Bioinformatics, 39(4), 2023, btad158
https://doi.org/10.1093/bioinformatics/btad 158
Advance Access Publication Date: 2 April 2023
Original Paper

OXFORD

Systems biology

Boolean network sketches: a unifying framework for

logical model inference

Nikola Benes

1% Lubos Brim", Ondrej Huvar', Samuel Pastva?, David Safranek™*

'Faculty of Informatics, Masaryk University, Brno 602 00, Czech Republic
2nstitute of Science and Technology Austria, Klosterneuburg 3400, Austria

*Corresponding author. Botanicka 68a, 602 00 Brno, Czech Republic. E-mail: xbenes3@fi.muni.cz (N.B.); E-mail: safranek@fi.muni.cz (D.S.)

Associate Editor: Pier Luigi Martelli

Received 10 January 2023; revised 2 March 2023; accepted 20 March 2023

Abstract

Motivation: The problem of model inference is of fundamental importance to systems biology. Logical models (e.g.
Boolean networks; BNs) represent a computationally attractive approach capable of handling large biological net-
works. The models are typically inferred from experimental data. However, even with a substantial amount of ex-
perimental data supported by some prior knowledge, existing inference methods often focus on a small sample of
admissible candidate models only.

Results: We propose Boolean network sketches as a new formal instrument for the inference of Boolean networks.
A sketch integrates (typically partial) knowledge about the network’s topology and the update logic (obtained
through, e.g. a biological knowledge base or a literature search), as well as further assumptions about the properties
of the network'’s transitions (e.g. the form of its attractor landscape), and additional restrictions on the model dynam-
ics given by the measured experimental data. Our new BNs inference algorithm starts with an ‘initial’ sketch, which
is extended by adding restrictions representing experimental data to a ‘data-informed’ sketch and subsequently
computes all BNs consistent with the data-informed sketch. Our algorithm is based on a symbolic representation
and coloured model-checking. Our approach is unique in its ability to cover a broad spectrum of knowledge and effi-
ciently produce a compact representation of all inferred BNs. We evaluate the method on a non-trivial collection of
real-world and simulated data.

Availability and implementation: All software and data are freely available as a reproducible artefact at https://doi.

org/10.5281/zenodo.7688740.

1 Introduction

Boolean networks (BNs) (Kauffman 1969, Thomas 1973) represent
a simple yet expressive formalism for modelling various processes in
living cells. This is why BNs are gaining significant interest in the
scientific community, especially in the area of computational sys-
tems biology (e.g. Grieb et al. 2015). Each BN consists of Boolean
variables with associated Boolean update functions governing their
behaviour. The goal of BN inference (also termed synthesis) is to re-
construct the network from experimental observations and other
prior knowledge. BN inference is a crucial subject with regard to
any practical application of BNs.

As termed by Gunawardena (2014), we can generally recognize
two dominant modelling strategies: ‘forward’ and ‘reverse’ model-
ling. Reverse modelling starts from experimental data and seeks to
identify the causalities in this data using a mathematical model.
According to Gunawardena (2014), reverse modelling often suggests
new molecular components or interactions but typically cannot
identify conceptually entirely new ideas. Meanwhile, forward mod-
elling, also known as literature-based modelling, starts from a set of

©The Author(s) 2023. Published by Oxford University Press.

known or suspected causalities and seeks to obtain a predictive
model based on these assumptions. This makes forward modelling
capable of formulating new abstractions for understanding high-
level system behaviour, e.g. homeostasis, feedback, or canalization.
We believe neither approach is sufficient for reliable inference of
large-scale BNs. The often unpredictable long-term impact of com-
bining multiple assumptions makes scaling the forward modelling
approach to real-world cases hard and error-prone. Nevertheless,
the availability of such assumptions is a valuable resource that must
not be neglected (Peng et al. 2010). At the same time, inference from
experimental data is limited by the number of measurements (Cheng
and Zhao 2011, Cheng et al. 2011) and their quality (Huang et al.
2022). Despite the recent progress in technologies allowing observa-
tion of gene expression, it is still not easy nor cheap to obtain the ne-
cessary data in sufficient volume and precision. In addition, the
experimental data are typically short and noisy (Bar-Joseph 2004).
More relevant observations are, however, available when the under-
lying network is at a steady state, e.g. see gene expression profiles of
melanoma (Bittner et al. 2000). Such states typically correspond to

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unre-
stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

€20z Ke Z0 uo 1senb Aq 2Z9660./85 | PEIG/F/6E/SI01HE/SOIEWLIOIOIG/W 0D dNO"dIWSPEOE//:SA)Y WOy POPECIUMOC]

https://orcid.org/0000-0003-0164-4046
https://doi.org/10.5281/zenodo.7688740
https://doi.org/10.5281/zenodo.7688740
https://academic.oup.com/

Benes et al.

network attractors: parts of the state space that cannot be escaped.
We thus primarily assume, though not exclusively, that the experi-
mental data represent steady-state data.

In this article, we advocate a combination of forward and reverse
modelling (Peng et al. 2010). The general idea is to unify the
literature-based knowledge and the knowledge gained from the ex-
perimental data. To that end, we propose Boolean network sketches
as a new formal instrument for the inference of BNs. A network
sketch integrates partial knowledge about the network’s topology
and the update logic (obtained through, e.g. a biological knowledge
base or a literature search), as well as dynamical restrictions repre-
senting knowledge or assumptions about the properties of the net-
work’s transitions (e.g. attractor landscape), and restrictions on the
model dynamics given by the measured experimental data. A unique
feature of our approach is that the modeller can also explicitly for-
mulate, as a part of prior knowledge, what is ‘not known’. Our new
inference method starts with an ‘initial’ sketch that corresponds to
the prior literature-based knowledge only. Subsequently, it is
extended by adding restrictions representing experimental data
resulting in the ‘data-informed’ sketch. The inference procedure
then identifies BNs that are consistent with the data-informed
sketch.

We assume that the experimental data that enter the inference
procedure are already binarized (Shmulevich and Zhang 2002), and
the measurements represent either the system’s steady states or time-
series experiments. We consider asynchronous BNs since they are
more biologically appropriate (Saadatpour et al. 2010). In asyn-
chronous dynamics, attractors can be classified as ‘stable’ (all varia-
bles are fixed), ‘cyclic’ (values of some variables oscillate), and
‘complex’ (values of some variables behave unpredictably).
However, note that in a typical experiment, not all system variables
are measurable. Thus, an apparent steady state may correspond to a
cyclic or complex attractor when the unstable variables are not
observed. Therefore, even if we only consider steady-state data, it is
still necessary to consider all network attractors, not just the stable
states.

We would also like to stress that the notion of a BN sketch is not
strictly tied to the asynchronous semantics. After a simple modifica-
tion of the core engine, our method is adaptable to any semantics
that produces a state-transition graph [e.g. synchronous, generalized
asynchronous—Chatain et al. (2018a), or most permissive—Chatain
et al. (2018b), and their respective sub-variants].

The contribution of our article is two fold: First, we formally
introduce BN sketches as a means of rigorously combining partial
knowledge about the Boolean model with measurement data.
Second, we formulate a symbolic binary decision diagram (BDD)-
based procedure utilizing coloured model checking (Brim et al.
2015) and attractor detection algorithms (tool AEON) (Benes et al.
2020) that computes all BNs consistent with a given network sketch.
The BDD representation allows us to compute all these networks at
once. The algorithm’s result is an ensemble of all the candidate lo-
gical models that is amenable for further processing. Such processing
may involve, e.g. picking a particular network consistent with all
the desired requirements, designing additional experiments to fur-
ther reduce the candidate set or discovering common properties
shared by all the candidate networks.

Related work. In the domain of continuous models, the interplay of
forward and reverse modelling has been studied, e.g. in Peng et al.
(2010), albeit in a very application-specific manner. In Ostrowski et al.
(2016) and later in Chevalier et al. (2019), the authors consider a simi-
lar exhaustive BN inference problem as this article, arising from an
assumed influence graph (IG) and observed reachability properties. To
identify the collection of candidate networks, they employ answer-set
programming. However, both works focus on more coarse-grained
over-approximations of the asynchronous BN semantics. A detailed
comparison is available in the supplementary material.

Note that Mufioz et al. (2018) employ specific information on
prior knowledge formalized in terms of R-graphs and other struc-
tures capturing data. In contrast, our approach is significantly more

general and includes universal specifications of many aspects, e.g.
dynamical properties.

The closest related work on the inference of logical models with
the help of model-checking methods is the framework of abstract
Boolean Networks (ABN) introduced in Yordanov et al. (2016) and
implemented in RE: IN by Goldfeder and Kugler (2019). ABNs are
associated with experimental constraints (corresponding to a sub-
class of dynamical restrictions in our framework), which makes
them comparable with data-informed sketches (see the supplemen-
tary material for details). However, on the computational side, RE:
IN employs bounded model checking based on satisfiability-
modulo-theories, which limits the experimental constraints to basic
reachability. In our approach, network sketches employ a richer
logic allowing significantly more expressive specifications: steady-
state behaviour (attractors), advanced reachability (e.g. monoton-
icity in between measurements in a time series), and a combination
of both (e.g. basins of attraction). Crucially, the synthesis process of
Yordanov et al. (2016) is limited to a pre-defined set of “patterns”
for update functions and is, therefore, not truly exhaustive.

In general, a distinguishing feature of our approach, thanks to
the underlying BDD representation, is our ability to easily obtain all
candidate models. This is not possible with methods using logic-
based reasoning described above. The efficiency of BDDs in this ap-
plication stems from their ability to compress various redundancies
within Boolean functions. On average, this compression ratio grows
with the number of symbolic variables (Newton and Verna 2019).
This allows us to efficiently manipulate extremely large sets of BN,
as long as the networks are sufficiently similar. However, this phe-
nomenon only holds on average: counting all monotonic Boolean
functions (Dedekind 1897) is a famous example of a simple problem
that cannot be efficiently solved using BDDs, or any other known al-
gorithm for that matter.

Traditional inference algorithms based on optimization empha-
size network topology inference (dependencies among variables).
This includes techniques based on mutual information [tool
REVEAL; Liang et al. (1998), and tool ARACNE; Margolin et al.
(2006)] or genetic programming (Mendoza and Bazzan 2011).
Asynchronous dynamics is supported in, e.g. Gao et al. (2020) (gen-
etic programming) or Lim et al. (2016) (state-space scoring).
However, compared to our approach, these methods only select a
single or a small subset of candidate networks without guarantees
on the method’s stability or exhaustiveness. Most of the existing in-
ference algorithms target synchronous dynamics, e.g. exhaustive
search (Best-Fit) (Lihdesmiki et al. 2003), mutual information
(MIBNI) (Barman and Kwon 2017), genetic programming (GABNI)
(Barman and Kwon 2018), and AND/OR tree ensembles (ATEN)
(Shi et al. 2019) can be considered as well. However, the synchron-
ous case often fails to capture the differences in the time scale of in-
dividual updates (Lahdesmaiki et al. 2003).

Conceptually, the notion of a BN sketch can also be seen as an
enhancement of a prior knowledge network (PKN) (Terfve et al.
2012, Dorier et al. 2016). PKNs summarize known interactions be-
tween genes and/or proteins of interest and are usually obtained
through literature mining. In Veliz-Cuba et al. (2022), the authors
also use the term ‘model prototype’ to refer to incomplete models
inferred from time-course data.

2 Preliminaries

Our BN inference procedure is based on the notion of a BN sketch.
Intuitively, a sketch can be seen as a collection of information a
modeller has at his or her disposal when designing a Boolean model.
BN sketches can be analysed using various symbolic algorithms to
infer the possible exact BNs, called candidate networks.

In the following, we use B to denote the set of Boolean values
{0, 1} and B” to denote the set of Boolean-valued vectors of length
n. Given such a vector x € B”, we write x; to denote its i-th element.
Furthermore, x[i—b] denotes the copy of x where the value of the
i-th element is fixed to b. We use the notation X to denote the
arity a of X (if X is a function) or generally the number of variables

€20z Ael\ 20 uo 1senb Aq ZZ9660./85 | PEIG/F/6E/2I0IIE/SONEULIOJUI0IG/ W00 dNO OlWapEedE/:SA)Y WO} PEPEo|UMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data

Boolean network sketches

appearing in some X (if X is, e.g. a BN). When this number is clear
from context, the superscript can be omitted.

2.1 Boolean network
A BN E® assumes 7 Boolean variables Var, = {vy,...,v,} and con-
sists of # Boolean update functions {Fj,...,F,} (one for each vari-
able), such that F;:B"” — B. Each Boolean-valued vector of B”
represents an assignment of Boolean values to the variables of Var,.
We call the set B” the state space of F*”), and the members of B its
states.

For each of the functions F;, we define dep(F;) C Var, to be the
dependency set of F;. This set contains the network variables that ac-
tually influence the output of F;:

vj € dep(F;) <= 3x € B". Fi(x[j — 1]) # Fi(x[j — 0]).

Asynchronous dynamics In this article, we focus on the asynchron-
ous updating scheme. This approach assumes that every network
variable can be updated independently of the others, as opposed to,
e.g. the synchronous updating scheme where all variables are
updated together.

Under this assumption, we can construct a directed (asynchron-
ous) state-transition graph STG(F™) = (S, T), where S = B" is the
network’s state space, and the transition relation T C S x § is
defined as follows:

(s,t) eT<—=s#tNTie{l,...,n}. t =s[i — F(s)).

Notice that in the resulting graph, every transition “updates”
exactly one network variable. For technical reasons, without the
loss of generality, we include a self-loop (s,s) € T whenever
Vi. s; = Fi(s). We use the standard abbreviations s — ¢, s—*t and
s—*t to denote that (s,#) € T, (s,t) € T* (transitive closure) and
(s,2) € T* (reflexive and transitive closure), respectively. A ‘run’ is
an infinite sequence of states si, sz, . . .such that Vi.(s;, s;41) € T.

Attractor The long-term behaviour of a BN is typically captured by
the notion of attractor. Formally, an attractor A is a bottom (or ter-
minal) strongly connected component of STG(F). In other words, for
any two s, € A, s—*t (Aisan SCC), and for all s € A, s — ¢ implies
that £ € A (A cannot be escaped). In the asynchronous STG(F), we
generally talk about ‘fixed-point’ attractors (A is a singleton set), ‘cyc-
lic’ or ‘oscillating’ attractors (A is a cycle within STG(F)), and ‘com-
plex’ or ‘disordered’ attractors (A is any other set).

3 Materials and methods

The workflow of our method is summarized in Fig. 1. In this section,
we explain the workflow. In particular, we first provide a detailed
explanation of the individual parts of a BN sketch and then describe

literature-based

knowledge

hypotheses
about the model

(initial) sketch

the inference procedure that takes such a sketch as an input and pro-
vides the set of BN candidates.

3.1 BN sketch

Now, we formally introduce BN sketches by defining the constituent
parts. The core part is made by partially defined BNs. The dynamic-
al restrictions and other assumptions about the system behaviour
are described using temporal logic HCTL. To illustrate the concepts,
we refer to the running example in Fig. 2.

3.1.1 Influence graph
The high-level structure of the network is given by an influence graph.
For a fixed set Var, of Boolean variables, an influence grah (IG) is a
binary relation I? C Var, x Var,. Intuitively, an influence graph
specifies the possible dependencies between individual Boolean varia-
bles. Given a BN F, we say that F is consistent with I if for every F;
and every v; € dep(F;), we have that (v;,v;) € I. The opposite (i.e.
(vj,vi) € I = vj € dep(F;)) is not required, though.

An example of an influence graph is given in Fig. 2a where we fix
the set of variables Vars. There are 2048 BNs consistent with this graph.

3.1.2 Partially specified Boolean network
Prior knowledge about the model’s behaviour can often be formu-
lated in the form of partially specified update functions. When defin-
ing such functions, we may use uninterpreted (fixed but otherwise
unknown) function symbols alongside standard Boolean expressions.
Formally, let us assume a set F of function symbols, each with a
specified arity. In the following, we use boldface symbols such as f @
to denote the members of this set (with the corresponding arity a).
A partially specified Boolean network (PSBN) E again assumes
n variables Var, and consists of # partially specified Boolean expres-
sions {Ei1,...,E,}, where each E; is defined by the following
grammar:

E :=0[1|v|~E|E A E|f“)(E,... E).

Here, v ranges over Var,. In practical applications, we also allow
standard syntactic abbreviations for other operators like V (disjunc-
tion), = (implication), <= (equivalence), and @ (exclusive or,
non-equivalence). Finally, when the arity of fis 0, this symbol is ef-
fectively an unknown constant. As such, we can simply write f in-
stead of £©)().

An interpretation of F is a function Z that assigns to each sym-
bol £ € F a Boolean function f@ with the same arity. By fixing a
particular interpretation Z for a given PSBN E, we substitute a
concrete Boolean function for each function symbol in its partially
specified Boolean expressions, and thus obtain a standard BN,
which we denote by E(Z). Finally, we call a BN F*) consistent with

binarised
data

experimental
data

=2]
influence partially update prior data \\? /
graph specified function knowledge | based 'z J/
]
BN properties dynamic properties o &
9
(IG) (PSBN) (UFP) (DP) "S S’
data-informed sketch g e";%/
/IQ? ‘(\Q\/ﬁ/
Y p , 59% %E's’ s
BN -
inference . -7
candidates

Figure 1. The workflow of our method. The initial sketch is created by combining literature-based knowledge about the model and possible initial hypotheses about the model.
The sketch may be further complemented with properties obtained automatically from binarized data, in which case, we also call it the data-informed sketch. Once we run the
BN inference procedure, we obtain a set of BN candidates, which we may enumerate and further inspect. This may lead us to the formulation of new hypotheses or suggest
new experiments to perform, both of which may further be used to refine the sketch and run the procedure again

€20z Ael\ 20 uo 1senb Aq ZZ9660./85 | PEIG/F/6E/2I0IIE/SONEULIOJUI0IG/ W00 dNO OlWapEedE/:SA)Y WO} PEPEo|UMOd

4 Benes et al.

Dynamic properties
Encoding of

Update function

Influence graph Partially specified BN

1 1 1

| | properties | Prior knowledge ! .

: :) : : experimental data

| By = f(us) | essentfall [F3] | Ja.3b.3c. Q. ' 3w.a,

| , essentialz[E3] | (EFaAEFbA | (~v1 A v Avs

! By =g(v1) ! essential?éE;] . (@Q,AGEFa)A | A AGEF w)A

| By = h(vy,v0) Vs | positive; [E3 ' (@, AGEFbA | 3, @,
A/\@D | 3 (v1,v2) V v3 | negatives[E1] | - EF a)) | (v1 Az A =3
~_ } } } | ANAGEFw)

2048 consistent BNs | 128 consistent BNs | 16 consistent BNs | 4 consistent BNs | 1 consistent BN
(a) ‘ (b) ‘ (©) ‘ (d) ‘ (e)

Figure 2. A running example of a BN sketch: (a) an influence graph (3.1.1), (b) a PSBN (3.1.2), (c) UFP (3.1.3), (d) DPs given as HCTL formulae obtained from prior know-
ledge (3.1.4), and (e) DPs automatically obtained from binarized experimental data (3.1.5). Parts (a)-(d) represent prior knowledge and form the initial sketch; extending the

DPs of the initial sketch with (e) gives the data-informed sketch

a PSBN E(if there exists an interpretation Z of F such that
F = E(7).

An example of a PSBN is given in Fig.2b. Here, we use three
function symbols £V, g, and h®. The number of BNs consistent
with both the influence graph and the PSBN has now decreased to
128 (this is due to the restriction on the form of E3).

3.1.3 Update functions properties
Another kind of starting information reflects prior knowledge on
properties of Boolean update functions, like monotonicity.

Let 7 be fixed in the following. We use F™ to denote the set of
all Boolean functions of type B” — B. A Boolean function property
is a predicate over F", i.e. a function F*) — B. We only work with
properties that can be defined in the first-order logic over Booleans.
This is sufficient to express many biologically relevant restrictions
on the admissible update functions. To show a few examples,
consider:

* jth input is essential in f:
essential;(f) := 3x € B".f(x[i— 0])Df (x[i— 1]);
* fis positively monotone in its ith input:
positive;(f) = Vx € B".f(x[i— 0]) = f(x[i— 1]);
* fisnegatively monotone in its ith input:
negative;(f) = Vx € B".f(x[i— 1]) = f(x[i— 0]).

We provide more examples of properties in the supplementary ma-
terial. In addition to the positive and negative monotonicity of a spe-
cific input within a Boolean function F;, we describe the fact that F;
is a ‘canalizing function’ (Harris et al. 2002) or a ‘veto function’
(Ebadi and Klemm 2014). Note that as the properties are defined in
first-order logic, we can combine them with logical operators and
customize them to only apply under some restrictions (e.g. F; is mon-
otonous in input j only when input j is canalizing, etc.).

We can evaluate the properties on the update functions of a clas-
sical BN, and we get a yes/no answer, i.e. essential;(F;) is true iff v; €
dep(F;) etc. The evaluation can be extended to partially specified
Boolean expressions, which we denote by prop|E] where prop is a
property and E a partially specified Boolean expression. The outcome
of such a property evaluation is the set of all interpretations for which
the resulting Boolean function satisfies the property, e.g. positive;(E;)
is the set of all interpretations that ensure that (v;, v;) is an activation
regulation. Formally, prop[E] = {Z|prop(E(Z)) istrue}.

The update function properties (UFP) of a PSBN are thus given
as a set IT of Boolean function properties applied to partially speci-
fied Boolean expressions. The semantics of this is the set of all inter-
pretations for which all the properties are satisfied, i.e. the
intersection of the property evaluations. We say that an interpret-
ation Z is consistent with I, if it belongs to this set. We further say
that a BN F is consistent with a PSBN E and its update function
properties IT if there exists an interpretation Z consistent with IT
such that F = E(Z).

Note that the approach we take here, i.e. defining properties as
intersections, is chosen for simplicity. A more general approach can
be defined by using arbitrary (Boolean) combinations of property
evaluations.

An example of update function properties is given in Fig. 2c. We
require v3 to be essential and with negative monotone effect in E,
which effectively means that the only valid interpretation of fis the
negation function. We furthermore require that both v; and v, be es-
sential in E3 with v, having a positive monotone effect, thus ensur-
ing that the interpretations of b are limited to one of the four
options: v1 V va, v1 Ava, v1 V —wy, vy A —w;. The number of consist-
ent BNs has now decreased to 16 (four options for b times four
options for g).

3.1.4 Dynamic properties

In addition to properties of update functions, we typically consider
other requirements and assumptions about the system behaviour
represented as runs in the corresponding STG. Examples are proper-
ties of the attractor landscape (attractor multiplicity and type,
phenotype expression, etc.) or other more general properties (basins
of attraction, commitment sets, etc.).

To capture a wide variety of possible properties of runs, we rely
on a hybrid extension of the branching-time temporal logic CTL
(HCTL for short). Aside from standard Boolean connectives, HCTL
consists of temporal operators that allow reasoning about the evolu-
tion of the system with respect to time and hybrid operators that
quantify and reference individual model states. The most common
such quantifier is the down-arrow operator, introduced in Goranko
(1994, 2000) (denoted |), that binds a state variable to the current
state.

Our presentation of HCTL follows Kernberger and Lange
(2020). For additional details, such as the formal semantics of indi-
vidual operators, see the supplementary material. Now, let AP be a
non-empty finite set of atomic propositions and Vars be a countable
set of state variables. The syntax of an HCTL formula is given by
the following grammar, where p ranges over AP and x over Vars:

@ == 0[1|plx|=plo A p|Qx @] | x. ¢|3x. |
EX¢|E[pUq]|A[pUg).

The temporal operators EX, EU and AU have their usual intuitive
meaning derived from CTL. We also employ the commonly used syn-
tactic abbreviations for EF, AF, EG, AG, and AX (see supplementary
material for details), as well as other first-order and propositional
abbreviations (V, V, =, etc.). The intuition behind the hybrid opera-
tors is the following: The ‘at operator’ @, ¢ means “continue evalu-
ating ¢ at the state x” while the ‘bind operator’ | x. ¢ stands for
“name the current state of evaluation x and proceed to check ¢ under
this assumption”. Overall, keep in mind that (as opposed to CTL),
the validity of an HCTL formula generally also depends on some
valuation of the state variables (Vars — B").

The use of HCTL (as opposed to CTL) is motivated by the need
to encode general properties of STG(F) without tying their validity

€20z Ael\ 20 uo 1senb Aq ZZ9660./85 | PEIG/F/6E/2I0IIE/SONEULIOJUI0IG/ W00 dNO OlWapEedE/:SA)Y WO} PEPEo|UMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data

Boolean network sketches

to specific atomic propositions. For example, CTL alone cannot de-
scribe the general property of being a member of an attractor or hav-
ing the ability to reach two distinct attractors (bi-stability).
Meanwhile, the following hybrid formulae easily describe these two
conditions in HCTL:

@1 =] x. AGEFx
@, = Ja. 3b. (EFa NEFb A (Q, ¢;) A (Q, (¢, A —EFa))).

Guaranteeing such commonly expected biological properties in the
candidate networks necessitates the use of hybrid operators.
Furthermore, many of such temporal properties can be derived dir-
ectly from observed data in real-world experiments (see the supple-
mentary material). Finally, note that the CTL fragment of HCTL
can be sufficient for many practical applications. Alternatively, a
different temporal logic may be used altogether. Different variants
of the BN sketch could be thus considered, relying on a modified no-
tion of dynamic properties (DPs). A BN is consistent with a given
DP if the property is satisfied by the respective STG.

An example of a DP is given in Fig. 2d. The formula, similar to
¢, above, states that there exists a state (denoted by ¢) from which
we can reach two different attractors. This represents a situation
where two attractors share a (weak) basin. The number of BNs con-
sistent with this property has now decreased to 4 (the remaining 12
BN contain only a single attractor).

3.1.5 Encoding of experimental data

So far we have considered those parts of the sketch that deal with
prior knowledge (this is called an initial sketch). To incorporate re-
verse inference from experimental data, the binarized data are
encoded using HCTL. In this way, we can regard the encoding of ex-
perimental data as a specific DP. This approach allows the combin-
ation of the forward and reverse inference in a single consistency
checking procedure. A sketch extended with data encoded in this
way is called a data-informed sketch.

We give the technical details of the procedure for building the
HCTL formula for various kinds of data in the supplementary ma-
terial. Here, we demonstrate the basic idea in a simple example.
Suppose we are given the following binarized steady-state set:

experiment 2] v v3
1 0 0 1
2 1 1

The corresponding HCTL formula that expresses that the states
(0, 0, 1) and (1, 1, 0) belong to some attractor is given in Fig. 2e.
Notice that in this particular example, we finally obtain a single can-
didate BN—the interpretation of g a b is the following: g = v; and
b =1 A —w,. In general, however, the method may produce more
candidate networks.

3.2 Inference problem
A BN sketch S is the tuple S® = (I® | E®) TI, Q). Here, I is an in-
fluence graph, E® is a PSBN, IT is the set of update functions prop-
erties (UFP), and Q is a set of HCTL formulae, containing both the
formulae describing the prior knowledge about the DPs, and the for-
mulae encoding the experimental data. The formulae in Q must not
contain free variables. We say F is consistent with the sketch S if it is
consistent with all its parts as defined in the previous.

The BN inference problem: Given a BN sketch S, our goal is to
compute the set of all BNs consistent with S.

Note that if we solve the inference problem, we are also able to
answer various queries. such as realizability “Is the set of consistent
BNs non-empty?” or counting “How many consistent BNs exist?”

3.3 BN inference procedure

Our method utilizes symbolic representation by BDDs to concisely
encode the set of candidate BNs that are potentially consistent with
a particular sketch. Here, each candidate is encoded as a vector of
Boolean values. A set of candidates can then be viewed as a Boolean
formula (encoded via a BDD) satisfiable exactly by the members of
the set. This set is gradually refined using individual constraints until
only the consistent networks remain.Overall, the inference proced-
ure is summarized in Algorithm 1. Technical details regarding the
implementation of procedures used within Algorithm 1 are then
given in the supplementary material. Here, we merely provide a
high-level overview of the whole method.

Influence graph consistency checking (Line 1). As the first step, we
verify that the PSBN E is in agreement with the influence Graph I
This is performed on a syntactic level, checking that each expression
E; only depends on the network variables v; for which (v;,v;) € L.

Algorithm 1: High-level BN inference procedure.
Input: a BN sketch S = (I, E, I1,Q)
Output: a set C of candidate BNs
1 if E violates I then reject
2 E' — EliminateUninterpretedSymbols (E)
3 Il « Substitute(I1, (E1,...,E,), (E},...,E,))
4 C « BddEncode(IT')
5 if C then reject
6 G «— ColouredSTG(E')
7 C' — ColouredModelChecking(Q, G,B” x C)
8 if C' then reject
9 return C'

Uninterpreted function elimination (Lines 2, 3). As the second step,
we eliminate the uninterpreted function symbols f fa/ appearing in E
for which a; > 0. Here, each f;a’) is substituted with a logically
equivalent expression using 2% fresh, zero-arity symbols (constants)
that together encode the truth table of the original f;. This means
that E’ only contains constant uninterpreted symbols. Let us refer to
the set of the constant symbols as F'. On Line 3, we then substitute
each E; within IT for the modified expression E, i.e. each prop[E|] is
replaced by prop[E}].

Properties encoding and validation (Lines 4, 5). Due to the previous
step, the properties of IT' now only contain constant uninterpreted
symbols. As the properties are written in the first-order logic over
Booleans, all the operations and quantifications in them can be imple-
mented as BDD transformations. We can thus encode each prop[E]]
as a BDD, whose variables correspond to the uninterpreted constants
of E]. The whole IT' is then constructed as an intersection of all these
BDDs, which is again a BDD, denoted in the algorithm by C. If C rep-
resents an empty set, this means that the update function properties
are contradictory, and the PSBN is thus not realizable.

DPs validation (Lines 6, 7, 8). At this point, C encodes a set of can-
didate networks F that are consistent with the provided I, E, and TI.
Based on this set, we can create a ‘coloured’ asynchronous state-
transition graph G that collectively encodes every possible STG(F)
corresponding to the networks within C. Using a bottom-up col-
oured model-checking procedure (see the supplementary material)
operating on G, we can then further restrict C to C', that guarantees
the satisfaction of all the HCTL formulae in Q encoding the DPs.
During the intermediate steps of the procedure, the symbolic BDD
encoding is extended to incorporate the state variables Vars.
However, since the formulae in Q have no free variables, these do
not appear in the resulting C'.

€20z Ael\ 20 uo 1senb Aq ZZ9660./85 | PEIG/F/6E/2I0IIE/SONEULIOJUI0IG/ W00 dNO OlWapEedE/:SA)Y WO} PEPEo|UMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data

Benes et al.

We should note that to actually obtain a candidate network from
the set C', a satisfying valuation of variables appearing within this
BDD is mapped back to an interpretation Z' of the set F (appearing
within E’), and subsequently to a network E'(Z"). If an interpretation
of the original F (appearing in E) is desired, this too can be con-
structed based on 7. By reversing the procedure, we can also check
whether a given specific BN F is contained within the set C'.

Finally, let us make some remarks about the computational com-
plexity of the algorithm. The dominating step of the algorithm is the
coloured model checking (Line 7). As the algorithm is symbolic, its
complexity has two components: first, the number of symbolic steps
performed, and second, the complexity of the symbolic steps
themselves.

The number of symbolic steps is bound by O(|S| x |¢]), although
typically it is much smaller (see supplementary material for details).
The performance of the individual symbolic steps then correlates
with the size of the symbolic representation, which in our case
depends on the number of interpretations. This number is in the
worst case doubly exponential w.r.t. the arity of the function sym-
bols. Such arity is then bounded by the in-degree (no. of incoming
edges) within the influence graph. As argued in Kauffman (1969),
the in-degree within BNs that exhibit complex behaviour is on aver-
age small (2-3 regulations), and this prediction appears to largely
translate to real-world networks (Kadelka et al. 2020).

4 Evaluation and results

In this section, we demonstrate the applicability and scalability of
our approach. For the applicability demonstration, we consider two
case studies focussing on real biological models and data. In add-
ition, we show the process of refinement of the sketch. The scalabil-
ity of our method is then demonstrated on a set of large biological
networks and synthetic steady-state data. Here, we present the main
results of our experiments. Detailed information (including, e.g. par-
ticular HCTL formulae) is presented in the supplementary material.
All experiments have been performed on a standard workstation
with an 11th Gen Intel i5 CPU and 16 GB RAM. The prototype im-
plementation and the results are available at https://github.com/syb
ila/boolean-network-sketches.

The first case study focuses on the T cell survival mechanism
arising in the context of LGL leukaemia. The signalling network and
a Boolean model characterizing this mechanism has been first
designed by Zhang et al. (2008). Subsequently, in Saadatpour et al.
(2011), the authors have developed a reduced version of the model.
We consider the reduced variant. The reduced model contains 18
variables. One of them, called ‘Apoptosis’, is used to represent the
programmed cell death.

The authors of the original Boolean model focussed on deducing
the precise form of update functions from the literature. Such a task
is often extremely difficult, since the existing data may be incom-
plete or imprecise, and may introduce certain inaccuracies or biases
into the model. We show how these problems can be avoided by
employing the inference approach based on network sketches. In
particular, we consider two iterations of the inference procedure
introduced in Section 3.3. In the first step, we address the question
of whether there exists a consistent candidate. To that end, we in-
corporate the knowledge obtained from the existing signalling net-
work and the binarized experimental data [taken from Saadatpour
et al. (2011)]. Using the results of the first step, we then further re-
fine the sketch and obtain the final results.

The existing signalling network includes two levels of prior
knowledge—the influence graph I and the additional information
about the influences (inhibition or activation). Using these charac-
teristics, we generate the set IT of update function properties
expressing the monotonicity of the respective influences. At this
stage, we consider a BN E with completely unspecified update logic.
To obtain a desired DP, we use the binarized experimental data
addressing the state of several proteins observed under LGL leukae-
mia phenotype. Based on this data, we automatically generate a for-
mula ¢, encoding the existence of an attractor that contains a state

Table 1. Numbers of candidates consistent with the two sketches
of the T cell survival model described in the first case study.

Sketch components S N
1G 3.2e32 3.2e32
1G + PSBN 3.2e32 7.2e16
1G + PSBN + UFP 7.8¢10 1296
1G + PSBN + UFP + DP 9.1e9 378

Each row shows the number of candidates consistent with the particular
components of the sketch, starting with just the influence graph in the first
row, and considering the whole sketch in the last row. Note that this corre-
sponds to the Algorithm 1, where the sketch components are considered
gradually.

corresponding with the data. The set of DPs Q is then defined as
Q={p}.

Next, we run the inference procedure on the complete sketch
S = (I,E, I1,Q). The whole computation takes <9 min. We find out
that there exist consistent candidates. Individual rows of the second
column of Table 1 show the number of candidates consistent with
the particular components of the sketch S.

In order to refine the sketch, we analyse the set of consistent net-
works. Our set representation allows us to symbolically compute
attractors for all consistent candidates at once. By analysing this set
of attractors, we observe two important things. First, there are can-
didates that do not exhibit any attractor corresponding directly to
the programmed cell death phenotype. Second, some candidates do
exhibit attractors that contain states where both the ‘Apoptosis’
variable and the variables for the various proteins are activated at
the same time. However, once the programmed cell death process
begins, the production of all proteins should cease.

We address the first issue by designing another DP, ¢,, that enc-
odes the existence of a fixed-point attractor where the ‘Apoptosis’
variable is activated while all other variables (representing proteins)
are deactivated. To address the second issue, we design an additional
formula ¢; encoding the DP expressing the observation there should
not be any other attractor apart from those that correspond to the
programmed cell death or the experimental data. We thus obtain a
new set of DPs Q' = {¢;, ¢,, 3 }. Furthermore, we improve the spe-
cification of the update logic by substituting the component E of the
sketch for a new (“more detailed”) PSBN E'. We require that when
the ‘Apoptosis’ variable is activated, all other variables should be
switched off. Therefore, the update function of each network vari-
able v; (except ‘Apoptosis’) should be —~Apoptosis A f@, where a is a
number of the variable’s regulators excluding ‘Apoptosis’, and ff“
represents an uninterpreted Boolean function with these a regulators
as its arguments.

When we employ the new refined sketch §' = (I, E/, I1,Q') and
run the inference algorithm, only 378 potential consistent networks
remain. The whole computation for §’ only takes <1 s. The compu-
tation is an order of magnitude faster than the computation for §
mainly because the searched space of candidates got notably smaller
by substituting E for E'. Individual rows of the third column of
Table 1 show the number of candidates consistent with the particu-
lar components of the sketch §'. By means of automatic analysis, we
discover that all consistent candidates agree on the update functions
for 13 variables (i.e. for each of these variables, only one consistent
update function is possible). Modellers can use this information and
only focus on the remaining five network components that vary
among the candidates.

In our second case study, we show how network sketches can be
useful for the development of the model of sepal primordium polar-
ity for Arabidopsis thaliana (La Rota et al. 2011). We use the signal-
ling network from the original article to obtain the influence graph
and the update function properties. We again use a sketch with com-
pletely undefined update logic and determine DPs based on two
expected attractor state (see the supplementary material for details).
Since a case study regarding this model was also performed by the
authors of the inference tool Griffin (Munoz et al. 2018), we

€20z Ael\ 20 uo 1senb Aq ZZ9660./85 | PEIG/F/6E/2I0IIE/SONEULIOJUI0IG/ W00 dNO OlWapEedE/:SA)Y WO} PEPEo|UMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://github.com/sybila/boolean-network-sketches
https://github.com/sybila/boolean-network-sketches
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data

Boolean network sketches

compare the performance of our method to theirs. We show that
when we consider the exact same literature-based knowledge and
data, both methods reach the same results. However, thanks to our
symbolic representation, our computation is ~50 000x faster, even
though we consider more complex asynchronous semantics.

Finally, to further assess the scalability, we have tested our
method on a set of complex sketches derived from large real-life
models and synthetically generated steady-state data. We were able
to successfully run the inference algorithm on models with up to 321
network variables. The employed sketches involve a significant
amount of unknown information—their PSBN components admit
up to 23%¢ candidate networks. Note that the computation times do
not exceed 10 min even for the largest considered models. In the sup-
plementary material, we present the detailed information regarding
the methodology and the models used.

5 Discussion

In this article, we have introduced BN sketches as the original frame-
work for fully automated inference of BN models from a combin-
ation of prior knowledge, experimental measurements, and
additional biological hypotheses. The versatile formalism of partial-
ly specified update functions allows capturing partial knowledge of
the update logic in a very general form, not restricted to a small set
of patterns as used in other approaches.

The properties of the dynamic behaviour of the inferred model
are described in a powerful formal language based on temporal log-
ics allowing us to sufficiently express complex dynamic phenomena.
The technical core of our approach is based on a very efficient for-
mal method (coloured model checking) that guarantees to obtain the
exact set of all candidate models that are in conformance with the
knowledge specified in the sketch.

On the computational side, another advantage of our method is
that we obtain a compact symbolic representation of the set of can-
didate models. This representation allows the user to easily obtain
an arbitrary number of candidate BNs, which can be further ana-
lysed. The knowledge obtained during the analysis can be thus used
to enrich the sketch for a subsequent iteration of the inference
procedure.

In the evaluation, we have shown that our approach is practical
and applicable to real-life cases. We have demonstrated that it scales
even to large models. Experimentation with the method has revealed
an important aspect of our workflow, namely the ability to gain
insights from the iterative process of BN inference and use it to for-
mulate additional hypotheses for the next iteration.

Supplementary data
Supplementary data is available at Bioinformatics online.

Conflict of interest: None declared.

Funding

This work was partially supported by GACR [grant No. GA22-10845S]; and
Grant Agency of Masaryk University [grant No. MUNI/G/1771/2020]. This
work was partially supported by European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie [Grant
Agreement No. 101034413 to S.P.].

References

Bar-Joseph Z. Analyzing time series gene expression data. Bioinformatics
2004;20:2493-503.

Barman S, Kwon Y-K. A novel mutual information-based Boolean network in-
ference method from time-series gene expression data. PLoS One 2017;12:
1-19.

Barman S, Kwon Y-K. A Boolean network inference from time-series gene ex-
pression data using a genetic algorithm. Bioinformatics 2018;34:1927-33.

Benes N, Brim L, Kadlecaj J et al. AEON: attractor bifurcation analysis of par-
ametrised Boolean networks. In: Lahiri, S., Wang, C. (eds) Computer Aided
Verification. CAV 2020. Lecture Notes in Computer Science, Vol. 12224.
Springer, Cham, 2020, 569-581.

Bittner M, Meltzer P, Chen Y et al. Molecular classification of cutaneous ma-
lignant melanoma by gene expression profiling. Nature 2000;406:536-40.
Brim L, Ceska M, Demko M et al. Parameter synthesis by parallel coloured
CTL model checking. In: Roux, O., Bourdon,]J. (eds) International
Conference on Computational Methods in Systems Biology. CMSB 2015.

Springer, Cham, 2015, 251-263.

Chatain T, Haar S, Paulevé L. Boolean networks: beyond generalized asyn-
chronicity. In: Baetens, J., Kutrib, M. (eds) Cellular Automata and Discrete
Complex Systems. AUTOMATA 2018. Lecture Notes in Computer Science,
vol 10875. Springer International Publishing, Cham, 2018a, 29-42.

Chatain T, Haar S, Paulevé L. Most permissive semantics of Boolean net-
works. CoRR, abs/1808.10240. 2018b.

Cheng D, Zhao Y. Identification of Boolean control networks. Automatica
2011;47:702-10.

Cheng D, Qi H, Li Z. Model construction of Boolean network via observed
data. IEEE Trans Neural Netw 2011;22:525-36.

Chevalier S, Froidevaux C, Pauleve L et al. Synthesis of Boolean networks
from biological dynamical constraints using answer-set programming. In:
2019 IEEE 31st International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 34—41. IEEE Computer Society, 2019.

Dedekind R. Uber zerlegungen von Zahlen durch ihre grossten gemeinsamen
Theiler. In: Fest-Schrift der herzoglichen technischen hochschule Carolo-
Wilbelmina. Vieweg+Teubner Verlag, Wiesbaden, 1897, 1-40.

Dorier J, Crespo I, Niknejad A et al. Boolean regulatory network reconstruc-
tion using literature based knowledge with a genetic algorithm optimization
method. BMC Bioinformatics 2016;17:410.

Ebadi H, Klemm K. Boolean networks with veto functions. Phys Rev E 2014;
90:022815.

Gao S, Sun C, Xiang C et al. Learning asynchronous Boolean networks from
single-cell data using multiobjective cooperative genetic programming.
IEEE Trans Cybern 2022;52:2916-2930.

Goldfeder J, Kugler H. BRE:IN — a backend for reasoning about interaction
networks with temporal logic. In: Bortolussi, L., Sanguinetti, G. (eds)
Computational Methods in Systems Biology (CMSB 2019), Lecture Notes
in Bioinformatics, Vol. 11773. Springer, Cham, 2019, 289-95.

Goranko V. Temporal logic with reference pointers. In: Gabbay, D.M.,
Ohlbach, H.J. (eds) Temporal Logic, First International Conference
(ICTL’94), Lecture Notes in Computer Science, Vol. 827. Springer, Berlin,
Heidelberg, 1994, 133-48.

Goranko V. Temporal logics with reference pointers and computation tree log-
ics.] Appl Non Class Log 2000;10:221-42.

Grieb M., Burkovski A., String, J. E. et al. Predicting variabilities in cardiac
gene expression with a Boolean network incorporating uncertainty. PLoS
One 2015;10:1-15.

Gunawardena J. Models in biology: ‘accurate descriptions of our pathetic
thinking’. BMC Biol 2014;12:29.

Harris SE, Sawhill BK, Wuensche A et al. A model of transcriptional regula-
tory networks based on biases in the observed regulation rules. Complex
2002;7:23-40.

Huang X-N, Shi W-J, Zhou Z et al. The identifiability of gene regulatory net-
works: the role of observation data. | Biol Phys 2022;48:93-110.

Kadelka C, Butrie T-M, Hilton E et al. A meta-analysis of Boolean network
models reveals design principles of gene regulatory networks. arXiv preprint
arXiv:2009.01216. 2020.

Kauffman S. Metabolic stability and epigenesis in randomly constructed genet-
ic nets.] Theor Biol 1969;22:437-67.

Kernberger D, Lange M. Model checking for hybrid branching-time logics. |
Log Algebr Methods Program 2020;110:100427.

La Rota C, Chopard J, Das P et al. A data-driven integrative model of sepal
primordium polarity in arabidopsis. Plant Cell 2011;23:4318-33.

Lihdesmiki H, Shmulevich I, Yli-Harja O. On learning gene regulatory net-
works under the Boolean network model. Mach Learn 2003;52:147-67.

Liang S, Fuhrman S, Somogyi R. REVEAL, a general reverse engineering algo-
rithm for inference of genetic network architectures. In: Pacific Symposium
on Biocomputing, Vol. 3. 1998, 18-29.

Lim CY, Wang H, Woodhouse S et al. BTR: training asynchronous Boolean
models using single-cell expression data. BMC Bioinformatics 2016;17:355.

Margolin AA, Nemenman I, Basso K et al. ARACNE: an algorithm for the re-
construction of gene regulatory networks in a mammalian cellular context.
BMC Bioinformatics 2006;7:S7.

€20z Ael\ 20 uo 1senb Aq ZZ9660./85 | PEIG/F/6E/2I0IIE/SONEULIOJUI0IG/ W00 dNO OlWapEedE/:SA)Y WO} PEPEo|UMOd

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad158#supplementary-data

Benes et al.

Mendoza MR, Bazzan ALC. Evolving random Boolean networks with genetic
algorithms for regulatory networks reconstruction. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation, GECCO’11,
pp. 291-298. Association for Computing Machinery, 2011.

Munoz S, Carrillo M, Azpeitia E et al. Griffin: a tool for symbolic inference of
synchronous Boolean molecular networks. Front Genet 2018;9:39.

Newton J, Verna D. A theoretical and numerical analysis of the worst-case size
of reduced ordered binary decision diagrams. ACM Trans Comput Log
2019;20:1-36.

Ostrowski M, Paulevé L, Schaub T et al. Boolean network identification from
perturbation time series data combining dynamics abstraction and logic pro-
gramming. Biosystems 2016;149:139-53.

Peng, S.C., Wong, D.S.H., Tung. K.C. et al. Computational modeling with for-
ward and reverse engineering links signaling network and genomic regula-
tory responses: NF-xB signaling-induced gene expression responses in
inflammation. BMC Bioinformatics 2010;11:1-13.

Saadatpour A, Albert I, Albert R. Attractor analysis of asynchronous
Boolean models of signal transduction networks. | Theor Biol 2010;
266:641-56.

Saadatpour A, Wang R-S, Liao A et al. Dynamical and structural analysis of a
T cell survival network identifies novel candidate therapeutic targets for
large granular lymphocyte leukemia. PLoS Comput Biol 2011;7:1-15.

ShiN, Zhu Z, Tang K et al. ATEN: and/or tree ensemble for inferring accurate
Boolean network topology and dynamics. Bioinformatics 2019;36:578-835.

Shmulevich I, Zhang W. Binary analysis and optimization-based normaliza-
tion of gene expression data. Bioinformatics 2002;18:555-65.

Terfve C., Cokelaer, T., Henriques, D. et al. CellNOptR: a flexible toolkit to
train protein signaling networks to data using multiple logic formalisms.
BMC Syst Biol 2012;6:133.

Thomas R. Boolean formalization of genetic control circuits. | Theor Biol
1973;42:563-85.

Veliz-Cuba A, Voss R, Murrugarra D. Building model prototypes from time-
course data. bioRxiv 2022.01.27.478080. 2022.

Yordanov B, Dunn S-J, Kugler H et al. A method to identify and analyze bio-
logical programs through automated reasoning. NPJ Syst Biol Appl 2016;2:
1-16.

Zhang R, Shah M, Yang] et al. Network model of survival signaling in LGL
leukemia. Proc Natl Acad Sci USA 2008;105:16308-13.

€20z Ael\ 20 uo 1senb Aq ZZ9660./85 | PEIG/F/6E/2I0IIE/SONEULIOJUI0IG/ W00 dNO OlWapEedE/:SA)Y WO} PEPEo|UMOd

	tblfn1

