
Anytime Guarantees for Reachability in
Uncountable Markov Decision Processes
Kush Grover !

Technische Universität München, Germany

Jan Křetínský !

Technische Universität München, Germany

Tobias Meggendorfer !Ï

Institute of Science and Technology Austria, Wien, Austria

Maximilian Weininger !

Technische Universität München, Germany

Abstract
We consider the problem of approximating the reachability probabilities in Markov decision processes
(MDP) with uncountable (continuous) state and action spaces. While there are algorithms that, for
special classes of such MDP, provide a sequence of approximations converging to the true value in
the limit, our aim is to obtain an algorithm with guarantees on the precision of the approximation.

As this problem is undecidable in general, assumptions on the MDP are necessary. Our main
contribution is to identify sufficient assumptions that are as weak as possible, thus approaching the
“boundary” of which systems can be correctly and reliably analyzed. To this end, we also argue why
each of our assumptions is necessary for algorithms based on processing finitely many observations.

We present two solution variants. The first one provides converging lower bounds under weaker
assumptions than typical ones from previous works concerned with guarantees. The second one
then utilizes stronger assumptions to additionally provide converging upper bounds. Altogether, we
obtain an anytime algorithm, i.e. yielding a sequence of approximants with known and iteratively
improving precision, converging to the true value in the limit. Besides, due to the generality of our
assumptions, our algorithms are very general templates, readily allowing for various heuristics from
literature in contrast to, e.g., a specific discretization algorithm. Our theoretical contribution thus
paves the way for future practical improvements without sacrificing correctness guarantees.

2012 ACM Subject Classification Mathematics of computing → Markov processes; Mathematics of
computing → Continuous mathematics; Computing methodologies → Continuous models

Keywords and phrases Uncountable system, Markov decision process, discrete-time Markov control
process, probabilistic verification, anytime guarantee

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2022.11

Related Version Full Version: https://arxiv.org/abs/2008.04824 [17]

Funding Kush Grover : The author has been supported by the DFG research training group GRK
2428 ConVeY.
Maximilian Weininger : The author has been partially supported by DFG projects 383882557
Statistical Unbounded Verification (SUV) and 427755713 Group-By Objectives in Probabilistic
Verification (GOPro).

1 Introduction

The standard formalism for modelling systems with both non-deterministic and probabilistic
behaviour are Markov decision processes (MDP) [43]. In the context of many applications such
as cyber-physical systems, states and actions are used to model real-valued phenomena like
position or throttle. Consequently, the state space and the action space may be uncountably

© Kush Grover, Jan Křetínský, Tobias Meggendorfer, and Maximilian Weininger;
licensed under Creative Commons License CC-BY 4.0

33rd International Conference on Concurrency Theory (CONCUR 2022).
Editors: Bartek Klin, Sławomir Lasota, and Anca Muscholl; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kush.grover@in.tum.de
https://orcid.org/0000-0003-4575-1302
mailto:jan.kretinsky@in.tum.de
https://orcid.org/0000-0002-8122-2881
mailto:tobias.meggendorfer@ist.ac.at
https://tobias.meggendorfer.de
https://orcid.org/0000-0002-1712-2165
mailto:maxi.weininger@tum.de
https://orcid.org/0000-0002-0163-2152
https://doi.org/10.4230/LIPIcs.CONCUR.2022.11
https://arxiv.org/abs/2008.04824
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

infinite. For example, the intervals [a, b]× [c, d] ⊆ R2 can model a safe area for a robot to
move in or a set of available control inputs such as acceleration and steering angle. This
gives rise to MDP with uncountable state- and action-spaces (sometimes called controlled
discrete-time Markov process [51, 52] or discrete-time Markov control process [11, 28]), with
applications ranging from modelling a Mars rover [10, 24], over water reservoir control [36]
and warehouse storage management [38], to energy control [51], and many more [41].

Although systems modelled by MDP are often safety-critical, the analysis of uncountable
systems is so complex that practical approaches for verification and controller synthesis are
usually based on “best effort” learning techniques, for example reinforcement learning. While
efficient in practice, these methods guarantee, even in the best case, convergence to the true
result only in the limit, e.g. [40], or for increasingly precise discretization, e.g. [51, 32]. In line
with the tradition of learning and to make the analysis more feasible, the typical objectives
considered for MDP are either finite-horizon [37, 3] or discounted properties [18, 53, 25],
together with restrictive assumptions. Note that when it comes to approximation, discounted
properties effectively are finite-horizon. In contrast, ensuring safety of a reactive system or a
certain probability to satisfy its mission goals requires an unbounded horizon and reduces
to optimizing the reachability probabilities. Moreover, the safety-critical context requires
reliable bounds on the probability, not an approximation with unknown precision.

In this paper, we provide the first provably correct anytime algorithm for (unbounded)
reachability in uncountable MDP. As an anytime algorithm, it can at every step of the
execution return correct lower and upper bounds on the true value. Moreover, these bounds
gradually converge to the true value, allowing approximation up to an arbitrary precision.
Since the problem is undecidable, the core of our contribution is identifying sufficient
conditions on the uncountable MDP to allow for approximation.

Our primary goal is to provide conditions as weak as possible, thereby pushing towards
the boundary of which systems can be analyzed provably correctly. To this end, we do not
rely on any particular representation of the system. Nonetheless, for classical scenarios, and,
in particular, for finite MDP, our conditions are mostly satisfied trivially.

Our secondary goal is to derive the respective algorithms as an extension of value iteration
(VI) [29, 43], while avoiding drawbacks of discretization-based approaches. VI is a de
facto standard method for numerical analysis of finite MDP, in particular with reachability
objectives, regarded as practically efficient and allowing for heuristics avoiding the exploration
of the complete state space, e.g. [9]. Interestingly, even for finite MDP, anytime VI algorithms
with precision guarantees are quite recent [9, 19, 4, 44, 22]. Previous to that, the most
used model checkers could return arbitrarily wrong results [19]. Providing VI with precision
guarantees for general uncountable MDP is thus worthwhile on its own. Finally, while
discretization is conceptually simple, we prefer to provide a solution that avoids the need
to introduce arbitrary boundaries through gridding the whole state space and, moreover,
instead utilizes information from one “cell” of the grid in other places, too.

To summarize, while algorithmic aspects form an important motivation, our primary
contribution is theoretical: an explicit and complete set of generic assumptions allowing for
guarantees, disregarding practical efficiency at this point. Consequently, while our approach
lays foundations for further, more tailored approaches, it is not to be seen as a competitor to
the existing practical, best-effort techniques, as these aim for a completely different goal.

Our Contribution. In this work, we provide the following:

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:3

Section 3: A set of assumptions that allow for computing converging lower bounds on
the reachability probability in MDP with uncountable state and action spaces. We
discuss in detail why they are weaker than usual, necessary, and applicable to typically
considered systems. With these assumptions, we extend the standard (convergent but
precision-ignorant) VI to this general setting.

Section 4: An additional set of assumptions that yield the first anytime algorithm, i.e.
with provable bounds on the precision/error of the result, converging to 0. We combine
the preceding algorithm with the technique of bounded real-time dynamic programming
(BRTDP) [39] and provide also converging upper bounds on the reachability probability.

Section 5: A discussion of theoretical extensions and practical applications.

Related work. For detailed theoretical treatment of reachability and related problems on
uncountable MDP, see e.g. [52, 11]. Reachability on uncountable MDP generalizes numerous
problems known to be undecidable. For example, we can encode the halting problem of
(probabilistic) Turing machines by encoding the tape content as real value. Similarly, almost-
sure termination of probabilistic programs (undecidable [33]) is a special case of reachability
on general uncountable MDP (see e.g. [16]). As precise reachability analysis is undecidable
even for non-stochastic linear hybrid systems [26], many works turn their attention to more
relaxed notions such as δ-reachability, e.g. [48], and/or employ many assumptions.

In order to obtain precision bounds, we assume that the value function, mapping states
to their reachability probability, is Lipschitz continuous (and that we know the Lipschitz
constant). This is slightly weaker than the classical approach of assuming Lipschitz continuity
of the transition function (and knowledge of the constant), e.g. [2, 49]. In particular, these
assumptions (i) imply our assumption (as we show in [17, App. B.2.1]) and (ii) are used even
in the simpler settings of finite-horizon and discounted reward scenarios [5, 2, 49, 51] or even
more restricted settings to obtain practical efficiency, e.g. [35]. In contrast to our approach,
they are not anytime algorithms and require treatment of the whole state space.

To provide context, we outline how continuity is used (explicitly or implicitly) in related
work and mention their respective results. Firstly, [25, 47] assume Lipschitz continuity, but
not explicit knowledge of the constant. In essence, these approaches solve the problem by
successively increasing internal parameters.The parameters then eventually cross a bound
implied by the Lipschitz constant, yielding an “eventual correctness”. In particular, they
provide “convergence in the limit” or “probably approximately correct” results, but no bounds
on the error or the convergence rate; these would depend on knowledge of the constant.

Secondly, [18, 40, 2, 49, 51] (and our work) assume Lipschitz continuity and knowledge
of the constant. Relying on the constant being provided externally, these works derive
guarantees. Previously, the guarantees given are weaker than our convergent anytime bounds:
Either convergence in the limit [40] or a bound on a discretization error, relativized to
sub-optimal strategies [18] or bounded horizon [2, 49, 51].

Several of the above mentioned works employ discretization [18, 2, 49, 51]. This method
is quite general, but obtaining any bounds on the error requires continuity assumptions [1].
Further, there are works that use other assumptions: [23, 24] use reinforcement learning
methods to tackle reachability and more general problems, without any continuity assumption.
However, they do not provide any guarantees. See [53] for a detailed exposition of similar
approaches. Assuming an abstraction is given, abstraction and bisimulation approaches,
e.g. [21, 20], provide guarantees, but only on the lower bounds. With significant assumptions
on the system’s structure, symbolic approaches [37, 54, 45, 14] may even obtain exact
solutions.

CONCUR 2022

11:4 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

2 Preliminaries

In this section, we recall basics of probabilistic systems and set up the notation. As usual, N
and R refer to the (positive) natural numbers and real numbers, respectively. For a set S, 1S

denotes its characteristic function, i.e. 1S(x) = 1 if x ∈ S and 0 otherwise. We write S⋆ and
Sω to refer to the set of finite and infinite sequences comprising elements of S, respectively.

We assume familiarity with basic notions of measure theory, e.g. measurable set or
measurable function, as well as probability theory, e.g. probability spaces and measures [8].
For a measure space X with sigma-algebra ΣX , Π(X) denotes the set of all probability
measures on X. For a measure µ ∈ Π(X), we write µ(Y) =

∫
1Y dµ to denote the mass of a

measurable set Y ∈ ΣX (also called event). For two probability measures µ and ν, the total
variation distance is defined as δT V (µ, ν) := 2 · supY ∈ΣX

|µ(Y)− ν(Y)|. Some event happens
almost surely (a.s.) w.r.t. some measure µ if it happens with probability 1. We write supp(µ)
to denote the support of the probability measure µ.
▶ Remark 1. It is surprisingly difficult to give a well-defined notion of support for measures
in general. Intuitively, supp(µ) describes the “smallest” set which µ assigns a value of 1.
However, this is not well-defined for general measures. We discuss these issues and a proper
definition in [17, App. E]. Throughout this work, similar subtle issues related to measure
theory arise. For the sake of readability, these are mostly delegated to footnotes or the
appendix of the full version [17], and readers may safely skip over these points.
We work with Markov decision processes (MDP) [43], a widely used model to capture both
non-determinism and probability. We consider uncountable state and action spaces.

▶ Definition 2. A (continuous-space, discrete-time) Markov decision process (MDP) is a
tuple M = (S, Act, Av, ∆), where S is a compact set of states (with topology TS and Borel σ-
algebra ΣS = B(TS)), Act is a compact set of actions (with topology TAct and Borel σ-algebra
ΣAct = B(TAct)), Av : S → ΣAct \ {∅} assigns to every state a non-empty, measurable, and
compact set of available actions, and ∆: S ×Act→ Π(S) is a transition function that for
each state s and (available) action a ∈ Av(s) yields a probability measure over successor
states (i.e. a Markov Kernel). An MDP is called finite if |S| <∞ and |Act| <∞.

See [43, Sec. 2.3] and [6, Chp. 9] for a more detailed discussion on the technical considerations
arising from uncountable state and action spaces. Note that we assume the set of available
actions to be non-empty. This means that the system can never get “stuck” in a degenerate
state without successors. Markov chains are a special case of MDP where |Av(s)| = 1 for all
s ∈ S, i.e. a completely probabilistic system without any non-determinism. Our presented
methods thus are directly applicable to Markov chains as well.

Given a measure µ ∈ Π(X) and a measurable function f : X → R mapping elements of a
set X to real numbers, we write µ⟨f⟩ :=

∫
f(x) dµ(x) to denote the integral of f with respect

to µ. For example, ∆(s, a)⟨f⟩ denotes the expected value Es′∼∆(s,a)f(s′) of f : S → R over
the successors of s under action a. Moreover, abusing notation, for some set of state S′ ⊆ S

and function Av′ : S′ → Act, we write S′ ×Av′ = {(s, a) | s ∈ S′, a ∈ Av′(s)} to denote the
set of state-action pairs with states from S′ under Av′.

An infinite path in an MDP is some infinite sequence ρ = s1a1s2a2 · · · ∈ (S × Av)ω,
such that for every i ∈ N we have si+1 ∈ supp(∆(si, ai)). A finite path (or history)
ϱ = s1a1s2a2 . . . sn ∈ (S ×Av)⋆ × S is a non-empty, finite prefix of an infinite path of length
|ϱ| = n, ending in state sn, denoted by last(ϱ). We use ρ(i) and ϱ(i) to refer to the i-th state
in an (in)finite path. We refer to the set of finite (infinite) paths of an MDP M by FPathsM
(PathsM). Analogously, we write FPathsM,s (PathsM,s) for all (in)finite paths starting in s.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:5

In order to obtain a probability measure, we first need to eliminate the non-determinism.
This is done by a so-called strategy (also called policy, controller, or scheduler). A strategy
on an MDP M = (S, Act, Av, ∆) is a function π : FPathsM → Π(Act), s.t. supp(π(ϱ)) ⊆
Av(last(ϱ)). The set of all strategies is denoted by ΠM. Intuitively, a strategy is a “recipe”
describing which step to take in the current state, given the evolution of the system so far.

Given an MDP M, a strategy π ∈ ΠM, and an initial state s0, we obtain a measure on
the set of infinite paths PathsM, which we denote as Prπ

M,s0
. See [43, Sec. 2] for further

details. Thus, given a measurable set A ⊆ PathsM, we can define its maximal probability
starting from state s0 under any strategy by Prsup

M,s0
[A] := supπ∈ΠM

Prπ
M,s0

[A]. Depending on
the structure of A it may be the case that no optimal strategy exists and we have to resort
to the supremum instead of the maximum. This may already arise for finite MDP, see [12].

For an MDP M = (S, Act, Av, ∆) and a set of target states T ⊆ S, (unbounded)
reachability refers to the set ♢T = {ρ ∈ PathsM | ∃i ∈ N. ρ(i) ∈ T}, i.e. all paths which
eventually reach T . The set ♢T is measurable if T is measurable [51, Sec. 3.1], [52, Sec. 2].

Now, it is straightforward to define the maximal reachability problem of a given set of
states. Given an MDP M, target set T , and state s0, we are interested in computing the
maximal probability of eventually reaching T , starting in state s0. Formally, we want to
compute the value of the state s0, defined as V(s0) := Prsup

M,s0
[♢T] = supπ∈ΠM

Prπ
M,s0

[♢T].
This state value function satisfies a straightforward fixed point equation, namely

V(s) = 1 if s ∈ T V(s) = supa∈Av(s)∆(s, a)⟨V⟩ otherwise. (1)

Moreover, V is the smallest fixed point of this equation [6, Prop. 9.8, 9.10], [52, Thm. 3].
In our approach, we also deal with values of state-action pairs (s, a) ∈ S × Av, where
V(s, a) := ∆(s, a)⟨V⟩. Intuitively, this represents the value achieved by choosing action a in
state s and then moving optimally. Clearly, we have that V(s) = supa∈Av(s) V(s, a). See [15,
Sec. 4] for a discussion of reachability on finite MDP and [52] for the general case.

In this work, we are interested in approximate solutions due to the following two reasons.
Firstly, obtaining precise solutions for MDP is difficult already under strict assumptions and
undecidable in our general setting.(1) We thus resort to approximation, allowing for much
lighter assumptions. Secondly, by considering approximation we are able to apply many
different optimization techniques, potentially leading to algorithms which are able to handle
real-world systems, which are out of reach for precise algorithms even for finite MDP [9].

We are interested in two types of approximations. Firstly, we consider approximating
the value function in the limit, without knowledge about how close we are to the true value.
This is captured by a semi-decision procedure for queries of the form Prsup

M,s[♢T] > ξ for a
threshold ξ ∈ [0, 1]. We call this problem ApproxLower. Secondly, we consider the variant
where we are given a precision requirement ε > 0 and obtain ε-optimal values (l, u), i.e.
values with V(s0) ∈ [l, u] and 0 ≤ u− l < ε. We refer to this variant as ApproxBounds.

3 Converging Lower Bounds

In this section, we present the first set of assumptions, enabling us to compute converging
lower bounds on the true value, solving the ApproxLower problem. In Section 3.1, we discuss
each assumption in detail and argue on an intuitive level why it is necessary by means of

(1)For example, one can encode the tape of a Turing machine into the binary representation of a real
number and reduce the halting problem to a reachability query.

CONCUR 2022

11:6 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

counterexamples. With the assumptions in place, in Section 3.2 we then present our first
algorithm, also introducing several ideas we employ again in the following section.

Our assumptions and algorithms are motivated by value iteration (VI) [29], which we
briefly outline. In a nutshell, VI boils down to repeatedly applying an iteration operator to a
value vector vn. For example, the canonical value iteration for reachability on finite MDP
starts with v0(s) = 1 for all s ∈ T and 0 otherwise and then iterates

vn+1(s) = maxa∈Act(s)
∑

s′∈S
∆(s, a, s′) · vn(s′) (2)

for all s /∈ T . The vector vn converges monotonically from below to the true value for all states.
We mention two important points. Firstly, the iteration can be applied “asynchronously”.
Instead of updating all states in every iteration, we can pick a single state and only update
its value. The values vn still converge to the correct value as long as all states are updated
infinitely often. Secondly, instead of storing a value per state, we can store a value for each
state-action pair and obtain the state value as the maximum of these values. Both points
are a technical detail for finite MDP, however they play an essential role in our uncountable
variant. See [17, App. A.1] for more details on VI for finite MDP.

In the uncountable variant of Equation (2), v is a function, Act(s) is potentially uncount-
able, and the sum is replaced by integration. As in this setting the problem is undecidable,
naturally we have to employ some assumptions. Our goal is to sufficiently imitate the essence
of Equation (2), obtaining convergence without being overly restrictive. In particular, we
want to (i) represent (an approximation of) vn using finite memory, (ii) safely approximate
the maximum and integration, and (iii) select appropriate points to update vn.

3.1 Assumptions
Before discussing each assumption in detail, we first put them into context. As we argue in
the following, most of our assumptions typically hold implicitly. Still, by stating even basic
computability assumptions in a form as weak as possible, we avoid “hidden” assumptions,
e.g. by assuming that the state space is a subset of Rd. Two of our assumptions are more
restrictive, namely Assumption C: Value Lipschitz Continuity (Section 3.1.3) and,
introduced later, Assumption D: Absorption (Section 4.1.2). However, they are also
often used in related works, as we detail in the respective sections. Moreover, in light of
previous results, the necessity of restrictive assumptions is to be expected: Computing
bounds is hard or even undecidable already for very restricted classes. Aside from the
discussion in the introduction, we additionally mention two further cases. In the setting
of probabilistic programs (which are a very special case of uncountable MDP), deciding
almost sure termination for a fixed initial state (which is a severely restricted subclass
of reachability on uncountable MDP without non-determinism) is an actively researched
topic with recent advances, see e.g. [30, 31], and shown to be Π0

2-complete [33], i.e. highly
undecidable. In [27] and the references therein, the authors present (un-)decidability results
for hybrid automata, which are a special case of uncountable MDP without any stochastic
dynamics (flow transitions can be modelled as actions indicating the delay). As such, it is to
be expected that the general class of models we consider has to be pruned very strictly in
order to hope for any decidability results.
▶ Remark 3. As already mentioned, we want to provide assumptions which are as general as
possible. Importantly, we avoid (unnecessarily) assuming any particular representation of the
system. Our motivation is to ultimately identify the boundary of what is necessary to derive
guarantees. While our assumptions are motivated by VI and built around Equation (2), we

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:7

note that being able to represent the state values and evaluate (some aspect of) the transition
dynamics intuitively are a necessity for any method dealing with such systems. We do not
claim that our framework of assumptions is the only way to approach the problem, instead
we provide arguments why it is a sensible way to do so.

3.1.1 A: Basic Assumptions (Asm. A1-A4)

We first present a set of basic computability assumptions (A1-A4). These are essential,
since for uncountable systems even the simplest computations are intractable without any
assumptions. More specifically, such systems cannot be given explicitly (due to their infinite
size), but instead have to be described symbolically by, e.g., differential equations. Thus, we
necessarily require some notion of computability and structural properties for each part of
this symbolic description. And indeed, each assumption essentially corresponds to one part
of the MDP description (Metric Space to S ×Act, Maximum Approximation to Av,
Transition Approximation to ∆, and Target Computability to T). They are weak and
hold on practically all commonly considered systems (see [17, App. B.1]). In particular, finite
MDP and discrete components are trivially subsumed by considering the discrete metric.
A1: Metric Space S and Act are metric spaces with (computable) metrics dS and dAct,

respectively, and d× is a compatible(2) metric on the space of state-action pairs S ×Av,
A2: Maximum Approximation For each state s and computable Lipschitz f : Av(s)→ [0, 1],

the value maxa∈Av(s) f(a) can be under-approximated to arbitrary precision.
A3: Transition Approximation For each state-action pair (s, a) and Lipschitz g : S → [0, 1]

which can be under-approximated to arbitrary precision, the successor expectation
∆(s, a)⟨g⟩ can be under-approximated to arbitrary precision.

A4: Target Computability The target set T is decidable, i.e. we are given a computable
predicate which, given a state s, decides whether s ∈ T .

We denote the approximations for A2 and A3 by Approx≤, i.e. given a pair (s, a) and func-
tions f , g as in the assumptions, we write (abusing notation) Approx≤(maxa∈Av(s) f(a), ε)
and Approx≤(∆(s, a)⟨g⟩, ε) for approximation of the respective values up to precision ε, i.e.
0 ≤ maxa∈Av(s) f(a)−Approx≤(maxa∈Av(s) f(a), ε) ≤ ε and analogous for ∆(s, a)⟨g⟩. Note
that A2 and A3 are satisfied if we can sample densely in Av(s) and approximate ∆(s, a).

3.1.2 B: Sampling (Asm. B.VI)

As there are uncountably many states, we are unable to explicitly update all of them at
once and instead update values asynchronously. Moreover, as there may also be uncountably
many actions, we instead store and update the values of state-action pairs. Together, we
need to pick state-action pairs to update. We delegate this choice to a selection mechanism
GetPair, an oracle for state-action pairs. We allow for GetPair to be “stateful”, i.e. the
sampled state-action pair may depend on previously returned pairs. This is required in,
for example, round-robin or simulation-based approaches. We only require a basic notion
of fairness in order to guarantee that we do not miss out on any information. Note the
additional identifier .VI (value iteration) on the assumption name; later on, a similar, but
weaker variant (B.BRTDP) is introduced.

(2)For two pairs (s, a) and (s, a′) we have that k · dAct(a, a′) ≤ d×((s, a), (s, a′)) ≤ K · dAct(a, a′) for some
constants k, K ≥ 0, analogous for dS , achieved by, e.g. d×((s, a), (s′, a′)) := dS(s, s′) + dAct(a, a′).

CONCUR 2022

11:8 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

B.VI: State-Action Sampling Let S♢ = {last(ϱ) | ϱ ∈ FPathsM,s} the set of all reachable
states. Then, for any ε > 0, s ∈ S♢, and a ∈ Av(s) we have that GetPair eventually
yields a pair (s′, a′) with d×((s, a), (s′, a′)) < ε and δT V (∆(s, a), ∆(s′, a′)) < ε a.s.(3)

Essentially, this means that GetPair provides a way to “exhaustively” generate all behaviours
of the system up to a precision of ε. This fairness assumption is easily satisfied under usual
conditions. For example, if S×Av is a bounded subset of Rd, we can randomly sample points
in that space or consider increasingly dense grids. Alternatively, if we can sample from the
set of actions and from the distributions of ∆, GetPair can be implemented by sampling
paths of random length, following random actions. Note that we can view the procedure as
a “template”: Instead of requiring a concrete method to acquire pairs to update, we leave
this open for generality; we discuss implications of this in Sections 5.1 and 5.3.

The requirement on total variation may seem unnecessary, especially given that we will
also assume continuity. However, otherwise we could, for example, miss out on solitary
actions which are the “witnesses” for a state’s value: suppose that Av(s) = [0, 1] and ∆(s, 0)
moves to the goal, while ∆(s, a) just loops back to s. Only selecting actions close to a = 0
w.r.t. the product metric is not sufficient to observe that we can move to the goal. Note that
this would not be necessary if we assumed continuity of the transition function – selecting
“nearby” actions then also yields “similar” behaviour.

3.1.3 C: Lipschitz Continuity
Finally, we present our already advertised continuity assumption. For simplicity, we give it
in its strict form and discuss relaxations later in Section 5.2. Intuitively, Lipschitz continuity
allows us to extrapolate the behaviour of the system from a single state to its surroundings.
C: Value Lipschitz Continuity The value functions V(s) and V(s, a) are Lipschitz continuous

with known constants CS and C×, i.e. for all s, s′ ∈ S and a ∈ Av(s), a′ ∈ Av(s′) we have

|V(s)− V(s′)| ≤ CS · dS(s, s′) |V(s, a)− V(s′, a′)| ≤ C× · d×((s, a), (s′, a′))

This requirement may seem quite restrictive at first glance. Indeed, it is the only one in this
section to not usually hold on “standard” systems. However, in order to obtain any kind of
(provably correct) bounds, some notion of continuity is elementary, since otherwise we cannot
safely extrapolate from finitely many observations to an uncountable set. The immediately
arising questions are (i) why Lipschitz continuity is necessary compared to, e.g., regular or
uniform continuity, and (ii) why knowledge of the Lipschitz constant is required. For the first
point, note that we want to be able to extrapolate from values assigned to a single state to
its immediate surroundings. While continuity means that the values in the surroundings do
not “jump”, it does not give us any way of bounding the rate of change, and this rate may
grow arbitrarily (for example, consider the continuous but not Lipschitz function sin(1

x) for
x > 0). So, also relating to the second point, without knowledge of the Lipschitz constant,
regular continuity and Lipschitz continuity are (mostly) equivalent from a computational
perspective: The function does not have discontinuities, but we cannot safely estimate the
rate of change in general. To illustrate this point further, we give an intuitive example.

(3)Technically, it is sufficient to satisfy this property on any subset of S♢ which only differs from it up
to measure 0. More precisely, we only require that this assumption holds for S♢ = supp(Prsup

M,s), i.e.
the set of all reachable paths with non-zero measure. We omit this rather technical notion and the
discussion it entails in order to avoid distracting from the central results of this work.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:9

0.25 0.5 0.75
0

0.5
1

S

V
(s

)
Figure 1 The value function of Example 4, showing that knowledge of the constant is important.

▶ Example 4. We construct an MDP with a periodic, Lipschitz continuous value function,
as illustrated in Figure 1 and formally defined below. Intuitively, for a given period width w

(e.g. 0.25) and a periodic function f (e.g. a triangle function), a state s between 0 and w

moves to a target or sink with probability f(s). All larger states s ≥ w transition to s− w

with probability 1. The value function thus is periodic and Lipschitz continuous, see Figure 1
for a possible value function and [17, App. B.2.3] for a formal definition.

For a finite number of samples, we can choose f and w such that all samples achieve a
value of 1. Nevertheless, we cannot conclude anything about states we have not sampled yet:
Without knowledge of the constant, we cannot extrapolate from samples.

We note the underlying connection to the Nyquist-Shannon sampling theorem [46, Thm. 1].
Intuitively, the theorem states that, for a function that contains no frequencies higher than
W , it is completely determined by giving its ordinates at a series of points spaced 0.5 ·W
apart. If we know the Lipschitz constant, this gives us a way of bounding the “frequency”
of the value function, and thus allows us to determine it by sampling a finite number of
points. On the other hand, without the Lipschitz constant, we do not know the frequency
and cannot judge whether we are “undersampling”.

Since we do not assume any particular representation of the transition system, we cannot
derive such constants in general. Instead, these would need to be obtained by, e.g., domain
knowledge, or tailored algorithms. As in previous approaches [18, 40, 2, 49, 51], we thus
resort to assuming that we are given this constant, offloading this (highly non-trivial) step.
Recall that Lipschitz continuity of the transition function implies Lipschitz continuity of the
value function (see [17, App. B.2.1]), but can potentially be checked more easily.

3.2 Assumptions Applied: Value Iteration Algorithm
Before we present our new algorithm, we explain how our assumptions allow us to lift VI
to the uncountable domain. Contrary to the finite state setting, we are unable to store
precise values for each state explicitly, since there are uncountably many states. Hence, the
algorithm exploits the Lipschitz-continuity of the value function as follows. Assume that we
know that the value of a state s is bounded from below by a value l, i.e. V(s) ≥ l. Then, by
Lipschitz-continuity of V , we know that the value of a state s′ is bounded by l−dS(s, s′) ·CS .
More generally, if we are given a finite set of states Sampled with correct lower bounds
L̂ : Sampled→ [0, 1], we can safely extend these values to the whole state space by

L(s) := maxs′∈Sampled

(
L̂(s′)− CS · dS(s, s′)

)
.

Since V(s) ≥ L̂(s) for all s ∈ Sampled, we have V(s) ≥ L(s) for all s ∈ S, i.e. L(·) is a valid
lower bound. We thus obtain a lower bound for all of the uncountably many states, described
symbolically as a combination of finitely many samples. See Figure 2 for an illustration.

This is sufficient to deal with Markov chains, but for MDPs we additionally need to take
care of the (potentially uncountably many) actions. Recall that value iteration updates
state values with the maximum over available actions, vn+1(s) = maxa∈Av(s) ∆(s, a)⟨vn⟩.

CONCUR 2022

11:10 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

0.5 1 1.5
0

0.2
0.4

S

Figure 2 Example of the function extension on the set [0, 2] with a Lipschitz constant of CS = 1.
Dots represent stored values in L̂, while the solid line represents the extrapolated function L. Note
that it is possible to have L̂(s) < L(s), as seen in the graph.

Algorithm 1 The Value Iteration (VI) Algorithm for MDPs with general state- and action-spaces.

Input: ApproxLower query with threshold ξ, satisfying A1–A4, B.VI and C.
Output: yes, if V(s0) > ξ.

1: Sampled← ∅, t← 1 ▷ Initialize
2: while Approx≤(L(s0), Precision(t)) ≤ ξ do
3: (s, a)← GetPair ▷ Sample state-action pair
4: if s ∈ T then L̂(s, ·)← 1 ▷ Handle target states
5: else L̂(s, a)← Approx≤(∆(s, a)⟨L⟩, Precision(t)) ▷ Update L̂
6: Sampled← Sampled ∪ {(s, a)}, t← t + 1
7: return yes

This is straightforward to compute when there are only finitely many actions, but in the
uncountable case obtaining L(s) = supa∈Av(s) L(s, a) is much more involved. We apply the
idea of Lipschitz continuity again, storing values for a set Sampled of state-action pairs
instead of only states. We bound the value of every state-action pair by

L(s, a) := max(s′,a′)∈Sampled

(
L̂(s′, a′)− d×((s, a), (s′, a′)) · C×

)
(3)

Observe that L(s, a) is computable and Lipschitz-continuous as well, so by Maximum
Approximation we can approximate the bound of any state, i.e. L(s) = maxa∈Av(s) L(s, a),
based on such a finite set of values assigned to state-action pairs. (Recall that Av(s) is
compact and L(s, a) continuous, hence the maximum is attained.) Consequently, we can
also under-approximate ∆(s, a)⟨L⟩ by Transition Approximation. To avoid clutter, we
omit the following two special cases in the definition of L(s, a): Firstly, if Sampled = ∅, we
naturally set L(s, a) = 0. Secondly, if all pairs (s′, a′) are too far away for a sensible estimate,
i.e. if Equation (3) was yielding L(s, a) < 0, we also set L(s, a) to 0.

We present VI for MDPs with general state- and action-spaces in Algorithm 1. It
depends on Precision(t), a sequence of precisions converging to zero in the limit, e.g.
Precision(t) = 1

t . The algorithm executes the main loop until the current approximation of
the lower bound of the initial state L(s0) = maxa∈Av(s0) L(s0, a) exceeds the given threshold
ξ. Inside the loop, the algorithm updates state-action pairs yielded by GetPair. For target
states, the lower bound is set to 1. Otherwise, we set the bound of the selected pair to an
approximation of the expected value of L under the corresponding transition. Here is the
crucial difference to VI in the finite setting: Instead of using Equation (2), we have to use
Equation (3) and Approx≤, the approximations that exist by assumption, see Section 3.1.1.
Since Precision(t) converges to zero, the approximations eventually get arbitrarily fine.
The procedure Precision(t) may be adapted heuristically in order to speed up computation.
For example, it may be beneficial to only approximate up to 0.01 precision at first to quickly
get a rough overview. We show that Algorithm 1 is correct, i.e. the stored values (i) are
lower bounds and (ii) converge to the true values in [17, App. E.1]. Here, we only provide a
sketch, illustrating the main steps.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:11

▶ Theorem 5. Algorithm 1 is correct under Assumptions A1–A4, B.VI, and C, i.e. it
outputs yes iff V(s) > ξ.

Proof sketch. First, we show that Lt(s) ≤ Lt+1(s) ≤ V(s) by simple induction on the step.
Initially, we have L1(s) = 0, obviously satisfying the condition. The updates in Lines 4 and 5
both keep correctness, i.e. Lt+1(s) ≤ V(s), proving the claim.

Since Lt is monotone as argued above, its limit for t→∞ is well defined, denoted by L∞.
By State-Action Sampling, the set of accumulation points of st contains all reachable
states S♢. We then prove that L∞ satisfies the fixed point equation Equation (1). For this, we
use the second part of the assumption on GetPair, namely that for every (s, a) ∈ S♢ ×Av

we get a converging subsequence (stk
, atk

) where additionally ∆(stk
, atk

) converges to ∆(s, a)
in total variation. Intuitively, since infinitely many updates occur infinitely close to (s, a), its
limit lower bound L∞(s, a) agrees with the limit of the updates values limk→∞ ∆(stk

, atk
)⟨Ltk

⟩.
Since L∞ satisfies the fixed point equation and is less or equal to the value function V, we
get the result, since V is the smallest fixed point. ◀

4 Converging Upper Bounds

In this section, we present the second set of assumptions, allowing us to additionally
compute converging upper bounds. With both lower and upper bounds, we can quantify the
progress of the algorithm and, in particular, terminate the computation once the bounds
are sufficiently close. Therefore, instead of only providing a semi-decision procedure for
reachability, this algorithm is able to determine the maximal reachability probability up to a
given precision. Thus, we obtain the first algorithm able to handle such general systems with
guarantees on its result. We again present our assumptions together with a discussion of their
necessity (Section 4.1), and then introduce the subsequent algorithm and prove its correctness
(Section 4.2). As expected, obtaining this additional information also requires additional
assumptions. On the other hand, quite surprisingly, we can use the additional information of
upper bounds to actually speed up the computation, as discussed in Section 5.3.

As before, our approach is inspired by algorithms for finite MDP, in this case by Bounded
Real-Time Dynamic Programming (BRTDP) [39, 9]. BRTDP uses the same update equations
as VI, but iterates both lower and upper bounds. A major contribution of [9] was to solve
the long standing open problem of how to deal with end components. These parts of the
state space prevent convergence of the upper bounds by introducing additional fixpoints of
Equation (1). We direct the interested reader to [17, App. A.2] for further details on BRTDP
and insights on the issue of end components. In the uncountable setting, these issues arise as
well alongside several other, related problems, which we discuss in Section 4.1.2.

4.1 Assumptions

The basic assumptions A1–A4 as well as Lipschitz continuity (Assumption C) remain
unchanged. For Maximum Approximation (A2) and Transition Approximation (A3),
we additionally require that we are able to over-approximate the respective results. The re-
spective assumptions are denoted by A5 and A6, respectively, and both over-approximations
by Approx≥. Further, we only require a weakened variant of State-Action Sampling,
now called Assumption B.BRTDP instead of Assumption B.VI. Finally, there is the new
Assumption D called Absorption, addressing the aforementioned issue of end components.

CONCUR 2022

11:12 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

4.1.1 B: Weaker Sampling (Asm. B.BRTDP)
We again assume a GetPair oracle, but, perhaps surprisingly, with weaker assumptions.
Instead of requiring it to return “all” actions, we only require it to yield “optimal” actions,
respective to a given state-action value function. We first introduce some notation. Intuitively,
we want GetPair to yield actions which are optimal with respect to the upper bounds
computed by the algorithm. However, these upper bounds potentially change after each
update. Thus, assume that fn : S × Av → [0, 1] is an arbitrary sequence of computable,
Lipschitz continuous, (point-wise) monotone decreasing functions, assigning a value to each
state-action pair, and set F = (f1, f2, . . .). For each state s ∈ S, set

AvF (s) := {a ∈ Av(s) | ∀ε > 0. ∀N ∈ N. ∃n > N. maxa′∈Av(s)fn(s, a′)− fn(s, a) < ε},

i.e. actions that infinitely often achieve values arbitrarily close to the optimum of fn. Let
S♢

F = {last(ϱ) | ϱ ∈ FPathsM,s0 ∩ (S × AvF)∗ × S} be the set of all states reachable using
these optimal actions.(4) Essentially, we require that GetPair samples densely in S♢

F ×AvF .
B.BRTDP: State-Action Sampling For any ε > 0, F as above, s ∈ S♢

F , and a ∈ AvF (s) we
have that GetPair a.s. eventually yields a pair (s′, a′) with d×((s, a), (s′, a′)) < ε and
δT V (∆(s, a), ∆(s′, a′)) < ε.

While this new variant may seem much more involved, it is weaker than its previous variant,
since AvF (s) ⊆ Av(s) for each s ∈ S and thus also S♢

F ⊆ S♢. As such, it also allows for
more practical optimizations, which we briefly discuss in Section 5.3.

4.1.2 D: Absorption
We present our most specific assumption. While it is not needed for correctness, we require it
for convergence of the upper bounds to the value and thus for termination of the algorithm.
D: Absorption There exists a known and decidable set R (called sink) such that V(s) = 0

for all s ∈ R. Moreover, for any s ∈ S and strategy π we have Prπ
M,s[♢(T ∪R)] = 1.

Intuitively, the assumption requires that for all strategies, the system will eventually reach a
target or a goal state; in other words: It is not possible to avoid both target and sink infinitely
long. Variants of this assumption are used in numerous settings: On MDP, it is similar to the
contraction assumption, e.g. [6, Chp. 4]; in stochastic game theory (a two-player extension
of MDP) it is called stopping, e.g. [13]; and, using terms from the theory of the stochastic
shortest path problem, we require all strategies to be proper, see e.g. [7].

This assumption already is important in the finite setting: There, Absorption is equiva-
lent to the absence of end components, which introduce multiple solutions of Equation (1).
Then, a VI algorithm computing upper bounds can be “stuck” at a greater fixpoint than the
value and thus does not converge [9, 19]. Any procedure using value iteration thus either
needs to exclude such cases or detect and treat them. Aside from end components, which are
the only issue in the finite setting, uncountable systems may feature other complex behaviour,
such as Zeno-like approaching the target closer and closer without reaching it.

Unfortunately, even just detecting these problems already is difficult. For the mentioned,
restricted setting of probabilistic programs, almost sure termination is Π2

0-complete [33]. Yet,
universal termination with goal set T ∪R is exactly what we require for Absorption. So,
already on a restricted setting (together with a given guess for R), we cannot decide whether
the assumption holds, let alone treat the underlying problems. Thus, we decide to exclude
this issue and delegate treatment to specialized approaches.

(4)As in Section 3, we simplify the definition of S♢
F slightly in order to avoid technical details.

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:13

Algorithm 2 The BRTDP algorithm for MDPs with general state- and action-spaces.

Input: ApproxBounds query with precision ε, satisfying A1–A6, B.BRTDP, C and D.
Output: ε-optimal values (l, u).

1: Sampled← ∅, t← 1 ▷ Initialize
2: while Approx≥

(
U(s0), Precision(t)

)
−Approx≤

(
L(s0), Precision(t)

)
≥ ε do

3: s, a← GetPair ▷ Sample stat-action pair
4: if s ∈ T then L̂(s, ·)← 1 ▷ Handle special cases
5: else if s ∈ R then Û(s, ·)← 0
6: else ▷ Update upper and lower bounds
7: Û(s, a)← Approx≥(∆(s, a)⟨U⟩, Precision(t))
8: L̂(s, a)← Approx≤(∆(s, a)⟨L⟩, Precision(t))
9: Sampled← Sampled ∪ {(s, a)}, t← t + 1

10: return (L(s0), U(s0))

In summary, while this assumption is indeed restrictive, it is the key point that allows us
to obtain convergent upper bounds and thus an anytime algorithm. As argued above, an
assumption of this kind seems to be necessary to obtain such an algorithm in this generality.

▶ Remark 6. These problems do not occur when considering finite horizon or discounted
properties, which are frequently used in practice. For details on treating finite horizon
objectives, see [17, App. C.1]. Discounted reachability with a factor of γ < 1 is equivalent to
normal reachability where at each step the system moves into a sink state with probability
(1− γ). Absorption is trivially satisfied and our methods are directly applicable.

4.2 Assumptions Applied: The Convergent Anytime Algorithm
With our assumptions in place, we are ready to present our adaptation of BRTDP to the
uncountable setting. Compared to VI, we now also store upper bounds, again using Lipschitz-
continuity to extrapolate the stored values. In particular, together with the definitions of
Equation (3) we additionally set

U(s, a) = min(s′,a′)∈Sampled

(
Û(s′, a′) + d×((s, a), (s′, a′)) · C×

)
.

We also set U(s, a) = 1 if either Sampled = ∅ or the above equation would yield U(s, a) > 1.
We present BRTDP in Algorithm 2. It is structurally similar to BRTDP in the finite

setting (see [17, App. A.2]). The major difference is given by the storage tables Û and L̂ used
to compute the current bounds U and L, again exploiting Lipschitz continuity. As before, the
central idea is to repeatedly update state-action pairs given GetPair. If GetPair yields
a state of the terminal sets T and R, we update the stored values directly. Otherwise, we
back-propagate the value of the selected pair by computing the expected value under this
transition. Moreover, we again require that Precision(t) converges to zero. Note that the
algorithm can easily be supplied with a-priori knowledge by initializing the upper and lower
bounds to non-trivial values. Moreover, in contrast to VI, this algorithm is an anytime
algorithm, i.e. it can at any time provide an approximate solution together with its precision.

Despite the algorithm being structurally similar to the finite variant of [9], the proof of
correctness unsurprisingly is more intricate due to the uncountable sets. We again provide
both a simplified proof sketch here and the full technical proof in [17, App. E.2].

CONCUR 2022

11:14 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

▶ Theorem 7. Algorithm 2 is correct under Assumptions A1–A6, B.BRTDP, C and D,
and terminates with probability 1.

Proof sketch. We again obtain monotonicity of the bounds, i.e. Lt(s, a) ≤ Lt+1(s, a) ≤
V(s, a) ≤ Ut+1(s, a) ≤ Ut(s, a) by induction on t, using completely analogous arguments.

By monotonicity, we also obtain well defined limits U∞ and L∞. Further, we define the
difference function Difft(s, a) = Ut(s, a)− Lt(s, a) together with its state based counterpart
Difft(s) and its limit Diff∞(s). We show that Diff∞(s0) = 0, proving convergence. To
this end, similar to the previous proof, we prove that Diff∞ satisfies a fixed point equation
on S♢

+ (see B.BRTDP), namely Diff∞(s) = ∆(s, a(s))⟨Diff∞⟩ where a(s) is a specially
chosen “optimal” action for each state satisfying Diff∞(s, a(s)) = Diff∞(s). Now, set
Diff∗ = maxs∈S♢

+
Diff∞(s) the maximal difference on S♢

+ and let S♢
∗ be the set of witnesses

obtaining Diff∗. Then, ∆(s, a(s), S♢
∗) = 1: If a part of the transition’s probability mass would

move to a region with smaller difference, an appropriate update of a pair close to (s, a(s))
would reduce its difference. Hence, the set of states S♢

∗ is a “stable” subset of the system
when following the actions a(s). By Absorption, we eventually have to reach either the
target T or the sink R starting from any state in S♢

∗ . Since Diff∞(s) = 0 for all (sampled)
states in T ∪R and Diff∞ satisfies the fixed point equation, we get that Diff∞(s) = 0 for all
states S♢

∗ and consequently Diff∞(s0) = 0. ◀

5 Discussion

5.1 Relation to Algorithms for Finite Systems and Discretization

Our algorithm directly generalizes the classical value iteration as well as BRTDP for finite
MDP by an appropriate choice of GetPair. In value iteration, it proceeds in round-robin
fashion, enumerating all state-action pairs. Note that the algorithm immediately uses the
results of previous updates, corresponding to the Gauß-Seidel variant of VI; to exactly obtain
synchronous value iteration, we would have to slightly modify the structure for saving the
values. In BRTDP, GetPair simulates paths through the MDP and we update only those
states encountered during the simulation.

Approaches based on discretization through, e.g., grids with increasing precision, es-
sentially reduce the uncountable state space to a finite one. This is also encompassed by
GetPair, e.g. by selecting the grid points in round robin or randomized fashion. However,
our algorithm has the following key advantages when compared to classical discretization.
Firstly, it avoids the need to grid the whole state space (typically into cells of regular sizes).
Secondly, in discretization, updating the value of one cell does not directly affect the value in
other cells; in contrast in our algorithm, knowledge about a state fluently propagates to other
areas (by using Equation (3)) without being hindered by (arbitrarily chosen) cell boundaries.

5.2 Extensions

We outline possible extensions and augmentations of our approach to showcase its versatility.

Discontinuities. Our Lipschitz assumption C actually is slightly stronger than required.
We first give an example of a system exhibiting discontinuities and then describe how our
approach can be modified to deal with it. More details are in [17, App. C.2].

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:15

▶ Example 8. Consider a robot navigating a terrain with cliffs, where falling down a cliff
immediately makes it impossible to reach the target. There, states which are barely on the
edge may still reach the goal with significant probability, while a small step to the side results
in falling down the cliff and zero probability of reaching the goal.

To solve this example, one could model the cliff as a steep but continuous slope, which would
make our approach still possible. Unfortunately, this might not be very practical, since the
Lipschitz constant then is quite large.

However, if we know of discontinuities, e.g. the location of cliffs in the terrain the robot
navigates, both our algorithms can be extended as follows: Instead of requiring V to be
continuous on the whole domain, we may assume that we are given a (finite, decidable)
partitioning of the state set S into several sets Si. We allow the value function to be
discontinuous along the boundaries of Si (the cliffs), as long as it remains Lipschitz-continuous
inside each Si. We only need to slightly modify the assumption on GetPair by requiring
that for any state-action pair (s, a) with s ∈ Si we eventually get a nearby, similarly behaving
state-action pair (s′, a′) of the same region, i.e. s′ ∈ Si. While computing the bounds of a
particular state-action pair, e.g. U(s, a), we first determine which partition Si the state s

belongs to and then only consider the stored values of states inside the region Si.

Linear Temporal Logic. In [9], the authors extend BRTDP to LTL queries [42]. Several
difficulties arise in the uncountable setting. For example, in order to prove liveness conditions,
we need to solve the repeated reachability problem, i.e. whether a particular set of states is
reached infinitely often. This is difficult even for restricted classes of uncountable systems,
and impossible in the general case. In particular, [9] relies on analysing end components,
which we already identified as an unresolved problem. We provide further insight in [17,
App. C.3]. Nevertheless, there is a straightforward extension of our approach to the subclass
of reach-avoid problems [50] (or constrained reachability [52]), see [17, App. C.4].

5.3 Implementation and Heuristics
For completeness, we implemented a prototype of our BRTDP algorithm to demonstrate
its effectiveness. See [17, App. D] for details and an evaluation on both a one- and two-
dimensional navigation model. Our implementation is barely optimized, with no delegation
to high-performance libraries. Yet, these non-trivial models are solved in reasonable time.
However, since we aim for assumptions that are as general as possible, one cannot expect
our generic approach perform on par with highly optimized tools. Our prototype serves as
a proof-of-concept and does not aim to be competitive with specialized approaches. We
highlight again that the goal of our paper is not to be practically efficient in a particular,
restricted setting, but rather to provide general assumptions and theoretical algorithms
applicable to all kinds of uncountable systems.

Aside from several possible optimizations concerning the concrete implementation, we
suggest two more general directions for heuristics:

Adaptive Lipschitz constants. As an example, suppose that a robot is navigating mostly
flat land close to its home, but more hilly terrain further away. The flat land has a smaller
Lipschitz constant than the hilly terrain, and thus here we can infer tighter bounds. More
generally, given a partitioning of the state space and local Lipschitz constants for every
subset, we use this local knowledge when computing L̂ and Û instead of using the global
Lipschitz constant, which is the maximum of all local ones. See [17, App. C.2] for details.

CONCUR 2022

11:16 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

GetPair-heuristics. In Section 3.1.2, we mentioned two simple implementations of GetPair.
Firstly, we can discretize both state and action space, yielding each state-action pair in the
discretization for a finite number of iterations, choosing a finer discretization constant, and
repeating the process until convergence. Assuming that we can sample all state-action pairs
in the discretization, this method eventually samples arbitrarily close to any state-action pair
in S ×Av and thus trivially satisfies the sampling assumption. This intuitively corresponds
to executing interval iteration [19] on the (increasingly refined) discretized systems. Note
that this approach completely disregards the reachability probability of certain states and
invests the same computational effort for all of them. In particular, it invests the same
amount of computational effort into regions which are only reached with probability 10−100

as in regions around the initial state s0.
Thus, a second approach is to sample a path through the system at random, following

random actions. This approach updates states roughly proportional to the probability of
being reached, which already in the finite setting yields dramatic speed-ups [34].

However, we can also use further information provided by the algorithm, namely the
upper bounds. As mentioned in [9], following “promising” actions with a large upper bound
proves to be beneficial, since actions with small upper bound likely are suboptimal. To extend
this idea to the general domain, we need to apply a bit of care. In particular, it might be
difficult to select exactly from the optimal set of actions, since already arg maxa∈Av(s) U(s, a)
might be very difficult to compute. Yet, it is sufficient to choose some constant ξ > 0 and
over-approximate the set of ξ-optimal actions in a given state, randomly selecting from this
set. This over-approximation can easily be performed by, for example, randomly sampling
the set of available actions Av(s) until we encounter an action close to the optimum (which
can approximate due to our assumptions). By generating paths only using these actions,
we combine the previous idea of focussing on “important” states (in terms of reachability)
with an additional focus on “promising” states (in terms of upper bounds). This way, the
algorithm learns from its experiences, using it as a guidance for future explorations.

More generally, we can easily apply more sophisticated learning approaches by interleaving
it with one of the above methods. For example, by following the learning approach with
probability ν and a “safe” method with probability 1− ν we still obtain a safe heuristic, since
the assumption only requires limit behaviour. As such, we can combine our approach with
existing, learning based algorithm by following their suggested heuristic and interleave it with
some sampling runs guided by the above ideas. In other words, this means that the learning
algorithm can focus on finding a reasonable solution quickly, which is then subsequently
verified by our approach, potentially improving the solution in areas where the learner is
performing suboptimally. On top, the (guaranteed) bounds identified by our algorithm can
be used as feedback to the learning algorithm, creating a positive feedback loop, where both
components improve each other’s behaviour and performance.

6 Conclusion

In this work, we have presented the first anytime algorithm to tackle the reachability
problem for MDP with uncountable state- and action-spaces, giving both correctness and
termination guarantees under general assumptions. The experimental evaluation of our
prototype implementation shows both promising results and room for improvements.

On the theoretical side, we conjecture that Assumption D: Absorption can be
weakened if we complement it with an automatic procedure that finds and treats problematic
parts of the state space of a certain kind, similar to the collapsing approach on finite MDP

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:17

[19, 9]. Note that as the general problem is undecidable, some form of Absorption will
remain necessary. On the practical side, we aim for a more sophisticated tool, applying our
theoretical foundation to the full range of MDP, including discrete discontinuities. Moreover,
we want to combine the tool with existing ways of identifying the Lipschitz constant.

References

1 Alessandro Abate, Saurabh Amin, Maria Prandini, John Lygeros, and Shankar Sas-
try. Computational approaches to reachability analysis of stochastic hybrid systems. In
HSCC, volume 4416 of Lecture Notes in Computer Science, pages 4–17. Springer, 2007.
doi:10.1007/978-3-540-71493-4_4.

2 Alessandro Abate, Joost-Pieter Katoen, John Lygeros, and Maria Prandini. Approximate
model checking of stochastic hybrid systems. Eur. J. Control, 16(6):624–641, 2010. doi:
10.3166/ejc.16.624-641.

3 Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry. Probabilistic reachability
and safety for controlled discrete time stochastic hybrid systems. Automatica, 44(11):2724–2734,
2008. doi:10.1016/j.automatica.2008.03.027.

4 Christel Baier, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wunderlich.
Ensuring the reliability of your model checker: Interval iteration for Markov decision processes.
In CAV (1), volume 10426 of Lecture Notes in Computer Science, pages 160–180. Springer,
2017.

5 Dimitri Bertsekas. Convergence of discretization procedures in dynamic programming. IEEE
Transactions on Automatic Control, 20(3):415–419, 1975.

6 Dimitri P Bertsekas and Steven Shreve. Stochastic optimal control: the discrete-time case,
1978.

7 Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems.
Math. Oper. Res., 16(3):580–595, 1991. doi:10.1287/moor.16.3.580.

8 Patrick Billingsley. Probability and Measure, volume 939. John Wiley & Sons, 2012.
9 Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech Forejt, Jan Kretínský,

Marta Z. Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision
processes using learning algorithms. In ATVA, volume 8837 of Lecture Notes in Computer
Science, pages 98–114. Springer, 2014. doi:10.1007/978-3-319-11936-6_8.

10 John L. Bresina, Richard Dearden, Nicolas Meuleau, Sailesh Ramakrishnan, David E. Smith,
and Richard Washington. Planning under continuous time and resource uncertainty: A
challenge for AI. CoRR, abs/1301.0559, 2013. arXiv:1301.0559.

11 Debasish Chatterjee, Eugenio Cinquemani, and John Lygeros. Maximizing the probability
of attaining a target prior to extinction. Nonlinear Analysis: Hybrid Systems, 5(2):367–381,
2011.

12 Krishnendu Chatterjee, Zuzana Kretínská, and Jan Kretínský. Unifying two views on multiple
mean-payoff objectives in Markov decision processes. Logical Methods in Computer Science,
13(2), 2017. doi:10.23638/LMCS-13(2:15)2017.

13 Anne Condon. The complexity of stochastic games. Inf. Comput., 96(2):203–224, 1992.
doi:10.1016/0890-5401(92)90048-K.

14 Zhengzhu Feng, Richard Dearden, Nicolas Meuleau, and Richard Washington. Dynamic
programming for structured continuous Markov decision problems. In UAI, pages 154–161.
AUAI Press, 2004. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&
smnu=2&article_id=1102&proceeding_id=20.

15 Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Automated
verification techniques for probabilistic systems. In SFM, volume 6659 of Lecture Notes in
Computer Science, pages 53–113. Springer, 2011. doi:10.1007/978-3-642-21455-4_3.

CONCUR 2022

https://doi.org/10.1007/978-3-540-71493-4_4
https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.3166/ejc.16.624-641
https://doi.org/10.1016/j.automatica.2008.03.027
https://doi.org/10.1287/moor.16.3.580
https://doi.org/10.1007/978-3-319-11936-6_8
http://arxiv.org/abs/1301.0559
https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.1016/0890-5401(92)90048-K
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1102&proceeding_id=20
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1102&proceeding_id=20
https://doi.org/10.1007/978-3-642-21455-4_3

11:18 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

16 Hongfei Fu and Krishnendu Chatterjee. Termination of nondeterministic probabilistic programs.
In VMCAI, volume 11388 of Lecture Notes in Computer Science, pages 468–490. Springer,
2019. doi:10.1007/978-3-030-11245-5_22.

17 Kush Grover, Jan Kretínský, Tobias Meggendorfer, and Maximilian Weininger. Anytime
guarantees for reachability in uncountable markov decision processes. CoRR, abs/2008.04824,
2020. arXiv:2008.04824.

18 Carlos Guestrin, Milos Hauskrecht, and Branislav Kveton. Solving factored MDPs
with continuous and discrete variables. In UAI, pages 235–242. AUAI Press,
2004. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&
article_id=1113&proceeding_id=20.

19 Serge Haddad and Benjamin Monmege. Interval iteration algorithm for MDPs and IMDPs.
Theor. Comput. Sci., 735:111–131, 2018. doi:10.1016/j.tcs.2016.12.003.

20 Sofie Haesaert, Sadegh Soudjani, and Alessandro Abate. Temporal logic control of general
Markov decision processes by approximate policy refinement. In ADHS, volume 51(16) of
IFAC-PapersOnLine, pages 73–78. Elsevier, 2018. doi:10.1016/j.ifacol.2018.08.013.

21 Sofie Haesaert, Sadegh Esmaeil Zadeh Soudjani, and Alessandro Abate. Verification of general
Markov decision processes by approximate similarity relations and policy refinement. SIAM J.
Control and Optimization, 55(4):2333–2367, 2017. doi:10.1137/16M1079397.

22 Arnd Hartmanns and Benjamin Lucien Kaminski. Optimistic value iteration. In CAV (2),
volume 12225 of Lecture Notes in Computer Science, pages 488–511. Springer, 2020.

23 Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained
neural fitted q-iteration. In AAMAS, pages 2012–2014. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2019. URL: http://dl.acm.org/citation.cfm?
id=3331994.

24 Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Certified reinforcement
learning with logic guidance. CoRR, abs/1902.00778, 2019. arXiv:1902.00778.

25 William B. Haskell, Rahul Jain, Hiteshi Sharma, and Pengqian Yu. A universal empirical
dynamic programming algorithm for continuous state MDPs. IEEE Trans. Automat. Contr.,
65(1):115–129, 2020. doi:10.1109/TAC.2019.2907414.

26 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? In STOC, pages 373–382. ACM, 1995.

27 Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable about
hybrid automata? J. Comput. Syst. Sci., 57(1):94–124, 1998. doi:10.1006/jcss.1998.1581.

28 Onésimo Hernández-Lerma and Jean B Lasserre. Discrete-time Markov control processes:
basic optimality criteria, volume 30. Springer Science & Business Media, 2012.

29 Ronald A Howard. Dynamic programming and Markov processes. John Wiley, 1960.
30 Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. New approaches for almost-sure

termination of probabilistic programs. In Program. Lang. and Sys., volume 11275 of Lecture
Notes in Computer Science, pages 181–201. Springer, 2018. doi:10.1007/978-3-030-02768-1_
11.

31 Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady.
Modular verification for almost-sure termination of probabilistic programs. Proc. ACM
Program. Lang., 3(OOPSLA):129:1–129:29, 2019. doi:10.1145/3360555.

32 Manfred Jaeger, Peter Gjøl Jensen, Kim Guldstrand Larsen, Axel Legay, Sean Sedwards, and
Jakob Haahr Taankvist. Teaching stratego to play ball: Optimal synthesis for continuous
space MDPs. In ATVA, volume 11781 of Lecture Notes in Computer Science, pages 81–97.
Springer, 2019. doi:10.1007/978-3-030-31784-3_5.

33 Benjamin Lucien Kaminski and Joost-Pieter Katoen. On the hardness of almost-sure termina-
tion. In MFCS, volume 9234 of Lecture Notes in Computer Science, pages 307–318. Springer,
2015. doi:10.1007/978-3-662-48057-1_24.

34 Jan Kretínský and Tobias Meggendorfer. Of cores: A partial-exploration framework for Markov
decision processes. In CONCUR, volume 140 of LIPIcs, pages 5:1–5:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.5.

https://doi.org/10.1007/978-3-030-11245-5_22
http://arxiv.org/abs/2008.04824
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1113&proceeding_id=20
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1113&proceeding_id=20
https://doi.org/10.1016/j.tcs.2016.12.003
https://doi.org/10.1016/j.ifacol.2018.08.013
https://doi.org/10.1137/16M1079397
http://dl.acm.org/citation.cfm?id=3331994
http://dl.acm.org/citation.cfm?id=3331994
http://arxiv.org/abs/1902.00778
https://doi.org/10.1109/TAC.2019.2907414
https://doi.org/10.1006/jcss.1998.1581
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1145/3360555
https://doi.org/10.1007/978-3-030-31784-3_5
https://doi.org/10.1007/978-3-662-48057-1_24
https://doi.org/10.4230/LIPIcs.CONCUR.2019.5

K. Grover, J. Křetínský, T. Meggendorfer, and M. Weininger 11:19

35 Ratan Lal and Pavithra Prabhakar. Bounded verification of reachability of probabilistic
hybrid systems. In QEST, volume 11024 of Lecture Notes in Computer Science, pages 240–256.
Springer, 2018. doi:10.1007/978-3-319-99154-2_15.

36 Bernard F Lamond and Abdeslem Boukhtouta. Water reservoir applications of Markov decision
processes. In Handbook of Markov decision processes, pages 537–558. Springer, 2002.

37 Lihong Li and Michael L. Littman. Lazy approximation for solving continuous finite-horizon
MDPs. In AAAI, pages 1175–1180. AAAI Press / The MIT Press, 2005. URL: http:
//www.aaai.org/Library/AAAI/2005/aaai05-186.php.

38 Masoud Mahootchi. Storage system management using reinforcement learning techniques and
nonlinear models. PhD thesis, University of Waterloo, 2009.

39 H. Brendan McMahan, Maxim Likhachev, and Geoffrey J. Gordon. Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In ICML,
volume 119 of ACM International Conference Proceeding Series, pages 569–576. ACM, 2005.
doi:10.1145/1102351.1102423.

40 Francisco S. Melo, Sean P. Meyn, and M. Isabel Ribeiro. An analysis of reinforcement
learning with function approximation. In ICML, volume 307 of ACM International Conference
Proceeding Series, pages 664–671. ACM, 2008. doi:10.1145/1390156.1390240.

41 Goran Peskir and Albert Shiryaev. Optimal stopping and free-boundary problems. Springer,
2006.

42 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

43 Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley Series in Probability and Statistics. Wiley, 1994. doi:10.1002/9780470316887.

44 Tim Quatmann and Joost-Pieter Katoen. Sound value iteration. In CAV (1), volume 10981
of Lecture Notes in Computer Science, pages 643–661. Springer, 2018.

45 Scott Sanner, Karina Valdivia Delgado, and Leliane Nunes de Barros. Symbolic dynamic
programming for discrete and continuous state MDPs. In UAI, pages 643–652. AUAI
Press, 2011. URL: https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=
2&article_id=2223&proceeding_id=27.

46 Claude Elwood Shannon. Communication in the presence of noise. Proceedings of the IRE,
37(1):10–21, 1949.

47 Hiteshi Sharma, Mehdi Jafarnia-Jahromi, and Rahul Jain. Approximate relative value learning
for average-reward continuous state MDPs. In UAI, page 341. AUAI Press, 2019. URL:
http://auai.org/uai2019/proceedings/papers/341.pdf.

48 Fedor Shmarov and Paolo Zuliani. Probreach: verified probabilistic delta-reachability for
stochastic hybrid systems. In HSCC, pages 134–139. ACM, 2015.

49 Sadegh Esmaeil Zadeh Soudjani and Alessandro Abate. Adaptive gridding for abstraction and
verification of stochastic hybrid systems. In QEST, pages 59–68. IEEE Computer Society,
2011. doi:10.1109/QEST.2011.16.

50 Sean Summers and John Lygeros. Verification of discrete time stochastic hybrid systems: A
stochastic reach-avoid decision problem. Automatica, 46(12):1951–1961, 2010. doi:10.1016/j.
automatica.2010.08.006.

51 Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro Abate. Quantitative
automata-based controller synthesis for non-autonomous stochastic hybrid systems. In HSCC,
pages 293–302. ACM, 2013. doi:10.1145/2461328.2461373.

52 Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro Abate. Quantitative
model-checking of controlled discrete-time Markov processes. Inf. Comput., 253:1–35, 2017.
doi:10.1016/j.ic.2016.11.006.

53 Hado van Hasselt. Reinforcement learning in continuous state and action spaces. In Rein-
forcement Learning, volume 12 of Adaptation, Learning, and Optimization, pages 207–251.
Springer, 2012. doi:10.1007/978-3-642-27645-3_7.

CONCUR 2022

https://doi.org/10.1007/978-3-319-99154-2_15
http://www.aaai.org/Library/AAAI/2005/aaai05-186.php
http://www.aaai.org/Library/AAAI/2005/aaai05-186.php
https://doi.org/10.1145/1102351.1102423
https://doi.org/10.1145/1390156.1390240
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1002/9780470316887
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2223&proceeding_id=27
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2223&proceeding_id=27
http://auai.org/uai2019/proceedings/papers/341.pdf
https://doi.org/10.1109/QEST.2011.16
https://doi.org/10.1016/j.automatica.2010.08.006
https://doi.org/10.1016/j.automatica.2010.08.006
https://doi.org/10.1145/2461328.2461373
https://doi.org/10.1016/j.ic.2016.11.006
https://doi.org/10.1007/978-3-642-27645-3_7

11:20 Anytime Guarantees for Reachability in Uncountable Markov Decision Processes

54 Luis Gustavo Rocha Vianna, Scott Sanner, and Leliane Nunes de Barros. Continuous real time
dynamic programming for discrete and continuous state MDPs. In 2014 Brazilian Conference
on Intelligent Systems, BRACIS 2014, Sao Paulo, Brazil, October 18-22, 2014, pages 134–139.
IEEE Computer Society, 2014. doi:10.1109/BRACIS.2014.34.

https://doi.org/10.1109/BRACIS.2014.34

	1 Introduction
	2 Preliminaries
	3 Converging Lower Bounds
	3.1 Assumptions
	3.1.1 A: Basic Assumptions (Asm. A1-A4)
	3.1.2 B: Sampling (Asm. B.VI)
	3.1.3 C: Lipschitz Continuity

	3.2 Assumptions Applied: Value Iteration Algorithm

	4 Converging Upper Bounds
	4.1 Assumptions
	4.1.1 B: Weaker Sampling (Asm. B.BRTDP)
	4.1.2 D: Absorption

	4.2 Assumptions Applied: The Convergent Anytime Algorithm

	5 Discussion
	5.1 Relation to Algorithms for Finite Systems and Discretization
	5.2 Extensions
	5.3 Implementation and Heuristics

	6 Conclusion

