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Abstract
Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. However,
many DP algorithms have to fill in large DP tables, represented by two-dimensional arrays, which
causes at least quadratic running times and space usages. This has led to the development of
improved algorithms for special cases when the DPs satisfy additional properties like, e.g., the Monge
property or total monotonicity.

In this paper, we consider a new condition which assumes (among some other technical as-
sumptions) that the rows of the DP table are monotone. Under this assumption, we introduce
a novel data structure for computing (1 + ϵ)-approximate DP solutions in near-linear time and
space in the static setting, and with polylogarithmic update times when the DP entries change
dynamically. To the best of our knowledge, our new condition is incomparable to previous conditions
and is the first which allows to derive dynamic algorithms based on existing DPs. Instead of using
two-dimensional arrays to store the DP tables, we store the rows of the DP tables using monotone
piecewise constant functions. This allows us to store length-n DP table rows with entries in [0, W ]
using only polylog(n, W ) bits, and to perform operations, such as (min, +)-convolution or rounding,
on these functions in polylogarithmic time.

We further present several applications of our data structure. For bicriteria versions of k-balanced
graph partitioning and simultaneous source location, we obtain the first dynamic algorithms with
subpolynomial update times, as well as the first static algorithms using only near-linear time and
space. Additionally, we obtain the currently fastest algorithm for fully dynamic knapsack.
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1 Introduction

Dynamic programming (DP) is one of the fundamental paradigms in algorithm design. In the
DP paradigm, a complex problem is broken up into simpler subproblems and then the original
problem is solved by combining the solutions for the subproblems. One of the drawbacks
of DP algorithms is that in practice they are often slow and memory-intensive: for inputs
of size n their running time is typically Ω(n2), and when the DP table is stored using a
two-dimensional array they also need space Ω(n2).

This motivated researchers to develop more efficient DP algorithms with near-linear time
and space. Indeed, such improvements are possible under a wide range of conditions on the
DP tables [1, 4, 6, 8, 12, 16, 20–22,24], such as the Monge property, total monotonicity, certain
convexity and concavity properties, or the Knuth–Yao quadrangle-inequality; we discuss
these properties in more detail in the full version [17]. When these properties hold, typically
one does not have to compute the entire DP table but instead only has to compute O(n)
DP entries which reveal the optimal solution.

However, we are not aware of any property for DPs that yields efficient dynamic algorithms,
i.e., algorithms that provide efficient update operations when the input changes. One might
find this somewhat surprising because, from a conceptual point of view, many dynamic
algorithms hierarchically partition the input and maintain solutions for subproblems; this
is quite similar to how many DP schemes are derived. Indeed, this conceptual similarity is
exploited by many “hand-crafted” algorithms (e.g., [9,18]) which start with a DP scheme and
then show how to maintain it dynamically under input changes. However, such algorithms
are often quite involved and their analysis often requires sophisticated charging schemes.

Hence, it is natural to ask whether there exists a general criterion which, if satisfied,
guarantees that a given DP can be updated efficiently under input changes.

Our Contributions. The main contribution of our paper is the introduction of a general
criterion which allows to approximate all entries of a DP table up to a factor of 1 + ϵ. We
show that if our criterion is satisfied by a DP (with suitable parameters) then:

In the dynamic setting, we can maintain a (1 + ϵ)-approximation of the entire DP table
using polylogarithmic update time (see Theorem 10).
In the static setting, we can compute a (1+ϵ)-approximation of the DP table in near-linear
time and space (see Theorem 9).

Our criterion essentially asserts that the rows of the DP tables should be monotone and
that the dependency graph of the DP should be a DAG, where the sets of reachable nodes
are small, among some other technical conditions (see Definition 8 for the formal definition).
Our criterion is incomparable to the Monge property, total monotonicity or other criteria
from the literature (see the full version [17] for a more detailed discussion).

To obtain our results, we introduce a novel data structure for maintaining DPs which
satisfy our criterion. Our data structure is based on the idea of storing the DP rows using
monotone piecewise constant functions. The monotonicity of the DP rows will allow us to
ensure that our functions only contain very few pieces. Then we show that we can perform
operations on such functions very efficiently, with the running times only depending on the
number of pieces. This is crucial because it allows us to compute an entire (1+δ)-approximate
DP row in time just polylog(W ), even when the DP has Ω(n) columns, assuming that the
DP entries are from [0, W ]. Note that if W ≤ poly(n) then this decreases the running time
for computing an entire row from Ω(n) to just polylog(n). Additionally, this also allows us
to store each row using only polylog(W ) space rather than storing it in an array of size Ω(n).
We present our criterion and the details of our data structure in Section 2.
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As applications of our data structure, we obtain new static and dynamic algorithms for
various problems. We present new algorithms for k-balanced partitioning, simultaneous source
location and for fully dynamic knapsack. Next, we describe these results in detail; we discuss
more related work in the full version [17].

Our Results for Fully Dynamic 0-1 Knapsack. First, we provide a novel algorithm for
fully dynamic 0-1 knapsack. In this problem, the input consists of a knapsack size B ∈ R+
and a set of n items, where each item i ∈ [n] has a weight wi ∈ R+ and a price pi ∈ [1, ∞).
The goal is to find a set of items I that maximizes

∑
i∈I pi while satisfying the constraint∑

i∈I wi ≤ B. In the dynamic version of the problem, items are inserted and deleted. More
concretely, we consider the following update operations: insert(pi, wi), in which the price
and weight of item i are set to pi ∈ [1, ∞) and wi ∈ R+, respectively, and delete(i), where
item i is removed from the set of items.

Our main result is a dynamic (1 + ϵ)-approximation algorithm with worst-case update
time ϵ−2 · log2(nW ) · polylog(1/ϵ, log(nW )), where W =

∑
i pi. Our algorithm improves

upon a recent result by Eberle, Megow, Nölke, Simon and Wiese [11] that also maintained a
(1 + ϵ)-approximate solution with update time O(ϵ−9 log4(nW )).

▶ Theorem 1. Let ϵ > 0. There exists an algorithm for fully dynamic knapsack that maintains
a (1 + ϵ)-approximate solution with worst-case update time 1

ϵ2 log2(nW ) polylog
( 1

ϵ log(nW )
)
.

We will also show that we can return the maintained solution I in time O(|I|) and that
we can answer queries whether a given item i ∈ [n] is contained in I in time O(1). This
matches the query times of [11].

To obtain this result, we first derive a slightly slower algorithm as a simple application of
our data structure for maintaining DPs with monotone rows. Then we use this algorithm
together with additional ideas to obtain the theorem (see Section 3).

Since our dynamic algorithm is based on a DP, it is possible that the solution changes
significantly after each update. However, in the full version [17] we prove a lower bound,
showing that every dynamic (1 + ϵ)-approximation algorithm for knapsack must either make
a lot of changes to the solution after each update or store many (potentially substantially
different) solutions between which it can switch after each update. This implies that
maintaining a single explicit solution with polylogarithmic update times is not possible and
the property of our algorithm cannot be avoided.

Our Results for k-Balanced Partitioning. Our most technically challenging result is for
k-balanced graph partitioning. In this problem, the input consists of an integer k and an
undirected weighted graph G = (V, E, cap) with n vertices, where cap : E → W∞ is a
weight function on the edges with weights in W∞ := [1, W ] ∪ {0, ∞}. The goal is to find
a partition V1, . . . , Vk of the vertices such that |Vi| ≤ ⌈|V | /k⌉ for all i and the weight of
the edges which are cut by the partition is minimized. More formally, we want to minimize
cut(V1, . . . , Vk) :=

∑k
i=1

∑
{u,v}∈E∩(Vi×(V \Vi)) cap(u, v).

We note that this problem is highly relevant in theory [3,13–15] and in practice [5,10,19,23],
where algorithms for balanced graph partitioning are often used as a preprocessing step
for large scale data analytics. Obtaining practical improvements for this problem is of
considerable interest in applied communities [5] and, for instance, the popular METIS
heuristic [19] has 1,400+ citations.

Since the above problem is NP-hard to approximate within a factor of n1−ϵ for any ϵ > 0
even on trees [15], we consider bicriteria approximation algorithms. Given an undirected
weighted graph G = (V, E, cap), a partition V1, . . . , Vk of V is a bicriteria (α, β)-approximate
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36:4 Dynamic Maintenance of Monotone Dynamic Programs and Applications

solution if |Vi| ≤ β⌈n/k⌉ for all i and cut(V1, . . . , Vk) ≤ α · cut(OPT), where OPT =
(V ∗

1 , . . . , V ∗
k ) is the optimal solution with |V ∗

i | ≤ ⌈n/k⌉ for all i. We note that the previously
mentioned hardness result implies that any algorithm that computes a bicriteria (α, 1 + ϵ)-
approximation for any α ≥ 1 and whose running time depends only polynomially on n, must
have a running time depending super-polynomially on 1/ϵ, unless P = NP.1

Our main result for the static setting is presented in the following theorem. It gives the
first algorithm with polylogarithmic approximation ratio for this problem with near-linear
running time. More concretely, we compute a bicriteria (O(log4 n), 1 + ϵ)-approximation in
near-linear time for constant k. For comparison, the best approximation ratio achieved by
a polynomial-time algorithm [15] is a bicriteria (O(log1.5 n log log n), 1 + ϵ)-approximation
with running time Ω(n4).

▶ Theorem 2. Let ϵ > 0 and k ∈ N. Let G = (V, E, cap) be an undirected weighted graph
with n vertices and m edges and edge weights in W∞. Then for the k-balanced partition
problem we can compute:

An (O(log4 n), 1 + ϵ)-approximation in time (k/ϵ)O(log(1/ϵ)/ϵ) · O′(m · log2(W )) +
(k/ϵ)O(1/ϵ2).2
A (1 + ϵ, 1 + ϵ)-approximation in time (k/ϵ)O(log(1/ϵ)/ϵ) · O′(n · h2 · log2(W )) + (k/ϵ)O(1/ϵ2)

if G is a tree of height h.
A (1, 1 + ϵ)-approximation in time (k/ϵ)O(log(1/ϵ)/ϵ) · O′(n4 · log2(W )) + (k/ϵ)O(1/ϵ2) if G

is a tree.
Furthermore, we extend our results to the dynamic setting in which the graph G is under-

going edge insertions and deletions. In the following theorem, we present the first dynamic
algorithm with subpolynomial update time for this problem. We again consider bicriteria
approximation algorithms with update and query times depending super-polynomially on 1/ϵ;
this cannot be avoided since if we computed (α, 1)-approximations for any α ≥ 1 or if we
had a polynomial dependency on 1/ϵ, then the hardness result from above implies that our
update and query times must be super-polynomial in n (unless P = NP).

▶ Theorem 3. Let ϵ > 0 and k ∈ N. Let G = (V, E, cap) be an undirected weighted graph
with n vertices that is undergoing edge insertions and deletions. Then for the k-balanced
partition problem we can maintain:

An (no(1), 1 + ϵ)-approximate solution with amortized update time (k/ϵ)O(log(1/ϵ)/ϵ) · no(1) ·
O′(log2(W )) and query time (k/ϵ)O(1/ϵ2) if G is unweighted.
A (1 + ϵ, 1 + ϵ)-approximate solution with worst-case update time (k/ϵ)O(log(1/ϵ)/ϵ) · O′(h3 ·
log2(W )) and query time (k/ϵ)O(1/ϵ2) if G is a tree of height h.
Our approach is inspired by the DP of Feldmann and Foschini [15]. However, the DP

rows in the algorithm of [15] are not monotone and, hence, their DP cannot directly be sped
up by our approach. Therefore, we first simplify and generalize the exact DP of Feldmann
and Foschini to make it monotone. The DP we obtain eventually is still slightly too complex
to fit into our black-box framework, but we show that the ideas from our framework can still
be used to obtain the result.

Again, it is possible that the solution maintained by our algorithm changes substantially
after each update. Similar to above we show in the full version [17] that this cannot be
avoided when considering subpolynomial update times.

1 If we had an algorithm that computes a bicriteria (α, 1 + ϵ)-approximation in time poly(n, 1/ϵ) then we
could set ϵ = 1/(2n) which implies that all partitions have size ⌈n/k⌉. Thus we can compute a bicriteria
(α, 1)-approximate solution in time poly(n) which contradicts the hardness result, unless P = NP.

2 We use the notation O′(·) to suppress factors in poly(log n, k, log(1/ϵ), log log(W )).
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Our Results for Simultaneous Source Location. Next, we provide efficient algorithms
for the simultaneous source location problem by Andreev, Garrod, Golovin, Maggs and
Meyerson [2]. In this problem, the input consists of an undirected graph G = (V, E, cap, d)
with a capacity function cap: E → W∞ on the edges and a demand function d : V → W∞ on
the vertices. The goal is to select a minimum set S ⊆ V of sources that can simultaneously
supply all vertex demands. More concretely, a set of sources S is feasible if there exists a
flow from the vertices in S that supplies demand d(v) to all vertices v ∈ V and that does
not violate the capacity constraints on the edges. The objective is to find a feasible set of
sources of minimum size.

We will again consider bicriteria approximation algorithms. Let S∗ be the optimal
solution for the simultaneous source location problem. Then we say that S is a bicriteria
(α, β)-approximate solution if |S| ≤ α |S∗| and if S is a feasible set of sources when all edge
capacities are increased by a factor β.

The following theorem summarizes our main results. It presents the first near-linear time
algorithm for simultaneous source location that computes a (1+ϵ)-approximate solution while
only exceeding the edge capacities by a O(log4 n) factor. In comparison, the best algorithm
with arbitrary polynomial processing time computes a bicriteria (1, O(log2 n log log n))-
approximate solution in time Ω(n3) [2].

▶ Theorem 4. Let ϵ > 0. Let G = (V, E, cap, d) be an undirected weighted graph with
n vertices and m edges. Then for the simultaneous source location problem we can compute:

A (1 + ϵ, O(log4(n)))-approximation in time3 Õ( 1
ϵ2 m).

A (1 + ϵ, 1)-approximation in time Õ( 1
ϵ2 h2 · n) if G is a tree of height h.

Next, we turn to dynamic versions of the problem. We consider the following update oper-
ations: SetDemand(v, d): updates the demand of vertex v to d(v) = d, SetCapacity((u, v), c):
updates the capacity of the edge (u, v) to cap(u, v) = c, Remove(u, v): removes the edge
(u, v), Insert((u, v), c): inserts the edge (u, v) with capacity cap(u, v) = c.

We obtain the first dynamic algorithms with subpolynomial update times for this problem,
which exceed the edge capacities only by a small subpolynomial factor.

▶ Theorem 5. Let ϵ > 0. Let G = (V, E, cap, d) be a graph with n vertices and m edges that
is undergoing the update operations given above. Then for the simultaneous source location
problem we can maintain:

A (1 + ϵ, no(1))-approximation with amortized update time no(1)/ϵ2 and preprocessing time
O(n2/ϵ2) if all edge capacities are 1.
A (1+ϵ, O(log4(n)))-approximation with worst-case update time Õ(1/ϵ2) and preprocessing
time Õ(m) if we only allow the update operation SetDemand(v, d).
A (1 + ϵ, O(log2(n) log log(n)))-approximation with worst-case update time Õ(1/ϵ2) and
preprocessing time poly(n) if we only allow the update operation SetDemand(v, d).
A (1 + ϵ, 1)-approximate solution with worst-case update time Õ(h3/ϵ2) and preprocessing
time O(n2/ϵ2) if G is a tree of height h.
To obtain these results, we use a similar DP approach as the one used by Andreev et al. [2].

Interestingly, the DP function that we use essentially computes the inverse function of the
one used by Andreev et al. After making these changes, the theorems become straightforward
applications of our data structure for maintaining DPs with monotone rows.

3 We write Õ(f(n, ϵ, W )) to denote running times of the form f(n, ϵ, W ) · polylog(n, ϵ, log W ).

STACS 2023



36:6 Dynamic Maintenance of Monotone Dynamic Programs and Applications

Organization of Our Paper. In Section 2 we provide the details of our condition for DPs
with monotone rows. In Section 3 we present our results for 0-1 Knapsack which nicely
illustrate the applicability of our black-box framework from Section 2. All other results,
including full proofs and a technical overview of our more involved results for k-Balanced
Graph Partitioning and for Simultaneous Source Location are presented in the full version [17].

Open Problems and Future Work. In the future, it will be interesting to use our framework
to obtain more dynamic algorithms based on existing DPs. We believe that this is interesting
both in theory and in practice. Furthermore, it is intriguing to ask whether our criterion
from Definition 8 can be generalized. Indeed, our approach was built around approximating
monotone functions using piecewise constant functions, which can be viewed as piecewiese
degree-0 polynomials. An interesting question is whether we can obtain a more general
criterion if we approximate DP rows using pieces of higher-degree polynomials, such as splines.
Results in this direction might be possible; for example, in the full version [17] we give a side
result for the case when the functions contain a small number of non-monotonicities and
derive a dynamic algorithm for the ℓ∞-necklace problem.

2 Maintaining Monotone Dynamic Programming Tables

In this section, we introduce our notion of DP tables with monotone rows and the additional
technical assumptions that we are making. Then we present our data structure for efficiently
maintaining DP tables that satisfy our assumptions. In our data structure, we will store the
rows of the DP using piecewise constant functions, which we will introduce first.

List Representation of Piecewise Constant Functions. Let t ∈ R, W ∈ [1, ∞) and set
W∞ := {0} ∪ [1, W ] ∪ {+∞}. A function f : [0, t] → W∞ is piecewise constant with p pieces
if there exist real numbers 0 = x0 < x1 < x2 < · · · < xp = t and numbers y1, . . . , yp ∈ W∞
such that on each interval [xi−1, xi), f is constant and has value yi. More formally, for all
i ∈ {1, . . . , p} we have f(x) = yi for all real numbers x ∈ [xi−1, xi) and f(xp) = yp. Note
that we need the condition f(xp) = yp such that f is defined on the whole domain.

In the list representation of a piecewise constant function f , we use a doubly linked list
to store the pairs (x1, y1), . . . , (xp, yp). We also store the pairs (xi, yi) in a binary search tree
that is sorted by the xi-values, which allows us to compute a function value f(x) in time
O(log p) for all x ∈ [0, t]. In the following, we assume that all piecewise constant functions
we consider are stored in the list representation with an additional binary search tree.

One of the main observations we use is that many operations on piecewise constant
functions are efficient if there are only few pieces. The following lemma shows that several
operations can be computed in time almost linear in the number of pieces of the function,
rather than in time depending on the size of the domain of f .4 For δ > 0 and y ∈ W∞, we
write ⌈y⌉1+δ to denote the smallest power of 1+δ that is at least y, i.e., ⌈y⌉1+δ = min{(1+δ)i :
(1 + δ)i ≥ y, i ∈ N}; we follow the convention that ⌈0⌉1+δ = 0 and ⌈∞⌉1+δ = ∞.

▶ Lemma 6. Let t ∈ R and c ∈ R+. Let g, h : [0, t] → W∞ be monotone and piecewise
constant functions with pg and ph pieces, resp. Then we can compute the following functions:

fmin(x) := min{g(x), h(x)} with at most pg + ph pieces in time O((pg + ph) log(pg + ph));

4 We note that computing the operations themselves can be done in linear time. However, since we also
store the pairs (xi, yi) of the list representations in a binary search tree, the running times in the lemma
include an additional logarithmic factor.
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fshift(x) := g(x − c) for x ≥ c, fshift(x) = g(0) for x < c with at most pg pieces in time
O(pg log(pg));
fadd(x) := g(x) + h(x), with at most pg + ph pieces in time O((pg + ph) log(pg + ph));
fround(x) := ⌈g(x)⌉1+δ for δ > 0 with at most 2+⌈log1+δ(W )⌉ pieces in time O(pg log(pg)).

Note that if we set f̃ = ⌈f⌉1+δ then f̃ is a (1 + δ)-approximation of f in the following sense.
For α > 1, we say that a function f̃ : [0, t] → W∞ α-approximates a function f : [0, t] → W∞
if for all x ∈ [0, t],

f(x) ≤ f̃(x) ≤ α · f(x). (1)

Furthermore, if f is monotone then the rounded function f̃ contains at most O(log1+δ(W ))
pieces. This will be crucial later because this ensures that, if we perform a single rounding
operation for each row of our DP table, the resulting function will have few pieces and
operations on the function can be performed efficiently.

Next, consider functions f1, f2 : [0, t] → W∞. A function f : [0, t] → W∞ is the (min, +)-
convolution f1 ⊕ f2 if for all x ∈ [0, t], f(x) = (f1 ⊕ f2)(x) := minx̄∈[0,x] f1(x̄) + f2(x − x̄).
Such convolutions are highly useful for the computation of many DPs. The following lemma
shows that we can efficiently compute the convolution of piecewise constant functions.

▶ Lemma 7. Let f1, f2 : [0, t] → W∞ be piecewise constant functions with at most p pieces
and assume that one of them is monotonically decreasing. Then we can compute the function
f : [0, t] → W∞ with f = f1 ⊕ f2 in time O(p2 log p) and f is a piecewise constant function
with O(p2) pieces. Furthermore, after computing f , for any x ∈ [0, t] we can return a value
x̄∗ ∈ [0, t] such that f(x) = f1(x̄∗) + f2(x − x̄∗) in time O(log p).

Now observe that Lemma 7 has a drawback for our approach: The number of pieces (i.e.,
the complexity of the functions) grows quadratically with every application. An important
property which can be used to mitigate this issue is that the result of the convolution is
still a monotone function, as we show in the full version [17]. Later, to keep the number of
pieces in our functions small, after each convolution that we perform via Lemma 7 (and that
might grow the number of pieces quadratically), we perform a rounding operation ⌈·⌉1+δ

(see Lemma 6). This loses a factor 1 + δ in approximation but guarantees that the resulting
function has O(log1+δ(W )) pieces. This will be crucial to ensure that our functions have
only few pieces.

Maintaining DPs With Monotone Rows. Next, we introduce our DP scheme formally. We
consider DP tables with a finite set of rows I and a set of columns J , with entries taking
values in W∞. We will consider DP tables as functions DP : I × J → W∞.5 Further, we will
associate the i’th row of the DP with a function DP(i, ·) : J → W∞, and we store each such
function DP(i, ·) using piecewise constant functions from above.

Next, we introduce the dependency graph for the rows of our DP. More concretely, the
dependency graph D = (I, ED) is a directed graph that has the rows I as vertices and a
directed edge (i′, i) between two rows if for some columns j, j′ ∈ J the entry DP(i′, j′) is
required to compute DP(i, j). We write In(i) = {i′ ∈ I : (i′, i) ∈ ED} to denote the set of
rows i′ that are required to compute row i. For the rest of the paper we will assume that the
dependency graph is a DAG, which is the case for all applications that we study. We will
also write Reach(i) to denote the set of vertices that are reachable from row i in D.

5 Even though our definition may suggest that we only consider two-dimensional DP tables, we do not
require an order on I and we allow I to be any finite set. For example, in our DP for balanced graph
partitioning we will set I to 3-tuples corresponding to the parameters of a four-dimensional DP.
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36:8 Dynamic Maintenance of Monotone Dynamic Programs and Applications

Since we assume that the dependency graph is a DAG, we can compute the i’th DP row
as soon as we have computed the solutions for the DP rows in In(i). We assume that this
is done via a procedure Pi that takes as input the DP rows DP(i′, ·) for all i′ ∈ In(i) and
returns the row DP(i, ·) = Pi({DP(i′, ·) : i′ ∈ In(i)}).

Next, we come to our condition which encodes when our scheme applies. In the definition
and for the rest of the paper, we write ADP to refer to an approximate DP table, which
approximates the exact DP table DP. Let β > 1. We say that ADP β-approximates DP if
DP(i, j) ≤ ADP(i, j) ≤ βDP(i, j) for all i ∈ I, j ∈ J .

▶ Definition 8. A DP table is (h, α, p)-well-behaved if it satisfies the following conditions:
1. (Monotonicity:) For all i ∈ I, the function DP(i, ·) is monotone.
2. (Dependency graph:) The dependency graph is a DAG and |Reach(i)| ≤ h for all i ∈ I.
3. (Sensitivity:) Suppose β > 1 and for all i′ ∈ In(i), we obtain a β-approximation ADP(i′, ·)

of DP(i′, ·). Then applying Pi on the ADP(i′, ·) yields a β-approximation of DP(i, ·), i.e.,

DP(i, ·) ≤ Pi({ADP(i′, ·) : i′ ∈ In(i)}) ≤ β · DP(i, ·).

4. (Pieces:) For each procedure Pi there exists an approximate procedure P̃i such that:
(a) P̃i({ADP(i′, ·) : i′ ∈ In(i)}) is an α-approximation of Pi({ADP(i′, ·) : i′ ∈ In(i)}),
(b) P̃i can be computed as the composition of a constant number of operations from
Lemma 6 and and at most one application of Lemma 7, and
(c) P̃i returns a monotone piecewise constant function with at most p pieces.

The definition is motivated in the following way: our operations on the piecewise constant
functions have efficient running times when the functions are monotone and have few pieces.
This is ensured by Properties (1), 4(b), and 4(c). Next, rounding errors cannot compound
too much if each row can only reach h other rows and the sensitivity condition is satisfied.
This is ensured by Properties (2), (3), and 4(a).

Even though the definition might look slightly technical at first glance, it applies in many
settings. In particular, Property (2) is satisfied when the dependency graph is a rooted tree
of height h in which all edges point towards the root; this is the case in all of our applications.
The other conditions are immediately satisfied by our DP for 0-1 Knapsack in Section 3 and
the DP for simultaneous source location (see [17]). However, our DP for balanced graph
partitioning violates Property (4b) of Definition 8. Hence, in the full version [17] we will also
consider a weaker assumption which, however, will not allow for nice black-box results, such
as Theorems 9 and 10 below.

Next, we state our main results. They imply that we obtain static (1 + ϵ)-approximation
algorithms running in near-linear time and space for (Õ(1), ln(1+ϵ)/Õ(1), Õ(1))-well-behaved
DPs. They also show that under this assumption, we can dynamically maintain (1 + ϵ)-
approximate DP solutions with polylogarithmic update times.

Our main theorem for static algorithms is as follows.

▶ Theorem 9. Consider an (h, α, p)-well-behaved DP. Then we can compute an approximate
DP table ADP which αh+1-approximates DP in time and space O(|I| · p2 log(p)).

Later, we will apply the theorem to DPs with dependency trees of logarithmic heights
h = O(log n), we will set the approximation ratio to α = ln(1 + ϵ)/(h + 1), and the number
of pieces to p = polylog(W ). This will yield our desired algorithms with near-linear running
time Õ(|I|) and space usage. Note that this is a big improvement upon the brute-force
running times and space usages of Ω(|I| · |J |).
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The proof of the theorem follows from observing that when moving from one vertex to
another in the dependency graph, we lose a multiplicative α-factor in the approximation
ratio; as each vertex can only reach h other vertices, this will compound to at most αh+1.
Combining the assumptions on the functions P̃i and the results from Lemmas 6 and 7, we get
that each row ADP(i, ·) can be computed in time O(p2 log(p)) which gives O(|I| · p2 log(p))
total time.

We also give the following extension to the dynamic setting which shows that if one of
the DP rows changes, we can update the entire table efficiently.

▶ Theorem 10. Consider an (h, α, p)-well-behaved DP and suppose that row i is changed.
Then we can update our approximate DP table ADP such that after time O(h · p2 log(p)) it is
an αh+1-approximation of DP.

As before, we will typically use the theorem with h = O(log n), α = ln(1 + ϵ)/(h + 1) and
p = polylog(W ). This will then result in our desired polylogarithmic update times. Note
that this is a significant speedup compared to storing the DP tables using two-dimensional
arrays: in that case even updating a single row would take time Ω(|J |), which in many
applications would already be linear in the size of the input.

The theorem follows from observing that after a row i changes, we only have to update
those rows which can be reached from i in the dependency graph. But these can be at most h

and each of them can be updated in time O(p2 log(p)) by Lemmas 6 and 7.

3 Fully Dynamic Knapsack

In 0-1 knapsack, the input consists of a knapsack size B ∈ R+ and a set of n items, where
each item i ∈ [n] has a weight wi ∈ R+ and a price pi ∈ [1, ∞). The goal is to find a set of
items I that maximizes

∑
i∈I pi while satisfying the constraint

∑
i∈I wi ≤ B. For a set of

items I ⊆ [n], we refer to the sum
∑

i∈I wi as the weight of I.
For the rest of this section we set W =

∑
i pi and t =

∑
i∈[n] wi.

Next, we first derive a dynamic algorithm with update time Õ(log3(n) log2(W )/ϵ2) which
is based on our framework for DPs with monotone rows. Then we will use this algorithm as
a subroutine to obtain a faster algorithm with update time Õ(log2(nW )/ϵ2) in Section 3.2;
this will prove Theorem 1.

▶ Theorem 1. Let ϵ > 0. There exists an algorithm for fully dynamic knapsack that maintains
a (1 + ϵ)-approximate solution with worst-case update time 1

ϵ2 log2(nW ) polylog
( 1

ϵ log(nW )
)
.

Below we will also show that we can return the maintained solution I in time O(|I|) and
that we answer queries whether a given item i ∈ [n] is contained in I in time O(1). This
matches the query times of [11].

3.1 Knapsack via Convolution of Monotone Functions
First, we give a brief recap of the knapsack approach by Chan [7]. We consider the more
general problem of approximating the function fJ : [0, t] → R+, where J ⊆ [n] is a set of
items and

fJ(x) = max
{∑

i∈I

pi :
∑
i∈I

wi ≤ x, I ⊆ J

}
. (2)
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Intuitively, the value fJ(x) corresponds to the best possible knapsack solution if we can
only pick items which are contained in J and if the weight of the solution can be at most x.
Therefore, f[n](B) corresponds to the optimum solution of the global knapsack instance.

Note that for each J ⊆ [n], fJ (x) is a monotonically increasing piecewise constant function:
Indeed, consider x′ ≤ x. Any solution I ⊆ J that is feasible for x′ (i.e., the weight of I

is at most x′) is also a feasible solution for x. Thus, fJ(x′) ≤ fJ(x) and, therefore, fJ is
monotonically increasing. Furthermore, fJ is piecewise constant since each function value
fJ(x) corresponds to a solution I ⊆ J and the number of choices for I ⊆ J is finite.

Next, note that if we have two disjoint subsets J1, J2 ⊆ [n] then it holds that fJ1∪J2 is
the (max, +)-convolution of fJ1 and fJ2 , i.e., for all x it holds that

fJ1∪J2(x) = max
x̄

fJ1(x̄) + fJ2(x − x̄).

This can be seen by observing that for each x, the optimum solution I for the instance J1 ∪J2
with weight at most x can be split into two disjoint solutions I1 ⊆ J1 and I2 ⊆ J2 such that
I1 has weight x̄ and I2 has knapsack weight at most x − x̄ (for suitable choice of x̄ ∈ [0, x]).
We conclude that if we have two knapsack instances over disjoint sets of items J1 and J2,
then we compute the solution for the knapsack instance with items J1 ∪ J2 by computing
the (max, +)-convolution of fJ1 and fJ2 .

The Exact DP. The previous paragraphs imply a simple way of computing the exact
solution of a knapsack instance: For each item i ∈ [n], compute the function f{i} and
then recursively merge the solutions for sets of size 2j , j = 1, . . . , ⌈log n⌉, by computing
(max, +)-convolutions until we have computed the global solution f[n]. We perform the
recursive merging of the solutions using a balanced binary tree, resulting in a tree of height
O(log n).

More concretely, we build a rooted balanced binary tree T with n leaf nodes, where all
edges point towards the root. We have one leaf f{i} for each item i. Each internal node u

in T is associated with a function fJu
as per Equation (2), where Ju is the set of all items in

the subtree rooted at u. To simplify notation, we will also refer to fJu as fu.
Now we consider the exact computation of the DP. This will reveal the procedures Pi

from Definition 8. As base case, for each i ∈ [n], the i’th leaf of T contains the function f{i},
which is a piecewise constant function that has value 0 on the interval [0, wi) and value pi on
the interval [wi, t].

Next, in each internal node u of T with children u1 and u2, we set fu to the (max, +)-
convolution of fu1 and fu2 . By induction it can be seen that for every node u in T , it holds
that Ju = Ju1 ∪ Ju2 and thus Ju is the set of all items whose corresponding leaf is contained
in the subtree Tu. Hence, for the root r of T it holds that fr = f[n] and fr(B) is the optimal
solution for the global knapsack instance.

In the following, we check that our DP satisfies Properties (1–3) of Definition 8.
First, note that the tree T from above is also the dependency graph of our DP. Hence,

our DP has a row for every vertex of T and thus O(n) rows in total. Furthermore, since T

has height O(log n) and all edges point towards the root, every vertex can reach at most
h = O(log n) vertices. Hence, Property (2) of Definition 8 is satisfied.

Second, we observe that in both cases above, the function f{i} and fu which correspond to
the rows of our DP table are monotonically increasing (we argued this above for all functions
fJ). Thus, Property (1) is satisfied.

Third, observe that Property (3) is also satisfied since (max, +)-convolution satisfies our
sensitivity condition.



M. Henzinger, S. Neumann, H. Räcke, and S. Schmid 36:11

We conclude that the first three properties of Definition 8 are satisfied. Unfortunately,
this does not yet imply that we can obtain efficient algorithms: Note that if we compute the
exact DP bottom-up then we compute one convolution per node and thus the total running
time of this approach is O(n · t(p)), where p is an upper bound on the number of pieces in our
functions and t(p) is the time it takes to compute a (max, +)-convolution of two functions
with p pieces. However, observe that computing the convolutions can potentially take a large
amount of time because the number of pieces of the functions might grow quadratically after
each convolution (see Lemma 7). We will resolve this issue below using rounding.

The Approximate DP. Next, we consider approximations which will reveal the functions
P̃i from Definition 8.

First, note that we need to compute (max, +)-convolutions of monotonically increasing
functions efficiently. We observe that this can be done efficiently using our subroutine from
Lemma 7 for the (min, +)-convolution of monotonically decreasing functions: Indeed, suppose
that f is the (max, +)-convolution of two monotonically increasing functions g and h, then
for all x it holds that

f(x) = max
x̄

{g(x̄) + h(x − x̄)} = − min
x̄

{−g(x̄) + (−h(x − x̄))}.

Now observe that −g and −h are monotonically decreasing functions and, therefore, f =
−((−g) ⊕ (−h)), where ⊕ denotes the (min, +)-convolution. Thus, we can use the efficient
routine for (min, +)-convolution from Lemma 7 with the same running time.6

Now we can define the subroutines P̃i. Let δ > 0 be a parameter that we set later.
Whenever we compute a function fu via a (max, +)-convolution, we use the efficient subroutine
from Lemma 7. After computing the convolution, we set fu = ⌈fu⌉1+δ via the subroutine
from Lemma 6.

Observe that this approach satisfies Property (4a) of Definition 8 with α = 1 + δ.
Furthermore, Property (4b) is satisfied since we only use a single convolution and a single
rounding step. Finally, Property (4c) is also satisfied because the resulting function is
monotone and has p = O(log1+δ(W )) after the rounding.

The above arguments show that our DP is (h, α, p)-well-behaved for h = ⌈log n⌉, α = 1+δ,
δ = ln(1+ϵ)/⌈log n⌉ and p = O(log1+δ(W )) = O(log(W )/δ). Hence, Theorem 10 immediately
implies the following lemma.

▶ Lemma 11. Let ϵ > 0. There exists an algorithm that computes a (1 + ϵ)-approximate
solution for 0-1 knapsack in time n · 1

ϵ2 log2(n) log2(W ) · polylog( 1
ϵ log(nW )).

We note that we can return our solution I in time |I| log(n) · polylog( 1
ϵ log(nW )) as

follows. Recall that our global objective function value is achieved by fr(B) and that
fr(B) = fu1(x̄∗) + fu2(B − x̄∗), where u1 and u2 are the nodes below the root node r of
the dependency tree. Now using the second part of Lemma 7 we can get the value of x̄∗ in
time O(log p). If fu1(x̄∗) > 0 we recurse on fu1(x̄∗) and if fu2(B − x̄∗) > 0 we also recurse
on fu2(B − x̄∗). At some point we will reach a leaf node i and we include i in the solution
iff f{i}(x) > 0. Note that since we only recurse for function values which are strictly larger
than zero, for each item that we include into the solution we have to follow a single path
in the dependency tree of height O(log n) and our work in each internal node is bounded
by O(log p). This gives the total time of O(|I| log(n) log(p)) and our claim follows from our
choice of p above.

6 We note that, formally, Lemma 7 can only be applied on functions with non-negative values. However, this
can be achieved by adding a number C to −g and −h, which is an upper bound on the values taken by g
and h, and at the end we subtract the constant function 2C, i.e., we set f = −((−g+C)⊕(−h+C))−2C.
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Extension to the Dynamic Setting. Next, we extend our result to the dynamic setting.
For the sake of simplicity, we assume that n is an upper bound on the maximum number
of available items (items in S) and given to our algorithm in the beginning.7 We consider
update operations that insert and delete items from the set. More concretely, we consider
the following update operations:

insert(pi, wi), in which i is added to S by setting the price and weight of item i to
pi ∈ W∞ and wi ∈ R+, respectively, and
delete(i), where item i is removed from the set of items.

Our implementation is as follows. In the preprocessing phase, we build the same tree T

as above and use the subroutine from above to compute the function f{i}. For the operation
delete(i), we set pi = 0 and wi = 0, which changes exactly one row of our DP table. For
the operation insert(pi, wi), we set the price and weight of item i to pi and wi, resp., which
again changes a single row in our DP table. After changing such a row, we recompute the
global DP solution via Theorem 10. Since the DP is (h, α, p)-well-behaved with the same
parameters as above, the theorem implies the following proposition.

▶ Proposition 12. Let ϵ > 0. There exists an algorithm for the fully dynamic knap-
sack problem that maintains a (1 + ϵ)-approximate solution with worst-case update time
1
ϵ2 log3(n) log2(W ) · polylog

( 1
ϵ log(nW )

)
.

Observe that with the same procedure as for the static algorithm, we can return our
solution I in time |I| log(n) · polylog( 1

ϵ log(nW )). Furthermore, given an item i ∈ [n], we
can return whether i ∈ I in time log(n) · polylog( 1

ϵ log(nW )). This can be done by using the
same query procedure as in the static setting, where we only recurse on the unique subtree
in the depedency tree that contains the node for item i.

We note that the above proposition already improves upon the update time in the result
of Eberle et al. [11] in terms of the dependency on 1

ϵ but it has a worse dependency on
log(nW ). However, our query time is slower than the O(1)-time query operation in [11].
We will resolve these issues in the next subsection, where we will use the algorithm from
Proposition 12 as a subroutine.

3.2 Dynamically Maintaining a Small Instance
Next, we we obtain a faster dynamic algorithm with update time Õ( 1

ϵ2 log2(nW )) by combin-
ing the algorithm from Proposition 12 and with ideas from Eberle et al. [11]. Our high-level
approach is as follows. First, we partition the items into a small number of price classes.
Then we take a few items of small weight from each price class. This will give a very small
knapsack instance X for which we maintain an almost optimal solution using the subroutine
from Proposition 12; since this instance is very small (i.e., |X| ≪ n), the update time for
maintaining this instance essentially becomes O( 1

ϵ2 log2(W )), i.e., we lose the O(log3 n) term
that made the update time in the proposition too costly. For the rest of the items which are
not contained in X, we show that we can compute a good solution using fractional knapsack,
which can be easily solved using a set of binary search trees. Then it remains to show that
the combination of the two solutions is a (1 + ϵ)-approximation.

7 It is possible to drop this assumption using an amortization argument. More concretely, every time the
number of items is less than n/2 or more than n, we rebuild the data structure with a new value of n.
Each rebuild can be done in time O(nt(n)), where t(n) is our update time. Since this only happens after
Ω(n) updates occured, we can amortize this cost over the updates that appeared since the last rebuild.
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The main differences of our algorithm and the one by Eberle et al. [11] are as follows.
Eberle et al. also partition the items into a small number of price classes. They also combine
solutions for a small set of heavy items X and solutions based on fractional knapsack for the
other items. However, they have to enumerate many different sets X and they also guess
the approximate price of the fractional knapsack solution; more concretely, they enumerate
Θ( 1

ϵ2 log(W )) choices for X and the number of guesses they have to make for the fractional
knapsack solution is Θ( 1

ϵ log(W )). Thus they have to consider Θ( 1
ϵ3 log2(W )) guesses and

for each of them they have to compute approximate solutions, which takes time Θ( 1
ϵ4 ) for

each X since they have to run a static algorithm from scratch. In our approach, we only
have to consider a single set X which we maintain in our data structure from Proposition 12,
which saves us a lot of time. Furthermore, the piecewise constant function, in which we store
the solution for X, essentially “guides” our Θ( 1

ϵ log(W )) guesses for the weight of fractional
knapsack solution. In our analysis we have to be slightly more careful to ensure that our
guesses for the weight of the fractional knapsack solution guarantee the correct approximation
ratio.

Definitions. We assume that ϵ < 1 and that 1/ϵ is an integer. More concretely, we run
the algorithm with ϵ′ = max{ 1

i : 1
i ≤ ϵ, i ∈ N}. Set L = ⌈log1+ϵ(W )⌉ and recall that we set

W =
∑

i pi.
We define the price classes Vℓ = {i : (1 + ϵ)ℓ ≤ pi < (1 + ϵ)ℓ+1}. In the following, we

assume that all items from price class Vℓ have price exactly (1 + ϵ)ℓ+1. We only lose a factor
of 1 + ϵ by making this assumption. Furthermore, we set V

1/ϵ
ℓ to the set of 1/ϵ items from

Vℓ with smallest weights wi (breaking ties arbitrarily). We also define V ′
ℓ = Vℓ \ V

1/ϵ
ℓ .

Next, we set X =
⋃

ℓ≥0 V
1/ϵ

ℓ and Y =
⋃

ℓ≥0 V ′
ℓ for all ℓ ≥ 0. Note that X and Y partition

the set of items and |X| = 1
ϵ · L = O(ϵ−2 log(W )).

Now our strategy is to use our algorithm from Proposition 12 to maintain a solution for
the items in X. Then we show how we can combine the solution for X with a solution for Y

that is based on fractional knapsack and a charging argument.

Data Structures. For each ℓ ∈ [L], we maintain Vℓ sorted non-decreasingly by weight.
We also maintain the set X in a binary search tree, in which we sort the items by their

index, and we maintain our data structure from Proposition 12 on the items in X.
Furthermore, let Uℓ =

⋃
ℓ′≤ℓ V ′

ℓ′ denote the set of all items that are not contained in X

and of price class at most ℓ. For each ℓ, we maintain the set Uℓ in a binary search tree T in
which the items are stored as leaves and sorted by their density pi

wi
. In each internal node u

of T , we store the total weight of the items in the subtree Tu rooted at u and the total profit
of the items in Tu. Observe that this allows us to answer queries of the type: “Given a
budget b, what is the value of the optimal fractional8 knapsack solution in Uℓ with weight at
most b?” in time O(log n).

Updates. Now consider an item insertion or deletion and suppose that the updated item is
of price class Vℓ. We first update the sets Vℓ, Uℓ′ for ℓ′ ≤ ℓ and the sets X and Y . Note that
for each of these sets at most one item can be removed and inserted. Thus, these steps can
be done in time O(ℓ · log(n)) = O(ϵ−1 log(W ) log(n)).

8 In fractional knapsack, we may use items fractionally. An optimal solution is achieved by sorting the
items items by their density and greedily adding items to the solution until we have used up our budget b.
This approach uses at most one item fractionally (namely, the one at which we use up our budget).
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Next, if X changed in the previous step, then we also perform the corresponding updates
in the data structure from Proposition 12. Since |X| = O(ϵ−2 log(W )) holds by construction
of X, the update operations for the data structure maintaing the knapsack solution for X

take a total time of

O

(
ϵ−2 log3(|X|) log2(W ) · polylog

(
1
ϵ

log(|X| W )
))

= O

(
ϵ−2 log2(W ) · polylog

(
1
ϵ

log(nW )
))

.

Furthermore, we can explicitly write down our solution IX for the items in X in time
ϵ−2 log(W ) · polylog( 1

ϵ log(nW )) since |X| = O(ϵ−2 log(W )). Also, for each i ∈ IX , we can
set a bit indicating that i ∈ IX . Note that the time for writing down IX and setting the bits
is subsumed by the update time above.

Queries. Returning the value of a solution: We return the value of a global knapsack
solution as follows.

Consider the data structure from Proposition 12 which maintains a solution for the items
in X. Note that this solution is stored as a piecewise constant function with p ≤ L pieces
and consider the list representation (x1, y1), . . . , (xp, yp) of this function.

Our strategy is as follows: For each i = 1, . . . , p, we consider a solution which spends
budget xi on items in X and budget B − xi on items in Y . Then we take the maximum over
all of the solutions we have considered. More concretely, for given i = 1, . . . , p, we obtain our
solution as follows. We pick ℓi such that (1 + ϵ)ℓi = ⌈ϵ · yi⌉1+ϵ (see Lemma 13 below for a
justification of this choice). Now we use the binary search tree for Uℓi

to find the highest
profit that we can obtain from fractional knapsack on items in Uℓi

⊆ Y if we can spend
budget at most b = B − xi. Let y′

i be the value of this query after removing any profit that
we gain from the (at most one) fractionally cut item. We also store the density of the final
item that is contained in the fractional knapsack solution. Now we return the maximum of
yi + y′

i over all i = 1, . . . , p.
Note that since the solution for X has at most L = O(ϵ−1 log(W )) pieces and for each of

them we perform a single query in a binary search tree, the total time for return the solution
value is O(ϵ−1 log(W ) log(n)). Note that this time is subsumed by the update time.

Returning the entire solution: Now we can return our global solution I in time O(|I|) as
follows. Observe that I is composed of the solution IX for the items in X and of the items in
the fractional knapsack solution. During our updates, we already stored the items in IX and
can write them down in time O(|IX |). Next, to return the items from the fractional knapsack
solution, recall that we stored the density of the final item in the fractional knapsack solution.
Thus, we only have to output the items ordered non-decreasingly by their density, while we
are above the desired density-threshold. This can be done in time linear in the size of the
fractional knapsack solution. This is essentially the same query procedure as in [11].

Returning whether an item is in the solution: Furthermore, observe that the above implies
that we can answer whether an item i ∈ [n] is contained in our solution in time O(1): If
i ∈ X then we already stored a bit whether i ∈ IX . If i ̸∈ X then we can check whether i is
in the fractional knapsack solution by checking whether its density is above or below the
threshold given by the final item in the fractional knapsack solution.

Analysis. We start by making some simplifications to OPT. We let OPT′ denote the version
of OPT in which for each ℓ ∈ [L], we pick the |OPT ∩Vℓ| items of smallest weight from Vℓ.
This only loses a factor of 1 + ϵ. Next, define OPT′

X = OPT′ ∩X and OPT′
Y = OPT′ ∩Y .

Observe that by how we picked OPT′, it holds that OPT′
Y ∩Vℓ ̸= ∅ iff

∣∣OPT′ ∩Vℓ

∣∣ > 1/ϵ.
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Let pX denote the total price of items in OPT′
X and let wX denote the total weight of

the items in OPT′
X . Let f denote the piecewise constant function that stores the solution

for the items in X. Observe that by Proposition 12 we have that

pX ≤ f(wX) ≤ (1 + ϵ)pX .

Also, the function value f(wX) is part of a piece (xi∗ , yi∗) with xi∗ ≤ wX and yi∗ = f(wX).
The next lemma justifies why we set ℓi such that (1 + ϵ)ℓi = ⌈ϵ · yi⌉1+ϵ in our algorithm.

To this end, let ℓi∗ be such that (1 + ϵ)ℓi∗ = ⌈ϵ · yi∗⌉1+ϵ and let ℓY be the price class of the
most valuable item in OPT′

Y . In the lemma we show that ℓi∗ ≥ ℓY . We will use this to show
that our solution for X of profit yi∗ is valuable enough such that we can charge a fractionally
cut item from fractional knapsack onto the solution from X and only lose a factor of (1 + ϵ)2.

▶ Lemma 13. It holds that ℓi∗ ≥ ℓY .

Proof. Since OPT′
Y ∩V ′

ℓY
̸= ∅,

∣∣OPT′ ∩VℓY

∣∣ > 1/ϵ and thus OPT′
X contains all 1/ϵ items

from V
1/ϵ

ℓY
. Hence, pX ≥ 1

ϵ · (1 + ϵ)ℓY . From above we get f(wX) = yi∗ and f(wX) ≥ pX .
By choice of ℓi∗ ,

(1 + ϵ)ℓi∗ = ⌈ϵ · yi∗ ⌉1+ϵ = ⌈ϵ · f(wX)⌉1+ϵ ≥ ⌈ϵ · pX⌉1+ϵ ≥
⌈

ϵ · 1
ϵ

(1 + ϵ)ℓY

⌉
1+ϵ

= (1 + ϵ)ℓY .

This implies ℓi∗ ≥ ℓY . ◀

Next, consider the the fractional knapsack solution that we obtain from our query. Note
that this solution has a profit that is at least as large as the profit of OPT′

Y (since fractional
knapsack is a relaxation of 0-1 knapsack). Furthermore, the fractional solution uses at
most one item fractionally and this item is from Uℓi∗ and has value at most (1 + ϵ)ℓi∗ =
⌈ϵ · yi∗⌉1+ϵ ≤ (1 + ϵ)ϵ · yi∗ . Thus, we can charge this item on OPT′

X and lose a factor of at
most (1 + ϵ)2.

We conclude that the solution yi∗ +y′
i∗ is a (1+ ϵ)O(1)-approximation of OPT. Combining

this with our previous running time analysis, we obtain Theorem 1.
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