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Abstract: In the physics literature the spectral form factor (SFF), the squared Fourier
transform of the empirical eigenvalue density, is the most common tool to test uni-
versality for disordered quantum systems, yet previous mathematical results have been
restricted only to two exactly solvable models (Forrester in J Stat Phys 183:33, 2021.
https://doi.org/10.1007/s10955-021-02767-5, CommunMath Phys 387:215–235, 2021.
https://doi.org/10.1007/s00220-021-04193-w).We rigorously prove the physics predic-
tion on SFF up to an intermediate time scale for a large class of randommatrices using a
robust method, the multi-resolvent local laws. BeyondWigner matrices we also consider
the monoparametric ensemble and prove that universality of SFF can already be trig-
gered by a single random parameter, supplementing the recently proven Wigner–Dyson
universality (Cipolloni et al. in Probab Theory Relat Fields, 2021. https://doi.org/10.
1007/s00440-022-01156-7) to larger spectral scales. Remarkably, extensive numerics
indicates that our formulas correctly predict the SFF in the entire slope-dip-ramp regime,
as customarily called in physics.

1. Introduction

Spectral statistics of disordered quantum systems tend to exhibit universal behavior
and hence are widely used to study quantum chaos and to identify universality classes.
In the chaotic regime, the celebrated Wigner–Dyson–Mehta eigenvalue gap statistics
involving thewell-known sine-kernel [42] tests this universality on the scale of individual
eigenvalue spacing. On this small microscopic scale the universality phenomenon is the
most robust and it depends only on the fundamental symmetry type of the model. On
larger scales more details of the model influence the spectral statistics, nevertheless
several qualitative and also quantitative universal patterns still prevail.
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1.1. The spectral form factor and predictions from physics. In the physics literature the
standard tool to investigate eigenvalues λ1, λ2, . . . , λN of a Hermitian N × N matrix
(Hamiltonian) H on all scales at once is the spectral form factor (SFF) [40] defined as

SFF(t) := 1

N 2

N∑

i, j=1

eit (λi−λ j ) = |〈eit H 〉|2 (1.1)

with a real time parameter t > 0, i.e. it is the square of the Fourier transform of the
empirical spectral density. Here we denoted the normalized trace of any N × N matrix
A by 〈A〉 = 1

N Tr A. In case of random H , the expectation of SFF(t) is denoted by

K (t) := E
[

SFF(t)
]
. (1.2)

For typical disordered Hamiltonians a key feature of SFF(t) is that for larger t (more
precisely, in the ramp and plateau regimes, see later) it is strongly dependent on the
sample, i.e. the standard deviation of SFF(t) is comparable with K (t). In other words,
SFF(t) is not self-averaging [45] despite the large summation in (1.1).

The spectral form factor and its expectation K (t) have a very rich physics literature
since they contain most physically relevant information about spectral statistics. Quan-
tizations of integrable systems typically result in K (t) ∼ 1/N for all t where N is the
dimension of the Hilbert space. Chaotic systems give rise to a linearly growing behavior
of K (t) for smaller t (so-called ramp) until it turns into a flat regime, the plateau. The
turning point is around the Heisenberg time TH , but the details of the transition depend
on the symmetry class of H and on whether the eigenvalues are rescaled to take into
account the non-constant density of states (in physics terminology: unfolding the spec-
trum). For example, in the time irreversible case (GUE symmetry class) the unfolded
SFF has a sharp kink, while in the GOE symmetry class the kink is smoothened. The
exact formulas can be computed from the Fourier transform of the two point eigenvalue
correlation function of the corresponding Gaussian random matrix ensemble, see [42,
Eqs. (6.2.17), (7.2.46)], the result is

KGUE(τTH ) ≈ 1

N
×
{

τ, 0 < τ ≤ 1

1, τ ≥ 1
, KGOE(τTH ) ≈ 1

N
×
{
2τ − τ log(1 + 2τ), 0 < τ ≤ 1

2 − τ log 2τ+1
2τ−1 , τ ≥ 1

,

(1.3)

for any fixed τ > 0 in the large N limit. Here we expressed the physical time t in units
of the Heisenberg time, τ = t/TH , where TH is given by TH = 2πρ̄ with ρ̄ being
the average density. Choosing the standard normalisation for the independent (up to
symmetry) matrix elements,

Ehi j = 0, E|hi j |2 = 1

N
, (1.4)

the limiting density of states is the semicircle law ρsc(E) = 1
2π

√
(4 − E2)+, so we have

N eigenvalues in an interval of size 4, hence ρ̄ = N/4 and thus TH = π
2 N . In particular,

in the original t variable

KGUE(t) ≈
{

2t
πN2 , δN ≤ t ≤ π

2 N
1
N , t ≥ π

2 N .
(1.5)
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Fig. 1. A typical slope-dip-ramp-plateau picture for the spectral form factor of a chaotic system. The figure
on log-log scale shows the SFF of a single GUE realisation H of size 500 × 500, as well as the empirical
mean and standard deviation obtained from 500 independent realisations

Note the lower bound on t : the formula holds in the large N limit in the regime where
t ≥ δN for some fixed δ > 0 that is independent of N . The corresponding formulas
without unfolding the spectrum (i.e. for the quantity defined in (1.1)) are somewhat
different, see e.g. [9, Eq. (4.8)] for the GUE case; they still have a ramp-plateau shape
but the kink is smoothened.

The ramp-plateau picture and its sensitivity to the symmetry type has been estab-
lished well beyond the standard mean field random matrix models. In fact, the Bohigas-
Giannoni-Schmit conjecture [6] asserts that the formulas (1.3) are universal, i.e. they
hold essentially for any chaotic quantum system, depending only on whether the system
is without or with time reversal symmetry. The nonrigorous but remarkably effective
semiclassical orbit theory [4,31,43,48] based upon Gutzwiller’s trace formula [27] and
many follow-up works verified this conjecture for quantizations of a large family of
classical chaotic systems, e.g. for certain billiards.

For smaller times, t � TH , other details of H may become relevant. In particular
the drop from K (t = 0) = 1 to K (t) � 1 for 1 � t � TH is first dominated by the
typical non-analyticity of the density of states at the spectral edges giving rise to the
slope regime up to an intermediate minimum point of K (t), called the dip (in the early
literature the dip was called correlation hole [40], for a recent overview, see [17]).

Figure 1 shows the typical slope-dip-ramp-plateau picture for the GUE ensemble.
Formula (1.5) is valid starting from scales t 	 N 1/2, while K (t) is oscillatorily de-
creasing for t � N 1/2 with a dip-time tdip ∼ N 1/2. Thus K (t) follows the universal
behavior (1.5) only for t 	 tdip. In this regime the fluctuation of the SFF is comparable
with its expectation, K (t), in fact 〈eit H 〉 is approximately Gaussian. In contrast, the
dominant contribution to the slope regime, t � tdip, is self-averaging with a relatively
negligible fluctuation. However, if the edge effects are properly discounted (e.g. by con-
sidering the circular ensemble with uniform spectral density on the unit circle), i.e. the
slope regime is entirely removed, then the Gaussian behavior holds for all t � TH with
a universal variance given by (1.5).
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In more recent works spectral form factors were studied for the celebrated Sachdev-
Ye-Kitaev (SYK)model [18,23,24,32,46] which also exhibits a similar slope-dip-ramp-
plateau pattern although the details are still debated in the physics literature and the
numerics are much less reliable due to the exponentially large dimensionality of the
model.

1.2. Our results. Quite surprisingly, despite its central role in the physics literature on
quantum chaos, SFF has not been rigorously investigated in the mathematics literature
up to very recently, when Forrester computed the large N limit of K (t) rigorously for
the GUE in [21] and the Laguerre Unitary Ensemble (LUE) in [22] in the entire regime
t � N . Both results rely on a remarkable identity from [9] (and its extension to the LUE
case) and on previous stimulating work of Okuyama [44]. However, these methods use
exact identities and thus are restricted to a few explicitly solvable invariant ensembles.

The main goal of the current paper is to investigate SFF beyond these special cases
with a robust method, the multi-resolvent local laws. While our approach is valid for
quite general ensembles, for definiteness we focus on two models: the standard Wigner
ensemble (for both symmetry classes) and the novel monoparametric ensemble intro-
duced recently [25] by Gharibyan, Pattison, Shenker and Wells. The latter consists of
matrices of the form Hs := s1H1 + s2H2, where H1 and H2 are typical but fixed reali-
sations of two independent Wigner matrices and s = (s1, s2) ∈ S1 ⊂ R is a continuous
random variable. The normalization s21 + s22 = 1 guarantees that the semicircle law for
Hs is independent of s and it also shows that the model has effectively only one random
parameter. One may also consider similar ensembles with finitely many parameters (see
Remark 2.4) resulting in qualitatively the same behavior but with different power laws,
see Table 1.

We study the statistics of Hs in the probability space of the single random variable s
and probe how much universality still persists with such reduced randomness. We write
Es for the expectation wrt. s and EH , StdH for the expectation and standard deviation
wrt. H1 and H2.

Our main result is to prove a formula for the expectation and standard deviation of
SFF for both ensembles up to an intermediate time.While this does not include the ramp
regime, it already allows us to draw the following two main conclusions of the paper:

(a) The expectation and standard deviation of SFF(t) for Wigner and monoparametric
ensembles exhibit the same universal behavior to leading order for 1 � t � N 1/4 if
the trivial edge effects are removed. In themonoparametric case it is quite remarkable
that already a single real random variable generates universality.

(b) For the monoparametric ensemble K (t) = Es[SFF(t)] depends non-trivially on the
fixed H1, H2 matrices, but for large t this dependence is a subleading effect whose
relative size becomes increasingly negligible as a negative power of t . In particular,
while the speed of convergence to universality ismuch slower for themonoparametric
ensemble than for the Wigner case, it is improving for larger t .

The second item answers a question raised by the authors of [25] which strongly moti-
vated the current work. In particular, sampling from s does not give a consistent estimator
for K (t), but the relative precision of such estimate improves for larger times.

We supplement these proofs with an extensive numerics demonstrating that both
conclusions hold not only for t � N 1/4 but for the entire ramp regime, i.e. up to
t � TH ∼ N . Note that recently we have proved [15] that the Wigner–Dyson–Mehta
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eigenvalue gap universality holds for the monoparametric ensemble, which strongly
supports, albeit does not prove, that K (t) in the plateau regime is also universal.

We remark that our method applies without difficulty for finite temperatures (ex-
pressed by a parameter β > 0) and for different-time autocorrelation functions, i.e.
for

〈e(−β+it)H 〉〈e(−β−it ′)H 〉
as well, but for the simplicity of the presentation we focus on SFF(t) defined in (1.1),
i.e. on β = 0 and t = t ′.

1.3. Relations to previous mathematical results. Rigorous mathematics for the spectral
form factor, even for Wigner matrices or even for GOE, significantly lags behind es-
tablishing the compelling physics picture about the slope-dip-ramp-plateau. Given the
recently developed tools in random matrix theory, it may appear surprising that they do
not directly answer the important questions on SFF. We now briefly explain why.

1.3.1. Limitations of the resolventmethods For problems onmacroscopic spectral scales
(involving the cumulative effect of order N many eigenvalues), and to a large extent
also on mesoscopic scales (involving many more than O(1) eigenvalues), the resolvent
method is suitable. This method considers the resolvent G(z) = (H − z)−1 of H for a
spectral parameter z away from (but typically still close to) the real axis and establishes
that in a certain senseG(z) becomes deterministic. Thisworks for η = 
z 	 N−1 (in the
bulk spectrum), i.e. on scales just above the eigenvalue spacing (note that the imaginary
part of the spectral parameter sets a scale in the spectrum). Such results are called local
laws and they can be extended to regular functions f (H) by standard spectral calculus
(Helffer–Sjöstrand formula, see (3.3) later).

However, the interesting questions about SFF concern a 1/N subleading fluctuation
effect beyond the local laws. Indeed

Tr eit H =
∑

i

eitλi

is a special case of the well-studied linear eigenvalue statistics, Tr f (H) = ∑
i f (λi ),

with the regular test function f (λ) = eitλ. To leading order it is deterministic and its
fluctuation satisfies the central limit theorem (CLT) without the customary

√
N normal-

isation, i.e.

∑

i

f (λi ) − E
∑

i

f (λi ) ≈ N (0, V f ), with E
∑

i

f (λi ) = N
∫

R
f (x)ρsc(x) dx + O f (1). (1.6)

is a normal random variable with variance.1

V f = 1

4π2

∫∫ 2

−2
| f (x) − f (y)

x − y
|2 4 − xy√

4 − x2
√
4 − y2

dx dy. (1.7)

1 Equation (1.7) is formatriceswhose second and fourthmoments coincidewith the ones ofGUE, otherwise
there are additional terms, see e.g. [13, Theorem 2.4].
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The computation of highermoments of Tr f (H)−ETr f (H) requires a generalization of
the local laws to polynomial combinations of several G’s that are called multi-resolvent
local laws.

Applying (1.6)–(1.7) to f (x) = eit x we obtain, roughly,

SFF(t) = 1

N 2

∣∣Tr eit H
∣∣2 ≈

[ J1(2t)
t

+ O
(√ V f

N 2

)]2
, t 	 1, (1.8)

using that
∫

R
f (x)ρsc(x) dx =

∫

R
eit xρsc(x) dx = J1(2t)

t
,

where J1 is the first Bessel function of the first kind. Note that V f in (1.7) scales
essentially as the H1/2 Sobolev norm of f hence V f ∼ t for our f (x) = eit x in the
regime t 	 1. Therefore the size of the fluctuation term in (1.8) is V f /N 2 ∼ t/N 2

and it competes with the deterministic term (J1/t)2 ∼ t−3. The dip time tdip ∼ √
N

is obtained as the threshold where the fluctuation (the linear ramp function) becomes
bigger than the slope function (J1/t)2. This argument, however, is heuristic as it neglects
the error terms in (1.6) that also depend on t via f .

CLT for linear statistics (1.6) forWigner matrices H has been proven [1,3,13,26,28–
30,33,34,36,38,41,47,49] for test functions of the form f (x) = g(Na(x − E)) with
some fixed reference point |E | < 2, scaling exponent a ∈ [0, 1) and smooth function
g with compact support, i.e for macroscopic (a = 0) and mesoscopic (0 < a < 1)
test functions living on a single scale N−a . These proofs give optimal error terms for
such functions but they were not optimized for dealing with functions that oscillate on
a mesoscopic scale and have macroscopic support, like f (x) = eit x for some t ∼ Nα ,
α > 0. The only CLT-type result for a special two-scale observable is in [2] where the
eigenvalue counting function smoothed on an intermediate scale N−1/3 was considered.

Quite remarkably, extensive numerics shows that the formulas (1.6)–(1.7) for f (x) =
eit x are in perfect agreement with the expected behavior of K (t) in the entire slope-dip-
ramp regime all the way up to t � N , i.e. the CLT for linear statistics correctly predicts
SFF well beyond its proven regime of validity. In the current paper we optimise the error
terms specifically for eit x and thus we could cover the regime t � N 5/11 for the variance
in (1.6) (corresponding to E[SFF(t)]).

1.3.2. Limitations of Dyson Brownian motion techniques For the microscopic scale (i.e.
comparable with the eigenvalue spacing, 1/N in the bulk) the resolvent is heavily fluc-
tuating as it strongly depends on single eigenvalues. Local laws cannot access them,
but in this regime another approach, the careful analysis of the Dyson Brownian Motion
(DBM) becomes applicable. While these two approaches are complementary and ap-
parently cover all scales, the actual methods require additional conditions that seriously
restrict their use for SFF.

The formulas (1.3) are obtained by computing the Fourier transform of the two point
correlation function of the rescaled (unfolded) eigenvalues. Indeed, in the GUE case
KGUE(t) in (1.3) is just the Fourier transform of p2(x, y)−1+δ(x − y) in the difference
variable x − y, where

p2(x, y) := 1 −
( sin(π(x − y))

π(x − y)

)2
,
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is the two point function, given by the celebrated Wigner–Dyson sine kernel, and
KGOE(t) has a similar origin. Wigner–Dyson theory is designed for microscopic scales,
i.e. to describe eigenvalue correlations on scales comparable with the local level spacing

, this is encoded in the fact that (1.3) holds for any fixed τ > 0 in the N → ∞ limit
(equivalently that (1.5) holds only for t ≥ δN since 
 ∼ 1/N in the bulk). While this is
a very elegant argument supporting (1.3), mathematically it is quite far from a rigorous
proof.

The mathematical proofs of the sine-kernel universality use test functions that are
rapidly decaying beyond scale 
. The typical statements (so called fixed energy univer-
sality [7,39]) show that for any fixed energy E in the bulk

∑

i< j

g
(
Nρsc(E)(λi − E), Nρsc(E)(λ j − E)

)→
∫∫

R
g(x, y)p2(x, y) dx dy

in the large N limit, for any smooth, compactly supported functions g : R2 → R. The
current methods for proving the Wigner–Dyson universality cannot deal with functions
that are macroscopically supported, like g(x, y) = eit (x−y) with a fast oscillation t ∼ N .

1.4. Summary. Using multi-resolvent local laws we prove a CLT for linear statistics of
monoparametric ensembles (Theorem 2.5) with covariance

Cov(Tr f (Hs),Tr g(Hr )) ≈ 1

π2

∫∫
f ′(x)g′(y) log|1 − 〈s, r〉msc(x)msc(y)

1 − 〈s, r〉msc(x)msc(y)
| dx dy

with an additional term depending on the fourth cumulant. Due to a careful analysis
of the error terms this allows us to prove the expected behavior on the expectation
and standard deviation of the SFF for Wigner matrices for t � N 5/17 (Theorem 2.7)
and for the monoparametric ensemble for t � N 1/4 (Theorem 2.8). Beyond these
regime the spectral form factor is not understood mathematically apart from the special
GUE and LUE cases. However, we can still use our predictions from the CLT for linear
statistics (1.6) to derive an Ansatz for the behavior of SFF(t) in the entire t � N regime.
In particular, we show that the SFF is universal for the monoparametric ensemble. We
find numerically that our theory correctly reproduces SFF(t) for any t � N and it also
coincides with the physics predictions for the GUE case.

Notations and conventions. For positive quantities f and g we will frequently use the
notation f ≈ g meaning that f/g → 1 in a limit that is always clear from the context.
Similarly, f � g means that f/g → 0. Finally, the relation f ∼ g means that there
exist two positive constants c,C such that c ≤ f/g ≤ C .

We say that an event holds “with very high probability” if for any fixed D > 0 the
probability of the event is bigger than 1 − N−D if N ≥ N0(D), for some N0(D) > 0.

2. Statement of the Main Results

Our new results mainly concern the monoparametric ensemble but for comparison rea-
sons we also prove the analogous results for the Wigner ensemble. We start with the two
corresponding definitions.
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Definition 2.1. The Wigner ensemble consists of Hermitian N × N random matrices
H with the following properties. The off-diagonal matrix elements below the diagonal
are independent, identically distributed (i.i.d) real (β = 1) or complex (β = 2) random
variables; in the latter case we assume that Eh2i j = 0. The diagonal elements are i.i.d.

real random variables with Eh2i i = 2/(Nβ). Besides the standard normalisation (1.4),
we also make the customary moment assumption: for every q ∈ N there is a constant
Cq such that

E
∣∣√Nhi j

∣∣q ≤ Cq . (2.1)

In the case of Gaussian distributions, it is called the Gaussian Orthogonal or Unitary
Ensemble (GOE/GUE), for the real and complex cases, respectively.

Remark 2.2. The assumptions Eh2i j = 0 in the complex case, and Eh2i i = 2/(βN ) are
made purely for convenience. All results can easily be generalised beyond this case but
we refrain from doing so for notational simplicity.

Definition 2.3. The monoparametric ensemble consists of Hermitian N × N random
matrices of the form

H = Hs := s1H1 + s2H2, (2.2)

where H1, H2 are independent Wigner matrices satisfying2 E|h(1)
i j |4 = E|h(2)

i j |4 and

s = (s1, s2) ∈ S1 is a random vector, independent of H1, H2. On the distribution of s
we assume that it has an square integrable density ρ(s) independent of N . We write Es
for the expectation wrt. s and EH , StdH for the expectation and standard deviation wrt.
the Wigner matrices H1 and H2.

The parameter space S1 ⊂ R2 inherits the usual scalar product and norms from R2,
so for s, r ∈ S1 we have

〈s, r〉 := s1r1 + s2r2, ‖s‖p := (|s1|p + |s2|p)1/p.

We also introduce the entrywise product of two vectors:

s � r := (s1r1, s2r2).

For a fixed s, Hs is just theweighted sumof twoWignermatrices, and, due to the normal-
isation, itself is just aWignermatrix. However, the concept of monoparametric ensemble
views Hs as a randommatrix in the probability space of the single random variable s for
a typical but fixed (quenched) realization of H1 and H2. While Wigner matrices have a
large (∼ N 2) number of independent random degrees of freedom, the monoparametric
ensemble is generated by one single randomvariable hence, naively,much less universal-
ity properties are expected. Nevertheless, the standard Wigner–Dyson local eigenvalue
universality holds [15].

2 We assume equal fourth cumulants merely for notational convenience. Our proof verbatim covers also
the more general case.
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Remark 2.4. In [15] we considered the un-normalized monoparametric model Hs :=
H1 + sH2, for some real valued random variable s, whose density of states is a rescaled
semicircular distribution. In this paper we prefer to work with more homogeneous mod-
els since the formulas are somewhat nicer, but our main results also apply to this in-
homogeous model with some slightly different exponents in the error terms. One may
also consider a different un-normalized ensemble, s1H1 + s2H2 with s ∈ R2 having an
absolutely continuous distribution, which is effectively a two parameter model.

Similar results also hold for the multi-parametric analogue of (2.2), i.e. s1H1 + · · · +
sk Hk for s ∈ Sk−1, see Remark 2.6 and Sect. 2.4 later. Despite all these options, for
definiteness, the main body of this paper concerns the homogenous monoparametric
model from Definition 2.3.

2.1. Central limit theorem for sum of Wigner matrices. To understand the effect of the
random s, we study the joint statistics of Hs and Hr for two different fixed realisations
r, s in the probability space of H1, H2, i.e. we aim at the correlation effects between Hs

and Hr . We introduce the short-hand notations

〈 f 〉sc :=
∫ 2

−2
f (x)

√
4 − x2

2π
dx, 〈 f 〉1/sc :=

∫ 2

−2
f (x)

1

π
√
4 − x2

dx,

κ4 := N 2E|h12|4 − 1 − 2

β
. (2.3)

To estimate the error term in the following theoremwe introduce a parameter 1 ≤ τ � N
and the weighted norm

‖ f ‖τ := τ 2‖ f ‖∞ + τ‖ f ‖H1 + ‖ f ‖H2 , (2.4)

where ‖ f ‖2
Hk :=∑ j≤k

∫
R| f ( j)|2 is the usual Sobolev norm. For the applications later,

the parameter τ will be optimized.

Theorem 2.5. For s ∈ S1 and test functions f ∈ H2(R) the family of random variables
Tr f (Hs) is approximately Gaussian of mean

ETr f (Hs) = N 〈 f 〉sc + κ4‖s‖44〈
x4 − 4x2 + 2

2
f 〉1/sc

+ 1(β = 1)
[ f (2) + f (−2)

4
− 〈 f 〉1/sc

2

]
+O(E1), (2.5)

and fluctuation

E
p∏

i=1

(
Tr fi (H

si ) − ETr fi (H
si )
)

=
∑

P∈Pair([p])

∏

(i, j)∈P

vs
i s j ( fi , f j ) +Op(Ep),(2.6)

for any fixed p ∈ N, functions f1, . . . , f p ∈ H2(R), and parameters s1, . . . , s p ∈ S1,
where3

vsr ( f, g) := 1

βπ2

∫∫ 2

−2
f ′(x)g′(y)V sr (x, y) dx dy +

κ4

2
〈s � s, r � r〉〈(2 − x2) f 〉21/sc

V sr (x, y) := log|1 − 〈s, r〉msc(x)msc(y)| − log|1 − 〈s, r〉msc(x)msc(y)|. (2.7)

3 For the applications in this paper, SFF in the regime t 	 1, the first term in (2.7) is the only relevant one.
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Here Ep are error terms which for any 1 ≤ τ � N and any ξ, ε > 0 may be estimated
by4

E1 := N ξ ‖ f ‖τ

N1/2τ1/2
, Ep := N ξ

(
1

N1/2τ3/2
+

N ε

N
+

N−ε

τ2p−1

)(
1 +

τ2

N1−2ε

)
∏

i∈[p]
‖ fi‖τ , (2.8)

for p ≥ 2. Additionally, if s1 = · · · = s p, i.e. in the Wigner case, we have the improved
bound

Ep := 1

N 1/2τ 3/2

∏

i∈[p]
‖ fi‖τ (2.9)

and the first term of (2.7) for β = 2 coincides with (1.7).

We note that (2.7) generalizes the standard variance calculation yielding (1.7) to s �= r ,
see Sect. 3.2.4.

Remark 2.6. Theorem 2.5 verbatim holds true also for the multi-parametric model

s1H1 + · · · + sk Hk

upon interpreting 〈s, r〉 and ‖s‖p as the Euclidean inner product and p-norm in Rk .
Similarly, Theorem 2.5 also applies to the un-normalised case s ∈ R2 for which on the
rhs. of (2.5) the function f has to be replaced by f (‖s‖·) with ‖·‖ := ‖·‖2 and vsr

from (2.7) has to be replaced by

ṽsr ( f, g) := ‖s‖‖r‖
βπ2

∫∫ 2

−2
f ′(‖s‖x)g′(‖r‖y)V s

‖s‖ , r
‖r‖ (x, y) dx dy

+
κ4

2
〈s � s, r � r〉〈(2 − x2) f (‖s‖x)〉1/sc〈(2 − x2) f (‖r‖x)〉1/sc.

(2.10)

2.2. SFF for Wigner and monoparametric ensemble. In this section we specialise The-
orem 2.5 to the SFF case. We define the approximate expectation (rescaled by 1/N )

esN (t) := e(t) +
1

N

[
κ4‖s‖44

(
1 − 6

t2

)
J0(2t) + κ4‖s‖44

(
6

t3
− 4

t

)
J1(2t) − 1(β = 1)

J0(2t) − cos(2t)

2

]

e(t) := J1(2t)

t
(2.11)

in terms of the Bessel functions Jk of the first kind. We also define the approximate
variance

vsr±,κ (t) := vsr (eit ·, e±it ·) = vsr± (t) + κ4〈s � s, r � r〉J2(2t)2,

vsr± (t) := t2

βπ2

∫∫ 2

−2
cos
(
t (x ± y)

)
V sr (x, y) dx dy,

(2.12)

From Theorem 2.5, choosing fi (x) = e±it x and τ = t , and recalling that 〈e±it Hs 〉 =
N−1Tr e±it Hs

, we readily conclude the following asymptotics for SFF of the Wigner
and monoparametric ensemble.

4 The exponent in (2.8) can be optimized depending on τ and f .
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Fig. 2. In the first plot we compare the empirical mean (red) and standard deviation (blue) of |〈eit H 〉|2
obtained from sampling 10, 000 independent 100 × 100 GUE matrices H with our approximation (2.13). In
the second plot we similarly compare the empirical mean (red) and variance (blue), with respect to s, obtained
from sampling 500 independent scalar random variables s (from the uniform distribution on S1) and 500
independent 100× 100 GUE matrix pairs H1, H2, with the prediction (2.15). We also test the precision of the
latter GUE-pair sampling by finding the empirical standard deviation (with respect to H1, H2) of the empirical
mean of the monoparametric SFF (orange). We observe that for both ensembles our resolvent approximation
seems valid for all t < N

Theorem 2.7 (SFF for the Wigner ensemble). For deterministic t > 0 (possibly N-
dependent) we have

EH |〈eit H 〉|2 = Ewig(t)(1 + o(1)) for t � N 5/11,

VarH |〈eit H 〉|2 = Swig(t)
2(1 + o(1)) for t � N 5/17,

(2.13)

and we have the asymptotics

Ewig(t) := e(t)2 +
vee−,κ (t)

N2 ≈
⎧
⎨

⎩

J1(2t)
2

t2
, 1 � t � √

N
2
π

t
N2 ,

√
N � t � N ,

Swig(t) :=
(

vee+,κ (t)2 + vee−,κ (t)2

N4 + 2e(t)2
vee+,κ (t) + vee−,κ (t)

N2

)1/2
≈
⎧
⎨

⎩

2J1(2t)√
π t N

, 1 � t � √
N

2
π

t
N2 ,

√
N � t � N ,

(2.14)
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where we set e := (1, 0) ∈ S1.

This result shows that Swig(t) � Ewig(t) in the slope regime, t � √
N , and Swig(t) ≈

Ewig(t) in the ramp regime,
√
N � t � N (see the first plot in Fig. 2). In particular,

in the ramp regime the SFF is a non-negative random variable whose fluctuations are of
the same size as its expectation. Thus the SFF is not self-averaging in the ramp regime,
while it is self-averaging in the slope regime but only owing to the dominance of the
function e(t) representing the edge effect. If one discounts the edge effect, i.e. artificially
removes e(t), then Swig(t) ≈ Ewig(t) would hold for all 1 � t � N , demonstrating the
universal behavior of SFF in the entire slope-dip-ramp regime.

Theorem 2.8 (SFF for the monoparametric ensemble (2.2)). For t > 0 (possibly N-
dependent) we have

EHEs |〈eit Hs 〉|2 = Ewig(t)(1 + o(1)) for t � N 3/7

EH Vars |〈eit Hs 〉|2 =
(
Swig(t)

2 − Sres(t)
2
)
(1 + o(1)) for t � N 5/17

VarH Es |〈eit Hs 〉|2 = Sres(t)
2(1 + o(1)) for t � N 1/4

(2.15)

where the function

Sres(t) :=
√

EsEr

(vsr+,κ (t)2 + vsr−,κ (t)2

N 4 + 2e(t)2
vsr+,κ (t) + vsr−,κ (t)

N 2

)
(2.16)

satisfies

Sres(t) ∼
{

ψ(t)
Nt5/4

, 1 � t � √
N

t3/4

N2 ,
√
N � t � N ,

(2.17)

where ψ(t) ∼ 1 is a positive function with some oscillation.

In particular, this result immediately shows the following concentration effect:

Corollary 2.9. For 1 � t � N 1/4 it holds that

VarH Es |〈eit Hs 〉|2 � 1√
t

VarH |〈eit H 〉|2, (2.18)

i.e. averaging in s reduces the size of the fluctuation of the SFF by a factor of t−1/4.

Note that

Sres(t) � t−1/4Swig(t) (2.19)

both in the slope and ramp regimes showing that not only the expectation but also the
variance of the SFF for themonoparametric ensemble coincide with those for theWigner
ensemble to leading order, hence they follow the universal pattern (red and blue curves in
the second plot in Fig. 2). However, the dependence of Es[SFF(t)] on the fixed Wigner
matrix pair (H1, H2) is still present, albeit to a lower order, expressed by the residual
standard deviation Sres(t) whose relative size decreases as t−1/4 as t increases (orange
curves in Fig. 2). It is quite remarkable that a single random mode s generates almost
the entire randomness in the ensemble that is responsible for the universality of SFF. A
similar phenomenon was manifested in the Wigner–Dyson universality proven in [15].



On the Spectral Form Factor for Random Matrices 1677

Remark 2.10. Based upon extensive numerics (see Fig. 2) we believe that (2.13), (2.15)
and (2.18) hold up to any t � N , i.e. in the entire slope-dip-ramp regime and not only up
to some fractional power of N as stated and proved rigorously. The proof for the entire
regime t � N is out of reach with the current technology based upon themulti-resolvent
local law Lemma 3.3 whose error term does not trace the expected improvement due to
different spectral parameters z1 �= z2. We expect that the entire ramp regime t � N
should be accessible by resolvent techniques if a sharp version of Lemma 3.3, tracing
the gain from z1 �= z2, was available.

Remark 2.11. We stated Theorems 2.7 and 2.8 only for the first twomoments but theCLT
from Theorem 2.5 allows us to compute arbitrary moments E|〈eit H 〉|2m for the Wigner
case and Es |〈eit Hs 〉|2m for the monoparametric case (together with their concentration
in the (H1, H2)-space), albeit with worsening error estimates. This would lead to rig-
orous results of the type (2.13) and (2.15) but for a shorter time scale t � Nc(m) with
some c(m) > 0. However, in the spirit of Remark 2.10, we believe that 〈eit Hs 〉 can be
approximated for any t � N , to leading order, by a family of complex Gaussians ξ(t, s)
of mean and variance

Eξ(t, s) = e(t), E(ξ(t, s) − e(t))(ξ(t ′, s′) − e(t ′)) = 1

N 2 vss
′
(eit ·, eit ′·) (2.20)

with vsr from (2.7).Note that (2.20) also specifies the covariance of ξ(t, s) and ξ(t ′, s′) =
ξ(−t ′, s′) for different times.

The next lemma, to be proven in Sect. 3.2.4, provides explicit asymptotic formulas
for vss± (t), in particular they imply the asymptotics in (2.14) together with e(t) ∼ t−3/2

(up to some oscillation due to the Bessel function) in the large t regime.

Lemma 2.12. For s = r the functions vss± (t) appearing in (2.12) can be expressed as

vss− (t) = t2
[
J0(2t)

2 + 2J1(2t)
2 − J0(2t)J2(2t)

]
= 2t

π
− 1 + 2 sin(4t)

16π t
+O(t−2)

vss+ (t) = −t J0(2t)J1(2t) = cos(4t)

2π
− 2 + sin(4t)

16π t
+O(t−2).

(2.21)

The relation in (2.17) requires a stationary phase calculation that will be done sepa-
rately in Sect. 5.

2.3. Implications for sampling. Determining the standard deviation of |〈eit H 〉|2 is im-
portant for numerical testing of (2.13). By taking the empirical average En

H of n in-
dependent Wigner matrices we may approximate the true expectation EH |〈eit H 〉|2 at a
speed

En
H |〈eit H 〉|2 = EH |〈eit H 〉|2 + �

(
n−1/2 StdH |〈eit H 〉|2

)
= Ewig(t) + �(n−1/2Swig(t)), (2.22)

c.f. the top of Fig. 3. Here �(· · · ) indicates an oscillatory error term of the given size. In
the ramp regime the fluctuation of En

H |〈eit H 〉|2 thus scales like t/(√nN 2) using (2.14).
In particular, this fluctuation vanishes as the sample size n goes to infinite, hence the
statistics via sampling to test (2.13) is consistent.
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Fig. 3. In the first plot we show the empirical mean of |〈eit H 〉|2 for k independent GUE matrices H . As
expected the standard deviation of the sample average fluctuates within a strip of width n−1/2 StdH |〈eit H 〉|2,
in particular the sample average exactly reproduces the mean if n → ∞. In the second plot we show the
empirical mean of |〈eit Hs 〉|2 for k independently sampled scalar random variables s for a fixed GUE matrix
pair H1, H2. We observe that while the sample mean approximates the true mean Es increasingly well as
n → ∞, the latter is still dependent on the chosen realisation of H1, H2. Thus the empirical mean fluctuates
in a strip of width max(n−1/2Swig(t), Sres(t)) around the doubly averaged EHEs |〈eit Hs 〉|2

In contrast, for the monoparametric ensemble, by taking the empirical average of n
copies of s we naturally have

En
s |〈eit H

s 〉|2 = Es |〈eit Hs 〉|2 + �
(
k−1/2Swig(t)

)
. (2.23)

Replacing the first term by its expectation plus its fluctuation in the H -probability space,
we also get

En
s |〈eit H

s 〉|2 = EHEs |〈eit Hs 〉|2 + �
(
max

(
n−1/2Swig(t), Sres(t)

))
, (2.24)

where the error term contains both standard deviations and satisfies

max
(
n−1/2Swig(t), Sres(t)

) ∼
{

1
Nt max{ 1√

n
, 1
t1/4

}, 1 � t � √
N

t
N2 max{ 1√

n
, 1
t1/4

} √
N � t � N ,

(2.25)
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due to (2.15) and (2.17). In particular, both in the slope and in the ramp regimes the size
of the fluctuation of En

s |〈eit Hs 〉|2
does not vanish even as the number of samples goes to infinity, n → ∞, hence the

statistics is not consistent, c.f. the bottom of Fig. 3. However, this lack of consistency,
expressed by Sres(t) is still negligible compared with the leading first term in (2.24)
by a factor t−1/4 � 1 in the large t regime, see (2.19). We recall that mathematically
rigorously we can prove all these facts only for t � N 1/4, i.e. well before the dip time,
but the numerical tests leave no doubt on their validity in the entire regime 1 � t � N .

2.4. Extensions. Beside the Wigner ensemble, we formulated our main results on SFF
for the normalized monoparametric model in Theorem 2.8. We chose this model for
definiteness, but our approach applies to the multi-parametric as well as to the un-
normalised models introduced in Remark 2.4. Here we explain the modified results for
these natural generalisations.

First, for the multi-parametric normalised model, Hs = s1H1 + · · ·+ sk Hk with k−1
effective parameters s ∈ Sk−1, Theorem 2.8 holds true verbatim modulo different sizes
for the residual standard deviation Sres(t). In fact, we have

Sres(t) � t−
1
2 +

1
4 (3−k)+ Swig(t), (2.26)

see (5.4) later, hence Sres(t) becomes less relevant compared with Swig(t) for larger
k > 2, see (2.19). Consequently, the upper bounds on the times of proven validity
in (2.15) slightly improve but they still remain below the dip time and we omit the
precise formulas. We note that the t-power in (2.26) is not optimal for k ≥ 3. A refined
stationary phase estimate could be used to improve the estimate but we refrain from
doing so since our primary interest is the mono-parametric model with few degrees of
freedom.

Second, for the un-normalised model Hs = s1H1 + s2H2 with two effective pa-
rameters s ∈ R2, Theorem 2.8 also holds true modulo some minor changes. More
precisely, (2.15) becomes

EHEs |〈eit Hs 〉|2 = Es Ewig(‖s‖2t)(1 + o(1)) for t � N3/7

EH Vars |〈eit Hs 〉|2 =
(

Es Swig(‖s‖2t)2 − S̃res(t)
2
)
(1 + o(1)) for t � N5/17

VarH Es |〈eit Hs 〉|2 = S̃res(t)
2(1 + o(1)) for t � N1/7,

(2.27)

with S̃res obtained from replacing vsr by ṽsr from Remark 2.6 in (2.12). For S̃res(t) a
stationary phase calculation gives the modified

S̃res(t) ∼
{

ψ(t)
Nt7/4

, 1 � t � √
N

t1/4

N2 ,
√
N � t � N ,

(2.28)

assuming that s has an absolutely continuous distributionwith a differentiable, compactly
supported densityρ onR2 withρ(0) = 0.Wewill not prove the relation in these formulas
in this paper, we only show how to obtain the necessary upper bound on them at the end
of Sect. 5.

Note that now

S̃res(t) � t−3/4Es Swig(‖s‖2t), (2.29)
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Table 1. For our three main parametric models the following table lists the size of the residual fluctuation
compared to the fluctuation of the Wigner-SFF

Quenched parametric model Randomness

s1H1 + s2H2 (s1, s2) ∈ S1 Sres(t) � t−1/4Swig(t)
H1 + sH2 s ∈ R Sres(t) � t−1/2Swig(t)
s1H1 + s2H2 (s1, s2) ∈ R2 Sres(t) � t−3/4Swig(t)

i.e. the fluctuation due to the residual randomness of (H1, H2) after taking the expectation
in s remains negligible, in fact it is reduced compared with the normalised case (2.19).
As a consequence t1/4 in (2.25) is replaced by t3/4.

Analogous results hold for the most general multi-parametric un-normalised model
as well as to the mono-parametric inhomogeneous model Hs = H1 + sH2, s ∈ R.
We omit their precise formulation, the key point is that the analogue of (2.27) hold in
all cases with a residual standard deviation S̃res(t) being smaller than the leading term
Swig(t) by a polynomial factor in t (e.g. by t−1/2 for Hs = H1 + sH2). This guarantees
that the universality of SFF holds for all these models. Table 1 summarizes the decay
exponents of our main parametric models.

Outline. The rest of the paper is organised as follows. In Sect. 3 we outline the resolvent
method and explain howvia theHelffer–Sjöstrand representation a resolventCLT implies
the CLT for the linear statistics

∑
f (λi ) of arbitrary test functions f from which our

main results Theorems 2.5–2.8 follow. In Sect. 4 we present the proof of the resolvent
CLT, while in Sect. 5 we conclude the proof of the asympotics (2.17) via a stationary
phase argument.

3. Resolvent Method

Let H be aWignermatrix5 andG(z) := (H−z)−1 its resolventwith a spectral parameter
z ∈ C\R. Define msc(z), the Stieltjes transform of the semicircle law:

m(z) = msc(z) :=
∫

R

ρsc(x)

x − z
dx, ρsc(x) :=

√
(4 − x2)+
2π

. (3.1)

The local law for a single resolvent states that the diagonal matrix m(z) · I well
approximates the random resolvent G(z) in the following sense (see e.g. [5,20,35]):

|〈(G(z) − m(z))A〉| � N ξ ‖A‖
Nη

, 〈x, (G(z) − m(z)) y〉 � N ξ ‖x‖‖ y‖√
Nη

(3.2)

with η = |
z|, for any fixed deterministic matrix A and deterministic vectors x, y. The
first bound is called averaged local law, while the second one is the isotropic local law.
The bounds (3.2) are understood in very high probability for any fixed ξ > 0.

The Helffer–Sjöstrand formula

〈 f (H)〉 = 2

π

∫

C
∂z fC(z)〈G(z)〉 d2z, (3.3)

5 The resolvent method extends to very general Hermitian matrices possibly with non-centered and corre-
lated entries, see [19], but here we present only the Wigner case for simplicity.
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with z = x + iη and d2z := dη dx , expresses the linear statistics of arbitrary functions
as an integral of the resolvent G(z) and the almost-analytic extension

fC(z) = fC(x + iη) := [ f (x) + iη∂x f (x)
]
χ(τη), (3.4)

of f . Here the free parameter τ ∈ R is chosen such that N−1 � τ−1 � 1, and χ a
smooth cut-off equal to 1 on [−5, 5] and equal to 0 on [−10, 10]c. The same τ was
used to define the weighted H2-norm (2.4) and eventually we will optimize its value, a
procedure that improves the standard error terms in the CLT. By (3.2) it follows that

〈 f (H)〉 = 2

π

∫

C
∂z fC(z)m(z) d2z +O(∗)N ξ ‖ f ‖H2

N
=
∫ 2

−2
ρsc(x) f (x) dx +O(∗)N ξ ‖ f ‖H2

N
. (3.5)

In order to compute the fluctuation in (3.5) via (3.3) we need to understand the
correlation between 〈G(z)〉, 〈G(z′)〉 for two different spectral parameters z, z′ which
turns out to be given by

Cov(〈G(z)〉, 〈G(z′)〉) ≈ 1

N 2

〈G(z)2〉〈G(z′)2〉〈G(z)G(z′)〉(1 + 〈G(z)G(z′)〉)
〈G(z)〉〈G(z′)〉 , (3.6)

modulo some additional contribution from non-Gaussian fourth cumulant, see (3.8) for
the final statement. While G(z) ≈ m(z), in general it is not true that G(z)G(z′) ≈
m(z)m(z′) since (3.2) allows only deterministic test matrices multiplying G. Neverthe-
less G(z)G(z′) is still approximable by a deterministic object:

G(z)G(z′) ≈ m(z)m(z′)
1 − m(z)m(z′)

. (3.7)

Statements of the form (3.7) with an appropriate error term are called multi-resolvent
local laws.

We will apply this theory to the product of the resolvents Gs of Hs = s1H1 + s2H2
for two different parameters s, see the corresponding local law on 〈GsGr 〉 in (3.11)
later. Even though H1 and H2 as well as s and r are independent, the common (H1, H2)

ingredients in Hs and Hr introduce a nontrivial correlation between these matrices.
We therefore need to extend CLT for resolvents via multi-resolvent local laws to this
parametric situation.

3.1. Resolvent CLT. The main technical result of the present paper is the following
Central LimitTheorem for product of resolvents of the randommatrix Hs := s1H1+s2H2
with s = (s1, s2) ∈ S1.

Proposition 3.1. Fix ε > 0, p ∈ N, s1, . . . , s p ∈ S1, z1, . . . , z p ∈ C\R, and define

Gi := (Hsi − zi )−1. Then for any arbitrary small ξ > 0 and η∗ ≥ N−1+ε it holds

EH
∏

i∈[p]
〈Gi − EHGi 〉 = 1

N p

∑

P∈Pair([p])

∏

(i, j)∈P

Vi j +O
(
N ξ �p

(
1

L1/2
+

1

Nη2∗
+

1

N2η4∗

))
, �p :=

∏

i∈[p]
1

N |ηi |
.

(3.8)

Here ηi := 
zi , η∗ := mini |ηi |, L := mini (Nηiρi ), and

Vi j := − 2

β
∂zi ∂z j log

(
1 − 〈si , s j 〉mim j

)
− 〈si � si , s j � s j 〉κ4(m2

i )
′(m2

j )
′, (3.9)
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where mi := msc(zi ), and κ4 := N 2E|h12|4 −1−2/β. Additionally, for the expectation
we have

EH 〈Gi 〉 = mi +
κ4

N
‖s‖44m′

im
3
i + 1(β = 1)

1

N

mim′
i

1 − m2
i

+O
(
N ξ

√
ρi

(Nηi )3/2

)
, (3.10)

with ρi := π−1|
mi |.
Remark 3.2. For Wigner matrices, i.e. for s1 = · · · = s p = (1, 0), the error term in
(3.8) is given by �L−1/2, as a consequence of the fact that the error terms in the first
and second line of (3.11) are replaced by (Nη1η2)

−1 and (Nη1η
2
2)

−1, respectively (see
e.g. [16, Remark 3.5]).

We point out that similar resolvent CLT have often been used as a basic input to prove
CLT for linear eigenvalue statistics of both Hermitian and non-Hermitian matrices down
to optimal mesoscopic scales (see e.g. [10,11,14,28–30,36–38]). The main novelty here
is to extend the resolvent CLT to the monoparametric ensemble.

Along the proof of Proposition 3.1 we establish the following multi-resolvent local
laws.

Lemma 3.3. For Gi = Gsi (zi ) we have the two- and three-resolvent local laws

|〈G1G2〉 − m1m2

1 − 〈s1, s2〉m1m2
| � N ξ

N |η1η2|3/2

|〈G1G
2
2〉 − m1m′

2

(1 − 〈s1, s2〉m1m2)2
| � N ξ

N |η1||η2|η2∗
+

1

N 2|η1η2|3 ,

(3.11)

where mi = msc(zi ), with very high probability for any fixed ξ, ε > 0 and |
zi | ≥
N−1+ε .

The proofs of Proposition 3.1 and Lemma 3.3 will be presented in Sect. 4. In these proofs
we will often use the standard cumulant expansion (see [8,30,34] in the random matrix
context):

EHhab f (H) = 1

N
EH ∂ba f (H) +

R∑

k=2

∑

q+q ′=k

κ
q+1,q ′
ab

N (k+1)/2
EH ∂

q
ab∂

q ′
ba f (H) + �R . (3.12)

Here ∂ab denotes the directional derivative ∂hab , the first term in the rhs. represents
the second order (Gaussian) contribution, while the sum in (3.12) represents the non-
Gaussian contribution with κ

p,q
ab denoting the joint cumulant of p copies of N 1/2hab

and q copies of N 1/2hab. The cumulant expansion is typically truncated at a high (N -
independent) level R with an error term �R that is negligible. To see this, note that in
our applications f will be a product of resolvents at spectral parameters zi with η∗ =
min |
zi | 	 1/N hence derivatives of f remain bounded with very high probability by
the isotropic local law (3.2) thus the tail of the series (3.12) decays as N−(k+1)/2.

3.2. Proof of Theorem 2.5. The proof of Theorem 2.5 is divided into three steps: (i)
computation of the expectation, (ii) computation of the variance, (iii) proof of Wick
Theorem. The expectation is computed in Sect. 3.2.1, while the Wick Theorem and the
explicit computation of the variance are proven in Sect. 3.2.2.
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3.2.1. Expectation Using the bound
∣∣∂z fC

∣∣ � η| f ′′| + τ |χ ′|[| f | + iη| f ′|], (3.13)

and |〈Gs − m〉| � N ξ (Nη)−1 by (3.2), with m = msc, we conclude that

EH 〈 f (Hs )〉 =
∫

R

∫

|η|≥η0

∂z fC(z)EH 〈Gs (z)〉 dη dx +O
(
N ξ η0‖ f ‖H2

N
+ N ξ η20‖ f ‖H2

)
, (3.14)

for any N−1 � η0 � τ−1.Note thatwe choseη0 	 N−1 in order to use Proposition 3.1.
Plugging (3.10) into (3.14), and using (3.13) to estimate the error term, we get that

EH 〈 f (Hs )〉 =
∫

R

∫

|η|≥η0

∂z fC(z)
[
m +

κ4

N
‖s‖44m′m3 + 1(β = 1)

1

N

mm′
1 − m2

]
dη dx

+O
(
N ξ η0‖ f ‖H2

N
+ N ξ η20‖ f ‖H2 +

N ξ ‖ f ‖H2

N3/2τ1/2
+

N ξ τ3/2‖ f ‖∞
N3/2 +

N ξ τ1/2‖ f ‖H1

N3/2

)

=
∫

R

∫

|η|≥η0

∂z fC(z)
[
m +

κ4

N
‖s‖44m′m3 + 1(β = 1)

1

N

mm′
1 − m2

]
dη dx +O

(
N ξ ‖ f ‖τ

N3/2τ1/2

)
,

(3.15)

where to go to the last line we chose η0 ∼ N−1+ε , for some very small ε > 0, and we
used the norm ‖ f ‖τ defined in (2.4).

Adding back the regime |η| < η0 at the price of a negligible error smaller than the
one in (3.15), by explicit computations (exactly as in [13, Section D.1]) in the leading
term of (3.15), we conclude

EH 〈 f (Hs )〉 =
∫ 2

−2
ρsc(x) f (x) dx +

κ4

2N
‖s‖44

∫ 2

−2

x4 − 4x2 + 2

π
√
4 − x2

f (x) dx

+ 1(β = 1)

[
f (2) + f (−2)

4N
− 1

2πN

∫ 2

−2

f (x)√
4 − x2

dx

]
+O

(
N ξ ‖ f ‖τ

N3/2τ1/2

)
.

(3.16)

3.2.2. Second moment and Wick theorem Define

LN ( f, s) := N [〈 f (Hs)〉 − EH 〈 f (Hs)〉], (3.17)

then in this section, using Proposition 3.1, we compute the leading order term of
EH LN ( f1, s1)LN ( f2, s2). More precisely, by (3.8) for p = 2, and using (3.13) to
estimate the error term, it follows that

EH LN ( f1, s
1)LN ( f2, s

2)

=
∫∫

R

∫∫

|η1|,|η2|≥η0

∂z1 fC(z1)∂z2 fC(z2)V12

+O
(
N ξ η0(‖ f1‖H2‖ f2‖∞ + ‖ f2‖H2‖ f1‖∞) +

N ξ ‖ f1‖τ ‖ f2‖τ

N1/2τ3/2
+

‖ f1‖H2‖ f2‖H2

N1−ξ η0τ

(
1 +

1

Nη20

)

+
(‖ f1‖H2 (τ

2‖ f2‖∞ + τ‖ f2‖H1 ) + ‖ f2‖H2 (τ
2‖ f1‖∞ + τ‖ f1‖H1 ))

N1−ξ η0τ

(
1 +

1

Nη20

)

+
(τ2‖ f1‖∞ + τ‖ f1‖H1 )(τ

2‖ f2‖∞ + τ‖ f2‖H1 )

N

(
1 +

τ2

N1−2ε

))

=
∫∫

R

∫∫

|η1|,|η2|≥N−ε τ−1
∂z1 fC(z1)∂z2 fC(z2)V12

+O
(
N ξ ‖ f1‖τ ‖ f2‖τ

(
N ε

N
+

N−ε

τ3

)(
1 +

τ2

N1−2ε

))
,

(3.18)
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where to go to the last line we chose η0 ∼ N−ετ−1, for any ε > 0, and V12 is defined
in (3.9). From (3.18), adding back the regimes |ηi | < N−ετ−1 at the price of an error
smaller than the one in the last line of (3.18), we conclude (2.6) for p = 2 by explicit
computation in deterministic term as in [13, Section D.2].

We conclude this section with the computation of higher moments:

EH
∏

i∈[p]
LN ( fi , s

i ) =
∑

P∈Pair([p])

∏

(i, j)∈P

∫∫

R

∫∫

|ηi |,|η j |≥N−ε
∂zi fC(zi )∂z j fC(z j )Vi j

+O
⎛

⎝
(

N ξ

N1/2τ3/2
+

N ε

N
+

N−ε

τ2p−1

)(
1 +

τ2

N1−2ε

)
∏

i∈[p]
‖ fi‖τ

⎞

⎠ ,

(3.19)

which concludes the proof of (2.6) for any p ∈ N, after adding back the regimes |ηi | <

N−ετ−1 at the price of an error smaller than the one in the second line of (3.19).

3.2.3. Proof of Theorems 2.7 and 2.8 We just show how Theorem 2.7 follows by Theo-
rem 2.5; the proof of Theorems 2.8 is completely analogous and so omitted. In particular,
to make the presentation shorter we just show the details of the proof of the first equa-
tion in (2.13). Using Theorem 2.5 as an input, the proof of the second equation in (2.13)
follows exactly in the same way.

First of all we write

EH |〈eit H 〉|2 = EH
∣∣〈eit H 〉 − EH 〈eit H 〉∣∣2 + ∣∣EH 〈eit H 〉∣∣2. (3.20)

Then, using (2.6) with p = 2, f1(x) = eit x , f2(x) = e−it x , and τ = t to compute
the leading order of the first term in (3.20), and (2.5) with f (x) = eitx to compute the
leading order of the second term in (3.20), we conclude that

EH |〈eit H 〉|2 = Ewig(t) +O
(

1

N 3/2 +
t5/2

N 5/2

)
, (3.21)

with Ewig(t) defined in (2.14). Finally, using the asymptotics of Ewig(t) in (2.14) we
readily conclude that the error term in (3.21) is much smaller than the leading term
Ewig(t) as long as t � N 5/11.

3.2.4. Variance calculations when s = r and the proof of Lemma 2.12 Wenote that (2.7)
generalises the standard variance calculation yielding (1.7) to s �= r . For the case s = r
the two formulas can be seen to be equivalent using the identity

1

2π2

∫∫ 2

−2
f ′(x)g′(y) log|1 − msc(x)msc(y)

1 − msc(x)msc(y)
| dx dy

= 1

4π2

∫∫ 2

−2

f (x) − f (y)

x − y

g(x) − g(y)

x − y

4 − xy√
4 − x2

√
4 − y2

dx dy

(3.22)

that can be proven by integration by parts and using (msc(x) + x)msc(x) = −1 from the
explicit form of msc(x) from (3.1).
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Proof of Lemma 2.12. Using (3.22) the functions vss± (t) appearing in (2.12) can be ex-
pressed as

vss− (t) = 1

π2

∫ 1

−1

∫ 1

−1

1 − xy√
1 − x2

√
1 − y2

( sin (t (x − y))

x − y

)2
dx dy

=
∞∑

k=1

k Jk(2t)
2 = t2

[
J0(2t)

2 + 2J1(2t)
2 − J0(2t)J2(2t)

]

= 2t

π
− 1 + 2 sin(4t)

16π t
+O(t−2)

(3.23)

and

vss+ (t) = 1

4π2

∫ 1

−1

∫ 1

−1

1 − xy√
1 − x2

√
1 − y2

(e2it x − e2it y

x − y

)2
dx dy

=
∞∑

k=1

(−1)kk Jk(2t)
2 = −t J0(2t)J1(2t)

= cos(4t)

2π
− 2 + sin(4t)

16π t
+O(t−2)

(3.24)

where the series representations follow directly from [13, Remark 2.6] and the series
evaluations follow from [50, V.§ 5.51(1)]. ��

4. Central Limit Theorem for Resolvents

The proof of Proposition 3.1 is divided into three parts: in Sect. 4.1 we compute the
subleading order correction to EH 〈Gi 〉, in Sect. 4.2 we explicitly compute the variance,
and finally in Sect. 4.3 we prove a Wick Theorem. To keep our presentation simpler
we only prove the CLT for resolvent in the complex case, the real case is completely
analogous and so omitted (see e.g. [13, Section 4]).

4.1. Computation of the expectation. For G = Gs(z) we have

I = s1H1G + s2H2G − 〈G〉G − zG, HiG := H1G + si 〈G〉G (4.1)

so that G ≈ m for the solution m to the equation

− 1

m
= z + m, m(z) = msc(z). (4.2)

The fact that G ≈ m in averaged and isotropic sense follows from the single resolvent
local law (3.2). This is a consequence of the fact that the term HiG in (4.1) is designed in
such a way EHiG ≈ 0 in averaged and isotropic sense. In fact, for Gaussian ensembles
EHiG = 0 and the deviation from zero for general ensembles is a lower order effect
due to non-vanishing of higher order cumulants of the entry distribution. From (4.1) and
(4.2) we obtain

(1 − m2〈·〉)[G − m] = −m(s1H1G + s2H2G) + m〈G − m〉(G − m). (4.3)
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Additionally, we define ρ(z) := π−1|
m(z)|. For simplicity of notation from now on
we assume that 
z > 0. We remark that by 1 − m2〈·〉 in the lhs. of (4.3) we denote the
operator acting on matrices R ∈ CN×N as (1 − m2〈·〉)[R] = R − m2〈R〉.

We then start computing:

EH 〈G − m〉 = −m′

m
EH 〈s1H1G + s2H2G〉 +O

(
N ξ

N 2η2ρ

)
, (4.4)

for any small ξ > 0, where we used that |1−m2| � ρ, thatm′ = m2/(1−m2), and that
|〈G − m〉| � N ξ (Nη)−1 by (3.2). Then using cumulant expansion (see (3.12), ignoring
the truncation error) we claim (and prove below) that

EH 〈s11H1G + s12H2G〉 = EH
1

N

∑

k≥2

∑

ab

∑

α∈{ab,ba}k

(
κ(1)(ab,α)

k! s1∂
(1)
α +

κ(2)(ab, α)

k! s2∂
(2)
α

)
Gba

= κ4

N
‖s‖44m4 +O

(
N ξ ρ3/2

N3/2η1/2
+

N ξ ρ3/2

N2η3/2

)
,

(4.5)

where κ(i)(ab,α) denotes the joint cumulant of the random variables hiab, h
i
α1

, . . . , hiαk ,

and ∂
(i)
α := ∂

(i)
α1 · · · ∂(i)

αk , with i = 1, 2, where ∂
(i)
α j denotes the directional derivative in

the direction hiα j
. Here hiα j

are the entries of Hi . Combining (4.5) with (4.4) we obtain
exactly the expansion in (3.10) (recall that here we only present the proof in the complex
case, the real case being completely analogous).

Proof of the second equality in (4.5). First of all we recall that by (2.1) it follows the
bound |κ(i)(ab,α)| � N−(k+1)/2, with i = 1, 2.

We start with k = 2. In this case we can neglect the summation when a = b since it
gives a contribution N−3/2. Hence we can assume that a �= b. In this case we have the
bounds

N−5/2

∣∣∣∣∣∣

∑

a �=b

G3
ab

∣∣∣∣∣∣
� N ξ ρ3/2

N2η3/2
, N−5/2

∣∣∣∣∣∣

∑

a �=b

GaaGbbGab

∣∣∣∣∣∣
� N ξ

N3/2 +
N ξ ρ3/2

N2η3/2
, (4.6)

with very high probability. The first bound in (4.6) follows from the isotropic law in
(3.2). The second bound in (4.6) follows by writing G = m + (G − m) and using the
isotropic resummation

∑

ab

(G − m)aaGab =
∑

a

〈ea,G1〉, (4.7)

with ea ∈ RN the unit vector in the a-direction and 1 := (1, . . . , 1) ∈ RN .
For k = 3 whenever there are at least two off-diagonalG’s we get a bound N−2η−1ρ.

The only way to get only diagonal G’s is that α is one of (ab, ba, ba), (ba, ab, ba),
(ba, ba, ab); in this case κ(i)(ab,α) = κ4/N 2, with κ4 := κ(i)(ab, ba, ab, ba). For
these terms we have (see [13, Lemma 4.2] for the analogous proof for Wigner matrices)

∂
(i)
α Gba = −2s3i G

2
aaG

2
bb +O

(
N ξ ρ

N 2η

)
, (4.8)
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with very high probability, where the error comes from terms with at least two off-
diagonal G’s. Hence we finally conclude that the terms k = 3 give a contribution:

− 2κ4
3

3! ‖s‖
4
4
1

N 3

∑

ab

G2
aaG

2
bb = κ4

N
‖s‖44m4 +O

(
N ξ ρ3/2

N 3/2η1/2
+
N ξ ρ

N 2η

)
. (4.9)

All the terms with k ≥ 4 can be estimated trivially using that |Gab| � 1 with very
high probability by (3.2). ��

4.2. Computation of the variance. For the second moment, using (4.3), we compute

EH 〈G1 − EHG1〉〈G2 − EHG2〉

= −EH

(
m′
1

m1
〈s11H1G1 + s12H2G1〉 + κ4

N
‖s1‖44m′

1m
3
1

)
〈G2 − EHG2〉 +O

(
N ξ �2

L1/2

)
(4.10)

where si = (si1, s
i
2) ∈ S1 and we used (3.10) to approximate 〈Gi − EHGi 〉 with

〈Gi − mi 〉. We made this replacement to use the equation for G − m from (4.3).
Then performing cumulant expansion we compute:

− EH

(
m′

1

m1
〈s11H1G1 + s12H2G1〉 + κ4

N
‖s1‖44m′

1m
3
1

)
〈G2 − EHG2〉

= 〈s1, s2〉m′
1EH 〈G1G2

2〉
m1N 2 − κ4

N
‖s1‖44m′

1m
3
1EH 〈G2 − EHG2〉

− m′
1

m1

∑

k≥2

∑

ab

∑

α∈{ab,ba}k

(
κ(1)(ab,α)

k!N s11∂
(1)
α + s12

κ(2)(ab,α)

k!N ∂
(2)
α

)

EH
[
(G1)ba〈G2 − EHG2〉

]
.

(4.11)

Using the local law (3.11) we conclude that

m′
1

m1
〈s1, s2〉 〈G1G

2
2〉

N2 = 〈s1, s2〉 m′
1m

′
2

(1 − 〈s1, s2〉m1m2)
2N2 +O

(
N ξ

N3η1η2η
2∗
+

N ξ

N4|η1η2|3
)

= − 1

N2 ∂z1∂z2 log(1 − 〈s1, s2〉m1m2) +O
(

N ξ

N3η1η2η
2∗
+

N ξ

N4|η1η2|3
)

,

(4.12)

with very high probability.
We are now left with the third line of (4.11). The α-derivative in (4.11) may hit either

(G1)ba or 〈G2 − E2G2〉. Define

�k : = m′
1

m1

∑

ab

∑

α∈{ab,ba}k

(
κ(1)(ab, α)

k!N s11∂
(1)
α + s12

κ(2)(ab,α)

k!N ∂
(2)
α

)
EH
[
(G1)ba〈G2 − EHG2〉

]

=
∑

ab

∑

α

s11κ(1)(ab,α)

k!N EH

(
m′
1

m1
∂
(1)
α1

(G1)ba

k1!

)(
∂
(1)
α2

〈G2 − EHG2〉
(k − k1)!

)

+
∑

ab

∑

α

s12κ(2)(ab,α)

k!N EH

(
m′
1

m1
∂
(2)
α1

(G1)ba

k1!

)(
∂
(2)
α2

〈G2 − EHG2〉
(k − k1)!

)
,

(4.13)
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where k1 denotes the number of derivatives that hit (G1)ba . The summation
∑

α indicates

the summation over tuples α
ki
i , with i = 1, 2 and k2 := k − k1. We now claim that

�k = −1(k = 3)
(
κ4

〈s1 � s1, s2 � s2〉
2N2 (m2

1)
′(m2

2)
′ + κ4

N
‖s1‖44m′

1m
3
1

)
+O

(
N ξ �2

L1/2

)
. (4.14)

Similarly to the proof of [13, Eq. (113)] we readily conclude that the terms in �k
in (4.13) with k = 2, or k1 odd and k ≥ 4, or k ≥ 3 and k1 even are bounded by
N ξ�2L−1/2. For k = 3 and k1 = 3, analogously to (4.8)–(4.9) we obtain a contribution
of

− κ4

N
‖s1‖44m′

1m
3
1 +O

(
N ξ

N |η1|L1/2

)
(4.15)

to (4.14).
For k = 3 and k1 = 1 we start computing the action of the α1-derivative on (G1)ba :

∑

α1

∂
(i)
α1 (G1)ba = −s1i (G1)

2
ba − s1i (G1)aa(G1)bb = −s1i m

2
1(1 + δab) +O

(
N ξ

√
ρ1

N |η1|
)

, (4.16)

with very high probability. Additionally, we have that (see [13, Lemma 4.2] for the
analogous proof for Wigner matrices)

∂
(i)
ab,ba〈G2 − EHG2〉 = 2m2m′

2

N
(s2i )

2 +O
(

N ξ ρ
1/2
2

(N |η2|)3/2
)

, (4.17)

with very high probability. We thus conclude that the (k, k1) = (3, 1) contribution
to (4.14) is

− κ4
〈s1 � s1, s2 � s2〉

2N 2 (m2
1)

′(m2
2)

′ +O
(
N ξ�2

L1/2

)
, (4.18)

where we used that only the terms with κ4 = κ(i)(ab, ba, ab, ba) contribute. This
concludes the proof of (3.8) for p = 2.

4.3. Asymptotic Wick Theorem. The proof of the Wick Theorem for resolvent is com-
pletely analogous to the one forWigner matrices in [13, Section 4]. The only differences
are that along the proof we have to carefully keep track of the si , as we did in Sect. 4.2,
since in the Wigner case s1 = · · · = s p = (1, 0), and that we have to use the three
G’s local law in (3.11) with a weaker error term instead of the one in [13, Eq. (45)] to
compute the leading order deterministic term (see (4.21)–(4.22) below).

Define

YS :=
∏

i∈S
〈Gi − EHGi 〉, (4.19)
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with S ⊂ N. Similarly to Sect. 4.2 we start computing

EHY[p] =
∑

i∈[2,p]

m′
1

m1

〈s1, si 〉
N2 EH 〈G1G

2
i 〉Y[p]\{1,i} − κ4

N
‖s1‖44m′

1m
3
1EHY[2,p]

−
∑

k≥2

∑

ab

∑

α∈{ab,ba}k

(
κ(1)(ab, α)

k!N s11∂
(1)
α + s12

κ(2)(ab,α)

k!N ∂
(2)
α

)
EH

[
m′
1

m1
(G1)baY[2,p]

]

+O
(
N ξ �p

L1/2

)
.

(4.20)

Then proceeding analogously to (4.13)–(4.18) (see also [13, Eqs. (110)-(114)] for the
Wigner case) we conclude that

EHY[p] =
∑

i∈[2,p]

m′
1

m1

〈s1, si 〉
N2 EH 〈G1G

2
i 〉Y[p]\{1,i}

−
∑

i∈[2,p]
κ4

〈s1 � s1, si � si 〉
2N2 (m2

1)
′(m2

i )
′EHY[1,p]\{1,i} +O

(
N ξ �p

L1/2

)
.

(4.21)

In order to compute the leading deterministic term of 〈G1G2
i 〉we use the local law (3.11)

and get

EHY[p] = 1

N2

∑

i∈[2,p]
V1,iEHY[p]\{1,i} +O

(
N ξ �p

(
1

L1/2
+

1

Nη2∗
+

1

N2η4∗

))
. (4.22)

Finally, proceeding iteratively we conclude (3.8).

4.4. Multi resolvents local laws. The goal of this section is to prove the local laws in
(3.11). Starting from (4.3) we get

(1 − 〈s1, s2〉m1m2〈·〉)G1G2 = m1m2 + m1〈G2 − m2〉 − m1
(
s11H1G1G2 + s12H2G1G2

)

+ m1〈s1, s2〉〈G1G2〉(G2 − m2) + m1〈G1 − m1〉G1G2.
(4.23)

We estimate |〈G1G2〉| � N ξ (η∗)−1 with very high probability, where η∗ := η1 ∨ η2,
using |〈G1G2〉| ≤ 〈|G2|〉/η1 (in case η∗ = η1) and the rigidity of eigenvalues to estimate
〈|G2|〉 ≤ N ξ . Then by the single resolvent local law |〈Gi − mi 〉| � N ξ (Nηi )

−1 from
(3.2) we obtain that

(1 − 〈s1, s2〉m1m2)〈G1G2〉 = m1m2 − m1
(
s11 〈H1G1G2〉 + s12 〈H2G1G2〉

)
+O

(
N ξ

N |η1||η2|

)
,

(4.24)

with very high probability. Finally, using that

|〈HiG1G2〉| � N ξ

√
N |η1η2|η∗

, i ∈ [2] (4.25)
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with very high probability from an analogous proof to [15, Eq. (5.8)] (see also [12, Eq.
(5.10c)]), and that

|1 − 〈s1, s2〉m1m2| � η∗. (4.26)

we conclude the first local law in (3.11).
For the second local law in (3.11) we start writing the equation for G1G2

2:

G1G
2
2 = m1m

′
2 + m1(G

2
2 − m′

2) − m1
(
s11H1G1G

2
2 + s12H2G1G

2
2

)

+ m1〈s1, s2〉
(〈G1G2〉G2

2 + 〈G1G
2
2〉G2

)
+ m1〈G1 − m1〉G1G

2
2.

(4.27)

Then, using the usual single G local law and the two G’s local law from (3.11), we
conclude that

(1 − 〈s1, s2〉m1m2)〈G1G
2
2〉 = m1m

′
2 + 〈s1, s2〉 m2

1m2m′
2

1 − 〈s1, s2〉m1m2

− m1
(
s11H1G1G

2
2 + s12H2G1G

2
2

)
+O

(
N ξ

N |η1||η2|η∗

)
.

(4.28)

Then, using that

|〈HiG1G
2
2〉| � N ξ

N
√|η1η2|η2∗

, i ∈ [2], (4.29)

with very high probability, and (4.26) we conclude (3.11). The proof of (4.29) follows
analogously to the one of (4.25).

5. Stationary Phase Calculations

The proof of (2.17) is a tedious stationary phase calculation since vsr± (t), the leading part
of vsr±,κ (t) (see (2.12)), are given in terms of oscillatory integrals for t 	 1 being the large
parameter. Unlike in the s = r case, no explicit formula similar to (2.21) is available.
The main complication is that V sr (x, y) defined in (2.7) has logarithmic singularities,
integrated against a fast oscillatory term from f ′g′, so standard stationary phase formulas
cannot directly be applied. Nevertheless, a certain number of integration by parts can
still be performed before the derivative of the integrand stops being integrable and the
leading term can be computed.

We will first give a proof of

EsErv
sr− (t) ∼ √

t (5.1)

then we explain how to modify this argument to obtain

EsErv
sr− (t)2 ∼ t3/2, (5.2)

in both cases with a definite large t asymptotics with computable explicit constants. The
proof reveals that the corresponding results for EsErv

sr
+ (t) and EsErv

sr
+ (t)2 guarantee

only an upper bound with the same behavior

EsErv
sr
+ (t) �

√
t, EsErv

sr
+ (t)2 � t3/2 (5.3)
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depending on the distribution of s on S1, the matching lower bound may not necessarily
hold. However, for our main conclusions like (2.19) only an upper bound on Sres(t) is
important.

All these exponents are valid for the k = 2 case, i.e. for Hs = s1H1 + s2H2. For the
general multivariate model, k ≥ 3, exactly the same proof gives the upper bounds

EsErv
sr± (t) � min{1, t 3−k

2 }, EsErv
sr
+ (t)2 � min{1, t 5−k

2 }. (5.4)

The k-dependence of the exponent can directly be related to the tail behavior (5.5)
and (5.8) below, so for simplicity we will carry out our main analysis only for k = 2. In
fact, a more careful analysis yields somewhat better bounds than (5.4), but we will not
pursue this improvement here.

We introduce a new random variable

U := 〈s, r〉
then clearly |U | ≤ 1 and since r, s ∈ Sk have a distribution with an L2 density, it is easy
to see that the density ρ∗ of U is bounded by

ρ∗(U ) � (1 −U 2)
k−3
2 . (5.5)

The fact that the main contribution to the lhs. of (5.4) comes from the regimeU ≈ 1 is a
consequence of the singularity of the logarithm in (2.7) in this regime (see computations
below). Indeed,U = cosα where α is the angle between r, s and nearU ≈ ±1 we have
1 ±U ≈ 1

2α
2(1 + O(α2)). For example, for k = 2 we have

P(1 −U = ε + dε) = dε√
ε

( ∫

S1
ρ2(s) ds

)
(1 + O(

√
ε)) (5.6)

P(1 +U = ε + dε) = dε√
ε

( ∫

S1
ρ(s)ρ(s + π) ds

)
(1 + O(

√
ε)) (5.7)

in the ε � 1 regime. In particular, the bound in (5.5) is actually an asymptotics in the
most critical U ≈ 1 regime, while the regime U ≈ −1 it may happen that the density
ρ∗ is much smaller than (5.5) predicts. For symmetric distribution, ρ(s) = ρ(s +π), the
two asymptotics are the same. Similar relations hold for k ≥ 3, in which case we have

P(1 ±U = ε + dε) � ε
k−3
2 dε (5.8)

with an explicit asymptotics for U ≈ 1.
So we will study

R±(t) = t2�
∫

dUρ∗(U )

∫∫ 2

−2
dx dyeit (x±y)

[
log|1 −Um(x)m(y)| − log|1 −Um(x)m(y)|

]
. (5.9)

Since |m| ≤ 1, as long as |U | ≤ 1 − δ for any small fixed δ > 0, the arguments of the
logarithms are separated away from zero and they allow to perform arbitrary number of
integrationbyparts, eachgaining a factor of 1/t . There is a square root singularity ofm(x)
and m(y) at the spectral edges 2,−2 which still allows one to perform one integration
by parts in each variable since m′ is still integrable. Therefore the contribution of the
regime |U | ≤ 1 − δ to (5.9) is of order t2(1/t)2 = O(1), hence negligible compared
with the target (5.1). In the sequel we thus focus on the important U ≈ ±1 regimes, in
particular every

∫
dU integral is understood to be restricted to |U | ≥ 1 − δ.
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Note that m(y) = −m(−y), so if U has a symmetric distribution (for example if
s ∈ S1 has a symmetric distribution), then by symmetry we have

R−(t) = −R+(t).

For definiteness, we focus on R−(t), the analysis of R+ is analogous. From the explicit
form m(x) = 1

2 (−x + i
√
4 − x2) a simple exercise shows that

|1 −Um(x)m(y)|2 � (1 −U )2 + (x − y)2, |1 −Um(x)m(y)|2 � (1 +U )2 + (x + y)2. (5.10)

This shows that the critical regime isU ≈ 1 and x ≈ y for the first integrand in (5.9) and
U ≈ −1, x ≈ −y for the second. Again, for definiteness, we focus on the first regime,
i.e. on the first log-integrand in (5.9) and establish the following relations for large t and
k = 2:

Lemma 5.1. In the k = 2 case we have

t2
∫

dUρ∗(U )�
∫∫ 2

−2
eit (x−y) log|1 −Um(x)m(y)|2 dx dy ∼ √

t (5.11)

and

t4
∫

dUρ∗(U )

[
�
∫∫ 2

−2
eit (x−y) log|1 −Um(x)m(y)|2 dx dy

]2
∼ t3/2, (5.12)

for t ≥ 1. For t 	 1 an analogous asymptotic statement holds with explicitly computable
positive constants that depend on the distribution of s.

Proof of Lemma 5.1. Introduce the variables

a := x + y

2
, b := x − y

2
, i.e. x = a + b, y = a − b.

Since |x |, |y| ≤ 2 we have

|a| ≤ 2, |b| ≤ min{|2 − a|, |2 + a|}. (5.13)

In terms of these variables, we have

|1 −Um(x)m(y)|2 =
(
1 −U + 2U

b2

b2 + d2

)2
+

4U 2b2d2

(b2 + d2)2
,

d := 1

2

[√
4 − (a + b)2 +

√
4 − (a − b)2

]
. (5.14)

Here we also used the identity

1 − m(x)m(y) = 2b

2b + m(x) − m(y)
= 2b

b + id

following from the equation −m(x)−1 = x + m(x) and similarly for m(y). In the
regime (5.13) we have

|b| ≤ 1

2
(4 − a2), |b| ≤

√
4 − a2. (5.15)
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Note that by Taylor expansion around a and concavity of the function x → √
4 − x2 in

x ∈ [−2, 2], we have

0 ≤
√
4 − a2 − d � b2

(4 − a2)3/2
≤ |b|√

4 − a2
, as well as

1

2

√
4 − a2 ≤ d ≤

√
4 − a2. (5.16)

We define the function

F = F(U, a, b) := (1 −U )2 +
4U 2b2

4 − a2
(5.17)

for |U | ≤ 1, and a, b as in (5.13). We will use F to approximate

M = M(U, a, b) := |1 −Um(a + b)m(a − b)|2 (5.18)

in the critical regime where |U | ≥ 1 − δ and |b| ≤ δ for some small fixed δ > 0. We
clearly have

M(U, a, b) ≥ 1

4
F(U, a, b) (5.19)

in the regime (5.13), where |b| ≤ √
4 − a2 ≤ 2d, using (5.16).

For the difference function


(U, a, b) := M(U, a, b) − F(U, a, b) (5.20)

an elementary calculation from (5.14)–(5.16) gives

∣∣
(U, a, b)
∣∣ � b2

(4 − a2)3/2
√
F (5.21)

in the regime |U | ≥ 1 − δ and |b| ≤ δ. Furthermore, similar estimates hold for the first
derivative;

∣∣∣∣
d

db

(U, a, b)

]∣∣∣∣ �
|b|√F

(4 − a2)3/2
,

∣∣∣∣
d

da

(U, a, b)

]∣∣∣∣ �
b2

√
F

(4 − a2)5/2
� |b|√F

(4 − a2)3/2
, (5.22)

as well as for the second derivatives

∣∣∣∣
d2

db2

(U, a, b)

]∣∣∣∣ �
√
F

(4 − a2)3/2
,

∣∣∣∣
d

da

d

db

(U, a, b)

]∣∣∣∣ �
|b|√F

(4 − a2)5/2
�

√
F

(4 − a2)3/2
. (5.23)

The proof of Lemma 5.1 consists of two parts. First we compute the integral with
log F , i.e. we show that

t2
∫

dUρ∗(U )�
∫∫ 2

−2
eit (x−y) log F

(
U,

x + y

2
,
x − y

2

)
dx dy ∼ √

t (5.24)

with an explicit positive constant factor in the asymptotic regime t 	 1. Second, we
show that the integrand in (5.11) can indeed be replaced with F up to a negligible error,

∣∣∣∣t
2
∫

dUρ∗(U )

∫∫ 2

−2
eit (x−y)

[
log|1 −Um(x)m(y)|2 − log F

(
U,

x + y

2
,
x − y

2

)]
dx dy

∣∣∣∣ � 1. (5.25)



1694 G. Cipolloni, L. Erdős, D. Schröder

Part I. To prove (5.24), we use the a, b variables and the symmetry of F in a to
restrict the a integration to 0 ≤ a ≤ 2:

(5.24) = 4t2�
∫

dUρ∗(U )

∫ 2

0
da
∫ 2−a

−(2−a)

db e2itb log F
(
U, a, b). (5.26)

Using integration by parts, we have

∫ 2−a

−(2−a)
db e2itb log

[
(1 −U )2 +

4U2b2

4 − a2
] = 1

2it

[
e2it (2−a) − e−2it (2−a)

]
log
[
(1 −U )2 +

4U2(2 − a)

2 + a

]

− 1

2it

4U2

4 − a2

∫ 2−a

−(2−a)
db e2itb

2b

(1 −U )2 + 4U2b2

4−a2

.

(5.27)

In the boundary terms we can perform one more integration by parts in the a variable
when plugged into (5.26). Just focusing on the first boundary term in (5.27), using
|U | ≤ 1 we have

∣∣∣∣
1

2it
e4it
∫ 2

0
da e−2ita log

[
(1 −U )2 +

4U 2(2 − a)

2 + a

]∣∣∣∣

� 1

t2

∫ 2

0

da

(1 −U )2 +U 2(2 − a)
� | log(1 −U )|

t2
.

Since ρ∗(U ) is a density bounded by (1 − U 2)−1/2 in the U ≈ 1 regime from (5.5),
the logarithmic singularity is integrable showing that the two boundary terms in (5.27),
when plugged into (5.26), give at most an O(1) contribution, negligible compared with
the target behavior of order

√
t in (5.1).

To compute themain (second) term in the rhs. of (5.27), we first extend the integration
limits to infinity and claim that

t2
∫

dUρ∗(U )

∣∣∣
1

2it

∫ 2

0
da

4U 2

4 − a2

∫ ∞

2−a
db e2itb

2b

(1 −U )2 + 4U2b2

4−a2

∣∣∣

� t
∫

dUρ∗(U )

∫ 2

0

da

2 − a

∣∣∣∣
∫ ∞

2−a
db e2itb

2b

(1 −U )2 + 4U2b2

4−a2

∣∣∣∣

(5.28)

gives a negligible contribution to (5.26) (the lower limit is removed similarly). Indeed,
we apply one more integration by parts inside the absolute value in (5.28):

∣∣∣∣
∫ ∞
2−a

db e2itb
2b

(1 −U )2 + 4U2b2

4−a2

∣∣∣∣ � t−1
∫ ∞
2−a

db

(1 −U )2 + U2b2

4−a2

+ t−1 2 − a

(1 −U )2 + (2 − a)
.

Its contribution to the rhs of (5.28) is thus bounded by

∫
dUρ∗(U )

∫ 2

0

da

2 − a

[ ∫ ∞

2−a

db

(1 −U )2 + U2b2

4−a2

+
2 − a

(1 −U )2 + (2 − a)

]

�
∫

dU√
1 −U 2

[ ∫ 2

0

da√
2 − a

1

1 −U +
√
2 − a

+ | log(1 −U )|
]

� 1.
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Summarizing, we just proved that

(5.24) = −2t

∫

dUρ∗(U )

∫ 2

0
da

4U 2

4 − a2

∫ ∞

−∞
db e2itb

2b

(1 −U )2 + 4U2b2

4−a2

+ O(1)

= t

π

∫
dUρ∗(U )

∫ 2

0
da e−t

√
4−a2(1−U )/U + O(1)

= c0t

π

∫
dU

1√
1 −U

∫ 2

0
da e−t

√
4−a2(1−U )/U + O(1)

= c0
√
t

π

∫ ∞

0

e−v

√
v
dv
∫ 2

0

da

(4 − a2)1/4
+ O(1)

= �(3/4)√
2�(5/4)

c0
√
t + O(1),

(5.29)

where in the second line we used residue calculation, in the third line we used that

ρ∗(U ) = c0√
1 −U

+ O(1)

in the regimeU ≈ 1 with some positive constant c0 > 0 depending on the distribution of
s (see (5.7)), and finally in the fourth line we used that for large t the main contribution
to the integral comes fromU ≈ 1 in order to simplify the integrand. This completes the
proof of (5.24).

Part II. We now prove (5.25). After changing to the a, b variables and considering
only the 0 ≤ a ≤ 2 regime for definiteness, we perform an integration by parts in b that
gives

(5.25) � t
∫

dUρ∗(U )

∣∣∣∣
∫ 2

0
da e2ita

[
logM(U, a, b) − log F

(
U, a, b

)]
db

∣∣∣∣

+ t
∫

dUρ∗(U )

∫ 2

0
da

∣∣∣∣
∫ 2−a

−(2−a)
e2itb∂b

[
logM(U, a, b) − log F

(
U, a, b

)]
db

∣∣∣∣

(5.30)

recalling the definition of M from (5.18). The first term in (5.30) is the boundary term,
which is negligible after one more integration by parts using the ∂a derivative estimate
from (5.22).

In the second term we perform one more integration by parts to obtain

(5.25) � t
∫

dUρ∗(U )

∣∣∣∣
∫ 2

0
da e2ita∂b

[
logM(U, a, b) − log F

(
U, a, b

)]
db

∣∣∣∣

+
∫

dUρ∗(U )

∫ 2

0
da
∫ 2−a

−(2−a)

∣∣∣∣∂
2
b

[
logM

(
U, a, b

)− log F
(
U, a, b

)]∣∣∣∣ db,
(5.31)

where the first term comes from the boundary. In this term we can perform one more
integration by parts in a. The corresponding boundary terms are easily seen to be order
one and the main term is analogous to the first term in the rhs of (5.31) just we have the
mixed ∂a∂b derivative. Recalling 
 = M − F from (5.20), we use the estimate

∣∣∂2b [logM − log F]∣∣ � |∂2b
|
F

+
|∂2b F |
F2 |
| + |∂b
||∂bM + ∂bF |

F2 + (∂bF)2
|
|
F3
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in the situation where M � F > 0 are positive functions (see (5.19)). Similar bound
holds for the mixed derivative.

Therefore, we can estimate both integrals in (5.31) as follows:

(5.25) �
∫

dUρ∗(U )

∫ 2

0
da
∫ 2−a

−(2−a)

1

(4 − a2)3/2
1

[
(1 −U )2 + b2

4−a2
]1/2 db

�
∫

dU√
1 −U 2

∫ 2

0

da

4 − a2

∫ √
2−a

0

du
[
(1 −U )2 + u2

]1/2

�
∫

dU√
1 −U 2

∫ √
2

0

| log u| + 1
[
(1 −U )2 + u2

]1/2 du

�
∫

dU | log(1 −U )|2
(1 −U )1/2

� 1.

(5.32)

Here we used the bounds (5.21), (5.22) and (5.23) and that |b| ≤ 2 − a � 4 − a2

to simplify some estimates. For computing the derivatives of F we used its explicit
form (5.17). This completes the proof of (5.25) and thus also the proof of (5.11) in
Lemma 5.1.

The proof of (5.12) is very similar.We again approximateM = |1−Um(x)m(y)|2 by
F at the expense of negligible errors. We omit these calculations as they are very similar
those for (5.11) and focus only on the main term which is (see the analogous (5.26))

16t4
∫

dUρ∗(U )
[
�
∫ 2

0
da
∫ 2−a

−(2−a)

db e2itb log F(U, a, b)
]2

. (5.33)

After one integration by parts and neglecting the lower order boundary terms, we have
the following analogue of (5.29):

4t2
∫

dUρ∗(U )
[
�
∫ 2

0
da

U 2

4 − a2

∫ ∞

−∞
db e2itb

2b

(1 −U )2 + 4U2b2

4−a2

]2

= t2

π2

∫
dUρ∗(U )

[ ∫ 2

0
da e−t

√
4−a2(1−U )/U

]2

≈ c0t3/2

π2

∫ ∞

0

dv√
v

( ∫ 2

0
da e−√

4−a2v
)2

= c0t3/2

π2

∫∫ 2

0

da1 da2

(

√
4 − a21 +

√
4 − a22)

1/2

∫ ∞

0

e−v

√
v
dv ∼ t3/2

(5.34)

as the leading term. This proves (5.12) and completes the proof of Lemma 5.1. ��
We close this section by commenting on the proof of the upper bound in (2.28). Recall

from (2.16) that the essential part of S̃res(t) in the slope regime is given by EsEr ṽ
sr (t)

expressed by the oscillatory integrals

R±(t) := t2
∫∫

R2
ρ(s)ρ(r) ds dr

∫∫ 2

−2
dx dyeit (‖s‖x±‖r‖y)A(U, x, y) (5.35)
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with

A(U, x, y) := log|1 −Um(x)m(y)| − log|1 −Um(x)m(y)|,

where U = 〈s,r〉
‖s‖‖r‖ is the cosine of the angle between the vectors s, r ∈ R2. Assuming

for the moment that ρ, the density of s, is rotationally symmetric, ρ(s) = ρ(‖s‖) with
a slight abuse of notations, we have

R±(t) ∼ t2
∫ 1

−1

dU√
1 −U2

∫∫ 2

−2
dx dyA(U, x, y)

∫ ∞
0

eit xσ ρ(σ )σ dσ
∫ ∞
0

e±it yσ ′
ρ(σ ′)σ ′ dσ ′

∼ t
∫ 1

−1

dU√
1 −U2

∫∫ 2

−2
dx dyρ̂(t x) ̂ρ(σ)σ (±t y)

d

dx
A(U, x, y)

(5.36)

performing an integration by parts in x and ignoring lower order boundary term. In the
last step we also computed the Fourier transform (we used that ρ(0) = 0 to extend ρ

to R). The main contribution comes from the regime where A is nearly singular, and
considering (5.10), we just focus on the regime U ∼ 1 and x ∼ y, the singularity from
the other logarithmic term is treated analogously. Similarly to the proof of (5.25) we
may ignore the edge regime, and effectively we have

∣∣∣
d

dx
log|1 −Um(x)m(y)|

∣∣∣ �
1

(1 −U ) + |x − y| . (5.37)

Thus we can continue estimating the last line of (5.36)

|(5.36)| � t
∫ 1

−1

dU√
1 −U 2

∫∫ 2

−2
dx dy

∣∣ρ̂(t x) ̂ρ(σ)σ (t y)
∣∣

(1 −U ) + |x − y| � t−1/2.

Here we used the regularity of ρ, so that the last two factors essentially restrict the
integration to the regime |x |, |y| � 1/t . The final inequality is obtained just by scaling.

To understand S̃res(t) in the ramp regime, we need to compute EsEr ṽ
sr± (t)2, i.e.

integrals of the following type:

t4
∫∫

R2
ρ(s)ρ(r) ds dr

∣∣∣∣
∫∫ 2

−2
dx dyeit (‖s‖x±‖r‖y)A(U, x, y)

∣∣∣∣
2

= t4
∫ 1

−1

dU√
1 −U2

∫∫ 2

−2
dx dy

∫∫ 2

−2
dx ′ dy′A(U, x, y)A(U, x ′, y′)

×
∫ ∞
0

eit (x−x ′)σ ρ(σ )σ dσ
∫ ∞
0

e±it (y−y′)σ ′
ρ(σ ′)σ ′ dσ ′

∼ t2
∫ 1

−1

dU√
1 −U2

∫∫ 2

−2
dx dy

∫∫ 2

−2
dx ′ dy′ d

dx
A(U, x, y)

d

dy′ A(U, x ′, y′)

×
∫ ∞
0

eit (x−x ′)σ ρ(σ ) dσ
∫ ∞
0

e±it (y−y′)σ ′
ρ(σ ′) dσ ′

∼ t2
∫ 1

−1

dU√
1 −U2

∫∫∫∫ 2

−2
dx dy dx ′ dy′ρ̂(t (x − x ′))ρ̂(±t (y − y′)) d

dx

A(U, x, y)
d

dy′ A(U, x ′, y′).

(5.38)
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Here we performed two integrations by parts in x and y′ and ignored the boundary terms.
Estimating the derivative of A as in (5.37), we can continue

|(5.38)| � t2
∫ 1

−1

dU√
1 −U 2

∫∫ 2

−2

dx dy

(1 −U ) + |x − y|
∫∫ 2

−2

dx ′ dy′

(1 −U ) + |x ′ − y′|
∣∣ρ̂(t (x − x ′))ρ̂(t (y − y′))

∣∣.

The last two factors essentially restrict the integration to the regime |x − x ′| � 1/t ,
|y− y′| � 1/t and by scaling we obtain a bound of order t1/2 for |(5.38)|. This completes
the sketch of the proof of (2.28) in the radially symmetric case, the general case is
analogous but technically more cumbersome and we omit the details.
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