7 we have

d
S Yo (T ) - Tie — ersx.)
zEZg i=1
N

= (Z(Zk; X, y) = Ji(i1; x, y)) = Ti(yzs %, y) = T (xz x, y).
k=1

Summation over all neighbours of x € X yields, for all t € Z,

d
X a0 =m0+ 1 X 5 Do (e - Tie i)

zeZ¢ Y Lezd i=1
1 ~ ~
=m0+ 5 3 (T2 %9 = Tz v, )
1 ~ ~
= oy () + 3 ; (T2 2, 3) + Ttz 2, 1)) = ),

where we used the Z?-periodicity of (X, ) and the vanishing divergence of Jz.
(ii): Fixz € Zg and ¢ € 7. Using the periodicity of J;(z; -), the identity (8.17), the group
structure of Zg, the relation between J and J, the fact that J* € Rep (u ¢ (z)), and the identity
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(8.16), we obtain

d
Z ZO_iZ;XZq)’Z (Z(Z’ X, y) - Z(Z —€j; X, y))

(x,y)e& i=1

d
— Z Z ZO_iZ:XZ+z,yz+z (-};(Z; x,y) — Z(Z — e x, y))

(x,)€E zezd i=I
Xz=2

d s ~ ~
= >, 2200 (@ y) — i —einx.y)

(x,y)€& 774 i=1
Xz=2 ¢

d ~
= Z Z(Z(z;x,y)—f,(z—ei;x,y)) Zo,iz;xz,yz

(v eg. i=1 zerd
s
d
= > D (FE =)0 =) e
,yHeg? i=1

d
=2 (w(@) —w(z—e))-ei.
i=1

By definition of g;(z; -) we obtain

S an= Y amw iy T o (Fen - i)

xeXe ))cceic'g i=1 (x,y)e&
=

d
=0+ Y (@)~ —e)) e =0,

i=1
where we used that m; € Rep (r;(z)) and eventually that (r, u) € CEgd.

Now we are ready to prove Proposition 8.14.

Proof of Proposition 8.14 The proof consists of four steps. For simplicity: 7 := T,,.
Step 1: Regularisation. Recall the operators Rs, Sy, and T; as defined in Sect.7.1. We define

m* = (R(; oSy o0 Tt)ﬁ and J = (Ra oSy o0 T1>7s

where §, 1 > 0,0 < t < 75 will be chosen sufficiently small, depending on the desired
accuracy n’ > 0. Due to special linear structure of the gluing operator G, it is clear that

m*=Gim and J =G.J,

for some (ﬁ J ) = ms, JY) 1e7.ze7d - More precisely, they correspond to the regularised ver-

sion of the measures (m;, J;), .7 ..z« Withrespect to the graph structure of Z‘EI . In particular,
’ &
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an application4 of Lemma 8.13, Lemma 7.6, and Lemma 7.7 yields

—. — 7. 7 d+1
?uII) ”szrZ - m’HZOO(Z‘ng) + ‘9” JI+Z —Ji ||[°°(Z§><S) < Clzle + )
c B ., (8.20)
sup ”afmt“zwzdxx) = Ce%,
tel ¢
forany z € Z‘g, as well as the domain regularity
prd J_Z
[(m—; d’_1> :zezg‘,reZ]cK@(DF)", (8.21)
ed ¢

for a constant C and a compact set K depending only on M, A, §, A, and 7. We can then
apply Lemma 8.7 and deduce that for every ¢t € Z, ¢ < gg (depending on K and F),

T d ﬁf J_ tZ
* *
fa(ml,Jt)S ZS F(?’F>+C87 (822)
zezd

for a c € Rt depending on the same set of parameters (via C and Lip(F; K)) and R;.
Step 2: Construction of a solution to CE?. From now on, the constant C appearing in the
estimates might change line by line, but it always depends on the same set of parameters as
the constant C in Step 1, and possibly on the size of the time interval |Z]. B

The next step is to find a quantitative small corrector V in such a way that (m*, J 4+ V) e
CEL. To do so, we observe that by construction we have for every ¢ € 7

(5. 77 ) € Rep (17 @), uf (@),
where (r*,u*) € CEf’ 4 (by the linearity of equation (8.1)). Consider the corresponding error
functions, for (x,y) € &,t €7,z € Zg given by (8.18) and (8.19),
gi(x) 1= 9ym7 (x) + div J (x),

d
1 . ~ ~
8 (z;x) := dymy (X) 1 =) (x) + 3 > > ol (J(zix,y) = Tz — eiix,y)),

y~x i=1
where J(z; ) : & — Risthe T¢-periodic map satisfying J(z; To(x"), T2 (V) = JF (x', ¥,
for any (x’, y') € £. Thanks to Lemma 8.22, we know that
Y os@n =0, Y &@ix)=gk). VredX, el

xelXe ezd

Moreover, from the regularity estimates (8.20) and the local finiteness of the graph (X, &),
we infer for every z € Zg

I8¢ (z: Mgy < Ce? suppgi(z:) € {x € Xe ¢ lxz — 2l pmogzey < €L (8.23)
where C’ only depends on (X, £). Hence, as an application of Lemma 8.16, we deduce the
existence of corrector vector fields V; € RZ(SI xEs such that

divVi(z ) =g(z), suppVi(z) C{(x,y) €& & Iz = 2llgoezey < C'),

1 . (8.24)
1Ve(zs leoe) < 5185 Mpra,y < Cet,

4 To be precise, this is an application of these lemmas to the case of V := {v}, thus A ~ Zg.
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foreveryt € 7, z € Zg. The existence of a measurable (int € Zand z € Z?) map V;(z; -)
follows from the measurability of g;(z; -) and Remark 8.17.
We then define V : 7 — ]ng and J* : 7 — Rgg as

V.= Z V), J =T +V,

d
z€Z

and obtain a solution to the discrete continuity equation (m*, J*) € CEZ‘

Step 3: Energy estimates. The locality property (8.24) of V;(z; -) and local finiteness of the
graph (X, &) allow us to deduce the same uniform estimates on the global corrector as well.
Indeed for every t € Z, x € X, we have

Vi)=Y V@ay, BelnC)i=lreZd - el =€)
ZEBoo(Xz:,a/)

and hence from the estimate (8.24) we also deduce ||V g (zxe,) < Cel.
im* TiJF ) b
Since (8.21) implies that ( 57:11’ . tl ) € K, it then follows that (tg’?’ . ’1 ) e K’
£ gd— £ gd=
for 0 < & < gg sufficiently small, where &y depends on K and C. Here K’ is a compact set,
possibly slightly larger than K, contained in D(F)°.

Therefore, we can estimate the energy

sup sup

im* tiJ* om* ttJ* . 1
F< —t, 2_’1> - F( =, S )| < Lip(F; K —— IV lle=zxé,) < Cé,
1€7 zezd I € £ £ e

and hence AZ(m*, J*) < AZ(m*, J") + Ce. Together with (8.22), this yields
red 72
T my J
.A m J / EZd (?7 )dt-l-CS

Finally, to control the action of the regularised microstructures (m, J), we take advantage
(as in (7.16)) of Lemma 7.5, Lemma 7.6 (i), and Lemma 7.7 (i) to obtain’

/Z ( dl)dK/]{fzeZg ( Z)dvdr+8|I|F(m 7°)

s/f Fhom (ts. vs) ds df + 8|Z)F(m®, J°) + c'e
IZJt—1

s/ﬁmﬂmm»w+MﬂFw%J%+d@+ﬂ,
A

for a ¢’ < oo, where at last we used Proposition 8.11 and that fop, is Lipschitz on K.

For every given n’ > 0, the action bound (8.12b) then follows choosing 7, § > 0 small
enough.
Step 4: Measures comparison. We have seen in (7.15) that Lemma 7.8 implies

leem™ — el qo0.77x78) S M (T + VA +8) +m°(X2)8,

where we also used that mass preservation of the gluing operator, see Remark 8.6. For every
n’ > 0, the distance bound (8.12a) can be then obtained choosing 7, A, § sufficiently small.

5 As before, it’s an application of these lemmas on Zg (corresponding to V = {v}).

@ Springer



143  Page 56 of 75 P. Gladbach et al.

8.3 Proof of the upper bound

This subsection is devoted to the proof of the limsup inequality in Theorem 5.1. First we
formulate the existence of a recovery sequence in the smooth case.

Proposition 8.23 (Existence of a recovery sequence, smooth case) Fix T = (a,b), a < b,
n >0, and set L, == (a —n,b+n). Let (u,v) € CE™ be a solution to the continuity
equation with smooth densities (pr, ji)iez, and such that

Bplnv) <00 and [ (p@). i) @0 €T, x T} € D(from)®. (325

- ]RX‘9 such that 1;m® — p|z, wa weakly in

Then there exists a sequence of curves (m;), .7 C

M4yZ x T ase — 0and

lim sup AZ(m®) < AL (. v) + C|T)(1o(T) + 1), (8.26)

e—0

Sfor some C < o0.

Proof We write KR7 := KR(Z x T¢). Let (m,v) € CE” be smooth curves of measures
satisfying the assumptions (8.25). Let (m, 7) be the gluing of a measurable family of optimal
microstructure associated with (u, v), for every ¢ > 0. For every n’ > 0, Proposition 8.14
yields the existence of (m”/, J”/) IS CE{, a constant C,y, and g9 = &o(n’) depending on 7’
such that

lee@m” —m)lkry <1y Acm”, J") < Apom(r, ) + 7' + £C,y,

for every ¢ < gg.
Using Remark 8.6, in particular (8.3), and that (m”/, J 77/) € CS?, we infer

lie@m™) — plikry < 7'+ 1@ x THe?,  Acm") < Anom(, v) + 1 + £C,y.

for every & < gg. Therefore, we can find a diagonal sequence ' = n'(¢) — 0 as & — 0 such
that, if we set m® := m" ©), we obtain

lim llee m®) — pllkr; =0,

lim sup AL (m®) < Al (n,v) < hom(ﬂ, v) 4+ Cn|Z|(o(T) + 1),

e—0

where at last we used the growth condition (3.2). O

In order to apply Proposition 8.23 for the existence of the recovery sequence in Theorem
5.1 we prove that the set of solutions to the continuity equation (3.4) with smooth densities
are dense-in-energy for Afom.

Definition 8.24 (Affine change of variable in time) Fix Z = (a, b). For any n > 0, we
consider the unique bijective increasing affine map S” : Z — (a — 25, b + 2n). For every
interval 7 C 7 and every vector-valued measure & € M"(I x T4 ), n € N, we define the
changed-variable measure

IZ] 4 4n

S"[E]l e MM(S"D) x TY),  S"[E] = 7

(87.id),é&. (8.27)
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Remark 8.25 (Properties of S”) The scaling factor of S"[£] is chosen so that if § < P+l
then S"[£] < £4*! and we have for (7, x) € $7(Z) x T¢ the equality of densities

dS"[§] dg
Qi+t Y = g

Moreover, if (i, v) € CEZ then ('I‘l%l“"s"[p,], S"[v]) € CES"D.

(SN0, x). (8.28)

We are ready to state and prove the last result of this section.

Proposition 8.26 (Smooth approximation of finite action solutions to CE?) FixT := (a, b)
and fix (u,v) € CEZ with Apom (i, v) < 00. Then there exists a sequence {ni}x C RT such
that ng — 0 as k — 0o and measures (p*, vk) € CEX for I := (a — ng, b + ng) so that
ask — oo

(kv > (w, v) weakly in M+(I X Td) X ./\/ld(I X ']I‘d), (8.29)
du” C¥ (T x T¢ dv C(Ty x T4 R?
Tzart €0 (T x 1), o € G (T x ). (8.30)

and such that the following action bound holds true:
tim sup A, (1, V) = Ao (1. ). (831)
k—

Moreover; for any given k € N we have the inclusion

duk dvk
[(Flzﬂ(t,x), W‘;H(t,x)) ((t,x) eIy x Td} € (D fhom)®- (8.32)

Proof Without loss of generality we can assume fhom > 0, if not we simply consider
g, j) = fhom(p, j) + Cp + C for C € Ry as in Lemma 3.14. For simplicity, we also
assume 7 := (0, T'), the extension to a generic interval is straightforward.

Fix (u, v) € CET with Apom (i, v) < 00.
Step 1: regularisation. The first step is to regularise in time and space. To do so, we consider
two sequences of smooth mollifiers (p’l‘ R —> Ry, <p’2‘ : T¢ — R for k € N of integral 1,
where supp (pll‘ = [—ak, ak], supp g0]2‘ = Bkl (0) ¢ T¢ with ay — 0 as k — oo to be suitably

chosen. We then set ¢* : R x T¢ — R as (1, x) 1= ¢]f(t)¢§(x).
We define space-time regular solutions to the continuity equation as
(I,;luk’?fk) = Qﬂk % ([.l,, V) e (C]E(ak’T_ak),
~ T+4 N ~
@t 3 o= (S, ) € CER

where Ik = Sk ((ak, T — (xk)) Note that the mollified measures are defined only We choose

Qg : T+4,, ,sothat Zy = (—ng, T + nk).
Finally, for (p°, j°) as given in (4.8), we define

(kb = (1 = s @mu® 5% + 8c(p°, j0) 2T e CER, (8.33)

for some suitable choice of 5y, & — 0.

Step 2: Properties of the regularised measures. First of all, we observe that (u*, v¥) « £4+!
with smooth densities for every k € N, so that (8.30) is satisfied. Secondly, the convergence
(8.29) easily follows by the properties of the mollifiers and the fact that 7 — id uniformly
in (0, T)asn — 0.
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Moreover, we note that for # > 0, using that u, ('JI‘d) is constant on (0, 7') one gets

dpik
sup | =] < [1#5lloor((0, T) x T) =: Gk < +ov,
e, T—ap) | dx lloo (8.34)
| < | = 1t vl ) x 1) < o

and thanks to (8.28) an analogous uniform estimate holds true for (';Zk,i?k) too. We

can then apply Lemma C.1 and find convex compact sets Ky C (D fhom)® such that
dpk dv*

[( L (-))} C K, so that (8.32) follows.

d.pd+1 7 dpd+l
Additionally, pick 6 > 0 such that B® := B((p°, j°),0) C (D fhom)°. From (8.28), if

one sets S; := S"*, we see that

dpt o dgt dEt oy & o
(S gt @0 = (1 =80 goamr ) S 020 + 8B ). %)
(8.35)
for t € 7; and x € T¢, where the functions pF are given by
~ — 8k dpk
k ._ o
Py (x) :=p° + 5 20k d$d+1(Sk L), x).
We choose §; such that 88 > 2nx Cy and from (8.34) we get that
(Pr(x),j°) e B, VieT;, xeT? keN. (8.36)

For example we can pick n; := (4kCp)~ ! and 68y = k1, both going to zero when
k — +o0.
Step 3: action estimation. As the next step we show that

A(ak T— ak)(l'zk ~k) < A}{om(”” v), VkeN. (8.37)

hom

One can prove (8.37) using e.g. the fact [10] that for every interval Z the action Afom is
the relaxation of the functional

/ A dp dv
(’,v) = { JzxTd hom \ g pd+ 1 g pdt1

+00, otherwise,

) dzd it (u,v) « g4t

for which (8.37) follows from the convexity and nonnegativity of fiom and the properties of
the mollifiers .

We shall then estimate the action of (u¥, v¥). From (8.35) and (8.36), using the convexity
of fhom and the definition of the map S”, we obtain

hom(”’ vk) — (1 + 2nk) 8k Sup Shom
d~ ""k
< (I —8) / fhom Yz (Sk (1), x),

T xT¢
< (1= 8 (1 + 4 AT Gk %) < (1 — §1) (1 + 4 AL (1, v),

o (5 0.0 .z
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where in the last inequality we used (8.37). Taking the limsup in k — oo
. 7
limsup Ay (uF, vF) < AL (1, v) (8.38)

k—+00

which concludes the proof of (8.31).
Now we are ready to prove the limsup inequality (5.2) in Theorem 5.1.

Proof of Theorem 5.1 (upper bound) Fix p € M. (Z x T¢). By definition of AL (n), it
suffices to prove that for every v € Md(I X Td) such that (u, v) € CET and Afom(u, V) <
+00, we can find m¢ : 7T — ]ng such that ;m® — p weakly in M4 (Z x T%) and
lim sup, AZ(m®) < AL (1, v).

For any such (s, v), we apply Proposition 8.26 and find a smooth sequence (u*, v¥);

CE™® where Z(k) = (—ni, T + ni), where n; — 0 and such that (8.31) and (8.32) hold
with (uk, v6) = (u, v) weakly in M (Z x Td) x MUT x Td) as k — 4-o0. In particular

sup sup pk (T9) = sup pb(T9) < 0. (8.39)
keN teZ keN

Hence we can apply Proposition 8.23 and find m&* € M (ITxT9)suchthati;m®* — puk
weakly in M (Z x T%) and for each k € N,

lim sup AL m®*) < Ayl (€, v*) + Cne| 71 (uf (1) + 1). (8.40)

e—0

We conclude by extracting a subsequence m® := m®*® such that (;m® — p weakly in
M (T x rJI‘d) as ¢ — 0 and from (8.39), (8.40), (8.31) we have

lim sup AZ(m®) < AL, (. v),

e—0

which concludes the proof.

9 Analysis of the cell problem

In the final section of this work, we discuss some properties of the limit functional Aygp, and
analyse examples where explicit computations can be performed. For p € R4 and j € RY,
recall that

Joom(p. j) :=inf {F(m, J) : (m,J) € Rep(p, j)},

where Rep(p, j) denotes the set of representatives of (p, j), i.e., all Z4-periodic functions
m € ]Rf and J € ]Rf satisfying

1
Z m(x) = p, Eff(J)= 3 Z Jx,)(yz—xz)=j, and divJ =0.
xex? (x,y)eSQ

9.1 Invariance under rescaling
We start with an invariance property of the cell-problem. Fix a Z¢-periodic graph (X, &) as

defined in Assumption 2.1. For fixed ¢ > O withe € %, we consider the rescaled Z¢-periodic
graph (X, £) obtained by zooming out by a factor é, so that each unit cube contains (é)d
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copies of X2. Slightly abusing notation, we will identify the corresponding set V with the
points in ']I‘g.

Let F be the analogue of F on (5(', :S"), and let ﬁ;om be the corresponding limit density. In
view of our convergence result, the cell-formula must be invariant under rescaling, namely
Jhom = ﬁom. We will verify this identity using a direct argument that crucially uses the
convexity of F.

One inequality follows from the natural inclusion of representatives

Rep(p) — £Rep(p). Rep(j) — £~ "Rep(,). ©.1)
which is obtained as m := 8‘1(r€0)’1(m) and J := sd’l(rb?)’l(l) for every (m, J) €

Rep(p, j). Here we note that the inverse of rso is well-defined on Zd—periodic maps. In
particular we have

oAy =Y mx)=p, Eff(J)=Eff(J), and F(@i. J)=F(m.J),
xeXx?@ xex?

which implies that fiom > fhom. B
The opposite inequality is where the convexity of F comes into play. Pick (m, J) €

Rep(p, j). A first attempt to define a couple in Rep(p, j) would be to consider the inverse
map of what we did in (9.1), but the resulting maps would not be Z?-periodic (but only %Zd-
periodic). What we can do is to consider a convex combination of such values. Precisely, we
define

257 27
m(x) ::edZ%d(x) and J(x,y) 1=8d2%i61y)

d d
2€Z; 4=Y/n

forall (x, y) € X2 The linearity of the constraints implies that (m, J) € Rep(p, j). More-
over, using the convexity of F' we obtain

tm tiJ ”im t%J ~ ~
F(m,J) = F| & At < fF( 22— = Y=F@m, ),
(m, J) ( ) ( G )) =Y (S e ) = Fa D

e z e

which in particular proves that fhom < From-

9.2 The simplest case: V = {v} and nearest-neighbor interaction.

The easiest example we can consider is the one where the set V consists of only one element
v € V. In other words, we focus on the case when X >~ 74 and thus Xy ~ Tg]. We then
consider the graph structure defined via the nearest-neighbor interaction, meaning that £
consists of the elements of (x, y) € 7% x 7¢ such that [x — yloo = L.

In this setting,XQ =~ V consists of only oneelementand €2 ~ {(v,v+e¢;) 1 i=1,...,d}
has cardinality 2d. In particular, for every p € R, and j € R?, the set Rep(p, j) consists of
only one element (m, J) given by

mix)=p, Jw,vte)==j, forall(x,y)e€ andi=1,...,d.

Consequently, the homogenised energy density is given by fhom (0, j) = F(m, J).
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In the special case where F is edge-based (see Remark 2.5) with edge-energies { F; } for
i=1,...,d, wehave

d
F(m,J) = Fi(m©),m(e;), J0, en)) + F_i(m(©0), m(—e;), J (0, —¢;)), and
i=1
d
Joom(p. ) =D Fi(p.p.ji) + F-i(p.p. —ji) forall peRy, jeR’
i=1
The even more special case of the discretised p-Wasserstein distance corresponds to

Fi(p1, p2, j) = W, where the mean A is a mean as in (2.3). We then obtain

Lilh
pp=t’

Jhom (0, j) =

for p € Ry and j € RY, which corresponds to the p-Wasserstein distance induced by the
£ p-distance | - |, on the underlying space T?. The case p = 2 corresponds to the framework
studied in [24].

As we will discuss in Sect. 9.4, this result can also be cast in the more general framework
of isotropic finite-volume partitions of T¢.

9.3 Embedded graphs

In this section, we shall use an equivalent geometric definition of the effective flux. We can
indeed formulate an interesting expression for fiom in the case where (X, £) is an embedded
74 -periodic graph in T¢, in the sense of Remark 2.2. We thus choose V' to be a subset of
[0, l)d and use the identification (z, v) = z+v, so that X' can be identified with a 74 -periodic
subset of R?.

Let us define

1
Effgeo (/) 1= 5 Z J(x, y)(y —x).

(x,y)ec?

Note that we simply replaced y;, —x; € Zby y —x € R¢ in the definition of Eff(.J). Remark-
ably, the following result shows that Eff (J) = Effgeo(J) for any periodic and divergence-free
vector field J. In particular, Effge,(J) does not depend on the choice of the embedding into
T, As a consequence, one can equivalently define Rep(j), and hence the homogenised
energy density fhom (0, j), in terms of Effge, (/) instead of Eff(J).

Proposition 9.1 Forevery periodic and divergence-free vector field J € Rg we have Eff(J) =
Eff geo (J).
geo

Proof Note first that any given point configuration can be transformed into any other configu-
ration by successively shifting each of the points. Therefore it suffices to show that Effge (/)
is invariant when perturbing the location of any single point.

Fix xo € X2. Fora positive (small enough) parameter t > 0 and a vector v € RY, consider
the modified embedded Zd-periodic graph (X(z), £(t)) in T¢ obtained from X by shifting
the nodes xq + Z¢ by tv € T, i.e., we consider the shifted node xq (t) := xo + tv instead of
xo (and with it, the associated edges). Fix a divergence-free and Zd—periodic discrete vector
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field J € Rg ~ Ri(’) and consider, for t > 0, the corresponding effective flux

1
Effoeo(t, J) := 3 Z J(x, y)(y — x).

(.)€ (1)
We claim that %Effgeo (t, J) = 0. Indeed, by construction we have

d
27—

o Effeeot, /) = = Yo JGo. v+ Y Y Jxxo+ 2

Y0 zez4 xex?
x~x0+z

J per.

= —divio+ Yy Y T =z x)v

ze74 xex?

X—2~~X0
= —div/(xo)v+ Y J& xo)v
x'~xq
= —divJ(xo)v + Z J(x0, x)v = —2div J (x0)v.

x'~xq

Since J is divergence-free, this proves the claim. In particular, t > Effge,(z, J) is constant,
hence the value of Effg, does not depend on the location of the embedded points. This also
implies the sought equality Eff (J) = Eff e, (), since Eff (J) corresponds to the limiting case
where all the elements of V “collapse” into a single point of [0, 1)¢.

9.4 Periodic finite-volume partitions

The next class of examples are the graph structures associated with Z¢-periodic finite-volume
partitions (FVPs) T of R?. We refer to [14] for a general treatment.

Definition 9.2 (Zd-periodic finite-volume partition) Consider a countable, locally finite, 74-
periodic family of points X € R together with a family of nonempty open bounded convex
polytopes K € RY for x € X, such that Kyi; =Ky +zforallx e Xand z € 74, We call

T:= {(x,Kx) : xeX}

a Zd-periodic finite-volume partition of RY if

(1) Urer Kx =R%
(2) Kx N Ky = wheneverx # y € &
(3) y—x L dK, N 3K, whenever #9130k, NIK,) > 0.

We define a graph structure on X’ by declaring those pairs (x, y) € X' x X with #¢~1(3K, N
0Ky) > 0 to be nearest neighbors.

It is not difficult to see that the graph (X, &) is connected, Z4-periodic, and locally finite,
even if x ¢ K. Throughout this section we use the following notation for x, y € X:

|Ky| = 29 (K,), dyy i= |y — x|,

— X
Sey = AV (0K, N 0Ky, Moy = 2 e
Xy
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In the finite-volume framework, we are interested in transport distances with a non-
linear mobility. These distances were introduced in [13] as natural generalisations of the
2-Wasserstein metric. We thus fix a concave upper-semicontinuous function m : R x R —
R4 and consider the energy density functional

12
| % ifm(p) > 0,
f(p,j)=q1+00 ifm(p)=0andj +#0, 9.2)

0 if m(p) =0and j = 0.

To discretise this energy density, we fix for every edge (x, y) € £ an admissible version
of m: Ry — Ry, ie., a nonnegative concave upper-semicontinuous function my, : R4 x
Ry — Ry satisfying m,,(p, p) = m(p) forall p € Ry and (x, y) € £ We always assume
that myy (o1, p2) = myx (02, p1) for all p1, p2 € R It is easy to check that F satisfies the
superlinear growth condition 5.4. Furthermore, concavity of m,, implies convexity of F 6
We then consider the edge-based cost defined by

1 dyy J(x, y)?
F(m,J) := 5 ﬂ%, 9.3)
Ky m(x) m(y
rpee? mﬂ‘(uw |Ky\)
Consistent with (9.2), we use the convention that

; )

s _[re ima(f ) =omasan 20
mx) m(y) 0 if m (M M) —0and J(x, y) = 0. '

Myy K. * TK,| XY\ TKL | Kyl B

It is now natural to ask whether the discrete action functionals associated to F' converge to
the continuous action funtional associated to f: is it true that fhom = f?

In the linear case where m(p) = p, which corresponds to the 2-Wasserstein metric, this
question has been extensively studied in [26] for a large class of (not necessarily periodic)
meshes. The main result in [26] asserts that the limit of the discrete transport distances W,
(in the Gromov-Hausdorff sense) as ¢ — 0 coincides with the 2-Wasserstein distance W»
on P(T¢) if an asymptotic local isotropy condition is satisfied. Moreover, it is shown that
this convergence fails to hold if the isotropy condition fails to hold (in a sufficiently strong
sense).

For periodic finite-volume partitions we show here that these results are direct conse-
quences of Theorem 5.1. In particular, the following result contains a necessary and condition
on a periodic finite-volume partition that ensures that fhom = f.

Proposition 9.3 Consider a 74 -periodic finite-volume partition of R, and let F and f be
as in (9.2) and (9.3) respectively. The following assertions hold:

(i) from(p, ) < f(p, j) forall p € Ry and j € RY.
(ii) Suppose that for every p € Ry and j € R? there is a family of vectors (P x,yyec S R?

such that
P =(p. pyY) € 9 myy(p. p) forall (x,y) € €, and (9.5)
1
T Z(pfy + p;x)dxysxy(nxy -j)2 is independent of x € X. 9.6)
Xy
Then: fhom = f-

6 Concavity of myy is not necessary for convexity of F. If myy is not concave, a local version of the super-
gradient can be substituted into (9.6). For readability we restrict ourselves to the concave case.
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(iii) Suppose that all wy,, are differentiable in a neigbourhood of the diagonal in (0, 00)2.
Then fhom = f if and only if

om , .
3 %(pp)mdxysxynxy ®nyy = |Klid forallx € Xandp >0.  (9.7)

y~x

Remark 9.4 The condition (iii) is satisfied for a class of meshes satisfying a weighted isotropy
condition. For given edge weights A, € (0, 1), this condition reads as

D hydiySeynay @ nyy = |Ky|id  forall x € X.

y~x

We refer to [26, Definition 1.4] for this notion on domains in R? and to [25, Definition
4.3] for the one-dimensional periodic setting. In this case, given a mobility function m, the
functions my, can be chosen to be of the form my,(p, p") = m(Oxy(p, p")) where 6, is a
mean that is compatible with Ay, in the sense that 916,,(1, 1) = A,y; see [26, Definition
1.4]. In this situation the identity f = fhom holds for all choices of the mobility m, since
1Myy (o, p) = m'(0)316xy (0, p) = M’ (p)Ay,. Therefore, the condition (9.7) reduces to the
isotropy condition above; in particular, it does not depend on m.

Before we prove Proposition 9.3, we first show an elementary identity for finite-volume
partitions; see also [26, Lemma 5.4] for a similar result in a non-periodic setting.

Lemma 9.5 Let The a Z¢ -periodic finite-volume partition of RY. Then

1 .
5 D diysayng @y =id. (9.8)
(x.y)e&?

Proof For v e Rd\{O} and (x, y) € &, consider the open bounded convex polytope
Cyy = {z € (0K, NOKy)+Rv:z-ve (conv(x S,y v))o}.

Note that Cyy = Cy,. We claim that the family {Cy, : (x, y) € £} forms a partition of R up
to a set of Lebesgue measure zero. To see this, fix a point z € R? and consider the function
X :R — Xdefined by X(f) = x if z +tv € K,. If v is not orthogonal to any of the finitely
many 7y, then X (¢) is well-defined up to a countable set N C R. By Fubini’s theorem, it
follows that .24 (R/\ U, ,)ce Cay) = 0.

IfteNand X(t7) =x, X(@¢") =y, then (y —x) -v = dyynyy - v > 0. This shows that
t — v - X(t) is nondecreasing and that z is in at most one parallelepiped.

On the other hand, we have

2
24(Cyy) = d 2
(Cxy) = dyxysxy | Ny )

Then we have

| = %ZZ%’(CW nio. H?) = % DD IR ()

xeX y~x xexQ Y~
1 v \? v 1 v
2 Z duySxy <nX.V : m) = m ’ (E Z dyySxynxy ® ”xy> m
(x,y)e&? (x,y)e&2

Since this identity holds for almost every v € RY, (9.8) holds by polarization.
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Proof of Proposition 9.3 (i): We construct a competitor (m*, J*) to the cell problem (4.6) for
p € Ry and j € RY. Define

m*(x) = |Kylp and  J*(x,y) = say(j - ). 9.9)

We claim that (m*, J*) € Rep(p, j). Indeed, the periodicity of 7yields

domr ) =p Y K] =p2(10, DY) =p,
rxeXx? xex?

which shows that m* € Rep(p). To show that J* € Rep(j), we use the divergence theorem
to obtain, for x € X,

v s*(0) = Y 1) = Vs = [ ondt™ <o,

y~x y~x

Moreover, using Proposition 9.1 and Lemma 9.5 we find

1 1
B/ =5 D Jen—x) =5 Y JEnNe-

2
(x,y)e&? (x,y)e&?
1 . 1 .
= E Z Sxy(] 'nxy)(y —x) = 5 Z dxysxy(nxy ®nxy)J =7
(x.y)ee? (x.y)ee?

which proves that J* € Rep(j). Therefore, using that m,, is an admissible version of m,
another application of Lemma 9.5 yields (taking (9.4) into account),

1 dey J*(x, y)?
From(p. ) < F(m*, J*) = = xy 7, 9)”
2 (x.y)ee? Sxy My (0, )

L1 G .

= | = d ! ! — _ i),

mp)’ |2 Z wySaylay ® Ty [ m(p) fp, )

(x,y)ESQ
which proves (i).

(iii): Supposg first that condition (9.7) holds. We will show that (m*, J*) is a critical point
of F. Take (m, J) € Rep(0, 0) and define, for ¢ > 0 sufficiently small,

me:=m*+em and Jpi=J +¢eJ.
Then:

diy J*(x,y)* 1

de * T
= =L (x, ) J (x,
Sxy Myy(0, 0)  m(p) Z 0 )T 9)

1
85‘£=0F(m*, Je) = 588’5=0 Z

(x,y)eSQ (X,y)egQ xy
1 ~ 1 ~
= J-O=—0Jk,y)=——j- Ef(J)=0.
m(p) Z 0 m(p)
(x,y)€€
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Furthermore, using the symmetry myy (a, b) = my, (b, a) =fora, b > 0, we obtain

1 day J*(x, )% (#i(6) | (y)
O, _oFlme, Jy=—5 Y == N (o,
ot 2 oy mp)? & e p)+|K| P2ty (2, )
X,y)€E

Ly St

dmyy (0, p)
sey m(p)? Kyl

(x,y)eSQ
m'(p)
m2(p)

. m(x)

D belp,

: K. |
xex?

9.10)
)2
where we write by (p, j) := Z(X’\,EEQ 8'“:;1(;) p)dxV Sxy ("T}‘."g) , so that the condition (9.7)

reads as by (p, j) = |Ky|forallp > 0, j € R? ,and x € X2, Hence, if this condition holds,
we obtain, since m(x) € Rep(0),

0c|,_gFlme, J*) = m((/;)) 23 fix) =0,
xex?

Adding the identities above, we conclude that - ‘S oF (me, Je) = 0 whenever (9.7) holds.
Therefore, (m*, J*) is a critical point of F in Rep(p, j). By convexity of F, itis a minimiser.
Consequently, using Lemma 9.5, we obtain

frn(p, )= Fn*, 1) = s 3 ds o)’ = '—') £, ),
(x,y)e&?

which is the desired identity.
To prove the converse, we assume that (9.7) does not hold, i.e., we have bz (p, j) # |Kx|
for some p > 0, j € Rd, and x € X. On the other hand, we claim that

Y blp =1

xex?

To see this, observe first that, by definition of admissibility of m,, and the symmetry assump-
tion myy(a, b) = my, (b, a), we have

m/(p) = 35}5201“(/) +e&) = 3s}£=0mxy(;0 +ep+e) = 8lmxy(pv o)+ amey()O, P)
= 01myy (0, p) + dimyx (o, p).
Using this identity, the periodicity of m and J, and the identity (9.8) we obtain

. dimy(0.p) | (nay - J)?
Y o= 3 TS sy

m/
xex? (x,yeEl ()

1 3 01y (P, p) + 01y (pop) | (ay - )?
= ) y Xyoxy 2

o ye0 () 17

(nxy - j)*
Z dxysxy% =1,
(x,yEEQ J

which proves the claim.
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We thus infer that b, (p, j)/|K | is non-constant in x. (If it were, the identity ) [Ky| =
1 = Y, be(p, j) would imply that b.(p, j) = |K| for all x. But we assume that this
doesn’t hold for x = x.) Consequently, there exists a Zd—periodic function m : X — R with
> cexe M(x) = 0 such that

. m(x)
D belp, ) T
xex?

As before, we consider (m*, J*) € Rep(p, j) defined by (9.9). In view of (9.10), we infer
that (m*, J*) is not a critical point of F in Rep(p, j). As (m*, J*) is a relatively interior
point of Rep(p, j), it cannot be a minimiser, hence fhom(p, j) < F(m*, J*) = f(p, J).
(ii): We construct an element of the subgradient (p,,, py) € 0~ F(m, J) with (p,,, dm) =
(py,dJ) =0 forall dm € Rep(0), dJ € Rep(0).
We set

. J(x,y)z dxy Xy yx
Pm(x) : ; Ko m2() 5o P P2
and check by a simple calculation involving the chosen supergradients p*” that F(m +
dm,J) — F(m,J) > (pm,dm) for all dm € RY periodic. The isotropy condition (9.6)
implies that p,, is independent of x and thus (p,,, dm) = 0 for all dm € Rep(0).

Since F is differentiable in J, we have to choose pj := d; F (m, J). By the same calcu-
lation as in (3) we see that (py,dJ) = 0 for all dJ € Rep(0).

To see that (m, J) is indeed a local (and thus global) minimiser of F in Rep(p, j), we
introduce a parameter ¢ > 0 and show that

1
lim\i(glff(F(m—f—sdm,J—l—sdJ)—F(m, J) >0 9.11)
& &

for all dm € Rep(0) and dJ € Rep(0).
To see this, we expand the difference

1
- (F(m+edm,J +edJ)— F(m,J))

1 1
= (F(m+edm,J +¢edJ) — F(m 4+ edm, J)) + z (F(m+edm,J) — F(m, J))

>0
=(0yF(m, J) +o(1),dJ) —¢—0 0,

where we used that (m, J) — 97 F (m, J) is continuous. Because F is convex, (9.11) implies
that (m, J) is a minimiser of F in Rep(p, j).

Remark 9.6 Given a concave mobility m : Ry — R, a popular admissible version is to
take myy (a, b) := m(Ayxya + (1 — Ayy)b), with weights A,y € [0, 1]. If m is differentiable,
this means that ;my, (0, p) = Axym’(p). As aresult, for certain finite-volume partitions we
have to choose the weights A, to satisfy (9.7).

Of particular importance is the W, case m(p) = p, which was treated in [26] and [25]. Here
an admissible version myy is called an admissible mean. For differentiable m,,, condition
(9.7) reduces to

Z am(p, p)dxysxynxy Qnyy = [Kylid.

y~x
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Fig.6 A Zz—periodic finite-volume partition of R2. The unit cube [0, 112 € R2 is shown in red (color figure
online)

We note that condition (9.7) cannot be satisfied for a large class of finite-volume partitions,
although the square partition fulfills it with dym(p, p) = 1/2. The condition also holds for
some other partitions that are not 74 -periodic, such as the equilateral triangular and hexagonal
partitions; see [26].

If we allow ourselves to use nonsmooth admissible versions of m, it makes sense to use
Myy(a, b) := m(min(a, b)), as this choice guarantees the largest possible supergradient
9tmy, = 0Tm{(A, 1 — 1) : A € [0, 1]} along the diagonal, making it more likely that

1j13

Jhom(p, j) = mip)

Example 9.7 Let us consider the triangulation given in Fig. 6, where each unit square consists
of four triangles: north, south, west, and east. We now show that (9.7) cannot be satisfied
here, but (9.6) is satisfied for the particular nonsmooth choice m,, (o1, p2) = min(py, p2).

For the smooth case we assume that myy (0, p) = p and define A,y = 0ymyy and Ay, =
0omy,. Note that by the chain rule Ay, + Ay = 1. Let

Ay = E AxydyxySxyhxy ® Ryy.

y~x

For x in the north triangle and xg in the south triangle we obtain that

1 1
e (Ay + Ag)ex = 3 + g()\SE +ANE +Asw +Anw)
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since dywsyw = %, dynssys = %, nys = ey andnyg = (%, —%)T Similarly we obtain
for xw in the west and x in the east triangle

1 1
er - (Aw + Agp)e; = 3 + g()\ES +AEN +Aws +Awn).

Inserting the last two equalities into (9.7) we find that e; - Ayer = e1 - Aye; = i for all
x €{S,E, N, W}, ie. that

ASE +ANE +Asw +Anw = Ags +AgN + Aws +Awn = 0.

But this is a contradiction to Ay, + Ay = 1. In particular there exists no myy satisfying (9.7).
For the nonsmooth case note that the supergradient for m,, (o1, p2) = min(p1, p2) is
given by

9 myey(p, p) = {(h, 1 =2) 1 2 €10, 1]).

Forp e Ry and j € RY we set

11
pNS = pSN = pEW = pVE = <5, 5) € 3 myy (0, p)

NE NW SE sw i i
p =p =p =p = —, 3 S 8+mxy(,0,,0)
] |2 [J |2
EN WN ES ws it
p =p =p " =p =\—-7 72| € a+mxy(/07,0)~
lj |2 [J |2
We need to show that a, ; := ‘Klﬁ IO (P> + Py )dxysxy(nyy - j)? is independent of x.
For x in the north or the south triangle we find

1 222 ((Gh— )% Gi+j2)?
_ R By et |
as,j = an,j (212 + 87|j|% ( ) + 5

1 1 J12 2 2
=4 i35+ =513 ) =213
(2 21j13

Similarly for x in the west or east triangle we obtain

1 222 ) . + L \2
ag.; = aw.; =4 <j2 J3 <(J2 i) +(]1 j2) )

20 T2 2 2
1 1 j2

a2 22 2) 2052,
(211 + > |j|%|1|2 lj13

Consequently, this is independent of x and (9.6) holds.
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Appendix A: The Kantorovich-Rubinstein metric on signed measures

We collect some facts on the Kantorovich—Rubinstein metric that are used in the paper. We
refer to [8, Section 8.10(viii)] for more details.

Let (X, d) be a metric space. Let M (X) denote the space of finite signed Borel measures
on X.Forpu € M(X),letut, u= € M, (X) be the positive and negative parts, respectively.
Let || = u™ 4+ p~ be its variation, and || u|Tv := |p|(X) be its total variation.

Definition A.1 (Weak and vague convergence) Let u, 1, € M(X) forn =1,2,....

(i) We say that 1, — p weakly in M(X) if [y ¥ du, — [y ¥ du forevery ¢ € Cp(X).
(i) We say that u, — u vaguely in M(X) if fx vdu, —> fx ¥ du for every ¢ € Cco(X).

If (X, d) is compact, M(X) is a Banach space endowed with the norm | u|Ty. By the
Riesz-Markov theorem, it is the dual space of the Banach space C(X) of all continuous
functions ¥ : X — R endowed with the supremum norm || [|cc = sup,cx [¥ (x)].

For ¢ : X — Rlet Lip(y) :=sup, ., % be its Lipschitz constant.

Definition A.2 Let (X, d) be a compact metric space. The Kantorovich—Rubinstein norm on
M(X) is defined by

lliellkr(x) := sup { /X Ydu o Y€ CX), I¥lleo = 1, Lip(y) < 1}. (A.12)

In non-trivial situations (i.e., when X contains an infinite convergent sequence), the norms
Il - lkr and | - |[Tv are not equivalent. Thus, by the open mapping theorem, (M (X), | - [[KrR)
is not a complete space.

A closely related norm on M (X) that is often considered is

Inlggx) = (Xl +sup{/xwdu © ¥ e C(X), ¥(xo) =0, Lip(y) = 1},

for some fixed xy € X; see [8, Section 8.10(viii)]. The next result shows that these norms
are equivalent.

Proposition A.3 Let (X, d) be a compact metric space. For u € M(X) we have

lullkrex) = Inllgrx) < exllnllkre,

where cx < 00 depends only on diam(X).

@ Springer


http://creativecommons.org/licenses/by/4.0/

Homogenisation of dynamical optimal transport on periodic... Page710f75 143

Proof We start with the first inequality. Let ¥ € C(X) with [|[¥/]lcc < 1 and Lip(¢/) < 1.
Define ¢ := ¢ — ¥ (xp), so that ¢(x9) = 0 and Lip(¢) = Lip(y/) < 1. Then

/llfduz/1//(XO)+<de=1/f(XO)M(X)+/§0dMS IM(X)|+/<PdM = llrligr-

Taking the supremum over ¥ yields the desired bound.

Let us now prove the second inequality. Set A := 1 Vv diam(X). Take ¢ € C(X) with
W (x0) = 0 and Lip(¥) < 1. Then |y (x)| = |¥ (x) — ¥(x0)| < d(x,x0) < diam(X) < A
for all x € X, so that ||%||<>o < 1and Lip(%) < 1. We obtain

/wdu _ A/%du < Allulike.

Moreover, |u(X)| < ||]llkr as can be seen by taking ¢ = %1 in (A.12) It follows that

lnlgg < (14 A)llulkr,

as desired.

Proposition A.4 (Relationto W) Let (X, d) be a compact metric space. If j11, iy € M (X)
are nonnegative measures of equal total mass, we have |1 — pallgg = Wi(ur, n2).

Proof This follows from the Kantorovich duality for the distance W.
On the subset of nonnegative measures, the KR-norm induces the weak* topology:

Proposition A.5 (Relation to weak*-convergence) Let (X,d) be a compact metric space.
For puy, u € M4 (X) we have

Mn — pweakly if and only if ||jn — ullkr — O.
Proof See [8, Theorem 8.3.2].

Remark A.6 (Testing against smooth functions) If X = T¢, the space of C' functions ¥
with Lip(ir) < 1 is dense in the set of Lipschitz functions with Lip(yr) < 1; see, e.g., [40,
Proposition A.5]. Consequently,

llkreo) = SUP{/XllfdM DY e CHT), 1Yl < 1, IVl < 1}. (A.13)

Remark A.7 The identity (A.13) shows that || - ||gr is the dual norm of the separable Banach
space c! (Q). The dual space of C ! (Q) is a strict superset of the finite Borel measures.

Appendix B: Norms on curves in the space of measures

We work with curves of bounded variation taking values in the space M (T9).

Definition B.1 (Curves of bounded variation) The space BVkr (Z; M+(Td)) consists of all
curves of measures u : Z — M+(Td) such that the BV-seminorm

— . (7. o1 pd
Il gy (2, (1) = sup{/I/Td derdudt 2 ¢ € CL(Z; C(TY)), max |l e = 1}
(B.14)

is finite.

@ Springer



143 Page720f75 P. Gladbach et al.

Remark B.2 The space BVkR (Z; M+(Td )) is a (non-closed) subset of the space BV(Z; X*),
where X is the separable Banach space C! (T%). We refer to [28, Section 2] for the equivalence
of several definitions of BV(I; X *)

Definition B.3 The space Wf(’[g & M+(']I‘d)) consists of all curves (u;);e7 in the Banach
space-valued Sobolev space W' (Z; (C1(T%))*) such that y, € M (T¢) forae.t € 7.

Appendix C: Domain property of convex functions

Lemma C.1 (Domain properties of convex functions) Let f : R" — R U {+00} be convex,
and let x° € D(f)°. For every . € (0, 1) and every bounded set K C D(f), there exists a
compact convex set K C D(f)° such that

(1 — K + ix° C K.

Proof Let K C D(f) be bounded and A € (0, 1). Since x° € D(f)°, we can pick r > 0
such that B(x°, ) € D(f)°. Fix y € K and set y, := (I — 1)y + Ax°. We claim that
B(ys, Ar) € D(f)°.

To prove the claim, it suffices to show that B(y,, Ar) € D(f), since B(y,, Ar) is open.
Take z € B(yy, Ar) and pick a sequence (y,), C K suchthaty, — y.Observe thatz = (1 —
M) Yn+AX, withX, € B(x°, r)ifnislarge enough (indeed, X;, —x° = %(Z—y)\)—i-]%)‘(y—yn)
and |z — y»| < Ar ). Since y,, X, € D(f), the claim follows by convexity of f.

We now define

G, = U B(y;\, ﬂ) and K, := Conv(Cy).
yek 3

By construction, K is convex, bounded, and closed, thus compact. Let us show that K, <
D(f)°. _ _

By convexity of f, it suffices to show that C;, € D(f)°. Pick z € Cy and {z,,}, € C), such
that z, — z. Then there exists y, € K suchthatz, € B((yn) I %’) Passing to a subsequence,
we may assume that y, — 7 for some y € K and z,, € B()—/;L, %’) forn > n € N. Taking
the limit as n — 400 we infer that z € B(j/;h, %r) Since B(y;\, Ar) C D(f)°, it follows that
zeD(f)°.

Appendix D: Notation

For the convenience of the reader we collect some notation used in this paper.

In the paper we use some standard terminology from graph theory. Let (X, £) be a locally
finite graph.

A discrete vector field is an anti-symmetric function J : £ — R.

Its discrete divergence is the function div J : X — R defined by

divJ(x) := Y J(x, y). (B.15)

y~x

We say that J is divergence-free if divJ = 0.
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A° Topological interior of a set A.
D(F) The domain D(F) ={x € X : F(x) <oo}of F: X — RU {+o0}.
A Bounded open time interval.
Md(A) The space of finite R4 -valued Radon measures on A.
M4 (A)  The space of finite (positive) Radon measures on A.
Rag Anti-symmetric vector fields on &: Rag ={J e RS : J(x,y)=J(y,x)}.
x° The set of all x € X with xz = 0.
&9 The set of all (x, y) € € with x; = 0.
Rg The set of anti-symmetric real functions on £.
¢, 7¢ The discrete torus of mesh size ¢ > 0: T¢ = (¢Z/7Z)¢ = ¢7¢.
Eff(/)  The effective flux of J: Eff(J) = 5 X c0 J(x. ¥)(vz = x2).
Rep(p) The set of representatives of p € R4, i.e,allm € Rf s.t. erXQ m(x) = p.
Rep(j) The set of representatives of j € RY e, all J € ]Rg divergence-free and s.t.
% Z(x,y)eXQ J(x, )z —xz) = j.
Rep(p, j)  The set of representatives of p € Ry, j € RY: Rep(p, j) = Rep(p) x Rep(j).
Z The cube of size & > 0 centered in £z € T9: for z € Z4, Q% :=[0, &) + 2.
Sz Shift operator: SEZ X — A, Sg(x) =((Z+zv)forx =(z,v) € X.
Shift operator: SEZ €= €, Sg(x, y) = (Sg(x), Sg(y)) for (x,y) € &
ot ol Xe = R, (0fY)(x) :== ¥ (SE(x)) forx € Ap.
i 0F & > R, (0F))(x,y) = J(Si(x,y)) for(x,y) €.
T Rescaling operator: T : X — Xg: TF(x) = (e(Z +2), v) forx = (z,v) € X.
T} Y X >R, (FY) ) =y (T () forx e X.
2] €= R, (t80)(x,y) = J(TF(x), TE(y))  for (x,y) € &
ce Discrete continuity equation: (m, J) € CE iff 9;m; + divJ = 0 on (X, &).
CE Continuous continuity equation: (g, v) € CE iff 9;u; + V -v =0 on T4.
BV More precisely BVkR (Z; M+(Td )): the space of time-dependent curves of
(Positive) measures with bounded variation with respect to the KR norm
(Kantorovich-Rubenstein) on M4 (Td ).
wil More precisely WII(Rl (Z; M+(']I‘d )): the space of time-dependent curves of
(Positive) measures belonging to the Banach space wll (I; (C1 (Td))*).
Poit, Pev Discretisation of p € M+(Td), ve MA(T): forz e Z‘g, (Peit(2), Pev(2)) €
Ry x RY, given by Pept(z) = u(Q2), Pev(z) = ((v- )80 N3 QE 1)),
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