
CGX: Adaptive System Support for Communication-Efficient
Deep Learning

Ilia Markov
ilia.markov@ist.ac.at

Institute of Science and Technology
Austria

Klosterneuburg, Austria

Hamidreza Ramezanikebrya∗
hamid@ece.ubc.ca

University of British Columbia
Vancouver, Canada

Dan Alistarh
dan.alistarh@ist.ac.at

Institute of Science and Technology
Austria

Klosterneuburg, Austria

Abstract
The ability to scale out training workloads has been one of the key
performance enablers of deep learning. The main scaling approach
is data-parallel GPU-based training, which has been boosted by
hardware and software support for highly efficient point-to-point
communication, and in particular via hardware bandwidth over-
provisioning. Overprovisioning comes at a cost: there is an order
of magnitude price difference between “cloud-grade” servers with
such support, relative to their popular “consumer-grade” counter-
parts, although single server-grade and consumer-grade GPUs can
have similar computational envelopes.

In this paper, we show that the costly hardware overprovisioning
approach can be supplanted via algorithmic and system design, and
propose a framework called CGX, which provides efficient soft-
ware support for compressed communication in ML applications,
for both multi-GPU single-node training, as well as larger-scale
multi-node training. CGX is based on two technical advances: At
the system level, it relies on a re-developed communication stack for
ML frameworks, which provides flexible, highly-efficient support
for compressed communication. At the application level, it provides
seamless, parameter-free integration with popular frameworks, so
that end-users do not have to modify training recipes, nor signifi-
cant training code. This is complemented by a layer-wise adaptive
compression technique which dynamically balances compression
gains with accuracy preservation. CGX integrates with popular ML
frameworks, providing up to 3X speedups for multi-GPU nodes
based on commodity hardware, and order-of-magnitude improve-
ments in the multi-node setting, with negligible impact on accuracy.

CCS Concepts: • Computing methodologies → Distributed
algorithms; Neural networks.

Keywords: Distributed Systems, Deep Learning, Gradients com-
pression

ACM Reference Format:
Ilia Markov, Hamidreza Ramezanikebrya, and Dan Alistarh. 2022. CGX:
Adaptive System Support for Communication-Efficient Deep Learning. In
23rd International Middleware Conference (Middleware’22), November 7–11,
2022, Quebec, QC, Canada. ACM, New York, NY, USA, 14 pages. https://doi.
org/10.1145/3528535.3565248

∗Work performed during an internship at Institute of Science and Technology Austria.

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9340-9/22/11.
https://doi.org/10.1145/3528535.3565248

1 Introduction
Deep learning has made significant leaps in terms of accuracy
and performance, enabled by the ability to scale out workloads.
Yet, distributed scalability of deep neural network (DNN) train-
ing still presents non-trivial challenges, and the last decade has
seen a tremendous amount of work on distributed paradigms, al-
gorithms, and implementations to address them [2, 9, 27, 33, 43].
Specifically, two key scaling challenges behind are reducing the
synchronization costs among computing nodes [26, 27, 34, 43], and
minimizing the communication costs which arise naturally due to
the high bandwidth requirements of all-to-all transmission of model
updates (gradients) between nodes. In this paper, we focus mainly
on mitigating the bandwidth cost of gradient transmission in DNN
training, which is an increasingly common bottleneck, correlated to
the soaring parameter counts of modern machine learning models.

There are two main strategies for removing bandwidth bottle-
necks. The industrial approach has been to employ bandwidth over-
provisioning: for instance, the inter-GPU bandwidth for NVIDIA-
enabled cloud-grade multi-GPU servers has increased by more
than 30X between 2015 (Kepler generation) and the post-2018 Am-
pere generation, and has been complemented by a customized
GPU-centric communication library, called NCCL, which leverages
hardware support. Yet, bandwidth over-provisioning comes at sig-
nificant hardware and development costs, reflected in the monetary
cost borne by end-users: there is an almost order-of-magnitude cost
difference between cloud-grade, overprovisioned multi-GPU servers
such as NVIDIA DGX systems [19] and commodity workstations,
built using consumer-grade GPUs (e.g. NVIDIA GeForce/RTX se-
ries). The latter have become extremely popular, due to lower costs
and comparable single-GPU performance [20, 29, 30]; however, as
we show, there are major performance gaps between the two in
terms of scalability.

The alternative algorithmic approach builds on the fact that sto-
chastic gradient descent (SGD), the standard algorithm for neural
network training, can converge with compressed gradients. Several
elegant lossy compression methods, such as gradient quantiza-
tion [5, 46, 53], sparsification [14, 49], and gradient decomposi-
tion [51, 52], allow the theoretical bandwidth cost to be reduced
by up to two orders of magnitude without accuracy loss. Despite
their promise, realising these gains in practice runs into a number
of significant challenges.

The first challenge is that of parametrization and integra-
tion: approaches such as gradient sparsification or decomposition
often require non-trivial parameter and implementation changes to
the training process, e.g. [36, 45, 51], to support compression. This
would require practitioners to revisit their entire training setup,
and tune additional hyper-parameters, in order to achieve com-
pression while recovering accuracy. A second challenge is that of

241

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3528535.3565248
https://doi.org/10.1145/3528535.3565248
https://doi.org/10.1145/3528535.3565248
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528535.3565248&domain=pdf&date_stamp=2022-11-08

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Markov et al.

efficient system support for communication-compression, as it
often requires significant changes to lower levels of the software
stack, such as supporting compressed or sparse data types. Despite
research in this direction [6, 18, 55], the question of general and effi-
cient system support for communication-compression is still open:
currently, only one such approach, PowerSGD decomposition [51],
is supported natively by one popular framework, PyTorch [42].
Contributions. In this paper, we introduce a communication frame-
work called CGX, which addresses these challenges, and allows for
parameter-free, seamless integration of communication-compression
into data-parallel DNN training workflows, with up to order-of-
magnitude speedups for data-parallel DNN training.

At the application level, CGX starts from an investigation of the
feasibility of parameter-free compression: specifically, we implement
and test all existing algorithmic approaches, and identify a variant of
quantization-based compression that converges to full accuracy for
many popular models, under fixed, universal settings of parameters,
without modifying to the original training recipes. At the system
level, we investigate how gradient compression can be seamlessly
and efficiently integrated with modern ML frameworks. Specifi-
cally, we revisit the entire communication stack of modern ML
frameworks with compression in mind, from a new point-to-point
communication mechanism which supports compressed types, to
compression-aware reductions, and finally a communication engine
which interfaces with ML frameworks, supporting compression at
the tensor/layer level.

The existence of a parameter-free compression technique which
recovers accuracy, combined with the ability of CGX to customize
the compression level per layer motivates a new layer-wise adaptive
compression problem. The idea is that we can to customize the way
model gradients are compressed in layer-wise fashion, so that the
overall compression error is close to a given accurate baseline, but
maximizing the bandwidth gains: for instance, one can apply more
aggressive compression to layers that are larger, but less “sensi-
tive” in terms of accuracy. While prior work has already considered
techniques which adapt the degree of compression during training,
e.g. [3, 37], this is the first instance of this problem to jointly con-
siders both error and compression constraints at the fine-grained
per-layer level. Our experimental results show that our layer-wise
adaptive compression can bring significant additional gains.

To justify our design choices, we contrast our design against the
first implementation of quantized collectives in NCCL, which we
call QNCCL, which we contribute as a separate artefact, showing
clear performance and usability improvements in favor of the CGX
design. In addition, CGX does not require significant user-code or
training pipeline changes, as we provide turn-key integrations with
popular ML frameworks such as Pytorch and Tensorflow.
Experimental Validation. From the practical perspective, our
work is motivated by the experimental data in Figure 1, show-
ing that bandwidth congestion is the key scalability bottleneck on
single-node, multi-GPU commodity servers, which have emerged
as a popular training approach [20, 29, 30]. The same phenomenon
occurs generally in multi-node data-parallel training settings, for a
wide range of current and emerging training workloads, from image
classification using classical convolutional neural networks (CNNs),
to Transformer-based models for both language modeling [10, 50]
and image classification [13, 41].

100 101 102 103

Compression ratio

100

200

300

400

500

600

T
im

e
p

er
st

ep
,

m
s

Step Time vs. Gradient Compression Ratio
8xRTX 3090 Machine

VGG16

Vision Transformer(ViT), base

TransformerXL, base

BERT

Figure 1. Compression vs. average step time for different models, when
using all GPUs on an 8x RTX-3090 machine (Table 2). Dotted lines denote
the throughput at perfect scalability for each model. Throughput nears ideal
as we decrease transmission size, suggesting that bandwidth is the main
bottleneck. See Section 2.1 for details.

We validate our system experimentally in both single-node and
multi-node settings, across all of the above standard training tasks.
We compare servers using commodity NVIDIA GPUs (RTX series)
against cloud-grade NVIDIA servers from the Volta and Ampere
architectures. (See Table 2 for details.) First, we find that, once
communication bottlenecks are eliminated from “commodity" ma-
chines using CGX, they can match or outperform cloud-grade server
with similar peak performance. Importantly, this can be done with
negligible accuracy loss.

For example, we find that, on a commodity 8x RTX 3090 server,
CGX can almost triple training throughput, reaching up to 90% of
the ideal scaling, matching or even outperforming a bandwidth-
overprovisioned (and more expensive) DGX-1 system. Our second
application is to multi-node training, where we show up to 10x
performance gains, enabled in part by our new solution to the
adaptive layer-wise compression problem, without accuracy loss
or additional parameters.

Our findings imply that hardware bandwidth overprovision-
ing may not be required for scalability in DNN training, and that
highly-customized, hyperparameter-heavy compression techniques
are not always necessary to remove bottlenecks. This should be
immediately useful to users aiming to scale such workloads on
commodity or multi-node hardware, but also more broadly for
hardware/software co-design for distributed deep learning.

2 Motivation and Prior Work
2.1 A Motivating Experiment
The standard computational unit for DNN training is the multi-
GPU node, usually in instances with 4–16 GPUs. End-users often
rely on consumer-grade GPUs for training, whereas traditionally
cloud services mainly employ cloud-grade GPUs, with some notable
exceptions, e.g. [20, 29, 30]. We begin by briefly examining the scal-
ability differences between cloud and commodity GPU servers. As

242

CGX: Adaptive System Support for Communication-Efficient Deep Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Table 1
Server-grade (first 2) vs. consumer-grade NVIDIA GPUs. Throughput obtained using the NVIDIA Deep Learning Examples benchmark [40]. TDP stands for

Thermal design power.

GPU type Arch. SM TensorCores GPU Direct GPU RAM, GB TDP ResNet50 Transformer-XL
V100 Volta 80 640 Yes 16 250 Watt 1226 imgs./s 37K tokens/s
A6000 Ampere 84 336 Yes 48 3000 Watt 566 imgs./s 39K tokens/s

RTX 3090 Ampere 82 328 No 24 350 Watt 850 imgs./s 39K tokens/s
RTX 2080 TI Turing 68 544 No 10 250 Watt 484 imgs./s 13K tokens/s

Table 2
Systems characteristics of workstations used in evaluation.

System GPUs Inter-GPU link Inter-GPU bandwidth GPU RAM RAM CPUs
DGX-1 8xV100 NVLink 100 GBps 128 GB 512 GB 64
A6000 8xA6000 NVLink 100 GBps 384 GB 1008 GB 128

RTX-3090 8xRTX3090 None (bus) 15 GBps 192 GB 512 GB 128
RTX-2080 8xRTX2080 TI None (bus) 15 GBps 96 GB 256 GB 72

we illustrate in Figures 5b and 5c, the maximum effective through-
put of a cloud-grade 8-GPU DGX-1 server is > 2× higher than
that of a comparable commodity 8xRTX-3090 GPU server, when
using the same state-of-the-art software configuration (specifically,
Horovod [47] on top of the NCCL communication library).

This gap is surprising, considering that the single-GPU perfor-
mance is similar (see Table 1). To examine the specific impact of
gradient transmission / bandwidth cost, we implemented a synthetic
benchmark that reduces bandwidth cost by artificially compressing
transmission. Specifically, assuming a buffer of size 𝑁 to be trans-
mitted, e.g. a layer’s gradient, and a target compression ratio 𝛾 ≥ 1,
we only transmit the first 𝑘 = 𝑁 /𝛾 elements. The results for the 8x
RTX-3090 machine, using all 8 GPUs, are shown in Figure 1, where
the compression ratio is varied on the X axis, and we examine its
impact on the time to complete an optimization step, shown on
the Y axis. The dotted line represents the time per step in the case
of ideal (linear) scaling of single-GPU times. We consider Trans-
former [10] and BERT-based models [12] for language modelling
tasks, as well as VGG-16 [48] and Vision Transformer (ViT) models
for classification on ImageNet.

We therefore observe that bandwidth cost appears to be the main
scalability bottleneck on this machine. Moreover, recent models
(Transformer-XL and ViT) benefit more from compression relative
to the classic ResNet50 model, which has fewer parameters. Second,
there are limits to how much compression is required for scalability,
which depend on the model characteristics. An order of magnitude
compression appears to be sufficient for significant timing improve-
ments, although Transformer-based architectures can still benefit
from compression of up to two orders of magnitude.
Discussion. The reason for this poor scalability is the lack of effi-
cient communication support. Specifically, GPU-to-GPU transmis-
sions on commodity hardware have significantly lower bandwidth,
and higher latency, relative to their cloud counterparts. Specifi-
cally, in software , the NVIDIA GPUDirect technology should allow
GPUs on the same machine to communicate directly, without the
need for extra memory copies. Commodity GPUs, such as the RTX
3090, do not support this technology. At the same time, the hard-
ware communication support for NVIDIA GPUs, i.e. NVLink and
NVSwitch components, is also not available or severely restricted
for commodity GPUs [1, 24].

2.2 Data-Parallel DNN Training
Distribution Strategies and Costs. Training a DNN essentially
minimizes a loss function, related to the error of the model on the
dataset, via a sequence of optimization steps, each acting on some
data samples. To preserve computational efficiency, it is common to
perform a batched version of this process, by which several samples
are processed in a single optimization step, and the sum of gradients
is applied.

Data-parallelism is arguably the standard way to scale DNN
training, and can be viewed as a variant of batch SGD in which
sample gradients are generated in parallel over compute nodes.
Specifically, the dataset is partitioned over nodes, each of which
maintains a copy of the model, and computes gradients over sam-
ples in parallel. Periodically, these gradients are aggregated (e.g.,
averaged) and the resulting update is applied to all local models.

Several techniques have been proposed to address the synchro-
nization and communication costs inherent to this lock-step av-
eraging procedure. Here, we focus on communication/bandwidth
cost, and assume that synchronization preserves the synchronous
ordering of gradient iterations, although our techniques are also
compatible with other scheduling strategies, e.g. [26, 27, 43, 56].
Batch Scaling. An orthogonal scaling approach is increasing the
batch size at each node. This requires careful hyper-parameter tun-
ing for accuracy preservation, e.g. [21, 57], although recipes for
large batch scaling are known for many popular models. We con-
sider scalability in both 1) the large-batch setting, where we adopt
the best-known hyperparameter recipes to preserve accuracy, and
2) the small-batch setting, corresponding to datasets or models for
which large-batch scaling parameters are unavailable or unknown.

2.3 Communication Compression Methods
The basic idea behind communication-compression methods is to
reduce the bandwidth overhead of the gradient exchange at each
step by performing lossy compression. Our presentation assumes
that a generic mechanism allowing for all-to-all communication
among the nodes is available. (We discuss our implementation
choices in Sections 3 and 4.) Roughly, existing schemes can be
classified as follows.
Gradient Quantization. This approach works by reducing the
bit-width of the transmitted updates [46]. One of the first com-
pression approaches [5] observed that stochastic quantization of
the gradient values is sufficient to guarantee convergence. Their

243

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Markov et al.

method, called QSGD, is a codebook compression method which
quantizes each component of the gradient via randomized rounding
to a uniformly distributed grid. Formally, for any non-zero vector ®𝑣 ,
given a codebook size 𝑠 and ®𝑣 ∈ R𝑑 , 𝑄𝑠 (𝑣𝑖) = ∥®𝑣 ∥2 ·𝑠𝑖𝑔𝑛(𝑣𝑖) ·𝑞(𝑣𝑖 , 𝑠).
The stochastic quantization function 𝑞(𝑣𝑖 , 𝑠) essentially maps the
component’s value 𝑣𝑖 to an integer quantization level, as follows.
Let 0 ≤ ℓ ≤ 𝑠 − 1 be an integer such that |𝑣𝑖 |/∥®𝑣 ∥ ∈ [ℓ/𝑠, (ℓ + 1)/𝑠].
That is, ℓ is the lower endpoint of the quantization interval corre-
sponding to the normalized value of 𝑣𝑖 . Then,

𝑞(𝑣𝑖 , 𝑠) =
{
ℓ/𝑠,with probability 1 − 𝑝 (|𝑣𝑖 |/∥®𝑣 ∥, 𝑠),
(ℓ + 1)/𝑠, otherwise

where 𝑝 (𝑎, 𝑠) = 𝑎𝑠 − ℓ for any 𝑎 ∈ [0, 1]. The trade-off is between
the higher compression due to using a lower codebook size 𝑠 , and
the increased variance of the gradient estimator, which in turn
affects convergence speed. This idea inspired a range of related
work [16, 35, 44] reducing the variance of the compression by
improved quantizers. We discuss these schemes further in Section 4.
Gradient Sparsification. These methods, e.g. [14, 28, 36, 49], cap-
italize on the intuition that many gradient values may be skipped
from transmission. The standard approach to sparsification is mag-
nitude thesholding, effectively selecting the top 𝐾 gradient compo-
nents for transmission, where 𝐾 is a hyper-parameter. Then, error
correction is applied to feed the thresholded gradient components
back into the next round’s gradient. Variants of this procedure can
achieve more than 100× gradient compression while still recovering
accuracy [36]. However, this comes at the price of model-specific
hyper-parameter tuning, which may be unreasonable in a deploy-
ment setting.

Renggli et al. [45] proposed efficient sparse collectives, and ob-
served that sparsification methods can be promising in cases where
there is high natural redundancy–such as fully-connected or embed-
ding layers–but may be a poor choice for general compression due
to the need for hyper-parametrization. Our investigation confirmed
their finding.
Gradient Decomposition. This approach treats the gradients as
multidimensional tensors, and decomposes the gradient matrix
𝐺 ∈ R𝑚×𝑛 into 2 rank-𝑟 matrices 𝑃 ∈ R𝑚×𝑟 and 𝑄 ∈ R𝑟×𝑛 , with
𝑟 much smaller than 𝑚 and 𝑛. ATOMO [52] uses singular value
decomposition (SVD) to find the matrices 𝑃 and𝑄 . However, in the
case of large models, the SVD of gradient matrices becomes too
compute-intensive to be used during training. PowerSGD [51] uses
a generalized power iteration algorithm to calculate the matrices
𝑃 and 𝑄 , and is the fastest currently-known factorization method.
To recover accuracy, it applies a combination of error correction
techniques. Their results show that these methods can be highly
useful in the case of CNNs, yielding high compression ratios (up
to 100×). However, in our experience, recovering accuracy in e.g.
Transformers training requires careful tuning, and higher rank
values, resulting in lower performance.
Adapting Compression during Training. The idea of adapting
the degree of compression during different stages of DNN training
has been considered by [7, 8, 23, 37]. However, we emphasize the
fact that all these references in practice globally adapt the amount of
gradient compression for the entire model to preserve end accuracy,
whereas we investigate mechanisms which adapt compression at
the per-layer level. Moreover, to achieve high compression, some
existing methods require hyperparameter tuning [8]. A work[3]

that supports per-layer compression parameters has a very lim-
ited choice of compression parameters (namely picks out of two
parameters), requires additional hyperparameter tuning and fo-
cuses on specific architectures. By contrast, we adapt compression
parameters automatically both across layers, and across training
iterations.
Efficient Software Support. There has already been significant
work on providing system support for compression. Two main
challenges are: 1) the introduction of additional hyper-parameters
in the training process, and 2) the fact that, since most compres-
sion methods are not associative, they are not directly supported by
standard collective implementations and require algorithm-specific
re-implementations. Grubic et al. [22] showed that CNNs can with-
stand 8-bit gradient compression, and provided a simple MPI-based
implementation of quantization, while Dutta et al. [15] examined
the implementation gap, showing that frameworks should support
both global and per-layer compression. Renggli et al. [45] and Fei et
al. [17] provided efficient support for sparse reductions, while the
GRACE framework [55], Bagua [18] and HiPress [6] frameworks
provided efficient implementations of communication-compression
methods. We compare against these frameworks in Section 6.

We differ from this prior work in two major directions. At the
application level, we focus on seamless, parameter-free integration
with existing data-parallel training pipelines: thus, we investigate
compression techniques which allow accuracy recovery without
additional hyper-parameter tuning. This is not the case with prior
frameworks, which leave the choice of compression parameters to
the user. Second, at the system level, we seek to maximize speedup
by rewriting components of the communication stack to support
compression, provide an adaptive layer-wise compression solution
which maximizes speedup.

Recent work by [4] investigated the practical potential of gra-
dient compression methods in cloud-grade settings. They provide
analytical and empirical evidence suggesting that gradient compres-
sion methods can only provide marginal speedups in distributed
data-parallel training of DNNs in such bandwidth-overprovisioned
settings.

However, the generality of their results is restricted by the follow-
ing factors: 1) they only consider a limited subset of compression
methods and possible implementations: for instance, their com-
pressed implementations strictly follow the NCCL API, which, as
we illustrate via our QNCCL implementaiton, means that the com-
pression methods were used inefficiently and with accuracy loss;
2) they focus on cloud-grade bandwidth-overprovisioned systems,
and therefore their findings do not apply to the popular setting
of commodity servers. These two factors, as well as additional
implementation differences, explain the difference between their
conclusions and the ones from this work.

3 Goals and Challenges
The results in Section 2.1 suggest that bandwidth can be a key
bottleneck when attempting to scale DNN training on commodity
GPUs, while the discussion in Section 2.3 outlines non-trivial trade-
offs when implementing these techniques for general models. We
therefore outline our key goals:

1. Accuracy Recovery: Similar to MLPerf [39], we set our
accuracy loss threshold at < 1% relative to the main metric of
the full-precision baseline (e.g. Top-1 classification accuracy),

244

CGX: Adaptive System Support for Communication-Efficient Deep Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Table 3
Compression approaches. Stateful here means that approach requires maintaining of a state of error compensating techniques.

Compression rate
with recovery

Tunable
Parameters

Properties Computational
Overhead

Quantization ∼ 8x Bits, bucket size Non-associative, stateless ≤ 3%
Sparsification

(TopK)
∼ 100x Sparsity,

momentum
Non-associative, stateful, not
overlapping with compute

10%

Decomposition
(PowerSGD)

∼ 100x Rank, warm-up Associative, stateful, incompatible with
mixed precision

20%

although in most of the tasks we present the accuracy loss
is practically negligible.

2. Hyperparameter-Freedom: Second, we wish to enable
scalable data-parallel DNN training in the absence of any
model or task information, recovering accuracy under stan-
dard (uncompressed) hyper-parameters.

3. Eliminating Bandwidth Bottlenecks: Third, we aim to
mitigate or even completely eliminate bandwidth constraints.
Since not all targetmodels are equally communication-bottlenecked,
this allows us some flexibility with respect to howmuch com-
pression to apply depending on the model and application.

4. Simple Interface: Finally, the integration with the under-
lying training framework should be seamless.

State of the art.We executed implementations of the compression
methods described in Section 2.3 on a range of modern tasks and
models. Our findings are summarized in Table 3, and discussed in
detail below.

We found that no existing approach fully satisfies all the above
requirements. For instance, quantization-based methods are known
recover accuracy on CNNs when using 8-bit compression [22],
meeting Goals 1 and 2. However, this amount of compression is
not sufficient to remove the bandwidth bottlenecks for modern
Transformer-class models (Goal 3); moreover, the parameters of [22]
do not allow full accuracy recovery on Transformers.

Second, examining gradient sparsification methods, we notice
that they can ensure high compression (Goal 3); however, they
require complex hyperparameter tuning for accuracy recovery in
the high-compression regime [36], breaking either Goal 1 or Goal
2. Conversely, as also noted by [45], these methods can recover
accuracy under medium density (e.g. 20%), but in that case their
performance is similar to quantization approaches. This family of
methods has the additional cost of having to maintain state (the er-
ror buffer) and being less amenable to computation-communication
overlap, since the selection operation is applied over the entire
gradient.

Finally, decomposition methods have been shown to yield com-
pression ratios of up to 100× in the case of CNNs, attaining Goal
3. Moreover, with careful tuning of hyper-parameters, PowerSGD is
able to recover accuracy for CNNs under generic rank-decomposition
values. In addition, this method is associative, lending itself to seam-
less implementation via MPI or NCCL (Goal 4). Unfortunately, how-
ever, we found that this method can require high rank values for
stable training, especially on Transformers, where there is almost
no speedup, and that it is not compatible with reduced-precision
(FP16) training, which is used by virtually all frameworks.

4 CGX System Design
ML Frameworks under the Hood. A typical DNN training frame-
work has three parts, as described in Figure 2:

User code PyTorch TensorFlow

Framework Interface

Communication
engine Original CGX

MPI NCCL CGX_SHM

MxNet

PyTorch TensorFlow MxNet

Background thread

Communication
primitives

TCP P2P SHMTransport

DDP Framework

etc.

QNCCL

Figure 2.Abstract architecture of a Distributed Data Parallel (DDP)
framework. CGX components are in blue, and arrows stand for
procedure calls. Dashed arrows represent hardware interactions,
e.g. P2P transport is supported via GPU NVLinks.

1. Framework interface (in Python) with high-level API is
called by User code. It may also include a frontend that
unifies the input from the learning framework.

2. Background thread collects inputs, groups them into blocks
based on query type and input properties, schedules the re-
duction for each block.

3. Communication engine performing the query (Allreduce,
Broadcast, Allgather). At this stage, the framework typi-
cally calls an existing communication library, such as NCCL
(QNCCL), Gloo, or an MPI implementation.

A key issue when implementing most compression methods
such as quantization or sparsification is that their operations are
non-associative, and so the aggregation function (sum) must be
performed at the lowest level in the above diagram. This means
that we cannot integrate the compression into higher levels without
a bespoke implementation, which in turn may lead to performance
and implementation costs.

4.1 The CGX Communication Engine
To efficiently support compression, we implemented our own com-
munication engine (blue component on Figure 2), with primitives
which support non-associative compression operators. Broadly,
there are two approaches to do this. The first is a native one, by

245

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Markov et al.

which one can implement compression-aware Allreduce using com-
munication libraries. Alternatively, one can modify or extend exist-
ing communication libraries, such as NCCL, to support compression
operators.

The native approach requires deeper integration, but has the
advantage that compression is performed “closer" to training, which
means that the compression engine has information about the
model layers, and their gradients and thus has a richer, more flexible
API. The disadvantage is that it has to explicitly interface with the
training framework, and users may have to adjust their training
pipeline.

The second low-level approach is to directly perform compres-
sion and de-compression at the primitive/transport level, indepen-
dently of the user’s code and training pipeline. In this case, the
framework can only operate with the raw data buffers provided by
the upper layers. This loses information about the data it operates
with, e.g., layer names, which could be useful for compression oper-
ators, but is easier to interface with, and may have lower overheads.

4.1.1 Framework Integration. To investigate this non-trivial
dichotomy, we implemented both variants. Specifically, our main
framework, called CGX, integrates natively with the user’s code,
and can interface both via Horovod [47], a popular distribution
wrapper that works with all major ML frameworks, but also sep-
arately via framework-specific extensions, such as PyTorch Dis-
tributed Data Parallel (DDP). Separately, as an instance of the “low-
level” approach, we re-implemented the NCCL communication
library to support quantized reduction operations. We call this
separate implementation QNCCL, and contrast it to our main ap-
proach.
The Native CGX Framework. The main version of CGX uses the
Horovod wrapper [47] to interface with popular ML frameworks.
Specifically, we implemented a communication engine with Allre-
duce methods supporting compression operators. Next, we added
layer filters that split model gradients into logical subsets, which the
framework may handle differently: some accuracy-critical subsets
are communicated in full precision, while other subsets are com-
pressed and reduced in lower-precision. Empirically, it is known
that layers like batch/layer normalization and bias layers are sen-
sitive to gradient compression, while being small. Therefore, we
communicate them uncompressed. As a bonus, this avoids calling
compression operators for multiple small inputs. At the filtering
level, the framework also performs packing or splitting of levels
into the units of communications, so called fused buffers. Typical
size is around 64MB. The communication engine then performs
reduction with these units not the layers. But it keeps the informa-
tion of offsets of the layers within the fused buffers because this
information will be used for layer-wise compression.

Further, CGX performs compression per-layer, and not as a blob
of concatenated tensors. This provides the flexibility of exploring
heterogeneous compression parameters and avoids mixing gradient
values from different layers, which may have different value dis-
tributions, leading to large quantization error. We found that such
filters can be applied “at line rate” without loss of performance, as
most of the computation can be overlapped with the transmission
of other layers. CGX’s API allows users to choose the compression
parameters for specific layers or filter out the group of layers.
Torch DDP Integration. Our compression/communication engine
is portable: to illustrate this, we also integrate it separately with

the Torch DDP pipeline [42]. In this case, CGX acts as a Torch
extension that implements an additional Torch DDP backend, as a
supplement to the built-in NCCL, MPI and Gloo backends. Thus,
users only need to import the extension and change the backend at
initialization.

We integrated our functionality into the communication engine
of the Data Parallel framework. At this level, we no longer have
access to the buffer structure, therefore we can not explicitly fil-
ter layers. Nevertheless, the user can provide the layout of the
model layers (e.g. gradient sizes and shapes). Using this informa-
tion, we can obtain the offsets of the layers in each buffer provided
by torch.distributed.

4.1.2 Choosing a Reduction Scheme. The “hottest” operation
in distributed data-parallel training is Allreduce, corresponding to
the logical gradient averaging. To support non-associative com-
pression operators, we need to choose the reduction algorithm
together with the compression operator, to maximize performance
and minimize the compression error due to iterative compression-
decompression. We considered the following reduction schemes.
Scatter-Reduce-Allgather (SRA) works in two rounds: a process
first divides its vector of dimension 𝑑 into 𝑁 subarray “chunks;”
each node receives its chunk of the initial vector from all other
nodes and aggregates it (Scatter-Reduce). Second, it broadcasts the
aggregated chunk (Allgather). The bandwidth cost is 𝑂 (𝑑 (𝑁 − 1)),
the latency term is 2𝛼 , corresponding to the two rounds. Ring-
Allreduce is the bandwidth-optimal algorithm, implemented in
most libraries (e.g. NCCL, Gloo). Similar to SRA, it divides the
initial vector into chunks, and communication is done in a ring-
shaped topology. In the first phase, each node sends a chunk to its
“right” neighbor and receives a chunk from its left neighbor. It then
sums the received chunk with its local result and sends the result
forward, repeating𝑁−1 times. In the second phase, nodes broadcast
(Allgather) the resulting chunks on the ring. The bandwidth cost is
𝑂 (𝑑 (𝑁 − 1)/𝑁), with latency 2𝛼 (𝑁 − 1), assuming communication
can not be itself parallelized. Tree-Allreduce can be seen as a
hierarchical parameter-server. Communication is done in 2 log𝑁
rounds and two phases. The nodes build a tree-like topology, and
send their vectors up to the root, summing them along the path,
and then propagate back the result. Communication complexity is
𝑂 (2𝑑 × log(𝑁)), while latency is 2𝛼 log𝑁 .
Discussion. We examined the practicality of these reductions, and
found Scatter-Reduce-Allgather (SRA) to show the best perfor-
mance. It also has the key algorithmic advantage of lower compres-
sion error, due to fewer compression/decompression steps. Thus,
we mainly employed this algorithm inside CGX. Table 4 illustrates
CGX throughput under different reduction schemes, for different
tasks, on an 8-GPU server. (See Section 6 for the full setup.)

Table 4
Throughput of different reduction schemes (items per second).

ResNet-50 Transformer-XL ViT
SRA 2900 260k 1918
Ring 2830 236k 1883
Tree 2770 202k 1756

4.1.3 Default Compression Approach. Our framework imple-
ments several compression approaches; yet, based on the discussion
in Section 2.3, we use gradient quantization as our main method.

246

CGX: Adaptive System Support for Communication-Efficient Deep Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

ResNet50 Transformer-XL Vision Transformer
0

50

100

150

200

250

300

350

S
te

p
ti

m
e,

m
s

Backends

MPI

NCCL

SHM

Figure 3.Training step times for different communication backends
in CGX Communication engine on a single node, 8 RTX3090 GPUs.
Lower is better.

MPI NCCL SHM
Backends

0.00

0.01

0.02

0.03

0.04

0.05

0.06

L
at

en
cy

,
m

s

(a) Communication latency.

16M 33M 67M 134M
Number of parameters

0

10

20

30

40

50

60

70

80

T
im

e,
m

s

MPI

NCCL

SHM

(b) Communication time.

Figure 4. Comparison of point-to-point communication using dif-
ferent backends.

The rationale behind our choice is the following. First, as suggested
by Figure 1, quantization compression by 8-10x should provide
sufficient bandwidth reduction to overcome most of the communi-
cation bottleneck. Moreover, it can do so in a generic, parameter-free
way: an independent contribution of our work is that we identify
general parameter values providing 8-10x compression without accu-
racy loss on all the model classes and tasks we tried. We investigate
additional performance improvements customized per-layer com-
pression, which can provide an additional performance boost.

4.2 Communication Backend
The key question at the lower level of the stack is how to imple-
ment the point-to-point communication primitives. Here, existing
options are GPU-aware MPI implementations, NCCL, or Facebook
Gloo. (For instance, GRACE [55] supports all three options.) To
maximize performance, instead of relying on existing implemen-
tation, we developed a set of new point-to-point communication
primitives, that are based on data transfers through UNIX shared
memory. We call this communication backend SHM.

SHM works by registering a UNIX shared memory buffer for
each pair of GPUs within a node and mapping it to GPU memory.
On send, we move the input buffer to the shared segment and syn-
chronize with the recipient using CUDA IPC primitives. At SHM
communicator initialization, we allocate an 2 auxiliary buffers for
each one directional point-to-point communication. The size of the

buffer is the size of the fused buffer, i.e. 64 MB. It means that for 8
GPU communication (e.g. for SRA all All-to-All communication)
we allocate 128 ∗ 7 = 896𝑀𝐵 on each GPU. SHM is only supported
for a single server, while CGX can use both MPI- and NCCL-based
backends in multi-server setups. Moreover, we support heteroge-
neous communication where the intra node communication uses
SHM, MPI, or NCCL as the backend, or performs NCCL-allreduce
without compression, while the inter-node communication uses
MPI or NCCL. The difference in performance is illustrated in Fig-
ures 3 and 4. The speedup is justified by the lower synchronization
between compression and communication, and the memory trans-
fers via the GPU Communication Engine. In Figure 4a we show
timings for point-to-point communication of small buffers, whereas
the Figure 4b shows the communication time dependency on large
buffers sizes. The figures demonstrate that SHM significantly out-
performs other backends. Thus, unless otherwise stated, we use
SHM for intra-node communication in all our experiments.

4.3 Implementation Details
Efficient Quantization. The quantization algorithm sketched in
Section 2.3 has the following downside: when applied to the entire
gradient vector it leads to convergence degradation, due to scaling
issues. A common way to address this is to split the vector into
subarrays, called buckets, and apply compression independently
to each bucket [5]. This approach increases the compressed size
of the vector because we have to keep scaling meta-information
for each bucket and slows downs the compression, but helps to
recover full accuracy. The bucket size has an impact on both per-
formance and accuracy recovery: larger buckets lead to faster and
higher compression, but higher per-element error. Therefore, one
has to pick the bucket size appropriate for the chosen bits-width
empirically. We found out that 4 bits and 128 bucket size always re-
covers full accuracy, has reasonable speedup, and can be efficiently
implemented, so we use this as a compression baseline in all our
experiments.

To achieve low compression overheads, we applied the following
optimizations: we use an efficient parallel bucket norm computa-
tion algorithm, and, for elementwise compression/decompression,
we perform cache-friendly vectorized memory load/stores. Quan-
tization overhead amounts to 1-3% of computational cost in our
benchmarks.
Improved Scheduling. CGX also aims to improve the latency term.
For this, we perform fine-grained scheduling of gradient synchro-
nization, which is known to lead to improved performance for
Parameter Servers [27]. The scheduling of the communication is
task-based, where each task are layer gradients that we want to syn-
chronise every iteration. In the background thread we collect the
tasks until the total size of collected gradients reaches user-defined
size 𝐵 or user-defined cycle time 𝐶 expires. Then the concatenated
group of gradients is synchronised. The constants 𝐵 and 𝐶 are au-
totuned; we leveraged parts of this implementation from Horovod
and torch.distributed. As part of scheduling optimization, CGX
supports user-defined filtering of layers and cross-barrier train-
ing. Filtering of small layer modules such as biases or batch norm
not only improves convergence, but positively affects performance.
Such filtering removes the need of extra compression kernels calls
without notable increase of communication costs. Cross-barrier

247

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Markov et al.

optimization does not provide significant performance in a single
node setup, confirming the observations in [27].

4.4 The QNCCL Library
The role of the QNNCL implementation is to contrast our design
choices relative to a direct re-implementation of communication
compression in the popular NCCL library. To build this low-level
variant, we started from vanilla NCCL and replaced Allreduce with
implementations that compress every piece of data before its trans-
fer. Basically, in DDP stack(Figure. 2) we replace NCCL with our
version that supports compression. We leverage the NCCL com-
munication optimizations, to avoid costs for additional GPU calls.
However, in this case, we lack information about the internal struc-
ture of the buffer, and have to apply compression parameters uni-
formly over the entire model. In this case, we also have limitations
in terms of the GPU resources imposed by NCCL itself, which lead
to additional compression overheads. We examine the performance
trade-offs of this approach in the experimental section.

5 Layer-wise Adaptive Quantization
One key optimization supported by CGX is varying compression
parameters at the per-layer level. This is especially well-suited to
models such as Transformers which have heterogeneous layer sizes,
e.g. due to large embeddings. Synchronization of such layers can be
quite expensive, and, since they come early in the model, cannot be
overlapped with computation. Yet, these massive layers can support
highly-compressed communication. Thus, we investigate automatic
mechanisms to pick per-layer compression levels.

We focus on the trade-off between two parameters for each layer:
the magnitude of the compression error and compressed size of the
layer. Our adaptive algorithm tries to balance these constraints
in order to maximize speedup while recovering convergence. We
periodically collect gradient statistics and then re-assign bit-widths
and bucket-size to each layer. Specifically, we want to minimize the
compressed size of the model gradients, while minimizing the ℓ2-
norm of the compression error, which is linked to convergence [28].
Problem Definition.We formalize this problem as identifying per-
layer bit-widths 𝑏1, 𝑏2, . . . , 𝑏𝐿 for the 𝐿 layers minimizing the band-
width objective

∑𝐿
ℓ=1 𝑏ℓ ·𝑠𝑖𝑧𝑒 (𝐿ℓ) across all the 𝑏𝑖s, subject to the fact

that compression error cannot not exceed a maximum threshold
𝛼 ·𝐸4. Here, 𝛼 > 0 is a fixed parameter, and 𝐸4 is the error when we
compress all layers to 4 bits, for which we know that full recovery
occurs.

We emphasize that this formulation is different from the (global)
adaptive compression problems considered by prior work [3, 7, 8,
23, 37], as they usually consider the problem of adapting the global
degree of compression to the various stages of the training process,
as opposed to optimization of the fine-grained layer-wise bit-width
adaptation we consider.

This constrained optimization problem can be approached via
standard solvers, and in fact our first approach has been to use
Bayesian optimization. However, we found that this requires instance-
specific tuning, and adds hyper-parameters. We therefore investi-
gate problem-specific heuristics.

A straightforward such approach is to simply sort layers by the
ratio of gradient magnitude over the layer size. We then assign the
lowest bit-width to the first layers in this order, and the highest

Algorithm 1 KMEANS-based adaptive compression
Input: Model Layers 𝐿𝑖 , accumulated gradients 𝐺𝑖 , possible bit-widths

𝐵 = {𝛽1, 𝛽2, . . . , 𝛽𝑘 }
Output: Bit-width assignments 𝑏ℓ ∈ 𝐵 for each layer ℓ

Initialisation : Compute 2D-representation for each layer ℓ by computing
points (𝑠𝑖𝑧𝑒 (𝐿ℓ) , 𝑛𝑜𝑟𝑚 (𝐺ℓ)).

1: Obtain (centroids, clusters) = kmeans over data into 𝑘 clusters
2: Sort centroids based on 𝑛𝑜𝑟𝑚 (𝐶𝑖) − 𝑠𝑖𝑧𝑒 (𝐶𝑖) and assign them
3: Assign points (layers) corresponding to each centroid to the correspond-

ing bit width 𝑏ℓ .

to the last layers, interpolating linearly in the middle. Experimen-
tally, this approach recovers accuracy and improves over static
assignment, but the performance gains are minor.

This observation inspires a clustering-based approach, by which
we collect layers with similar sensitivity to gradient compression
into groups, and assign bit-widths correspondingly. We use a 2D-
clustering algorithm [38], where the dimensions are the size of the
layer, and the ℓ2-norm of the top values of the accumulated gradient.
We perform clustering to obtain “sensitivity groups,” each with its
own centroid, and then sort the centroids by their gradient norms.
Finally, we linearly map bit-widths and bucket sizes to the layers.
The exact procedure is described in Algorithm 1. We investigate its
practical performance in Section 6.3.

6 Experimental Validation
6.1 Experimental Setting
Infrastructure.Our evaluation uses commodityworkstations based
on RTX2080 and RTX3090 consumer-grade GPUs, and a cloud-
grade EC2 p3.16xlargemachine, with 8 V100 GPUs, equivalent to
a DGX-1 server. Please see Table 2 for complete system characteris-
tics. In brief, the 8 GPUs are split into two groups, each assigned to a
NUMA node, which are bridged via QPI. Bandwidth measurements
via [32] show that inter-GPU bandwidth varies from 13 to 16 GBps
depending on location. At the same time, we have 1GBps Allreduce
bandwidth for reasonable buffer sizes. Results for RTX2080 are
similar, with 1.5GBps Allreduce bandwidth.

The V100/DGX-1machine forms a so-called Backbone Ring inside
a Hypercube Mesh [31], in which GPUs are connected via NVLINK.
The DGX-1 has GPU-to-GPU bandwidth of up to 100 GBps, leading
to the same Allreduce bandwidth our workloads. Performance on
our setup is identical to a branded DGX-1 measured via NVIDIA’s
benchmarks [40].
Environment and Tasks. Most experiments were run using the
PyTorch version of the NVIDIA Training Examples benchmark [40].
For state-of-the-art model implementations we used the Pytorch
Image Models [54] and the Huggingface Transformers reposito-
ries [25]. For the experiments on V100 machine we used the offi-
cial NGC PyTorch 20.06-py3 Docker image. We used CUDA 11.1.1,
NCCL 2.8.4, and cudnn/8.0.5. We examine three different DNN
learning tasks: 1) image classification on ImageNet [11] ; 2) lan-
guage modeling on WikiText-103; 3) question-answering on the
SQUAD dataset.
Baselines.We use the non-compressed original training recipes as
a baseline. We do not modify any of the training hyper-parameters.
In distributed training, we use either Horovod-NCCL or PyTorch-
DDP with NCCL backend. In all our experiments, NCCL showed

248

CGX: Adaptive System Support for Communication-Efficient Deep Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Table 5
Validation results for training with the baseline and CGX optimizations, respectively. ResNet50, VGG and ViT numbers are Top-1% accuracies, Transformer-XL

and GPT-2 show perplexity, while BERT shows F1-score.

ResNet50 VGG16 ViT-base Transformer-XL-base GPT-2 BERT
Baseline 75.8 ± 0.2 69.1 ± 0.1 79.2 22.81 ± 0.1 14.1 ± 0.1 93.12 ± 0.05
CGX 75.9 ± 0.2 68.9 ± 0.1 78.6 22.9 ± 0.1 13.9 ± 0.1 93.06 ± 0.05

Table 6
Training throughput with CGX, PowerSGD, and GRACE on single machine
with 8 RTX3090 GPUs. (Transformer-XL/PowerSGD did not converge, so

we only provide throughput numbers.)

ResNet50 Transformer-XL-base BERT
Baseline 1900 170k 17.5k
CGX 2900 260k 38.7k

PowerSGD 2600 220k* 38.3k
Grace 1000 30k 14.3k

better performance than OpenMPI or Gloo, so we use it as the
default backend. For a fair comparison, we use the CGX extension
depending on the baseline framework: for Horovod-NCCL, we use
our Horovod extension, and for PyTorch-DDP we apply our Torch
distributed backend extension. We also compare our results against
ideal linear scalability on the same machine, calculated by train-
ing speed on a single device multiplied by the number of devices.
We use step time and throughput (items/sec) as the performance
metrics. For all performance experiments, we validated that the
hyper-parameters used are sufficient to recover training accuracy,
across 3 runs with different seeds. All the reported speed numbers
are averaged over 300 training iterations after a warm-up of 10
iterations. Unless specifically stated, we do not employ the adaptive
compression algorithm.

6.2 Experimental results
6.2.1 Accuracy Recovery. We first examine the model accura-
cies using standard hyper-parameters in end-to-end training exper-
iments. The gradient bit-width used for these experiments is 4 bits.
The bucket size was 1024 for CNNs, and 128 for Transformer mod-
els, chosen empirically. As stated, we reduce small layers (biases,
batch and layer normalization layers) in full precision. The results
of training on the RTX3090 machine with 8 GPUs are presented in
the Table 5, with the corresponding accuracy parameters. All CGX
accuracy results are within the standard 1% error tolerance [39]; in
most cases, accuracy is within seed random variability.

Following the original recipes, ResNet50, VGG16, and the Vision
Transformer (base model) were trained on ImageNet with total
batch sizes 256, 256, 576 respectively. ViT was trained in mixed
precision level 1 (activations at FP16, weights, and gradients in full
precision). The Transformer-XL (base model) experiment was run
onWikiText-103 dataset with batch size 256 and second level mixed
precision (model, activations, and gradients cast FP16). The GPT-
2 model was trained on WikiText-2, batch size 24, level 2 mixed
precision. For question-answering we used BERT model on the
SQUAD-v1 dataset with batch size 3 per GPU and FP32 training.

Unless otherwise stated, we focus on following model/task com-
binations: Transformer-XL on WikiText-103, ResNet50 on Ima-
geNet, and ViT on ImageNet. The parameters are identical to the
ones provided above. All experiments were run on 8 GPUs.
6.2.2 Comparison with other algorithmic approaches.
PowerSGD Compression. We follow the implementation of [51],

and set the rank to 4 for CNNs and use rank 8 for Transformers,
implying up to 100x compression. PowerSGD can not be used in
conjunction with FP16 training, as it can lead to divergence in our
experiments, so we compare at FP32. But with full-precision gradi-
ents training PowerSGD can not achieve baseline accuracy at Trans-
formers pre-training (we tried ranks up to 32). As Table 6 shows
CGX has superior performance on single node over PowerSGD
in spite of lower compression. This is because 1) higher compres-
sion shows diminishing returns, 2) CGX has lower compression
overhead (Table 3), and 3) CGX implements faster reductions.
Sparsification.We implemented the TopK [14] algorithm as part
of CGX framework. Usage of the sparcification compression there
faces following issues. In order to converge under standard paramters,
sparcification must be applied upon entire model, not layer-wise
which is impossible due to specifics of the communication frame-
works (torch.distributed, Horovod). In our experiments we did
not manage tomake topKwith error feedback converge with similar
to QSGD compression rate. Moreover, topK with higher compres-
sion rates did not show any speedup in comparison to QSGD due
to compression saturation on our workstation (see Figure 1) and
higher topK overhead (see Table 3, we used [37] topK mechanism).
6.2.3 Comparison with other systems.
GRACE Comparison. We adapted our benchmarks to also com-
pare to GRACE [55], which also implements quantization and spar-
sity compression techniques. We used the same uniform 4-bit com-
pression variant for frameworks, as this recovers accuracy. We used
NCCL as the communication backend for GRACE, as it provided
the best performance in our setting. We found (see Table 6) that
CGX outperforms GRACE by more than 3x on average. Our profil-
ing suggests that this occurs because GRACE uses a less effective
reduction scheme (NCCL-Allgather vs. optimized Allreduce), less
efficient compression (e.g., no bucketing) and transmission (even
with 4 bits compression, GRACE communicates in INT8). We also
tried GRACE with very high-sparsity TopK compression (0.001),
and performance did not improve significantly. This suggests that
GRACE’s implementation has additional bottlenecks in terms of
communication latency.
NCCL and QNCCL Comparison. As shown in Figure 1, NCCL
has poor scaling on commodity machines, especially from 4 to
8 GPUs, where communication cost is highest. CGX can give >
2x speedup relative to NCCL, reaching 80-90% of linear scaling.
This enables the consumer-grade RTX3090 GPU to match or even
surpass the throughput of a DGX-1 server. We found that QNCCL
partly alleviates the scaling problems of NCCL, and only improves
throughput by a limited margin, as it does not benefit from the
bespoke communication backend integrated in CGX. An orthogonal
issue for QNCCL is the fact that it has higher accuracy degradation:
since compression cannot be performed layer-wise (as QNNCL
does not have layer information), it cannot perform layer-wise
compression. We have been able to recover accuracy within 1%

249

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Markov et al.

1 2 4 8
Num GPUs

0

500

1000

1500

2000

2500

3000

Im
ag

es
/s

ec

ResNet50, 25M parameters

RTX-3090

DGX-1

RTX-2080

CGX-3090

QNCCL-3090

CGX-2080

(a) ResNet50, ImageNet

1 2 4 8
Num GPUs

0

50000

100000

150000

200000

250000

300000

T
ok

en
s/

se
c

TXL, 192M parameters

RTX-3090

DGX-1

A6000

CGX-3090

CGX-A6000

(b) Transformer-XL, WikiText103

1 2 4 8
Num GPUs

0

10000

20000

30000

40000

50000

60000

T
ok

en
s/

se
c

BERT, 335M parameters

RTX-3090

DGX-1

A6000

CGX-3090

QNCCL-3090

CGX-A6000

(c) BERT, SQUAD

Figure 5. Throughput for ResNet50/ImageNet, Transformer-XL (TXL) on WikiText, and BERT on SQUAD. Higher is better. Hatched bars represent ideal
scaling. CGX leads to self-speedups of > 2×, and scalability of 80% to 90%. Hatched bars represent ideal scaling.

1 2 4 8
Num Nodes

0

500

1000

1500

2000

2500

3000

Im
ag

es
/s

ec

ResNet50

Bagua

CGX

(a) ResNet50

1 2 4 8
Num Nodes

0

200

400

600

800

1000

1200

1400

Im
ag

es
/s

ec

VGG19

Bagua

CGX

(b) VGG19

Figure 6. Scaling throughput in multi-node environment for image
classification tasks. Bagua vs CGX.

with QNCCL at 4bit compression by reducing bucket size to 128 for
all models, but this comes with a further performance reduction.
BaguaandHiPress Comparison.Bagua [18] andHiPress-CaSync [6]
are distributed training frameworks, which also support some
generic forms of gradient quantization. In multinode experiments
on 4x EC2 p3.8xlarge instances with 4 V100 GPUs each, we ob-
served that Bagua and HiPress have similar performance to CGX
on the smaller ResNet50 model, and that they are up to 10% slower
on the larger VGG19 model. This is since all frameworks use the
same NCCL backend for inter-node communication, but CGX uses
a faster pattern (SRA vs Ring or Tree for NCCL) than HiPress and
has better compression rate than Bagua (which only supports 8 bit
quantization). Moreover, HiPress only supports 2 bit quantization,
e.g. [49, 53]), which does not converge under standard parameters
for Transformed-based models.

HiPress unfortunately does not support the newer commodity
RTX-3090 GPUs, so we could only compare with Bagua on the Gen-
esis Cloud 8xRTX3090 instance. The results of the comparison are
presented in Figure 6, showing that CGX provides clearly superior
performance, especially for the VGG19 model.

6.2.4 ComparisonwithHardwareBandwidthOverprovision-
ing. We now turn to Figure 5 where we first observe that, although
in terms of single-GPU performance the RTX3090 is comparable to
the V100/DGX-1, it has poor multi-GPU scaling for large models
when using the standard NCCL setup (< 50% of linear scaling). The
older 2080 GPUs have lower throughput both due to both lower
memory, limiting maximum batch size, as well as lower computa-
tional power (Fig. 5a). Thus, we mainly focus on 3090 GPUs.

0 1 2 3 4
Time, s ×107

20

40

60

80

100

120

140

160

180

P
er

pl
ex

it
y

kmeans

bayes

linear

static

Figure 7. Transformer-XL training with adaptive schemes.

If we compare the maximum achievable performance (ideal scal-
ing), CGX achieves similar results to the bandwidth overprovision-
ing approach, on both the DGX and the A6000 machines. In other
words, CGX allows us to get bandwidth-overprovisioning perfor-
mance via a “middleware” approach, achieving our stated goals.
The remaining percentage gaps from perfectly linear scaling are
because of 1) latency costs, 2) inefficiencies in our implementation,
and 3) remaining communication costs, especially in early layers,
which cannot be overlapped with computation. To measure this,
we artificially removed the bandwidth bottleneck, by sending only
a small number of elements per layer. The results in Table 7 show
that CGX is close to ideal bandwidth reduction.

Table 7
Ideal performance (% of linear scaling) achievable via bandwidth-

overprovisioning for different workloads, relative to CGX.

ResNet50 VGG16 TXL BERT ViT
Ideal Perf. 92 % 91 % 95 % 88 % 95 %
CGX Perf. 90% 84 % 87 % 75 % 93 %

6.3 Layer-wise Adaptive Compression
So far, we have provided results for our version of 4bit quantization,
which always recovers accuracy. We now examine additional per-
formance savings due to adaptive compression. Across all models,
the automated procedure in Section 4.1.1 identifies large layers with
low-performance sensitivity (e.g. fully-connected or embedding

250

CGX: Adaptive System Support for Communication-Efficient Deep Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

5 10 15 20 25 30 35 40

Num steps, x1000

1.5

2.0

2.5

3.0

3.5

4.0

R
el

at
iv

e
co

m
pr

es
si

on
er

ro
r

kmeans

bayes

linear

(a) Compression error.

5 10 15 20 25 30 35 40

Num steps, x1000

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R
el

at
iv

e
co

m
pr

es
si

on
ra

ti
o

kmeans

bayes

linear

accordion

(b) Compression ratio.

Figure 8. Comparison of adaptive compression approaches. Error
and size compression are shown relative to uniform static assign-
ment of compression parameters to 4 bits.

Table 8
Comparison of adaptive methods. Speedups and compression rates are
relative to static bits-width assignment (4 bits). Experiments are run with
Transformer-XL base model on 8 RTX3090 GPUs (single node) and 4 nodes
with 4xRTX3090 GPUs each (multi-node). Accordion is applied to QSGD

with 3 and 4 as compression bounds.

Compression Speedup 1-Node Speedup Multi-Node
KMEANS 1.47 5% 40%
Bayes 1.34 3% 30%
Linear 1.15 2% 13%

Accordion 1.21 3% 15%

layers) for lower bit-widths, and has similar total compression er-
ror to uniform compression. We illustrate this on Transformer-XL,
the model with the most non-uniform layer sizes. We conducted
single-node experiments on an 8xRTX3090 machine, and multi-
node on four 4xRTX3090 machines. As before, the baseline is 4-
bits static compression, which was shown to recover full accuracy.
Figure 7 represents perplexity against time for different selection
mechanisms. Figures 8a and 8b represent compression error and
compression ratio relative to static assignment. Table 8 shows that
Bayesian optimization shows stable compression error, and good
average compression. Yet, the kmeans-based method shows the
lowest quantization error, best average compression, and highest
speedup, as it tends to compress large layers more. Specifically, this
can lead to additional improvements in the order of 5% on a single
node and up to 40% in multinode setting, without accuracy loss.
This approach can still be improved by taking into account runtime
speedups instead of absolute compression.

Among existing adaptive schemes, AdaComp [7] and Accor-
dion [3] are the only ones which can be adapted to our setting.
AdaComp suggests an adaptive scheme for sparsification, with
possible further quantization of communicated elements. Accor-
dion adapts gradient compression parameters based on identifying
critical learning regimes.

For comparison, we execute the Transformer-XL model on a
language modelling (LM) task. We first applied AdaComp only for
sparsification: however, unfortunately the compression assignment
provided by AdaComp did not converge to reasonable accuracy on
this task.

Second, we adapted Accordion to our framework with QSGD
compression, usingAccordion to choose bit-width parameters based
on its critical regimes detection approach. We used Accordion with
hyperparameter 𝜂 = 0.5, as suggested by the authors, and updated
the compression parameter every 1k steps of training. As the lower
and higher compression levels, we checked (2, 4) and (3, 4). The first
pair resulted in significantly lower final accuracy relative to the

baseline. The second pair (3,4) recovered the final accuracy, but the
compression ratio was inferior to all the other adaptive schemes
we investigated, and considerably below our proposed clustering
scheme. Please see Figure 8b and Table 8 for an illustration. The
table represents the speedups of different adaptive methods rela-
tive to the regular static compression. For instance, our adaptive
scheme resulted in 17% additional multi-node speedup compared
to Accordion.

6.4 Practical Implications
Multi-node experiments.Next, we examine performance onmulti-
node training in the cloud. We used 4 4xRTX3090 Genesis instances
with 10GBps intra-node bandwidth and 5 GBps inter-node band-
width. Table 9 shows that CGX provides up to 10x speedup over
the uncompressed baseline.

Table 9
Items per second when training with the NCCL and CGX optimizations,

respectively, on 4 machines with 4 RTX3090 GPUs each.

ResNet50 ViT-base Transformer-XL-base BERT
Baseline 564 34 32k 1.4k
CGX 2.3k 235 85k 12k

Implications for Cloud Training. Several cloud services provide
servers with commodity GPUs [20, 29, 30]. We therefore compare
a standard AWS EC2 4xV100 GPU instance (p3.8xlarge) instance
with a 4xRTX 3090 Genesis Cloud instance [20]. We execute the
same training benchmark, with and without CGX. The numbers
in Table 10 show that CGX allows us to obtain almost twice higher
throughput (training tokens/second) per dollar on the more af-
fordable Genesis instance, for a standard language modelling task
(SQuAD) task using an industry-standard BERT model.

Table 10
Comparison of training performance for different cloud services (AWS and
Genesis) with and without CGX. The training task is BERT-QA and achieves

full accuracy.

Instance Throughput
(1K tok./sec)

Price per hour
($)

Tokens/second
per $

Genesis + NCCL 4737 6.8 696
AWS + NCCL 14407 12.2 1181
Genesis + CGX 14171 6.8 2083

7 Conclusions
We proposed an algorithms & systems approach to remove the band-
width bottlenecks from DNN training, supplanting the need for ded-
icated hardware support, and significantly improving performance
in both single node (commodity) settings and, more generally, in
multi-node cloud settings. Future work may extend our results
to model-parallel or hybrid synchronization setups, e.g. [34, 58];
moreover, the idea of adaptive layer-wise compression should be
extensible to other compression methods, for instance to choose
ranks accurately for gradient decomposition methods, or layer-wise
sparsities based on actual transmission speedups.

Acknowledgments
The authors sincerely thank Nikoli Dryden, Tal Ben-Nun, Torsten
Hoefler and Bapi Chatterjee for useful discussions throughout the
development of this project.

251

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Markov et al.

References
[1] 2021. NVIDIA AMPERE GA102 GPU ARCHITECTURE.

Retrieved September 30, 2022 from https://images.nvidia.com/
aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-
ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A
system for large-scale machine learning. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA, November 2 - 4, 2016)
(OSDI’16). USENIX Association, USA, 265–283.

[3] Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram
Venkataraman, and Dimitris Papailiopoulos. 2021. Adaptive
Gradient Communication via Critical Learning Regime Iden-
tification. In Proceedings of Machine Learning and Systems
(Virtual event, USA, April 5 - 9, 2021), Vol. 3. 55–80.

[4] Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman,
and Dimitris Papailiopoulos. [n.d.]. In Proceedings of Machine
Learning and Systems.

[5] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and
Milan Vojnovic. 2017. QSGD: Communication-efficient SGD
via gradient quantization and encoding. In Advances in Neural
Information Processing Systems (Long Beach, CA, USA, Decem-
ber 4 - 7, 2017), Vol. 30. 1709–1720.

[6] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong, Feng Yan,
Ruichuan Chen, and Yinlong Xu. 2021. Gradient Compression
Supercharged High-Performance Data Parallel DNN Training.
In Proceedings of the ACM SIGOPS 28th Symposium on Op-
erating Systems Principles (Virtual Event, Germany, October
26-29, 2021) (SOSP ’21). Association for Computing Machin-
ery, New York, NY, USA, 359–375. https://doi.org/10.1145/
3477132.3483553

[7] Chia Yu Chen, Jungwook Choi, Daniel Brand, Ankur Agrawal,
Wei Zhang, and Kailash Gopalakrishnan. 2018. ADaComP:
Adaptive residual gradient compression for data-parallel dis-
tributed training. In 32nd AAAI Conference on Artificial Intel-
ligence, AAAI 2018 (New Orleans, USA, February 2–7, 2018).
2827–2835.

[8] Mengqiang Chen, Zijie Yan, Jiangtao Ren, and Weigang Wu.
2020. Standard Deviation Based Adaptive Gradient Compres-
sion For Distributed Deep Learning. In Proceedings of 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and In-
ternet Computing (CCGRID) (Melbourne, Australia, May 11-14
2020). 529–538.

[9] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. 2014. Project Adam: Building an Ef-
ficient and Scalable Deep Learning Training System. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (Broomfield, CO, USA, October
6-8, 2014), Vol. 14. 571–582.

[10] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. 2019. Transformer-
xl: Attentive language models beyond a fixed-length context.
(2019). arXiv:arXiv:1901.02860

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. 2009. Imagenet: A large-scale hierarchical image data-
base. In 2009 IEEE conference on computer vision and pattern

recognition (Miami, FL, June 20 - 25, 2009). IEEE, 248–255.
[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. 2018. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. (2018).
arXiv:arXiv:1810.04805

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa
Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
et al. 2020. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929
(2020).

[14] Nikoli Dryden, Sam Ade Jacobs, Tim Moon, and Brian Van Es-
sen. 2016. Communication quantization for data-parallel train-
ing of deep neural networks. In Proceedings of the Workshop
on Machine Learning in High Performance Computing Envi-
ronments (Salt Lake City, UT, USA, November 14 2016). IEEE
Press, 1–8.

[15] Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem,
Chen-Yu Ho, Atal Narayan Sahu, Marco Canini, and Panos
Kalnis. 2020. On the discrepancy between the theoretical
analysis and practical implementations of compressed com-
munication for distributed deep learning. In Proceedings of
the AAAI Conference on Artificial Intelligence (New York, New
York, February 7-12, 2020), Vol. 34. 3817–3824.

[16] Fartash Faghri, Iman Tabrizian, Ilia Markov, Dan Alistarh,
Daniel M Roy, and Ali Ramezani-Kebrya. 2020. Adaptive
gradient quantization for data-parallel sgd. Advances in neural
information processing systems 33 (2020), 3174–3185.

[17] Jiawei Fei, Chen-Yu Ho, Atal N. Sahu, Marco Canini, and
Amedeo Sapio. 2021. Efficient Sparse Collective Communi-
cation and Its Application to Accelerate Distributed Deep
Learning. In Proceedings of the 35th ACM SIGCOMM 2021 Con-
ference (Virtual Event,USA, August 23 - 27, 2021) (SIGCOMM
’21). 676–691.

[18] Shaoduo Gan, Jiawei Jiang, Binhang Yuan, Ce Zhang, Xiangru
Lian, Rui Wang, Jianbin Chang, Chengjun Liu, Hongmei Shi,
Shengzhuo Zhang, Xianghong Li, Tengxu Sun, Sen Yang, and Ji
Liu. 2021. Bagua: Scaling up Distributed Learning with System
Relaxations. Proc. VLDB Endow. 15, 4 (dec 2021), 804–813.
https://doi.org/10.14778/3503585.3503590

[19] Nitin A. Gawande, Joshua B. Landwehr, Jeff A. Daily, Nathan R.
Tallent, Abhinav Vishnu, andDarren J. Kerbyson. 2017. Scaling
Deep Learning Workloads: NVIDIA DGX-1/Pascal and Intel
Knights Landing. (2017), 399–408. https://doi.org/10.1109/
IPDPSW.2017.36

[20] Genesis. 2021. Genesis GPU Cloud Offering. Retrieved Septem-
ber 30, 2022 from https:/genesiscloud.com

[21] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis,
Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing
Jia, and Kaiming He. 2017. Accurate, large minibatch sgd:
Training imagenet in 1 hour. (2017). arXiv:arXiv:1706.02677

[22] Demjan Grubic, Leo K Tam, Dan Alistarh, and Ce Zhang. 2018.
Synchronousmulti-gpu deep learning with low-precision com-
munication: An experimental study. In Proceedings of the 21st
International Conference on Extending Database Technology
(Vienna, Austria, March 26-29, 2018). OpenProceedings, 145–
156.

[23] Jinrong Guo, Wantao Liu, Wang Wang, Jizhong Han, Ruixuan
Li, Yijun Lu, and Songlin Hu. 2020. Accelerating Distributed

252

https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-V1.pdf
https://doi.org/10.1145/3477132.3483553
https://doi.org/10.1145/3477132.3483553
https://arxiv.org/abs/arXiv:1901.02860
https://arxiv.org/abs/arXiv:1810.04805
https://doi.org/10.14778/3503585.3503590
https://doi.org/10.1109/IPDPSW.2017.36
https://doi.org/10.1109/IPDPSW.2017.36
https:/genesiscloud.com
https://arxiv.org/abs/arXiv:1706.02677

CGX: Adaptive System Support for Communication-Efficient Deep Learning Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Deep Learning By Adaptive Gradient Quantization. In ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) (Barcelona, Spain, May 4 - 8,
2020). 1603–1607. https://doi.org/10.1109/ICASSP40776.2020.
9054164

[24] William Harmon. 2021. Dual NVIDIA GeForce RTX 3090
NVLink Performance Review. Retrieved September 30, 2022
from https://www.servethehome.com/dual-nvidia-geforce-
rtx-3090-nvlink-performance-review-asus-zotac/

[25] Inc Huggingface. 2022. Huggingface Transformers Repository.
Retrieved April 30, 2022 from https://huggingface.co/models

[26] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fe-
dorova, and Gennady Pekhimenko. 2019. Priority-based pa-
rameter propagation for distributed DNN training. (2019).
arXiv:arXiv:1905.03960

[27] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and
Chuanxiong Guo. 2020. A Unified Architecture for Accelerat-
ing Distributed DNN Training in Heterogeneous GPU/CPU
Clusters. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20) (Virtual Event, No-
vember 4–6, 2020). USENIX Association, 463–479. https:
//www.usenix.org/conference/osdi20/presentation/jiang

[28] Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich,
and Martin Jaggi. 2019. Error feedback fixes signsgd and other
gradient compression schemes. In International Conference on
Machine Learning (Long Beach, CA, USA, Jun 10 – 15, 2019).
PMLR, 3252–3261.

[29] LambdaLabs. 2021. LambdaLabs GPU Cloud Offering. Re-
trieved September 30, 2022 from https://lambdalabs.com/cloud

[30] LeaderGPU. 2021. LeaderGPU Cloud Offering. Retrieved
September 30, 2022 from https://www.leadergpu.com/

[31] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu,
Nathan R. Tallent, and Kevin J. Barker. 2020. Evaluating Mod-
ern GPU Interconnect: PCIe, NVLink, NV-SLI, NVSwitch and
GPUDirect. IEEE Transactions on Parallel and Distributed Sys-
tems 31, 1 (2020), 94–110. https://doi.org/10.1109/TPDS.2019.
2928289

[32] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan
Tallent, and Kevin Barker. 2018. Tartan: Evaluating Modern
GPU Interconnect via a Multi-GPU Benchmark Suite. In 2018
IEEE International Symposium on Workload Characterization
(IISWC) (Raleigh, NC, USA, 30 September - 02 October 2018).
191–202. https://doi.org/10.1109/IISWC.2018.8573483

[33] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola,
Amr Ahmed, Vanja Josifovski, James Long, Eugene J Shekita,
and Bor-Yiing Su. 2014. Scaling distributed machine learn-
ing with the parameter server. In Proceedings 11th {USENIX}
Symposium on Operating Systems Design and Implementation
({OSDI} 14) (Broomfield, CO, USA, October 6-8, 2014). 583–
598.

[34] Shijian Li, Oren Mangoubi, Lijie Xu, and Tian Guo. 2021. Sync-
Switch: Hybrid Parameter Synchronization for Distributed
Deep Learning. (2021). arXiv:arXiv:2104.08364

[35] Hyeontaek Lim, David G Andersen, and Michael Kaminsky.
2018. 3lc: Lightweight and effective traffic compression for
distributed machine learning. (2018). arXiv:arXiv:1802.07389

[36] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J
Dally. 2017. Deep gradient compression: Reducing the
communication bandwidth for distributed training. (2017).

arXiv:arXiv:1712.01887
[37] Ahmed M Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim

Alouini, and Marco Canini. 2021. An efficient statistical-based
gradient compression technique for distributed training sys-
tems. In Proceedings of Machine Learning and Systems (Virtual
event, USA, April 5 - 9, 2021), Vol. 3. 297–322.

[38] J. B. MacQueen. 1967. Some Methods for Classification and
Analysis of MultiVariate Observations. In Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and Probability
(Berkeley, CA, USA, June 21-July 18 1965), Vol. 1. University
of California Press, 281–297.

[39] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody
Coleman, Greg Diamos, David Kanter, Paulius Micikevicius,
David Patterson, Guenther Schmuelling, Hanlin Tang, et al.
2020. MLPerf: An industry standard benchmark suite for
machine learning performance. IEEE Micro 40, 2 (2020), 8–16.

[40] Nvidia. 2020. NVIDIA Deep Learning Examples for Tensor Cores.
Retrieved April 30, 2022 from https://github.com/NVIDIA/
DeepLearningExamples

[41] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser,
Noam Shazeer, Alexander Ku, and Dustin Tran. 2018. Image
transformer. In International Conference on Machine Learning
(Stockholm, Sweden, July 10-15, 2018). PMLR, 4055–4064.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Na-
talia Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imper-
ative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[43] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen
Yi, Chang Lan, Chuan Wu, and Chuanxiong Guo. 2019. A
generic communication scheduler for distributed dnn training
acceleration. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Ontario, Canada, October 27 -
30, 2019). 16–29.

[44] Ali Ramezani-Kebrya, Fartash Faghri, Ilya Markov, Vitalii Ak-
senov, Dan Alistarh, and Daniel M Roy. 2021. NUQSGD: Prov-
ably Communication-efficient Data-parallel SGD via Nonuni-
form Quantization. Journal of Machine Learning Research 22,
114 (2021), 1–43.

[45] Cèdric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Al-
istarh, and TorstenHoefler. 2019. SparCML:High-performance
sparse communication for machine learning. In Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, CO, USA, November
17–22, 2019).

[46] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu.
2014. 1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech dnns. In Fifteenth
Annual Conference of the International Speech Communication
Association (Singapore, September 14-18, 2014).

[47] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast
and easy distributed deep learning in TensorFlow. (2018).
arXiv:arXiv:1802.05799

[48] Karen Simonyan and Andrew Zisserman. 2014. Very deep con-
volutional networks for large-scale image recognition. (2014).
arXiv:arXiv:1409.1556

[49] Nikko Strom. 2015. Scalable distributed DNN training using
commodity GPU cloud computing. In Sixteenth Annual Con-
ference of the International Speech Communication Association

253

https://doi.org/10.1109/ICASSP40776.2020.9054164
https://doi.org/10.1109/ICASSP40776.2020.9054164
https://www.servethehome.com/dual-nvidia-geforce-rtx-3090-nvlink-performance-review-asus-zotac/
https://www.servethehome.com/dual-nvidia-geforce-rtx-3090-nvlink-performance-review-asus-zotac/
https://huggingface.co/models
https://arxiv.org/abs/arXiv:1905.03960
https://www.usenix.org/conference/osdi20/presentation/jiang
https://www.usenix.org/conference/osdi20/presentation/jiang
https://lambdalabs.com/cloud
https://www.leadergpu.com/
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1109/IISWC.2018.8573483
https://arxiv.org/abs/arXiv:2104.08364
https://arxiv.org/abs/arXiv:1802.07389
https://arxiv.org/abs/arXiv:1712.01887
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://arxiv.org/abs/arXiv:1802.05799
https://arxiv.org/abs/arXiv:1409.1556

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Markov et al.

(Dresden, Germany, September 6-10, 2015).
[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polo-
sukhin. 2017. Attention is all you need. In Advances in neural
information processing systems. 5998–6008.

[51] Thijs Vogels, Sai Praneeth Karinireddy, and Martin Jaggi. 2019.
PowerSGD: Practical low-rank gradient compression for dis-
tributed optimization. Advances In Neural Information Process-
ing Systems 32 (Nips 2019) 32 (2019).

[52] Hongyi Wang, Scott Sievert, Zachary Charles, Shengchao Liu,
Stephen Wright, and Dimitris Papailiopoulos. 2018. ATOMO:
Communication-efficient learning via atomic sparsification.
(2018). arXiv:arXiv:1806.04090

[53] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang,
Yiran Chen, and Hai Li. 2017. Terngrad: Ternary gradients to
reduce communication in distributed deep learning. (2017).
arXiv:arXiv preprint arXiv:1705.07878

[54] Ross Wightman. 2019. PyTorch Image Models. https://github.
com/rwightman/pytorch-image-models. https://doi.org/10.
5281/zenodo.4414861

[55] Hang Xu, Chen-Yu Ho, AhmedM. Abdelmoniem, Aritra Dutta,
El Houcine Bergou, Konstantinos Karatsenidis, Marco Canini,
and Panos Kalnis. 2021. GRACE: A Compressed Commu-
nication Framework for Distributed Machine Learning. In
Proceedings of ICDCS’21 (Virtual event, July 7- 10, 2020).

[56] Xiaodong Yi, Ziyue Luo, Chen Meng, Mengdi Wang, Guop-
ing Long, Chuan Wu, Jun Yang, and Wei Lin. 2020. Fast
Training of Deep Learning Models over Multiple GPUs. In
Proceedings of the 21st International Middleware Conference
(Delft, Netherlands, December 7 - 11, 2020). 105–118. https:
//doi.org/10.1145/3423211.3425675

[57] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Ku-
mar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel,
Kurt Keutzer, and Cho-Jui Hsieh. 2019. Large batch optimiza-
tion for deep learning: Training bert in 76 minutes. (2019).
arXiv:arXiv:1904.00962

[58] Qihua Zhou, Song Guo, Zhihao Qu, Peng Li, Li Li, Minyi Guo,
and Kun Wang. 2020. Petrel: Heterogeneity-aware distributed
deep learning via hybrid synchronization. IEEE Transactions
on Parallel and Distributed Systems 32, 5 (2020), 1030–1043.

254

https://arxiv.org/abs/arXiv:1806.04090
https://arxiv.org/abs/arXiv preprint arXiv:1705.07878
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.1145/3423211.3425675
https://doi.org/10.1145/3423211.3425675
https://arxiv.org/abs/arXiv:1904.00962

