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Universal nonequilibrium properties of isolated quantum systems are typically probed by studying
transport of conserved quantities, such as charge or spin, while transport of energy has received considerably
less attention. Here, we study infinite-temperature energy transport in the kinetically constrained PXP model
describing Rydberg atom quantum simulators. Our state-of-the-art numerical simulations, including exact
diagonalization and time-evolving block decimation methods, reveal the existence of two distinct transport
regimes. At moderate times, the energy-energy correlation function displays periodic oscillations due to
families of eigenstates forming different su(2) representations hidden within the spectrum. These families of
eigenstates generalize the quantummany-body scarred states found in previous works and leave an imprint on
the infinite-temperature energy transport. At later times, we observe a long-lived superdiffusive transport
regime that we attribute to the proximity of a nearby integrable point. While generic strong deformations of
the PXP model indeed restore diffusive transport, adding a strong chemical potential intriguingly gives rise to
a well-converged superdiffusive exponent z ≈ 3=2. Our results suggest constrained models to be potential
hosts of novel transport regimes and call for developing an analytic understanding of their energy transport.

DOI: 10.1103/PhysRevX.13.011033 Subject Areas: Quantum Physics, Statistical Physics

I. INTRODUCTION

The understanding of out-of-equilibrium properties of
many-body systems is one of the central problems in
quantum statistical physics. The universal aspects of non-
equilibrium dynamics are commonly probed by quantum
transport at infinite temperature. Generic chaotic models
typically exhibit diffusive transport of conserved quantities
such as spin [1–7], charge [1,4], or energy [2,4,8–10]. On the
other hand, disorder can give rise to slower-than-diffusive
(subdiffusive) dynamics or even localization [3,11–16].
In contrast to (sub)diffusion, faster-than-diffusive trans-

port typically rests on the existence of special structures.
In one dimension, integrable models [17] can support
ballistic transport since their mascroscopic number of
conserved quantities may prevent currents from decaying.
Furthermore, intermediate behavior between diffusion
and ballistic transport can arise in integrable models with
certain symmetries, where superdiffusive Kardar-Parisi-
Zhang (KPZ) dynamics has been observed [5,7,18–28].
Importantly, all examples of faster-than-diffusive dynamics
in short-range models rely on integrability. The same,

naturally, does not hold for long-range models where
superdiffusion has also been observed and explained by
classical arguments using Lévy flights [29,30].
In addition to disorder and integrability, it was recently

shown that kinetic constraints may also lead to a dif-
ferent class of dynamics known as “quantum many-body
scars” (QMBSs) [31–33]. For instance, the so-called PXP
model [34,35] that describes constrained dynamics in
Rydberg atom quantum simulators [36,37], displays weak
ergodicity breaking due to the presence of periodic revivals
in the dynamics and the existence of nonthermalizing
eigenstates in its spectrum [38–42]. These rare nonergodic
eigenstates were understood as forming a single approxi-
mate su(2) algebra representation embedded into the
spectrum of the Hamiltonian, even though the latter has
no SU(2) symmetry [43,44]. In addition to the phenomenon
of scarring, recent studies of infinite-temperature charge
transport in random constrained Floquet models revealed
several examples of slower-than-diffusive dynamics [45,46].
In this paper, we study energy transport in the PXP

model. To access dynamics at late times, we use time-
evolving block decimation (TEBD) [47,48] to calculate the
energy-energy correlation function. Intuitively, this setup
tracks the spreading of a small energy “hump” created at
the central site of the chain, atop of the infinite-temperature
density matrix. At short times, the spreading of the initial
energy inhomogeneity is characterized by oscillations that
we attribute to multiple approximate su(2) algebra repre-
sentations hidden in the spectrum of the PXP model.
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The eigenstates forming these representations encompass
the previously identified QMBS eigenstates [38,44], but
also include additional eigenstates corresponding to
lower-spin representations. We relate the multiple su(2)
representations to the oscillatory behavior observed in
energy transport at infinite temperature, mirroring the
QMBS revivals observed in quenches from special initial
states [36]. At later times, the oscillations due to multiple
su(2) representations are damped and we observe faster-
than-diffusive decay of the energy density. The super-
diffusive (possibly transient) dynamics provides further
evidence of the existence of an integrable point, proximate
to the PXP model [49]. Surprisingly, while deforming the
PXP model with a chemical potential removes the rem-
nants of integrability, instead of restoring diffusion, it
leads to a stable superdiffusive regime with a dynamical
exponent z ≈ 3=2.
The remainder of this paper is organized as follows. In

Sec. II, we introduce the PXP model and present the results
for its energy transport at infinite temperature. In Sec. III,
we discuss the short-time regime of the energy transport,
which is characterized by oscillations that we attribute to
multiple su(2) representations. In Sec. IV, we analyze the
late-time energy transport by applying integrable deforma-
tions to the PXP model. The effect of the chemical potential
is studied in Sec. V, where it is shown to lead to a robust
regime of superdiffusive transport at the accessible time-
scales. Our conclusions are presented in Sec. VI, while the
appendixes contain further details on the numerical sim-
ulations, construction of the multiple su(2) representations,
and the longer-range Rydberg blockade that leads to
diffusive energy transport.

II. INFINITE-TEMPERATURE ENERGY
TRANSPORT IN THE PXP MODEL

The Hamiltonian of the PXP model [35]

HPXP ¼ Ω
X
i

Pi−1σ
x
i Piþ1 ð1Þ

operates on a chain of N spins-1=2, where Pi ¼ j↓iih↓ji is
a local projector on the j↓i state, and σxi is the correspond-
ing Pauli matrix. The projectors Pi encode the Rydberg
blockade mechanism [50] and lead to a block-diagonal
structure of HPXP, also known as Hilbert space fragmenta-
tion [51–53]: Any two consecutive up spins j↑↑i remain
frozen under the dynamics generated by HPXP, effectively
disconnecting the chain at that point. In what follows,
we set the Rabi frequency Ω ¼ 1 and work in the reduced
Hilbert space, i.e., the largest sector that excludes any
consecutive pairs of up spins. The PXP model in the
reduced Hilbert space exhibits the repulsion of energy
levels typical of chaotic systems [38].
We probe energy transport via the connected energy

correlation function

hh0ð0ÞhlðtÞic ¼ hh0ð0ÞhlðtÞi − hh0ð0ÞihhlðtÞi; ð2Þ

where hlð0Þ ¼ Pl−1σ
x
lPlþ1 is the energy density operator

at site l, and hlðtÞ ¼ eiHPXPthlð0Þe−iHPXPt. Crucially, the
expectation values in Eq. (2) are evaluated by taking the
trace with respect to the infinite-temperature density matrix
within the reduced Hilbert space. Specifically, we define
the expectation value of a given operator O,

hOi≡ trðPOÞ; ð3Þ

where the global projector P ¼ Q
ið1i;iþ1 − niniþ1Þ, with

ni ¼ j↑iih↑ji, annihilates any states with two neighboring
up spins. The projection to the reduced Hilbert space is a
crucial difference with respect to the earlier studies of
particle transport in constrained models, e.g., in Ref. [45].
The existence of many disconnected sectors in the Hilbert
space is expected to slow down the transport. Indeed, below
we observe diffusive or superdiffusive transport, in contrast
to slower dynamics observed in Ref. [45].
Accessing energy transport in the thermodynamic limit

requires the evaluation of the connected correlation func-
tion (2) in large systems at late times. To access the required
system sizes and times, we use a state-of-the-art massively
parallel implementation of the TEBD algorithm [47,48]
based on the ITENSOR library [54]. This allows us to
simulate operator dynamics in the PXP model up to times
exceeding t≳ 300, requiring N ¼ 1024 lattice sites to
avoid finite size effects (see Appendix A for further details
on the implementation and convergence of the data).
Figure 1(a) highlights two distinct regimes in the decay

of the connected energy autocorrelation function for the
PXP model. At short times marked by the shaded area,
we observe oscillatory behavior which we explain in the
following section. At long times, these oscillations dis-
appear, and the correlation function settles to a power-law-
like decay. This decay is conveniently probed via the
instantaneous dynamical exponent

z−1ðtÞ ¼ −
d lnhh0ð0Þh0ðtÞic

d ln t
; ð4Þ

that gives the running exponent of the power-law decay.
Figure 1(b) shows that 1=z first approaches the ballistic
value z ¼ 1 before relaxing slowly to a smaller value.
Despite the decrease of 1=z, its value remains super-
diffusive (z < 2) even at extremely long times t ≈ 300,
at which the correlation function has spread approximately
300 sites from the center. Nevertheless, plotting the data on
a log-log scale in Fig. 1(c), one cannot rule out power-law
relaxation of z to diffusion at times that are inaccessible to
our numerics.
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III. SHORT-TIME OSCILLATIONS AND
MULTIPLE su(2) REPRESENTATIONS

Unlike generic thermalizing models, the dynamics of the
PXP model display unusual sensitivity to the initial state,
which has attracted considerable attention [31]. While most
initial states undergo fast thermalizing dynamics in the
PXP model, special states such as the Néel state jZ2i ¼
j↑↓↑↓…i feature long-lived quantum revivals [36] accom-
panied by a slow growth of entanglement [38]. The
nonthermalizing dynamics were explained by the existence
of N þ 1 special QMBS eigenstates embedded throughout
the spectrum [38]. However, these QMBS eigenstates
constitute a vanishing fraction of the total number of states
in the exponentially large Hilbert space; hence, they are not
expected to affect transport properties in the thermody-
namic limit. Remarkably, the short-time oscillations in
regime I of Fig. 1(a) bear striking parallels with the scarred
quantum revivals. In what follows, we show that the PXP
model hosts a much larger set of nonthermalizing eigen-
states that cluster around approximately equidistant ener-
gies. These “towers of states” account for the oscillations
in Fig. 1.
To reveal the bulk spectral properties of the PXP model,

we consider a smoothened density of states (SDOS) and
spectral form factor (SFF) [55]. The SDOS is defined as

ρσ2ðEÞ ¼ ð1=DÞ
X
n

exp½−ðE − EnÞ2=2σ2�=
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p
; ð5Þ

where En are eigenenergies, D is the reduced Hilbert space
dimension, and σ sets the smoothing interval. Figure 2(a)
shows that the SDOS has tiny oscillations in the middle of
the spectrum. These oscillations can be made more promi-
nent by subtracting the SDOS at low and high variances,
Δρ ¼ ρσ2¼0.06 − ρσ2¼0.5, plotted in the inset. The energy
difference between the peaks in the SDOS roughly coin-
cides with the oscillation period of the energy correlation
function in Fig. 1(a). A similar timescale is also observed in
the SFF defined as

KðtÞ ¼
X
n;m

e−iðEn−EmÞt ð6Þ

plotted in Fig. 2(b) for a range of system sizes. The SFF
shows clear peaks at times t ≈ 5.1 and t ≈ 10.2 indicated by
dashed lines. Although the SFF, in general, is not a self-
averaging quantity, the peaks appear converged in system
size, and thus they are expected to persist in the thermo-
dynamic limit.
Oscillations in the SDOS and SFF noted above can be

explained by the clustering of eigenstates into towers that
are approximately equally spaced in energy. We explain
these towers of states as stemming from additional approxi-
mate su(2) representations that generalize the family of

(a)

(b) (c)

FIG. 1. (a) Connected energy autocorrelation function in the
PXP model has a short-time oscillatory regime (I) followed by
power-law decay (II). (b) The inverse of the instantaneous
dynamical exponent extracted from the correlation function
approaches the ballistic value of one at t ∼ 100, followed by
slow decay at later times. The decay appears to saturate to a
superdiffusive value 1=z ≈ 2=3. (c) Double-logarithmic plot of
the data in (b) shows that power-law convergence to diffusion
1=z ¼ 1=2 is also consistent with the data. Dashed line
corresponds to ∝ t−0.8 dependence. The data are for a chain
with N ¼ 1024 sites and bond dimension of χ ¼ 512.

FIG. 2. Signatures of multiple su(2) representations in the PXP
model. (a) Oscillations in the smoothened density of states for
N ¼ 28 sites, with the inset showing the difference between
different SDOSs (see text). (b) Spectral form factor for various
system sizes. The dashed lines indicate the approximate times of
the peaks in Fig 1. (c) Overlap between eigenstates of the global
spin-1 Sz operator and the PXP eigenstates. The red squares
denote the primary QMBS eigenstates with high overlap on the
Néel state. All data are obtained by exact diagonalization of the
PXP model with periodic boundary conditions.

SUPERDIFFUSIVE ENERGY TRANSPORT IN KINETICALLY … PHYS. REV. X 13, 011033 (2023)

011033-3



N þ 1 QMBS eigenstates identified in Ref. [43]. To
explicitly construct multiple su(2) representations, we
use the dimer picture from Ref. [41] and project the free
spin-1 paramagnet with N=2 particles onto the constrained
Hilbert space [56]. The equivalent spin-1 model is obtained
from PXP by mapping the Hilbert space of adjacent pairs
of spin-1=2 onto that of spin-1 as j↑↓i ¼ j−i, j↓↓i ¼ j0i,
and j↓↑i ¼ jþi. The global spin operators in the spin-1
representation are defined as Sα ¼ P

b∈ΛB
Sαb, where Λb is

the set of nonoverlapping spin-1=2 pairs, and Sαb are
spin-1 operators (see Appendix C for details). For the
PXP Hamiltonian in Eq. (1), the projection of the maximal
total spin eigenstates of Sx gives an excellent approxima-
tion to the original N þ 1 QMBS states of the PXP model.
Crucially, we find that other eigenstates of Sx with a large,
but smaller-than-maximum total spin jSj¼ jSxj¼N=2−d,
with d ≪ N, also provide a good approximation to the
PXP eigenstates after projection onto the subspace exclud-
ing j þ −i states. In particular, this construction with d ¼ 1
explains two other sets of eigenstates identified in the PXP
model in Ref. [57].
The effective spin-1 model also provides simple states

that can be used to identify different families of QMBS
eigenstates via the enhanced overlap; see Fig. 2(c). The
Néel state can be obtained as the projection of the
eigenstates of spin-1 Sz operator with jSj ¼ jSzj ¼ N=2.
Similarly, we project an eigenstate of Sz with jSj ¼ jSzj ¼
N=2 − d to obtain a simple state with high overlap on
N þ 1 − 2d eigenstates. Figure 2(c) shows the overlaps
of three projected eigenstates of Sz for d ¼ 0, 1, 2 with
the eigenstates of the PXP model. The d ¼ 1 state is the
superposition of all single-spin flips with momentum k,

jSz ¼ N=2 − 1ik ∝
XN
j¼1

eikjσ−j jZ2i: ð7Þ

The anomalous overlap of these states with some eigen-
states was already noted in Ref. [58], but the connection
with multiple su(2) representations was not established. For
any k ≠ 0, we obtain a state with similar properties that is
the highest weight state of its own approximate su(2)
representation. Note that states in the second and third
panels of Fig. 2(c) have zero overlap with the usual scarred
states as they live in different momentum sectors. Initial
states with d ≥ 2 have more complicated forms due to
the nontrivial effect of the projection to the constrained
Hilbert space.

IV. INTEGRABLE DEFORMATIONS
OF THE PXP MODEL

To further probe the relevance of multiple su(2) repre-
sentations for short-time dynamics as well as the dynamical
exponent governing the long-time energy transport, in this
section we study two types of integrable deformations of

the PXP model, which are expected to give rise to ballistic
transport. We first consider the PNPNP deformation
defined in Eq. (8) below, which turns the PXP model into
the hard-square integrable model [34]. As expected, this
deformation leads to a clear ballistic exponent z ¼ 1 and
flat spatial profile of the correlation function. As a second
example, we study the PXPZ deformation (defined in
Eq. (9) below), which was numerically observed to push
the energy level statistics closer to the Poisson distribu-
tion [49]. This suggests the existence of a proximate
integrable model; however, the evidence for integrability
beyond level statistics has remained elusive. We note that
these two integrability-enhancing deformations exert an
opposite effect on the su(2) representations: The PNPNP
deformation monotonically destroys such representations
(and the associated QMBS revivals), while a weak PXPZ
deformation leads to a strong enhancement of the su(2)
representations [43].

A. Transport at the hard-square integrable point

In order to benchmark our study of transport, we
consider the integrable hard-square model [34] that can
be obtained as a deformation of the PXP model

HPNPNP ¼ HPXP þ ξ
X
i

Pi−2ni−1Piniþ1Piþ2; ð8Þ

for the particular value of the deformation strength ξ ¼ �1.
In Fig. 3(a), we show that the integrable point ξ ¼ 1 is
characterized by a stable ballistic exponent z ¼ 1 after an

(a)

(b)

FIG. 3. (a) Instantaneous transport exponent for the integrable
PNPNP deformation of the PXP model in Eq. (8). (b) Spatial
dependence of the energy autocorrelation function. The profile is
distinctly flat, as often seen in integrable models [59]. The data
were obtained with a system of N ¼ 512 sites.
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initial transient. Note that before settling down to the value
z ¼ 1, there is an initial overshoot to values zðtÞ > 1 well
converged across different bond dimensions. At later times,
however, the higher bond dimensions of χ ¼ 256 and 384
yield nearly identical results, while χ ¼ 128 data are
different, suggesting that this value is insufficient for
capturing the dynamics.
The spatial profile in Fig. 3(b) provides additional

support for integrability. The profiles are converged for
the two largest bond dimensions and show weak spatial
dependence, which is often seen in integrable models such
as the XXZ model [59]. Having benchmarked our approach
on a known integrable model, we next study a different
deformation that leads to a similar transport phenomenol-
ogy but does not correspond to an exact integrable model.

B. PXPZ deformation

To further probe the relevance of multiple su(2) repre-
sentations, we deform the model with a local PXPZ
perturbation,

HPXPZ ¼ HPXP − λ
X
i

ðσzi−2 þ σziþ2ÞPi−1σ
x
i Piþ1: ð9Þ

Previously, it was shown that λ ≈ 0.05 stabilizes the
highest-spin su(2) representation [43]. In Appendix C,
we demonstrate that other representations with a lower
total spin are also stabilized by a comparable value of λ.
Remarkably, Ref. [49] observed that the value of λ ≈ 0.024
leads to the onset of Poisson level statistics, conjecturing
the existence of a nearby integrable model. Naturally, both
the enhancement of su(2) structure and the presence of a
nearby integrable point are expected to leave an imprint on
the energy transport.
Figure 4(a) illustrates the effect of the PXPZ deforma-

tion on the energy autocorrelation function and the dyna-
mical exponent. We observe that the deformation strength
λ ¼ 0.05 gives the strongest enhancement of oscillations in

the early-time regime, further confirming that oscillations
are caused by multiple su(2) representations. However, the
long-time value of 1=z for λ ¼ 0 and 0.05 behave nearly
identically. In contrast, the value λ ¼ 0.024 only weakly
enhances the oscillations but yields a much faster decay of
the correlation function at late times. The extracted 1=z
exponent in Fig. 4(b) overshoots the ballistic value z ¼ 1
and converges to it from above, consistent with a proximate
integrable point. Finally, a large deformation λ ¼ 0.5 leads
to fast saturation of 1=z ≈ 0.5 corresponding to conven-
tional diffusion.
In the vicinity of an integrable point, superdiffusion can

appear as a crossover between nearly ballistic behavior at
short times and diffusion at late times [4,60,61] (see also
the review [62]). The intuition is that transport should at
first behave as in a corresponding integrable model until the
system starts to feel the effect of the integrability-breaking
perturbation, which leads to slow quasiparticle decay
processes. To corroborate this picture of ballistic transport
followed by slow decay, we compute the spatial profiles of
the correlation function in the PXP model with the PXPZ
deformation in Fig. 4(c). As seen in this figure, the profile
exhibits nearly flat dependence on position, similar to what
we observe in the integrable hard-square model.

V. STABLE SUPERDIFFUSION

The proximity of an integrable point naturally explains
the observed long timescales in the dynamics of the PXP
model. In order to avoid slow convergence toward the
thermodynamic limit, we must consider stronger deforma-
tions of the model. While a large PXPZ deformation
restores diffusion in Fig. 4, such a perturbation is not
readily available in experiments. Instead, we focus on the
PNP deformation

HPNP ¼ HPXP þ δ
X
i

Pi−1niPiþ1: ð10Þ

(a) (b) (c)

FIG. 4. (a) Connected energy autocorrelation function for several strengths λ of the PXPZ deformation. Early time oscillations
approximately peak at times t ∈ f5.1; 10.2; 15.3; 20.4g (dashed lines) for the su(2)-enhancing perturbation λ ¼ 0.05, note that the times
correspond to the peaks observed in Figs. 1 and 2. (b) Long time decay is fastest for λ ¼ 0.024, as manifested by the inverse dynamical
exponent approaching the value of 1 from above. In contrast, large λ ¼ 0.5 results in a rapid onset of diffusive dynamics. (c) Spatial
dependence of the connected energy correlation function at t ¼ 200 in the PXP model with the PXPZ deformation. In the vicinity of
λ ≈ 0.024, the profile becomes visibly flat, which is typical of ballistic transport. The data are for N ¼ 768 and bond dimensions
χ ¼ 384 [panels (a),(b)] and χ ¼ 256 in (c).
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The PNP term counts the number of Rydberg excitations
in the constrained Hilbert space; hence, this term represents
the chemical potential. The latter has been used to probe the
dynamics of the PXP model in Rydberg atom arrays [37]
and Bose-Hubbard optical lattices [63]. We note that the
deformation in Eq. (10) cannot be expressed using the
generators of the approximate su(2) structure [43]. As such,
it destroys the peaks in the SDOS already for small values
of δ, and it has been shown to make the dynamics from the
jZ2i state ergodic [64].
Figure 5(a) shows the instantaneous dynamical expo-

nent for a range of deformation parameters δ ∈ ½0; 2�. For
weak deformations δ ≤ 0.2, the exponent varies slowly,
similar to the PXP model in Fig. 1(b). However, the
effect of a nearby integrable point diminishes once the
deformation is sufficiently strong. Surprisingly, for large
deformations δ ≥ 0.4, we observe clear superdiffusive
transport with a well-converged dynamical exponent
z ≈ 1.5. The robust superdiffusion observed over a broad
range of PNP perturbations suggests that even the PXP
model itself may have z ≈ 1.5, although much longer
times may be needed to observe the convergence of the
exponent to this value. In Appendix D, we explore several
other deformations of the model that similarly give rise
to a persistent superdiffusive regime at all accessible
timescales for weak deformations.

The transport exponent z ¼ 3=2 is one of the hallmarks
of the KPZ universality class, which has recently been
observed in integrable quantum systems with certain
symmetries [7,18,19,21,23]. To further test ifHPNP belongs
to the KPZ universality class, we analyze the spatial profile
of the correlation function in Fig. 5(b). The profiles of the
correlation function at different times show a clear collapse
with a single scaling parameter that matches the average
value of 1=z in the interval t ∈ ½100; 200�. However, the
presence of ballistic peaks visible at the edges of numeri-
cally computed profiles in Fig. 5(b) prohibits us from
reliably discriminating between the theoretically expected
KPZ or Gaussian scaling functions.
Finally, we check the hypothesis that the unusual

transport may originate from the Hamiltonian (10)
being the projection of a free paramagnet (with both
transverse and longitudinal fields) onto the reduced
Hilbert space. To this end, in Appendix E we consider
a similar model projected onto the reduced Hilbert space
corresponding to a range-2 Rydberg blockade. The
constraint now excludes both nearest-neighbor as well
as next-nearest-neighbor up spins, leading to an effective
PPXPP model with a chemical potential. Surprisingly, the
deformed PPXPP model reveals clear diffusion for a
broad range of chemical potential values, as demonstrated
in Appendix E, suggesting that a simple projection of a
free paramagnetic Hamiltonian does not guarantee super-
diffusive transport.

VI. DISCUSSION

We study energy transport in the largest connected
component of the Hilbert space of the PXP model and
its deformations. We explain the observed oscillations in
the short-time dynamics via towers of eigenstates that form
multiple approximate su(2) representations. These towers
enlarge the set of known QMBS states in the PXP model
and lead to observable signatures of scarring in infinite-
temperature transport. The long-time behavior is shown to
be affected by a nearby integrable point, confirming that the
PXPZ deformation gives rise to nearly ballistic transport, as
suggested by the level statistics indicators [49].
Strong deformations with the chemical potential are

shown to move the PXP model away from an integrable
point but, surprisingly, give rise to a broad regime of
superdiffusive energy transport. The observed transport
exponent z ≈ 3=2 is tantalizingly close to the value corre-
sponding to the KPZ universality class. Nevertheless, it
remains unclear why the PXP model would belong to this
class, given the existing examples of KPZ dynamics in
integrable spin chains with SU(2) or higher symmetry.
Furthermore, it is known that higher-order corrections
can lead to a transient KPZ-like exponent [8]. However,
with perturbations such as PNP, the observed superdiffu-
sion remains stable up to long times of approximately 200
in natural units 1=Ω, casting doubt on the relevance of

(a)

(b)

FIG. 5. Stable superdiffusive energy transport for a large PNP
deformation of the PXP model. (a) Sufficiently large deformations
δ ≥ 0.4 lead to a clear superdiffusive exponent z ≈ 1.5. (b) Single-
parameter scaling of the spatial profiles of the connected corre-
lation function for δ ¼ 0.5 shows a collapse for 1=z ≈ 0.669
(average value of 1=z in the interval t ∈ ½100; 200�). The ballis-
tically propagating peaks at large jxj are expected to disappear as
t → ∞. The data is for N ¼ 1024 sites with bond dimensions
χ ¼ 384 for δ ¼ 2 and χ ¼ 256 for δ ≤ 1. For clarity purposes,
data in panel (a) has been smoothed using a Gaussian filter.
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higher-order corrections. Moreover, it is not clear why
the chemical potential would particularly enhance such
corrections.
Finally, the link between scarring and superdiffusion

remains to be understood. On the one hand, as we explain
above, the chemical potential δ destroys the su(2) struc-
ture responsible for scarring from the jZ2i state, while at
the same time this does not appear to affect the late-time
dynamical exponent, suggesting the two phenomena to be
unrelated. On the other hand, upon further increase of δ,
the scarring signatures reappear but in the polarized
initial state j↓↓↓…i [63]. It is therefore possible that
other su(2) representations—linked to scarring from the
polarized state—emerge at larger δ, suggestive of a closer
intertwining between scarring and superdiffusion.
Our work opens a number of new directions related to

the interplay of weak ergodicity-breaking phenomena
and transport in constrained models. In the first direc-
tion, the existence of a much larger number of non-
ergodic towers of eigenstates calls for a development of
their systematic theory. It remains to be understood if
complete towers can be stabilized by the same weak
deformation of the PXP model, akin to Ref. [43], or if
only individual representations can be stabilized. Our
work suggests that several representations with large
total spin are enhanced by it, but PXPZ alone is not
enough to make them exact. If there exists a unique
deformation of the PXP model that stabilizes all states
in the towers, it may lead to the coexistence of
integrability and su(2) algebra. In a more practical
direction, the tower states are characterized by a larger
amount of entanglement, and it would be interesting
to explore their applications in information-storage or
quantum-enhanced metrology [65–67]. Finally, it would
be important to understand the underlying mechanisms
for the emergence of towers in other models with
nonexact scars, such as higher-spin PXP [39] and clock
models [68], lattice gauge theories [58,69,70], and frac-
tional quantum Hall states on stretched cylinders [71].
While in this paper we implicitly focus on lattice
models, we note that several recent works have explored
realizations of scars in quantum field theories [72–74],
which could offer a fruitful setting for studying the
relation between scarring and transport.
Concerning transport, our observations challenge the

current understanding of chaotic quantum models, which
are expected to exhibit diffusive (or slower) transport
dynamics. In particular, our work suggests that certain
classes of constrained models, when studied in the
reduced Hilbert space, may provide stable examples of
superdiffusive transport. At present, the explanation for
the robust superdiffusive transport observed here is
missing, highlighting the need for the development of a
theoretical description of transport in systems with con-
straints. One potential explanation for superdiffusion in

chaotic models could stem from nonlinear fluctuating
hydrodynamics [75], provided additional conserved
charges exist within the reduced Hilbert space. Indeed,
KPZ transport has been shown to arise in a broad class
of low-dimensional classical models with particle,
momentum, and energy conservation [76]. Our brute-
force numerical search does not yield a clear signature of
additional conservation laws in the PXP model; hence,
it remains unclear whether its transport fits the framework
of Refs. [75,76]. Another potential explanation for the
unusual transport could be related to the semiclassical
aspects of the PXP dynamics projected onto the varia-
tional manifold of matrix product states [39]. The study
of quantum dynamics with translationally invariant initial
conditions in Ref. [77] revealed the existence of large
Kolmogorov-Arnold-Moser tori in the classical phase space
resulting from the variational projection. Provided these tori
survive in the absence of translation invariance, they may
play a role in energy transport. Finally, the current capabil-
ities of Rydberg quantum simulators [78] allow us to probe
our predictions experimentally and to gain further insights
into the energy transport, in particular, in higher dimensions.
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APPENDIX A: DETAILS OF TEBD SIMULATIONS

1. Implementation details

TEBD simulations are used to directly evolve the energy
density operator within the reduced space

hlð0Þ ¼ PPl−1σ
x
lPlþ1: ðA1Þ

In order to do this, we must first bring the above operator
into a matrix product operator (MPO) form. This is a
relatively trivial step since P can be described as a simple
bond dimension χ ¼ 2 MPO
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Px0;N ¼ Lx0

� Yx0þN−2

i¼x0þ1

Mi

�
Rx0þN−1; ðA2Þ

where N is the length of the system. Here we define the
following matrices (used to conveniently represent tensors
in MPO form since their elements are operators)

Li ¼ ð j↓iih↓ji þ j↑iih↑ji j↓iih↓ji Þ; ðA3Þ

Mi ¼
� j↓iih↓ji j↓iih↓ji
j↑iih↑ji 0

�
; ðA4Þ

Ri ¼
� j↓iih↓ji
j↑iih↑ji

�
: ðA5Þ

Using this notation, we write the MPO for the energy
density

hðl; 0Þ ¼ P1;l−2Dl−1XlDlþ1Plþ2;N−l−1; ðA6Þ

where we additionally introduce the tensors

Di ¼ ð j↓iih↓ji Þ; ðA7Þ

X i ¼ ð j↓iih↑ji þ j↑ii h↓jiÞ: ðA8Þ

We note that a similar representation of the energy density
may be easily derived for the deformations of the PXP
model considered in this work.
Notice that the PXP model has a local Hamiltonian

density acting on three sites; as a result, one would have to
use three-site propagation, requiring two singular value
decompositions (SVDs) for each site as well as multiple
layers for a fourth-order Trotter decomposition. Instead, in
this work we merge pairs of sites, thus obtaining a two-site
Hamiltonian. First, the constraint reduces the local Hilbert
space dimension of two sites from four to three, thus
speeding up our calculations, since the bulk of the time is
spent performing SVDs which scale asOðd6χ3Þ, where d is
the local Hilbert space dimension and χ is the bond
dimension. In terms of MPOs presented above, the merging
of pairs of sites is implemented by multiplying the tensors
for the pairs of sites to be merged. Second, since we are
using propagation of MPOs, the effective Hilbert space
dimension of each pair of sites is equal to nine. That means
that, at later times when the bond dimension saturates, we
can take advantage of the faster randomized rank-reduced
singular-value algorithm [79,80], allowing us to signifi-
cantly speed up the simulations. Finally, in the case of
longer-range deformations, we merge more sites together to
obtain an effective two-site Hamiltonian density.

2. Convergence of numerical data

Throughout this work, we use the fourth-order Trotter
decomposition in order to achieve high accuracy with a
relatively large time step, typically taken to be δt ¼ 0.2. We
always compute the results with several different bond
dimensions and verify that the data are well converged. All
results are furthermore benchmarked against large-scale
exact diagonalization (ED) simulations on systems with
sizes up to N ¼ 35. To demonstrate convergence in the
bond dimension, Fig. 6 shows the results for the PXPmodel
for several different bond dimensions χ ∈ f256; 384; 512g,
as well as the largest available ED data.

APPENDIX B: EXACT DIAGONALIZATION

While ED is unbiased and does not suffer from precision
issues, evolving the full energy operator is computationally
costly. To circumvent this, we use typical pure states with
the same energy density profile [81]. To study the infinite-
temperature ensemble, we follow the procedure outlined in
Ref. [82]. We define the initial state as

jψi ¼ 1

N

XD
k¼1

ckjϕki; ðB1Þ

where jϕki are the Fock basis states (of the constrained
Hilbert space), ck are complex coefficients for which the
real and imaginary parts are drawn from Gaussian distri-
butions with mean 0, andN is the normalization factor. We
then compute the state jψ 0i ¼ hljψi. By evolving both jψi
and jψ 0i, we can compute the autocorrelation function at
infinite temperature as

hψ 0ðtÞjhrjψðtÞi ¼ hψ jhlU†ðtÞhrUðtÞjψi
¼ hψ jhlhrðtÞjψi
≈ Tr½hlhrðtÞ�; ðB2Þ

FIG. 6. Comparing the PXP model results for different bond
dimensions χ ∈ f256; 384; 512g against the ED result for system
size N ¼ 35. We observe that all bond dimensions give nearly
identical results with relative errors between consecutive bond
dimensions at most 1%.
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where UðtÞ ¼ expð−iHtÞ is the time-evolution operator. In
Fig. 7, we see that the results obtained using such typical
states agree very closely with those obtained using the
full evolution operator. Furthermore, in large systems all
random typical states give very close results, and only a few
of them need to be evolved in order to approximate
the average.

APPENDIX C: MULTIPLE SU(2)
REPRESENTATIONS

Quantum scarred eigenstates in the PXP model, which
are responsible for the revivals of the Néel initial state, have
been understood from an su(2) algebra point of view in
Refs. [43,83]. More recently, an alternative explanation
based on a spin-1 parent Hamiltonian was proposed in
Ref. [56]. Here we generalize the latter approach in order to
construct multiple su(2) representations, thereby allowing
us to classify a larger number of scarred eigenstates in the
PXP model that give rise to oscillations in the infinite-
temperature energy transport.
Because of the Rydberg constraint, a pair of neighboring

atoms can never be in the configuration j↑↑i, and so the
state of a dimer can be mapped to spin-1 according to

j↑↓i≡ j−i; j↓↓i≡ j0i; and j↓↑i≡ jþi: ðC1Þ

The constraint must furthermore prevent neighboring
pairs j þ −i ¼ j↓↑↑↓i, so it can be written in terms of
a projector

P ¼
Y
b∈ΛB

ð 1 − j þ −i hþ − jb;bþ1 Þ; ðC2Þ

where ΛB denotes the set of all dimers. The Hamiltonian of
the parent model is then

HΛB
¼

ffiffiffi
2

p X
b∈ΛB

Sxb −
X
b∈ΛB

ðjþ; 0i þ j0;−iÞhþ;−jb;bþ1

−
X
b∈ΛB

jþ;−iðhþ; 0j þ h0;−jÞb;bþ1

≡HZ þH1 þH2; ðC3Þ

whereHZ is simply the free spin-1 paramagnet, andH1 and
H2 are added to cancel the matrix elements violating
the Rydberg constraint. As a consequence, ½P; HΛB

� ¼ 0

and HΛB
is equivalent to the PXP model in the constrained

sector. So, we can define

H̃PXP ¼ HPXP ⊕ 0⊥ ¼ PHΛB
ðC4Þ

that acts as the PXP in its sector but annihilates any state
outside of it. One can also notice that PH2 ¼ 0 but
PH1 ≠ 0.
Let us consider an eigenstate jEi ofHZ with an energy E.

If there is a perturbation δH such that PðH1 þ δHÞjEi ¼ 0

and ½P; δH� ¼ 0, it follows that jẼi ¼ PjEi is an eigenstate
of H̃PXP þ δH̃ with energy E, where δH̃ ¼ PδH. Indeed,

ðH̃PXP þ δH̃ÞjẼi ¼ ðH̃PXP þ δH̃ÞðPjEiÞ
¼ PðHΛB

þ δHÞjEi
¼ PðHZ þH1 þH2 þ δHÞjEi
¼ PHZjEi þ PðH1 þH2 þ δHÞjEi
¼ PHZjEi ¼ PEjEi ¼ EjẼi: ðC5Þ

The desired perturbation

δH ¼
X
ΛB

1

2
ðjþ; 0i þ j0;−iÞh0; 0jb;bþ1 ðC6Þ

was found in Ref. [56] for the set of scarred eigenstates that
have maximal total spin. Indeed, this perturbation holds for
states in which every pair of neighboring dimers forms a
spin-2 quintuplet. This is only the case if the total spin is
maximal, i.e., equal to N=2.
However, the proportion of spin-2 pairs (in contrast to

spin 0 or spin 1) is close to 1 for all large-spin representa-
tions jSj ¼ N=2 − d, d ≪ N=2 in large systems. In par-
ticular, for a fixed value of d, the fraction of spin-2 pairs
increases with system size. In Fig. 8, we show the fidelity at
the first QMBS revival with the perturbation in Eq. (9) with
λ ¼ 0.051. For the Néel state with jSj ¼ N=2, the fidelity
decreases as N gets larger due to the Hilbert space size
increasing. This is the usual behavior in systems with
nonexact QMBSs. However, for jSj ¼ N=2 − 1, the reviv-
als actually get better with an increase in system size,

(a)

(b)

FIG. 7. (a) Comparison of the energy correlation function
between random typical states and the exact time evolution.
The average of random typical states matches well with the exact
result. (b) Energy correlation function for three random typical
states in a large system. The inset is an enlargement of one time
interval showing that different typical states give very similar
results.
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at least in the range of N probed. We understand this as
stemming from the increasing fraction of spin-1 pairs
forming spin-2 quintuplets.
This perturbation affects not only a few su(2) represen-

tations near jSj ¼ N=2, but it has a clear effect on the entire
spectrum. Figure 9 shows similar quantities to Fig. 2 in the
main text, but forHPXPZ with λ ¼ 0.051. Figure 9(a) shows
that the perturbation makes the towers of states much more
prominent, and Fig. 9(b) shows that the oscillatory features

in the spectral form factor are cleaner and also persist over
longer times. It should also be noted that in the perturbed
case, the period of “revivals” in the SFF matches more
closely with the revivals in the quench starting from the
Néel state. Finally, Fig. 9(c) shows that, as for the Néel
state, the perturbation helps separate the top band of
eigenstates from the more thermal bulk.
In summary, our results show that there are multiple

approximate su(2) representations in the PXP model that
stem from the same spin-1 parent Hamiltonian. Another
way to see that these representations leave a strong imprint
on the spectrum is to look at the behavior of observables.
Indeed, in the parent Hamiltonian the operators Sx, Sy,
and Sz obey the usual su(2) commutation relations. If
sufficiently many su(2) representations survive in the PXP
model, we expect the projection of these operators to
approximately obey the same commutation relations as
well. Projecting Sy and Sz gives the following operators:

PSyP →
1ffiffiffi
2

p
X
j

ð−1ÞjPj−1σ
y
jPjþ1 ¼

1ffiffiffi
2

p Jy; ðC7Þ

PSzP →
1

2

X
j

ð−1Þjσzj ¼ Jz; ðC8Þ

in the PXP sector, where the dimerization gives rise to the
staggering. These results match with operators that were
previously devised only for the highest-spin representation
in Refs. [42,57], as the operators Yπ=σ̃

y
π and Zπ=σ̃zπ defined

in these works match with Jy and Jz.
Now one can study how the operators in Eqs. (C7)

and (C8) evolve in time. If the projection of the dimerized
operators approximately preserves their commutation rela-
tions, we expect that

hJyðtÞJyð0Þi ≈ hJzðtÞJzð0Þi ≈ cosðωtÞ; ðC9Þ

where the expectation value is evaluated in the constrained
Hilbert space at infinite temperature, as in Eq. (3). As the
operator ðSyÞ2 þ ðSzÞ2 ¼ S2 − ðSxÞ2 commutes with Sx,

FIG. 8. Fidelity and period of revivals for two eigenstates of Sz

projected into the PXP Hilbert space and evolved with HPXPZ
with λ ¼ 0.051. For jSj ¼ N=2 − 1 the revivals get better as
system size is increased, and are expected to match up with those
of jSj ¼ N=2 in the thermodynamic limit.

FIG. 9. The effects of PXPZ perturbation on the multiple
su(2) representations. (a) Difference between the SDOS with
and without the perturbation. (b) The peaks in the SFF are
converged for various system sizes and occur at roughly the
same times as the quench revivals from the Néel state, indicated
by the dashed lines. (c) Overlap between eigenstates of Sz and
the eigenstates of the perturbed PXP model. The red squares
indicate the usual scarred eigenstates with high overlap with
the Néel state. The data in panels (a) and (b) was obtained
with N ¼ 28.

FIG. 10. Time evolution of the various global spin operators
projected to the constrained space. In particular, hJ2y;zðtÞJ2y;zð0Þi
remains close to 1, indicating an approximate conservation law.
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one can also probe if the operator J2y;z ¼ ðJyÞ2 þ ðJzÞ2
gives rise to hJ2y;zðtÞJ2y;zð0Þi ≈ 1 as expected for a constant
of motion. Figure 10 shows that all these relations are
approximately obeyed in a finite system with 20 sites. This
shows that there are multiple su(2) representations stem-
ming from the spin-1 parent model, as the usual Néel
scarred states could not produce such a strong effect at
infinite temperature.

APPENDIX D: OTHER DEFORMATIONS
LEADING TO SUPERDIFFUSION

Interestingly, many deformations of the PXP model lead
to superdiffusive dynamics at weaker values of the defor-
mation parameter, but then typically approach diffusion as
the deformation strength is increased. This is illustrated in
Fig. 11(a) for the PNPNP deformation defined in Eq. (8)

above, which shows a seemingly stable superdiffusive
behavior up to long times at ξ ¼ 0.5 and nearly diffusive
dynamics at ξ ¼ 2. A similar trend is seen in Figs. 11(b)
and 11(c), which correspond to the PPP deformation

HPPP ¼ HPXP þ α
X
i

Pi−1PiPiþ1; ðD1Þ

and the PXXP deformation

HPXXP ¼ HPXP þ β
X
i

Pi−1σ
x
i σ

x
iþ1Piþ2; ðD2Þ

respectively.

APPENDIX E: RANGE-2 RYDBERG BLOCKADE:
THE PPXPP MODEL

Finally, we present data on the PPXPP model with a
PPNPP deformation

HPPXPP ¼
X
i

Pi−2Pi−1σ
x
i Piþ1Piþ2

þ γ
X
i

Pi−2Pi−1niPiþ1Piþ2; ðE1Þ

which can be viewed as a longer-range generalization of the
PXP model with a PNP deformation that gives rise to stable
superdiffusive behavior. Interestingly, the results shown in
Fig. 12 indicate that the increased range of the projectors
immediately makes the model diffusive. This suggests
that a more systematic study is needed to understand the
relation between the existence of superdiffusive transport
and the nature of the constraint present in the model.

(a)

(b)

(c)

FIG. 11. Instantaneous transport exponent for PNPNP, PPP,
and PXXP [panels (a), (b), and (c), respectively] at deformation
parameters 0.5 and 2.0. In all cases, we observe superdiffusive
transport across all accessible timescales for sufficiently weak
deformation, while stronger deformations push the dynamical
exponent toward the diffusive value. Data for PNPNP and PPP
are obtained with bond dimension χ ¼ 256 and data for PXXP
are obtained with bond dimension χ ¼ 192. All data were
obtained with N ¼ 512.

FIG. 12. Instantaneous dynamical exponent in the PPXPP
model with various strengths of the PPNPP deformation. We
observe clearly different behavior from the PXPþ PNP model
with energy diffusion being observed for all values of the
PPNPP deformation parameter. Data obtained with bond
dimension χ ¼ 256 and system size N ¼ 1024.
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