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Abstract
This paper dealswith the large-scale behaviour of dynamical optimal transport onZ

d -periodic
graphs with general lower semicontinuous and convex energy densities. Our main contribu-
tion is a homogenisation result that describes the effective behaviour of the discrete problems
in terms of a continuous optimal transport problem. The effective energy density can be
explicitly expressed in terms of a cell formula, which is a finite-dimensional convex pro-
gramming problem that depends non-trivially on the local geometry of the discrete graph
and the discrete energy density. Our homogenisation result is derived from a �-convergence
result for action functionals on curves of measures, which we prove under very mild growth
conditions on the energy density. We investigate the cell formula in several cases of interest,
including finite-volume discretisations of theWasserstein distance, where non-trivial limiting
behaviour occurs.
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1 Introduction

In the past decades there has been intense research activity in the field of optimal transport,
both in puremathematics and in applied areas [35, 39, 41, 42]. In continuous settings, a central
result in the field is the Benamou–Brenier formula [6], which establishes the equivalence
of static and dynamical optimal transport. It asserts that the classical Monge–Kantorovich
problem, inwhich a cost functional isminimised over couplings of given probabilitymeasures
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μ0 and μ1, is equivalent to a dynamical transport problem, in which an energy functional is
minimised over all solutions to the continuity equation connecting μ0 and μ1.

In discrete settings, the equivalence between static and dynamical optimal transport breaks
down, and it turns out that the dynamical formulation [11, 30, 32] is essential in applications
to evolution equations, discrete Ricci curvature, and functional inequalities [15–20, 33].
Therefore, it is an important problem to analyse the discrete-to-continuum limit of dynamical
optimal transport in various setting.

This limit passage turns out to be highly nontrivial. In fact, seemingly natural discreti-
sations of the Benamou–Brenier formula do not necessarily converge to the expected limit,
even in one-dimensional settings [25]. The main result in [26] asserts that, for a sequence of
meshes on a bounded convex domain inR

d , an isotropy condition on themeshes is required to
obtain the convergence of the discrete dynamical transport distances to W2. This is in sharp
contrast to the scaling behaviour of the corresponding gradient flow dynamics, for which
no additional symmetry on the meshes is required to ensure the convergence of discretised
evolution equations to the expected continuous limit [12, 21].

The goal of this paper is to investigate the large-scale behaviour of dynamical optimal
transport on graphs with a Z

d -periodic structure. Our main contribution is a homogenisation
result that describes the effective behaviour of the discrete problems in terms of a continuous
optimal transport problem, in which the effective energy density depends non-trivially on the
geometry of the discrete graph and the discrete transport costs.

Main results

We give here an informal presentation of the main results of this paper, ignoring several
technicalities for the sake of readability. Precise formulations and a more general setting can
be found from Sect. 2 onwards.

Dynamical optimal transport in the continuous setting

For 1 ≤ p < ∞, let Wp be the Wasserstein–Kantorovich–Rubinstein distance between
probability measures on a metric space (X ,d): for μ0, μ1 ∈ P(X),

Wp(μ
0, μ1) := inf

γ∈�(μ0,μ1)

{ ˆ
X×X

d(x, y)p dγ (x, y)

}1/p

,

where �(μ0, μ1) denotes the set of couplings of μ0 and μ1, i.e., all measures γ ∈ P(X × X)

withmarginalsμ0 andμ1. On the torusT
d (ormore generally, onRiemannianmanifolds), the

Benamou–Brenier formula [3, 6] provides an equivalent dynamical formulation for p > 1,
namely

Wp(μ
0, μ1) = inf

(ρ, j)

{ˆ 1

0

ˆ
T

d

| jt (x)|p

ρ
p−1
t (x)

dx dt

}1/p

, (1.1)

where the infimum runs over all solutions (ρ, j) to the continuity equation ∂tρ +∇ · j = 0
with boundary conditions ρ0(x) dx = μ0(dx) and ρ1(x) dx = μ1(dx).

In this paper we consider general lower semicontinuous and convex energy densities
f : R+×R

d → R∪{+∞} under suitable (super-)linear growth conditions. (The Benamou–
Brenier formula above corresponds to the special case f (ρ, j) = | j |p

ρ p−1 ). For sufficiently

regular curves of measures μ : (0, 1) → M+(Td), we consider the continuous action
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A(μ) := inf
ν

{ˆ 1

0

ˆ
T

d
f

(
dμt

dL d
,
dνt

dL d

)
dx dt : (μ, ν) ∈ CE

}
. (1.2)

Here, the infimum runs over all time-dependent vector-valued measures ν : (0, 1) →
Md(Td) satisfying the continuity equation (CE) ∂tμt + ∇ · νt = 0 in the sense of dis-
tributions.

Dynamical optimal transport in the discrete setting

A natural discrete counterpart to (1.2) can be defined on finite (undirected) graphs (X, E).
For each edge (x, y) ∈ E we fix a lower semicontinuous and convex energy density1 Fxy :
R+×R+×R → R+. For sufficiently regular curvesmmm : (0, 1) → M+(X)we then consider
the discrete action

A(mmm) := inf
JJJ

{ˆ 1

0

∑
(x,y)∈E

Fxy
(
mt (x), mt (y), Jt (x, y)

)
dt : (mmm, JJJ ) ∈ CE

}
. (1.3)

Here, the infimum runs over all time-dependent “discrete vector fields”, i.e., all anti-
symmetric functions JJJ : (0, 1) → R

E satisfying the discrete continuity equation (CE)
∂t mt (x) + div Jt (x) = 0 for all x ∈ X, where div Jt (x) := ∑

y:(x,y)∈E Jt (x, y) denotes
the discrete divergence. Variational problems of the form (1.3) arise naturally in the formu-
lation of jump processes as generalised gradient flows [37].

Dynamical optimal transport onZ
d -periodic graphs

In this work we fix a Z
d -periodic graph (X, E) embedded in R

d , as in Fig. 1. For sufficiently
small ε > 0 with 1/ε ∈ N, we then consider the finite graph (Xε, Eε) obtained by scaling
(X, E) by a factor ε, and wrapping the resulting graph around the torus, so that the resulting
graph is embedded in T

d . We are interested in the behaviour of the rescaled discrete action,
defined for curves mmm : (0, 1) → M+(Xε) by

Aε(mmm) := inf
JJJ

{ ˆ 1

0

∑
(x,y)∈Eε

εd Fxy

(
mt (x)

εd
,

mt (y)

εd
,

Jt (x, y)

εd−1

)
dt : (mmm, JJJ ) ∈ CEε

}
. (1.4)

As above, the infimum runs over all time-dependent “discrete vector fields” JJJ : (0, 1) → R
Eε

satisfying the discrete continuity equation (CEε) on the rescaled graph (Xε, Eε).

Convergence of the action

One of our main results (Theorem 5.1) asserts that, as ε → 0, the action functionals Aε

converge to a limiting functional A = Ahom of the form (1.2), with an effective energy
density f = fhom which depends non-trivially on the geometry of the graph (X, E) and the
discrete energy densities Fxy . We only require a very mild linear growth condition on the
energy densities Fxy :

As ε → 0, the functionals Aε �-converge to Ahom in the weak (and vague) topology of
M+

(
(0, 1) × T

d)
.

1 In the sequel we consider more general discrete energy densities F(m, J ), not necessarily sums of edge-
energies.
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0

Fig. 1 A fragment of a Z
d -periodic graph (X, E). The unit cube Q := [0, 1)d ⊂ R

d is shown in red. In blue
and in orange, respectively, XQ and EQ (color figure online)

The precise formulation of this result involves an extension of Ahom to measures on
(0, 1) × T

d ; see Sect. 3 below.
Let us now explain the form of the effective energy density fhom, which is given by a cell

formula. For given ρ ≥ 0 and j ∈ R
d , fhom(ρ, j) is obtained by minimising the discrete

energy per unit cube among all periodic mass distributions m : X → R+ representing ρ,
and all periodic divergence-free discrete vector fields J : E → R representing j in the
following sense. Set XQ := X ∩ [0, 1)d and EQ := {

(x, y) ∈ E : x ∈ XQ}
. Then

fhom : R+ × R
d → R+ is given by

fhom(ρ, j) := inf
m,J

{ ∑
(x,y)∈EQ

Fxy
(
m(x), m(y), J (x, y)

) : (m, J ) ∈ Rep(ρ, j)

}
, (1.5)

where the set of representatives Rep(ρ, j) consists of allZd -periodic functions m : X → R+
and all Z

d -periodic discrete vector fields satisfying

∑
x∈XQ

m(x) = ρ , div J = 0 , and Eff(J ) := 1

2

∑
(x,y)∈EQ

J (x, y)(y − x) = j . (1.6)

Boundary value problems

Our second main result deals with the corresponding boundary value problems, which arise
by minimising the action functional among all curves with given boundary conditions, as in
the Benamou–Brenier formula (1.1). We define
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MAε(m
0, m1) := inf

mmm

{
Aε(mmm) : m0 = m0, m1 = m1}

for m0, m1 ∈ P(Xε),

MAhom(μ0, μ1) := inf
μ

{
Ahom(μ) : μ0 = μ0, μ1 = μ1}

for μ0, μ1 ∈ P(Td).

We then obtain the following result (Theorem 5.10):

As ε → 0, the minimal actions MAε �-converge to MAhom

in the weak topology of M+(Td) ×M+(Td).

This result is proved under a superlinear growth condition on the discrete energy densities,
which holds for discretisations of the Wasserstein distance Wp for p > 1.

A special case of interest is the case where MAε is a Riemannian transport distance
associated to a gradient flow structure for Markov chains as in [30, 32]. In this situation, we
show that the discrete transport distances converge to a 2-Wasserstein distance on the torus
(Corollary 5.3). Interestingly, the underlying distance is induced by a Finsler metric, which
is not necessarily Riemannian.

We also investigate transport distances with nonlinear mobility [13], [29] and their
finite-volume discretisations on the torus T

d . In the spirit of [26], we give a geometric char-
acterisation of finite-volume meshes for which the discretised transport distances converge
to the expected limit.

Compactness

The results for boundary value problems are obtained by combining our first main result with
a compactness result for sequence of measures with bounded action, which is of independent
interest. We obtain two results of this type.

In the first compactness result (Theorem 5.4) we assume at least linear growth of the
discrete energies Fxy at infinity. Under this condition we prove compactness in the space
BVKR

(
(0, 1);M+(Td)

)
, which consists of curves of bounded variation, with respect to the

Kantorovich–Rubinstein (KR) norm on the space of measures. The convergence holds for
almost every t ∈ (0, 1).

In the second compactness result (Theorem 5.9), which is used in the analysis of the
boundary value problems, we assume a stronger condition of at least superlinear growth on
the energy densities Fxy . We then obtain compactness in the space W 1,1

KR

(
(0, 1);M+(Td)

)
,

which consists of absolutely continuous curveswith respect to theKR-norm.The convergence
is uniform for t ∈ (0, 1). We refer to the “Appendix” for precise definitions of these spaces.

Related works

For a classical reference to the study of flows on networks, we refer to Ford and Fulkerson
[22].

Many works are devoted to discretisations of continuous energy functionals in the frame-
work of Sobolev and BV spaces, e.g., [1, 4, 5, 36]. Cell formulas appear in various discrete
and continuous variational homogenisation problems; see, e.g., [4, 7, 9, 27, 31].

The large scale behaviour of optimal transport on random point clouds has been studied
by Garcia–Trillos, who proved convergence to the Wasserstein distance [23].
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Organisation of the paper

Sects. 2 and 3 contain the necessary definitions as well as the assumptions we use throughout
the article in the discrete and continuous settings. Section4 deals with the definition of the
homogenised action functional. In Sect. 5 we present the rigorous statements of our main
results, including the �-convergence of the discrete energies to the effective homogenised
limit and the compactness theorems for curves of bounded discrete energies. The proof of
our main results can be found in Sect. 6 (compactness and convergence of the boundary
value problems) and Sects. 7 and 8 (�-convergence of Aε). Finally, in Sect. 9, we discuss
several examples and apply our results to some common finite-volume and finite-difference
discretisations.

1.1 Sketch of the proof of Theorem 5.1

In the last part of this section, we sketch the proof of our main result on the convergence of
Aε to the homogenised limit (Theorem 5.1). Crucial tools to show both the lower bound and
the upper bound in Theorem 5.1 are regularisation procedures for solutions to the continuity
equation, both at the discrete and at the continuous level.

In this section, we use the informal notation � and � to mean that the corresponding
inequality holds up to a small error in ε > 0, e.g., Aε � Bε means that Aε ≤ Bε + oε(1)
where oε(1) → 0 as ε → 0.

For ε > 0 and z ∈ Z
d (or more generally, for z ∈ R

d ), we set Qz
ε := εz + [0, ε)d ⊆ T

d .
For x ∈ Xε ⊂ T

d , we denote by xz the unique element of Z
d
ε satisfying x ∈ Qxz

ε . Note that
{Qz

ε : z ∈ Z
d
ε } defines a partition of T

d .
To compare discrete and continuous objects, we consider embeddings of probability mea-

sures m ∈ P(Xε) and anti-symmetric functions J : Eε → R defined by

ιεm := ε−d
∑
x∈Xε

m(x)L d |Qxz
ε

∈ P(Td),

ιε J := ε−d+1
∑

(x,y)∈Eε

J (x, y)

2

( ˆ 1

0
L d |

Q(1−s)xz+syz
ε

ds

)
(yz − xz) ∈ Md(Td).

These embeddings preserve the continuity equation in the following sense: if (mmm, JJJ ) ∈ CEε,
then (ιεmmm, ιε JJJ ) ∈ CE.

We also use the notation Fε(m, J ) := ∑
(x,y)∈Eε

εd Fxy

(
m(x)

εd ,
m(y)

εd ,
J (x,y)

εd−1

)
.

Sketch of the liminf inequality. For ε > 0 with 1
ε
∈ N, consider the curve (mε

t )t∈(0,1) ⊆
M+(Xε) and letmmmε ∈ M+

(
(0, 1)×Xε

)
be the correspondingmeasure on space-time defined

bymmmε(dx, dt) = mε
t (dx) dt . Suppose that ιεmmmε → μ vaguely inM+

(
(0, 1)×T

d)
as ε → 0.

The goal is to show the liminf inequality

lim inf
ε→0

Aε(mmm
ε) ≥ Ahom(μ). (1.7)

Without loss of generality we assume that Aε(mmmε) = Aε(mmmε, JJJ ε) ≤ C < ∞ for every
ε > 0, for some sequence of vector fields JJJ ε such that (mmmε, JJJ ε) ∈ CEε. As we will see in
(4.11), the embedded solutions to the continuity equation (ιεmmmε, ιε JJJ ε) ∈ CE define curves
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of measures with densities with respect to L d on T
d of the form

ρt (u) = ε−d
∑
x∈Xε
xz=z̄

mε
t (x) and jt (u) = 1

2εd−1

∑
(x,y)∈Eε

xz=z̄

J ε
t,u(x, y)

(
yz − xz

)

for every u ∈ Qz̄
ε ⊂ T

d . Here, J ε
t,u ∈ R

Eε is a convex combination of the functions
{

J ε
t

( ·
−εz

) : z ∈ Z
d
ε , |z|∞ ≤ R0 + 1

}
.

As we will estimate the discrete energies at any time t ∈ (0, 1), for simplicity we drop
the time dependence and write ρ = ρt , j = jt , mε = mε

t , J ε = J ε
t , J ε

u = J ε
t,u . A crucial

step is to construct, for every u ∈ Qz̄
ε , a representative(

m̂u

εd
,

Ĵu

εd−1

)
∈ Rep

(
ρ(u), j(u)

)
(1.8)

which is approximately equal to the values of (mε, J ε) close to X ∩ {xz = z̄}. The lower
bound (1.7) would then follow by time-integration of the static estimate

Fε(m
ε, J ε) �

∑
z̄∈Z

d
ε

∑
(x,y)∈EQ

εd Fxy

(
m̂εz̄(x)

εd
,

m̂εz̄(y)

εd
,

Ĵεz̄(x, y)

εd−1

)

�
ˆ

T
d

fhom
(
ρ(u), j(u)

)
du = Fhom(ιεmε, ιε J ε),

(1.9)

together with the lower semicontinuity ofAhom. In the last inequalitywe used the definition of
the homogenised density fhom

(
ρ(u), j(u)

)
, which corresponds to the minimal microscopic

cost with total mass ρ(u) and flux j(u).
To find the sought representatives in (1.8), it may seem natural to define m̂u ∈ R

X+ and
J̃u ∈ R

E
a by taking the values of m and Ju in the ε-cube at z̄, and insert these values at every

cube in (X, E), so that the result is Z
d -periodic. Precisely:

m̂u(x) := m(εx̄), J̃u(x, y) := Ju
(
εx̄, ε(y − xz + z̄)

)
, for (x, y) ∈ E,

where x̄ := x − xz + z̄. This would ensure that ε−dm̂u ∈ Rep
(
ρ(u)

)
. Unfortunately,

this construction produces a vector field ε−(d−1) J̃u which does not in general belong to
Rep

(
j(u)

)
: indeed, while J̃u has the desired effective flux (i.e., Eff(ε−(d−1) J̃u) = j(u), as

given in (1.6)), it is not in general divergence-free.
To deal with this complication, we introduce a corrector field J̄u associated to J̃u , i.e., an

anti-symmetric and Z
d -periodic function J̄u : E → R satisfying

div J̄u = −div J̃u, Eff( J̄u) = 0, and
∥∥ J̄u

∥∥
	∞(EQ)

≤ 1
2

∥∥div J̃u
∥∥

	1(XQ)
, (1.10)

whose existence we prove in Lemma 7.3.
It is clear that if we set Ĵu := J̃u + J̄u by construction we have div Ĵu = 0 and

Eff
(
ε−(d−1) Ĵu

) = j(u), thus

Ĵu

εd−1 := J̃u + J̄u

εd−1 ∈ Rep
(

ju
)
.

To carry out this program and prove a lower bound of the form (1.9), we need to quantify
the error we perform passing from (mε, J ε) to

{
(m̂u, Ĵu) : u ∈ T

d}
. It is evident by

construction and from (1.10) that spatial and time regularity of (mε, J ε) are crucial to this
purpose. For example, an 	∞-bound on the time derivative of the form ‖∂t mε

t ‖∞ ≤ Cεd (or,
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in other words, a Lipschitz bound in time for ρt ) together with (mmmε, JJJ ε) ∈ CEε would imply
a control on div J and thus a control of the error in (1.10) of the form ‖ε1−d J̄u‖∞ ≤ Cε.

This is why the key first step in our proof is a regularisation procedure at the discrete level:
for any given sequence of curves

{
(mmmε, JJJ ε) ∈ CEε : ε > 0

}
of (uniformly) bounded action

Aε, we can exihibit another sequence
{
(m̃mmε, J̃JJ

ε
) ∈ CEε : ε > 0

}
, quantitatively close as

measures and in action Aε to the first one, which enjoy good Lipschitz and l∞ properties
and for which the above explained program can be carried out.

This result is the content of Proposition 7.1 and it is based on a three-fold regularisation,
that is in energy, in time, and in space (see Sect. 7.1).
Sketch of the limsup inequality. Fix (μ, ν) ∈ CE. The goal is to findmmmε ∈ M+((0, 1)×Xε)

such that ιεmmmε → μ weakly in M+((0, 1) × T
d) and

lim sup
ε→0

Aε(mmm
ε) ≤ Ahom(μ, ν). (1.11)

As in the the proof of the liminf inequality, the first step is a regularisation procedure, this
time at the continuous level (Proposition 8.26). Thanks to this approximation result, we can
assume without loss of generality that

Ahom(μ, ν) < ∞ and
{(

ρt (x), jt (x)
) : (t, x) ∈ (0, 1) × T

d
}

� D( fhom)◦, (1.12)

where (ρt , jt )t are the smooth densities of (μ, ν) ∈ CE with respect toL d+1 on (0, 1)×T
d ,

and D( fhom)◦ denotes the interior of the domain of fhom (see “Appendix 1”). The convexity
of fhom ensures its Lipschitz-continuity on every compact set K � D( fhom)◦, hence the
assumption (1.12) allows us to assume such regularity for the rest of the proof.

We split the proof of the upper bound into several steps. In short, we first discretise the
continuous measures (μ, ν) and identify an optimal discrete microstructure, i.e., minimisers
of the cell problem described by fhom, on each ε-cube Qz

ε, z ∈ Z
d
ε . A key difficulty at

this stage is that the optimal selection does not preserve the continuity equation, hence an
additional correction is needed. For this purpose, we first apply the discrete regularisation
result Proposition 7.1 to obtain regular discrete curves and then find suitable small correctors
that provide discrete competitors forAε , i.e., solutions to CEε which are close to the optimal
selection.

Let us explain these steps in more detail.
Step 1: For every z ∈ Z

d
ε , t ∈ (0, 1), and each cube Qz

ε we consider the natural discretisation
of (μ, ν), that we denote by

(
Pεμt (z),Pενt (z)

)
t,z ⊂ R+ × R

d , given by

Pεμt (z) := μt (Qz
ε), Pενt (z) :=

(ˆ
∂ Qz

ε∩∂ Q
z+ei
ε

jt · ei dHd−1
)d

i=1

.

An important feature of this construction is that the continuity equation is preserved from T
d

to Z
d
ε , in the sense that

∂tPεμt (z) +
d∑

i=1

(
Pενt (z) − Pενt (z − ei )

) · ei = 0

for t ∈ (0, 1) and z ∈ Z
d
ε .

123
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Step 2: We build the associated optimal discrete microstructure for the cell problem for each
cube Qz

ε , meaning we select (mmm, JJJ ) = (
mz

t , J z
t

)
t∈(0,1),z∈Z

d
ε
such that

(
mz

t

εd
,

J z
t

εd−1

)
∈ Repo

(
Pεμt (z)

εd
,
Pενt (z)

εd−1

)
,

where Repo denotes the set of optimal representatives in the definition of the cell-formula
(1.5). Using the smoothness of μ and ν, one can in particular show that

∑
z∈Z

d
ε

∑
(x,y)∈EQ

εd Fxy

(
mz

t (x)

εd
,

mz
t (y)

εd
,

J z
t (x, y)

εd−1

)
� Fhom(μt , νt ). (1.13)

Step 3: The next step is to glue together the microstructures (mmm, JJJ ) defined for every z ∈ Z
d
ε

via a gluing operator Gε (Definition 8.4) to produce a global microstructure (m̂mmε, ĴJJ
ε
) ∈

M+((0, 1)×Xε)×M((0, 1)× Eε). As the gluing operators are mass preserving and mz
t ∈

Rep(Pεμt (z)), it is not hard to see that ιεm̂mmε → μ weakly in M+((0, 1) × T
d) as ε → 0.

Step 4: In contrast to Pε, the latter operation produces curves (m̂mmε, ĴJJ
ε
)which do not in general

solve the discrete continuity equationCEε. Therefore, we seek to find suitable corrector vector
fields in order to obtain a discrete solution, and thus a candidate forAε(m̂mmε). For this purpose
we regularise (m̂mmε, ĴJJ

ε
) using Proposition 7.1 below. This yields a regular curve which is close

in the sense of measures and in energy to the original one. Note that no discrete regularity
is guaranteed for (m̂mmε, ĴJJ

ε
), despite the smoothness assumption on (μ, ν), due to possible

singularities of Fxy .
For the sake of the exposition, we shall discuss the last steps of the proof assuming that

(m̂mmε, ĴJJ
ε
) already enjoy the Lipschitz and 	∞–regularity properties ensured by Proposition

7.1.
Step 5: For sufficiently regular (m̂mmε, ĴJJ

ε
), we seek a discrete competitor forAε(m̂mmε) which is

close to (m̂mmε, ĴJJ
ε
). As the latter does not necessary belong to CEε , we find suitable correctors

VVV ε such that the corrected curves (m̂mmε, ĴJJ
ε + VVV ε) belong to CEε , with VVV ε small in the sense

that it satisfies the bound

sup
t∈(0,1)

∥∥ε1−d V ε
t

∥∥
	∞(Eε)

≤ Cε. (1.14)

The proof of existence of the corrector VVV ε, together with the quantitative bound relies on
a localisation argument (Lemma 8.22) and a study of the divergence equation on periodic
graphs (Lemma8.16), performed at the level of each cube Qz

ε, for every z ∈ Z
d
ε . The regularity

of (m̂mmε, ĴJJ
ε
) is crucial in order to obtain the estimate (1.14).

Step 6: The final step consists of estimating the action of the measures defined by mmmε :=
m̂mmε → μ weakly as ε → 0, and the vector fields JJJ ε := ĴJJ

ε + VVV ε .
Using the regularity assumption on (m̂mmε, ĴJJ

ε
), the smoothness (1.12) of (μ, ν), and the

convexity of fhom, together with the bounds (1.13) and (1.14) for the corrector, we obtain

Fε(m
ε
t , J ε

t ) � Fε(m̂
ε
t , Ĵ ε

t ) �
∑
z∈Z

d
ε

∑
(x,y)∈EQ

εd Fxy

(
mz

t (x)

εd
,

mz
t (y)

εd
,

J z
t (x, y)

εd−1

)

� Fhom(μt , νt ).

Using this bound and the fact that (mmmε, JJJ ε) ∈ CEε, an integration in time yields

lim sup
ε→0

Aε(mmm
ε) ≤ lim sup

ε→0
Aε(mmm

ε, JJJ ε) ≤ Ahom(μ, ν),
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which is the sought upper bound (1.11).

2 Discrete dynamical optimal transport on Z
d-periodic graphs

This section contains the definition of the optimal transport problem in the discrete periodic
setting. In Sect. 2.1 we introduce the basic objects: a Z

d -periodic graph (X, E) and an admis-
sible cost function F . Given a triple (X, E, F), we introduce a family of discrete transport
actions on rescaled graphs (Xε, Eε) in Sect. 2.2.

2.1 DiscreteZ
d-periodic setting

Our setup consists of the following data:

Assumption 2.1 (X, E) is a locally finite andZ
d -periodic connected graph of bounded degree.

More precisely, we assume that

X = Z
d × V ,

where V is a finite set. The coordinates of x = (z, v) ∈ X will be denoted by

xz := z, xv := v.

The set of edges E ⊆ X× X is symmetric and Z
d -periodic, in the sense that

(x, y) ∈ E iff
(
Sz(x), Sz(y)

) ∈ E for all z ∈ Z
d .

Here, Sz̄ : X → X is the shift operator defined by

Sz̄(x) = (z̄ + z, v) for x = (z, v) ∈ X.

We write x ∼ y whenever (x, y) ∈ E.
Let R0 := max(x,y)∈E |xz − yz|	d∞ be the maximal edge length, measured with respect to

the supremum norm | · |	d∞ on R
d . It will be convenient to use the notation

XQ := {x ∈ X : xz = 0} and EQ := {
(x, y) ∈ E : xz = 0

}
.

Remark 2.2 (Abstract vs. embedded graphs) Rather than working with abstract Z
d -periodic

graphs, it is possible to regard X as a Z
d -periodic subset of R

d , by choosing V to be a subset
of [0, 1)d and using the identification (z, v) ≡ z + v, see Fig. 2. Since the embedding plays
no role in the formulation of the discrete problem, we work with the abstract setup. Note that
edges between nodes that are not in adjacent cells are also allowed.

Assumption 2.3 (Admissible cost function) The function F : R
X+ × R

E
a → R ∪ {+∞} is

assumed to have the following properties:

(a) F is convex and lower semicontinuous.
(b) F is local in the sense that there exists R1 < ∞ such that F(m, J ) = F(m′, J ′)whenever

m, m′ ∈ R
X+ and J , J ′ ∈ R

E
a agree within a ball of radius R1, i.e.,

m(x) = m′(x) for all x ∈ X with |xz|	d∞ ≤ R1, and

J (x, y) = J ′(x, y) for all (x, y) ∈ E with |xz|	d∞ , |yz|	d∞ ≤ R1.
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0

Fig. 2 A fragment of aZ
d -periodic graph (X, E). The blue nodes representXQ and the orange edges represent

EQ (color figure online)

(c) F is of at least linear growth, i.e., there exist c > 0 and C < ∞ such that

F(m, J ) ≥ c
∑

(x,y)∈EQ

|J (x, y)| − C

(
1+

∑
x∈X|x |
	d∞≤R

m(x)

)
(2.1)

for any m ∈ R
X+ and J ∈ R

E
a . Here, R := max{R0, R1}.

(d) There exist a Z
d -periodic function m◦ ∈ R

X+ and a Z
d -periodic and divergence-free

vector field J ◦ ∈ R
E
a such that

(m◦, J ◦) ∈ D(F)◦. (2.2)

Remark 2.4 As F is local, it depends on finitely many parameters. Therefore, D(F)◦, the
topological interior of the domain D(F) of F is defined unambiguously.

Remark 2.5 In many examples, the function F takes one of the following forms, for suitable
functions Fx and Fxy :

F(m, J ) =
∑

x∈XQ

Fx

(
m(x),

(
J (x, y)

)
y∼x

)
, F(m, J ) = 1

2

∑
(x,y)∈EQ

Fxy

(
m(x), m(y), J (x, y)

)
.

We then say that F is vertex-based (respectively, edge-based).

Remark 2.6 Of particular interest are edge-based functions of the form

F(m, J ) = 1

2

∑
(x,y)∈EQ

|J (x, y)|p



(
qxym(x), qyx m(y)

)p−1 , (2.3)
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where 1 ≤ p < ∞, the constants qxy, qyx > 0 are fixed parameters defined for (x, y) ∈ EQ ,
and 
 is a suitable mean (i.e., 
 : R+ ×R+ → R+ is a jointly concave and 1-homogeneous
function satisfying 
(1, 1) = 1). Functions of this type arise naturally in discretisations of
Wasserstein gradient-flow structures [11, 30, 32].

Weclaim that these cost functions satisfy the growth condition (2.1). Indeed, usingYoung’s
inequality |J | ≤ 1

p
|J |p


p−1 + p−1
p 
 we infer that

∑
(x,y)∈EQ

|J (x, y)| ≤ 1

p

∑
(x,y)∈EQ

|J (x, y)|p



(
qxym(x), qyx m(y)

)p−1

+ p − 1

p

∑
(x,y)∈EQ



(
qxym(x), qyx m(y)

)

≤ 2

p
F(m, J ) + C

∑
x∈X,|x |

	d∞≤R0

m(x),

with constant C > 0 depending on maxx,y(qxy + qyx ). This shows that (2.1) is satisfied.

2.2 Rescaled setting

Let (X, E) be a locally finite and Z
d -periodic graph as above. Fix ε > 0 such that 1

ε
∈ N.

The assumption that 1
ε
∈ N remains in force throughout the paper.

The rescaled graph. Let T
d
ε = (εZ/Z)d be the discrete torus of mesh size ε. The corre-

sponding equivalence classes are denoted by [εz] for z ∈ Z
d . To improve readability, we

occasionally omit the brackets.Alternatively,wemaywriteT
d
ε = εZ

d
ε whereZ

d
ε = (

Z/ 1
ε
Z

)d .
The rescaled graph (Xε, Eε) is constructed by rescaling the Z

d -periodic graph (X, E) and
wrapping it around the torus. More formally, we consider the finite sets

Xε := T
d
ε × V and Eε :=

{(
T 0

ε (x), T 0
ε (y)

) : (x, y) ∈ E
}

where, for z̄ ∈ Z
d
ε ,

T z̄
ε : X → Xε, (z, v) �→ ([ε(z̄ + z)], v)

. (2.4)

Throughout the paper we always assume that εR0 < 1
2 , to avoid that edges in E “bite

themselves in the tail” when wrapped around the torus. For x = ([εz], v) ∈ Xε we will write

xz := z ∈ Z
d
ε , xv := v ∈ V .

The rescaled energies. Let F : R
X+ × R

E
a → R ∪ {+∞} be a cost function satisfying

Assumption 2.3. For ε > 0 satisfying the conditions above, we shall define a corresponding
energy functional Fε in the rescaled periodic setting.

First we introduce some notation, which we use to transfer functions defined on Xε to X
(and from Eε to E). Let z̄ ∈ Z

d
ε . Each function ψ : Xε → R induces a 1

ε
Z

d -periodic function

τ z̄
ε ψ : X → R,

(
τ z̄
ε ψ

)
(x) := ψ

(
T z̄

ε (x)
)

for x ∈ X.

see Fig. 3. Similarly, each function J : Eε → R induces a 1
ε
Z

d -periodic function

τ z̄
ε J : E → R,

(
τ z̄
ε J

)
(x, y) := J

(
T z̄

ε (x), T z̄
ε (y)

)
for (x, y) ∈ E.

123



143 Page 14 of 75 P. Gladbach et al.

ε

z

1

0

Fig. 3 On the left, the values of a function ψ : Xε → R correspond to different colors over the nodes. On the
right, the corresponding values of τ z

ε ψ : X → R (color figure online)

Definition 2.7 (Discrete energy functional) The rescaled energy is defined by

Fε : R
Xε+ × R

Eε
a → R ∪ {+∞}, (m, J ) �→

∑
z∈Z

d
ε

εd F

(
τ z
ε m

εd
,

τ z
ε J

εd−1

)
.

Remark 2.8 We note that Fε(m, J ) is well-defined as an element in R ∪ {+∞}. Indeed, the
(at least) linear growth condition (2.1) yields

Fε(m, J ) =
∑
z∈Z

d
ε

εd F

(
τ z
ε m

εd
,

τ z
ε J

εd−1

)
≥ −C

∑
z∈Z

d
ε

εd
(
1+

∑
x∈X|x |
	d∞≤R

τ z
ε m(x)

εd

)

≥ −C

(
1+ (2R + 1)d

∑
x∈Xε

m(x)

)
> −∞.

For z̄ ∈ Z
d
ε it will be useful to consider the shift operator Sz̄

ε : Xε → Xε and Sz̄
ε : Eε → Eε

defined by

Sz̄
ε (x) = ([ε(z̄ + z)], v)

for x = ([εz], v) ∈ Xε,

Sz̄
ε (x, y) = (

Sz̄
ε (x), Sz̄

ε (y)
)

for (x, y) ∈ Eε.

Moreover, for ψ : Xε → R and J : Eε → R we define

σ z̄
ε ψ : Xε → R,

(
σ z̄

ε ψ
)
(x) := ψ(Sz̄

ε (x)) for x ∈ Xε,

σ z̄
ε J : Eε → R,

(
σ z̄

ε J
)
(x, y) := J (Sz̄

ε (x, y)) for (x, y) ∈ Eε.
(2.5)

Definition 2.9 (Discrete continuity equation) A pair (mmm, JJJ ) is said to be a solution to the
discrete continuity equation ifmmm : I → R

Xε+ is continuous, JJJ : I → R
Eε
a is Borelmeasurable,

and

∂t mt (x) +
∑
y∼x

Jt (x, y) = 0 (2.6)
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for all x ∈ Xε in the sense of distributions. We use the notation

(mmm, JJJ ) ∈ CEIε .

Remark 2.10 We may write (2.6) as ∂t mt + div Jt = 0 using the notation (B.15).

Lemma 2.11 (Mass preservation) Let (mmm, JJJ ) ∈ CEIε . Then we have ms(Xε) = mt (Xε) for
all s, t ∈ I.

Proof Without loss of generality, suppose that s, t ∈ I with s < t . Approximating the
characteristic function χ[s,t] by smooth test functions, we obtain, for all x ∈ Xε,

mt (x) − ms(x) =
ˆ t

s

∑
y∼x

Jr (x, y) dr .

Summing the above over x ∈ Xε and using the anti-symmetry of JJJ , the result follows.

We are now ready to define one of the main objects in this paper.

Definition 2.12 (Discrete action functional) For any continuous functionmmm : I → R
Xε+ such

that t �→ ∑
x∈Xε

mt (x) ∈ L1(I) and any Borel measurable function JJJ : I → R
Eε
a , we define

AI
ε (mmm, JJJ ) :=

ˆ
I
Fε(mt , Jt ) dt ∈ R ∪ {+∞}.

Furthermore, we set

AI
ε (mmm) := inf

JJJ

{
AI

ε (mmm, JJJ ) : (mmm, JJJ ) ∈ CEIε
}
.

Remark 2.13 We claim that AI
ε (mmm, JJJ ) is well-defined as an element in R ∪ {+∞}. Indeed,

the (at least) linear growth condition (2.1) yields as in Remark 2.8

Fε(mt , Jt ) ≥ −C

(
1+ (2R + 1)d

∑
x∈Xε

mt (x)

)
.

for any t ∈ I. Since t �→ ∑
x∈Xε

mt (x) ∈ L1(I), the claim follows.

In particular,AI
ε (mmm, JJJ ) is well-defined whenever (mmm, JJJ ) ∈ CEIε , since t �→ ∑

x∈Xε
mt (x)

is constant by Lemma 2.11.

Remark 2.14 If the time interval is clear from the context, we often simply write CEε andAε.

The aim of this work is to study the asymptotic behaviour of the energies AI
ε as ε → 0.

3 Dynamical optimal transport in the continuous setting

We shall now define a corresponding class of dynamical optimal transport problems on the
continuous torus T

d . We start in Sect. 3.1 by defining the natural continuous analogues of
the discrete objects from Sect. 2. In Sect. 3.2 we define generalisations of these objects that
have better compactness properties.
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3.1 Continuous continuity equation and action functional

First we define solutions to the continuity equation on a bounded open time interval I.

Definition 3.1 (Continuity equation) A pair (μ, ν) is said to be a solution to the continuity
equation ∂tμ + ∇ · ν = 0 if the following conditions holds:

(i) μ : I → M+(Td) is vaguely continuous;
(ii) ν : I → Md(Td) is a Borel family satisfying

´
I |νt |(Td) dt < ∞;

(iii) The equation

∂tμt (x) + ∇ · νt (x) = 0 (3.1)

holds in the sense of distributions, i.e., for all ϕ ∈ C1c
(
I× T

d)
,

ˆ
I

ˆ
T

d
∂tϕt (x) dμt (x) dt +

ˆ
I

ˆ
T

d
∇ϕt (x) · dνt (x) dt = 0.

We use the notation

(μ, ν) ∈ CEI.

We will consider the energy densities f with the following properties.

Assumption 3.2 Let f : R+ × R
d → R ∪ {+∞} be a lower semicontinuous and convex

function, whose domain has nonempty interior. We assume that there exist constants c > 0
and C < ∞ such that the (at least) linear growth condition

f (ρ, j) ≥ c| j | − C(ρ + 1) (3.2)

holds for all ρ ∈ R+ and j ∈ R
d .

The corresponding recession function f ∞ : R+ × R
d → R ∪ {+∞} is defined by

f ∞(ρ, j) := lim
t→+∞

f (ρ0 + tρ, j0 + t j)

t
,

where (ρ0, j0) ∈ D( f ) is arbitrary. It is well known that the function f ∞ is lower semicon-
tinuous and convex, and it satisfies

f ∞(ρ, j) ≥ c| j | − Cρ. (3.3)

We refer to [2, Section 2.6] for a proof of these facts.
Let L d denote the Lebesgue measure on T

d . For μ ∈ M+(Td) and ν ∈ Md(Td) we
consider the Lebesgue decompositions given by

μ = ρL d + μ⊥, ν = jL d + ν⊥

for some ρ ∈ L1+(Td) and j ∈ L1(Td ;R
d). It is always possible to introduce a measure

σ ∈ M+(Td) such that

μ⊥ = ρ⊥σ, ν⊥ = j⊥σ,

for some ρ⊥ ∈ L1+(σ ) and j⊥ ∈ L1(σ ;R
d). (Take, for instance, σ = μ⊥ + |ν⊥|.) Using

this notation we define the continuous energy as follows.
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Definition 3.3 (Continuous energy functional) Let f : R+ × R
d → R ∪ {+∞} satisfy

Assumption 3.2. We define the continuous energy functional by

F : M+(Td) ×Md(Td) → R ∪ {+∞},
F(μ, ν) :=

ˆ
T

d
f
(
ρ(x), j(x)

)
dx +

ˆ
T

d
f ∞

(
ρ⊥(x), j⊥(x)

)
dσ(x).

Remark 3.4 By 1-homogeneity of f ∞, this definition does not depend on the choice of the
measure σ ∈ M+(Td).

Definition 3.5 (Action functional) For any curveμ : I → M+(Td)with
´
I μt (T

d) dt < ∞
and any Borel measurable curve ν : I → Md(Td) we define

A
I(μ, ν) :=

ˆ
I

F(μt , νt ) dt .

Furthermore, we set

A
I(μ) := inf

ν

{
A
I(μ, ν) : (μ, ν) ∈ CE

I
}
.

Remark 3.6 As f (ρ, j) ≥ −C(1 + ρ) by (3.2), the assumption
´
I μt (T

d) dt < ∞ ensures
that A

I(μ, ν) is well-defined in R ∪ {+∞}.

Remark 3.7 (Dependence on time intervals) Remark 2.14 applies in the continuous setting
as well. If the time interval is clear from the context, we often simply write CE and A.

Under additional assumptions on the function f , it is possible to prove compactness for
families of solutions to the continuity equation with bounded action; see [13, Corollary 4.10].
However, in our general setting, such a compactness result fails to hold, as the following
example shows.

Example 3.8 (Lack of compactness) To see this, let yε(t) be the position of a particle of mass
m that moves from 0 to ȳ ∈ [0, 1

2 ]d in the time interval (aε, bε) :=
( 1−ε

2 , 1+ε
2

)
with constant

speed |ȳ|
ε
. At all other times in the time interval I = (0, 1) the particle is at rest:

yε(t) =

⎧⎪⎨
⎪⎩
0, t ∈ [0, aε],(
t − 1

2 (1− ε)
)
ε−1 ȳ, t ∈ (

aε, bε),

ȳ t ∈ [bε, 1].
The associated solution (με, νε) to the continuity equation ∂tμ

ε + ∇ · νε = 0 is given by

με
t (dx) := mδyε(t)(dx), νε

t (dx) := m|ȳ|
ε

χ(aε,bε)(t)δyε(t)(dx).

Let f (ρ, j) = | j | be the total momentum, which satisfies Assumption 3.2. We then have
F(με

t , ν
ε
t ) = m|ȳ|

ε
1(aε,bε)(t), hence A

I(με, νε) = mȳ, independently of ε.
However, as ε → 0, the motion converges to the discontinuous curve given by μt = δ0

for t ∈ [0, 1
2 ) and μt = δȳ for t ∈ ( 12 , 1]. In particular, it does not satisfy the continuity

equation in the sense above.
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3.2 Generalised continuity equation and action functional

In view of this lack of compactness, we will extend the definition of the continuity equation
and the action functional to more general objects.

Definition 3.9 (Continuity equation) A pair of measures (μ, ν) ∈ M+
(
I×T

d)×Md(
I×

T
d)

is said to be a solution to the continuity equation

∂tμ + ∇ · ν = 0 (3.4)

if, for all ϕ ∈ C1c
(
I× T

d)
, we haveˆ

I×T
d
∂tϕ dμ +

ˆ
I×T

d
∇ϕ · dν = 0.

As above, we use the notation (μ, ν) ∈ CE
I.

Clearly, this definition is consistent with Definition 3.5.
Let us now extend the action functional AI as well. For this purpose, letL d+1 denote the

Lebesgue measure on I×T
d . For μ ∈ M+

(
I×T

d)
and ν ∈ Md(

I×T
d)

we consider the
Lebesgue decompositions given by

μ = ρL d+1 + μ⊥, ν = jL d+1 + ν⊥

for some ρ ∈ L1+
(
I × T

d)
and j ∈ L1

(
I × T

d ;R
d)
. As above, it is always possible to

introduce a measure σ ∈ M+(I× T
d) such that

μ⊥ = ρ⊥σ , ν⊥ = j⊥σ , (3.5)

for some ρ⊥ ∈ L1+(σ ) and j⊥ ∈ L1(σ ;R
d).

Definition 3.10 (Action functional) We define the action by

A
I : M+

(
I× T

d) ×Md(
I× T

d) → R ∪ {+∞},
A
I(μ, ν) :=

ˆ
I×T

d
f
(
ρt (x), jt (x)

)
dx dt +

ˆ
I×T

d
f ∞

(
ρ⊥

t (x), j⊥t (x)
)
dσ (t, x).

Furthermore, we set

A
I(μ) := inf

ν
{AI(μ, ν) : (μ, ν) ∈ CE

I}.
Remark 3.11 This definition does not depend on the choice ofσ , in viewof the 1-homogeneity
of f ∞. As f (ρ, j) ≥ −C(1 + ρ) and f∞(ρ, j) ≥ −Cρ from (3.2) and (3.3), the fact that
μ(I× T

d) < ∞ ensures that A
I(μ, ν) is well-defined in R ∪ {+∞}.

Example 3.12 (Lack of compactness) Continuing Example 3.8, we can now describe the
limiting jump process as a solution to the generalised continuity equation. Consider the
measures με ∈ M+(I× T

d) and νε ∈ Md(I× T
d) defined by

με(dx, dt) = με
t (dx) dt, νε(dx, dt) = νε

t (dx) dt .

Then we have με → μ and νε → ν weakly, respectively, inM+(I×T
d) andMd(I×T

d),
where μ represents the discontinuous curve

μ(dx, dt) = dμt (x) dt, where μt =
{

δ0, t ∈ [0, 1
2 ),

δȳ, t ∈ ( 12 , 1].
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The measure ν does not admit a disintegration with respect to the Lebesgue measure on I;
in other words, it is not associated to a curve of measures on T

d . We have

ν(dx, dt) = m|ȳ|H 1|[0,ȳ](dx)δ1/2(dt).

Here H 1|[0,ȳ] denotes the 1-dimensional Hausdorff measure on the (shortest) line segment
connecting 0 and ȳ.

Note that (μ, ν) solves the continuity equation, as CE
I is stable under joint weak-

convergence. Furthermore, we have A
I(μ, ν) = mȳ.

The next result shows that any solution to the continuity equation (μ, ν) ∈ CE
I induces

a (not necessarily continuous) curve of measures (μt )t ∈ I. The measure ν is not always
associated to a curve of measures on I; see Example 3.12. We refer to “Appendix 1” for the
definition of BVKR(I;M+(Td)).

Lemma 3.13 (Disintegration of solutions to CE
I) Let (μ, ν) ∈ CE

I. Then dμ(t, x) =
dμt (x) dt for some measurable curve t �→ μt ∈ M+(Td) with finite constant mass. If
A
I(μ) < ∞, then this curve belongs to BVKR(I;M+(Td)) and

‖μ‖BVKR(I;M+(Td )) ≤ |ν|(I× T
d)

. (3.6)

Proof Let λ ∈ M+(I) be the time-marginal of μ, i.e., λ := (e1)#μ where e1 : I×T
d → I,

e1(t, x) = t . We claim that λ is a constant multiple of the Lebesgue measure on I. By the
disintegration theorem (see, e.g., [3, Theorem 5.3.1]), this implies the first part of the result.

To prove the claim, note that the continuity equation CE
I yieldsˆ

I
∂tϕ(t) dλ(t) =

ˆ
I×T

d
∂tϕ(t) dμ(t, x) = 0 (3.7)

for all ϕ ∈ C∞
c (I).

Write I = (a, b), let ψ ∈ C∞
c (I) be arbitrary, and set ψ̄ := 1

|I|
´
I ψ(t) dt . We define

ϕ(t) = ´ t
a ψ(s) ds − (t − a)ψ̄ . Then ϕ ∈ C∞

c (I) and ∂tϕ = ψ − ψ̄ . Applying (3.7) we
obtain

´
I(ψ − ψ̄) dλ = 0, which implies the claim, and hence the first part of the result.

To prove the second part, suppose that μ ∈ M+(I × T
d) has finite action, and let

ν ∈ Md(
I × T

d)
be a solution to the continuity equation (3.4). Applying (3.4) to a test

function ϕ ∈ C1c
(
I; C1(Td)

) ⊆ C1c
(
I× T

d)
such that maxt∈I ‖ϕt‖C1(Td ) ≤ 1, we obtain

ˆ
I×T

d
∂tϕt dμt dt = −

ˆ
I×T

d
∇ϕ · dν ≤ |ν|(I× T

d)
< ∞, (3.8)

which implies the desired bound in view of (B.14).

The next lemma deals with regularity properties for curves of measures with finite action
and fine properties for the functionals A defined in Definition 3.10 with f = fhom.

Lemma 3.14 (Properties of A
I) Let I ⊂ R be a bounded open interval. The following

statements hold:

(i) The functionals (μ, ν) �→ A
I(μ, ν) and μ �→ A

I(μ) are convex.
(ii) Let μ ∈ M+(I × T

d). Let {In}n be a sequence of bounded open intervals such that
In ⊆ I and |I \ In | → 0 as n → ∞. Let μn ∈ M+(In × T

d) be such that2

μn → μ vaguely in M+(I× T
d) and μn(In × T

d) → μ(I× T
d).

2 We regard measures on In × T
d as measures on the bigger set I× T

d by the canonical inclusion.

123



143 Page 20 of 75 P. Gladbach et al.

as n → ∞. Then:

lim inf
n→∞ A

In (μn) ≥ A
I(μ). (3.9)

If, additionally, ν ∈ Md(I× T
d) and νn ∈ Md(In × T

d) satisfy νn → ν vaguely in
Md(I× T

d), then we have

lim inf
n→∞ A

In (μn, νn) ≥ A
I(μ, ν). (3.10)

In particular, the functionals (μ, ν) �→ A
I(μ, ν) and μ �→ A

I(μ) are lower semicon-
tinuous with respect to (joint) vague convergence.

Proof (i): Convexity of A
I follows from convexity of f , f ∞, and the linearity of the

constraint (3.4).
(ii): First we show (3.10). Consider the convex energy density g(ρ, j) := f (ρ, j) +

C(ρ + 1), which is nonnegative by (2.1). Let Ag be the corresponding action functional
defined using g instead of f . Using the nonnegativity of g, the fact that |I\In | → 0, and the
lower semicontinuity result from [2, Theorem 2.34], we obtain

lim inf
n→∞ A

In
g (μn, νn) ≥ lim inf

n→∞ A
Ĩ
g(μ

n, νn) ≥ A
Ĩ
g(μ, ν).

for every open interval Ĩ � I. Taking the supremum over Ĩ, we obtain

lim inf
n→∞ A

In
g (μn, νn) ≥ A

I
g(μ, ν). (3.11)

Since we have μn
(
In ×T

d) → μ
(
I× T

d)
by assumption, the desired result (3.10) follows

from (3.11) and the identity

A
In
g (μn, νn) = A

In (μn, νn) + C
(
μn(In × T

d) + 1
)
.

Let us now show (3.9). Let {μn}n ⊆ M+
(
In ×T

d)
be such that supn A

In (μn) < ∞ and
μn → μ vaguely in M+(I × T

d). Let νn ∈ Md(In × T
d) be such that (μn, νn) ∈ CE

In

and

A
In (μn, νn) ≤ A

In (μn) + 1

n
.

From Lemma 3.13, we infer that dμn(t, x) = dμn
t (x) dt where (μn

t )t∈In is a curve of
constant total mass cn := μn

t (Td). Moreover, M := supn cn < +∞, since μn → μ vaguely.
The growth condition (3.2) implies that

sup
n

|νn |(In × T
d) ≤ 1

c
sup

n
A
In (μn) + C |I|

c

(
M + 1

)
< ∞.

Hence, by the Banach–Alaoglu theorem, there exists a subsequence of {νn}n (still indexed
by n) such that νn → ν vaguely in Md(I × T

d) and (μ, ν) ∈ CE
I. Another application

of Lemma 3.13 ensures that dμ(t, x) = dμt (x) dt where (μt )t∈I is of constant mass c :=
μt (T

d) = limn→∞ cn .
We can thus apply the first part of (ii) to obtain

A
I(μ) ≤ A

I(μ, ν) ≤ lim inf
n→∞ A

In (μn, νn) = lim inf
n→∞ A

In (μn),

which ends the proof.
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4 The homogenised transport problem

Throughout this section we assume that (X, E) safisfies Assumption 2.1 and F safisfies
Assumption 2.3.

4.1 Discrete representation of continuousmeasures and vector fields

To define fhom, the following definition turns out to be natural.

Definition 4.1 (Representation)

(i) We say that m ∈ R
X+ represents ρ ∈ R+ if m is Z

d -periodic and∑
x∈XQ

m(x) = ρ.

(ii) We say that J ∈ R
E
a represents a vector j ∈ R

d if

(a) J is Z
d -periodic;

(b) J is divergence-free (i.e., div J (x) = 0 for all x ∈ X);
(c) The effective flux of J equals j ; i.e., Eff(J ) = j , where

Eff(J ) := 1

2

∑
(x,y)∈EQ

J (x, y)
(
yz − xz

)
. (4.1)

We use the (slightly abusive) notation m ∈ Rep(ρ) and J ∈ Rep( j). We will also write
Rep(ρ, j) = Rep(ρ) × Rep( j).

Remark 4.2 Let us remark that xz = 0 in the formula for Eff(J ), since xz ∈ XQ .

Remark 4.3 The definition of the effective flux Eff(J ) is natural in view of Lemmas 4.9 and
4.11 below. These results show that a solution to the continuous continuity equation can be
constructed starting from a solution to the discrete continuity equation, with a vector field of
the form (4.1).

Clearly, Rep(ρ) �= ∅ for every ρ ∈ R+. It is also true, though less obvious, that Rep( j) �=
∅ for every j ∈ R

d . We will show this in Lemma 4.5 using the Z
d -periodicity and the

connectivity of (X, E).
To prove the result, we will first introduce a natural vector field associated to each simple

directed path P on (X, E), For an edge e = (x, y) ∈ E, the corresponding reversed edge will
be denoted by e = (y, x) ∈ E.
Definition 4.4 (Unit flux through a path; see Fig. 4) Let P := {xi }m

i=0 be a simple path in
(X, E), thus ei = (xi−1, xi ) ∈ E for i = 1, . . . , m, and xi �= xk for i �= k. The unit flux
through P is the discrete field JP ∈ R

E
a given by

JP (e) =

⎧⎪⎨
⎪⎩
1 if e = ei for some i,

−1 if e = ei for some i,

0 otherwise

(4.2)

The periodic unit flux through P is the vector field J̃P ∈ R
E
a defined by

J̃P (e) =
∑
z∈Z

d

JP (Tze) for e ∈ E. (4.3)
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Fig. 4 In the first figure, in red, the (directed) path P from x0 to xm , support of the vector field JP . In the
second one, in red, the support of the vector field J̃P and its values (color figure online)

In the next lemma we collect some key properties of these vector fields. Recall the defi-
nition of the discrete divergence in (B.15).

Lemma 4.5 (Properties of JP ) Let P := {xi }m
i=0 be a simple path in (X, E).

(i) The discrete divergence of the associated unit flux JP : E → R is given by

div JP = 1{x0} − 1{xm }. (4.4)

(ii) The discrete divergence of the periodic unit flux J̃P : E → R is given by

div J̃P (x) = 1{(x0)v}(xv) − 1{(xm )v}(xv), x ∈ X. (4.5)

In particular, div J̃P ≡ 0 iff (x0)v = (xm)v.
(iii) The periodic unit flux J̃P : E → R satisfies Eff( J̃P ) = (xm)z − (x0)z.
(iv) For every j ∈ R

d we have Rep( j) �= ∅.

Proof (i) is straightforward to check, and (ii) is a direct consequence.
To prove (iii), we use the definition of J̃P to obtain∑

(x,y)∈EQ

J̃P (x, y)
(
yz − xz

) = ∑
(x,y)∈EQ

∑
z∈Z

d

JP (Tz x, Tz y)
(
yz − xz

)

=
∑

(x,y)∈E
JP (x, y)

(
yz − xz

)
.

By construction, we have

1

2

∑
(x,y)∈E

JP (x, y)
(
yz − xz

) =
m∑

j=1

(x j )z − (x j−1)z = (xm)z − (x0)z,

which yields the result.
For (iv), taking j = ei , we use the connectivity and nonemptyness of (X, E) to find a simple

path connecting some (v, z) ∈ X to (v, z+ei ) ∈ X. The resulting J̃P ∈ R
E
a is divergence-free

by (ii) and Eff( J̃P ) = ei by (iii), so that J̃P ∈ Rep(ei ). For a general j = ∑d
i=1 ji ei we have

Rep( j) ⊇ ∑d
i=1 ji Rep(ei ) �= ∅.
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4.2 The homogenised action

We are now in a position to define the homogenised energy density.

Definition 4.6 (Homogenised energy density) The homogenised energy density fhom : R+×
R

d → R ∪ {+∞} is defined by the cell formula

fhom(ρ, j) := inf
{

F(m, J ) : (m, J ) ∈ Rep(ρ, j)
}
. (4.6)

For (ρ, j) ∈ R+ × R
d , we say that (m, J ) ∈ Rep(ρ, j) is an optimal representative if

F(m, J ) = fhom(ρ, j). The set of optimal representatives is denoted by

Repo(ρ, j).

In view of Lemma 4.5, the set of representatives Rep(ρ, j) is nonempty for every (ρ, j) ∈
R+ × R

d . The next result shows that Repo(ρ, j) is nonempty as well.

Lemma 4.7 (Properties of the cell formula) Let (ρ, j) ∈ R+ × R
d . If fhom(ρ, j) < +∞,

then the set of optimal representatives Repo(ρ, j) is nonempty, closed, and convex.

Proof This follows from the coercivity of F and the directmethodof the calculus of variations.

Lemma 4.8 (Properties of fhom and f ∞hom) The following properties hold:

(i) The functions fhom and f ∞hom are lower semicontinuous and convex.
(ii) There exist constants c > 0 and C < ∞ such that, for all ρ ≥ 0 and j ∈ R

d ,

fhom(ρ, j) ≥ c| j | − C(ρ + 1), f ∞hom(ρ, j) ≥ c| j | − Cρ. (4.7)

(iii) The domain D( fhom) ⊆ R+ × R
d has nonempty interior. In particular, for any pair

(m◦, J ◦) satisfying (2.2), the element (ρ◦, j◦) ∈ (0,∞) × R
d defined by

(ρ◦, j◦) :=
( ∑

x∈XQ

m◦(x),
1

2

∑
(x,y)∈EQ

J ◦(x, y)
(
yz − xz

))
(4.8)

belongs to D( fhom)◦.

Proof (i): The convexity of fhom follows from the convexity of F and the affinity of the
constraints. Let us now prove lower semicontinuity of fhom.

Take (ρ, j) ∈ R+ ×R
d and sequences {ρn}n ⊆ R+ and { jn}n ⊆ R

d converging to ρ and
j respectively. Without loss of generality we may assume that L := supn fhom(ρn, jn) <

∞. By definition of fhom, there exist (mn, Jn) ∈ Rep(ρn, jn) such that F(mn, Jn) ≤
fhom(ρn, jn) + 1

n . From the growth condition (2.1) we deduce that, for some C < ∞,

sup
n

∑
x∈XQ

mn(x) = sup
n

ρn < ∞ and sup
n

∑
(x,y)∈EQ

|Jn(x, y)| ≤ C
(
1+ L + sup

n
rn

)
< ∞.

From the Bolzano–Weierstrass theorem we infer subsequential convergence of {(mn, Jn)}n

to some Z
d -periodic pair (m, J ) ∈ R

X+ × R
E. Therefore, by lower semicontinuity of F , it

follows that

F(m, J ) ≤ lim inf
n→∞ F(mn, Jn) ≤ lim inf

n→∞ fhom(ρn, jn) (4.9)

Since (m, J ) ∈ Rep(ρ, j), we have fhom(ρ, j) ≤ F(m, J ), which yields the desired result.
Convexity and lower semicontinuity of f ∞hom follow from the definition, see [2, Section 2.6].
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(ii) Take ρ ∈ R+ and j ∈ R
d . If fhom(ρ, j) = +∞, the assertion is trivial, so we

assume that fhom(ρ, j) < +∞. Then there exists a competitor (m, J ) ∈ Rep(ρ, j) such that
F(m, J ) ≤ fhom(ρ, j) + 1. The growth condition (2.1) asserts that

F(m, J ) ≥ c
∑

(x,y)∈EQ

|J (x, y)| − C
∑

x∈XQ

m(x) − C

Therefore, the claim follows from the fact that

R0

∑
(x,y)∈EQ

|J (x, y)| ≥ | j | and
∑

x∈XQ

m(x) = r ,

where R0 = max(x,y)∈E |xz − yz|	d∞ .

(iii): Let (m◦, J ◦) ∈ D(F)◦ satisfy Assumption 2.3, and define (ρ◦, j◦) ∈ (0,∞) × R
d

by (4.8). For i = 1, . . . , d , let ei be the coordinate unit vector. Using Lemma 4.5 (iv) we take
J i ∈ Rep(ei ). For α ∈ R with |α| sufficiently small, and β = ∑d

i=1 βi ei ∈ R
d we define

mα(x) := m◦(x) + α

#(XQ)
x ∈ X,

Jβ(x, y) := J ◦(x, y) +
d∑

i=1

βi J i (x, y) (x, y) ∈ E.

It follows that (mα, Jβ) ∈ Rep(ρ◦ + α, j◦ + β), and therefore, fhom(ρ◦ + α, j◦ + β) ≤
F(mα, Jβ). By Assumption 2.3, the right-hand side is finite for |α| + |β| sufficiently small.
This yields the result.

The homogenised actionA
I
hom can now be defined by taking f = fhom in Definition 3.10.

4.3 Embedding of solutions to the discrete continuity equation

For ε > 0 and z ∈ Z
d (or more generally, for z ∈ R

d ) let Qz
ε := εz + [0, ε)d ⊆ T

d denote
the cube of side-length ε based at εz. For m ∈ R

Xε+ and J ∈ R
Eε
a we define ιεm ∈ M+(Td)

and ιε J ∈ Md(Td) by

ιεm := ε−d
∑
x∈Xε

m(x)L d |Qxz
ε

, (4.10a)

ιε J := ε−d+1
∑

(x,y)∈Eε

J (x, y)

2

(ˆ 1

0
L d |

Q(1−s)xz+syz
ε

ds

)
(yz − xz), (4.10b)

The embeddings (4.10) are chosen to ensure that solutions to the discrete continuity
equation are mapped to solutions to the continuous continuity equation, as the following
result shows.

Lemma 4.9 Let (mmm, JJJ ) ∈ CEIε solve the discrete continuity equation and define μt = ιεmt

and νt = ιε Jt . Then (μ, ν) solves the continuity equation (i.e., (μ, ν) ∈ CE
I).
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Proof Let ϕ : I× T
d → R be smooth with compact support. Then:ˆ

I

ˆ
T

d
∇ϕ · dνt dt

= 1

2εd

∑
(x,y)∈Eε

ˆ
I

Jt (x, y)

ˆ 1

0

ˆ
Q(1−s)xz+syz

ε

∇ϕ(t, x) · ε(yz − xz) dL
d ds dt

= 1

2εd

∑
(x,y)∈Eε

ˆ
I

Jt (x, y)

ˆ 1

0
∂s

( ˆ
Q(1−s)xz+syz

ε

ϕ dL d
)
ds dt

= 1

2εd

∑
(x,y)∈Eε

ˆ
I

Jt (x, y)

( ˆ
Qyz

ε

ϕ dL d −
ˆ

Qxz
ε

ϕ dL d
)
dt .

On the other hand, the discrete continuity equation yieldsˆ
I

ˆ
T

d
∂tϕ dμt dt = 1

εd

∑
x∈Xε

ˆ
I

mt (x)∂t

(ˆ
Qxz

ε

ϕ dL d
)
dt

= 1

2εd

∑
(x,y)∈Eε

ˆ
I

Jt (x, y)

( ˆ
Qxz

ε

ϕ dL d −
ˆ

Qyz
ε

ϕ dL d
)
dt .

Comparing both expressions, we obtain the desired identity ∂tμ +∇ · ν = 0 in the sense of
distributions.

The following result provides a useful bound for the norm of the embedded flux.

Lemma 4.10 For J ∈ R
Eε
a we have

|ιε J |(Td) ≤ εR0
√

d

2

∑
(x,y)∈Eε

|J (x, y)|.

Proof This follows immediately from (4.11), sinceL d
(
Q(1−s)xz+syz

ε

) = εd and |yz − xz| ≤
R0

√
d for (x, y) ∈ Eε.

Note that both measures in (4.10) are absolutely continuous with respect to the Lebesgue
measure. The next result provides an explicit expression for the density of the momentum
field. Recall the definition of the shifting operators σ z̄

ε in (2.5).

Lemma 4.11 (Density of the embedded flux) Fix ε < 1
2R0

. For J ∈ R
Eε
a we have ιε J = jεL d

where jε : T
d → R

d is given by

jε(u) = ε−d+1
∑
z∈Z

d
ε

χQz
ε
(u)

(
1

2

∑
(x,y)∈Eε

xz=z

Ju(x, y)
(
yz − xz

))
for u ∈ T

d . (4.11)

Here, Ju(x, y) is a convex combination of
{
σ z̄

ε J (x, y)
}

z̄∈Z
d
ε
, i.e.,

Ju(x, y) =
∑
z̄∈Z

d
ε

λε,z̄
u (x, y)σ z̄

ε J (x, y),

where λ
ε,z̄
u (x, y) ≥ 0 and

∑
z̄∈Z

d
ε
λ

ε,z̄
u (x, y) = 1. Moreover,

λε,z̄
u (x, y) = 0 whenever u ∈ Qxz

ε , |z̄|∞ > R0 + 1. (4.12)
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Proof Fix ε < 1
2R0

, let z ∈ Z
d
ε and u ∈ Qz

ε. We have

jε(u) = ε−d+1
∑

(x,y)∈Eε

J (x, y)

2

(ˆ 1

0
χ

Q(1−s)xz+syz
ε

(u) ds

)
(yz − xz)

= ε−d+1
∑

(x,y)∈Eε
xz=z

∑
z̄∈Z

d
ε

σ z̄
ε J (x, y)

2

(ˆ 1

0
χ

Qz̄+(1−s)xz+syz
ε

(u) ds

)
(yz − xz),

which is the desired form (4.11) with

λε,z̄
u (x, y) =

(ˆ 1

0
χ

Qz̄+(1−s)xz+syz
ε

(u) ds

)

for (x, y) ∈ Eε with xz = z. Since the family of cubes
{

Qz̄+syz+(1−s)xz
ε

}
z̄∈Z

d
ε
is a partition of

T
d , it follows that

∑
z̄∈Z

d
ε
λ

ε,z̄
u (x, y) = 1.

To prove the final claim, let (x, y) ∈ Eε with xz = z as above and take z̄ ∈ Z
d
ε with

|z̄|∞ > R0 + 1. Since |xz − yz| ≤ R0, the triangle inequality yields
∥∥(

z̄ + syz + (1− s)xz
) − xz

∥∥∞ ≥ ‖z̄‖∞ − (1− s)‖yz − xz‖∞ > 1,

for s ∈ [0, 1]. Therefore, u ∈ Qz
ε implies χ

Qz̄+(1−s)xz+syz
ε

(u) = 0, hence λ
ε,z̄
u (x, y) = 0 as

desired.

5 Main results

In this section we present the main result of this paper, which asserts that the discrete action
functionals Aε converge to a continuous action functional A = Ahom with the nontrivial
homogenised action density function f = fhom defined in Sect. 4.

5.1 Main convergence result

We are now ready to state our main result. We use the embedding ιε : R
Xε+ → M+(Td)

defined in (4.10a). The proof of this result is given in Sects. 7 and 8.

Theorem 5.1 (�-convergence) Let (X, E) be a locally finite and Z
d -periodic connected graph

of bounded degree (see Assumption 2.1). Let F : R
X+ ×R

E
a → R∪ {+∞} be a cost function

satisfying Assumption 2.3. Then the functionals AI
ε �-converge to A

I
hom as ε → 0 with

respect to the weak (and vague) topology. More precisely:

(i) (liminf inequality) Let μ ∈ M+(I × T
d). For any sequence of curves {mmmε}ε with

mmmε = (mε
t )t∈I ⊆ R

Xε+ such that ιεmmmε → μ vaguely in M+(I× T
d) as ε → 0, we have

the lower bound

lim inf
ε→0

AI
ε (mmm

ε) ≥ A
I
hom(μ). (5.1)

(ii) (limsup inequality) For any μ ∈ M+(I× T
d) there exists a sequence of curves {mmmε}ε

with mmmε = (mε
t )t∈I ⊆ R

Xε+ such that ιεmmmε → μ weakly in M+(I× T
d) as ε → 0, and
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we have the upper bound

lim sup
ε→0

AI
ε (mmm

ε) ≤ A
I
hom(μ). (5.2)

Remark 5.2 (Necessity of the interior domain condition) Assumption 2.3 is crucial in order
to obtain the �-convergence of the discrete energies. Too see this, let us consider the one-
dimensional graph X = Z and the edge-based cost associated with

Fxy(m(x), m(y), J (x, y)) :=

⎧⎪⎨
⎪⎩

J (x,y)2

m(x)
if m(x) = m(y) �= 0,

0 if J (x, y) = m(x) = m(y) = 0,

∞ otherwise.

Clearly F satisfies conditions (a) − (c) from Assumption 2.3, but (d) fails to hold. The
constraint m(x) = m(y) on neighbouring x, y ∈ X forces every mmm : I → R

Xε+ with
Aε(mmm) < ∞ to be constant in space (and hence in time, by mass preservation). Therefore,
the �-limit of the Aε is finite only on constant measures μ = αL d+1, with α ∈ R+. On
the other hand, we have3 that fhom(ρ, j) = | j |2

ρ
, which corresponds to the W2 action on the

line.
It is interesting to note that if the constraint “m(x) = m(y)” is replaced by a weaker one

of the form “|m(x) − m(y)| ≤ δ ” for some δ > 0, then all the assumptions are satisfied
and our theorem can be applied. Intuitively speaking, the constraint which forces admissible
curves to be constant is replaced by a constraint that merely forces admissible curves to be
Lipschitz; in this case the limit coincides with the W2 action.

See also Sect. 9.2 for a general treatment of the cell formula on the integer latticeX = Z
d .

5.2 Scaling limits ofWasserstein transport problems

For 1 ≤ p < ∞, recall that the energy density associated to the Wasserstein metric Wp on

R
d is given by f (ρ, j) = | j |p

ρ p−1 . This function satisfies the scaling relations f (λρ, λ j) =
λ f (ρ, j) and f (ρ, λ j) = |λ|p f (ρ, j) for λ ∈ R.

In discrete approximations of Wp on a periodic graph (X, E), it is reasonable to assume
analogous scaling relations for the function F , namely F(λm, λJ ) = λF(m, J ) and
F(m, λJ ) = |λ|p F(m, J ). The next result shows that if such scaling relations are imposed,
we always obtain convergence to Wp with respect to some norm on R

d . This norm does not
have to be Hilbertian (even in the case p = 2) and is characterised by the cell problem (4.6).

Corollary 5.3 Let 1 ≤ p < ∞, and suppose that F has the following scaling properties for
m ∈ R

X+ and j ∈ R
E
a:

(i) F(λm, λJ ) = λF(m, J ) for all λ ≥ 0;
(ii) F(m, λJ ) = |λ|p F(m, J ) for all λ ∈ R.

Then fhom(ρ, j) = ‖ j‖p

ρ p−1 for some norm ‖ · ‖ on R
d .

Proof Fix ρ > 0 and j ∈ R
d . The scaling assumptions imply that

fhom(λρ, λ j) = λ fhom(ρ, j) and fhom(ρ, λ j) = |λ|p fhom(ρ, j). (5.3)

3 See also Sect. 9.2.
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Consequently,

fhom(ρ, j) = ρ fhom(1, j/ρ) = fhom(1, j)

ρ p−1 .

We claim that fhom(1, j) > 0 whenever j �= 0. Indeed, it follows from (4.7) that
fhom(1, j) > 0 whenever | j | is sufficiently large. By homogeneity (5.3), the same holds
for every j �= 0. It also follows from (5.3) that fhom(1, 0) = 0.

We can thus define ‖ j‖ := fhom(1, j)1/p ∈ [0,∞). In view of the previous comments,
we have ‖0‖ = 0 and ‖ j‖ > 0 for all j ∈ R

d \ {0}. The homogeneity (5.3) implies that
‖λ j‖ = |λ| ‖ j‖ for j ∈ R

d and λ ∈ R.
It remains to show the triangle inequality ‖ j1 + j2‖ ≤ ‖ j1‖ + ‖ j2‖ for j1, j2 ∈ R

d .
Without loss of generality we assume that ‖ j1‖+ ‖ j2‖ > 0. For λ ∈ (0, 1), the convexity of
fhom (see Lemma 4.8) and the homogeneity (5.3) yield

fhom(1, j1 + j2) ≤ (1− λ) fhom
(
1,

j1
1− λ

)
+ λ fhom

(
1,

j2
λ

)
= fhom(1, j1)

(1− λ)p−1 + fhom(1, j2)

λp−1 .

Substitution of λ = ‖ j2‖
‖ j1‖+‖ j2‖ yields the triangle inequality.

5.3 Compactness results

As we frequently need to compare measures with unequal mass in this paper, it is natural
to work with the the Kantorovich–Rubinstein norm. This metric is closely related to the
transport distance W1; see “Appendix 1”.

The following compactness result holds for solutions to the continuity equation with
bounded action. As usual, we use the notation μ(dx, dt) = μt (dx) dt .

Theorem 5.4 (Compactness under linear growth) Let mmmε : I → R
Xε+ be such that

sup
ε>0

AI
ε (mmm

ε) < ∞ and sup
ε>0

mmmε(I× Xε) < ∞.

Then there exists a curve (μt )t∈I ∈ BVKR(I;M+(Td)) such that, up to extracting a subse-
quence,

(i) ιεmmmε → μ weakly in M+(I× T
d);

(ii) ιεmε
t → μt weakly in M+(Td) for almost every t ∈ I;

(iii) t �→ μt (T
d) is constant.

The proof of this result is given in Sect. 6.
Under a superlinear growth condition on the cost function F , the following stronger

compactness result holds.

Assumption 5.5 (Superlinear growth) We say that F is of superlinear growth if there exists
a function θ : [0,∞) → [0,∞) with limt→∞ θ(t)

t = ∞ and a constant C ∈ R such that

F(m, J ) ≥ (m0 + 1)θ

(
J0

m0 + 1

)
− C(m0 + 1) (5.4)

for all m ∈ R
X+ and all J ∈ R

E
a , where

m0 =
∑
x∈X|x |
	d∞≤R

m(x) and J0 =
∑

(x,y)∈EQ

|J (x, y)|, (5.5)
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with R = max{R0, R1} as in Assumption 2.3.

Remark 5.6 The superlinear growth condition (5.4) implies the linear growth condition (2.1).
To see this, suppose that F has superlinear growth. Let v0 > 0 be such that θ(v) ≥ v for
v ≥ v0. If

J0
m0+1 ≥ v0, we have

F(m, J ) ≥ (m0 + 1)θ

(
J0

m0 + 1

)
− C(m0 + 1) ≥ J0 − C(m0 + 1). (5.6)

On the other hand, if J0
m0+1 < v0, the nonnegativity of θ implies that

F(m, J ) ≥ −C(m0 + 1) ≥ C

v0
J0 − 2C(m0 + 1). (5.7)

Combining (5.6) and (5.7), we have

F(m, J ) ≥ min

{
1,

C

v0

}
J0 − 2C(m0 + 1),

which is of the desired form (2.1).

Example 5.7 The edge-based costs

F(m, J ) = 1

2

∑
(x,y)∈EQ

|J (x, y)|p

have superlinear growth if and only if 1 < p < ∞ (with θ(t) = ct p and c = |EQ |1−p).
Indeed,

2F(m, J ) =
∑

(x,y)∈EQ

|J (x, y)|p ≥ cJ p
0 ≥ c

J p
0

(m0 + 1)p−1 = c(m0 + 1)θ

(
J0

m0 + 1

)
.

Example 5.8 The functions (2.3) arising in discretisation of p-Wasserstein distances have
superlinear growth if and only if p > 1 (with θ(t) = t p).

To see this, consider the function G(α, β, γ ) := 1
2

|γ |p


(α,β)p−1 . Since G is convex, non
increasing in (α, β), and positively one-homogeneous, we obtain

F(m, J ) =
∑

(x,y)∈EQ

G
(
qxym(x), qyx m(y), J (x, y)

)

≥ G

⎛
⎝ ∑

(x,y)∈EQ

qxym(x),
∑

(x,y)∈EQ

qyx m(y),
∑

(x,y)∈EQ

|J (x, y)|
⎞
⎠

≥ cG(m0, m0, J0) ≥ c

2

J p
0

(m0 + 1)p−1 = c

2
(m0 + 1)θ

(
J0

m0 + 1

)
,

where c > 0 depends on R, the maximum degree and the weights qxy .

Theorem 5.9 (Compactness under superlinear growth) Suppose that Assumption 5.5 holds.
Let mmmε : I → R

Xε+ be such that

sup
ε>0

AI
ε (mmm

ε) < ∞ and sup
ε>0

mmmε(I× Xε) < ∞.

Then there exists a curve (μt )t∈I ∈ W 1,1
KR (I;M+(Td)) such that, up to extracting a subse-

quence,
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(i) ιεmmmε → μ weakly in M+(I× T
d);

(ii) ‖ιεmε
t − μt‖KR(Td ) → 0 uniformly for t ∈ I;

(iii) t �→ μt (T
d) is constant.

This is proven in Sect. 6.2.
Note that curve t �→ μt ∈ W 1,1

KR (I;M+(Td)) can be continuously extended to I. There-
fore, it is meaningful to assign boundary values to these curves.

5.4 Result with boundary conditions

Under Assumption 5.5, we are able to obtain the following result on the convergence of
dynamical optimal transport problems. Fix I = (a, b) ⊂ R an open interval. Define for
ma, mb ∈ R

Xε+ with ma(Xε) = mb(Xε) the minimal action as

MAI
ε (m

a, mb) := inf
{
AI

ε (m) : ma = ma, mb = mb)
}

. (5.8)

Similarly, define the minimal homogenised action for μa, μb ∈ M+(Td) with μa(Td) =
μb(Td) as

MA
I
hom(μa, μb) := inf

{
A
I
hom(μ) : μa = μa, μb = μb)

}
. (5.9)

Note that in general, both MA
I
hom and MAI

ε may be infinite even if the two measures have
equal mass. Here, the values μa and μb are well-defined under Assumption 5.5 by Theorem
5.9. Under linear growth, μa and μb can still be defined using the trace theorem in BV, but
we cannot prove the following statement in that case (see also Remark 6.2). We prove this
in Sect. 6.3.

Theorem 5.10 (�-convergence of the minimal actions) Assume that Assumption 5.5 holds.
Then the minimal actions MAI

ε �-converge to MA
I
hom in the weak topology of M+(Td)×

M+(Td). Precisely:

(i) For any sequences ma
ε , mb

ε ∈ R
Xε+ such that ιεmi

ε → μi weakly in M+(Td) as ε → 0
for i = a, b, we have

lim inf
ε→0

MAI
ε (m

a
ε , mb

ε) ≥ MA
I
hom(μa, μb). (5.10)

(ii) For any (μa, μb) ∈ M+(Td)×M+(Td), there exist two sequences ma
ε , mb

ε ∈ R
Xε+ such

that ιεmi
ε → μi weakly in M+(Td) as ε → 0 for i = a, b and

lim sup
ε→0

MAI
ε (m

a
ε , mb

ε) ≤ MA
I
hom(μa, μb). (5.11)

6 Proof of compactness and convergence of minimal actions

This section is divided into three sub-parts: in the first one, we prove the general compactness
result Theorem 5.4, which is valid under the linear growth assumption 2.3.

In the second and third part, we assume the stronger superlinear growth condition 5.5
and prove the improved compactness result Theorem 5.9 and the convergence results for the
problems with boundary data, i.e. Theorem 5.10.
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6.1 Compactness under linear growth

The only assumption here is the linear growth condition 2.3.

Proof of Theorem 5.4 For ε > 0, let mmmε : I → R
Xε+ be a curve such that

sup
ε>0

AI
ε (mmm

ε) < ∞ and sup
ε>0

mmmε(I× Xε) < ∞. (6.1)

We can find a solution to the discrete continuity equation (mmmε, JJJ ε) ∈ CEIε , such that

sup
ε>0

AI
ε (mmm

ε, JJJ ε) < ∞.

Set (με
t , ν

ε
t ) := (ιεmε

t , ιε J ε
t ), where ιε is defined in (4.10). Lemma 4.9 implies that (με, νε) ∈

CE
I for every ε > 0.
Using Lemma 4.10, the growth condition (2.1), and the bounds (6.1) on the masses and

the action, we infer that

sup
ε>0

|νε|(I× T
d) ≤ R0

√
d

2
sup
ε>0

ε

ˆ
I

∑
(x,y)∈Eε

|J ε
t (x, y)| dt < ∞. (6.2)

Up to extraction of a subsequence, the Banach–Alaoglu Theorem yields existence of a mea-
sure ν̄ ∈ Md(I × T

d) such that νε → ν̄ weakly in Md(I × T
d). It also follows that

|ν̄|(I× T
d) ≤ lim infε→0 |νε|(I× T

d) < ∞; see, e.g., [8, Theorem 8.4.7].
Furthermore, (6.1) and (6.2) imply that the BV-seminorms of με are bounded:

sup
ε>0

‖με‖BVKR(I;M+(Td )) ≤ sup
ε>0

|νε|(I× T
d) < ∞, (6.3)

In particular, supε>0 με(I×T
d) < ∞. Thus, by another application of the Banach–Alaoglu

Theorem, there exists a measure μ ∈ M+(I× T
d) and a subsequence (not relabeled) such

that με → μ weakly in M+(I× T
d).

We claim thatμ does not charge the boundary (I\I)×T
d and thatμ( dx, dt) = μt (dx) dt

for a curve (μt )t∈I of constant total mass in time. To prove the claim, write e1(t, x) := t , and
note that each curve t �→ με

t is of constant mass. Therefore, the time-marginals (e1)#με ∈
M+(I) are constant multiples of the Lebesgue measure. Since these measures are weakly-
convergent to the time-marginal (e1)#μ, it follows that the latter is also a constant multiple
of the Lebesgue measure, which implies the claim. See also the proof of Lemma 3.13 for a
similar discussion.

By what we just proved, μ can be identified with a measure on the open setM+(I×T
d).

Let ν be the restriction of ν̄ to I× T
d . Since με (resp. νε) converges vaguely to μ (resp. ν),

it follows that (μ, ν) belongs to CE
I.

In view of (6.3), we can apply the BV-compactness theorem (see, e.g., [34, Theorem
B.5.10]) to obtain a further subsequence such that ‖με

t − μt‖KR(Td ) → 0 for almost every

t ∈ I, and the limiting curve μ belongs to BVKR(I;M+(Td)). Proposition A.5 yields
με

t → μt weakly in M+(Td) for almost every t ∈ I. ��

6.2 Uniform compactness under superlinear growth

In the last two sections, we shall work with the stronger growth condition from Assumption
5.5.
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Remark 6.1 (Property of fhom, superlinear case) Let us first observe that under Assumption
5.5, one has superlinear growth of fhom:

fhom(ρ, j) ≥ θ
( | j |

ρ + 1

)
(ρ + 1) − C(ρ + 1), ∀ρ ≥ 0, j ∈ R

d ,

where we recall θ : [0,∞) → [0,∞) is such that limt→∞ θ(t)
t = +∞.

In addition for all j �= 0 we have

f ∞hom(0, j) = lim
t→∞

1

t
fhom(ρ0, j0 + t j) ≥ lim

t→∞
θ

( | j0+t j |
ρ0+1

)
(ρ0 + 1)

t
= ∞. (6.4)

In particular, if A
I
hom(μ, ν) < ∞, then ν � μ+L d+1. Indeed, fix σ ∈ M+(I×T

d) as
in (3.5) and suppose that (μ +L d+1)(A) = 0 for some A ⊂ I × T

d . By positivity of the
measures, this implies that μ(A) = L d+1(A) = 0, thus by construction

μ⊥(A) = 0 and ν(A) = ν⊥(A).

From the first condition and μ⊥ = ρ⊥σ , we deduce that ρ⊥(t, x) = 0 for σ -a.e. (t, x) ∈ A.
From the assumption of finite energy and (6.4), writing ν⊥ = j⊥σ , we infer that j⊥(t, x) = 0
for σ -a.e. (t, x) ∈ A as well. It follows that ν(A) = ν⊥(A) = 0, which proves the claim.

We are ready to prove Theorem 5.9.

Proof of Theorem 5.4 (Proof of Theorem 5.9) Let {mmmε}ε be a sequence of measures such that

M := sup
ε

mmmε(I× Xε) + 1 < ∞ and A := sup
ε

AI
ε (mmm

ε) < ∞. (6.5)

Thanks to Remark 6.1, we have that ν � μ + L d+1 for all solutions (μ, ν) ∈ CE
I with

A
I
hom(μ) < ∞. Applying Lemma 3.13 we can write μ = dt ⊗ μt and because L d+1 =

dt ⊗ L d , we also have disintegration ν = dt ⊗ νt with νt � μt + L d for almost every
t ∈ I.

Moreover, it follows from the definition of CE
I that, for any test function ϕ ∈

C1c(I; C1(Td)) we have

〈μ, ∂tϕ〉 = −〈ν,∇ϕ〉 = −
ˆ
I

〈 dνt

d(μt +L d)
(μt +L d),∇ϕ

〉
dt .

This shows that dt ⊗ μt ∈ W 1,1
KR (I;M+(Td)), with weak derivative

∂tμt = ∇ ·
( dνt

d(μt +L d)
(μt +L d)

)
∈ KR(Td) for a.e. t ∈ I.

We are left with showing uniform convergence of ιεmε
t → μt in KR(Td). We claim that

the curves {t �→ ιεmε
t }ε are equicontinuouswith respect to theKantorovich–Rubinstein norm

‖ · ‖KR(Td ).
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To show the claimed equicontinuity, take ϕ ∈ C1(Td) and s, t ∈ I with s < t . Since
(ιεmε

t , ιε J ε
t ) ∈ CE

I we obtain using Lemma 4.10,∣∣∣∣
ˆ

T
d
ϕ d(ιεmε

t ) −
ˆ

T
d
ϕ d(ιεmε

s )

∣∣∣∣ =
∣∣∣∣
ˆ t

s

ˆ
T

d
∇ϕ · d(ιε J ε

r ) dr

∣∣∣∣
≤ ‖∇ϕ‖C(Td )

ˆ t

s
|ιε J ε

r |(Td) dr

≤ R0
√

d

2
‖∇ϕ‖C(Td )

ˆ t

s

∑
(x,y)∈Eε

ε|J ε
r (x, y)| dr ,

(6.6)

To estimate the latter integral, we consider for z ∈ Z
d
ε the quantities

mε
r (z) :=

∑
x∈Xε|xz−z|

	d∞≤R

mε
r (x) and Jεr (z) :=

∑
(x,y)∈Eε

xz=z

|J ε
r (x, y)|.

We fix a “velocity threshold” v0 > 0, and split Z
d
ε into the low velocity region Z− := {z ∈

Z
d
ε

ε|Jεr (z)|
mε

r (z)+εd ≤ v0} and its complement Z+ := Z
d
ε \ Z−. Then:

∑
z∈Z−

εJεr (z) ≤ v0
∑

z∈Z−

(
mε

r (z) + εd) ≤ CR
(
mε

r (Xε) + 1
)
v0, (6.7)

where CR := (2R + 1)d . For z ∈ Z+ we use the growth condition (5.4) to estimate

εJεr (z) ≤
(
mε

r (z) + εd)
θ

( εJεr (z)
mε

r (z) + εd

)
sup
v>v0

v

θ(v)

≤ εd
(

F

(
τ z
ε m

εd
,

τ z
ε J

εd−1

)
+ C

(mε
r (z)

εd
+ 1

))
sup
v>v0

v

θ(v)
.

Since (5.4) implies non-negativity of the term in brackets, we obtain

∑
z∈Z+

εJεr (z) ≤
∑
z∈T

d

εd
(

F

(
τ z
ε m

εd
,

τ z
ε J

εd−1

)
+ C

(mε
r (z)

εd
+ 1

))
sup
v>v0

v

θ(v)

≤ Fε(m
ε
r , J ε

r ) + C
(
mε

r (Xε) + 1
)
sup
v>v0

v

θ(v)
.

(6.8)

Integrating in time, we combine (6.7) and (6.8) with (6.5) to obtain
ˆ t

s

∑
(x,y)∈Eε

ε|J ε
r (x, y)| dr =

ˆ t

s

∑
z∈Z

d
ε

εJεr (z) dr ≤ g(t − s),

where g(r) := inf
v0>0

{
rCR Mv0 +

(
A + C(M + |I|)

)
sup
v>v0

v

θ(v)

}
.

(6.9)

Combining (6.6) and (6.9) we conclude that

sup
ε>0

‖ιεmε
t − ιεmε

s‖KR(Td ) ≤ sup
ε>0

sup
‖ϕ‖C1(Td )

≤1

∣∣∣∣
ˆ

T
d
ϕ d(ιεmε

t ) −
ˆ

T
d
ϕ d(ιεmε

s )

∣∣∣∣

≤ R0
√

d

2
g(t − s).
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To prove the claimed equicontinuity, it suffices to show that g(r) → 0 as r → 0. But this
follows from the growth properties of θ by picking, e.g., v0 := r−1/2.

Of course themasses are uniformly bounded in ε and t . TheArzela-Ascoli theorem implies
that every subsequence has a subsequence converging uniformly in

(
M+(Td), ‖ · ‖KR

)
. ��

6.3 The boundary value problems under superlinear growth

The last part of this section is devoted to the proof of the convergence of the minimal actions,
under the assumption of superlinear growth, i.e. Theorem 5.10. The proof is a straightforward
consequence of the stronger compactness result Theorem 5.9 (and the general convergence
result Theorem5.1) proved in the previous section,which ensures the stability of the boundary
conditions as well. We fix I = (a, b).

Proof of Theorem 5.10 We shall prove the upper and the lower bound.
Liminf inequality. Pick any ιεmε

a → μa , ιεmε
b → μb weakly inM+(Td), and let (mmmε, JJJ ε) ∈

CEIε with the same boundary data such that

lim
ε→0

AI
ε (m

ε, Jε) = lim
ε→0

MAI
ε (m

ε
a, mε

b) < ∞.

ByTheorem5.9, there exists a (non-relabeled) subsequence ofmmmε such that‖ιεmε
t −μt‖KR →

0, uniformly for t ∈ I. In particular, μa = μa , μb = μb. We can then apply the lower bound
of Theorem 5.1, and conclude

MA
I
hom(μa, μb) ≤ A

I
hom(μ) ≤ lim inf

ε→∞ MAI
ε (m

ε
a, mε

b).

Limsup inequality. Fixμa, μb ∈ M+(Td) such thatMA
I
hom(μa, μb) < ∞. By the definition

ofMA
I
hom and the lower semicontinuity ofAhom (Lemma3.14), there existsμ ∈ M+(I×T

d)

with A
I
hom(μ) = MA

I
hom(μa, μb) and μa = μa, μb = μb.

We can then apply Theorem 5.1 and find a recovery sequence (mε, Jε) ∈ CEIε such that
ιεmmmε → μ weakly and

lim sup
ε→0

AI
ε (m

ε, Jε) ≤ A
I
hom(μ) = MA

I
hom(μa, μb).

By the improved compactness result Theorem 5.9, ιεmε
t → μt in KR(Td) for every t ∈ I,

in particular for t = a, b. This allows us to conclude

lim sup
ε→0

MAI
ε (m

ε
a, mε

b) ≤ MA
I
hom(μa, μb), and ιεmε

i → μi weakly

for i = a, b, which is the sought recovery sequence for MA
I
hom(μa, μb).

Remark 6.2 It is instructive to see that under the simple linear growth condition 2.3, the above
written proof cannot be carried out. Indeed, by the lack of compactness in W 1,1(I;M+(Td))

(but rather only in BV by Theorem 5.4), we are not able to ensure stability at the level of the
initial data, i.e. in general, μa �= μa (and similarly for t = b).

7 Proof of the lower bound

In this section we present the proof of the lower bound in our main result, Theorem 5.1. The
proof relies on two key ingredients. The first one is a partial regularisation result for discrete

123



Homogenisation of dynamical optimal transport on periodic… Page 35 of 75 143

measures of bounded action, which is stated in Proposition 7.1 and proved in Sect. 7.1 below.
The second ingredient is a lower bound of the energy under partial regularity conditions on
the involvedmeasures (Proposition 7.4). The proof of the lower bound in Theorem 5.1, which
combines both ingredients, is given right before Sect. 7.1.

First we state the regularisation result. Recall the Kantorovich–Rubinstein norm ‖ · ‖KR
(see “Appendix 1”).

Proposition 7.1 (Discrete Regularisation) Fix ε < 1
2R0

and let (mmm, JJJ ) ∈ CEIε be a solution
to the discrete continuity equation satisfying

M := m0(Xε) < ∞ and A := AI
ε (mmm, JJJ ) < ∞.

Then, for any η > 0 there exists an interval Iη ⊂ I := (0, T ) with |I\Iη| ≤ η and a solution
(m̃mm, J̃JJ ) ∈ CEIη

ε such that:

(i) the following approximation properties hold:

(measure approximation) ‖ιε(m̃mm −mmm)‖KR(Iη×T
d )
≤ η, (7.1a)

(action approximation) AIη

ε (m̃mm, J̃JJ ) ≤ AI
ε (mmm, JJJ ) + η. (7.1b)

(ii) the following regularity properties hold, uniformly for any t ∈ Iη and any z ∈ T
d
ε :

(boundedness)
∥∥m̃t

∥∥
	∞(Xε)

+ ε
∥∥ J̃t

∥∥
	∞(Eε)

≤ CBεd , (7.2a)

(time-reg.)
∥∥div J̃t

∥∥
	∞(Xε)

≤ CT εd , (7.2b)

(space-reg.)
∥∥σ z

ε m̃t − m̃t
∥∥

	∞(Xε)
+ ε

∥∥σ z
ε J̃t − J̃t

∥∥
	∞(Eε)

≤ CS |z|εd+1, (7.2c)

(domain reg.)

(
τ z
ε m̃t

εd
,

τ z
ε J̃t

εd−1

)
∈ K . (7.2d)

The constants CB , CT , CS < ∞ and the compact set K ⊆ D(F)◦ depend on η, M and
A, but not on ε.

Remark 7.2 The 	∞-bounds in (7.2a) are explicitly stated for the sake of clarity, although
they are implied by the compactness of the set K in (7.2d).

Since (m̃mm, J̃JJ ) ∈ CEIη

ε , inequality (7.2b) in effect bounds
∥∥∂t m̃t

∥∥
	∞(Xε)

≤ CT εd .

In the next result, we start by showing how to construct Zd -periodic solutions to the static
continuity equation by superposition of unit fluxes. Additionally, we can build these solutions
with vanishing effective flux and ensure good 	∞-bounds.

Lemma 7.3 [Periodic solutions to the divergence equation] Let g : X → R be a Z
d -periodic

function with
∑

x∈XQ g(x) = 0. There exists a Z
d -periodic discrete vector field J : E → R

satisfying

div J = g, Eff(J ) = 0, and ‖J‖	∞(EQ) ≤ 1
2‖g‖	1(XQ ).

Proof For any v,w ∈ V , fix a simple path Pvw in (X, E) connecting (0, v) and (0, w). Let
J̃vw := J̃Pvw be the associated periodic unit flux defined in (4.3). Since

∑
v∈V g(0, v) = 0,

we can pick a coupling� between the negative part and the positive part of g. More precisely,
we may pick a function � : V × V → R+ with

∑
v,w∈V �(v,w) = 1

2‖g‖	1(XQ) such that
∑
w∈V

�vw = g−(0, v) for v ∈ V , and
∑
v∈V

�vw = g+(0, w) for w ∈ V .
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We then define

J :=
∑

v,w∈V

�vw J̃vw.

It is straightforward to verify using Lemma 4.5 that J has the three desired properties.

The following result states the desired relation between the functionals Fε and Fhom

under suitable regularity conditions for the measures involved. These regularity conditions
are consistent with the regularity properties obtained in Proposition 7.1.

Proposition 7.4 (Energy lower bound for regular measures) Let CB , CT , CS < ∞ and let
K ⊆ D(F)◦ be a compact set. There exists a threshold ε0 > 0 and a constant C < ∞ such
that the following implication holds for any ε < ε0: if m ∈ R

Xε+ and J ∈ R
Eε
a satisfy the

regularity properties (7.2a)–(7.2d), then we have the energy bound

Fhom(ιεm, ιε J ) ≤ Fε(m, J ) + Cε.

Proof Recall from (4.11) that ιεm = ρL d and ιε J = jL d , where, for z̄ ∈ Z
d
ε and u ∈ Qz̄

ε,

ρ(u) := ε−d
∑
x∈Xε
xz=z̄

m(x) and j(u) := 1

2εd−1

∑
(x,y)∈Eε

xz=z̄

Ju(x, y)
(
yz − xz

)
,

where Ju(x, y) is a convex combination of
{

J
(
T z

ε x, T z
ε y

)}
z∈Z

d
ε
, i.e.,

Ju(x, y) =
∑
z∈Z

d
ε

λε,z
u (x, y)J

(
T z

ε x, T z
ε y

)
,

where λ
ε,z̄
u (x, y) ≥ 0,

∑
z∈Z

d
ε
λ

ε,z
u (x, y) = 1, and λ

ε,z
u (x, y) = 0 whenever |z| > R0.

Step 1. Construction of a representative. Fix z̄ ∈ Z
d
ε and u ∈ Qz̄

ε. Our first goal is to
construct a representative (

m̂u

εd
,

Ĵu

εd−1

)
∈ Rep

(
ρ(u), j(u)

)
.

For this purpose we define candidates m̂u ∈ R
X+ and J̃u ∈ R

E
a as follows. We take the values

of m and Ju in the ε-cube at z̄, and insert these values at every cube in (X, E), so that the
result is Z

d -periodic. In formulae:

m̂u(z, v) := m(εz̄, v) for (z, v) ∈ X

J̃u

(
(z, v), (z′, v′)

)
:= Ju

(
(εz̄, v), (ε(z̄ + z′ − z), v′)

)
for

(
(z, v), (z′, v′)

)
∈ E.

see Fig. 5.
We emphasise that the right-hand side does not depend on z, hence mu and J̃u are Z

d -
periodic. Our construction also ensures that

ε−d
∑

x∈XQ

m̂u(x) = ρ(u),

hence ε−dm̂u ∈ Rep
(
ρ(u)

)
. However, the vector field ε−(d−1) J̃u does (in general) not belong

to Rep
(

j(u)
)
: indeed, while J̃u has the desired effective flux (i.e., Eff

(
ε−(d−1) J̃u

) = j(u)),
J̃u is not (in general) divergence-free.
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εz̄ 0

Fig. 5 On the left, using different colors for different values, the measures m and Ju . On the right, the
corresponding m̂u and J̃u , for u ∈ Qz̄

ε (color figure online)

To remedy this issue, we introduce a corrector field J̄u , i.e., an anti-symmetric and Z
d -

periodic function J̄u : E → R satisfying

div J̄u = −div J̃u, Eff( J̄u) = 0, and
∥∥ J̄u

∥∥
	∞(EQ )

≤ 1
2

∥∥div J̃u
∥∥

	1(XQ )
. (7.3)

The existence of such a vector field is guaranteed by Lemma 7.3. It immediately follows that
Ĵu := J̃u + J̄u satisfies div Ĵu = 0 and Eff

(
ε−(d−1) Ĵu

) = j(u), thus

Ĵu

εd−1 := J̃u + J̄u

εd−1 ∈ Rep
(

ju
)
.

Step 2. Density comparison. We will now use the regularity assumptions (7.2a)-(7.2d) to
show that the representative (m̂u, Ĵu) is not too different from the shifted density (τz̄m, τz̄ J ).
Indeed, for x = (z, v) ∈ X with |z| ≤ R1 we obtain using (7.2c),

|τ z̄
ε m(x) − m̂u(x)| = ∣∣m(

ε(z̄ + z), v
) − m

(
εz̄, v

)∣∣ ≤ CSεd+1|z|. (7.4)

Let us now turn to the momentum field. For (x, y) = (
(z, v), (z′, v′)

) ∈ E with |z|, |z′| ≤
R1, we have, using (7.2c),∣∣τ z̄

ε J (x, y) − J̃u(x, y)
∣∣

=
∣∣∣J

((
ε(z̄ + z), v

)
,
(
ε(z̄ + z′), v′

))
− Ju

((
εz̄, v

)
,
(
ε(z̄ + z′ − z), v′

))∣∣∣
=

∣∣∣∣
∑
z̃∈Z

d
ε

λε,̃z
u (x, y)

{
J

((
ε(z̄ + z), v

)
,
(
ε(z̄ + z′), v′

))

− J
((

ε(z̄ + z̃), v
)
,
(
ε(z̄ + z̃ + z′ − z), v′

))}∣∣∣∣
≤ CSεd |z − z̃| ≤ R1CSεd .

Moreover, using (7.3), (7.2c), and (7.2b), we obtain

| J̄u(x, y)| ≤ 1
2‖div J̃u‖	1(XQ ) ≤ CT

(
‖div J‖	∞(Eε) + εd

)
≤ Cεd ,
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for some C < ∞ not depending on ε. Combining these bounds we obtain

|τ z̄
ε J (x, y) − Ĵu(x, y)| ≤ |τ z̄

ε J (x, y) − J̃u(x, y)| + | J̄u(x, y)| ≤ Cεd . (7.5)

Step 3. Energy comparison. Since

(
τ z̄
ε m

εd
,

τ z̄
ε J

εd−1

)
∈ K by assumption, it follows from

(7.4) and (7.5) that

(
m̂u

εd
,

Ĵu

εd−1

)
∈ K ′ for ε > 0 sufficiently small. Here K is a compact

set, possibly slightly larger than K , contained in D(F)◦.
Since F is convex, it is Lipschitz continuous on compact subsets in the interior of its

domain. In particular, it is Lipschitz continuous on K ′. Therefore, there exists a constant
CL < ∞ depending on F and K ′ such that

F
(

τ z̄
ε m

εd
,

τ z̄
ε J

εd−1

)
≥ F

(
m̂u

εd
,

Ĵu

εd−1

)
− CL

(∥∥∥τ z̄
ε m − m̂u

εd

∥∥∥
	∞R1 (X)

+
∥∥∥τ z̄

ε J − Ĵu

εd−1

∥∥∥
	∞R1 (E)

)

≥ F
(

m̂u

εd
,

Ĵu

εd−1

)
− Cε

≥ fhom
(
ρ(u), j(u)

) − Cε,

with C < ∞ depending on CL , CS , CT , and R1, but not on ε. Here, the subscript R1 in
	∞R1

(E) and 	∞R1
(X) indicates that only elements with |xz| ≤ R1 are considered.

Integration over Qz̄
ε followed by summation over z̄ ∈ Z

d
ε yields

Fε(m, J ) = εd
∑
z̄∈Z

d
ε

F
(

τ z̄
ε m

εd
,

τ z̄
ε J

εd−1

)
≥

∑
z̄∈Z

d
ε

ˆ
Qz̄

ε

(
fhom

(
ρ(u), j(u)

) − Cε
)
du

=
ˆ

T
d

fhom
(
ρ(u), j(u)

)
du − Cε = Fhom(ιεm, ιε J ) − Cε,

which is the desired result.

We are now ready to give the proof of the lower bound in our main result, Theorem 5.1.
We use the notation A � B to denote the inequality A ≤ C B for some constant C < ∞ that
only depends on the geometry of the graph (X, E), on the function F (see Assumption 2.3),
and on the length of the time interval I.

Proof of Theorem 5.1 (lower bound) Let μ ∈ M+
(
I × T

d)
and let (mε

t )t∈I ⊆ R
Xε+ be such

that the induced measures mmmε ∈ M+
(
I × Xε

)
defined by dmmmε(t, x) = dmε

t (x) dt satisfy
ιεmmmε → μ vaguely in M+(I× T

d) as ε → 0. Observe that

M := sup
ε>0

mmmε
(
I× Xε

)
< ∞.

Without loss of generality, we may assume that

A := sup
ε>0

Aε(mmm
ε) < ∞.

Step 1 (Regularisation): Fix η > 0. Let (J ε
t )t∈I ⊆ R

Eε
a be an approximately optimal

discrete vector field, i.e.,

(mmmε, JJJ ε) ∈ CEIε and Aε(mmm
ε, JJJ ε) ≤ Aε(mmm

ε) + η. (7.6)
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UsingProposition 7.1we take an intervalIη ⊂ I := (0, T ), |I\Iη| ≤ η and an approximating

pair (m̃mmε, J̃JJ
ε
) ∈ CEIη

ε satisfying

‖ιε(m̃mmε −mmmε)‖KR(Iη×T
d )
≤ η and AIη

ε (m̃mmε, J̃JJ
ε
) ≤ Aε(mmm

ε, JJJ ε) + η, (7.7)

together with the regularity properties (7.2) for some constants CB , CT , CS < ∞ and a
compact set K ⊆ D(F)◦ depending on η, but not on ε. By virtue of these regularity properties,
we may apply Proposition 7.4 to (m̃mmε, J̃JJ

ε
). This yields

A
Iη

hom(ιεm̃mm
ε, ιε J̃JJ

ε
) =

ˆ
Iη

Fhom(ιεm̃ε
t , ιε J̃ ε

t ) dt ≤
ˆ
Iη

Fε(m̃
ε
t , J̃ ε

t ) dt + Cε, (7.8)

with C < ∞ depending on η, but not on ε.
Step 2 (Limit passage ε → 0): It follows by definition of the Kantorovich–Rubinstein

norm that

sup
ε

ιεm̃mm
ε
(
Iη × T

d) ≤ sup
ε

(
ιεmmm

ε
(
I× T

d) + ‖ιε(m̃mmε −mmmε)‖KR(Iη×T
d )

)

≤ M + η.

It follows from the growth condition (2.1) and (7.7) that

sup
ε

∣∣ιε J̃JJ
ε∣∣(Iη × T

d)
� sup

ε

ˆ
Iη

ε‖ J̃ ε
t ‖	1(Eε)

dt

� sup
ε

ˆ
Iη

(
1+ ‖m̃ε

t ‖	1(Xε)
+ Fε(m̃

ε
t , J̃ ε

t )

)
dt

≤ sup
ε

(
T + ιεm̃mm

ε
(
Iη × T

d) +AIη

ε (m̃mmε, J̃JJ
ε
)

)

≤ T + (M + η) + (A + 2η).

(7.9)

Therefore, there exist measuresμη ∈ M+
(
Iη×T

d)
and νη ∈ Md(

Iη×T
d)

and convergent
subsequences satisfying

ιεm̃mm
ε → μη and ιε J̃JJ

ε → νη weakly in M+(Iη × T
d) andMd(Iη × T

d) as ε → 0.
(7.10)

The vague lower semicontinuity of the limiting functional (see Lemma 3.14), combined with
(7.6), (7.7), and (7.8) thus yields

A
Iη

hom(μη, νη) ≤ lim inf
ε→0

A
Iη

hom(ιεm̃mm
ε, ιε J̃JJ

ε
) ≤ lim inf

ε→0
Aε(mmm

ε) + 2η. (7.11)

Step 3 (Limit passage η → 0): Let ϕ ∈ Lip1
(
Iη × T

d)
, ‖ϕ‖∞ ≤ 1. For brevity, write

〈ϕ,μ〉 = ´
Iη×T

d ϕ dμ. Since from (7.10) ιεmmmε → μ and ιεm̃mmε → μη weakly, and ‖ιε(m̃mmε −
mmmε)‖KR(Iη×T

d )
≤ η we obtain

〈ϕ,μη − μ〉 ≤ lim sup
ε→0

(∣∣〈ϕ,μη − ιεm̃mm
ε
〉∣∣ + ∣∣〈ϕ, ιε(m̃mm

ε −mmmε)
〉∣∣ + ∣∣〈ϕ, ιεmmm

ε − μ
〉∣∣)

≤ 0+ η + 0.

It follows that ‖μη − μ‖KR(Iη×T
d )

≤ 2η, which together with |I\Iη| ≤ η implies μη →
μ ∈ M+(I× T

d) vaguely as η → 0.
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Furthermore, (7.9) implies that supη

∣∣νη
∣∣(Iη × T

d)
< ∞. Therefore, we may extract a

subsequence so that νη → ν vaguely inMd(I× T
d) as η → 0. It thus follows from (7.11)

and the joint vague-lower semicontinuity of Ahom (see Lemma 3.14) that

Ahom(μ, ν) ≤ lim inf
ε→0

Aε(mmm
ε).

To conclude the desired estimate Ahom(μ) ≤ lim infε→0 Aε(mmmε), it remains to show that
(μ, ν) solves the continuity equation. To show this, we first note that (ιεm̃mmε, ιε J̃JJ

ε
) ∈ CE

Iη

in view of Lemma 4.9. It then follows from the weak convergence in (7.10) that (μη, νη) ∈
CE

Iη

. Since μη → μ, νη → ν vaguely, and |I − Iη| ≤ η it holds (μ, ν) ∈ CE
I, which

completes the proof.

7.1 Proof of the discrete regularisation result

This section is devoted to the proof of main discrete regularisation result, Proposition 7.1.
The regularised approximations are constructed by a three-fold regularisation: in time,

space, and energy. Let us now describe the relevant operators. Recall the definition of m◦
and J ◦ as given in Assumption 2.3.

7.1.1 Energy regularisation

First we embed m◦ and J ◦ into the graph (Xε, Eε). We thus define m◦
ε ∈ R

Xε+ and J ◦
ε ∈ R

Eε
a

by

m◦
ε(εz, v) := εdm◦(0, v) J ◦

ε (εz, v) := εd−1 J ◦(0, v).

It follows that (m◦
ε, J ◦

ε ) ∈ D(Fε)
◦ (by continuity of τ z

ε , z ∈ Z
d
ε ) and

Fε(m
◦
ε, J ◦

ε ) = F(m◦, J ◦).

We then consider the energy regularisation operators defined by

Rδ : R
Xε+ → R

Xε+ , Rδm := (1− δ)m + δm0
ε,

Rδ : R
Eε
a → R

Eε
a , Rδ J := (1− δ)J + δ J 0

ε .

Lemma 7.5 (Energy regularisation) Let δ ∈ (0, 1). The following inequalities hold for any
ε < 1

2R0
, m ∈ R

Xε+ , and J ∈ R
Eε
a :

Fε(Rδm, Rδ J ) ≤ (1− δ)Fε(m, J ) + δFε(m
◦
ε, J ◦

ε ),

‖Rδm‖	∞(Xε) ≤ (1− δ)‖m‖	∞(Xε) + δεd‖m◦‖	∞(X),

‖Rδ J‖	∞(Eε) ≤ (1− δ)‖J‖	∞(Eε) + δεd−1‖J ◦‖	∞(E).

Proof The proof is straightforward consequence of the convexity of F and the periodicity of
m◦ and J ◦.

7.1.2 Space regularisation

Our space regularisation is a convolution in the z-variablewith the discretised heat kernel. It is
of crucial importance that the regularisation is performed in the z-variable only. Smoothness
in the v-variable is not expected.

123



Homogenisation of dynamical optimal transport on periodic… Page 41 of 75 143

For λ > 0 and x ∈ T
d , let hλ(x) be the heat kernel onT

d . We consider the discrete version

H ε
λ : Z

d
ε → R, H ε

λ

([z]) :=
ˆ

Qz
ε

hλ(x) dx,

where the integration ranges over the cube Qz
ε := εz+[0, ε)d ⊆ T

d . Using the boundedness
and Lipschitz properties of hδ , we infer that for z ∈ Z

d
ε ,

inf
Z

d
ε

H ε
λ ≥ cλε

d , ‖H ε
λ‖	∞(Zd

ε ) ≤ Cλε
d , (7.12)

‖H ε
λ‖	1(Zd

ε ) = 1,
∥∥H ε

λ (· + εz) − H ε
λ

∥∥
	∞(Zd

ε )
≤ Cλε

d+1|z| (7.13)

for some non-negative constant Cλ < ∞ depending only on λ > 0. We then define

Sλ : R
Xε+ → R

Xε+ , Sλm :=
∑
z∈Z

d
ε

H ε
λ (z)σ z

ε m,

Sλ : R
Eε
a → R

Eε
a , Sλ J :=

∑
z∈Z

d
ε

H ε
λ (z)σ z

ε J ,

where σ z
ε is defined in (2.5).

Lemma 7.6 (Regularisation in space) Let λ > 0. There exist constants cλ > 0 and Cλ < ∞
such that the following estimates hold, for any ε < 1

2R0
, m ∈ R

Xε+ , J ∈ Md(Eε), and z ∈ Z
d
ε :

(i) Energy bound: Fε(Sλm, Sλ J ) ≤ Fε(m, J ).

(ii) Gain of integrability:

‖Sλm‖	∞(Xε) ≤ Cλε
d‖m‖	1(Xε)

and ‖Sλ J‖	∞(Eε) ≤ Cλε
d‖J‖	1(Eε)

.

(iii) Density lower bound: inf
x∈Xε

Sλm(x) ≥ cλε
d‖m‖	1(X).

(iv) Spatial regularisation:
∥∥τ z

ε Sλm − Sλm
∥∥

	∞(Xε)
≤ Cλε

d+1|z|‖m‖	1(Xε)
and∥∥τ z

ε Sλ J − Sλ J
∥∥

	∞(Eε)
≤ Cλε

d+1|z|‖J‖	1(Eε)
.

Proof Using the convexity of F and the identity
∑

z H ε
λ (z) = 1 we obtain

Fε(Sλm, Sλ J ) =
∑
z∈Z

d
ε

εd F

(
τ z
ε Sλm

εd
,
τ z
ε Sλ J

εd−1

)

≤
∑
z∈Z

d
ε

∑
z′∈Z

d
ε

εd H ε
λ (z′)F

(
τ z+z′
ε m

εd
,
τ z+z′
ε J

εd−1

)

=
∑
z∈Z

d
ε

( ∑
z′∈Z

d
ε

H ε
λ (z − z′)

)
εd F

(
τ z
ε m

εd
,

τ z
ε J

εd−1

)
= F(M, J ),

where in the last equality we used (7.13). This shows (i). Properties (i i), (i i i), and (iv) are
straightforward consequence of the uniform bounds (7.12), (7.13) for the discrete kernels
H ε

λ .
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7.1.3 Time regularisation

Fix an interval I = (a, b) ⊂ R and a regularisation parameter τ > 0. For (mmm, JJJ ) ∈ CEIε , we
define for t ∈ Iτ := (a + τ, b − τ)

(Tτmmm)t :=
 t+τ

t−τ

ms ds, (Tτ JJJ )t :=
 t+τ

t−τ

Js ds.

Note that, thanks to the linearity of the continuity equation we get (Tτmmm, Tτ JJJ ) ∈ CEIτ
ε .

We have the following regularisation properties for the operator Tτ .

Lemma 7.7 (Regularisation in time) Let τ ∈ (0, b−a
2 ). The following estimates hold for all

ε < 1
2R0

and all Borel curves mmm = (mt )t∈I ⊆ R
Xε+ and JJJ = (Jt )t∈I ⊆ Md(Eε):

(i) Energy estimate: for some 0 ≤ C < ∞ depending only on (2.1) we have

AIτ
ε (Tτmmm, Tτ JJJ ) ≤ Aε(mmm, JJJ ) + Cτ

(
mmm(I× Xε) + 1

)
.

(ii) Mass estimate: sup
t∈Iτ

‖(Tτ m)t‖	p(Xε) ≤ sup
t∈I

‖mt‖	p(Xε).

(iii) Momentum estimate: sup
t∈Iτ

‖(Tτ J )t‖	p(Xε) ≤
1

τ

ˆ
I
‖Jt‖	p(Xε) dt .

(iv) Time regularity: sup
t∈Iτ

∥∥∂t (Tτ m)t
∥∥

	p(Xε)
≤ 1

τ
sup
t∈I

‖mt‖	p(Xε).

Proof Set wτ (s) := (2τ)−1
∣∣[(s − τ) ∨ a, (s + τ) ∧ b]∣∣ for s ∈ I. Then we have

AIτ
ε (Tτmmm, Tτ JJJ ) ≤

ˆ
Iτ

 t+τ

t−τ

Fε(ms, Js) ds dt =
ˆ
I
w(s)Fε(ms, Js) ds, (7.14)

as a consequence of Jensen’s inequality and Fubini’s theorem. Using that 0 ≤ wτ ≤ 1,´
I(1− wτ (s)) ds = 2τ , and the growth condition (2.1) we infer

ˆ
I
(1− wτ (s))Fε(ms, Js) ds ≥ −Cτ

(
mmm(I× Xε) + 1

)
,

which together with (7.14) shows (i).
Properties (i i), (i i i) follow directly from the convexity of the 	p-norms and the subaddi-

tivity of the integral.
Finally, (iv) follows from the direct computation ∂t (Tτ m)t = 1

2τ (mt+τ − mt−τ ).

7.1.4 Effects of the three regularisations

We start with a lemma that shows that the effect of the three regularising operators is small
if the parameters are small.

Recall the definition of the Kantorovich-Rubinstein norm as given in “Appendix 1”.

Lemma 7.8 (Bounds in KR-norm) Let I ⊂ R an interval and (mt )t∈I ⊆ R
Xε+ be a Borel

measurable curve of constant total mass (i.e., t �→ mt (Xε) is constant), and let mmm ∈ M+(I×
Xε) be the associated measure on space-time defined by mmm := dt ⊗ mt . Then there exists a
constant C < ∞ depending on |I| such that:

(i) ‖ιεTτmmm − ιεmmm‖KR(Iτ×T
d ) ≤ Cτ sup

t∈I

∥∥mt
∥∥

	1(Xε)
for any τ < |I|/2.
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(ii) ‖ιε Sλmmm − ιεmmm‖KR(I×T
d ) ≤ C

√
λ sup

t∈I

∥∥mt
∥∥

	1(Xε)
for any λ > 0.

(iii) ‖ιε Rδmmm − ιεmmm‖KR(I×T
d ) ≤ Cδ

(
m◦(XQ) + sup

t∈I

∥∥mt
∥∥

	1(Xε)

)
for any δ ∈ (0, 1).

Proof (i): For any μ ∈ M(I× T
d) and any Lipschitz function ϕ : Iτ × T

d → R (and, in
fact, for any temporally Lipschitz function) we have∣∣∣∣

ˆ
Iτ×T

d
ϕ(t, x) dμ(t, x) −

ˆ
Iτ×T

d
ϕ(t, x) d(Tτμ)(t, x)

∣∣∣∣
=

∣∣∣∣
ˆ
Iτ×T

d

 t+τ

t−τ

ϕ(s, x) − ϕ(t, x) ds dμ(t, x)

∣∣∣∣ ≤ τ [ϕ]Lipμ
(
I× T

d)
.

Since ιεmmm
(
I× T

d) ≤ |I| supt∈I
∥∥mt

∥∥
	1(Xε)

we obtain the result.
(i i): In view of mass-preservation, we have

‖ιε Sλmmm − ιεmmm‖KR(I×T
d ) ≤

ˆ
I

∥∥ιε Sλmt − ιεmt
∥∥
KR(Td )

dt

≤ sup
t∈I

mt (Xε)

ˆ
I

∥∥ιε Hλ − ιε H0
∥∥
KR(Td )

dt

≤C
√

λ sup
t∈I

mt (Xε).

Here in the last inequality we used scaling law of the heat kernel.
(i i i): Let us write mmm◦

ε := dt ⊗ m◦
ε for brevity. By linearity, we have

‖ιε(Rδmmm −mmm)‖KR(I×T
d ) = δ‖ιε(mmm◦

ε −mmm)‖KR(I×T
d )

≤ δ(1+ |I|)
(

mmm◦
ε

(
I× T

d
ε

) +mmm
(
I× T

d
ε

))

≤ δ|I|(1+ |I|)
(

m◦(XQ) + sup
t∈I

mt (Xε)
)
.

Proof of Proposition 7.1 We define

m̃mm :=
(

Rδ ◦ Sλ ◦ Tτ

)
mmm and J̃JJ :=

(
Rδ ◦ Sλ ◦ Tτ

)
JJJ .

We will show that the desired inequalities hold if δ, λ, τ > 0 are chosen to be sufficiently
small, depending on the desired accuracy η > 0. Set Iτ := (τ, T − τ).

(i): We use the shorthand notation KRτ := KR(Iτ × T
d). Using Lemma 7.8 we obtain

‖ιεmmm − ιεm̃mm‖KRτ ≤ ‖ιεmmm − ιεTτmmm‖KRτ + ‖ιεTτmmm − ιε(SλTτ )mmm‖KRτ

+ ‖ιε(SλTτ )mmm − ιε(Rδ SλTτ )mmm‖KRτ

� M(τ +√
λ + δ) + m◦(XQ)δ.

(7.15)

Furthermore, using Lemma 7.5, Lemma 7.6(i), and Lemma 7.7(i) we obtain the action bound

AIτ
ε (m̃mm, J̃JJ ) = Eε

(
(Rδ ◦ Sλ ◦ Tτ )mmm, (Rδ ◦ Sλ ◦ Tτ )JJJ

)

≤ (1− δ)Aε

(
(Sλ ◦ Tτ )mmm, (Sλ ◦ Tτ )JJJ

)
+ δTFε(m

◦
ε, J ◦

ε )

≤ (1− δ)Aε(mmm, JJJ ) + δTF(m◦, J ◦) + Cτ(M + 1).

(7.16)

The desired inequalities (7.1) follow by choosing δ, λ, and τ sufficiently small.
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(i i): We will show that all the estimates hold with constants depending on η through the
parameters δ, λ, and τ .

Boundedness: We apply Lemma 7.5, Lemma 7.6(ii), and Lemma 7.7(ii)&(iii) and obtain
the uniform bounds on the mass

sup
t∈Iτ

‖m̃t‖	∞(Xε) ≤ εd
(

(1− δ)Cλ sup
t∈[0,T ]

‖mt‖	1(Xε)
+ δ‖m◦‖	∞(Xε)

)
,

≤ εd
(

CλM + δ‖m◦‖	∞(XQ)

) (7.17)

as well as the uniform bounds on the momentum

sup
t∈Iτ

‖ J̃t‖	∞(Xε) ≤ εd−1
(
1− δ

τ
Cλ sup

t∈[0,T ]

ˆ
I
ε‖Jt‖	1(Xε)

dt + δ‖J ◦‖	∞(Xε)

)
,

� εd−1
(

Cλ

τ

(
T (1+ M) + E

)
+ δ‖J ◦‖	∞(EQ)

)
.

(7.18)

Time-regularity: From Lemma 7.7(iv), together with Lemma 7.5 and Lemma 7.6(ii), we
obtain the uniform bound on the time derivative

sup
t∈Iτ

‖∂t m̃t‖	∞(Xε) ≤ εd
(
2
1− δ

τ
Cλ sup

t∈[0,T ]
‖mt‖	1(Xε)

+ δ‖m◦‖	∞(Xε)

)
,

≤ εd
(
2

Cλ

τ
M + δ‖m◦‖	∞(XQ)

)
.

(7.19)

Space-regularity: For z, z′ ∈ Z
d
ε and v ∈ V , Lemma 7.6(iv) and Lemma 7.7(ii) yield

|m̃t (z, v) − m̃t (z
′, v)| ≤ (1− δ)

∣∣(Sλ ◦ Tτ

)
mt (z, v) − (

Sλ ◦ Tτ

)
mt (z

′, v)
∣∣

≤ Cλε
d−1|z − z′|∥∥Tτ mt

∥∥
	1(Xε)

≤ Cλε
d+1|z − z′| sup

t∈[0,T ]
∥∥mt

∥∥
	1(Xε)

,

which shows that

sup
t∈Iτ

‖σ z
ε m̃t − m̃t‖	∞(Xε) ≤ Cλε

d+1|z| sup
t∈[0,T ]

∥∥mt
∥∥

	1(Xε)
≤ Cλε

d+1|z|M . (7.20)

Similarly, using the growth condition (2.1) we deduce

sup
t∈Iτ

‖σ z
ε J̃t − J̃t‖	∞(Eε) ≤

Cλ

τ
εd+1|z|

ˆ
I

∥∥Js
∥∥

	1(Eε)
ds

≤ Cλ

τ
εd |z|

(
T (1+ M) + E

)
.

(7.21)

Domain-regularity: For all t ∈ Iτ , reasoning as in (7.17) and (7.18), we observe that

ε−d‖(SλTτ m)t‖	∞(Xε) ≤ Cλ‖(Tτ m)t‖	1(Xε)
≤ Cλ sup

t∈[0,T ]
‖mt‖	1(Xε)

≤ CλM,

ε−d‖(SλTτ J )t‖	∞(Eε) ≤ Cλ‖(Tτ m)t‖	1(Eε)
≤ Cλ

τ

ˆ
I
‖Jt‖	1(Eε)

dt ≤ Cλ

τε

(
T (1+ M) + E

)
.

We infer that∥∥∥∥τ z
ε (SλTτ m)t

εd

∥∥∥∥
	∞(X)

≤ CλM and

∥∥∥∥τ z
ε (SλTτ J )t

εd−1

∥∥∥∥
	∞(E)

≤ Cλ

τ

(
T (1+ M) + E

)
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Since (
τ z
ε m̃t

εd
,

τ z
ε J̃t

εd−1

)
= (1− δ)

(
τ z
ε (SλTτ m)t

εd
,
τ z
ε (SλTτ J )t

εd−1

)
+ δ(m◦, J ◦),

the claim follows by an application of Lemma C.1 to the product of balls in 	∞(X) and
	∞(E), taking into account that F is defined on a finite-dimensional subspace by the locality
assumption.

8 Proof of the upper bound

In this section we present the proof of the �-limsup inequality in Theorem 5.1. The first step
is to introduce the notion of optimal microstructures.

8.1 The optimal discrete microstructures

Let I be an open interval in R. We will make use of the following canonical discretisation
of measures and vector fields on the cartesian grid Z

d
ε .

Definition 8.1 (Zd
ε -discretisation of measures) Let μ ∈ M+(Td) and ν ∈ Md(Td) have

continuous densities ρ and j , respectively, with respect to the Lebesgue measure. Their
Z

d
ε -discretisations Pεμ : Z

d
ε → R+ and Pεν : Z

d
ε → R

d are defined by

Pεμ(z) := μ(Qz
ε), Pεν(z) :=

(ˆ
∂ Qz

ε∩∂ Q
z+ei
ε

j · ei dHd−1
)d

i=1

.

An important feature of this discretisation is the preservation of the continuity equation,
in the following sense.

Definition 8.2 (Continuity equation on Z
d
ε ) Fix I ⊂ R an open interval. We say that rrr :

I × Z
d
ε → R+ and uuu : I × Z

d
ε → R

d satisfy the continuity equation on Z
d
ε , and write

(rrr ,uuu) ∈ CEIε,d , ifrrr is continuous,uuu is Borel measurable, and the following discrete continuity
equation is satisfied in the sense of distributions:

∂t rt (z) +
d∑

i=1

(
ut (z) − ut (z − ei )

) · ei = 0, for z ∈ Z
d
ε . (8.1)

Lemma 8.3 (Discrete continuity equation on Z
d
ε ) Let (μ, ν) ∈ CE

I have continuous densi-
ties with respect to the space-time Lebesgue measure on I× T

d . Then (Pεμ, Pεν) ∈ CEIε,d .

Proof This follows readily from the Gauss divergence theorem.

The key idea of the proof of the upper bound in Theorem 5.1 is to start from a (smooth)
solution to the continuous equation CE

I, and to consider the optimal discrete microstructure
of the mass and the flux in each cube Qz

ε . The global candidate is then obtained by gluing
together the optimal microstructures cube by cube.

We start defining the gluing operator. Recall the operator T 0
ε defined in (2.4).

Definition 8.4 (Gluing operator) Fix ε > 0. For each z ∈ Z
d
ε , let

mz ∈ R
X+ and J z ∈ R

E
a
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beZ
d -periodic. Thegluings ofm = (mz)z∈Z

d
ε
and J = (J z)z∈Z

d
ε
are the functionsGεm ∈ R

Xε+
and Gε J ∈ R

Eε
a defined by

Gεm
(
T 0

ε (x)
) := mxz (x) for x ∈ X,

Gε J
(
T 0

ε (x), T 0
ε (y)

) := 1

2

(
J xz (x, y) + J yz (x, y)

)
for (x, y) ∈ E.

(8.2)

Remark 8.5 (Well-posedness) Note that Gεm and Gε J are well-defined thanks to the Z
d
ε -

periodicity of the functions mz and J z .

Remark 8.6 (Mass preservation and KR-bounds) The gluing operation is locally mass-
preserving in the following sense. Let μ ∈ M+(Td) and consider a family of measures
m = (mz)z∈Z

d
ε
⊆ R

X+ satisfying mz ∈ Rep
(
Pεμ(z)

)
for some z ∈ Z

d
ε . Then:

Gεm
(
Xε ∩ {xz = z}

)
= μ(Qz

ε)

for every ε > 0. Consequently,

‖ιεGεmmm − μ‖KR(I×T
d ) ≤ μ

(
I× T

d)√
dε (8.3)

for all weakly continuous curves μ = (μt )t∈I ⊆ M+(Td) and all mmm = (mz
t )t∈I,z∈Z

d
ε
such

that mz
t ∈ Rep

(
Pεμt (z)

)
for all t ∈ I and z ∈ Z

d
ε .

8.1.1 Energy estimates for Lipschitz microstructures

The next lemma shows that the energy of glued measures can be controlled under suitable
regularity assumptions.

Lemma 8.7 (Energy estimates under regularity) Fix ε > 0. For each z ∈ Z
d
ε , let mz ∈ R

X+
and J z ∈ R

E
a be Z

d -periodic functions satisfying:

(i) (Lipschitz dependence): For all z, z̃ ∈ Z
d
ε∥∥mz − mz̃

∥∥
	∞(X)

+ ε
∥∥J z − J z̃

∥∥
	∞(E) ≤ L|z − z̃|εd+1.

(ii) (Domain regularity): There exists a compact and convex set K � D(F)◦ such that, for
all z ∈ Z

d
ε , (

mz

εd
,

J z

εd−1

)
∈ K . (8.4)

Then there exists ε0 > 0 depending only on K , F such that for ε ≤ ε0

Fε

(
Gεm,Gε J

) ≤ ∑
z∈Z

d
ε

εd F

(
mz

εd
,

J z

εd−1

)
+ cε, (8.5)

where c < ∞ depends only on L, the (finite) Lipschitz constant Lip(F; K ), and the locality
radius R1.

Proof Fix z̄ ∈ Z
d
ε . As m is Z

d -periodic, (i) yields for x = (z, v) ∈ XR1 ,

|τ z̄
εGεm(x) − mz̄(x)| = |mz̄+z(x) − mz̄(x)| ≤ L R1ε

d+1, (8.6)
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Similarly, using the Z
d -periodicity of J , (i) yields for (x, y) ∈ E with x = (z, v) ∈ XR1 and

y = (̃z, ṽ) ∈ XR1 ,

|τ z̄
εGε J (x, y) − J z̄(x, y)| =

∣∣∣( 1
2 J z̄+z + 1

2 J z̄+̃z − J z̄
)
(x, y)

∣∣∣ ≤ L R1ε
d . (8.7)

Hence the domain regularity assumption (i i) imply a domain regularity property for the
glued measures, namely

(
τ z̄
εGεm

εd
,
τ z̄
εGε J

εd−1

)
∈ K̃

for all z̄ ∈ Z
d
ε and ε ≤ ε0 := 1

2dist(K , ∂ D(F)) ∈ (0,+∞), where K̃ � D(F)◦ is a slightly
bigger compact set than K .

Consequently, we can use the Lipschitzianity of F on the compact set K̃ and its locality
to estimate the energy as∣∣∣∣F

(
τ z̄
εGεm

εd
,
τ z̄
εGε J

εd−1

)
− F

(
Mz̄

εd
,

J z̄

εd−1

)∣∣∣∣
≤ Lip(F; K̃ )

(‖τ z̄
εGεm − mz̄‖	∞(XR1 )

εd
+ ‖τ z̄

εGε J − J z̄‖	∞(ER1 )

εd−1

)
,

where XR := {x ∈ X |x |	d∞ ≤ R} and ER := {(x, y) ∈ E |x |	d∞ , |y|	d∞ ≤ R}.
Combining the estimate above with (8.6) and (8.7), we conclude that∣∣∣∣F

(
τ z̄
εGεm

εd
,
τ z̄
εGε J

εd−1

)
− F

(
Mz̄

εd
,

J z̄

εd−1

)∣∣∣∣ ≤ 2L R1Lip(F; K̃ )ε.

for ε ≤ ε0. Summation over z̄ ∈ Z
d
ε yields the desired estimate (8.5).

We now introduce the notion of optimal microstructure associated with a pair of measures
(μ, ν) ∈ M+(Td) ×Md(Td). First, let us define regular measures.

Definition 8.8 (Regular measures) We say that (μ, ν) ∈ M+(Td) ×Md(Td) is a regular
pair of measures if the following properties hold:

(i) (Lipschitz regularity): With respect to the Lebesgue measure on T
d , the measures μ and

ν have Lipschitz continuous densities ρ and j respectively.
(ii) (Compact inclusion): There exists a compact set K̃ � D( fhom)◦ such that(

ρ(x), j(x)
) ∈ K̃ for all x ∈ T

d .

We say that (μt , νt )t∈I ⊆ M+(Td)×Md(Td) is a regular curve of measures if (μt , νt ) are
regular measures for every t ∈ I and t �→ (ρt (x), jt (x)) is measurable for every x ∈ T

d .

Definition 8.9 (Optimal microstructure) Let (μ, ν) ∈ M+(Td)×Md(Td) be a regular pair
of measures.

(i) We say that (mz, J z)z∈Z
d
ε
⊆ R

X+ × R
E
a is an admissible microstructure for (μ, ν) if

(mz, J z) ∈ Rep
(
Pεμ(z)

εd
,
Pεν(z)

εd−1

)

for every z ∈ Z
d
ε .
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(ii) If, additionally, (mz, J z) ∈ Repo

(
Pεμ(z)

εd ,
Pεν(z)
εd−1

)
for every z ∈ Z

d
ε , we say that

(mz, J z)z∈Z
d
ε
is an optimal microstructure for (μ, ν).

Remark 8.10 (Measurable dependence) If t �→ (μt , νt ) is a measurable curve inM+(Td)×
Md(Td), it is possible to select a collection of admissible (resp. optimal) microstructures
that depend measurably on t . This follows from Lemma 4.7; see e.g. [38, Theorem 14.37].
In the sequel, we will always work with measurable selections.

The next proposition shows that each optimal microstructures associated with a regular
pair of measures (μ, ν) has discrete energy which can be controlled by the homogenised
continuous energy Fhom(μ, ν).

Proposition 8.11 (Energy bound for optimal microstructures) Let (mz, J z)z∈Z
d
ε
⊆ R

X+×R
E
a

be an optimal microstructure for a regular pair of measures (μ, ν) ∈ M+(Td)×Md(Td).
Then:

∑
z∈Z

d
ε

εd F

(
mz

εd
,

J z

εd−1

)
≤ Fhom(μ, ν) + Cε,

where C < ∞ depends only on Lip( fhom; K̃ ) and the modulus of continuity of the densities
ρ and j of μ and ν.

Proof Let us denote the densities of μ and ν by ρ and j respectively. Using the regularity of
μ and ν, and the fact that fhom is Lipschitz on K̃ , we obtain

∑
z∈Z

d
ε

εd F

(
mz

εd
,

J z

εd−1

)
=

∑
z∈Z

d
ε

εd fhom

(
Pεμ(z)

εd
,
Pεν(z)

εd−1

)
≤
ˆ

T
d

fhom(ρt (a), jt (a)) da + Cε,

which is the desired estimate.

Remark 8.12 (Lack of regularity) Suppose that m̂ := Gεm and Ĵ := Gε J are constructed
by gluing the optimal microstructure (m, J ) = (mz, J z)z∈Z

d
ε
from the previous lemma. It is

then tempting to seek for an estimate of the form

Fε(m̂, Ĵ ) ≤
∑
z∈Z

d
ε

εd F

(
mz

εd
,

J z

εd−1

)
+ {small error}.

However, (m, J ) does not have the required a priori regularity estimates to obtain such a
bound. Moreover, the gluing procedure does not necessarily produce solutions to the discrete
continuity equation if we start with solutions to the continuous continuity equation.

We conclude the subsection with the following L1 and L∞ estimates.

Lemma 8.13 (L1 and L∞ estimates) Let (μt , νt )t∈I ⊂ M+(Td) ×Md(Td) be a regular
curve of measures satisfying

M := sup
t∈I

μt (T
d) < ∞ and A := A

I
hom(μ, ν) < ∞. (8.8)

Let (mz
t , J z

t )z∈Z
d
ε
⊆ M+(Td) ×Md(Td) be corresponding optimal microstructures. Then:

(i) (Pεμ,Pεν) satisfies the uniform estimate

sup
ε>0

sup
t∈I

‖Pεμt‖	1(Zd
ε ) = M . (8.9)
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(ii) (mt , Jt )t∈I satisfies the uniform estimate

sup
ε>0

sup
(t,x)∈I×X

∑
z∈Z

d
ε

mz
t (x) ≤ M (8.10)

sup
ε>0

sup
(x,y)∈E

ε

ˆ
I

∑
z∈Z

d
ε

∣∣J z
t (x, y)

∣∣ dt � A + M . (8.11)

Proof The first claim follows since ‖Pεμt‖	1(Zd
ε ) = μt (T

d) by construction.
To prove (i i), note that

∑
z∈Z

d
ε

∑
x∈XQ

mz
t (x) =

∑
z∈Z

d
ε

Pεμ(z) = μt (T
d),

which yields (8.10).
To prove (8.11), we use the growth condition on F , the periodicity of J z

t , and (i) to obtain
for (x, y) ∈ E and t ∈ I:

ε
∑
z∈Z

d
ε

∣∣J z
t (x, y)

∣∣ ≤ ∑
z∈Z

d
ε

εd
∑

(̃x ,̃y)∈EQ

∣∣∣∣ J z
t (̃x, ỹ)

εd−1

∣∣∣∣ �
∑
z∈Z

d
ε

εd F
(mz

t

εd
,

J z
t

εd−1

)
+ M

�
ˆ

T
d

fhom
( dμt

dx
,
d jt
dx

)
dx + M,

where in the last inequality we applied Proposition 8.11. Integrating in time and taking the
supremum in space and ε > 0, we obtain (8.11).

8.2 Approximation result

The goal of this subsection is to show that despite the issues outlined in Remark 8.12, we
can find a solution to CEIε with almost optimal energy that is ‖ · ‖KR-close to a glued optimal
microstructure.

In the following result, Iη = (a − η, b + η) denotes the η-extension of the open interval
I = (a, b) for η > 0.

Proposition 8.14 (Approximation of optimal microstructures) Let (μ, ν) ∈ CE
Iη be a reg-

ular curve of measures sastisfying

M := μ0(T
d) < ∞ and A := A

Iη

hom(μ, ν) < ∞.

Let (mz
t , J z

t )t∈I,z∈Z
d
ε
⊆ R

X+ × R
E
a be a measurable family of optimal microstructures asso-

ciated to (μt , νt )t∈I and consider their gluing (m̂t , Ĵt )t∈I ⊆ R
Xε+ × R

Eε
a . Then, for every

η′ > 0, there exists ε0 > 0 such that the following holds for all 0 < ε ≤ ε0: there exists a
solution (mmm∗, JJJ ∗) ∈ CEIε satisfying the bounds

(measure approximation) ‖ιε(m̂mm −mmm∗)‖KR(I×T
d ) ≤ η′, (8.12a)

(action approximation) AI
ε (mmm

∗, JJJ ∗) ≤ A
I
hom(μ, ν) + η′ + Cε, (8.12b)

where C < ∞ depends on M, A, |I|, and η′, but not on ε.
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Remark 8.15 It is also true that

AI
ε (mmm

∗, JJJ ∗) ≤ AI
ε (m̂mm, ĴJJ ) + η′ + Cε,

but this information is not “useful”, as we do not expect to be able to control AI
ε (m̂mm, ĴJJ ) in

terms of A
I
hom(μ, ν); see also Remark 8.12.

The proof consists of four steps: the first one is to consider optimal microstructures asso-
ciated with (μ, ν) on every scale ε > 0 and glue them together to obtain a discrete curve
(mmm∗, JJJ ∗) (we omit the ε-dependence for simplicity). The second step is the space-time reg-
ularisation of such measures in the same spirit as done in the proof of Proposition 7.1.
Subsequently, we aim at finding suitable correctors in order to obtain a solution to the con-
tinuity equation and thus a discrete competitor (in the definition of Aε). Finally, the energy
estimates conclude the proof of Proposition 8.14.

Let us first discuss the third step, i.e. how to find small correctors for (mmm∗, JJJ ∗) in order
to obtain discrete solutions to CEIε which are close to the first ones. Suppose for a moment
that (mmm∗, JJJ ∗) are "regular", as in the outcome of Proposition 7.1. Then the idea is to consider
how far they are from solving the continuity equation, i.e. to study the error in the continuity
equation

gt (x) := ∂t m
∗
t (x) + div J ∗

t (x), x ∈ Xε,

and find suitable (small) correctors ˜J to JJJ ∗ in such a way that (mmm∗, JJJ ∗ + J̃JJ ) ∈ CEIε .
This is based on the next result, which is obtained on the same spirit of Lemma 7.3

in a non-periodic setting. In this case, we are able to ensure good 	∞-bounds and support
properties.

Lemma 8.16 (Bounds for the divergence equation) Let g : Xε → R with
∑

x∈Xε
g(x) = 0.

There exists a vector field J : Eε → R such that

div J = g and ‖J‖	∞(Eε) ≤ 1
2‖g‖	1(Xε)

. (8.13)

Moreover, supp V ⊆ conv supp g + BCε with C depending only on X.

Proof Let g+ be the positive part of g, and let g− be the negative part. By assumption, these
functions have the same 	1-norm N := ‖g−‖	1(Xε)

= ‖g+‖	1(Xε)
. Let � be an arbitrary

coupling between the discrete probability measures g−/N and g+/N .
For any x, y ∈ supp g: take an arbitrary path Pxy connecting these two points. Let Jx y be

the unit flux field constructed in Definition 4.4. Then the vector field J := ∑
x,y �(x, y)Jxy

has the desired properties. ��
Remark 8.17 (Measurability) It is clear from the previous proof that one can choose the
vector field J : Eε → R in such a way that the function g �→ J is a measurable map.

The plan is to apply Lemma 8.16 to a suitable localisation of gt , in each cube Qz
ε, for

every z ∈ Z
d
ε . Precisely, the goal is to find gt (z; ·) for every z ∈ Z

d
ε such that∑

z∈Z
d
ε

gt (z; x) = gt (x),
∑
x∈Xε

gt (z; x) = 0, (8.14)

which is small on the right scale, meaning

supp gt (z; ·) ⊂ B∞(z, Rε), ‖gt (z; ·)‖∞ ≤ Cεd . (8.15)
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Remark 8.18 Note that
∑

x∈Xε
gt (x) = 0 for all t ∈ I, since mmm∗ has constant mass in time

and JJJ ∗ is skew-symmetric. However, an application of Lemma 8.16 without localisation
would not ensure a uniform bound on the corrector field, as we are not able to control the
	1-norm of gt a priori.

Remark 8.19 A seemingly natural attempt would be to define gt (z; x) := gt (x)1{z}(xz).
However, this choice is not of zero-mass, due to the flow of mass across the boundary of the
cubes.

Recall that we use the notation (rrr ,uuu) ∈ CEIε,d to denote solutions to the continuity equation
on Z

d
ε in the sense of Definition 8.2. We shall later apply Lemma 8.22 to the pair (rrr ,uuu) =

(Pεμ,Pεν) ∈ CEIε,d , thanks to Lemma 8.3.

The notion of shortest path in the next definition refers to the 	1-distance on Z
d
ε .

Definition 8.20 For all z′, z′′ ∈ Z
d
ε , we choose simultaneously a shortest path p(z′, z′′) :=

(z0, . . . , zN ) of nearest neighbors in Z
d
ε connecting z0 = z′ to zN = z′′ such that p(z′ +

z̃, z′′ + z̃) = p(z′, z′′)+ z̃ for all z̃ ∈ Z
d
ε . Then define for z, z′, z′′ ∈ Z

d
ε and i = 1, . . . , d the

signs σ
z;z′,z′′
i ∈ {−1, 0, 1} as

σ
z;z′,z′′
i :=

⎧⎪⎨
⎪⎩
−1 if (zk−1, zk) = (z, z − ei ) for some k within p(z′, z′′),
1 if (zk−1, zk) = (z − ei , z) for some k within p(z′, z′′),
0 otherwise.

Note that since the paths p(z′, z′′) are simple, each pair of nearest neighbours appears at

most once in any order, so that σ z;z′,z′′
i is well-defined.

It follows readily from Definition 8.20 that∑
z∈Z

d
ε

σ
z;z′,z′′
i = (z′′ − z′) · ei (8.16)

for all z′, z′′ ∈ Z
d
ε and i = 1, . . . , d .

Remark 8.21 A canonical choice of the paths p(z′, z′′) is to interpolate first between z′1 ∈ Z
1
ε

and z′′1 ∈ Z
1
ε one step at a time, then between z′2 and z′′2, and so on. The precise choice of path is

irrelevant to our analysis as long as paths are short and satisfy p(z′+ z̃, z′′+ z̃) = p(z′, z′′)+ z̃.
Since the paths are invariant under translations, so are the signs, i.e.

σ
z;z′+̃z,z′′+̃z
i = σ

z−̃z;z′,z′′
i (8.17)

for all z, z̃, z′, z′′ ∈ Z
d
ε , which is used in the prof of Lemma 8.22 below.

Lemma 8.22 shows that if we start from a solution to the continuity equation (μ, ν) ∈
CE

I and consider an admissible microstructure (mmm, JJJ ) = (mz
t , J z

t )t∈I,z∈Z
d
ε
associated to

(Pεμ,Pεν), then it is possible to localise the error in the continuity equation arising from the
gluing (GεMMM,GεUUU ) as in (8.14).

Lemma 8.22 (Localisation of the error to CEIε ) Let (rrr ,uuu) ∈ CEIε,d and suppose that mt :=
(mz

t )z∈Z
d
ε
⊆ R

X+ and Jt := (J z
t )z∈Z

d
ε
⊆ R

E
a satisfy

(mz
t , J z

t ) ∈ Rep
(
rt (z), ut (z)

)
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for every t ∈ I and z ∈ Z
d
ε . Consider their gluings m̂t := Gεmt and Ĵt := Gε Jt and define,

for z ∈ Z
d
ε and x ∈ Xε ,

gt (x) := ∂t m̂t (x) + div Ĵt (x), (8.18)

gt (z; x) := ∂t m̂t (x)1{z}(xz) + 1

2

∑
y∼x

d∑
i=1

σ
z;xz,yz
i

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)
, (8.19)

where J̃t (z; ·) : Eε → R is the T
d
ε -periodic map satisfying J̃t

(
z; T 0

ε (x ′), T 0
ε (y′)

) = J z
t (x ′, y′)

for all (x ′, y′) ∈ E. Then the following statements hold for every t ∈ I:

(i) gt (z; x) is a localisation of the error gt (x) of (m̂, Ĵ ) from solving CEIε , i.e.,

∑
z∈Z

d
ε

gt (z; x) = gt (x) for all x ∈ Xε.

(ii) Each localised error gt (z; ·) has zero mass, i.e.,

∑
x∈Xε

gt (z; x) = 0 for all z ∈ Z
d
ε .

Proof (i): For (x, y) ∈ Eε , consider the path p(xz, yz) = (z0, . . . , zN ) constructed in
Definition 8.20. For all t ∈ I we have

∑
z∈Z

d
ε

d∑
i=1

σ
z;xz,yz
i

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)

=
N∑

k=1

(
J̃t (zk; x, y) − J̃t (zk−1; x, y)

)
= J̃t (yz; x, y) − J̃t (xz; x, y).

Summation over all neighbours of x ∈ Xε yields, for all t ∈ I,

∑
z∈Z

d
ε

gt (z; x) = ∂t mt (x) + 1

2

∑
y∼x

∑
z∈Z

d
ε

d∑
i=1

σ
z;xz,yz
i

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)

= ∂t mt (x) + 1

2

∑
y∼x

(
J̃t (yz; x, y) − J̃t (xz; x, y)

)

= ∂t mt (x) + 1

2

∑
y∼x

(
J̃t (yz; x, y) + J̃t (xz; x, y)

)
= gt (x),

where we used the Z
d -periodicity of (X, E) and the vanishing divergence of J xz

t .
(i i): Fix z ∈ Z

d
ε and t ∈ I. Using the periodicity of J̃t (z; ·), the identity (8.17), the group

structure of Z
d
ε , the relation between J̃ and J , the fact that J z

t ∈ Rep
(
ut (z)

)
, and the identity
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(8.16), we obtain

∑
(x,y)∈Eε

d∑
i=1

σ
z;xz,yz
i

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)

=
∑

(x,y)∈Eε
xz=z

∑
z̃∈Z

d
ε

d∑
i=1

σ
z;xz+̃z,yz+̃z
i

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)

=
∑

(x,y)∈Eε
xz=z

∑
z̃∈Z

d
ε

d∑
i=1

σ
z−̃z;xz,yz
i

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)

=
∑

(x,y)∈Eε
xz=z

d∑
i=1

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)
⎛
⎝ ∑

z̃∈Z
d
ε

σ
z̃;xz,yz
i

⎞
⎠

=
∑

(x ′,y′)∈EQ

d∑
i=1

(
J z

t (x ′, y′) − J z−ei
t (x ′, y′)

)
(y′z − x ′z) · ei

= 2
d∑

i=1

(
ut (z) − ut (z − ei )

) · ei .

By definition of gt (z; ·) we obtain

∑
x∈Xε

gt (z; x) =
∑
x∈Xε
xz=z

∂t mt (x) + 1

2

d∑
i=1

∑
(x,y)∈Eε

σ
z;xz,yz
i

(
J̃t (z; x, y) − J̃t (z − ei ; x, y)

)

= ∂t rt (z) +
d∑

i=1

(
ut (z) − ut (z − ei )

) · ei = 0,

where we used that mz
t ∈ Rep

(
rt (z)

)
and eventually that (rrr ,uuu) ∈ CEIε,d .

Now we are ready to prove Proposition 8.14.

Proof of Proposition 8.14 The proof consists of four steps. For simplicity: I := Iη.
Step 1: Regularisation. Recall the operators Rδ , Sλ, and Tτ as defined in Sect. 7.1. We define

mmm∗ :=
(

Rδ ◦ Sλ ◦ Tτ

)
m̂mm and J̄JJ

∗ :=
(

Rδ ◦ Sλ ◦ Tτ

)
ĴJJ ,

where δ, λ > 0, 0 < τ < η will be chosen sufficiently small, depending on the desired
accuracy η′ > 0. Due to special linear structure of the gluing operator Gε , it is clear that

mmm∗ = Gεmmm and J̄JJ
∗ = Gε J̄JJ ,

for some
(
mmm, J̄JJ

) = (mz
t , J̄ z

t )t∈I,z∈Z
d
ε
. More precisely, they correspond to the regularised ver-

sion of the measures (mz
t , J z

t )t∈I,z∈Z
d
ε
with respect to the graph structure of Z

d
ε . In particular,
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an application4 of Lemma 8.13, Lemma 7.6, and Lemma 7.7 yields

sup
t∈I

∥∥m·+z
t − mt

∥∥
	∞(Zd

ε×X)
+ ε

∥∥ J̄ ·+z
t − J̄t

∥∥
	∞(Zd

ε×E) ≤ C |z|εd+1,

sup
t∈I

∥∥∂t mt
∥∥

	∞(Zd
ε×X)

≤ Cεd ,
(8.20)

for any z ∈ Z
d
ε , as well as the domain regularity

{(
mz

t

εd
,

J̄ z
t

εd−1

)
: z ∈ Z

d
ε , t ∈ I

}
⊂ K � (D F)◦, (8.21)

for a constant C and a compact set K depending only on M , A, δ, λ, and τ . We can then
apply Lemma 8.7 and deduce that for every t ∈ I, ε ≤ ε0 (depending on K and F),

Fε

(
m∗

t , J̄ ∗
t

) ≤ ∑
z∈Z

d
ε

εd F

(
mz

t

εd
,

J̄ z
t

εd−1

)
+ cε, (8.22)

for a c ∈ R
+ depending on the same set of parameters (via C and Lip(F; K )) and R1.

Step 2: Construction of a solution to CEIε . From now on, the constant C appearing in the
estimates might change line by line, but it always depends on the same set of parameters as
the constant C in Step 1, and possibly on the size of the time interval |I|.

The next step is to find a quantitative small corrector VVV in such a way that (mmm∗, J̄JJ
∗ +VVV ) ∈

CEIε . To do so, we observe that by construction we have for every t ∈ I(
mz

t , J̄ z
t

)
∈ Rep

(
r∗t (z), u∗t (z)

)
,

where (rrr∗,uuu∗) ∈ CEIε,d (by the linearity of equation (8.1)). Consider the corresponding error

functions, for (x, y) ∈ Eε , t ∈ I, z ∈ Z
d
ε given by (8.18) and (8.19),

gt (x) := ∂t m
∗
t (x) + div J̄ ∗

t (x),

gt (z; x) := ∂t m
∗
t (x)1{xz=z}(x) + 1

2

∑
y∼x

d∑
i=1

σ
z;xz,yz
i ( J̃ (z; x, y) − J̃ (z − ei ; x, y)),

where J̃ (z; ·) : Eε → R is theT
d
ε -periodicmap satisfying J̃ (z; T 0

ε (x ′), T 0
ε (y′)) = J̄ z

t (x ′, y′),
for any (x ′, y′) ∈ E. Thanks to Lemma 8.22, we know that∑

x∈Xε

gt (z; x) = 0,
∑

z′∈Z
d
ε

gt (z
′; x) = gt (x), ∀x ∈ Xε, z ∈ Z

d
ε .

Moreover, from the regularity estimates (8.20) and the local finiteness of the graph (X, E),
we infer for every z ∈ Z

d
ε

‖gt (z; ·)‖	∞(Xε)
≤ Cεd , supp gt (z; ·) ⊂ {x ∈ Xε : ‖xz − z‖	∞(Zd

ε ) ≤ C ′}, (8.23)

where C ′ only depends on (X, E). Hence, as an application of Lemma 8.16, we deduce the

existence of corrector vector fields Vt ∈ R
Z

d
ε×Eε

a such that

div Vt (z; ·) = gt (z; ·) , supp Vt (z; ·) ⊂ {(x, y) ∈ Eε : ‖xz − z‖	∞(Zd
ε ) ≤ C̃ ′},

‖Vt (z; ·)‖	∞(Eε) ≤ 1
2‖gt (z; ·)‖	1(Xε)

≤ Cεd ,
(8.24)

4 To be precise, this is an application of these lemmas to the case of V := {v}, thus Xε ! Z
d
ε .
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for every t ∈ I, z ∈ Z
d
ε . The existence of a measurable (in t ∈ I and z ∈ Z

d
ε ) map Vt (z; ·)

follows from the measurability of gt (z; ·) and Remark 8.17.
We then define VVV : I → R

Eε
a and JJJ ∗ : I → R

Eε
a as

VVV :=
∑
z∈Z

d
ε

VVV (z; ·), JJJ ∗ := J̄JJ
∗ + VVV ,

and obtain a solution to the discrete continuity equation (mmm∗, JJJ ∗) ∈ CEIε .
Step 3: Energy estimates. The locality property (8.24) of Vt (z; ·) and local finiteness of the
graph (X, E) allow us to deduce the same uniform estimates on the global corrector as well.
Indeed for every t ∈ I, x ∈ Xε we have

Vt (x, y) :=
∑

z∈B∞(xz;C̃ ′)
V (z; x, y), B∞(xz; C̃ ′) :=

{
z ∈ Z

d
ε : ‖z − xz‖	∞(Zd

ε ) ≤ C̃ ′} ,

and hence from the estimate (8.24) we also deduce ‖VVV ‖	∞(I×Eε) ≤ Cεd .

Since (8.21) implies that

(
τ z
ε m∗

t

εd
,
τ z
ε J̄ ∗

t

εd−1

)
∈ K , it then follows that

(
τ z
ε m∗

t

εd
,
τ z
ε J ∗

t

εd−1

)
∈ K ′

for 0 < ε ≤ ε0 sufficiently small, where ε0 depends on K and C . Here K ′ is a compact set,
possibly slightly larger than K , contained in D(F)◦.

Therefore, we can estimate the energy

sup
t∈I

sup
z∈Z

d
ε

∣∣∣∣F

(
τ z
ε m∗

t

εd
,
τ z
ε J̄ ∗

t

εd−1

)
− F

(
τ z
ε m∗

t

εd
,
τ z
ε J ∗

t

εd−1

)∣∣∣∣ ≤ Lip(F; K ′) 1

εd−1 ‖VVV ‖	∞(I×Eε) ≤ Cε,

and hence AI
ε

(
mmm∗, JJJ ∗) ≤ AI

ε

(
mmm∗, J̄JJ

∗) + Cε. Together with (8.22), this yields

AI
ε

(
mmm∗, JJJ ∗) ≤

ˆ
I

∑
z∈Z

d
ε

εd F

(
mz

t

εd
,

J̄ z
t

εd−1

)
dt + Cε.

Finally, to control the action of the regularised microstructures (m̄mm, J̄JJ ), we take advantage
(as in (7.16)) of Lemma 7.5, Lemma 7.6 (i), and Lemma 7.7 (i) to obtain5

ˆ
I

∑
z∈Z

d
ε

εd F

(
mz

t

εd
,

J̄ z
t

εd−1

)
dt ≤

ˆ
I

 t+τ

t−τ

∑
z∈Z

d
ε

εd F

(
mz

s

εd
,

J z
s

εd−1

)
ds dt + δ|I|F(m◦, J ◦)

≤
ˆ
I

 t+τ

t−τ

Fhom(μs, νs) ds dt + δ|I|F(m◦, J ◦) + c′ε

≤
ˆ
I

Fhom(μt , νt ) dt + δ|I|F(m◦, J ◦) + c′(ε + τ),

for a c′ < ∞, where at last we used Proposition 8.11 and that fhom is Lipschitz on K̃ .
For every given η′ > 0, the action bound (8.12b) then follows choosing τ, δ > 0 small

enough.
Step 4: Measures comparison. We have seen in (7.15) that Lemma 7.8 implies

‖ιεmmm∗ − ιεm̂mm‖KR([0,T ]×T
d ) � M(τ +√

λ + δ) + m◦(XQ)δ,

where we also used that mass preservation of the gluing operator, see Remark 8.6. For every
η′ > 0, the distance bound (8.12a) can be then obtained choosing τ , λ, δ sufficiently small.

5 As before, it’s an application of these lemmas on Z
d
ε (corresponding to V = {v}).

123



143 Page 56 of 75 P. Gladbach et al.

8.3 Proof of the upper bound

This subsection is devoted to the proof of the limsup inequality in Theorem 5.1. First we
formulate the existence of a recovery sequence in the smooth case.

Proposition 8.23 (Existence of a recovery sequence, smooth case) Fix I = (a, b), a < b,
η > 0, and set Iη := (a − η, b + η). Let (μ, ν) ∈ CE

Iη be a solution to the continuity
equation with smooth densities (ρt , jt )t∈Iη and such that

A
Iη

hom(μ, ν) < ∞ and
{(

ρt (x), jt (x)
) : (t, x) ∈ Iη × T

d
}

� D( fhom)◦. (8.25)

Then there exists a sequence of curves (mε
t )t∈I ⊆ R

Xε+ such that ιεmmmε → μ|I×T
d weakly in

M+(I× T
d) as ε → 0 and

lim sup
ε→0

AI
ε (mmm

ε) ≤ A
Iη

hom(μ, ν) + Cη|I|(μ0(T
d) + 1

)
, (8.26)

for some C < ∞.

Proof We write KRI := KR(I × T
d). Let (μ, ν) ∈ CE

Iη be smooth curves of measures
satisfying the assumptions (8.25). Let (m̂mm, ĴJJ ) be the gluing of a measurable family of optimal
microstructure associated with (μ, ν), for every ε > 0. For every η′ > 0, Proposition 8.14
yields the existence of (mmmη′ , JJJ η′) ∈ CEIε , a constant Cη′ , and ε0 = ε0(η

′) depending on η′
such that

‖ιε(mmmη′ − m̂mm)‖KRI ≤ η′, Aε(mmm
η′ , JJJ η′) ≤ Ahom(μ, ν) + η′ + εCη′ ,

for every ε ≤ ε0.
Using Remark 8.6, in particular (8.3), and that (mmmη′ , JJJ η′) ∈ CEIε , we infer

‖ιε(mmmη′) − μ‖KRI ≤ η′ + μ(I× T
d)εd , Aε(mmm

η′) ≤ Ahom(μ, ν) + η′ + εCη′ .

for every ε ≤ ε0. Therefore, we can find a diagonal sequence η′ = η′(ε) → 0 as ε → 0 such
that, if we set mmmε := mmmη′(ε), we obtain

lim
ε→0

‖ιε(mmmε) − μ‖KRI = 0,

lim sup
ε→0

AI
ε (mmm

ε) ≤ A
I
hom(μ, ν) ≤ A

Iη

hom(μ, ν) + Cη|I|(μ0(T
d) + 1),

where at last we used the growth condition (3.2). ��
In order to apply Proposition 8.23 for the existence of the recovery sequence in Theorem

5.1 we prove that the set of solutions to the continuity equation (3.4) with smooth densities
are dense-in-energy for A

I
hom.

Definition 8.24 (Affine change of variable in time) Fix I = (a, b). For any η > 0, we
consider the unique bijective increasing affine map Sη : I → (a − 2η, b + 2η). For every
interval Ĩ ⊆ I and every vector-valued measure ξ ∈ Mn (̃I × T

d), n ∈ N, we define the
changed-variable measure

Sη[ξ ] ∈ Mn(Sη(̃I) × T
d), Sη[ξ ] := |I| + 4η

|I|
(
Sη, id

)
#ξ . (8.27)
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Remark 8.25 (Properties of Sη) The scaling factor of Sη[ξ ] is chosen so that if ξ � L d+1,
then Sη[ξ ] � L d+1 and we have for (t, x) ∈ Sη(̃I) × T

d the equality of densities

dSη[ξ ]
dL d+1 (t, x) = dξ

dL d+1 ((Sη)−1(t), x). (8.28)

Moreover, if (μ, ν) ∈ CE
I then

( |I|+4η
|I| Sη[μ],Sη[ν]) ∈ CE

Sη(I).

We are ready to state and prove the last result of this section.

Proposition 8.26 (Smooth approximation of finite action solutions to CE
I) Fix I := (a, b)

and fix (μ, ν) ∈ CE
I with Ahom(μ, ν) < ∞. Then there exists a sequence {ηk}k ⊂ R

+ such
that ηk → 0 as k → ∞ and measures (μk, νk) ∈ CE

Ik for Ik := (a − ηk, b + ηk) so that
as k → ∞

(μk, νk) → (μ, ν) weakly in M+
(
I× T

d) ×Md(
I× T

d)
, (8.29)

dμk

dL d+1 ∈ C∞b
(
Ik × T

d)
,

dνk

dL d+1 ∈ C∞b
(
Ik × T

d ;R
d)

, (8.30)

and such that the following action bound holds true:

lim sup
k→∞

A
Ik
hom(μk, νk) ≤ A

I
hom(μ, ν). (8.31)

Moreover, for any given k ∈ N we have the inclusion

{( dμk

dL d+1 (t, x),
dνk

dL d+1 (t, x)
)
: (t, x) ∈ Ik × T

d
}

� (D fhom)◦. (8.32)

Proof Without loss of generality we can assume fhom ≥ 0, if not we simply consider
g(ρ, j) = fhom(ρ, j) + Cρ + C for C ∈ R+ as in Lemma 3.14. For simplicity, we also
assume I := (0, T ), the extension to a generic interval is straightforward.

Fix (μ, ν) ∈ CE
T with Ahom(μ, ν) < ∞.

Step 1: regularisation. The first step is to regularise in time and space. To do so, we consider
two sequences of smooth mollifiers ϕk

1 : R → R+, ϕk
2 : T

d → R for k ∈ N of integral 1,
where suppϕk

1 = [−αk, αk], suppϕk
2 = B 1

k
(0) ⊂ T

d with αk → 0 as k → ∞ to be suitably

chosen. We then set ϕk : R × T
d → R+ as ϕk(t, x) := ϕk

1(t)ϕ
k
2(x).

We define space-time regular solutions to the continuity equation as

(m̃mmuk, ν̃k) := ϕk ∗ (μ, ν) ∈ CE
(αk ,T−αk ),

(m̂mmuk, ν̂k) :=
( T + 4ηk

T
Sηk [m̃mmuk],Sηk [̃νk]

)
∈ CE

Ik ,

where Ik := Sηk
(
(αk, T −αk)

)
. Note that the mollified measures are defined onlyWe choose

αk := T ηk
T+4ηk

, so that Ik = (−ηk, T + ηk).
Finally, for (ρ◦, j◦) as given in (4.8), we define

(μk, νk) := (1− δk)(m̂mmuk, ν̂k) + δk(ρ
◦, j◦)L d+1 ∈ CE

Ik , (8.33)

for some suitable choice of ηk, δk → 0.
Step 2: Properties of the regularised measures. First of all, we observe that (μk, νk) � L d+1

with smooth densities for every k ∈ N, so that (8.30) is satisfied. Secondly, the convergence
(8.29) easily follows by the properties of the mollifiers and the fact that Sη → id uniformly
in (0, T ) as η → 0.
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Moreover, we note that for t > 0, using that μt (T
d) is constant on (0, T ) one gets

sup
t∈(αk ,T−αk )

∥∥∥ dμ̃k
t

dx

∥∥∥∞ ≤ ‖ϕk
2‖∞μ

(
(0, T ) × T

d) =: Ck < +∞,

∥∥∥ d̃νk

dL d+1

∥∥∥∞ ≤ ‖ϕk‖∞|ν|((0, T ) × T
d)

< ∞,

(8.34)

and thanks to (8.28) an analogous uniform estimate holds true for (μ̂k, ν̂k) too. We
can then apply Lemma C.1 and find convex compact sets Kk ⊂ (D fhom)◦ such that{( dμk

dL d+1 (·), dνk

dL d+1 (·)
)}

⊂ Kk , so that (8.32) follows.

Additionally, pick θ > 0 such that B◦ := B((ρ◦, j◦), θ) ⊂ (D fhom)◦. From (8.28), if
one sets Sk := Sηk , we see that

( dμk

dL d+1 ,
dνk

dL d+1

)
(t, x) = (1− δk)

( dμ̃k

dL d+1 ,
dμ̃k

dL d+1

)
(S−1

k (t), x) + δk(ρ̃
k
t (x), j◦)

(8.35)

for t ∈ Ik and x ∈ T
d , where the functions ρ̃k are given by

ρ̃k
t (x) := ρ◦ + 1− δk

δk
2ηk

dμ̃k

dL d+1 (S−1
k (t), x).

We choose δk such that θδk > 2ηkCk and from (8.34) we get that

(ρ̃k
t (x), j◦) ∈ B◦, ∀t ∈ Ik, x ∈ T

d , k ∈ N. (8.36)

For example we can pick ηk := (4kCk)
−1 and θδk = k−1, both going to zero when

k → +∞.
Step 3: action estimation. As the next step we show that

A
(αk ,T−αk )
hom

(
μ̃k, ν̃k) ≤ A

T
hom(μ, ν), ∀k ∈ N. (8.37)

One can prove (8.37) using e.g. the fact [10] that for every interval I the action A
I
hom is

the relaxation of the functional

(μ, ν) �→
⎧⎨
⎩
ˆ
I×T

d
fhom

(
dμ

dL d+1 ,
dν

dL d+1

)
dL d+1, if (μ, ν) � dL d+1,

+∞, otherwise,

for which (8.37) follows from the convexity and nonnegativity of fhom and the properties of
the mollifiers ϕk .

We shall then estimate the action of (μk, νk). From (8.35) and (8.36), using the convexity
of fhom and the definition of the map Sη, we obtain

A
Ik
hom(μk, νk) − (1+ 2ηk)δk sup

B◦
fhom

≤ (1− δk)

ˆ

Ik×T
d

fhom
( dμ̃k

dL d+1 (S−1
k (t), x),

d̃νk

dL d+1 (S−1
k (t), x)

)
dL d+1

≤ (1− δk)(1+ 4ηk)A
(αk ,T−αk )
hom (μ̃k, ν̃k) ≤ (1− δk)(1+ 4ηk)A

T
hom(μ, ν),
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where in the last inequality we used (8.37). Taking the limsup in k → ∞
lim sup
k→+∞

A
Ik
hom(μk, νk) ≤ A

T
hom(μ, ν) (8.38)

which concludes the proof of (8.31).

Now we are ready to prove the limsup inequality (5.2) in Theorem 5.1.

Proof of Theorem 5.1 (upper bound) Fix μ ∈ M+
(
I × T

d)
. By definition of A

I
hom(μ), it

suffices to prove that for every ν ∈ Md(I×T
d) such that (μ, ν) ∈ CE

T and A
I
hom(μ, ν) <

+∞, we can find mmmε : I → R
Xε+ such that ιεmmmε → μ weakly in M+(I × T

d) and
lim supε AI

ε (mmm
ε) ≤ A

I
hom(μ, ν).

For any such (μ, ν), we apply Proposition 8.26 and find a smooth sequence (μk, νk)k ∈
CE

I(k) where I(k) = (−ηk, T + ηk), where ηk → 0 and such that (8.31) and (8.32) hold
with (μk, νk) → (μ, ν) weakly inM+(I× T

d)×Md(I× T
d) as k → +∞. In particular

sup
k∈N

sup
t∈I

μk
t (T

d) = sup
k∈N

μk
0(T

d) < ∞. (8.39)

Hencewe can apply Proposition 8.23 and findmmmε,k ∈ M+(I×T
d) such that ιεmmmε,k → μk

weakly in M+(I× T
d) and for each k ∈ N,

lim sup
ε→0

AI
ε (mmm

ε,k) ≤ A
I(k)
hom(μk, νk) + Cηk |I|

(
μk
0(T

d) + 1
)
. (8.40)

We conclude by extracting a subsequence mmmε := mmmε,k(ε) such that ιεmmmε → μ weakly in
M+(I× T

d) as ε → 0 and from (8.39), (8.40), (8.31) we have

lim sup
ε→0

AI
ε (mmm

ε) ≤ A
I
hom(μ, ν),

which concludes the proof.

9 Analysis of the cell problem

In the final section of this work, we discuss some properties of the limit functional Ahom and
analyse examples where explicit computations can be performed. For ρ ∈ R+ and j ∈ R

d ,
recall that

fhom(ρ, j) := inf
{

F(m, J ) : (m, J ) ∈ Rep(ρ, j)
}
,

where Rep(ρ, j) denotes the set of representatives of (ρ, j), i.e., all Z
d -periodic functions

m ∈ R
X+ and J ∈ R

E
a satisfying

∑
x∈XQ

m(x) = ρ, Eff(J ) = 1

2

∑
(x,y)∈EQ

J (x, y)(yz − xz) = j, and div J ≡ 0.

9.1 Invariance under rescaling

We start with an invariance property of the cell-problem. Fix a Z
d -periodic graph (X, E) as

defined in Assumption 2.1. For fixed ε > 0 with ε ∈ 1
N
, we consider the rescaledZ

d -periodic
graph (X̃, Ẽ) obtained by zooming out by a factor 1

ε
, so that each unit cube contains ( 1

ε
)d
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copies of XQ . Slightly abusing notation, we will identify the corresponding set Ṽ with the
points in T

d
ε .

Let F̃ be the analogue of F on (X̃, Ẽ), and let f̃hom be the corresponding limit density. In
view of our convergence result, the cell-formula must be invariant under rescaling, namely
fhom = f̃hom. We will verify this identity using a direct argument that crucially uses the
convexity of F .

One inequality follows from the natural inclusion of representatives

Rep(ρ) ↪→ εd R̃ep(ρ), Rep( j) ↪→ εd−1̃Rep( j), (9.1)

which is obtained as m̃ := εd(τ 0ε )−1(m) and J̃ := εd−1(τ 0ε )−1(J ) for every (m, J ) ∈
Rep(ρ, j). Here we note that the inverse of τ 0ε is well-defined on Z

d -periodic maps. In
particular we have

∑
x∈X̃ Q

m̃(x) =
∑

x∈XQ

m(x) = ρ, Eff( J̃ ) = Eff(J ), and F̃(m̃, J̃ ) = F(m, J ),

which implies that fhom ≥ f̃hom.
The opposite inequality is where the convexity of F comes into play. Pick (m̃, J̃ ) ∈

R̃ep(ρ, j). A first attempt to define a couple in Rep(ρ, j) would be to consider the inverse
map of what we did in (9.1), but the resulting maps would not be Z

d -periodic (but only 1
ε
Z

d -
periodic). What we can do is to consider a convex combination of such values. Precisely, we
define

m(x) := εd
∑
z∈Z

d
ε

τ z
ε m̃(x)

εd
and J (x, y) := εd

∑
z∈Z

d
ε

τ z
ε J̃ (x, y)

εd−1

for all (x, y) ∈ XQ . The linearity of the constraints implies that (m, J ) ∈ Rep(ρ, j). More-
over, using the convexity of F we obtain

F(m, J ) = F

(
εd

∑
z∈Z

d
ε

(
τ z
ε m̃

εd
,

τ z
ε J̃

εd−1

))
≤

∑
z∈Z

d
ε

εd F

(
τ z
ε m

εd
,

τ z
ε J

εd−1

)
= F̃(m̃, J̃ ),

which in particular proves that fhom ≤ f̃hom.

9.2 The simplest case: V = {v} and nearest-neighbor interaction.

The easiest example we can consider is the one where the set V consists of only one element
v ∈ V . In other words, we focus on the case when X ! Z

d and thus Xε ! T
d
ε . We then

consider the graph structure defined via the nearest-neighbor interaction, meaning that E
consists of the elements of (x, y) ∈ Z

d × Z
d such that |x − y|∞ = 1.

In this setting,XQ ! V consists of onlyone element andEQ ! {(v, v ± ei ) : i = 1, . . . , d}
has cardinality 2d . In particular, for every ρ ∈ R+ and j ∈ R

d , the set Rep(ρ, j) consists of
only one element (m, J ) given by

m(x) = ρ, J (v, v ± ei ) = ± ji , for all (x, y) ∈ E and i = 1, . . . , d.

Consequently, the homogenised energy density is given by fhom(ρ, j) = F(m, J ).
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In the special case where F is edge-based (see Remark 2.5) with edge-energies {F±i } for
i = 1, . . . , d , we have

F(m, J ) =
d∑

i=1

Fi
(
m(0), m(ei ), J (0, ei )

) + F−i
(
m(0), m(−ei ), J (0,−ei )

)
, and

fhom(ρ, j) =
d∑

i=1

Fi
(
ρ, ρ, ji

) + F−i
(
ρ, ρ,− ji

)
for all ρ ∈ R+, j ∈ R

d .

The even more special case of the discretised p-Wasserstein distance corresponds to
Fi (ρ1, ρ2, j) = | j |p

2
(ρ1,ρ2)p−1 , where the mean 
 is a mean as in (2.3). We then obtain

fhom(ρ, j) = | j |p
p

ρ p−1 ,

for ρ ∈ R+ and j ∈ R
d , which corresponds to the p-Wasserstein distance induced by the

	p-distance | · |p on the underlying space T
d . The case p = 2 corresponds to the framework

studied in [24].
As we will discuss in Sect. 9.4, this result can also be cast in the more general framework

of isotropic finite-volume partitions of T
d .

9.3 Embedded graphs

In this section, we shall use an equivalent geometric definition of the effective flux. We can
indeed formulate an interesting expression for fhom in the case where (X, E) is an embedded
Z

d -periodic graph in T
d , in the sense of Remark 2.2. We thus choose V to be a subset of

[0, 1)d and use the identification (z, v) ≡ z+v, so thatX can be identified with aZ
d -periodic

subset of R
d .

Let us define

Effgeo(J ) := 1

2

∑
(x,y)∈EQ

J (x, y)
(
y − x

)
.

Note that we simply replaced yz− xz ∈ Z by y− x ∈ R
d in the definition of Eff(J ). Remark-

ably, the following result shows that Eff(J ) = Effgeo(J ) for any periodic and divergence-free
vector field J . In particular, Effgeo(J ) does not depend on the choice of the embedding into
T

d . As a consequence, one can equivalently define Rep( j), and hence the homogenised
energy density fhom(ρ, j), in terms of Effgeo(J ) instead of Eff(J ).

Proposition 9.1 For every periodic and divergence-free vector field J ∈ R
E
a we have Eff(J ) =

Effgeo(J ).

Proof Note first that any given point configuration can be transformed into any other configu-
ration by successively shifting each of the points. Therefore it suffices to show that Effgeo(J )

is invariant when perturbing the location of any single point.
Fix x0 ∈ XQ . For a positive (small enough) parameter t > 0 and a vector v ∈ R

d , consider
the modified embedded Z

d -periodic graph (X(t), E(t)) in T
d obtained from X by shifting

the nodes x0 +Z
d by tv ∈ T

d , i.e., we consider the shifted node x0(t) := x0 + tv instead of
x0 (and with it, the associated edges). Fix a divergence-free and Z

d -periodic discrete vector
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field J ∈ R
E
a ! R

E(t)
a and consider, for t > 0, the corresponding effective flux

Effgeo(t, J ) := 1

2

∑
(x,y)∈EQ(t)

J (x, y)
(
y − x

)
.

We claim that d
dt Effgeo(t, J ) = 0. Indeed, by construction we have

2
d

dt
Effgeo(t, J ) = −

∑
y∼x0

J (x0, y)v +
∑
z∈Z

d

∑
x∈XQ

x∼x0+z

J (x, x0 + z)v

J per.= −div J (x0)v +
∑
z∈Z

d

∑
x∈XQ

x−z∼x0

J (x − z, x0)v

= −div J (x0)v +
∑

x ′∼x0

J (x ′, x0)v

= −div J (x0)v +
∑

x ′∼x0

J (x0, x ′)v = −2 div J (x0)v.

Since J is divergence-free, this proves the claim. In particular, t �→ Effgeo(t, J ) is constant,
hence the value of Effgeo does not depend on the location of the embedded points. This also
implies the sought equality Eff(J ) = Effgeo(J ), since Eff(J ) corresponds to the limiting case
where all the elements of V “collapse” into a single point of [0, 1)d .

9.4 Periodic finite-volume partitions

The next class of examples are the graph structures associated withZ
d -periodic finite-volume

partitions (FVPs) T of R
d . We refer to [14] for a general treatment.

Definition 9.2 (Zd -periodic finite-volume partition) Consider a countable, locally finite, Zd -
periodic family of points X ⊆ R

d together with a family of nonempty open bounded convex
polytopes Kx ⊆ R

d for x ∈ X, such that Kx+z = Kx + z for all x ∈ X and z ∈ Z
d . We call

T :=
{
(x, Kx ) : x ∈ X

}

a Z
d -periodic finite-volume partition of R

d if

(1)
⋃

x∈X Kx = R
d ;

(2) Kx ∩ Ky = ∅ whenever x �= y ∈ X;
(3) y − x ⊥ ∂Kx ∩ ∂Ky whenever H d−1(∂Kx ∩ ∂Ky) > 0.

We define a graph structure onX by declaring those pairs (x, y) ∈ X×XwithH d−1(∂Kx ∩
∂Ky) > 0 to be nearest neighbors.

It is not difficult to see that the graph (X, E) is connected, Zd -periodic, and locally finite,
even if x /∈ Kx . Throughout this section we use the following notation for x, y ∈ X:

|Kx | := L d(Kx ), dxy := |y − x |,
sxy := H d−1(∂Kx ∩ ∂Ky), nxy := y − x

dxy
∈ Sd−1.
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In the finite-volume framework, we are interested in transport distances with a non-
linear mobility. These distances were introduced in [13] as natural generalisations of the
2-Wasserstein metric. We thus fix a concave upper-semicontinuous functionm : R+×R

d →
R+ and consider the energy density functional

f (ρ, j) :=

⎧⎪⎨
⎪⎩

| j |22
m(ρ)

if m(ρ) > 0,

+∞ if m(ρ) = 0 and j �= 0,

0 if m(ρ) = 0 and j = 0.

(9.2)

To discretise this energy density, we fix for every edge (x, y) ∈ E an admissible version
of m : R+ → R+, i.e., a nonnegative concave upper-semicontinuous function mxy : R+ ×
R+ → R+ satisfying mxy(ρ, ρ) = m(ρ) for all ρ ∈ R+ and (x, y) ∈ E. We always assume
that mxy(ρ1, ρ2) = myx (ρ2, ρ1) for all ρ1, ρ2 ∈ R+. It is easy to check that F satisfies the
superlinear growth condition 5.4. Furthermore, concavity of mxy implies convexity of F .6

We then consider the edge-based cost defined by

F(m, J ) := 1

2

∑
(x,y)∈EQ

dxy

sxy

J (x, y)2

mxy

(
m(x)
|Kx | ,

m(y)
|Ky |

) , (9.3)

Consistent with (9.2), we use the convention that

J (x, y)2

mxy

(
m(x)
|Kx | ,

m(y)
|Ky |

) =
⎧⎨
⎩
+∞ if mxy

(
m(x)
|Kx | ,

m(y)
|Ky |

)
= 0 and J (x, y) �= 0,

0 if mxy

(
m(x)
|Kx | ,

m(y)
|Ky |

)
= 0 and J (x, y) = 0.

(9.4)

It is now natural to ask whether the discrete action functionals associated to F converge to
the continuous action funtional associated to f : is it true that fhom = f ?

In the linear case where m(ρ) = ρ, which corresponds to the 2-Wasserstein metric, this
question has been extensively studied in [26] for a large class of (not necessarily periodic)
meshes. The main result in [26] asserts that the limit of the discrete transport distances Wε

(in the Gromov-Hausdorff sense) as ε → 0 coincides with the 2-Wasserstein distance W2

on P(Td) if an asymptotic local isotropy condition is satisfied. Moreover, it is shown that
this convergence fails to hold if the isotropy condition fails to hold (in a sufficiently strong
sense).

For periodic finite-volume partitions we show here that these results are direct conse-
quences of Theorem 5.1. In particular, the following result contains a necessary and condition
on a periodic finite-volume partition that ensures that fhom = f .

Proposition 9.3 Consider a Z
d -periodic finite-volume partition of R

d , and let F and f be
as in (9.2) and (9.3) respectively. The following assertions hold:

(i) fhom(ρ, j) ≤ f (ρ, j) for all ρ ∈ R+ and j ∈ R
d .

(ii) Suppose that for every ρ ∈ R+ and j ∈ R
d there is a family of vectors (pxy)(x,y)∈E ⊆ R

2

such that

pxy = (pxy
1 , pxy

2 ) ∈ ∂+mxy(ρ, ρ) for all (x, y) ∈ E, and (9.5)

1

|Kx |
∑
y∼x

(pxy
1 + pyx

2 )dxysxy(nxy · j)2 is independent of x ∈ X. (9.6)

Then: fhom = f .

6 Concavity of mxy is not necessary for convexity of F . If mxy is not concave, a local version of the super-
gradient can be substituted into (9.6). For readability we restrict ourselves to the concave case.
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(iii) Suppose that all mxy are differentiable in a neigbourhood of the diagonal in (0,∞)2.
Then fhom = f if and only if

∑
y∼x

∂1mxy(ρ, ρ)

m′(ρ)
dxysxynxy ⊗ nxy = |Kx | id for all x ∈ X and ρ > 0. (9.7)

Remark 9.4 The condition (i i i) is satisfied for a class ofmeshes satisfying aweighted isotropy
condition. For given edge weights λxy ∈ (0, 1), this condition reads as∑

y∼x

λxydxysxynxy ⊗ nxy = |Kx | id for all x ∈ X.

We refer to [26, Definition 1.4] for this notion on domains in R
d and to [25, Definition

4.3] for the one-dimensional periodic setting. In this case, given a mobility function m, the
functions mxy can be chosen to be of the form mxy(ρ, ρ′) = m(θxy(ρ, ρ′)) where θxy is a
mean that is compatible with λxy in the sense that ∂1θxy(1, 1) = λxy ; see [26, Definition
1.4]. In this situation the identity f = fhom holds for all choices of the mobility m, since
∂1mxy(ρ, ρ) = m′(ρ)∂1θxy(ρ, ρ) = m′(ρ)λxy . Therefore, the condition (9.7) reduces to the
isotropy condition above; in particular, it does not depend on m.

Before we prove Proposition 9.3, we first show an elementary identity for finite-volume
partitions; see also [26, Lemma 5.4] for a similar result in a non-periodic setting.

Lemma 9.5 Let T be a Z
d -periodic finite-volume partition of R

d . Then

1

2

∑
(x,y)∈EQ

dxysxynxy ⊗ nxy = id . (9.8)

Proof For v ∈ R
d\{0} and (x, y) ∈ E, consider the open bounded convex polytope

Cxy := {
z ∈ (∂Kx ∩ ∂Ky) + Rv : z · v ∈ (

conv(x · v, y · v)
)◦}

.

Note that Cxy = Cyx . We claim that the family {Cxy : (x, y) ∈ E} forms a partition of R
d up

to a set of Lebesgue measure zero. To see this, fix a point z ∈ R
d and consider the function

X : R → X defined by X(t) = x if z + tv ∈ Kx . If v is not orthogonal to any of the finitely
many nxy , then X(t) is well-defined up to a countable set N ⊂ R. By Fubini’s theorem, it
follows that L d

(
R

d\⋃
(x,y)∈E Cxy

) = 0.
If t ∈ N and X(t−) = x , X(t+) = y, then (y − x) · v = dxynxy · v > 0. This shows that

t �→ v · X(t) is nondecreasing and that z is in at most one parallelepiped.
On the other hand, we have

L d(Cxy) = dxysxy

(
nxy · v

|v|
)2

.

Then we have

1 = 1

2

∑
x∈X

∑
y∼x

L d(Cxy ∩ [0, 1)d) = 1

2

∑
x∈XQ

∑
y∼x

L d(Cxy)

= 1

2

∑
(x,y)∈EQ

dxysxy

(
nxy · v

|v|
)2

= v

|v| ·
(
1

2

∑
(x,y)∈EQ

dxysxynxy ⊗ nxy

)
v

|v| .

Since this identity holds for almost every v ∈ R
d , (9.8) holds by polarization.
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Proof of Proposition 9.3 (i): We construct a competitor (m�, J �) to the cell problem (4.6) for
ρ ∈ R+ and j ∈ R

d . Define

m�(x) := |Kx |ρ and J �(x, y) := sxy( j · nxy). (9.9)

We claim that (m�, J �) ∈ Rep(ρ, j). Indeed, the periodicity of T yields

∑
x∈XQ

m�(x) = ρ
∑

x∈XQ

|Kx | = ρL d([0, 1)d) = ρ,

which shows that m� ∈ Rep(ρ). To show that J � ∈ Rep( j), we use the divergence theorem
to obtain, for x ∈ X,

div J �(x) =
∑
y∼x

J �(x, y) =
∑
y∼x

sxy( j · nxy) =
ˆ

∂Kx

j · n dH d−1 = 0.

Moreover, using Proposition 9.1 and Lemma 9.5 we find

Eff(J �) = 1

2

∑
(x,y)∈EQ

J �(x, y)(yz − xz) = 1

2

∑
(x,y)∈EQ

J �(x, y)(y − x)

= 1

2

∑
(x,y)∈EQ

sxy( j · nxy)(y − x) = 1

2

∑
(x,y)∈EQ

dxysxy(nxy ⊗ nxy) j = j,

which proves that J � ∈ Rep( j). Therefore, using that mxy is an admissible version of m,
another application of Lemma 9.5 yields (taking (9.4) into account),

fhom(ρ, j) ≤ F(m�, J �) = 1

2

∑
(x,y)∈EQ

dxy

sxy

J �(x, y)2

mxy(ρ, ρ)

= 1

m(ρ)
j ·

⎛
⎝1

2

∑
(x,y)∈EQ

dxysxynxy ⊗ nxy

⎞
⎠ j = | j |2

m(ρ)
= f (ρ, j),

which proves (i).
(iii): Suppose first that condition (9.7) holds. We will show that (m�, J �) is a critical point

of F . Take (m̃, J̃ ) ∈ Rep(0, 0) and define, for ε > 0 sufficiently small,

mε := m� + εm̃ and Jε := J � + ε J̃ .

Then:

∂ε

∣∣
ε=0F(m�, Jε) = 1

2
∂ε

∣∣
ε=0

∑
(x,y)∈EQ

dxy

sxy

J �(x, y)2

mxy(ρ, ρ)
= 1

m(ρ)

∑
(x,y)∈EQ

dxy

sxy
J �(x, y) J̃ (x, y)

= 1

m(ρ)

∑
(x,y)∈EQ

j · (y − x) J̃ (x, y) = 1

m(ρ)
j · Eff( J̃ ) = 0.

123



143 Page 66 of 75 P. Gladbach et al.

Furthermore, using the symmetry mxy(a, b) = myx (b, a) = for a, b ≥ 0, we obtain

∂ε

∣∣
ε=0F(mε, J �) = −1

2

∑
(x,y)∈EQ

dxy

sxy

J �(x, y)2

m(ρ)2

(
m̃(x)

|Kx | ∂1mxy(ρ, ρ) + m̃(y)

|Ky | ∂2mxy(ρ, ρ)

)

= −
∑

(x,y)∈EQ

dxy

sxy

J �(x, y)2

m(ρ)2

m̃(x)

|Kx | ∂1mxy(ρ, ρ)

= −m′(ρ)

m2(ρ)
| j |2

∑
x∈XQ

bx (ρ, j)
m̃(x)

|Kx | ,
(9.10)

where we write bx (ρ, j) := ∑
(x,y∈EQ

∂1mxy(ρ,ρ)

m′(ρ)
dxysxy

(nxy · j)2
| j |2 , so that the condition (9.7)

reads as bx (ρ, j) = |Kx | for all ρ > 0, j ∈ R
d , and x ∈ XQ . Hence, if this condition holds,

we obtain, since m̃(x) ∈ Rep(0),

∂ε

∣∣
ε=0F(mε, J �) = −m′(ρ)

m2(ρ)
| j |2

∑
x∈XQ

m̃(x) = 0.

Adding the identities above, we conclude that d
dε

∣∣
ε=0F(mε, Jε) = 0 whenever (9.7) holds.

Therefore, (m�, J �) is a critical point of F in Rep(ρ, j). By convexity of F , it is a minimiser.
Consequently, using Lemma 9.5, we obtain

fhom(ρ, j) = F(m�, J �) = 1

2m(ρ)

∑
(x,y)∈EQ

dxysxy( j · nxy)
2 = | j |2

m(ρ)
= f (ρ, j),

which is the desired identity.
To prove the converse, we assume that (9.7) does not hold, i.e., we have bx̄ (ρ, j) �= |Kx̄ |

for some ρ > 0, j ∈ R
d , and x̄ ∈ X. On the other hand, we claim that∑

x∈XQ

bx (ρ, j) = 1.

To see this, observe first that, by definition of admissibility ofmxy and the symmetry assump-
tion mxy(a, b) = myx (b, a), we have

m′(ρ) = ∂ε

∣∣
ε=0m(ρ + ε) = ∂ε

∣∣
ε=0mxy(ρ + ε, ρ + ε) = ∂1mxy(ρ, ρ) + ∂2mxy(ρ, ρ)

= ∂1mxy(ρ, ρ) + ∂1myx (ρ, ρ).

Using this identity, the periodicity of m and J , and the identity (9.8) we obtain

∑
x∈XQ

bx (ρ, j) =
∑

(x,y∈EQ

∂1mxy(ρ, ρ)

m′(ρ)
dxysxy

(nxy · j)2

| j |2

= 1

2

∑
(x,y∈EQ

∂1mxy(ρ, ρ) + ∂1myx (ρ, ρ)

m′(ρ)
dxysxy

(nxy · j)2

| j |2

= 1

2

∑
(x,y∈EQ

dxysxy
(nxy · j)2

| j |2 = 1,

which proves the claim.
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We thus infer that bx (ρ, j)/|Kx | is non-constant in x . (If it were, the identity
∑

x |Kx | =
1 = ∑

x bx (ρ, j) would imply that bx (ρ, j) = |Kx | for all x . But we assume that this
doesn’t hold for x = x̄ .) Consequently, there exists a Z

d -periodic function m̃ : X → R with∑
x∈XQ m̃(x) = 0 such that

∑
x∈XQ

bx (ρ, j)
m̃(x)

|Kx | �= 0.

As before, we consider (m�, J �) ∈ Rep(ρ, j) defined by (9.9). In view of (9.10), we infer
that (m�, J �) is not a critical point of F in Rep(ρ, j). As (m�, J �) is a relatively interior
point of Rep(ρ, j), it cannot be a minimiser, hence fhom(ρ, j) < F(m�, J �) = f (ρ, j).

(ii): We construct an element of the subgradient (pm, pJ ) ∈ ∂−F(m, J )with 〈pm, dm〉 =
〈pJ , d J 〉 = 0 for all dm ∈ Rep(0), d J ∈ Rep(0).

We set

pm(x) :=
∑
y∼x

J (x, y)2

|Kx |m2(ρ)

dxy

sxy
(pxy

1 + pyx
2 )

and check by a simple calculation involving the chosen supergradients pxy that F(m +
dm, J ) − F(m, J ) ≥ 〈pm, dm〉 for all dm ∈ R

X periodic. The isotropy condition (9.6)
implies that pm is independent of x and thus 〈pm, dm〉 = 0 for all dm ∈ Rep(0).

Since F is differentiable in J , we have to choose pJ := ∂J F(m, J ). By the same calcu-
lation as in (3) we see that 〈pJ , d J 〉 = 0 for all d J ∈ Rep(0).

To see that (m, J ) is indeed a local (and thus global) minimiser of F in Rep(ρ, j), we
introduce a parameter ε > 0 and show that

lim inf
ε↘0

1

ε
(F(m + εdm, J + εd J ) − F(m, J )) ≥ 0 (9.11)

for all dm ∈ Rep(0) and d J ∈ Rep(0).
To see this, we expand the difference

1

ε
(F(m + εdm, J + εd J ) − F(m, J ))

=1

ε
(F(m + εdm, J + εd J ) − F(m + εdm, J )) + 1

ε
(F(m + εdm, J ) − F(m, J ))︸ ︷︷ ︸

≥0
≥〈∂J F(m, J ) + o(1), d J 〉 →ε→0 0,

where we used that (m, J ) �→ ∂J F(m, J ) is continuous. Because F is convex, (9.11) implies
that (m, J ) is a minimiser of F in Rep(ρ, j).

Remark 9.6 Given a concave mobility m : R+ → R+, a popular admissible version is to
take mxy(a, b) := m(λxya + (1 − λxy)b), with weights λxy ∈ [0, 1]. If m is differentiable,
this means that ∂1mxy(ρ, ρ) = λxym

′(ρ). As a result, for certain finite-volume partitions we
have to choose the weights λxy to satisfy (9.7).

Of particular importance is theW2 casem(ρ) = ρ,whichwas treated in [26] and [25].Here
an admissible version mxy is called an admissible mean. For differentiable mxy , condition
(9.7) reduces to ∑

y∼x

∂1m(ρ, ρ)dxysxynxy ⊗ nxy = |Kx | id .
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Fig. 6 A Z
2-periodic finite-volume partition of R

2. The unit cube [0, 1]2 ⊆ R
2 is shown in red (color figure

online)

We note that condition (9.7) cannot be satisfied for a large class of finite-volume partitions,
although the square partition fulfills it with ∂1m(ρ, ρ) = 1/2. The condition also holds for
some other partitions that are notZd -periodic, such as the equilateral triangular and hexagonal
partitions; see [26].

If we allow ourselves to use nonsmooth admissible versions of m, it makes sense to use
mxy(a, b) := m(min(a, b)), as this choice guarantees the largest possible supergradient
∂+mxy = ∂+m{(λ, 1 − λ) : λ ∈ [0, 1]} along the diagonal, making it more likely that

fhom(ρ, j) = | j |22
m(ρ)

.

Example 9.7 Let us consider the triangulation given in Fig. 6, where each unit square consists
of four triangles: north, south, west, and east. We now show that (9.7) cannot be satisfied
here, but (9.6) is satisfied for the particular nonsmooth choice mxy(ρ1, ρ2) = min(ρ1, ρ2).

For the smooth case we assume that mxy(ρ, ρ) = ρ and define λxy = ∂1mxy and λyx =
∂2mxy . Note that by the chain rule λxy + λyx = 1. Let

Ax :=
∑
y∼x

λxydxysxynxy ⊗ nxy .

For xN in the north triangle and xS in the south triangle we obtain that

e2 · (AN + AS)e2 = 1

2
+ 1

8
(λSE + λN E + λSW + λN W )
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since dN W sN W = 1
4 , dN SsN S = 1

2 , nN S = e2 and nN E = ( 1√
2
,− 1√

2
)T Similarly we obtain

for xW in the west and xE in the east triangle

e1 · (AW + AE )e1 = 1

2
+ 1

8
(λE S + λE N + λW S + λW N ).

Inserting the last two equalities into (9.7) we find that e2 · Ax e2 = e1 · Ax e1 = 1
4 for all

x ∈ {S, E, N , W }, i.e. that
λSE + λN E + λSW + λN W = λE S + λE N + λW S + λW N = 0.

But this is a contradiction to λxy +λyx = 1. In particular there exists nomxy satisfying (9.7).
For the nonsmooth case note that the supergradient for mxy(ρ1, ρ2) = min(ρ1, ρ2) is

given by

∂+mxy(ρ, ρ) = {(λ, 1− λ) : λ ∈ [0, 1]}.
For ρ ∈ R+ and j ∈ R

d we set

pN S = pSN = pEW = pW E =
(
1

2
,
1

2

)
∈ ∂+mxy(ρ, ρ)

pN E = pN W = pSE = pSW =
(

j21
| j |22

,
j22
| j |22

)
∈ ∂+mxy(ρ, ρ)

pE N = pW N = pE S = pW S =
(

j22
| j |22

,
j21
| j |22

)
∈ ∂+mxy(ρ, ρ).

We need to show that ax, j := 1
|Kx |

∑
y∼x (pxy

1 + pyx
2 )dxysxy(nxy · j)2 is independent of x .

For x in the north or the south triangle we find

aS, j = aN , j =4

(
1

2
j22 + 2

8

2 j21
| j |22

(
( j1 − j2)2

2
+ ( j1 + j2)2

2

))

=4

(
1

2
j22 + 1

2

j21
| j |22

| j |22
)
= 2| j |22.

Similarly for x in the west or east triangle we obtain

aE, j = aW , j =4

(
1

2
j21 + 2

8

2 j22
| j |22

(
( j2 − j1)2

2
+ ( j1 + j2)2

2

))

=4

(
1

2
j21 + 1

2

j22
| j |22

| j |22
)
= 2| j |22.

Consequently, this is independent of x and (9.6) holds.
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Appendix A: The Kantorovich–Rubinsteinmetric on signedmeasures

We collect some facts on the Kantorovich–Rubinstein metric that are used in the paper. We
refer to [8, Section 8.10(viii)] for more details.

Let (X , d) be a metric space. LetM(X) denote the space of finite signed Borel measures
on X . Forμ ∈ M(X), letμ+, μ− ∈ M+(X) be the positive and negative parts, respectively.
Let |μ| = μ+ + μ− be its variation, and ‖μ‖TV := |μ|(X) be its total variation.

Definition A.1 (Weak and vague convergence) Let μ,μn ∈ M(X) for n = 1, 2, . . ..

(i) We say that μn → μ weakly in M(X) if
´

X ψ dμn → ´
X ψ dμ for every ψ ∈ Cb(X).

(ii) We say that μn → μ vaguely in M(X) if
´

X ψ dμn → ´
X ψ dμ for every ψ ∈ Cc(X).

If (X , d) is compact, M(X) is a Banach space endowed with the norm ‖μ‖TV. By the
Riesz-Markov theorem, it is the dual space of the Banach space C(X) of all continuous
functions ψ : X → R endowed with the supremum norm ‖ψ‖∞ = supx∈X |ψ(x)|.

For ψ : X → R let Lip(ψ) := supx �=y
|ψ(x)−ψ(y)|

d(x,y)
be its Lipschitz constant.

Definition A.2 Let (X , d) be a compact metric space. The Kantorovich–Rubinstein norm on
M(X) is defined by

‖μ‖KR(X) := sup

{ˆ
X

ψ dμ : ψ ∈ C(X), ‖ψ‖∞ ≤ 1, Lip(ψ) ≤ 1

}
. (A.12)

In non-trivial situations (i.e., when X contains an infinite convergent sequence), the norms
‖ · ‖KR and ‖ · ‖TV are not equivalent. Thus, by the open mapping theorem, (M(X), ‖ · ‖KR)

is not a complete space.
A closely related norm on M(X) that is often considered is

‖μ‖K̃R(X) := |μ(X)| + sup

{ˆ
X

ψ dμ : ψ ∈ C(X), ψ(x0) = 0, Lip(ψ) ≤ 1

}
,

for some fixed x0 ∈ X ; see [8, Section 8.10(viii)]. The next result shows that these norms
are equivalent.

Proposition A.3 Let (X , d) be a compact metric space. For μ ∈ M(X) we have

‖μ‖KR(X) ≤ ‖μ‖K̃R(X) ≤ cX‖μ‖KR(X),

where cX < ∞ depends only on diam(X).
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Proof We start with the first inequality. Let ψ ∈ C(X) with ‖ψ‖∞ ≤ 1 and Lip(ψ) ≤ 1.
Define ϕ := ψ − ψ(x0), so that ϕ(x0) = 0 and Lip(ϕ) = Lip(ψ) ≤ 1. Thenˆ

ψ dμ =
ˆ

ψ(x0) + ϕ dμ = ψ(x0)μ(X) +
ˆ

ϕ dμ ≤ |μ(X)| +
ˆ

ϕ dμ ≤ ‖μ‖K̃R.

Taking the supremum over ψ yields the desired bound.
Let us now prove the second inequality. Set � := 1 ∨ diam(X). Take ψ ∈ C(X) with

ψ(x0) = 0 and Lip(ψ) ≤ 1. Then |ψ(x)| = |ψ(x) − ψ(x0)| ≤ d(x, x0) ≤ diam(X) ≤ �

for all x ∈ X , so that ‖ψ
�
‖∞ ≤ 1 and Lip(ψ

�
) ≤ 1. We obtainˆ

ψ dμ = �

ˆ
ψ

�
dμ ≤ �‖μ‖KR.

Moreover, |μ(X)| ≤ ‖μ‖KR as can be seen by taking ψ = ±1 in (A.12) It follows that

‖μ‖K̃R ≤ (1+ �)‖μ‖KR,

as desired.

Proposition A.4 (Relation to W1) Let (X , d) be a compact metric space. If μ1, μ2 ∈ M+(X)

are nonnegative measures of equal total mass, we have ‖μ1 − μ2‖K̃R = W1(μ1, μ2).

Proof This follows from the Kantorovich duality for the distance W1.

On the subset of nonnegative measures, the KR-norm induces the weak∗ topology:

Proposition A.5 (Relation to weak∗-convergence) Let (X , d) be a compact metric space.
For μn, μ ∈ M+(X) we have

μn → μ weakly if and only if ‖μn − μ‖KR → 0.

Proof See [8, Theorem 8.3.2].

Remark A.6 (Testing against smooth functions) If X = T
d , the space of C1 functions ψ

with Lip(ψ) ≤ 1 is dense in the set of Lipschitz functions with Lip(ψ) ≤ 1; see, e.g., [40,
Proposition A.5]. Consequently,

‖μ‖KR(X) = sup

{ˆ
X

ψ dμ : ψ ∈ C1(Td), ‖ψ‖∞ ≤ 1, ‖∇ψ‖∞ ≤ 1

}
. (A.13)

Remark A.7 The identity (A.13) shows that ‖ · ‖KR is the dual norm of the separable Banach
space C1(Q). The dual space of C1(Q) is a strict superset of the finite Borel measures.

Appendix B: Norms on curves in the space of measures

We work with curves of bounded variation taking values in the spaceM+(Td).

Definition B.1 (Curves of bounded variation) The space BVKR(I;M+(Td)) consists of all
curves of measures μ : I → M+(Td) such that the BV-seminorm

‖μ‖BVKR(I;M+(Td )) := sup

{ˆ
I

ˆ
T

d
∂tϕt dμt dt : ϕ ∈ C1c

(
I; C1(Td)

)
, max

t∈I ‖ϕ‖C1(Td ) ≤ 1

}

(B.14)

is finite.
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Remark B.2 The space BVKR(I;M+(Td)) is a (non-closed) subset of the space BV(I; X∗),
where X is the separable Banach space C1(Td).We refer to [28, Section 2] for the equivalence
of several definitions of BV

(
I; X∗)

.

Definition B.3 The space W 1,1
KR (I;M+(Td)) consists of all curves (μt )t∈I in the Banach

space-valued Sobolev space W 1,1
(
I; (C1(Td))∗

)
such that μt ∈ M+(Td) for a.e. t ∈ I.

Appendix C: Domain property of convex functions

Lemma C.1 (Domain properties of convex functions) Let f : R
n → R ∪ {+∞} be convex,

and let x◦ ∈ D( f )◦. For every λ ∈ (0, 1) and every bounded set K ⊆ D( f ), there exists a
compact convex set Kλ ⊆ D( f )◦ such that

(1− λ)K + λx◦ ⊆ Kλ.

Proof Let K ⊆ D( f ) be bounded and λ ∈ (0, 1). Since x◦ ∈ D( f )◦, we can pick r > 0
such that B(x◦, r) ⊆ D( f )◦. Fix y ∈ K̄ and set yλ := (1 − λ)y + λx◦. We claim that
B(yλ, λr) ⊆ D( f )◦.

To prove the claim, it suffices to show that B(yλ, λr) ⊆ D( f ), since B(yλ, λr) is open.
Take z ∈ B(yλ, λr) and pick a sequence (yn)n ⊂ K such that yn → y. Observe that z = (1−
λ)yn+λx̃n with x̃n ∈ B(x◦, r) if n is large enough (indeed, x̃n−x◦ = 1

λ
(z−yλ)+ 1−λ

λ
(y−yn)

and |z − yλ| < λr ). Since yn, x̃n ∈ D( f ), the claim follows by convexity of f .
We now define

Cλ :=
⋃
y∈K

B
(

yλ,
λr

3

)
and Kλ := Conv(Cλ).

By construction, Kλ is convex, bounded, and closed, thus compact. Let us show that Kλ ⊆
D( f )◦.

By convexity of f , it suffices to show that Cλ ⊆ D( f )◦. Pick z ∈ Cλ and {zn}n ⊆ Cλ such
that zn → z. Then there exists yn ∈ K such that zn ∈ B

(
(yn)λ,

λr
3

)
. Passing to a subsequence,

we may assume that yn → ȳ for some ȳ ∈ K̄ and zn ∈ B
(
ȳλ,

λr
2

)
for n ≥ n̄ ∈ N. Taking

the limit as n → +∞ we infer that z ∈ B
(
ȳλ,

λr
2

)
. Since B

(
ȳλ, λr

) ⊆ D( f )◦, it follows that
z ∈ D( f )◦.

Appendix D: Notation

For the convenience of the reader we collect some notation used in this paper.
In the paper we use some standard terminology from graph theory. Let (X, E) be a locally

finite graph.
A discrete vector field is an anti-symmetric function J : E → R.
Its discrete divergence is the function div J : X → R defined by

div J (x) :=
∑
y∼x

J (x, y). (B.15)

We say that J is divergence-free if div J = 0.
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A◦ Topological interior of a set A.
D(F) The domain D(F) = {x ∈ X : F(x) < ∞} of F : X → R ∪ {+∞}.
I Bounded open time interval.
Md (A) The space of finite R

d -valued Radon measures on A.
M+(A) The space of finite (positive) Radon measures on A.
R
E
a Anti-symmetric vector fields on E: R

E
a = {J ∈ R

E : J (x, y) = J (y, x)}.
XQ The set of all x ∈ X with xz = 0.
EQ The set of all (x, y) ∈ E with xz = 0.
R
E
a The set of anti-symmetric real functions on E.

T
d
ε , Z

d
ε The discrete torus of mesh size ε > 0: T

d
ε = (εZ/Z)d = εZ

d
ε .

Eff(J ) The effective flux of J : Eff(J ) = 1
2

∑
(x,y)∈EQ J (x, y)(yz − xz).

Rep(ρ) The set of representatives of ρ ∈ R+, i.e, all m ∈ R
X+ s.t.

∑
x∈XQ m(x) = ρ.

Rep( j) The set of representatives of j ∈ R
d , i.e, all J ∈ R

E
a divergence-free and s.t.

1
2

∑
(x,y)∈XQ J (x, y)(yz − xz) = j .

Rep(ρ, j) The set of representatives of ρ ∈ R+, j ∈ R
d : Rep(ρ, j) = Rep(ρ) × Rep( j).

Qz
ε The cube of size ε > 0 centered in εz ∈ T

d : for z ∈ Z
d
ε , Qz

ε := [0, ε)d + εz.
Sz̄ Shift operator: Sz̄

ε : X → X, Sz̄
ε (x) = (z̄ + z, v) for x = (z, v) ∈ X.

Shift operator: Sz̄
ε : E → E, Sz̄

ε (x, y) := (
Sz̄
ε (x), Sz̄

ε (y)
)
for (x, y) ∈ Eε

σ z σ z̄
ε ψ : Xε → R, (σ z̄

ε ψ)(x) := ψ(Sz̄
ε (x)) for x ∈ Xε.

σ z̄
ε J : Eε → R, (σ z̄

ε J )(x, y) := J (Sz̄
ε (x, y)) for (x, y) ∈ Eε.

T z̄
ε Rescaling operator: T z̄

ε : X → Xε : T z̄
ε (x) = (ε(z̄ + z), v) for x = (z, v) ∈ X.

τ z
ε τ z̄

ε ψ : X → R,
(
τ z̄
ε ψ

)
(x) := ψ

(
T z̄
ε (x)

)
for x ∈ X.

τ z̄
ε J : E → R,

(
τ z̄
ε J

)
(x, y) := J

(
T z̄
ε (x), T z̄

ε (y)
)

for (x, y) ∈ E.
CE Discrete continuity equation: (mmm, JJJ ) ∈ CE iff ∂t mt + div J = 0 on (X, E).
CE Continuous continuity equation: (μ, ν) ∈ CE iff ∂t μt + ∇ · ν = 0 on T

d .
BV More precisely BVKR(I;M+(Td )): the space of time-dependent curves of

(Positive) measures with bounded variation with respect to the KR norm
(Kantorovich–Rubenstein) onM+(Td ).

W 1.1 More precisely W 1,1
KR (I;M+(Td )): the space of time-dependent curves of

(Positive) measures belonging to the Banach space W 1,1(
I; (C1(Td ))∗

)
.

Pεμ, Pεν Discretisation of μ ∈ M+(Td ), ν ∈ Md (Td ): for z ∈ Z
d
ε , (Pεμ(z), Pεν(z)) ∈

R+ × R
d , given by Pεμ(z) = μ(Qz

ε), Pεν(z) = (
(ν · ei )(∂ Qz

ε ∩ ∂ Q
z+ei
ε )

)
i .
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