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Abstract

Nonergodic systems, whose out-of-equilibrium dynamics fail to thermalize, provide a
fascinating research direction both for fundamental reasons and for application in state of
the art quantum devices. Going beyond the description of statistical mechanics, ergodicity
breaking yields a new paradigm in quantum many-body physics, introducing novel phases
of matter with no counterpart at equilibrium. In this Thesis, we address different open
questions in the field, focusing on disorder-induced many-body localization (MBL) and on
weak ergodicity breaking in kinetically constrained models. In particular, we contribute
to the debate about transport in kinetically constrained models, studying the effect of
U(1) conservation and inversion-symmetry breaking in a family of quantum East models.
Using tensor network techniques, we analyze the dynamics of large MBL systems beyond
the limit of exact numerical methods. In this setting, we approach the debated topic
of the coexistence of localized and thermal eigenstates separated by energy thresholds
known as many-body mobility edges. Inspired by recent experiments, our work further
investigates the localization of a small bath induced by the coupling to a large localized
chain, the so-called MBL proximity effect.
In the first Chapter, we introduce a family of particle-conserving kinetically constrained
models, inspired by the quantum East model. The system we study features strong
inversion-symmetry breaking, due to the nature of the correlated hopping. We show
that these models host so-called quantum Hilbert space fragmentation, consisting of
disconnected subsectors in an entangled basis, and further provide an analytical description
of this phenomenon. We further probe its effect on dynamics of simple product states,
showing revivals in fidelity and local observalbes. The study of dynamics within the
largest subsector reveals an anomalous transient superdiffusive behavior crossing over to
slow logarithmic dynamics at later times. This work suggests that particle conserving
constrained models with inversion-symmetry breaking realize new universality classes of
dynamics and invite their further theoretical and experimental studies.
Next, we use kinetic constraints and disorder to design a model with many-body mobility
edges in particle density. This feature allows to study the dynamics of localized and
thermal states in large systems beyond the limitations of previous studies. The time-
evolution shows typical signatures of localization at small densities, replaced by thermal
behavior at larger densities. Our results provide evidence in favor of the stability of
many-body mobility edges, which was recently challenged by a theoretical argument. To
support our findings, we probe the mechanism proposed as a cause of delocalization in
many-body localized systems with mobility edges suggesting its ineffectiveness in the
model studied.
In the last Chapter of this Thesis, we address the topic of many-body localization proximity
effect. We study a model inspired by recent experiments, featuring Anderson localized
coupled to a small bath of free hard-core bosons. The interaction among the two particle
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species results in non-trivial dynamics, which we probe using tensor network techniques.
Our simulations show convincing evidence of many-body localization proximity effect
when the bath is composed by a single free particle and interactions are strong. We
furthter observe an anomalous entanglement dynamics, which we explain through a
phenomenological theory. Finally, we extract highly excited eigenstates of large systems,
providing supplementary evidence in favor of our findings.
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CHAPTER 1
Introduction

Understanding the behavior of complex systems formed by a large number of components
is a ubiquitous, yet extremely complicated, problem in the natural sciences. As an example,
the microscopic description of the dynamics of the particles making up a cloud of gas
requires tracking the trajectories of a humongous amount of degrees of freedom and is, a
priori, a terribly demanding task. The intuition that the relevant macroscopic quantities
describing the thermodynamic state of the gas are independent of the individual motion
of the single constituent represented a groundbreaking turning point in physics. The
ergodic hypothesis further formalizes this concept, stating that generic systems relax to
equilibrium as their dynamics equally explore the available phase space on long times.
Based on the ergodic hypothesis, the instantaneous motion of the particles looses relevance
to the statistical description of the system, through a specific thermodynamic ensemble
ρ defining the set of physically allowed states and their probability. The central object
of statistical mechanics is then the partition function Z = tr[ρ], establishing relations
between the microscopic world and the macroscopic thermodynamic quantities.

This description, however, is effective for systems at thermal equilibrium. As it will be
shown in this introduction, a surmise similar to the ergodic hypothesis exists in isolated
quantum many-body systems, the so-called eigenstate thermalization hypothesis (ETH) [1,
2]. However, there exist systems whose dynamics escape the fate of thermalization and
where the long time saturation is dependent on the microscopic details of the initial
condition, and not only to the macroscopic thermodynamic conditions. These systems
can be realized in state of the art experiments, thus raising the relevant question of
understanding their behavior. In this work, we focus on the description of the out-of-
equilibrium dynamics of models that present examples of anomalous thermalization or
that fail to thermalize whatsoever.

In this introduction we provide a brief survey of the main results in the field of out-of-
equilbrium quantum many-body physics in recent years and of the essential methods
used in the remaining Chapters. First, we describe some of the main experimental
platforms where the dynamics of out-of-equilibrium quantum systems can be probed and
sketch different paradigmatic behaviors expected in non-equilibrium quantum dynamics in
Section 1.1. We then highlight the main features of thermalizing and ergodicity-breaking
systems in Sections 1.1.1 and 1.1.2 respectively. In Section 1.2 we give a short introduction
to some of the methods used throughout this work, with particular attention to tensor
network techniques. Next, we highlight the contributions of the author to the field in
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1. Introduction

Section 1.3. Finally, in the last Section 1.4 we discuss relevant challenges and open
questions.

1.1 Dynamics of systems far from equilibrium
The last decades have seen the emergence of exceptional new experimental setups allowing
the direct study of non-equilibrium phenomena, thus pushing forward the field of quantum
many-body physics. As these experiments can effectively recreate the environment
experienced by electrons in real materials, we will generically refer to them as artificial
matter. A major advantage of artificial matter is that it allows a great degree of control
on the parameters of the system, thus providing an excellent ground to test theories. This
is in contrast to more traditional condensed matter experiments, where changing the
Hamiltonian describing the system is often very complicated, or even impossible. Another
great advantage of artificial matter is the built-in possibility to probe non-equilibrium
dynamics, a task much harder in solid state physics, where going beyond the linear response
regime requires extremely powerful, yet non-destructive, excitations of the system.

Of particular relevance for this work are those platforms that can reproduce a d-dimensional
system (d = 1, 2, 3) embedded in an artificial lattice, where all phononic excitations are
inherently removed. Realizing artificial lattices that serve as experimental platforms for
non-equilibrium quantum matter relies on the ability of creating a confining potential for
the individual constituents of the system. This can be achieved by optical lattices and laser
traps, where the properties of light-matter interaction allow the creation of a controllable
geometric potential pattern. To this category belong experiments with ultracold neutral
atoms [3, 4, 5, 6], trapped ions [7, 8, 9] and atoms excited to Rydberg levels [10, 11, 12].
While the first typically interact via on-site potentials of the Hubbard type, trapped
ions and Rydberg arrays inherently implement long-range interactions. A different setup
corresponds to superconducting circuits [13, 14, 15], where the lattice geometry can
be implemented via circuit lithography, thus allowing a great degree of control. These
platforms then use anharmonic potentials to implement an effective two-level system,
which can represent a spin degree of freedom. All these platforms are currently studied
and their performances pushed forward in the quest for a reliable quantum computer [16].

Non-equilibrium dynamics in these experimental setups is usually probed through the

Figure 1.1: Pictorial representation of a quantum quench protocol. The state is initialized
in a deep lattice, where the tunnelling amplitude is too small to allow the particles to
leave their position. Upon a global quench, the lattice depth is reduced and the resulting
state is far from equilibrium, enabling particles dynamics.
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1.1. Dynamics of systems far from equilibrium

so-called quench protocol. In this setting, the system is initialized in the ground state of
a given Hamiltonian, whose parameters are then suddenly changed, as shown pictorially
in Figure 1.1. Upon the fast variation of the parameters the system typically finds itself
in a configuration very far from thermal equilibrium, and its dynamics are described by
effects beyond linear response theory. The fate of these isolated systems driven out of
equilibrium then poses new fundamental questions and requires a change of perspective
from the conventional statistical mechanics approach. One of the most relevant questions
in this setting is if a system prepared in a highly excited state reaches thermal equilibrium
or not, and the investigation of how such equilibration takes place.
A natural expectation for a thermalizing quantum many-body system, is that the long
time behavior of local observables coincides to the thermal average obtained in the correct
statistical ensemble. Thus, one of the central objects in the study of out-of-equilibrium
dynamics is the time-evolution of local observables. In systems of bosons and fermions,
they typically correspond to particle densities n̂i = ĉ†

i ĉi, where the operators ĉ†
i (ĉi) creates

(annihilates) a particle on site i. In spin systems, instead, these can be represented by
the local magnetizations Ŝαi = ℏ

2σ
α
i , where σαi is any of the three Pauli matrices. Other

relevant quantities are the correlation functions relative to these local observables, which
can be used to measure the transport properties of the system. Finally, we highlight the
importance in this field of concepts from quantum information. Among these, the most
widely used is the entanglement entropy among two sub-systems A and B. Entanglement
is obtained by first taking the reduced density matrix corresponding to one of the two
sub-systems, ρA = trB |ψ⟩ ⟨ψ|, and then calculating its von Neumann entropy

SA = − tr ρA log ρA. (1.1)

The entanglement entropy plays a central role in the field of non-equilibrium quantum
dynamics, as it probes the amount of quantum correlations between the two sub-systems
and provides a basis independent measure that has distinct behavior for thermalizing and
nonergodic systems.
As we mentioned above, thermalization is expected to manifest as a relaxation to the
correct thermal ensemble in the long-time behavior of the system. In absence of coupling
with an external bath, however, an isolated system has to act as its own heat bath.
Determining how this happens, then, requires a deeper investigation of the mechanisms
leading to thermalization in isolated quantum systems. In the next Subsection, we
present the main theoretical result in this direction, describing its assumptions and its
consequences.

1.1.1 The eigenstate thermalization hypothesis
In classical isolated systems, thermalization is understood in terms of the ergodic hy-
pothesis [17, 18], stating that dynamics lead the system to explore all the available phase
space in an equal manner and to spend in every region time intervals proportional to
its volume. As a consequence, late time averages of macroscopic observables correspond
to averages over the available phase space, hence to the thermal value expected in the
microcanonical ensemble describing systems that do not exchange energy nor particles
with the environment. However, ergodicity only implies thermalization in a weak sense [18],
as it concerns late time averages. A stronger condition for thermalization would require
that time-evolution leads, at late times, to instantaneous agreement at almost all times of
the time-evolved observables and the corresponding thermal average.
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In this direction, a stronger condition for thermalization, although less rigorous, relies
on the concept of typicality. Intuitively, typical configurations in the phase space are
likely to have macroscopic observables in agreement with the thermal average, at least to
leading order. Hence, the condition for thermalization in this setup is that any initial
configuration, no matter how atypical, does eventually evolve to typical configurations.
This is the case in chaotic systems, where time-evolution eventually leads the system
through every configuration in the phase space. As typical states are the most probable,
chaotic dynamics inevitably yields thermalization.
The question of how to translate these classical concepts to the quantum realm is still
open, and represents an active area of research. The definition of chaos in classical models
relies on the concept of trajectories, which does not have an analogue in the quantum
language. Furthermore, the Schrödinger equation preserves the overlap of wave-functions
evolved with the same Hamiltonian, thus the core idea of classical chaos that trajectories
initially close in phase space become exponentially distant upon time evolution does not
hold in the quantum setup.
Nevertheless, a commonly accepted definition of quantum chaos exists, and is based
on the spectral statistics of the Hamiltonian. The main idea comes from the work of
Wigner [19, 20] and Dyson [21] on the spectra of atomic nuclei. They noticed that a
statistical description of the energy levels of complex quantum many-body systems may
be a convenient way to avoid the intricacies required to obtain an exact prediction. The
next fundamental step corresponds to realizing that in a generic basis and within a small
energy shell the Hamiltonian is essentially a random matrix. Thanks to this intuition, the
study the spectral properties of complex Hamiltonians can be reduced to the analysis of
random matrices satisfying the same symmetries. The probability distribution, P (s), of
the differences among adjacent energy levels, si = εi − εi+1, in the sorted spectrum can be
calculated for 2 × 2 matrices, resulting in the celebrated Wigner surmise, that provides an
excellent approximation for the level statistics of large random matrices. The particular
ensemble from which the random matrix distribution is obtained depends on the details
of the physical system, and for time-reversal symmetric Hamiltonians it corresponds to
the Gaussian Orthogonal Ensemble (GOE), P (s) = π

2se
− π

4 s
2 .

The connection between quantum chaotic Hamiltonians and random matrices was only
established in the 1980s, when Bohigas, Giannoni and Schmit conjectured that the
level statistics of systems with chaotic classical counterpart is given by random matrix
theory [22]. A consequence of this conjecture is that typical eigenstates of chaotic
Hamiltonians are similar to random vectors in the Hilbert space [23]. This of course
excludes very special eigenstates, such as the ground state, that have to fulfil very strict
conditions. This concept is central in the construction of the eigenstate thermalization
hypothesis (ETH) [1, 2, 24], where it is employed to formally connect chaotic Hamiltonians
with thermalizing systems.
Let us state ETH in its more common form of an Ansatz for the matrix element of local
operators [24]. Let Ô be a local operator representing a physical observable and {|Em⟩}
be the basis of eigenstates of a chaotic Hamiltonian. The eigenstates thermalization
hypothesis then states that

⟨Em| Ô |En⟩ = Omn = O(E)δmn + e−S(E)/2fO(E,ω)Rmn, (1.2)

where E = (Em + En)/2, ω = Em − En and S(E) is the thermodynamic entropy corre-
sponding to energy E, defined as the von Neumann entropy of the thermal density matrix
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1.1. Dynamics of systems far from equilibrium

ρ, S(E) = − tr[ρ log ρ]. Crucially, the diagonal term corresponds to the microcanonical
value at the temperature corresponding to energy E, O(E) = tr

[︂
ρmcÔ

]︂
/Z, with Z the

microcanonical partition function. The off-diagonal term is characterized by an expo-
nential decay in system size due to the thermodynamic entropy, by the zero mean and
unit variance Gaussian random variable Rmn and by an observable-dependent function
fO(E,ω). A fundamental feature of ETH, that distinguishes it from the prediction of
random matrix theory, is that it takes into account the physical nature of the eigenstates,
thus introducing the dependence on energy of the matrix elements, which is essential for
an accurate description.

We now use the statement (1.2) to show how it implies thermalization. The long time
average of the observable Ô is given by

O = lim
T→∞

1
T

∫︂ T

0
dt ⟨ψ(t)| Ô |ψ(t)⟩ =

∑︂
m

|Cm|2Omm, (1.3)

where we used the decomposition of the initial state over eigenstates |ψ0⟩ = ∑︁
mCm |Em⟩

and the fact that in the absence of degeneracies only the diagonal term survives in the
infinite time limit. Now, upon the reasonable assumption that the initial state has overlap
with eigenstates only within a narrow energy shell, the outcome of the time evolution will
then coincide with the thermal average given by the microcanonical ensemble in the same
energy shell [2, 24]. Through ETH one can also obtain the temporal fluctuations of Ô, i.e.
the average distance of the instantaneous value from the diagonal ensemble Eq. (1.3), and
show that they decay exponentially with system size. As a consequence, the eigenstate
thermalization hypothesis provides a condition for strong thermalization.

The eigenstate thermalization hypothesis is supposed to hold when the eigenstates of
the Hamiltonian are essentially random vectors in the Hilbert space, as it is conjectured
to be the case for chaotic systems whose level statistics satisfies the Wigner surmise.
Bridging the gap between quantum chaos and thermalization, ETH predicts that time-
evolution eventually leads to thermal equilibrium in chaotic systems. This implies that
physical observables loose memory of the initial state, and are determined mainly by the
conservation laws encoded in the Hamiltonian.

An additional property of ergodic systems that can be directly obtained from the statement
of ETH concerns the entanglement entropy of eigenstates. Let us consider the expectation
value of an observable inside a small subsystem A over a thermal eigenstate |Em⟩, i.e. such
that it satisfies (1.2). The expectation value can be obtained through the reduced density
matrix ρA = trB |Em⟩ ⟨Em| and it has to correspond to the thermal average. Hence,
the reduced density matrix ρA is thermal, and its von Neumann entropy is extensive.
The von Neumann entropy of the reduced density matrix, however, is by definition (1.1)
the entanglement entropy of the eigenstate |Em⟩. Therefore, ETH implies that thermal
eigenstates have entanglement entropy satisfying volume law, SA ∝ Vol(A), increasing
with the volume of subregion A (if this region is much smaller than remainder of the
system).

As we showed, the connection between ergodicity, chaos, and thermalization provides a
powerful Ansatz for the behavior of the eigenstates of thermal Hamiltonians, which was
extensively tested numerically [18]. Nevertheless, not all classical models are chaotic, and
a natural question in the quantum setting is whether thermalization is the only possible
outcome of dynamics. The next section and the remainder of this Thesis are dedicated to
investigating situations where thermalization breaks down.
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1.1.2 Breakdown of thermalization
As sketched in the previous Section, quantum dynamics in ergodic many-body systems
erases the information about the initial state, except for the conservation laws that
ultimately define the thermal ensemble entering equation (1.2). However, there exist
different universality classes of dynamics, where the initial state influences the outcome of
time evolution. It is the case of systems that avoid thermalization via ergodicity breaking.

The eigenstate thermalization hypothesis strongly depends on the absence of features of
highly excited eigenstates. ETH is essentially a generalization of random matrix theory
that takes into account the few global conservation laws present in physical Hamiltonians.
While typical quantum many-body systems only have a few conservation laws (energy,
particle number etc.), whenever the number of integrals of motion becomes large the
eigenstates have too much structure to be resemblant of random vectors, and ETH
is inapplicable. A different scenario, intermediate between thermalization and strong
ergodicity breaking, has recently been discovered [25], called weak ergodicity breaking [26].

Weak ergodicity breaking, scars and Hilbert space fragmentation

In systems that feature weak ergodicity breaking, a vanishing fraction of eigenstates
present anomalous features, such as a low entanglement entropy, when compared with
other eigenstates in their energy surroundings. This suggests the non-thermal nature of
these eigenstates as they deviate from the expected volume-law entanglement, within an
otherwise fully thermal spectrum. The overwhelming amount of thermal eigenstates would
naïvely suggest that the few non-thermal eigenstates, referred to as quantum many-body
scars [25, 27, 28, 29, 30, 31], may have little or no effect on dynamics. As it turns out, scars
actually significantly influence the dynamics, unexpectedly showing dynamical signatures
in the time evolution of simple product states [10, 31].

This property implies that systems presenting weak ergodicity breaking feature typical
characteristics of both thermal and non-thermal models. On one hand, average properties
generally have thermal nature, due to the overall negligible number of scarred eigenstates.
On the other hand, dynamics show a strong state-dependence, typical of non-thermal
systems, as states with high overlap with the scarred eigenstates show anomalous behaviors.

Paradigmatic examples of weak ergodicity breaking are given by kinetically constrained
models. Initially introduced to describe the behavior of classical glasses [32], kinetically
constrained models are characterized by constraints on the kinematic terms, which make
them effectively interacting. As an example, we report the Hamiltonian of the celebrated
PXP model, obtained as the Schriffer-Wolff transformation [33] of the Hamiltonian
governing strongly interacting Rydberg atoms [28] ĤPXP = ∑︁

i P̂ i−1σ
x
i P̂ i+1. In this case,

the constraint corresponds to the two projectors on the down spin state, P̂ i, effectively
making the model interacting. Kinetically constrained models are characterized by the
dynamical disconnection of different sectors of the Hilbert space, the so-called Hilbert
space fragmentation [34, 35, 36, 37]. This is due to the emergence of conserved quantities,
which effectively reduce the Hamiltonian in block-diagonal form.

Fragmentation can be distinguished in two types, depending on the basis it takes place
in [36]. If fragmentation happens in a product state basis, then it is said to be classical.
In the example above of the PXP Hamiltonian, the configuration where all Rydberg
atoms are in the ground state |◦⟩ is dynamically disconnected from any state containing a
pair of neighboring excited states |•⟩, hence |· · · ◦ ◦ ◦ . . .⟩ ̸↔ |· · · ◦ • • . . .⟩. On the other
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1.1. Dynamics of systems far from equilibrium

hand, if fragmentation takes place in an entangled basis then it is called quantum Hilbert
space fragmentation. Different constraints give rise to different types of fragmentation. If
all emerging sectors have O(1) dimension, then thermalization breaks down due to the
impossible relaxation to thermal equilibrium in such effectively small systems [38, 39].
When instead some sectors have dimension scaling as the global Hilbert space, one typically
observes thermalization within said subsectors. However, even thermalizing subsectors
might present anomalous features [40, 41], as described in Section 2.

While the emergence of classical Hilbert space fragmentation is rather well understood
and studied, its quantum version still requires a deeper investigation. General mechanisms
yielding quantum Hilbert space fragmentations are in fact not completely understood,
with very few examples available in the literature [36, 40, 42].

Strong ergodicity breaking and many-body localization

A more dramatic way of avoiding thermalization, where all states are non-thermal and
dynamics retains local information about the initial state indefinitely in time is strong
ergodicity breaking. As mentioned above, it happens whenever an extensive number
of integrals of motion emerges in the system. A class of systems showing this feature
are integrable models [43, 44]. In integrable models, in fact, there is an extensive
set of conserved rapidities and the system thermalizes to the so-called Generalized
Gibbs Ensemble (GGE) [45, 46, 47]. However, integrable models are very sensitive to
perturbations, and as such represent fine tuned, zero measure, set in the parameter space
where thermalization fails.

Disordered systems, instead, provide a robust way of strong ergodicity breaking, stable to
perturbations. Already in the seminal work by Anderson [48] the absence of transport was
posed as a possible obstacle to thermal equilibrium. The single particle eigenstates are
exponentially localized around each lattice site, hence if localization is stable in presence of
interaction it provides a perfect ground to study the absence of thermalization. The first
works providing evidence for the perturbative stability of localization to interactions were
given in the early 2000s [49, 50]. Ever since, the resulting many-body localization (MBL)
has attracted significant interest for its peculiar dynamical and spectral properties. Several
theoretical [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65] and experimental [66,
67, 68, 69, 70, 71, 72] work has thoroughly investigated the main features of MBL,
providing evidence for its existence in many different models. Additionally, a number
of excellent reviews provide a good survey of the phenomenology of MBL and of open
questions [73, 74, 75]. As a paradigmatic example, we write down one of the most
commonly used models for the study of many-body localization: the disordered XXZ
chain

Ĥ = J

2
∑︂
i

(σ+
i σ

−
i+1 + H.c.) + ∆

∑︂
i

σzi σ
z
i+1 +

∑︂
i

hiσ
z
i , (1.4)

where the random magnetic field hi ∈ [−W,W ] is uniformly distributed in the range W ,
setting the disorder strength. It is commonly believed that at strong enough disorder
W > Wc the system enters the MBL phase [59, 76, 77, 78].

Inside the many-body localized phase, the breakdown of thermalization is explained
in terms of the emergence of quasi-local integrals of motion, also known as LIOMs or
l-bits [56, 57, 58]. These are dressed versions of the local degrees of freedom, obtained
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through a unitary rotation Û
τ̂αi = Û σαi Û

† (1.5)

which also brings the Hamiltonian in diagonal form. As opposed to ergodic Hamiltonians,
where diagonalization implies highly non-local rotations, in the MBL case Û can be written
as a product over unitary operators of increasing support (2-sites, 3-sites, . . . ), whose action
vanishes exponentially as the distance from site i increases ||I − Û i,i+1,...i+n||F < e−n/ξ,
where || · ||F is the Frobenius norm and ξ is commonly interpreted as the localization
length. The resulting operators τ̂ zi are then integrals of motion, and they keep the local
structure of the original degrees of freedom, since the transformation Û has exponentially
vanishing effect away from i. The Hamiltonian in the diagonal form reads

ĤMBL =
∑︂
i

hiτ̂
z
i +

∑︂
i,j

Jij τ̂
z
i τ̂

z
j +

∑︂
i,j,k

Jijkτ̂
z
i τ̂

z
j τ̂

z
k + . . . , (1.6)

where each coupling constant decays exponentially as the largest distance among the
LIOMs involved in the n-th term Ji1i2...in ≈ exp(− maxn,m |im − in|/κ).

The Hamiltonian written in this way and the emergence of the quasi-local integrals
of motion has dramatic consequences which can directly explain many features of the
phenomenology of MBL. First, as in the LIOMs basis the Hamiltonian is diagonal, each
eigenstate is fully determined by a LIOMs-string {τ zi } and the main energy contribution
comes from the random potential hi. Hence, to obtain two similar energies one typically
needs to reshuffle many τ zs in the two strings defining the eigenstates, thus explaining the
observed Poissonian level statistics and absence of level repulsion [51, 53]. Additionally,
the exponentially vanishing overlap of far away LIOMs implies that correlations are
short-ranged in MBL eigenstates. As a consequence, upon splitting the system in two
halves, only the LIOMs in the vicinity of the bipartite cut retain information about the
other subsystem and can contribute to entanglement entropy, thus explaining the area-law
entanglement typical of many-body localized eigenstates [56, 79].

Figure 1.2: Cartoon picture of the disordered XXZ chain and its transformation to the
MBL Hamiltonian. Before the transformation the spins can flip with amplitude J/2
and interact locally with coupling strength ∆. After the transformation the LIOMs are
quasi-local, with exponential tails, and interact through the 2, 3 . . . n-body terms Ji1...in .

Besides these spectral properties of MBL, which can be probed through exact diagonal-
ization on small systems and used as evidence for the existence of the MBL phase, the
localized nature of the Hamiltonian (1.6) has consequences also on the dynamics. As the
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1.1. Dynamics of systems far from equilibrium

integrals of motion have a large overlap with the local degrees of freedom, one expects
the time-evolution from a product state to retain memory of the local information for
indefinitely long times. This intuition can be probed, both numerically and experimen-
tally, through the so-called imbalance I(t), an observable that quantifies how far the
time-evolved state is from the initial state [66]. Typically, the system is initialized in a
density wave pattern, such that all odd sites are occupied and all even are empty, then
the imbalance is defined as

I(t) = No(t) −Ne(t)
No(t) +Ne(t)

, N̂ o =
∑︂
i odd

n̂i, N̂ e =
∑︂
i even

n̂i. (1.7)

A saturating imbalance to a finite value, then, indicates absence of thermalization.
A second dynamical probe of MBL, which is a hallmark of this phase, is the logarithmic
growth of entanglement entropy [55, 68, 80]. Again this characteristic property can be
understood in terms of the Hamiltonian (1.6) through the following thought experiment [55,
57]. Let us initialize the system in a product state in the LIOMs basis, the state will then
acquire entanglement due to the interaction among different integrals of motion. This
interaction can be viewed as an effective field h̃i,i+x representing the coupling with LIOMs
within a distance x from site i. The time evolution then will yield a precession of the
LIOM at site i governed by e−ıh̃i,i+xt, and this will become relevant for entanglement at a
time t(x) where the phase is of order one. As the effective field depends on the interaction
strengths, and these decay exponentially away from i, one can write h̃i,i+x ∼ J0e

−x/ξ′ .
Hence the condition for two LIOMs to be correlated by the time-evolution, h̃i,i+xt(x) ∼ 1,
yields

xcorr(t) = ξ′ log(J0t), S(t) ∝ ξ′ log(J0t). (1.8)
We notice that, besides the fundamental logarithmic growth of entanglement, this con-
struction also predicts saturation of entanglement from a quench to a value proportional
to the system size. The entanglement entropy in a quench then presents volume-law, as
opposed to eigenstates, albeit saturation is approached in an extremely slow fashion.
In spite of the good understanding of the MBL phenomenology reached thanks to the
description sketched above, there are still numerous open questions in the field. Most of
the theoretical and numerical work is limited to one dimension, where the stability of the
sequence of local rotations diagonalizing the Hamiltonian is proved to the mathematical
level of rigour under mild and physically reasonable assumptions [60]. In higher dimensions,
instability of MBL has been conjectured due to the so-called avalanche scenario [62].
In this picture, a rare region of weak disorder, whose presence is almost certain in
the thermodynamic limit, becomes locally ergodic. As a consequence, it delocalizes
neighboring degrees of freedom, increasing its size and its thermalizing effect. While in one
dimension this mechanism can be stopped if disorder is strong enough, in 2d the avalanche
scenario would predict that the geometry of the system leads to an unbounded growth of
the ergodic region, eventually delocalizing the whole chain. This conjecture is however not
proven, and the fate of MBL in two dimensions remains an open question. Few numerical
simulations have shown that indeed localization might be harder to obtain in 2-dimensional
systems [81], detecting a larger critical disorder as the width of a quasi-one-dimensional
chain is increased. However, the stability of MBL in 2d is still a debated topic, with
experimental work showing signatures of localization in 2-dimensional lattices [82, 83], in
contrast with the predictions of the avalanche scenario.
Another discussed topic is the existence of many-body mobility edges. A mobility edge is
an energy value separating localized from delocalized parts of the spectrum [84], and its
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presence implies that thermal and MBL eigenstates can coexist in the same Hamiltonian.
An argument similar to the avalanche scenario was used in Ref. [85] to suggest the
absence of many-body localization in presence of a mobility edge, while earlier studies had
predicted its existence [50] and confirmed numerically the coexistence of localized and
thermal regions of the spectrum [59]. Section 3 deals with this open question, presenting
the results of our work [86] which shows stability of many-body mobility edges in particle
density.

Similarly unclear is the fate of a many-body localized system coupled to a small thermal
bath. One outcome of such coupling is the possibility of localizing the bath through the
interaction with the many-body localized degrees of freedom, a phenomenon proposed
in Ref. [61] and named many-body localization proximity effect. Several attempts have
focused on the fate of the localized system coupled with the bath [87, 88], using different
approaches and showing different results depending on the way the bath is modelled.
Inspired by the experimental work of Refs. [70, 72], Chapter 4 investigates the dynamical
properties of a small bath, showing evidence of many-body localization proximity effect [65,
89] at strong disorder and coupling, for a system of Anderson localized particles interacting
with a small bath including a single degree of freedom.

Finally, recent years have seen an active debate about the finite size effects influencing the
study of many-body localization [90, 91, 92, 93, 94]. Numerical results on small systems
have suggested a possible drifting of the critical disorder with system size, yielding an
infinite critical disorder in the thermodynamic limit. This is however in contrast with
the mathematical proof of John Imbrie [60], and with established experimental evidence
in systems beyond the reach of exact numerical simulations [66, 68]. This debate is very
hard to settle, due to the limited system sizes available to exact numerics and to the
absence of reliable analytic schemes beyond phenomenological renormalization group
techniques [63]. The significant influence of finite size effects then demands an effort in
finding new numerical methods, able to study large systems.

1.2 State of the art numerical methods for the study
of large many-body systems

The improvement of technological resources together with the advance in numerical
techniques have led in the last decades to an increased understanding of out-of-equilibrium
physics. Oftentimes however, as discussed at the end of the last section, a correct
interpretation of the numerical simulations requires to overcome finite size effects and
extrapolate results to the thermodynamic limit. Due to the exponential increase of the
Hilbert space with system size, this task represents one of the biggest challenges in modern
quantum many-body physics and requires finding numerical methods capable of pushing
forward the investigation of large systems. Therefore, the development of new techniques
is an active field of research in quantum many-body physics.

1.2.1 Exact diagonalization and related methods for the study
of states and time-evolution

We can roughly split the existent numerical methods into those which focus on finding
(parts of) the eigenstates, and those which target the time-evolution. One method,
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however, gives access to both simultaneously: exact diagonalization (ED). As the name
suggests, ED numerically diagonalizes the Hamiltonian, returning the whole spectrum
{|Em⟩ , Em}, which allows the study of dynamics of any initial state |ψ0⟩

|ψ0⟩ =
∑︂
m

⟨Em|ψ0⟩ |Em⟩ ⇒ |ψ(t)⟩ = e−ıĤt |ψ0⟩ =
∑︂
α

⟨Em|ψ0⟩e−ıEmt |Em⟩ . (1.9)

Exact diagonalization however is limited by the size of the Hamiltonian, whose growth
quickly makes the problem intractable due to the exponential increase in system size of
the Hilbert space.

Going beyond this limitation then requires some additional effort, often guided by the
knowledge of the physical system under investigation. One can take advantage of the sparse
nature of local Hamiltonians and keep only the relevant information. In Hamiltonians with
strictly local interactions, each basis state is typically connected through the Hamiltonian
to ∼ O(L) other states, thus the amount of information that needs to be stored scales
as ∼ O(L2L) as opposed to 22L required for the full Hamiltonian, reducing drastically
the memory requirements. One can then use iterative algorithms, such as the Arnoldi or
Lanczos methods, to obtain extremal eigenvalues and eigenvectors of the Hamiltonian.
However, in non-equilibrium settings highly excited eigenstates are often the target and
in the middle of the spectrum the above mentioned methods become more challenging
due to the exponentially small level spacing. Typical workarounds consist in spectral
transformations that move the relevant part of the spectrum to the edges, such that
iterative algorithms can be used. One way of obtaining this result is through the so-called
shift-invert transformation [59, 95]

Ĝ = (Ĥ − σI)−1 (1.10)

where eigenvalues of the Hamiltonian close to the target energy σ are moved to the edges
of the spectrum of Ĝ. Additionally, the spacing among energy levels gets increased, thus
improving the performance of iterative algorithms. An alternative way recently proposed,
the polynomially filtered exact diagonalization (POLFED), uses an expansion of the
spectrum in Chebyshev polynomials, which also proved efficient in obtaining internal
eigenstates [96, 97]. The main bottleneck in this methods is still given by the size of the
matrices involved, which limits the applicability to system sizes L ≲ 30.

In the direction of time-evolution similar methods rely on Krylov subspace techniques,
used also by the Arnoldi and Lanczos algorithms. Their application to dynamics basically
consists in writing the time-evolution operator Û(t) = exp

(︂
−ıĤt

)︂
in a Krylov subspace

of dimension m
Km = {|v0⟩ , Ĥ |v0⟩ , Ĥ

2
|v0⟩ , . . . , Ĥ

m−1
|v0⟩}, (1.11)

related to a given state |v0⟩ ∈ H, and where m ≪ D with D the dimension of the
Hilbert space H. Then one defines the Hamiltonian restricted to the Krylov subspace
Ĥm = Ĥ|Km and use it to construct the time-evolution operator Ûm [98]. The matrix
vector multiplication |ψ(t+ δt)⟩ = Û(δt) |ψ(t)⟩, demanding due to the dense nature of
Û , is then replaced by the much cheaper operation |ψ(t+ δt)⟩ ≈ V̂

†
mÛm(δt)V̂ m |ψ(t)⟩,

where the matrix V̂ m embeds the state in the Krylov subspace and V̂
†
m brings it back

to the full Hilbert space. This powerful method is limited by the memory requirements
on the Hamiltonian similarly to the ones used to obtain the spectrum, thus limiting the
investigation to system sizes up to L ≲ 30.
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1.2.2 Matrix product states approach to eigenstates and
dynamics

The methods described above are relatively general, as they rely only on the sparseness of
the Hamiltonian. However, over the last decades, an alternative approach which takes into
account some additional physical intuition has proved to be extremely efficient: tensor
network techniques. The main intuition is that the whole Hilbert space contains an amount
of information which is irrelevant for most of the physical observables. This information
is naturally encoded in the entanglement properties of the states, with the entanglement
entropy and entanglement spectrum determining whether a state is compressible, i.e. if it
can be represented in a more compact way without loosing relevant physical information.
An efficient way of retaining in the wavefunction only the significant information, then,
can result in a dramatic decrease of the computational costs. Tensor network methods
deal exactly with this issue, using the concept of entanglement, as defined at the beginning
of this chapter, to determine how to approximate the description of quantum states in an
efficient, yet accurate, way.

The efficient compression of the significant information shows its best results in one
dimension, where it takes the name of matrix product states (MPS) [99, 100, 101, 102].
Analogous generalizations to 2-d (projected entangled pair states-PEPS) also exist [103,
104, 105, 106], although they are currently far less efficient. We will then focus on one
dimensional MPS. A one dimensional wavefunction |ψ⟩ can be decomposed over a local
product states basis {|σi⟩}i=1,...,L, where each local degree of freedom σi can take up to p
values (p = 2 for spin-1/2 systems). In this basis the state reads

|ψ⟩ =
∑︂
{σ}

Cσ1,σ2,...,σL
|σ1σ2 . . . σL⟩ . (1.12)

The pL coefficients C can be interpreted as a rank-L tensor, where each index can take up
to p values. To obtain the compressed MPS form, one then performs a series of singular
value decompositions (SVD) on the tensor C, transforming it in a product of local tensors.
We illustrate for clarity the first two steps of this process. In the first step, the indices
(σ2, . . . , σL) are grouped together transforming C in a rectangular matrix of dimension

Figure 1.3: Diagrammatic representation of the series of transformations bringing the
wavefunction in MPS form. Each rectangle corresponds to a tensor, whose rank is
determined by the number of legs sticking out of it. Legs connecting different tensors
represent contracted indices, as for instance the bond indices a1 . . . aL.
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p× pL−1 on which an SVD is performed

Cσ1,(σ2,...,σL) =
min(D1,D2...L)∑︂

a1=1
Uσ1,a1Sa1,a1V

†
a1,(σ2,...,σL) =

min(D1,D2...L)∑︂
a1=1

Uσ1,a1Ca1σ2,(σ3,...σL),

(1.13)
where D1,D2,...,L are the Hilbert space dimensions of the two subsystems, and in the last
equality we multiplied the matrices S and V † and reshaped them in a matrix of dimensions
(p2, pL−2). After renaming the matrix Uσ1,a1 = Aσ1 , we proceed with the second step

Ca1σ2,(σ3,...,σL) =
min(D2,D3...L)∑︂

a2=1
Ua1σ2,a2Sa2,a2V

†
a2,(σ3,...,σL) =

min(D2,D3...L)∑︂
a2=1

Ua1σ2,a2Ca2σ3,(σ4,...σL),

(1.14)
and again we rename the rank-3 tensor Ua1σ2,a2 = Aσ2

a1,a2 . It is clear then, that repeating
this operation until the opposite boundary we can write the state as

|ψ⟩ =
∑︂
{σ}

∑︂
a1,...,aL−1

Aσ1
a1A

σ2
a1,a2 . . . A

σL−1
L−2,L−1A

σL
aL−1

|σ1 . . . σL⟩ . (1.15)

So far, this description is exact, and as such it does not provide any advantage with
respect to the initial representation of the state (1.12). The key point here is that the
auxiliary dimension introduced, the bond dimension D related to the values the indices
an can take, can be limited to a maximal cutoff χ ≪ D. This can be justified whenever
the singular values, i.e. the diagonal entries of the matrix San,an , decay fast enough,
such that truncating the matrix to a given bond dimension has very little effect on the
state. Thanks to this insightful observation, the global complexity of the wavefunction
can be reduced from pL to a much more manageable pLD2, i.e. polynomial in system
size. This great gain in efficiency comes at a cost, namely the limitation on the amount
of entanglement one can represent with such a wavefunction. It can be shown that the
entanglement entropy of the bipartite cut i is given exactly by the Shannon entropy of
the squared singular values of the matrix Sai,ai

resulting from the SVD at site i

S = −
∑︂

S2
ai,ai

log
(︂
S2
ai,ai

)︂
. (1.16)

Hence, for a matrix of bond dimension D, one obtains S ≤ log(D), which in turn implies
that the bond dimension required to describe a system depends exponentially on its
entanglement entropy.

The MPS representation of the wavefunction can be used, similarly to exact diagonalization,
to obtain both eigenstates and time-evolution. Its limitation is not the system size, however,
as the scaling of the complexity is only linear in L, but rather the bond dimension, which
limits the efficient and accurate MPS description to quantum states whose entanglement
corresponds to a treatable D. Nevertheless, this is still a very powerful ansatz, as many
physically relevant states happen to have area-law entanglement, as it is the case for ground
states of gapped local Hamiltonians [107] or for the eigenstates of MBL Hamiltonians
(see Section 1.1.2). A typical approach to obtain ground states in MPS form is to use
the celebrated density matrix renormalization group (DMRG) algorithm [108] applied
to matrix product states representations of the wavefunction [109]. The Hamiltonian is
minimized locally, taking into account only two physical degrees of freedom at a time,
and keeping the remainder of the system as a left and right environment. After each
local energy minimization, the MPS form is restored through an SVD and the left and
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right environments updated. The algorithm then consists of sweeps through the chain
from left to right and vice versa until convergence is reached. The key to the success
of DMRG applied to MPS Ansätze is that it allows studying system sizes well beyond
the limits of the methods described above, thanks to the linear scaling in system size
of the complexity. Additionally, if the system is translationally invariant, the infinite
DMRG algorithm can be applied, thus allowing the study of ground state properties
directly in the thermodynamic limit. When highly excited eigenstates of the Hamiltonian
are also weakly entangled, the DMRG method can be applied to transformations of the
Hamiltonian, such as the shift-invert defined above. This eigensolver for highly excited
eigenstates, called DMRG-X [110, 111, 112], is particularly useful in many-body localized
Hamiltonians, where it can provide spectral properties deep in the MBL phase. The
drawback, however, is that the DMRG-X algorithm cannot be applied through the phase
transition, as approaching the critical disorder eigenstates’ entanglement starts growing
with system size.

Besides their use in determining area-law entangled eigenstates, matrix product states
can be used to simulate the time-evolution of the system, as long as the entanglement
generated is low. Again, MBL provides a good ground for application of MPS methods,
as the logarithmic growth of entanglement implies an algebraic growth in time of the
bond dimension, thus allowing the study of dynamics on relevant timescales. We identify
two main algorithms for the dynamics of matrix product states, the time-dependent
variational principle (TDVP) [113] and the time-evolving block decimation (TEBD) [114].
The latter, in particular, is the method of choice in the works presented in this thesis.

The time-dependent variational principle projects the dynamics onto a manifold of fixed
bond dimension χ, where it solves the time-dependent Schrödinger equation. As such,
the time-evolution is exactly unitary, and preserves the norm and all conserved quantities,
as opposed to TEBD. Additionally, it can be directly used to study the dynamics of
long-range Hamiltonians. Nevertheless, the projection of the dynamics introduces a
weakly controllable source of error, thus requiring running several bond dimensions until
convergence is reached.

The time-evolving block decimation is best suited for short range Hamiltonians, where the
action of the time-evolution operator can be split into different sets of gates whose elements
are commuting with one another. The continuous time-evolution is then approximated via
a Suzuki-Trotter decomposition [115] of n-th order with time-step δt. The resulting local
gates are applied to the MPS, and after each application the MPS form is restored through
a singular value decomposition. To obtain accurate results, one needs to employ a higher
order decomposition, as the error scales as δtn, which in turn requires an increasing number
of local gates applications, reducing the efficiency. However, as long as the time-step is
small enough and the truncation error arising from the discarded singular values in the
SVD are controlled, TEBD provides a quasi-exact method for the time-evolution.

1.3 Author’s contributions
As outlined above, there are numerous open questions in the field of nonergodic quantum
many-body systems. In this Thesis, we present original research results obtained on several
interrelated topics. In particular, in the first part of the thesis we focus on kinetically
constrained systems, investigating the nature of fragmentation and its effects on dynamics.
Next, in Chapter 3, we study the interplay of constraints and disorder, using the resulting
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system to analyze the many-body mobility edge. Finally, in Chapter 4, we present our
results concerning the interplay of localized and thermal degrees of freedom, showing
evidence for the MBL proximity effect in large systems and studying its stability.

1.3.1 Kinetically constrained models
The first Chapter is based on the results of Ref. [40]. There, we introduce a class of
particle-conserving kinetically constrained models, characterized by inversion-symmetry
breaking constraints. We analyze the structure of the Hilbert space, observing the expected
classical fragmentation. A careful inspection of the largest subsector of the Hilbert space
however reveals the presence of quantum Hilbert space fragmentation, a phenomenon far
less understood and observed only in few models [36, 42].
We present an analytical construction of the states yielding quantum Hilbert space
fragmentation, where the combination of U(1) symmetry and chiral constraints plays a
crucial role. We conjecture that the interplay of these symmetries provides a generic way
of realizing quantum fragmentation. The further investigation of the system’s dynamics
reveals signatures of quantum fragmentation in the time-evolution of local observables in
quenches from simple product states.
Studying transport within the largest subsector of the classically fragmented Hilbert space
we observe transient superdiffusive transport followed by a slow, logarithmic, behavior, that
we intuitively understand from the structure of the Hamiltonian representing the allowed
transitions. Finally, implementing the same constraint in a classical cellular automaton we
find signatures of ballistic dynamics on short timescales, before the logarithmic spreading
of density arises at later times.

1.3.2 Many-body mobility edges
In Chapter 3 we present the results obtained in [86], where we dealt with the problem of
stability of many-body mobility edges in disordered interacting systems. As mentioned
in Section 1.1.2, the coexistence of thermal and localized eigenstates in the spectrum
was conjectured to destabilize many-body localization [85]. In this work, we introduce a
model of hard-core bosons where the interaction is mediated by a correlated hopping. The
model is designed in such a way that the interplay of the free and constrained hopping,
and of the disorder, leads to a many-body mobility edge in particle density.
The mobility edge in particle density allows a much easier and deterministic access to
localized and thermal parts of the spectrum, a property we take advantage of directly
simulating the time-evolution of states belonging to different sectors of the spectrum. In
particular, we use both Krylov time-evolution and tensor network techniques to study the
dynamics generated by the constrained Hamiltonian. Our results show stable coexistence
of localization within the MBL part of the spectrum, together with thermalizing eigenstates
at higher particle densities. Additionally, we probe the mechanism proposed in Ref. [85]
as a source of delocalization, showing evidence of absence of the predicted motion of
locally ergodic regions in our model.

1.3.3 Many-body localization proximity effect
The concluding part of this Thesis, Chapter 4, is dedicated to [65, 89], where we study
many-body localization proximity effect [61], inspired by recent experimental work [70, 72].
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A key difference between our work and related previous literature [61, 87, 88] consists
in the fact that we probe both the stability of MBL and the eventual localization of the
small bath, whereas earlier work mainly focused on properties of the system as a whole,
detecting localization or thermalization of the mixture of bath and localized particles. To
achieve this goal, we introduce a model with two species of hard-core bosons, of which one
is Anderson localized and the second one is free. Our model can be viewed as a fermionic
Hubbard model, where disorder affects only one spin direction and spin is conserved.
We then analyze the fate of the system once the interaction among the two species is
turned-on.

We first study the system in a mean field approximation, resulting in localization of the
bath. Building on this, we obtain an analytical criterion for the stability of localization
to the most relevant two-body processes induced by the interaction. This result suggests
stability of proximity effect at strong coupling strengths. We then numerically study this
particular case, first with an approximate method and later with quasi-exact time-evolving
block decimation [114]. While the approximate method shows signatures of thermalization,
tensor networks simulation show instead convincing evidence of the MBL proximity effect,
on system sizes well beyond the ones achievable with exact diagonalization. Additionally,
we observe a characteristic inhomogeneous entanglement growth, which we explain through
a phenomenological theory. We finally obtain highly excited eigenstates through the
DMRG-X algorithm [110, 111, 112] and find clear signatures of localization of the bath
together with strong dependence of the entanglement entropy on the localization center
of the free particle. Effectively probing the infinite time regime, the study of eigenstates
provide complementary evidence for the findings presented in the analysis of dynamics.

Lowering interaction strength, we observe signatures of delocalization of the bath using
extremely large systems L ≈ 200 ÷ 2000 sites. Investigating the dynamical behavior of
the bath, we report a crossover from localization at strong coupling, to subdiffusion at
intermediate values and finally diffusion as the interaction strength is decreased further.
Interestingly, the delocalization of the bath affects also the Anderson localized particles,
although on extremely long timescales, whose investigation remains beyond our current
capabilities.

Finally, we study the behavior of the system as the density of particles composing the
bath is changed. At large density close to half filling we observe delocalization of both
types of particles, characterized by diffusive transport observed in the dynamics of density
matrices close to infinite temperature. As the coupling is reduced, and the localized phase
is approached, a subdiffusive behavior arises in the transport of the disordered particles.
Further reducing the density of particles in the bath shows an enhancement of localization,
which is eventually restored at very low densities.

1.4 Outlook
The results presented in this thesis and summarized above investigate various aspects of
ergodicity breaking in quantum many-body physics. In particular, we demonstrated the
existence of many-body mobility edges in large system [86], providing evidence in favor of
the stability of MBL in presence of mobility edges [59, 71, 85]. Additionally, we thoroughly
investigated the topic of many-body localization proximity effect [61], presenting the first
results beyond the limits of exact diagonalization [65, 89]. Although not directly related,
our results on localization in extremely large systems also provide evidence suggesting
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the stability of MBL in the thermodynamic limit. Our work then contributes also to the
understanding of finite size effects in the many-body localized phase and of the fate of
localization as L → ∞ [90, 92, 93, 94].

Regarding the rich field of kinetically constrained models, our work [40] poses new
intriguing questions regarding the existence of new transport universality classes related
to different types of constraints, a topic also addressed in [41, 116]. Furthermore, the
observation of quantum fragmentation in our model and our analytical understanding of
it providing interesting insight in the description of this phenomenon.

Throughout this work, we mainly focus on the investigation of isolated systems described
by time-independent Hamiltonians. Beyond this paradigm, however, a large amount of
fascinating phenomena have recently been discovered. In periodically driven Floquet
systems, whenever the energy absorption can be suppressed, novel phases can arise with
no counterpart in the Hamiltonian scenario. A particular example is provided by the time-
crystal, recently realized in simulations and experiments [14, 117] thanks to an underlying
MBL phase. A similar new phase is the anomalous Floquet insulator [118], where the
localized phase yields an insulating bulk coexisting with extended wavefunctions on the
boundaries. These examples highlight how the combination of ergodicity breaking and
periodic driving can lead to the emergence of novel phases of matter with no counterpart
in the time-independent setup. A particularly exciting direction may be the study of
phenomena enabled by weak ergodicity breaking and Floquet driving in the setting of
kinetically constrained models, where one can expect state-dependent dynamical behaviors
and possibly different phases.

In a similar direction, recent studies have explored the behavior of systems coupled with
the external environment, and in particular subject to measurements. This line of research
has established a new type of phase transition, which affects the entanglement properties
of the system [119, 120, 121]. This setup can be further explored in search of new physics
arising due to the effects of the interaction with the external world. Furthermore, on a
more applied side, several proposals have suggested to use this setup to navigate through
the Hilbert space [122], a direction with potential application in experiments, where
preparing complex states is a hard task.

Finally, despite great advance in numerical techniques, accessing large system sizes still
remains one of the main obstacles in settling many debated topics, such as the significant
finite system size effects affecting MBL. In this context, the ever increasing effort of the
community in developing better quantum devices keeps making more real the promise of
reliable quantum computing in the not-too-far future [9, 10, 16, 123]. The development of
quantum computing requires a deeper understanding of the laws governing the behavior
of qubits in these setups, which are often not ideal and affected by noise and other effects
of the coupling with the environment. As a consequence, the study of non-equilibrium
quantum many-body physics in its general sense, including open systems and time-
dependent Hamiltonians, is a fundamental step for the advancement of fundamental and
technological purposes.
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CHAPTER 2
Hilbert space fragmentation and slow

dynamics in particle-conserving
quantum East models

In this Chapter, we investigate the effect of kinetic constraints on the dynamics of many-
body quantum systems. We introduce a pure kinetically constrained model, where the
Hamiltonian only contains correlated hopping terms. We analyze the spectrum of the
Hamiltonian, observing both classical and quantum Hilbert space fragmentation. Next, we
show dynamical signatures of quantum Hilbert space fragmentation in the time-evolution
of simple product states. Finally, we present the anomalous transport properties of
the domain wall initial state in this model, namely a transient superdiffusive dynamics
followed by logarithmic behavior. This Section is based on

Brighi P., Ljubotina M. and Serbyn M. “Hilbert space fragmentation and slow dynamics
in particle conserving quantum East models,” arXiv:2210.15607 (2022)

2.1 Introduction
In recent years, kinetically constrained models, originally introduced to describe classical
glasses [32, 124, 125], have received considerable attention in the context of non-equilibrium
quantum dynamics [116, 126, 127, 128, 129]. In analogy with their classical counterparts,
they are characterized by unusual dynamical properties, including slow transport [116,
130, 131, 132, 133, 134], localization [35, 64, 135] and fractonic excitations [136, 137].
Additionally, in the quantum realm, other interesting phenomena have been observed,
such as Hilbert space fragmentation [34, 35, 37, 42, 138, 139, 140, 141] and quantum
many-body scars [25, 29, 142, 143, 144].

Among the many possible types of constraints, one can distinguish models that are
inversion symmetric from those that break inversion symmetry. Among the latter models,
the so-called quantum East model [129, 135, 145, 146, 147, 148] where spin dynamics of
a given site is facilitated by the presence of a particular spin configuration on the left
represents one of the most studied examples. The quantum East model has been shown
to host a localization-delocalization transition in its ground state [135], which allows the
approximate construction of excited eigenstates in matrix product state form. Transport
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in particle-conserving analogues of the East model was recently investigated through
the analysis of the dynamics of infinite-temperature correlations, revealing subdiffusive
behavior. A similar result has also been observed in spin-1 projector Hamiltonians [149].

The interplay of particle conservation and kinetic constraints that break inversion sym-
metry opens several interesting avenues for further research. First, the phenomenon of
so-called Hilbert space fragmentation that is known to occur in constrained models and
is characterized by the emergence of exponentially many disconnected subsectors of the
Hilbert space is expected to be modified. The additional U(1) symmetry is expected to
influence Hilbert space fragmentation beyond the picture presented in previously studied
models [129, 135, 145]. Second, the presence of a conserved charge allows the study
of transport [116, 133, 134]. While transport without restriction to a particular sector
of fragmented Hilbert space results in slow subdiffusive dynamics [116, 133], a recent
work [41] demonstrated that a restriction to a particular sector of fragmented Hilbert
space can give rise to superdiffusion. This motivates the study of transport in the particle
conserving East model restricted to a particular sector of the Hilbert space.

In this work, we investigate a generalized East model, consisting of hard-core bosons
with constrained hopping. The constraint prevent hopping in the absence of bosons on
a few preceding sites to the left. The chiral nature of such facilitated hopping strongly
breaks inversion symmetry, akin to the conventional East model, additionally featuring
the conservation of the total number of bosons. Our results show that combining charge
conservation and the breaking of inversion symmetry yield new interesting transport
phenomena. Specifically, we characterize the proposed generalized East model using its
eigenstate properties and dynamics. The detailed study of the eigenstates reveals so-called
quantum Hilbert space fragmentation, so far reported only in a few other models [36, 42].
The quantum fragmentation we observe in our model leads to the existence of eigenstates
that have zero entanglement along one or several bipartite cuts. The number of these low
entanglement eigenstates increases exponentially with system size. We find that these
unusual eigenstates can be constructed recursively, relying on special eigenstates existing
in small chains that are determined analytically. Thus the particle-conserving East model
provides an example of recursive quantum Hibert space fragmentation.

The study of dynamics of the particle-conserving East model reveals that weakly entangled
eigenstates existing in the spectrum can be probed by quenches from simple product
states. In addition, the dynamics from a domain wall initial state reveals two distinct
transport regimes. At short times dynamics is superdiffusive, whereas at longer times the
constraint leads to a logarithmically slow spreading. We recover the logarithmically slow
dynamics within a classically simulable cellular automaton that has the same features as
the Hamiltonian model. In contrast, the early time dynamical exponent differs between the
quantum Hamiltonian dynamics and the cellular automaton. Additionally, the transport
properties show signatures of dependence on the density of particles in the leftmost part
of the chain of the initial state. These unusual results call for a more detailed exploration
and better understanding of the reported superdiffusive dynamics and its stability in the
thermodynamic limit. This invites the systematic study of such models using large scale
numerical methods and development of a hydrodynamic description of transport in such
systems.

The remainder of the paper is organized as follows. In Section 2.2 we introduce the
Hamiltonian of the particle-conserving East model and explain the effect of the constraint.
We then investigate the nature of the Hilbert space fragmentation and of the eigenstates
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in Section 2.3. In Section 2.4 we investigate the dynamical properties of the system,
showing similarities in the long-time behavior among the quantum dynamics and the
classical cellular automaton. Finally, in Section 2.5, we conclude by presenting a summary
of our work and proposing possible future directions.

2.2 Family of particle-conserving East models
We introduce a family of particle conserving Hamiltonians inspired by the kinetically
constrained East model in one dimension. The East model, studied both in the classical [32,
148] and quantum [135, 145, 147] cases, features a constraint that strongly violates inversion
symmetry: a given spin is able to flip only if its left neighbor is in the up (↑) state. A
natural implementation of such a constrained kinematic term in the particle-conserving
case is a hopping process facilitated by the presence of other particles on the left. The
simplest example of such a model is provided by the following Hamiltonian operating on
a chain of hard-core bosons,

Ĥr=1 =
L−1∑︂
i=2

n̂i−1
(︂
ĉ†
i ĉi+1 + ĉ†

i+1ĉi
)︂
, (2.1)

where the operator n̂i = ĉ†
i ĉi is a projector onto the occupied state of site i. We assume

open boundary conditions here and throughout this work, and typically initialize, without
loss of generality, the first site as being occupied by a frozen particle. All sites to the left
of the leftmost particle, in fact, cannot be occupied, hence they are not relevant to the
behavior of the system.

The Hamiltonian (2.1) implements hopping facilitated by the nearest neighbor particle
on the left, hence we refer to it as the range-1, r = 1, particle conserving East model.
A natural extension of this model would be hopping facilitated by the nearest or next
nearest neighbor, which reads:

Ĥ2 =
L−1∑︂
i=2

(n̂i−2 + n̂i−1 − n̂i−2n̂i−1)(ĉ†
i ĉi+1 + H.c.), (2.2)

where we treat the operator n̂i=0 = 0 as being identically zero. Note, that in this
Hamiltonian we use the same hopping strength irrespective if the facilitating particle is
located on the nearest neighbor or next nearest neighbor site, however this condition may
be relaxed. Examples of range-1, Ĥ1, and range-2, Ĥ2, particle conserving East models
can be further generalized to arbitrary range r as

Ĥr =
L−1∑︂
i=r+1

K̂i,r

(︂
ĉ†
i+1ĉi + H.c.

)︂
, (2.3)

K̂i,r =
r∑︂
ℓ=1

tℓP̂ i,ℓ (2.4)

where the operator K̂i,r implements a range-r constraint using projectors on the configu-
rations with n̂i−ℓ = 1 and the region [i− ℓ+ 1, i− 1] empty, P̂ i,ℓ = n̂i−ℓ

∏︁i−1
j=i−ℓ+1(1 − n̂j).

The coefficients tℓ correspond to the amplitude of the hopping facilitated by the particle
located ℓ-sites on the left. The Hamiltonian Ĥ2 in Eq. (2.2) corresponds to the particular
case when all tℓ = 1.
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Figure 2.1: Illustration of constrained hopping in the range-2 particle conserving East
model.

Models with similar facilitated hopping terms were considered in the literature earlier. In
particular a pair hopping ••◦ ↔ ◦•• was introduced in [85] and later used in [86] to probe
many-body mobility edges, and shown to be integrable in Ref. [141]. In [150] a similar
constrained hopping term was shown to arise from the Jordan-Wigner transformation of
a next nearest neighbor XY spin chain. Another constrained model recently studied is
the so-called folded XXZ [37, 64], where the ∆ → ∞ limit of the XXZ chain is considered,
leading to integrable dynamics [139, 140]. The key difference in our work, compared to
the previous literature, consists of having a chiral kinetic term, whereas in the mentioned
works symmetric constraints are considered.

Hamiltonians Ĥr for all values of r feature U(1) symmetry related to the conservation of
total boson number, justifying the name of particle-conserving East models. In this work
we mostly focus on the case of r = 2 with homogeneous hopping parameters tℓ = 1, as
written in Eq. (2.2). We discuss the generality of our results with respect to the choice of
hopping strengths and range of constraint in Appendices A.4 and A.6. A major feature
of this family of models is Hilbert space fragmentation, which is known to affect spectral
and dynamical properties. As such we begin our investigation by looking into the nature
of Hilbert space fragmentation in these models in Section 2.3, where we highlight the
generality of our results, by formulating them for a general range r and show examples
for r = 2.

2.3 Hilbert space fragmentation and eigenstates
In this Section we focus on the phenomenon of Hilbert space fragmentation in the particle-
conserving East models introduced above. First, we discuss the block structure of the
Hamiltonian in the product state basis — known as a classical Hilbert space fragmentation

— and define the largest connected component of the Hilbert space. Next, in Sec. 2.3.2 we
discuss the emerging disconnected components of the Hilbert space that are not manifest
in the product state basis, leading to quantum Hilbert space fragmentation.

2.3.1 Classical Hilbert space fragmentation
Due to the U(1) symmetry of the Hamiltonian (2.3), the global Hilbert space is divided in
blocks labeled by the different number of bosons Np with dimension given by the binomial
coefficient CLNp

. Within each given sector of total particle number Np, the constrained
hopping causes further fragmentation of the Hilbert space in extensively many subspaces.
First, the leftmost boson in the system is always frozen. Hence, as we discussed in
Section 2.2, we choose the first site to be always occupied, which may be viewed as a
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boundary condition. In addition, a boson may also be frozen if the number of particles to
its left is too small. An example configuration is given by the product state |• ◦ ◦ ◦ • • ◦◦⟩
for the r = 2 model, where ◦ corresponds to an empty site and • is a site occupied by one
boson. Here the second boson cannot move since the previous two sites are empty and
cannot be occupied.
In view of this additional fragmentation, we focus on the largest classically connected
sector of the Hilbert space with a fixed number of particles, Np. This sector can be
constructed starting from a particular initial state |DW⟩, where all particles are located
at the left boundary,

|DW⟩ = | • • • · · · •⏞ ⏟⏟ ⏞
Np

◦ ◦ ◦ · · · ◦⏞ ⏟⏟ ⏞
L−Np

⟩. (2.5)

Starting from this initial state the constraint will limit the spreading of particles, that
can reach at most

L∗
r(Np) = (r + 1)Np − r (2.6)

sites, corresponding to the most diluted state, |• ◦ ◦ • ◦ ◦ • ◦ ◦ • . . .⟩ for r = 2. Thus, in
what follows we use the system size L = L∗

r uniquely defined by the number of particles
and the range of the constraint in Eq. (2.6).
The fragmentation of the Hilbert space discussed above may be attributed to a set of
emergent conserved quantities in the model in addition to the total particle number,
N̂ tot = ∑︁

i n̂i. The first class of conserved operators responsible for the freezing of the
leftmost particle is written as

N̂ ℓ0 = ℓ0
[︂ ∏︂
i<ℓ0

(1 − n̂i)
]︂
n̂ℓ0 . (2.7)

Since projectors in this operator are complementary to the projectors in the Hamiltonian,
this satisfies the property N̂ ℓ0Ĥr = ĤrN̂ ℓ0 = 0, hence trivially having a zero commutator.
This conservation law induces further fragmentation of the Hilbert space into L − Np

sectors labeled by the position of the leftmost boson.
The second class of operators yields a further fragmentation within each sector with fixed
position of the leftmost particle. Bearing in mind that the leftmost compact cluster of
Ñ particles cannot expand farther than L̃ = L∗

r(Ñ), one can realize that if r + 1 sites or
more are left empty to the right of L̃ then the chain is dynamically separated into two
independent regions. The Ñ particles on the left cannot spread to the right side i ≥ L̃+ r
as well as the leftmost particle on the right cannot move to the left as the constraint is
never fulfilled. The simplest example of such configuration is given by |• ◦ ◦ • ◦ ◦ ◦ • . . .⟩
for r = 2, Ñ = 2 and L̃ = 4. Crucially, the position j̃ > L̃ + r of the first occupied
site on the right can be chosen arbitrarily, as long as it satisfies the global constraints
of the system. Formally, then, one can define a family of conserved quantities given by
the projector P̂Ñ on configurations with Ñ particles in the leftmost L̃ sites followed by a
sufficiently large empty region, and, finally, an occupied site j̃

Ô
j̃

Ñ = P̂Ñ,ĩ

[︃ j̃−1∏︂
k=L̃+1

(1 − n̂k)
]︃
n̂j̃. (2.8)

The freedom in the choice of j̃ yields r(Np − Ñ − 1) different sectors for a fixed Ñ . Hence,
the number of fragmented sectors is given by

Np−1∑︂
Ñ=1

r(Np − Ñ − 1) =
[︂1
2(N2

p − 3Np) + 1
]︂

∝ N2
p . (2.9)

23



2. Hilbert space fragmentation and slow dynamics in particle-conserving
quantum East models

We notice that additional levels of fragmentation can emerge whenever the right part can
be further decomposed in a similar way to the one discussed above. This corresponds
to composing two different Ôj̃

Ñ where the second is shifted by j̃ sites. Every time that
happens, additional subsectors appear for some of the sectors identified by the operator
Ô
j̃

Ñ . As the number of additional levels of fragmentation increases proportionally to Np,
each adding subsectors to the previous level, one finally obtains that the asymptotic
behavior of the global number of classically fragmented subsectors has to be O(exp(Np)).
The exponential increase of the number of disconnected subsectors was verified numerically,
thus properly identifying a case of Hilbert space fragmentation. Finally, we notice that in
our case, the operators defined in Eq. (2.8) do not commute with each of the individual
terms of the Hamiltonian, as in the definition of Ref. [36]. Nevertheless, they define an
algebra of conserved quantities whose size grows exponentially with system size.

2.3.2 Recursive quantum Hilbert space fragmentation
Due to the fragmentation of the Hilbert space in the computational basis discussed above,
we focus on the largest sector of the Hilbert space as defined in the previous section.
In Appendix A.1 we show that the statistic of the level spacing for the Hamiltonian
Ĥ2 within this block follows the Wigner-Dyson surmise, confirming that we resolved
all symmetries of this model and naïvely suggesting an overall thermalizing (chaotic)
character of eigenstates [18].

To further check the character of eigenstates, we consider their entanglement entropy.
We divide the system into two parts, A containing sites 1, . . . , i, A = [1, i] and its
complement denoted as B = [i+ 1, L]. The entanglement entropy of the eigenstate |Eα⟩
for such bipartition is obtained as the von Neumann entropy of the reduced density matrix
ρi = trB |Eα⟩ ⟨Eα|

Si = − tr
[︂
ρi ln ρi

]︂
. (2.10)

In thermal systems entanglement of highly excited eigenstates is expected to follow volume

Figure 2.2: Entanglement entropy of eigenstates along the bipartite cut at the site 8 for
Np = 8 and L = 22. The color intensity corresponds to the density of dots, revealing
that the majority of the eigenstates have nearly thermal entanglement. However, a large
number of eigenstates has entanglement much lower than the thermal value. Among these,
the red dots correspond to entanglement being zero up to numerical precision (inset).
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law scaling, increasing linearly with i for i ≪ L, and reaching maximal value for i = L/2.
However, our numerical study of the entanglement entropy shows strong deviations
from these expectations, in particular revealing a significant number of eigenstates with
extremely low, and even exactly zero, entanglement, a feature typical of quantum many-
body scars [25, 26, 27, 28, 29, 30, 142, 151, 152, 153].

Figure 2.2 illustrates such anomalous behavior of eigenstate entanglement for a chain
of L = 22 sites. For the bipartite cut shown, A = [1, 8], most of the eigenstates have
increasing entanglement as their energy approaches zero, where the density of states
is maximal, in agreement with thermalization. Nevertheless, a significant number of
eigenstates features much lower values of entanglement, and the red box and inset in
Fig. 2.2 highlight the presence of eigenstates with zero entanglement (up to numerical
precision). We explain this as a result of an additional fragmentation of the Hilbert space
caused by the interplay of the constraint and boson number conservation.

Eigenstates with zero entanglement, denoted as |ES=0⟩, are separable and can be written
as a product state of the wave function in the region A and in its complement B. To this
end, we choose the wave function

⃓⃓⃓
ψℓm
⟩︂

of the separable state |ES=0⟩ in the region A as
an eigenstate of the Hamiltonian Ĥr restricted to the Hilbert space of m particles in ℓ
sites. The state

⃓⃓⃓
ψℓm
⟩︂

has to satisfy the additional condition
⟨︂
ψℓm
⃓⃓⃓
n̂ℓ
⃓⃓⃓
ψℓm
⟩︂

= 0, i.e. that
the last site of the region is empty. Provided such state exists, we construct the separable
eigenstate |ES=0⟩ as

|ES=0⟩ =
⃓⃓⃓
ψℓm
⟩︂

⊗ |◦ ◦ · · · ◦⟩⏞ ⏟⏟ ⏞
q

⊗ |ψR⟩ , (2.11)

where |ψR⟩ is an eigenstate of the Hamiltonian restricted to L− ℓ− q sites and Np −m

particles. Inserting an empty region of q ≥ r sites separating the support of
⃓⃓⃓
ψℓm
⟩︂

and
|ψR⟩ ensures that the two states are disconnected. Note that q is upper bounded by the
requirement that the resulting state belongs to the largest classically fragmented sector.
It is easy to check that the state |ES=0⟩ is an eigenstate of the full Hamiltonian. Indeed,
thanks to the empty region q the particles in A cannot influence those in B and the two
eigenstates of the restricted Hamiltonian combine into an eigenstate of the full system.

Similarly to the case of classical fragmentation discussed in Eq. (2.8), one can define a
family of operators that commute with the Hamiltonian and label the different sectors
arising due to quantum fragmentation

Ô
q

ψℓ
m

= P̂ψℓ
m

[︃ ℓ+q+1∏︂
k=ℓ+1

(1 − n̂k)
]︃
n̂ℓ+q+2, (2.12)

where P̂ψℓ
m

is the projector onto the eigenvalue of the restricted Hamiltonian
⃓⃓⃓
ψℓm
⟩︂
.

The construction of |ES=0⟩ relies on the existence of eigenstates
⃓⃓⃓
ψℓm
⟩︂

with vanishing
density on the last site. This is a non-trivial requirement that a priory is not expected to
be satisfied. However, we observe that such eigenstates can be found within the degenerate
subspace of eigenstates with zero energy, see Appendix A.3. If

⃓⃓⃓
ψℓm
⟩︂

is an eigenstate
with zero energy, the energy of eigenstate |ES=0⟩ is determined only by the energy of the
|ψR⟩. The existence of

⃓⃓⃓
ψℓm
⟩︂

relies on two conditions which have to hold simultaneously:
ℓ > m+r and (r+1)m−r ≥ ℓ. These are satisfied only for m ≥ 3 particles, thus resulting
in a minimal size of the left region ℓmin = 6 for r = 2. While there is no guarantee that
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states
⃓⃓⃓
ψℓm
⟩︂

exist for generic (m, ℓ), we have an explicit analytic construction for the
smallest state |ψ6

3⟩ for (m, ℓ) = (3, 6)⃓⃓⃓
ψ6

3

⟩︂
= 1√

2
[︂

|• • ◦ ◦ •◦⟩ − |• ◦ • • ◦◦⟩
]︂
, (2.13)

similarly we report solutions up to (m, ℓ) = (7, 18) in Appendix A.3. Furthermore, for
each (m, ℓ) satisfying the condition, one can easily verify that stacking multiple |ψℓm⟩
separated by at least r empty sites generates another state fulfilling the same condition.
This recursive construction of the left states in Eq. (2.11), together with the explicit
example Eq. (2.13), guarantees the existence of an infinite number of

⃓⃓⃓
ψℓm
⟩︂
, in the

thermodynamic limit. We further notice that a similar decomposition can be applied to
the right eigesntates, |ψR⟩ in a recursive fashion.
The construction of the eigenstates described above suggests that combining two operators
Ôψℓ

m
, one shifted by ℓ+q sites, yields a new operator commuting with the full Hamiltonian

and labeling a different fragmented subsector. Since there exist at least two different
⃓⃓⃓
ψℓm
⟩︂
,

one can combine them in various ways always obtaining new sectors. Due to this property,
the size of the algebra of operators Ôψℓ

m
scales as the total number of such combinations,

which increases exponentially with system size in the thermodynamic limit. We observe
that the operators defined in Eq. (2.12) do not commute with each individual term of the
Hamiltonian, as required by the definition of Ref. [36]. However, they still give rise to
a block-diagonal Hamiltonian in the entangled basis resulting from the product of the
eigenestates of the restricted Hamiltonian on the left with product states on the remainder
of the system, thus presenting a genuine case of quantum Hilbert space fragmentation.
The recursive nature of the construction of constrained eigenstates might indicate the
existence of a more general structure, possibly common to models featuring both particle
conservation and chiral constraints. Hence, the formal definition of such recursive Hilbert
space fragmentation presents an interesting direction for future work.
Let us explore the consequence of the existence of the special eigenstates defined in
Eq. (2.11). Given the special character of the wave function

⃓⃓⃓
ψℓm
⟩︂
, we expect that states

|ES=0⟩ have a similar pattern of local observables in the first ℓ sites. An example of such
behavior is shown in Figure 2.3(a), which reveals that all four states |ES=0⟩ that have
zero entanglement across at least one bipartite cut in the L = 13 chain for r = 2 feature
the same density expectation values, ⟨n̂i⟩α = ⟨Eα| n̂i |Eα⟩, in the first ℓ = 6 sites. Starting
from the site number i = 9, the density profile has different values on different eigenstates,
corresponding to different wave functions |ψR⟩ in Eq. (2.11).
The number of eigenstates with zero entanglement grows exponentially with system size.
Even for the case of a fixed

⃓⃓⃓
ψℓm
⟩︂
, the right restricted eigenstate |ψR⟩ is not subject to

any additional constraints, hence the number of possible choices of |ψR⟩ grows as the
dimension of the Hilbert space of Np −m particles on L− ℓ− r sites, that is, at fixed m,
asymptotically exponential in Np. In the general case where (m, ℓ) are allowed to change,
new |ES=0⟩ states will appear, with zero entanglement entropy at different bipartite cuts,
according to the size of the left region. Finally, the recursive nature of the fragmentation
discussed above is expected to give eigenstates with zero entropy across two or more
distinct cuts which are separated by a non-vanishing entanglement region. These states
are observed in numerical simulations starting from Np = 7 and L = 19.
To illustrate the counting of eigenstates with zero entropy at a cut separating subregion
A = [1, i] from the rest of the system, we denote their number as NS(i). For i < 5, this
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Figure 2.3: (a): The density profile of the zero-entanglement eigenstates for L = 13
shows a common pattern, due to their special structure (2.11). The first sites correspond
to the zero mode of the Hamiltonian restricted to 3 particles in 6 sites |ψ6

3⟩, followed
by 2 empty sites. The right subregion can then be any of the 6 eigenstate of H for
2 particles in 4 sites, with energy ±

√
2, 0. We notice that eigenstates with the same

|ψR⟩ but a different number of empty sites separating it from
⃓⃓⃓
ψℓm
⟩︂

are degenerate and
can be mixed by the numerical eigensolver, as is the case in the density profiles shown
here. (b): The number of zero entanglement entropy eigenstates NS(i) depends on the
boundary of the subregion A = [1, i]. In particular, in the interval i ∈ [5, 9] the number
of zero-entanglement eigenstates is exponentially larger compared to more extended left
subregions. At larger i recursively fragmented eigenstates contribute to NS(i) for L ≥ 13.
The total number of zero-entanglement eigenstates, NS, grows exponentially in L, as
shown in the inset. Note that NS ̸= ∑︁

i NS(i), as some eigenstates have zero entanglement
across multiple bipartite cuts.

number is zero NS(i) = 0, as explained in the construction of these states. For i ≥ 5 we
observe a large NS(i), exponentially increasing with system size. However, at larger i, the
available configurations that can support states of the form Eq. (2.11) decrease and NS(i)
drops and eventually vanishes. As Np and system size increase, left states

⃓⃓⃓
ψℓm
⟩︂

with a
larger support ℓ are allowed thus increasing the range of sites where NS(i) > 0. This is
also due to recursive fragmentation which can appear starting from Np = 5 and L = 13.
Carefully counting all distinct eigenstates |ES=0⟩ we confirm that their total number NS

grows exponentially with system size in the inset of Fig. 2.3(b)

2.4 Dynamics
After discussing recursive quantum Hilbert space fragmentation in the particle-conserving
East model, we proceed with the study of the dynamics. First, in Section 2.4.1 we consider
the dynamical signatures of Hilbert space fragmentation. Afterwards, in Section 2.4.2 we
discuss the phenomenology of particle spreading starting from a domain wall state and
illustrate how this can be connected to the structure of the Hilbert space. Finally, we
compare the quantum dynamics to that of a classical cellular automaton in Section 2.4.3.

2.4.1 Dynamical signatures of quantum Hilbert space
fragmentation

The zero-entanglement eigenstates |ES=0⟩ identified in Eq. (2.11) span a subsector of
the Hilbert space which is dynamically disconnected from the rest. In this subspace
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the Hamiltonian has non-trivial action only in the right component of the state, and
eigenstates can be written as product states across the particular cut. Below we discuss
signatures of such fragmentation in dynamics launched from weakly entangled initial
states.

0
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F
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Figure 2.4: The signatures of quantum Hilbert space fragmentation can be observed for
initial states that have a large overlap with zero-entanglement eigenstates |ES=0⟩. The
fidelity F (t) = | ⟨ψ0|ψ(t)⟩|2 shows periodic revivals for all three initial states; choosing
an eigenstate on the left portion of the chain results in perfect revivals (blue curve).
Entanglement entropy across the cut i = 11 in the middle of the right region R and
density on the same site show oscillations with identical frequency.

As an illustrative example, we show in Figure 2.4 the time evolution of a state of the
form defined in Eq. (2.11) for L = 13. To obtain non-trivial dynamics, we replace the
eigenstate |ψR⟩ with a product state. In particular, we choose the initial state as

|ψ0⟩ = |• • ◦ ◦ •◦⟩ − |• ◦ • • ◦◦⟩√
2

⊗ |◦◦⟩ ⊗ |• ◦ • ◦ ◦⟩ , (2.14)

and consider the time-evolved state |ψ0(t)⟩ = e−ıtĤ2 |ψ0⟩. The action of the full Hamilto-
nian does not affect the left part of the state and the Hamiltonian acting on the last five
sites in the chain R = [9, 13] is a simple 3 × 3 matrix

ĤR =

⎛⎜⎝0 1 0
1 0 1
0 1 0

⎞⎟⎠ . (2.15)

in the {|• • ◦ ◦ ◦⟩ , |• ◦ • ◦ ◦⟩ , |• ◦ ◦ • ◦⟩} basis. Diagonalizing this matrix, we write the
time-evolved state |ψ0(t)⟩ as

|ψ(t)⟩ =
⃓⃓⃓
ψℓm
⟩︂

⊗ |00⟩ ⊗
[︃

cos
(︂√

2t
)︂

|• ◦ • ◦ ◦⟩

− sin
(︂√

2t
)︂ |• • ◦ ◦ ◦⟩ + |• ◦ ◦ • ◦⟩√

2

]︃
,

(2.16)
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hence the fidelity reads F (t) = | ⟨ψ0|ψ(t)⟩|2 = cos2(
√

2t). As the time-evolution in
Eq. (2.16) involves only three different product states, it produces perfect revivals with
period T = π/

√
2. This periodicity also affects observables, such as the density in the

region R, and the entanglement entropy.

This periodic dynamics also appears in the two product states |ψ+⟩ = |• • ◦ ◦ • ◦ ◦ ◦ • ◦ • ◦ ◦⟩
and |ψ−⟩ = |• ◦ • • ◦ ◦ ◦ ◦ • ◦ • ◦ ◦⟩ that are contained in Eq. (2.14). These states in-
deed show revivals of the fidelity with the same period T , although the peaks are more
suppressed. This is not surprising, as these states have only part of their weight in the
disconnected subspace.

In Figure 2.4 we show the results of the dynamics of the state |ψ0⟩, Eq. (2.14), together
with the two product states generating the superposition, |ψ±⟩. In addition to fidelity, we
also show the density and entanglement dynamics of sites i within the right region R. As
expected, the fidelity shows revivals with period T = π/

√
2, and similar oscillations are

also observed in local operators and entanglement. While the initial state |ψ0⟩ defined
in Eq. (2.14) presents perfect revivals with F (T ) = 1, the product states |ψ±⟩ does not
display perfect fidelity revivals show larger entanglement. We note, that since the two
product states |ψ±⟩ together form a state

⃓⃓⃓
ψℓm
⟩︂

their dynamics in the region R is not
affected by the choice of the left configuration, and all considered quantities for theses
two initial states have identical dynamics.

2.4.2 Phenomenology of dynamics from the |DW⟩ initial state
After exploring the dynamics resulting from quantum Hilbert space fragmentation, we
now turn to the dynamics in the remainder of the constrained Hilbert space focusing
on the domain wall state (2.5). The domain wall state does not have any overlap with
zero entanglement eigenstates except for possibly states with zero entanglement on the
last cut. It is also characterized by a vanishing expectation value of the Hamiltonian,
corresponding to zero energy density, where the density of states is maximal. Hence,
thermalization implies that time evolution from the domain wall leads to the steady
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Figure 2.5: The constrained character of the model leads to a non-uniform stationary
density profile for the domain wall initial state. This coincides with the infinite-temperature
prediction on large systems, as highlighted by the dashed line corresponding to tr[n̂i]/ tr[⊮]
for L = 25, where tr

[︂
Ô
]︂

= ∑︁
j Ôjj. Rescaling the x-axis by the number of particles Np,

we obtain a good collapse of the data, as shown in the inset. The particle density follows
a linear decrease ⟨n̂i⟩ ≈ ⟨n̂2⟩ − c(i− 2)/Np, with c ≈ 0.15.
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state where all observables agree with their infinite-temperature expectation value. To
check this property we focus on the expectation value of the particle density operators
throughout the chain.

Figure 2.5 shows the infinite time average of the particle density, ⟨n̂i⟩ obtained through
the diagonal ensemble

⟨n̂i⟩ =
∑︂
α

| ⟨DW|Eα⟩|2 ⟨Eα| n̂i |Eα⟩ , (2.17)

where the sum runs over all eigenstates α. This calculation is performed for L ≤ 22,
where the full set of eigenstates can be obtained through exact diagonalization. For
larger systems, the infinite time average value of ⟨n̂i⟩ is approximated as the average of
the density in the time-window t ∈ [6.9 × 103, 104]. We observe that the density profile
agrees well with the infinite-temperature prediction. See Appendix A.1 for details of the
calculation.

The infinite-temperature prediction for the density profile does not result in a homogeneous
density due to the constraint. The number of allowed configurations with non-zero density
in the last sites is indeed limited by the constraint, and results in a lower density in the
rightmost parts of the chain. In addition, the profile has a step-like shape that is related
to the range-2 constraint in the model. In the inset of Fig. 2.5 we show that the density
profiles collapse onto each other when plotted as a function of i/Np. This suggests the
heuristic expression for the density profile ⟨n̂i⟩ ≈ ⟨n̂2⟩ − c(i− 2)/Np where c ≈ 0.15 is a
positive constant.

Although the saturation profile of the density is consistent with thermalization, below we
demonstrate that relaxation to the steady state density profile is anomalous. The time-
evolution of the density ⟨n̂i(t)⟩ = ⟨ψ(t)| n̂i |ψ(t)⟩ is shown in Figure 2.6 for L = 28 sites
up to times t ≈ 104. The data demonstrates that the relaxation of density qualitatively
depends on the location within the chain. In the left part of the chain with i ≤ 2Np, the
spreading of the density front is fast, and saturation is reached quickly on timescales of
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Figure 2.6: The approach to saturation in the density dynamics is very different depending
on the region within the chain. (a) In the first 2Np sites of the chain a fast relaxation
takes place due to the weak role of the constraint in dense regions. (b) For the right
part of the chain, i > 2Np anomalously slow logarithmic dynamics arise. The inset shows
the data collapse upon rescaling the density axis by the long time average and the time
axis by the number of states within each leg of the graph Ni to the power α ≈ 1.15, as
discussed in more detail at the end of this section. The data shown here are for a system
of L = 28 sites with Np = 10 bosons.
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O(10), as shown in Fig. 2.6(a). This can be attributed to the fact that the constraint is
not effective at large densities. In contrast, in the rightmost part of the chain, i > 2Np the
constraint dramatically affects the spreading of particles resulting in the logarithmically
slow dynamics in Fig. 2.6(b).

To further characterize the anomalous dynamics, we study the transport of the particle
density on short time-scales for larger systems up to L = 37 sites. For the systems
with L > 28 we use a fourth-order Runge-Kutta algorithm with a time-step as small
as δt = 10−3. This allows us to reliably study the short-time behavior with sufficient
accuracy down to δt4 = 10−12. We consider the dynamics of he particle flow across the
domain wall

δn(t) =
∑︂
i≤Np

[⟨n̂i(0)⟩ − ⟨n̂i(t)⟩] . (2.18)

The dynamics of δn(t) in Figure 2.7(a) shows a clear initial power-law behavior drifting to
much slower logarithmic growth at later times, in agreement with the dynamics of ⟨n̂i(t)⟩
in the right part of the chain. At even longer times δn(t) saturates to a value proportional
to the system size L. Figure 2.7(b) shows the instantaneous dynamical exponent,

z(t) =
(︄
d ln δn(t)
d ln t

)︄−1

. (2.19)

In this figure, the early time dynamics are characterized by fast transport of particles
across the domain wall i = Np due to the large initial density. On intermediate time-scales
t ≈ 10, a superdiffusive plateau of 1/z(t) ≈ 2/3 is visible. Finally, at longer times the
dynamics slow down and become logarithmic, consistent with a vanishing 1/z(t). Zooming
in the time-window t ≤ 30, we notice that the extent of the superdiffusive plateau increases
linearly with system size, suggesting the persistence of the superdiffusive regime in the
thermodynamic limit.

The superdiffusive behavior observed in the dynamics of the domain wall initial state is
very peculiar, as one would expect a state close to infinite temperature to show diffusive
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Figure 2.7: (a) The behavior of the particle current across the domain wall shows an
initial power-law growth δn(t) ∼ t1/z(t) followed by a slow-down to logarithmic behavior
at later times, in agreement with the density dynamics. (b) The analysis of the dynamical
exponent z(t) shows the presence of a super-diffusive plateau 1/z ≈ 2/3 at intermediate
times, whose duration grows linearly with system size. At later times, the onset of
logarithmic dynamics is signalled by the decay of 1/z(t). Data are for 13 ≤ L ≤ 37 from
more to less transparent..
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Figure 2.8: The representation of Ĥ2 as the adjacency graph Gr for system with Np = 5
particle and L = 13 lattice sites. The dense central part – backbone – has gradually
decreasing number of vertices and connectivity as the position of the rightmost particle
increases above imax > 2Np = 10 (dashed line). The legs of the graph emanate from
the backbone and correspond to regions where imax is conserved. The legs end with the
product states (an example is labeled as Limax), where a particular particle is frozen near
the end of the chain. Red vertices show product states corresponding to zero-entanglement
eigenstates |ES=0⟩, which in this case have weight on 12 out of DNp = 273 product states
contained in the constrained Hilbert space.

transport in an ergodic system as is the one considered here. We further investigated the
time-evolution of other initial states with a lower density of particles in the leftmost part
of the chain. Appendix A.5 shows that with decreasing density, the transport is drifting
from superdiffusion in dense states to diffusion as the density decreases. Such dependence
of transport on the density in the initial state suggests that superdiffusive dynamics is
related to the special nature of the domain wall state that separates completely empty
and full regions, and thus it may lack a coarse-grained hydrodynamics description.

We now focus on capturing the phenomenology of the slow dynamics observed at late
times using the structure of the Hamiltonian. Starting from the domain wall initial
state, the slow dynamical regime is reached after a time scaling proportionally to the
system size. Naively this may preclude the observation of such dynamical regime in
the thermodynamic limit. However, our study of transport in more dilute initial states
suggests that the onset of logarithmic slow dynamics may depend on the density of
particles. In particular, we conjecture that at sufficiently low initial densities, logarithmic
dynamics may be observable at timescales that do not depend on the system size. In order
to construct a phenomenological picture of slow dynamics, we interpret the Hamiltonian
as a graph where the vertices of the graph enumerate the product states contained in
a given connected sector of the Hilbert space. The edges of the graph connect product
states that are related by any particle hopping process allowed by the constraint. A
particular example of such a graph for the system with Np = 5 particles and L = 13 sites
is shown in Fig. 2.8.

The vertices of the graph in Fig. 2.8 are approximately ordered by the position of the
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rightmost occupied site imax ≥ Np, revealing the particular structure emergent due to
the constraint. The dense region that follows the domain wall product state has high
connectivity, and we refer to it as the backbone. In addition to the backbone, the graph has
prominent legs emanating perpendicularly. The legs are characterized by the conserved
position of the rightmost particle that is effectively frozen due to the particles on the
left retracting away, as pictorially shown in Fig. 2.8. Since such legs are in one-to-one
correspondence with the position of the rightmost particle, imax, their number grows
linearly with system size. The number of product state configurations contained within
each leg strongly depends on imax. Given that the position of the rightmost particle is
frozen within a leg, they cast a strong effect on the dynamics of the model.

In particular, the spreading of particles towards the right probed by R(t) can be related
to the presence of an increasing number of configurations within legs at large imax, Nimax .
These are characterized by long empty regions as the one depicted in Figure 2.8, which
require the collective motion of many particles to allow the hopping of the rightmost boson
sitting at imax. The slow dynamics observed, then, can be qualitatively understood as the
effect of many states not contributing to the spreading and of the increasingly long empty
regions that have to be crossed to activate hopping further to the right. Looking back at
the dynamics shown in Figure 2.6, we highlight this effect by rescaling the time-axis by
the number of configurations belonging to each leg, Ni. The resulting collapse is shown
in the inset of Figure 2.6(b).

2.4.3 Dynamics in constrained classical cellular automata
The anomalous relaxation of the quantum model from the domain wall state reported in
Section 2.4.2 invites natural questions about the universality of dynamics in presence of
inversion-breaking constraints. To shed light on this question, we introduce a classical
cellular automaton model that replaces the unitary time-evolution of the quantum model
Û(t) = exp

(︂
−ıĤt

)︂
with a circuit of local unitary gates preserving the same symmetries

and constraints of the Hamiltonian [154, 155].

To reproduce correlated hopping in the Hamiltonian (2.2), we introduce two sets of local
gates U1 and U2 schematically shown in Fig. 2.10(a). The first gate, U1, acts on 4 sites
and implements the hopping facilitated by the next nearest neighbor,

U1 = exp

⎧⎨⎩− ıθ

[︄
n̂j(1 − n̂j+1)

(︂
c†
j+3cj+2 + H.c.

)︂]︄⎫⎬⎭. (2.20)

The second gate, U2, acts on three sites, and implements the hopping facilitated by the
nearest neighbor site:

U2 = exp

⎧⎨⎩− ıθ

[︄
n̂j
(︂
c†
j+2cj+1 + H.c.

)︂]︄⎫⎬⎭. (2.21)

For a generic choice of the rotation angle θ these gates cannot be efficiently simulated
classically. However, in what follows we fix θ to the special value, θ = π/2, so that gates
U1,2 map any product state to another product state. This corresponds to a classical
cellular automaton which allows for efficient classical simulation.

As each local gate is particle conserving, in order to allow for non-trivial transport, we
shift gate position by one site after each layer, as shown in Fig. 2.10(a). Consequently,
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Figure 2.9: Schematic representation of the circuit used to describe the classical dynamics.
The continuous time-evolution Û(t) is decomposed into a series of 4-sites gates U1 and of
3-sites gates U2, whose action is shown on the right part of the Figure.

the circuit has a 7-layer unit cell in the time direction. Additionally, the order of gate
applications is also important, as the gates U1,2 generally do not commute with each other.
Alternating the layers of U1 and U2 gates proves to be the best choice, as it implements
all allowed particle hopping processes, leading to the circuit shown in Fig. 2.10(a).

Using this cellular automaton we are able to simulate the time-evolution of very large
systems to extremely long times. As the setup implements the same constraint as the
Hamiltonian dynamics, we conjecture that it should present similar features. For instance,
initializing the system in a dense-empty configuration similar to the |DW⟩ state, we expect
the dense region to spread quickly into the empty one, until eventually it stretches too
much and its propagation slows down due to the constraint.

We study the evolution to the domain-wall initial state for a system of L = 298 sites and
Np = 100 particles. Since this model is deterministic, the density as a function of circuit
depth is a binary function, ni(t) ∈ {0, 1}. Figure 2.10(b) shows the short-time density
dynamics (t < 1000). We observe ballistic particle transport in the dense regime. On the
one hand, the position of the rightmost particle moves to the right. On the other hand,
defects (holes) propagate within the dense domain wall state. The simulation reveals
notable difference in velocities of holes and spreading of the rightmost particle, that is
expected in view of the inversion breaking symmetry within the model.

The ballistic expansion of the particles is followed by a logarithmic slowdown at later
times as shown in Fig. 2.10(b). Much akin to the Hamiltonian dynamics, this slowdown
is due to the lower density reached at later times as the front moves to the right and
more particles become temporarily frozen due to the constraint. To further probe the
two distinct behaviors observed in the cellular automaton, in the inset of Fig. 2.10(b) we
show the time-evolution of the particle flow across the domain wall δn(t) as in Eq. (2.18).
From the initial linear behavior, δn(t) abruptly enters a logarithmic regime as it exceeds
the extent of the ballistic region, corresponding to i ≈ 180.

The study of the circuit evolution for the domain-wall initial state then shows the overall
similar characteristic inhomogeoneous dynamics as the quantum system. At early times,
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Figure 2.10: (a)-(b): Density evolution of the classical cellular automaton starting from
domain wall initial state for a system with L = 298 sites and NP = 100. (Black and
white dots correspond to occupied and empty sites). (a) At short times particles spread
ballistically into the empty region. Scattering events appear at regular time intervals at
the boundaries of the red dashed triangle which defines the region of ballistic behavior.
(b) At later times when particle density is lower the constraint becomes more effective,
leading to the logarithmic spreading of particles into the empty region. The inset shows
the dependence of the current across the domain wall on time that has a clear ballistic
regime of linear increase with time followed by slow logarithmic growth at later times.

and close to the initial domain wall i = Np, the transport of particles and holes is ballistic
as for t ≤ 1 in the quantum case (see Fig. 2.7). However, as the density spreads and
particle density lowers, ballistic spreading is replaced by a logarithmic slow dynamics.
We notice, however, that the automaton lacks the super-diffusive plateau observed in the
Hamiltonian dynamics.

2.5 Discussion
In this work, we introduced a family of models characterized by a conserved U(1) charge and
strong inversion symmetry breaking. We observe that quantum Hilbert fragmentation [36]
in such models can be understood from the recursive construction of special weakly
entangled eigenstates coexisting with volume-law entangled eigenstates in the spectrum.
In addition, we investigate the dynamics of the system in a quantum quench launched from
the domain wall initial state. Although the long time saturation value of particle density is
consistent with thermalization, we observe two distinct regimes in particles spreading rom
the domain wall initial state. An initial superdiffusive particle spreading at high density
is dramatically slowed down at lower densities, leading to a logarithmically slow approach
of density to its saturation value. While the superdiffudive plateau has an extent in time
that increases with system size, its sensitivity to the choice of initial state suggests that it
might be related to the particular nature of the domain wall state considered here and
may not have a universal hydrodynamic description. The second, slow transport regime,
on the other hand, is not so sensitive to the particular initial state and we attribute
this to the structure of the constrained Hamiltonian. In addition, we also reproduce the
logarithmic dynamics in a classical cellular automaton that features the same symmetries,
although at early times the cellular automaton features ballistic dynamics in contrast to
slower but still superdiffusive spreading of particles in the Hamiltonian model.

Our work suggests that the interplay of constraints and broken inversion or other spatial
symmetries may lead to new universality classes of weak thermalization breakdown and
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quantum dynamics. In particular, the quantum Hilbert space fragmentation in the
considered model gives rise to a number of weakly entangled eigenstates that can be
interpreted as quantum many-body scars [26, 153]. The number of these eigenstates
scales exponentially with system size. Moreover these eigenstates may be constructed in
a recursive fashion, by reusing eigenstates of a smaller number of particles. This is in
contrast to the PXP model, where the number of scarred eigenstates is believed to scale
polynomially with system size [28, 30], though existence of a larger number of special
eigenstates was also conjectured [41].

Although we presented an analytic construction for certain weakly entangled eigenstates
and demonstrated their robustness to certain deformations of the Hamiltonian, a formal
definition of recursive quantum Hilbert space fragmentation, beyond our phenomenological
observation, remains an interesting direction for future work. The complete enumeration
and understanding of weakly entangled eigenstates may give further insights into their
structure and requirements for their existence. In addition, a systematic study of the
emergence of quantum Hilbert space fragmentation in the largest sector of a classically
connected Hilbert space in other constrained systems, like the XNOR or the Fredkin
models is desirable [116, 133].

From the perspective of particle transport, the numerical data for the dynamical exponent
controlling particle spreading suggests that our family of constrained models features
superdiffusive dynamics [41, 156, 157, 158, 159] from a particular domain wall initial
state in the largest connected sector of the Hilbert space. Thus, although it is less
robust compared to other examples, understanding and quantifying the emergence of
superdiffusion in the present and similar models with longer range of assisted hopping
remains and interesting question. In particular, the models considered in our work may
be implemented using quantum simulator platforms using control-swap gates of various
ranges. Thus, an experimental study of such models may reveal novel valuable insights
into their physics and the universality of their transport phenomena, which are beyond
the reach of current state of the art numerical and theoretical approaches.
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CHAPTER 3
Stability of many-body mobility

edges in disordered interacting
systems

In this Chapter, we introduce a model featuring kinetic constraints, disorder and free
hopping. We show the onset of a many-body localized phase at strong disorder and
small particle density, coexisting with thermal states at higher density, thus providing
an example of many-body mobility edge. The stability of localization to the mobility
edge is further explored with large scale numerical simulations. Additionally, the failure
in this particular case of the mechanism proposed in Ref. [85] to conjecture the absence
of many-body mobility edges is shown, corroborating the conclusion of the stability of
localization. The second Section of this chapter is based on
Brighi P., Abanin D. A., Serbyn M. “Stability of mobility edges in disordered interacting
systems,” Phys. Rev. B 102 060202(R) (2020)

3.1 Introduction
Many-body localization (MBL) provides a mechanism to avoid thermalization in isolated
quantum interacting systems [50, 160]. Despite intensive theoretical [74, 75] and experi-
mental [66, 70, 71, 82, 161, 162, 163] studies, only fully-MBL phase in one spatial dimension
is relatively well understood. The fate of MBL in higher dimensions [62, 81, 164, 165, 166]
and the possibility of the coexistence of localized and delocalized eigenstates in the same
many-body spectrum [85] remain debated.
Similarly to the case of [84], the MBL and delocalized eigenstates cannot coexist at the
same energy suggesting the existence of many-body mobility edge (MBME) — a certain
energy in the spectrum separating localized and delocalized eigenstates [50]. In contrast
to the non-interacting case, the energy of MBME scales extensively with system size. In
the absence of a coupling to a bath, this leads to an exactly vanishing conductivity (in
contrast to an exponentially small but finite value in Anderson insulator) until a certain
critical temperature [50].
Recently [85] suggested a possible mechanism that may destroy MBME in large systems:
a finite region with local energy density above the mobility edge — a “bubble” — may
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resonantly spread throughout the system thereby destroying localization everywhere.
However, recent experiments [71] and MPS simulations [167] gave evidence of MBME, at
least on intermediate timescales. In addition, a number of numerical studies observed a
mobility edge [59, 168, 169, 170, 171] using exact diagonalization (ED). Unfortunately,
the ED is limited to relatively small system sizes; experiments with MBME in energy
density are also challenging since they require energy resolution.

In order to overcome the above challenges, we propose to study MBME in particle density.
This allows us to directly probe the mechanism of instability suggested in Ref. [85], which
equally applies to MBME in any extensive conserved quantity. First, using numerical
simulation with matrix product states (MPS), we demonstrate that uniform dilute states
remain localized even at system sizes of L = 40 sites up to 250 tunneling times (i.e. more
than two orders of magnitude larger than the inverse local hopping). Next, we use a
region with large particle density to reproduce the bubble described in [85] and track its
influence on the dilute remainder of the system in a quantum quench. We do not find
any evidence of resonant tunneling of the bubble, at least on experimentally relevant
timescales.

In summary, the study of the particle density MBME facilitates the state preparation
and analysis and allows us to access the dynamics of much larger systems using time
evolution with MPS. We report the stability of the particle density mobility edge on
long timescales and suggest that similar physics may be experimentally probed using
Bose-Hubbard model.

3.2 Correlated hopping model
We consider hard-core bosons on an open chain of size L, with the following Hamiltonian,

Ĥ = t1
L−1∑︂
i=1

(c†
i+1ci + h.c.) +

L∑︂
i=1

ϵin̂i + t2
L−1∑︂
i=2

(c†
i−1n̂ici+1 + h.c.). (3.1)

The first two terms correspond to the non-interacting Anderson’s model [48], where random
on-site potential has a uniform distribution, ϵi ∈ [−W,W ]. The facilitated hopping in
the third term enables motion of a pair of particles with amplitude t2, ••◦↔◦••, making
the model interacting. The Hamiltonian (3.1) has two channels for dynamics: the single
particle hopping prevails in dilute states, while the pair hopping is dominant at larger
densities.

Employing kinetic constraints, this model is akin to the one introduced in Chapter 2,
although the constraint used in this case is completely inversion-symmetric. We note that
a similar non-chiral model was discussed in Ref. [85] in two dimensions, although only
with two particles. Furthermore, the limit t1 = 0 in the absence of disorder was shown to
be integrable [155]. The enhancement of localization length in the case of two interacting
particles also received significant attention [172, 173]. In a different direction, the fate
of the single particle mobility edge in the presence of interactions was studied [163, 174].
In contrast, we study model (3.1) that does not have a single particle mobility edge and
consider the finite particle density regime.

We fix the value of the hopping parameters t1 = 0.5 and t2 = 2 so that the localization
length of a single particle ξSP ≲ 1 and at the same time a single pair has a localization
length ξP ≳ 2.5 for 2.5 ≲ W ≲ 6 as shown in Section 3.3. For such a choice, our model
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does not suffer from finite size effects [175] and we establish MBME using eigenstates
probes.

3.3 Locallization length and parameter choice
The dynamics generated by the constrained Hamiltonian, Eq. (3.1), strongly depends on
the choice of the hopping parameters t1,2. In order to choose the most suitable parameters
for the study of MBME in particle density, we explore localization lengths for a single
particle ξSP and for one pair of particles ξP. These localization lengths are evaluated using
ED. We calculate the infinite-time average of the occupation number at each site for an
initial state where either a single particle or a single pair are initialized at the first site
of the chain. We extract the localization lengths ξSP (ξP) from an exponential fit of the
density curve ⟨ni⟩ .

Resulting values of ξP,SP for fixed t1 = 0.5 and different disorder values and different
values of hopping t2 are shown in Fig. 3.1. The single particle hopping localization length
(dashed line in Fig. 3.1) does not depend on t2, and becomes smaller than one lattice
spacing for W ≳ 4. The pair localization length is monotonously increasing with t2 at
fixed value of disorder strength, W . Our aim is to have ξP in the range between 2 and 5.
In this regime, the half-filling case is expected to be delocalized, while at lower densities
ν ∼ 1/5, when the typical distance between pairs is large, we expect MBL phase. This
motivates the choice t2 = 2, since at this value of t2 ξP(W ) approaches 2 at disorder
strength around W ∼ 6. We note that we avoided further increase of t2 to keep the model

Figure 3.1: The localization length decreases, as expected, with the disorder strength for
all the values of t2. For every constrained hopping amplitude t2 it is possible to locate the
region of disorder where we expect to see a MBME in particle density as the area among
the two dashed lines. As the curve crosses the first dashed line, systems with typical
particle spacing 5 will be localized. Nevertheless denser states will still be delocalized,
having smaller distance among particles. Data were obtained on a lattice of length L = 50
and averaged over 5000 disorder realizations.

39



3. Stability of many-body mobility edges in disordered interacting systems

−20 −15 −10 −5 0 5 10 15 20

E

0.00

0.02

0.04

0.06

0.08

D
O

S

Figure 3.2: The DOS from single disorder realizations show a relatively smooth behavior
and a Gaussian shape, thus confirming the absence of strong finite size effects. DOS refers
to a chain with L = 20 and ν = 1/4. Disorder strength is W = 5.0. Green, blue and
orange curves correspond to different disorder realizations, while the black dashed line
shows disorder-averaged DOS.

away from the constrained limit: in the case when t2 dominates over t1, the model would
approximately reduce to a kinetically constrained model that has many disconnected
sectors in the Hilbert space.

In order to rule out the presence of strong finite size effects, we studied the density of state
in individual disorder realizations. In the regime when t2 ≫ t1 the strong finite size effects
would give rise to the presence of mini-bands and the DOS would become non-monotonous
with numerous peaks corresponding to mini-band structure [175]. Figure 3.2 confirms
that at our choice of parameters even individual disorder realizations have a relatively
smooth density of states with Gaussian envelope, thus ruling out the presence of strong
finite size effects.

3.4 Eigenstate probes of localization
We use exact diagonalization and shift-invert (SI) numerical techniques to provide evidence
for MBME in Hamiltonian (3.1). We analyze the average ratio of level spacings, δi =
Ei+1 − Ei, in the middle of the spectrum, rav = ⟨min(δi, δi+1)/max(δi, δi+1)⟩. This is a
commonly used probe of the MBL transition [53, 59] that attains the value rP ≃ 0.39 for
the Poisson level statistics, characteristic of the MBL phase and rGOE ≃ 0.53 for the case
of random Gaussian orthogonal ensemble (GOE), typical for chaotic Hamiltonians with
time-reversal symmetry.

Figure 3.3 displays that at half-filling, ν = N/L = 1/2, where N is the total number of
particles and L is the chain length, the level statistics approaches GOE with increasing
system size, which is consistent with the delocalized phase. In contrast, at ν = 1/5 filling
rav flows towards rP at strong disorder. In what follows we fix the disorder strength to be
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Figure 3.3: Scaling of level spacing ratio demonstrates that at density ν = 1/5 (solid
lines, L = 15, 20, 25 with 3, 4, 5 particles) the system enters MBL phase for W ≥ 6.3.
In contrast, at half-filling ν = 1/2 (dashed curves, L = 10, . . . 18) the critical disorder
strengths is much larger and in the entire range of disorder rav approaches thermal value
with increasing system size. Data is generated from ED/SI simulations with at least 103

disorder realizations using approximately 2% of eigenstates in the center of the spectrum.

W = 6.5, since at this value the dilute limit is localized while the dense limit clearly flows
towards delocalization.

After having focused on the two values of filling, ν = 1/2 and 1/5, we demonstrate the
density dependence of critical disorder. For this purpose we calculate the average ratio of
level spacings rav for a single system size L = 18 at varying values of density. Figure 3.4
allows to estimate the dependence of the critical disorder on the filling, ν. At low densities
(ν < νc(W )) states have rav approaching value characteristic for Poisson distribution of
level spacings. In contrast, for dense configurations (ν > νc(W )) the level spacing ratio is
close to GOE prediction.

The left panel of figure 3.4 reveals that the most delocalized filling is ν = 2/3, which
corresponds to the case when the best packing of pairs in the chain, • • ◦ • • ◦ · · · , can be
achieved. At this filling the Poisson values of rav would be achieved beyond the upper
limit of the considered disorder range. Decreasing particle density away from this value
causes earlier onset of localization. For instance, fixing disorder value W = 6.5 we observe
that ν = 1/2 and ν = 1/5 are situated well in delocalized and localized regions.

We further discuss the presence of many-body mobility edge in energy density in a single
density sector of the Hamiltonian Eq. (3.1). Given the U(1) symmetry, we would expect
that a fixed filling sector presents MBME in energy density, similarly to the case of the
random field XXZ spin chain [59]. In the middle of the spectrum the density of states is
large and eigenstates may remain delocalized, while at the same disorder strength the
states at the edges of the many-body spectrum are localized.

To explore the eventual presence of MBME in energy density in the half filling sector, we
studied the energy resolved level spacing ratio rAv(ϵ,W ). The results, displayed in the
right panel of figure 3.4, show evidence of many-body mobility edge; the level spacing
ratio, as a function of the energy density ϵ = E−Emin

Emax−Emin
, where Emin and Emax are the

ground state and the most excited state respectively, increases from the Poisson to the
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Figure 3.4: Left: the sharp difference of rav obtained for different ν at the same disorder
W clearly shows the MBME in our model. Interestingly, the mobility edge curve Wc(ν) is
not symmetric, but is peaked around ν = 2/3, implying that the states with the maximum
number of pairs for fixed size are the hardest to localize. The data is obtained for a system
of size L = 18, using shift-invert method with 10 − 103 states from the middle of the
spectrum and 5 × 104 − 103 disorder realizations. Right: the energy resolved level spacing
ratio for L = 16 in the half filling sector shows clear evidence of MBME. In the center of
the band rav approaches the GOE value, while at large and small energy density it is close
to the Poisson value. Furthermore, the MBME curves obtained for smaller systems seem
to converge at increasing system size, thus suggesting the persistence of the MBME in the
thermodynamic limit. The plot was obtained averaging over n = 104, 2×103, 5×102, 102

disorder realizations for increasing system size from L = 10 to L = 16.

GOE value as ϵ goes from the lower edge to the center of the spectrum and decreases
again from the center to the upper edge. This variation is such that at a fixed disorder
strength the low and high energy states are localized, while the center of the band is
delocalized, thus defining a many-body mobility edge. The scaling of the MBME curves
for different system size shows signs of convergence, suggesting stability of the MBME in
the thermodynamic limit.

Another complementary probe of many-body localization or ergodicity is the entanglement
entropy of eigenstates. While localized eigenstates are known to show area law [56, 79],
thus converging to a single value as system size is increased, thermal states present an
increasing entanglement which follows volume law and increases roughly linearly with
system size [18]. Figure 3.5 illustrates the behavior of bipartite entanglement entropy
for different disorder strengths and different fillings. On the one hand, the finite size
scaling of entanglement entropy of eigenstates in the middle of the spectrum shows that
for ν = 1/5 and disorder W > Wc ∼ 6 the entanglement is consistent with area-law. On
the other hand, the entanglement of dense systems, ν = 1/2, does not show a similar
behavior. The finite size scaling, indeed, shows no crossing at these disorder values, thus
suggesting volume-law of entanglement entropy for ν = 1/2.

3.5 MPS simulations of quench dynamics
In our MPS simulation, we time evolve dilute states in large systems L ≥ 30 up to time
Tmax = 500. For this we use the time-evolving block decimation (TEBD) algorithm
described in Appendix B with a fourth-order Trotter evolution based on the ITensor
library [176]. The main parameter involved in the time evolution algorithm is the time

42



3.6. Quench dynamics

Figure 3.5: The behavior of half-chain entanglement entropy shows very distinct behavior
for dilute (blue-shaded curves) and dense (red-shaded curves) states. The crossing in
the dilute states implies that they entered the MBL phase, and thus have area-law
entanglement entropy. On the other hand, dense states do not show a similar crossing in
this range of disorder, suggesting that they are still in the ergodic phase. The data are
obtained with shift-invert method for 10 − 103 eigenstates in the middle of the spectrum
and averaged over 5 × 104 − 5 × 103 disorder realizations.

step δt used to split the unitary evolution into a sequence of gates. The error related to
the finite size of the time step in the p-th order Trotter expansion grows as δtp. The other
source of error is the finite cutoff, ε, that governs the truncation of singular values in the
singular value decomposition (SVD). Choosing a small enough value of the truncation
guarantees quasi-exact results up to the times when the bond dimension χ saturates.
After this point, the amount of information neglected is uncontrolled and it might affect
the expectation values.

As we discuss in Appendix B, our choice of simulation parameters δt = 0.05, ε = 10−9

and χ = 500 guarantees the reliability of our results up to the times investigated.

3.6 Quench dynamics
Having provided numerical evidence for the coexistence of localized and delocalized phases
in small systems, we turn to quantum quench dynamics that distinguishes MBL from
ergodic phase [66, 177]. We consider quenches where the system is initially prepared in
a product state and then evolved with the Hamiltonian (3.1). Starting with a density
wave of period 1/ν, a configuration that contains no pairs, we calculate the density profile
at late times. For the dilute case, ν = 1/5, we use the time-evolving block decimation
(TEBD) with the parameters discussed in the previous Section. This allows to monitor
dynamics of systems as large as L = 40 sites up to times Tmax = 500. In the dense case
(ν = 1/2) we use ED and Krylov subspace time evolution method. While ED allows to
access the infinite-time density profile, with the Krylov method, we simulate quantum
dynamics up to Tmax = 1000.
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Figure 3.6: The quantum quench from the uniform density wave with period 1/ν reveals
memory of the initial state at ν = 1/5 in (a), whereas in the dense case ν = 1/2 (b)
the charge pattern relaxes to zero exponentially in the system size. This is shown in
(c) through the exponential decay of ∆n = (1/L). The data are generated using TEBD
and Krylov (ED) dynamics using between 5 × 104–100 (dilute) and 3 × 104–103 (dense)
disorder.

The density profiles at late times look very different in the dense and dilute cases. While
in the dilute case the system retains memory of the initial state, see Fig. 3.6(a), at ν = 1/2
quantum dynamics leads to a progressively more uniform density profile with increasing
system size, Fig. 3.6(b). In order to quantify the difference in the form of the density
profile at late times, in Fig. 3.6(c) we plot the average deviation of the density from the
equilibrium thermal value ν,

∆n = 1
L

L∑︂
i=1

|⟨n̂i(Tmax)⟩ − ν|. (3.2)

The deviation of late-time density from the thermal value, ∆n, in the dense regime decays
exponentially with the system size as ∆n ∼ e−L/ξT , where ξT ≃ 6.27. In contrast, for the
dilute case ∆n shows no dependence on the system size, as is apparent in the density
profiles. The characteristic length ξT extracted in the dense case gives the minimum size
for genuine egodic bubbles that can destroy the MBME according to Ref. [85].
Having confirmed the coexistence of localized and delocalized states at different values of
particle density ν for the same disorder strength, we proceed with a more detailed study
of the effect of the presence of a bubble, whose behavior is central to the mechanism
proposed in [85]. Figure 3.7(a) illustrates the evolution of a non-uniform initial state,
where a dense region represents the bubble. The bubble region consists of 8 sites with two
pairs of particles and has a local density of ν = 1/2. The bubble is followed by a period-5
density wave that occupies L− 10 sites and two additional empty sites at the end of the
chain. Although having ν = 8/30 > 1/5, this state is still in a localized sector, as shown
in Figure 3.4. The bubble leaks only weakly into the dilute region even at late times, see
Fig. 3.7(a), with particles far away from the bubble not being affected. In contrast, in the
dense case, Fig. 3.7(b), the bubble with average density of ν = 2/3 successfully melts the
period-3 density wave state throughout the system.
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Figure 3.7: (a) The density profile of a quench from a non-homogeneous initial state
featuring a dense thermal bubble (dashed red rectangle in the top of the figure) remains
far from thermal equilibrium in the dilute case. (b) On the contrary, in the dense region
of the Hilbert space the bubble is very efficient in restoring thermalization. The data are
generated using TEBD and Krylov (ED) dynamics using between 5 × 104–100 (dilute)
and 3 × 104–103 (dense) disorder.

Next, in Figure. 3.8(a) and (b) we further illustrate the differences between the density
dynamics in the dense and dilute cases in presence of a bubble. In both cases we plot the
density of particles within subregions of small size k,

ñi = 1
k

i+k−1∑︂
j=i

⟨nj⟩, (3.3)

as shown at the top of the plot. In the dilute case, Fig. 3.8(a), we observe that ñ remains
far from its thermal value even at late times, in contrast with [85], where an ergodic
region larger than ξT is expected to delocalize the system. The densities within the bubble
regions and adjacent to the bubble seem to saturate, while the far from the bubble we
observe very slow dynamics, and on this timescales no thermalization takes place. In
contrast, the dense case, Fig. 3.8(b), shows that all expectation values evolve towards
equilibrium, although the regions far away from the center of the chain display slow,
logarithmic in time, growth of the density.
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ñ

• • ± ± • • ± ± ± ± • ± ± ± ± • ± ± ± ± • ± ± ± ± • ± ± ±±(a) (b)

Figure 3.8: Dynamics of the coarse-grained density ñ in dilute ν = 8/30 and dense
ν = 1/2 configurations featuring a thermal bubble. (a) The time dynamics of density
in the coarse grained regions (see the legend at the top) shows absence of significant
relaxation in regions away from the bubble for dilute states. The density in the region
at the boundary with the bubble increases logarithmically in time. (b) On the contrary,
in dense configurations saturation to the thermal value (black dashed line) is observed
throughout the chain, although logarithmically slow. The data are generated using TEBD
and Krylov (ED) dynamics using between 5 × 104–100 (dilute) and 3 × 104–103 (dense)
disorder.
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3. Stability of many-body mobility edges in disordered interacting systems

Finally, we study the dynamics of the bipartite entanglement entropy, SvN, see Fig. 3.9(a)
and (b). The entanglement is defined as

SvN = − tr ρ ln ρ, ρ = trB[|ψ(t)⟩ ⟨ψ(t)| , (3.4)

where ρ is the reduced density matrix of the left subregion calculated from |ψ(t)⟩ =
e−iĤt |ψ0⟩. Different entanglement cuts shown at the top of Fig. 3.9(a) and (b) are
encoded by their color. Consistent with MBL, the increase of entanglement in the region
close to the bubble is logarithmic in time in Fig. 3.9(a) [52, 54, 55, 68]. The entanglement
across the cuts further away from the bubble begins to grow at significantly later times.
For these more distant cuts, the initial uprise in entanglement corresponds to a slow
logarithmic change of density [see Fig. 3.8(a)], and after saturation of density dynamics,
we expect the onset of logarithmic growth of entanglement. In contrast, the entanglement
dynamics in Fig. 3.9(b) is always faster than logarithmic. In the next Section, we
provide more details on the contribution of particle transport to entanglement [68, 178],
demonstrating that it is responsible for logarithmic entanglement increase, in agreement
with [179], whereas the configurational entanglement grows faster than logarithmic, and
total entropy shows power-law increase.
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Figure 3.9: Dynamics of entanglement entropy in dilute ν = 8/30 (a) and dense ν = 1/2
(b) configurations featuring a thermal bubble. (a) The onset of logarithmic entanglement
dynamics after a transient is visible for all cuts (see the legend at the top) away from the
bubble. This is a hallmark of many-body localization, thus suggesting stability of MBL in
this configuration. (b) entanglement entropy displays faster than logarithmic growth for
all cuts, indicating thermalization. The data are generated using TEBD and Krylov (ED)
dynamics using between 5×104–100 (dilute) and 3×104–103 (dense) disorder realizations.

So far, we discussed density and entanglement entropy dynamics in two families of different
quantum quenches, namely a uniform state or a bubble joined to a more dilute remainder.
Below we present details for the quenches in presence of a bubble, supporting the stability
of MBL in this setting. In addition, we discuss the dynamics resulting from an initial
state containing a density wave of particle pairs.

3.6.1 Pair density and entanglement dynamics in presence of a
bubble

Since particle pairs are the most mobile objects, we consider the pair density in quenches
that are initialized with the bubble (see Fig. 3.7). The pair density is of special interest
in these quenches as Ref. [85] suggested that the instability of the system is ascribed to
the ability of the bubble to move. In our model the bubble consists of several pairs, thus
motion of the bubble throughout the system would imply the spreading of pairs.
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3.6. Quench dynamics

The pair density defined as ⟨nini+1⟩ measured at late or infinite times is shown in Fig. 3.10.
In the dense case the late time pair density profile supports delocalization: at late times
the density of pairs becomes homogeneous throughout the formerly more dilute region
of the system. We note, that the pair density is not a conserved quantity, and it can
increase in the process of unitary dynamics.

Figure 3.10: The finite size scaling of the pair density ⟨nini+1⟩ shows opposite trend for the
dense and dilute cases. The red-shaded curves represent ν = 1/2 configurations: increasing
the system size (from yellow to dark red) the pair density becomes more uniform and
approaches the thermal value, hence in the thermodynamic limit the probability of finding
a pair far from the bubble is almost the same as finding it in the bubble. On the contrary,
blue curves (ν = 1/5) show exponential vanishing of the pair density and, furhtermore,
increasing system size (from light blue to dark blue) the density decreases, suggesting
that at the thermodynamic limit there will be no pair outside the thermal region. Data
were obtained with ED, Krylov (Tmax = 1000) and TEBD (Tmax = 500) algorithms
averaging over 100 disorder samples for the largest MPS simulations (L = 20, 30),
3 × 104, 104, 5 × 103 and 103 for ED (from L = 10 to L = 16) and over 103 for Krylov
algorithm (L = 18).

In contrast, for the dilute case the pair density profile has a pronounced exponential
tail away from the initial ergodic region. This shows that pairs spreading away from
the initial bubble do not delocalize when encountering additional particles on their way.
Indeed, while the late time pair density profile has small peaks around the initial position
of particles, these peaks are not very pronounced. In addition, the study of the pair
density profile in the uniform density wave at ν = 1/5 reveals an almost constant behavior,
centered around ⟨nini+1⟩ ∼ 10−3, which corresponds to the values reached at the end of
the exponential tail in the system with L = 30 in Fig. 3.10.

Next, we focus on understanding different contributions to entanglement growth. Ex-
ploiting the U(1) symmetry of our model and following Refs. [68, 178], we split the von
Neumann entanglement entropy into a configuration and a particle transport contribu-
tions. Indeed, due to conservation of the total number of bosons the full reduced density
matrix ρ must have a block-diagonal form. Individual blocks within ρ can be written as
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3. Stability of many-body mobility edges in disordered interacting systems

pnρ
(n), where pn gives the probability to have n particles in the susbsystem A and ρ(n) is

normalized such that tr ρ(n) = 1. Using such representation of the reduced density matrix
we can split the full entropy into SvN = SC + Sn as:

SvN = − tr ρ log ρ = −
∑︂
n

pn tr ρ(n) log
(︂
pnρ

(n)
)︂

= −
∑︂
n

pn log pn −
∑︂
n

pn tr ρ(n) log ρ(n)

= Sn + SC .

(3.5)

In this way the entanglement growth is split into two contributions: one coming from
the particle transport, Sn, and another originating from dephasing between different
configurations with the same particle number, SC . Interestingly, Fig. 3.11 shows that
while the overall entanglement entropy grows faster than logarithmic, this is due only
to the configuration part (yellow curve) and the entanglement due to particle transport
has logarithmic growth. The logarithmic growth of Sn is consistent with the logarithmic
particle transport presented in Fig. 3.8(b) and with other transport measures presented
in the next section. We identify this behavior as a hallmark of MBME, and note that it
happens on long, yet experimentally accessible timescales t ∼ 50(ℏ/t1).

Recent work [179] demonstrated that logarithmic growth of the number entropy is expected
in the thermal phase, provided there is particle transport over distances that increase
as a power-law in time, l ∝ tν . 1 The authors also predict a power-law scaling of the

1We note, that although the authors of Ref. [179] report unbounded growth of the number entanglement
in the MBL phase, the successive work of Luitz and Bar Lev [180] shows that this is due to rare particle
fluctuations around the boundary between the two subsystems and the growth disappears at large enough
system size.

Figure 3.11: The different contributions to the entanglement entropy of the bubble
show that the overall behavior of the von Neumann entropy is faster than logarithmic.
Nevertheless this behavior can be ascribed to the sole configurational entropy SC , while
the particle transport contributes to the purely logarithmic growth. The log-log plot of
the entropies discussed in Eq. (3.5) confirms that only the total entropy is growing as a
power-law, while both Sn and Sc grow slower. In particular, Sn grows as a first degree
polynomial in log(t) (dashed green line) and SC as a second degree polynomial in log(t)
(orange dashed line). The sum of these two behaviors (red dashed line) agrees with the
power-law behavior (dashed blue line). The curves are obtained through Krylov evolution
up to Tmax = 1000 averaged over 1000 disorder realizations for L = 18 and W = 6.5.
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Figure 3.12: Time dynamics of correlation functions (a), local density fluctuations (b) and
density fluctuations in the dilute half of the chain (c) all show, after an initial power-law
growth, logarithmic increase with time. In particular, correlations far away from the
central site (blue curves, as encoded in the legend above) show signs of a logarithmic
light-cone. Similarly, local density fluctuations deep in the localized region present slower
dynamics. Finally, panel (c) shows how increasing disorder slows the growth of the global
density fluctuation of the dilute half. These results were obtained with the Krylov method
on system size L = 18 for W = 6.5 (a), with ED on system size L = 16 and W = 6.5 (b)
and for different disorder values (c), averaging over 200 disorder realizations.

configuration entropy, which we do not observe, as shown in figure 3.11. We attribute the
slower than power-law growth of configuration entanglement to the localized nature of
the right half of the chain, which in turn reduces the number of possible configurations
until the particle transport from the left half leads to delocalization.

Further analysis of the entanglement dynamics shows that SvN grows in a power-law
fashion SvN ≈ atb, corresponding to the dashed blue fit in the right panel of Fig. 3.11,
over a relevant time interval. On the other hand, both Sn and Sc behave as polynomials in
log(t), of first and second degree respectively, and their sum (dashed red line) reasonably
approximates the power-law behavior of SvN , as one can expand tb ≈ 1+b log(t)+ b2

2 log2(t).

Finally, to support our interpretation of logarithmic increase of Sn as due to transport, we
study the dynamics of density correlation functions and fluctuations. Figure 3.12 presents
the dynamics of connected correlation functions C(i, t) = ⟨n̂in̂L/2⟩ − ⟨nî⟩⟨n̂L/2⟩ with
respect to the central site of the chain, the local density fluctuations δni = ⟨n̂2

i ⟩ − ⟨n̂i⟩2

and the density fluctuations in the dilute part of the chain δnR = ⟨n̂2
R⟩ − ⟨n̂R⟩2, where

n̂R = ∑︁L
i=L/2 n̂i. The logarithmic dynamics of these quantities is consistent with the

behavior of number entropy, thus proving the further support for the existence of slow
transport in the dilute part of the chain.
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3. Stability of many-body mobility edges in disordered interacting systems

3.6.2 Quench dynamics from a pair density wave state
Finally, we consider quenches from configurations featuring a pair-density wave of period
2/ν, as opposed to the single-particle density wave considered above. These configurations
accommodate the maximal possible number of pairs in the uniform state. Figure 3.13
confirms that such state is localized at ν = 1/5 and is relaxing in the dense case. Dense
systems display strong dependence on the system size and increased tendency towards
relaxation at larger system sizes, L. In contrast, at ν = 1/5 the late time density profile
has almost no dependence on the size of the system. In particular, even at very large
lengths the curves do not approach the average density represented by the dashed black5 10 15 20 25 30 35 40
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Figure 3.13: The late time density profiles of the pair density waves at dense, ν = 1/2,
and dilute, ν = 1/5, fillings show very different behavior. (a) Dilute configurations are
essentially frozen, and do not approach the thermal density represented by the black
dashed line. (b) In contrast, at ν = 1/2 relaxation is enhanced at larger L. (c) The
deviation of late time density from the thermal value decay exponentially with system size
as e−L/ξpair

T with ξpair
T ≈ 8.1. In contrast for ν = 1/5, the residual density remains nearly

constant with system size and naïve fit to the exponential gives an order of magnitude
larger scale, ξdilute

T ≈ 84. Data at ν = 1/5 is obtained via ED (L = 10, L = 15, and L = 20
with 5 × 104, 104, and 2 × 103 disorder realizations), Krylov time evolution (L = 25,
Tmax = 103 and 103 disorder realizations) and TEBD (L = 40, Tmax = 300 and 100
disorder realizations). For ν = 1/2 we used ED (L = 10, 12, 14, and 16 with 3 × 104, 104,
5 × 103, and 103 disorder realizations) and Krylov time evolution (L = 18, Tmax = 103,
and 103 disorder realizations).

line. The deviation from the thermal value ∆n has an oscillatory behavior as system size
changes, due to the different number of particle pairs when N is even/odd.

3.7 Bubble tunneling vs. decay processes
The quench dynamics discussed above suggests that a bubble is not able to spread through
the entire localized chain and remains in the vicinity of its initial position. At the same
time, most of our quench simulations are restricted to finite, albeit long, times. In order
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3.7. Bubble tunneling vs. decay processes

to give a complementary evidence for the bubble localization, we return to eigenstate
properties that effectively probe the infinite time limit.

We start with an initial product state in the half-filled case illustrated for L = 12,

|ψ1⟩ = • • ◦ • • ◦ ◦ ◦ • ◦ ◦ •, (3.6)

that contains a bubble of k = L/2 sites with ν = 2/3 filling (boxed region), followed by
a sparser region with the same number of sites and density ν = 1/3. To quantify the
relation between the probability of the bubble tunneling to the opposite end of the system
and the probability of the bubble spreading throughout the system, we use a spatial
reflection of |ψ1⟩ and uniform density wave as a representative of the state with bubble
tunneling and spreading, respectively:⃓⃓⃓

ψt
2

⟩︂
= • ◦ ◦ • ◦ ◦ ◦ • • ◦ • • , (3.7)

|ψs
2⟩ = • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •, (3.8)

illustrated for L = 12 and ν = 1/2 filling. For dilute configurations at ν = 1/5 we
define the bubble as a region of size 2(νL− 1) with density ν = 1/2, joined with a dilute
remainder. For L = 20 such a state is:

|ψ1⟩ = • • ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

.

It is straightforward to show that the infinite time average probability of finding the
system with the wave function e−iĤt |ψ1⟩ in the product state |ψ2⟩ is given by

P(|ψ1⟩ , |ψ2⟩) =
N∑︂
α=1

| ⟨Eα|ψ1⟩ ⟨Eα|ψ2⟩ |2, (3.9)

Figure 3.14: The rapid increase of the ratio of Ps/Pt with system size and disorder
strength reveals that in the dilute case, ν = 1/5 the probability for bubble spreading is
strongly enhanced compared to the probability of bubble tunneling to the opposite end of
the system. For the dense case these two probabilities are of the same order and approach
each other with increasing system size in a broad range of disorders. Averaging is done
over at least 2.5 × 103 disorder realizations.
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3. Stability of many-body mobility edges in disordered interacting systems

where {|Eα⟩} are the complete set of eigenstates of Ĥ. Eq. (3.9) quantifies the similarity
in the expansion of two different states |ψ1,2⟩ over the basis |Eα⟩ and reduces to the
conventional participation ratio when |ψ1⟩ = |ψ2⟩.

In order to reveal the relation between bubble decay and tunneling processes, we calculate
the ratio of probabilities of bubble decaying, Ps = P(|ψ1⟩ , |ψs

2⟩), with |ψs
2⟩ from Eq. (3.8),

to bubble tunneling, Pt = P(|ψ1⟩ , |ψt
2⟩) with |ψt

2⟩ from Eq. (3.7). In the dense case, these
two probabilities are of the same order and moreover tend to identity with increasing
system size as expected in the delocalized phase, see Fig. 3.14. In the dilute case, the
ratio Ps/Pt is rapidly increasing with both disorder, and system size. This proves that
the bubble tunneling processes are strongly suppressed compared to the processes where
the bubble spreads throughout the system, calling into question the applicability of the
resonance argument of [85].

3.7.1 P as a function of bubble distance

To further analyze the bubble tunneling, we study the behavior of the mutual inverse
participation ratio P for states where the dense region is displaced by some distance
d. The mutual IPR assumes very different values depending on the nature of the two
states: values of mIPR O(N ) correspond to two vectors that have similar expansion over
eigenstates, and are hence connected during the time-evolution. On the other hand, large
values of mIPR imply that the two states have different support in the eigenstates basis,
suggesting that evolving from one to the other is extremely unlikely.

In our analysis we measure the mIPR, P−1
d = P−1(ψL, ψd), between the following states

Figure 3.15: The mutual IPR, P−1
d , that quantifies the inverse probability of bubble

tunneling d sites, increases exponentially with d at strong disorder. At weak disorder the
mIPR approaches the Hilbert space dimension, N , shown by a dashed line. In the dilute
system in (b), W = 4.5 marks the onset of the exponential growth, suggesting that the
thermal bubble is frozen at its initial position. On the other hand, for ν = 1/2, in (a),
the clear exponential behavior emerges only at larger disorder. P−1

d was calculated for
system sizes L = 15 and L = 12 in dilute and dense case respectively and averaged over
104 disorder realizations.
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3.8. Dynamical probe of the absence of resonances

in the dense limit (half-filling, L = 12),

|ψL⟩ = • • • • • • ◦ ◦ ◦ ◦ ◦ ◦, (3.10)
|ψd⟩ = ◦ ◦ ◦⏞ ⏟⏟ ⏞

d

• • • • • • ◦ ◦ ◦ . (3.11)

Here we use a bubble that contains all particles to maximize the range of achievable
displacements. For the dilute case, L = 15, we use similar pair of states with a bubble
containing 3 particles (ν = 1/5).

In the thermal phase, eigenstates are approximately given by random vectors in the
Hilbert space and their average overlap with other normalized vectors approaches the
value predicted by random matrix theory, irrespective of the state or the eigenstate. In
the weak disorder limit, we then expect P−1

d to be independent on the distance between
the two bubbles and to have the same behavior as the conventional IPR: P−1

d ∼ N . This
expectation is confirmed by the results presented in fig. 3.15(a) and (b) for W = 0.5.

On the other hand, in the MBL phase eigenstates are not similar to random vectors, but
instead are characterized by a set of local integrals of motion that have a finite overlap with
the local particle density. Thus, two product states with globally different arrangement of
particles are expected to have drastically different expansion over eigenstates. Therefore,
we expect P−1

d ∝ exp [d/ξ]. As presented in figure 3.15(a) and (b), at strong disorder our
results support this hypothesis for both dilute (a) and dense (b) states.

At intermediate disorder strength, we observe a qualitative difference between dense and
dilute cases. Dilute configurations, Fig. 3.15(a), show exponential behavior already at
W = 4.5, whereas dense states in Fig. 3.15(b) need much stronger disorder to clearly
present the same trend. This result confirms the presence of mobility edge and is consistent
with the observed absence of pair spreading reported in Figure 3.10 and also with the
finite size scaling of mIPRs shown in the main text, Fig. 3.14.

3.8 Dynamical probe of the absence of resonances
The discussion on mutual IPR showed how tunneling processes are strongly suppressed in
the dilute case of our model. In addition to eigenstates analysis, we also studied long time
dynamics of states with a thermal bubble. In this way, it was possible to verify whether
a bubble initialized at a certain position can dynamically give rise to a dense region
somewhere else in the chain. In order to study this process we defined a projector onto
the subset of Hilbert space that has large density in a certain region. More specifically,
we define

P̂ νc(L0, i) =
∑︂

|ϕα⟩∈C
|ϕα⟩ ⟨ϕα| , (3.12)

where states |ϕ⟩ are all possible product states that satisfy the condition ν ≥ νc in the
region [i, i+L0]. This projector selects all configurations where the system is locally above
the mobility edge. We notice that P̂ νc(L0, i) takes into account all possible configurations,
thus considering also the entropic factor.

In order to understand what is the minimal required size of the region L0, we use the
lengthscale extracted from the decay of ∆n. The fit in Fig. 3.6(c) yields L0 ≃ 6 ÷ 7, while
fit in Fig. 3.13(c) gives a somewhat larger scale. We define an initial state |ψ0⟩ that has
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3. Stability of many-body mobility edges in disordered interacting systems

an entangled dense region of size approximately L0 (described by a linear superposition
of product states |ϕi⟩) followed by a product state:

|ψ0⟩ = 1√
NC

NC∑︂
i=1

|ϕi⟩ ⊗ |◦ ◦ ◦ • ◦◦⟩ . (3.13)

Below, we fix the overall density to ν = 1/4 and W = 6.5, which still corresponds to a
localized system. The dense region is obtained as a superposition of different configurations
with N − 1 particles in L0 = 2(N − 1) sites. The remaining particle is initialized in the
middle of the last segment of the chain. For instance, for L = 16 this results into the
following initial state:

|ψ0⟩ = 1√
NC

[︃
• • ◦ • ◦◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ +

• ◦ • ◦ •◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ +

• • • ◦ ◦◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ + . . .
]︃
,

(3.14)

where the boxed area contains a dense entangled bubble and the remainder is in the dilute
state.
The initial state |ψ0⟩ is then evolved through the Hamiltonian (3.1) in a quench protocol.
After time evolution up to a maximum time Tmax = 1000, we measure ⟨Pνc(L0, d)⟩ =
⟨ψ(t)| P̂ νc(L0, d) |ψ(t)⟩, which quantifies the probability of encountering a bubble shifted
by d sites from the initial position of the bubble.
Finally, averaging over all different product states in the dilute part of the chain and
over disorder we obtain the data in Fig. 3.16. This plot reveals that the probability of

Figure 3.16: The late time evolution of ⟨Pnc(L0, d)⟩ shows exponential decay for all the
system sizes studied (L = 12, 16, 20 at density ν = 1/4). Furthermore, we notice that
increasing the system size the exponential vanishing becomes more severe, suggesting that
in the thermodynamic limit there would be no motion of the bubble at all. These results
were obtained using 104, 5 × 103 and 103 disorder realizations for the system sizes from
smaller to larger.
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having a dense (ν > νc) region decays exponentially with the distance d from its initial
location. This is in agreement with our long-time TEBD dynamics, Fig. 3.10, that reveals
localization of individual pairs. Thus, we conclude that the bubble does not spread
resonantly but rather tunnels throughout the system. Moreover, the finite size scaling
analysis shows that increasing the system size the decay of ⟨Pνc(L0, d)⟩ with distance d
is enhanced. Therefore in the dilute regime of our model the bubble remains localized
around its initial position.

3.9 Experimental realization
Finally, we discuss a possible way to observe the physics related to MBME in experiments
with ultracold atoms. Within the disordered Aubry-André bosonic Hamiltonian,

Ĥ =
∑︂
i

[︂
t(a†

iai+1 + h.c.) + ϵini,σ + Uni(ni − 1)
]︂
, (3.15)

that is actively used to study MBL physics [68, 69], the bubbles can be represented by
regions with ⟨a†

iai⟩ = ρ > 1 bosons per site. A particle within such region has a hopping
matrix element enhanced by the Bose-factor of ⟨ρ⟩, thus playing the role of hopping t2 in
model (3.1). In the regime of densities and disorder strengths such that the enhanced
hopping ⟨ρ⟩t corresponds to localization lengths significantly larger than lattice spacing,
ξdense > a, whereas a single boson localization length is ξ ≲ a, this model will implement
similar physics to our toy model. Note that at the same time it is important to keep
interaction U low enough, U ≤ t, to avoid the formation of minibands related to long-lived
doublons.

By initializing the system in a product state with a dense region of bosons in the center
of the trap along with low density of bosons away from such a region, the dynamics under
Hamiltonian (3.15) will probe the ability of the bubble to melt the imbalance [66] away
from its original position. From our simulations we expect the absence of imbalance
relaxation far away from the bubble. In a different direction, doublons [181, 182] or second
species of particles not subject to disorder [70] are also promising candidates that can
play a role of the bubble.

3.10 Discussion
We presented a model with MBME in particle density and investigated its properties
numerically using ED and time evolution with MPS. We find strong evidence of the
persistence of localization at infinite times for small systems and also observe memory
of initial configuration until times of Tmax = 500 for systems with up to L = 40 sites.
These times are at least two orders of magnitude larger compared to the inverse local
hopping, ℏ/t1, and are achievable with cold atoms experiments. While we cannot rule out
a residual very slow delocalization at much later times, the constructed model allows us
to bound the timescale up to which the localization remains stable in very large systems
that are beyond the reach for ED.

The model with MBME in particle density presented in this work allows for direct tests of
the arguments about the instability of MBME [85]. In order for bubble to move throughout
the system it is important that the bubble does not disappear by spreading and that
configurations with bubbles situated at different locations are effectively coupled to each
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other. Our simulations reveal that dilute systems have no trace of bubble reemerging at a
different location within the system. Moreover, even the expectation value of the pair
density ⟨nini+1⟩ (pairs are building blocks of the bubble) is exponentially suppressed away
from the original location of the dense bubble. In an alternative approach, we directly
test the probability of the bubble to emerge at the opposite end of the system at infinite
time and find it to be strongly suppressed.

To conclude, we expect that the proposed model will enable further investigations of
particle density MBME. Studies of the structure of matrix elements, extension of the
theory of LIOMs [56, 57] to systems with MBME in particle density [169], and studies of
the effect of a small bath on a localized system [61, 87, 88, 183] using our model represent
promising avenues for future work.
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CHAPTER 4
Many-body localization proximity

effect

This chapter collects our work on many-body localization proximity effect. We introduce
a model featuring two species of hard-core bosons, disordered bosons form an Anderson
insulator, while clean bosons are free particles. Upon turning on the interaction among
the two bosonic species, we investigate the stability of localization and the onset of
many-body localization proximity effect. Via a mean field approach and perturbative
arguments, we expect localization of both particle types in the strong interaction limit.
Our numerical simulations on large chains in the case of a single clean particle confirm
this expectation, showing evidence of MBL proximity effect and non-trivial signatures
in entanglement dynamics. We explain these observations through a phenomenological
theory of propagation of MBL and provide supplemental evidence through the study of
highly excited eigenstates.

This chapter is based on the following publications

Brighi P., Michailidis A. A., Abanin D. A., Serbyn M. “Propagation of many-body
localization in an Anderson insulator,” Phys. Rev. B (Letters) 105 L220203 (2022)

Brighi P., Michailidis A. A., Kirova K., Abanin D. A., Serbyn, M. “Localization of a
mobile impurity interacting with an Anderson insulator,” Phys. Rev. B 105 224208
(2022)

Brighi P., Ljubotina M., Abanin D. A., and Serbyn M. “ Many-body localization
proximity effect in two-species bosonic Hubbard model.” In preparation, 2023

4.1 Introduction
The thermalization of isolated quantum systems and its breakdown are fundamental
questions of many-body quantum physics. While typical interacting quantum systems are
expected to thermalize according to the eigenstate thermalization hypothesis (ETH) [1, 2],
the presence of strong disorder can lead to non-ergodic behavior, a phenomenon known
as many-body localization (MBL) [49, 50]. MBL is an example of stable dynamical
phase of matter avoiding thermal equilibrium, and its existence may be understood
from the stability of localization in the Anderson Hamiltonian [48] with respect to
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4. Many-body localization proximity effect

weak but finite interactions [49, 50, 75]. Localization in interacting systems and its
phenomenology were thoroughly studied both theoretically [63, 75, 80, 184, 185, 186, 187]
and experimentally [66, 67, 68, 69, 162].
A number of dynamical properties of MBL [55, 80] were explained via the existence
of an extensive number of quasilocal conserved quantities [56, 57, 60], the so-called
LIOMs or l-bits. The existence of these conserved quantity is also the central point
of a mathematical proof [60] which, under very mild assumptions, ensures stability of
localization in one dimension for the transverse field Ising model (TFIM). However, there
are important open questions regarding the nature of MBL, such as its stability in higher
dimensions [62, 67, 81, 166, 188, 189] and the possibility of localized and thermalizing
eigenstates coexisting in the same system at different energy or particle densities — so-
called many-body mobility edges [59, 71, 85, 86, 167, 171, 190], previously discussed in
Chapter 3.
At the same time, experiments provided strong support for the stability of the MBL phase
on long timescales, verified a number of theoretical predictions, and started exploring
regimes where the theoretical understanding is incomplete [66, 68, 69, 191]. In particular,
experiments suggested the existence of MBL in higher dimension [67, 83] and probed the
many-body mobility edges [71].
Another open question concerns the stability of localization in an MBL system coupled to
a so-called quantum bath, represented by another quantum system that would thermalize
in absence of the coupling. In the case of a thermodynamically large bath, where the
back-action of the localized system can be neglected, the system-bath coupling is expected
to result in delocalization, caused by the facilitated transport and energy exchange.
However, considering a bath whose dimension is comparable to the localized system, or
smaller, can yield distinct outcomes, especially if the back-action on the bath is taken
into account. The MBL degrees of freedom can localize the bath – a phenomenon dubbed
“MBL proximity effect” by Ref [61]. Alternatively, the bath can thermalize the formerly
localized system [87].
This question was addressed in various different settings at a theoretical level [61, 64, 87, 88,
170, 183, 192, 193] and experimentally [70, 72]. Inspired by the avalanche mechanism [62]
for the delocalization transition, a number of works studied the effect of a “thermal grain”
coupled to a localized system [64, 87, 192]. These works described the bath as a random
matrix drawn from the Gaussian orthogonal ensemble (GOE), hence trivially satisfying
ETH, and account for the quasi-local nature of integrals of motion while considering
coupling between the bath and the localized system. In these models the bath lacks spatial
structure, thus it cannot be localized by the MBL system, excluding a priori the MBL
proximity effect. In order to keep the microscopic structure of the bath, Refs. [61, 88, 170]
represented it by a set of thermalizing particles. In this framework, thermal and localized
degrees of freedom coexist and are coupled through local interaction. It has been shown [88]
numerically that localization can globally persist, if the bandwidth of the thermal particles
is small. A related setup, although with both species of particles subject to disorder, was
theoretically considered in Ref. [181], which suggested that depending on the localization
length, a bath consisting of a single boson can either localize or thermalize other particles.
However, the fingerprints of localization of the bath under the influence of the disordered
degrees of freedom were not studied in detail and still remain an open question.
All the studies discussed so far relied on the use of exact diagonalization (ED), which
dramatically limits the system sizes available. In contrast, recent experimental studies [70,
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72] have addressed this problem on bosonic quantum simulators, enabling the study of large
systems. In Ref. [70] a “global" setup was used, where the thermal degrees of freedom are
homogeneously distributed through a 2d lattice. Varying the number of thermal particles,
the experiment showed evidence of the stability of localization when the thermalizing
bosons are a small fraction of the total. On the other hand, the authors of Ref. [72]
used a different approach. There, a 1d chain is split into a disorder-free segment, that
represents a bath, and is connected to a disordered segment. The experiment investigated
the stability of localization while changing the size of the disorder-free segment. While
localization is stable for small thermal chains, signs of delocalization were observed when
the bath constitutes half of the whole system.

In this work inspired by recent experiments [70, 72] we investigate the behavior of a
non-interacting Anderson insulator with a finite density of particles interacting with a
single clean (not subject to disorder potential) boson that acts as a small quantum bath.
We obtain a perturbative condition for the stability of localization, which suggests that
at strong disorder and strong interactions, the system remains localized. Approaching
the dynamics in an approximate way, using a time-dependent Hartree method, which
neglects entanglement and quantum correlations among the two particle species, we at first
obtain delocalization at long times, supported by the diffusive spreading of the particle
constituting the bath and decaying memory of the initial state of the Anderson insulator.
However, large scale matrix product state (MPS) [194] simulations of the long-time
dynamics of the system reveal that the Anderson insulator localizes the clean boson,
providing the first evidence of MBL proximity effect on these length-scales. The contrast
of approximated time-dependent Hartree method and quasi-exact TEBD highlights the
fundamental role played by entanglement.

Next, we address the effect of the clean boson on the Anderson insulator, showing that by
mediating an effective interaction among localized particles it triggers additional relaxation
of the density imbalance [66] enhancing particle-particle correlations. Finally, we attribute
the non-trivial entanglement dynamics observed in this system to an effective propagation
of MBL in the Anderson insulator mediated by the clean boson. Finally, we use density-
matrix renormalization group for excited states method (DMRG-X) [110, 111, 112], to
study highly excited eigenstates of the Hamiltonian in large chains. This effectively
allows us to probe localization at infinite times. Analyzing the expectation value of
density in eigenstates, we observe localization of the small bath due to the interaction
with the Anderson insulator. Furthermore, we find that eigenstates show area-law
entanglement, thus providing complementary support for the persistence of localization
at strong interactions.

Having established the presence of MBL proximity effect in the strong interaction regime,
we proceed and study the system at weaker couplings and in the case of extensively
large quantum baths. In the weak interaction regime, analytical arguments suggest the
possibility of a breakdown of the MBL proximity effect and consequent delocalization of
the clean particle. Using state of the art numerical methods and large computational
resources, we investigate the time-evolution of the model and additionally consider a
related Floquet model with similar properties, which enables the study of much longer
timescales. At sufficiently large interaction strengths, we still observe characteristic
features of localization, in contrast with the claims of Ref. [195]. Upon decreasing the
coupling strength, we observe signatures of delocalization of the clean particle, whereas
the disordered bosons still show extremely slow dynamics, making their behavior hard to
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capture unambiguously.

After establishing the possibility of delocalization of the single-particle bath, we investigate
the effects of increasing the size of the quantum bath. Using operator dynamics, we
consider the case when the particle density of the bath is comparable to the density
of localized particles. In this case, we find non-vanishing (diffusive or subdiffusive)
particle transport for both clean and disordered bosons, providing strong evidence of
delocalization. As the density of the clean particles is reduced, such that their average
spacing becomes comparable to the localization length of a single clean particle in the case
of the MBL proximity effect, we observe dynamics compatible with localization at short
times. The rapid growth of entanglement prevents us from reaching longer timescales,
where delocalization expected from analytical treatment of related problems may be
manifested [196, 197].

By pushing the limits of numerical simulations to large systems, long evolution times, and
large entanglement regimes, our work sheds light on the fate of localized system coupled
to a bath with varying number of particles. For a weak quantum bath we demonstrate
the persistence of localization in systems with much larger number of particles than is
accessible to exact diagonalization, suggesting stability of MBL on long timescales and
possibly in thermodynamic limit [90, 92]. In the opposite limit of large quantum bath,
our investigation of transport shows a surprisingly fast emergence of diffusive behavior of
the localized system due to its coupling with the bath, in contrast with observations of
subdiffusive transport throughout the delocalized phase of more conventional disordered
many-body Hamiltonians with a single species of particles [198, 199]. This is suggestive of
a possible effective long-range interaction induced by the clean bosons, bearing a distant
analogy to studies of two-level systems coupled to waveguide that mediates long-range
interactions [200].

4.2 Model
We consider a one dimensional chain of two species of hard-core bosons moving through
nearest neighbor hopping and interacting via an on-site potential. The disordered bosons
(d-bosons) are further subject to a random potential drawn from a uniform distribution
ϵi ∈ [−W,W ] and are governed by the Anderson Hamiltonian Ĥd [48]

Ĥd = td
L−1∑︂
i=1

(d̂†
i d̂i+1 + h.c.) +

L∑︂
i=1

ϵin̂d,i, (4.1)

where dî is the annihilation operator for the d-bosons, n̂d,i = d̂
†
i d̂i is their density operator,

and td is the hopping strength. The resulting Anderson insulator [48] is localized at
any density of bosons and disorder strength W [201] thereby providing a specific system
avoiding thermalization.

The small quantum bath will be represented by the clean bosons (c-bosons) described by
Ĥc,

Ĥc = tc
L−1∑︂
i=1

(ĉ†
i ĉi+1 + h.c.), (4.2)
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Figure 4.1: A schematic representation of the model described by the Hamiltonian (4.4).
Blue dots represent the d-bosons, subject to the disorder potential of strength W , while
the red dots illustrate the c-boson interacting with d-bosons via the on-site interaction U .

that are characterized by a single hopping parameter tc and are not subject to disordered
potential. Finally, the two boson species are coupled via the on-site Hubbard interaction,

Ĥ int = U
L∑︂
i=1

n̂c,in̂d,i, (4.3)

where U is the interaction strength and n̂c,i = ĉ†
i ĉi is the number operator of c-bosons.

The full interacting Hamiltonian then reads:

Ĥ = Ĥd + Ĥc + Ĥ int. (4.4)

The system described by the Hamiltonian (4.4) is shown schematically in Figure 4.1.
The Hamiltonian has U(1) × U(1) symmetry, as the number of both types of particles,
N̂ c/d = ∑︁

i n̂c/d,i, is conserved, [H,Nd/c] = 0. In what follows, we assume a finite density
of d-bosons, νd = Nd/L = 1/3 unless specified otherwise, and fix the hopping parameters
to td = tc = 11. In absence of c-bosons the system is in the Anderson insulating phase
for any finite disorder. The presence of c-bosons, however, makes the system inherently
interacting, leading to the question of stability of Anderson localization with respect to
coupling to the small bath represented by c-bosons.

We first approach the problem of a single c-boson, that realizes the smallest possible
quantum bath with non-trivial spatial structure and local coupling to a localized system.
In this respect, our setting resembles the experimental setup of Ref. [70] which was,
however, performed on a two dimensional lattice and considered various densities of clean
particles. In this setup, at weak interaction strengths we additionally study the time-
evolution resulting from a pulsed Floquet driving. The Hamiltonian evolution is generated
by the unitary time-evolution operator Û(t) = exp

(︂
−ıĤt

)︂
, implemented numerically

using a fourth order Suzuki-Trotter decomposition [115] over alternating pairs of sites
with time step δt = 0.05. The Floquet dynamics, instead, are generated by the following
time-dependent periodic Hamiltonian

Ĥ(t) =

⎧⎨⎩ Ĥeven nT ≤ t < (n+ 1/2)T
Ĥodd (n+ 1/2)T ≤ t < (n+ 1)T

, (4.5)

where Ĥeven(odd) represents the Hamiltonian in Eq. (4.4). Here the sum of the hopping
terms is restricted to even (odd) sites and the interaction and disorder terms are halved,

1We note that the choice of positive hopping parameters corresponds to the dynamics of holes, however
we do not expect qualitative changes for negative tc/d.
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T = 0.5 is the period and n ∈ N. The unitary Floquet operator then describes the
dynamics at stroboscopic times nT

ÛF = exp
(︃

−ıĤodd
T

2

)︃
exp

(︃
−ıĤeven

T

2

)︃
. (4.6)

Although the Hamiltonian and Floquet models are, strictly speaking, different, the Floquet
dynamics is expected to reduce to the Hamiltonian case in the limit of ∆T → 0. Moreover,
both models are characterized by exact conservation of the particle number of the two
bosonic species. This allows us to compare the transport and particle spreading between
the two models, with the Floquet model being able to achieve much longer evolution times
at a comparable computational costs. As we demonstrate below, Floquet and Hamiltonian
time evolution show similar phenomenology, with Floquet time evolution enabling us to
probe the stability of MBL proximity effect and delocalization on much longer timescales.

Although the boson density is sufficient to specify a particular sector of the Hilbert
space, in the single c-boson case we further restrict ourselves to states where d-bosons
have a globally homogeneous distribution. In particular, we will study initial states
corresponding to a d-bosons density wave, with the single c-boson located on the central
site, as exemplified by |ψ0⟩ below on a system of L = 18 sites and with νd = 1/3

|ψ0⟩ = |•◦◦•◦◦•◦••◦◦•◦◦•◦◦⟩, (4.7)

where empty circles represent empty sites, and black (red) circles are sites occupied
by d- and c-boson respectively. Such initial state resembles the configurations used in
experiments and can be characterized by the so-called imbalance [191, 202], quantifying
the memory of the initial density-wave configuration in the system after a quench.

While a strictly periodic arrangement of d-bosons akin to the state (4.7) is not required,
we assume that the density of d-bosons is on average distributed uniformly on a scale that
is larger than a few lattice spacings. This assumption is important since the presence of
large empty/occupied regions in the chain would imply the effective absence of disorder
for c-boson in that region. While such configurations could be used to imitate another
experimental study of MBL-bath coupling [72], states where extensive regions of the
chain are fully empty or occupied by d-bosons are exponentially rare in the size of the
region, hence they are far from typical initial product states. On the other hand, typical
configurations have approximately uniform density of d-bosons on a scale larger than
a few lattice sites, hence our choice of initial density wave state (4.7) is expected to
qualitatively capture the typical behavior. Moreover, we expect that if the localization
of d-bosons persists, such states are nearly decoupled from spatially homogenous initial
states of the type (4.7). Indeed, in order to connect a highly inhomogeneous state such as
|ψ0⟩ = |••••••◦◦◦◦◦•◦◦◦◦◦◦⟩ to the density-wave state in Eq. (4.7), the tunneling of an
extensive number of d-boson over long distances is required.

In the case of finite c-bosons density, instead, we investigate the dynamics of two different
types of initial conditions, to address different regimes in the parameter space of the model.
Whenever the density of clean bosons is small, νc = Nc/L ≤ 1/6, we fix the d-boson
density to νd = 1/3 and study the evolution of the quantum wave function represented as
an MPS from an initial state consisting of clean (disordered) bosons forming a density wave
of period 1/νc/d respectively. Our numerical simulations show that by increasing density
of clean particles in the bath the whole system approaches thermalization, thus leading
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Figure 4.2: Phase diagram for the Hamiltonian system as function of the coupling U
and the bath size νc, and for the Floquet dynamics in the case of bath consisting of a
single particle (Nc = 1 or νc = 1/L). The markers show different points in parameter
space explored in this work, and refer to time evolution that uses Hamiltonian (red
crosses) or Floquet (red stars) propagation of wave functions, and Hamiltonian evolution
of density matrices (blue crosses). The colors schematically show the different phases,
blue representing MBL and green the ergodic phase. The shading corresponds to the
putative transition regime, obtained from our numerical simulations. We expect more
stable localization in the regime of strong interactions, however in the present study we
aim at studying the transition, and hence deliberately choose interaction to be less or
equal to disorder strength, U ≤ W = 6.5.

to rapid entanglement spreading and making the time-evolution of MPS wave function
extremely challenging. Thus in regime of νc > 1/6 we time-evolve density matrices
initialized close to infinite temperature (ρ∞ ∝ I) represented as a matrix product operator
(MPO), whose simulation is more efficient in the thermal phase, see Appendix C.4 for
details.

In Figure 4.2 we summarize the main results of this Chapter through a tentative phase
diagram as a function of interaction strength U and bath size controlled by the density
of clean particles, νc, for fixed parameters tc = td = 1 and W = 6.5. First, in Sec-
tions 4.3 and 4.4 we study the transition as a function of the interaction strength for the
single-particle bath case. The joint results of our numerical simulations and analytical
considerations allow us to establish the existence of two phases in this regime, an MBL
phase at strong interactions (blue in the phase diagram) and a thermal phase at weak U
(light green), characterized by diffusive behavior of the bath particle and extremely slow
delocalization of the d-bosons. Close to the putative transition, we use both Hamiltonian
and Floquet dynamics, presenting qualitatively similar results.

As the number of c-bosons becomes extensive, Nc ∝ L, corresponding to finite densitites of
clean bosons, we observe, in Section 4.5.2, a weakening of localization, eventually yielding
delocalization shown as a crossover from blue to green in the phase diagram in Fig. 4.2.
Finally, in Section 4.5.1 we investigate particle transport in the delocalized region of the
diagram, finding diffusive spreading of both bosonic species.
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4.3 Strong coupling regime

4.3.1 Hartree approximation and criterion for stability of
localization

First, we formulate the Hartree approximation and use it to study the Hamiltonian (4.4).
This facilitates the choice of parameters in the Hamiltonian, and allows to formulate
an analytic criterion for stability of localization with respect to two-particle tunnelling
processes.

Effective Disorder

The Hartree approximation adopted in this section consists of replacing the density
operator n̂d,i in Eq. (4.4) with its infinite-time average ⟨n̂d,i⟩. This approximation would
be fully justified in the case of instantaneous relaxation of d-bosons with respect to c-boson
dynamics, i.e. if td,W ≫ tc. Moreover, as in an Anderson insulator the fluctuations of the
expectation value ⟨n̂d,i⟩ are finite at all times, the Hartree approximation overestimates
the degree of localization of the system. In spite of these shortcomings, the Hartree
approximation will assist us with the choice of model parameters and will also allow
defining an effective disorder strength thus quantifying the analytic criterion for stability
of localization.

The infinite-time average of the d-bosons density is given by the diagonal ensemble
generated by the eigenstates of Ĥd:

⟨n̂d,i⟩ = lim
T→∞

1
T

∫︂ T

0
dt ⟨ψ(t)| n̂d,i |ψ(t)⟩

=
∑︂
n

|cn|2 ⟨En| n̂d,i |En⟩ ,
(4.8)

where {|Em⟩} is the eigenbasis of Ĥd, cn = ⟨ψ0 |En⟩ and |ψ(t)⟩ = T̂ e−ı
∫︁ t

0 Ĥd(t′)dt′ |ψ0⟩ =
e−ıĤdt |ψ0⟩. The initial state |ψ0⟩ is taken to be a density wave, see Eq. (4.7). Due to the
random potential in the Anderson Hamiltonian, the d-bosons occupation at infinite times
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Figure 4.3: (a) Subtracting deterministic components from the distribution of ⟨n̂d,i⟩
(inset) results in an approximately Gaussian distribution of the effective disorder potential
ϵ̃i, shown here for νd = 1/3. Standard deviation of this distribution, σ, is used to define
the effective disorder strength, W̃/U = σ. (b) The effective disorder strength W̃ shows
a non-monotonic behavior as a function of W with a maximum at W ∗ ≈ 5. The data
shown are obtained for L = 500 sites and averaged over 50 disorder realizations.
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acquires a quasi-random nature and is distributed according to P (⟨n̂d,i)⟩ in the range
[0, 1].

Thanks to the noninteracting nature of the problem in the Hartree approximation, the
eigenstates in Eq. (4.8) can be written as product states of single particle orbitals |ℓ⟩.
Then, by going into eigenbasis one can decouple the sum over

(︂
L
Nd

)︂
terms in Eq. (4.8)

into a double sum over the Nd occupied sites in the initial state and the L single particle
orbitals. The problem of finding the infinite time occupation values then reduces to
finding eigenstates of a single-particle Hamiltonian, whose Hilbert space scales as L, thus
greatly reducing the complexity of the problem. The infinite-time average of the d-bosons
density, hence, can be carried out through Eq. (4.8) for very large systems, L = 500, where
boundary effects on its probability distribution are negligible, and at various disorder
strengths.

The infinite-time occupation of the d-bosons plays the role of an effective random chemical
potential experienced by the c-boson in the Hartree approximation. As shown in the inset
of Figure 4.3(a), when the disorder is strong compared to the hopping parameter, td = 1,
P (⟨n̂d,i)⟩ resembles a bimodal distribution, with two distinct peaks at ⟨n̂d,i⟩ ∼ 0, 1. This
behavior can be understood as a consequence of the strong localization of d-bosons for
disorder W = 10. Thus, even at infinite time, the d-bosons remain close to their initial
position and expectation value of ⟨n̂d,i⟩ remains close to its initial value, i.e. either 0 or
1, depending on the considered site. As disorder is decreased, the two peak structure
gradually disappears, and the distribution acquires a single peak around the average
density νd.

In order to define the effective disorder ϵ̃i generated by the d-bosons, we need to isolate
the random part of the distribution of ⟨n̂d,i⟩. To this end, we subtract from ⟨n̂d,i⟩ the
uniform and the period-1/νd contribution. In Fourier space this corresponds to modifying
the Fourier harmonics of density, ñd(k) = ∑︁

j⟨n̂d,j⟩e−ıkj, as follows:

ϵ̃(k) = ñd(k) − (1 − α)Lνdδk,0 − α
L∑︂
j=1

f(j, νd)e−ıkj, (4.9)

where α = ∑︁
j⟨n̂d,j⟩e−ıπνdj corresponds to the weight of the 1/νd harmonic in the particle

distribution and f(j, νd) = ∑︁Nd−1
n=0 δj,n/νd+1 is a functional representation of the initial

density wave configuration. Transforming ϵ̃(k) back to the real space, we obtain the
effective random potential ϵ̃i. Its distribution differs from the one of the infinite-time
density, as it can be seen in Figure 4.3(a). In particular, P (ϵ̃i) is centered around zero
for all values of disorder, and has an approximately Gaussian shape. Thus, we use the
standard deviation of this distribution as the effective disorder strength W̃ = U stdP (ϵ̃i)
experienced by c-boson in the Hartree approximation.

The effective disorder strength measured in units of U , W̃/U is shown as a function of
the disorder strength experienced by d-bosons, W , in Figure 4.3(b). First, we note a
non-monotonic dependence of W̃ on the d-boson disorder strength, W . The effective
disorder strength W̃ presents a maximum around W ∗ ≈ 5, whose position depends weakly
on the density of d-bosons. This behavior can be naturally explained by considering
two opposite limits: at weak W the localization length of d-bosons is much larger and
the initial period-2/3/4 density wave configuration is washed out at late times resulting
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4. Many-body localization proximity effect

in weak effective disorder W̃ . 2 In the opposite limit of very strong W , the d-bosons
remain frozen close to their initial positions resulting in a nearly perfect periodic potential
experienced by c-boson. However such periodic potential is unable to localize c-boson
and is subtracted in Eq. (4.9), thus again resulting in a weak effective disorder. Given
that W̃ is expected to decrease for very large and small W , we expect it to achieve a
maximal value at some intermediate disorder W . Finally, we study in Fig. 4.3(b) the
dependence of the effective disorder on the d-bosons density νd. As νd is increased, W̃
increases accordingly due to the fact that the effective random potential ϵ̃i is generated
by the d-bosons density. We note, however, that for νd > 1/2 the effective disorder would
decrease again, because of the hard-core nature of the bosons.

Localization length of the c-boson in Hartree approximation

We demonstrated that in the Hartree approximation the c-boson experiences an approxi-
mately Gaussian-distributed random potential with disorder strength W̃ that depends on
the initial state and disorder experienced by d-bosons. Since an arbitrary weak disorder
potential suffices to localize a single particle in a one-dimensional lattice, the c-boson in
the Hartree approximation is always localized. We proceed with the calculation of its
localization length ξc that provides a characteristic lengthscale of localization and can be
compared with the localization length of the d-bosons, ξd.

To obtain the localization length for the c-boson we use the weak disorder approximation,
justified at weak values of U as the random potentials ϵ̃i are restricted to [−1, 1]. Perturbing
around the tight-binding limit with the transfer matrix method [203], we obtain ξc(k) ≈
8t2c sin2(k)/⟨ϵ̃2

i ⟩ that depends on the momentum k that determines single particle energy
in absence of disorder, E(k) = −2tc cos(k). The average localization length is calculated
by performing the integral over the complete band

ξc ≈ 8t2c
⟨ϵ̃2
i ⟩

∫︂ 2tc

−2tc
dε

[︄
1 −

(︃
ε

2tc

)︃2
]︄
ρ(ε), (4.10)

where ρ(ε) is the usual density of states of the tight-binding Hamiltonian. Carrying
out the integral we realize that it contributes only to a numerical factor as the c-boson
hopping terms cancel out. Recalling that, since ⟨ϵ̃i⟩ = 0, the variance ⟨ϵ̃2

i ⟩ corresponds to
the definition of the effective disorder strength squared, we obtain

ξc ≈ 4t2c
aW̃

2 , (4.11)

where a = 1 is the lattice spacing.

The resulting simple expression for ξc, Eq. (4.11), has two main consequences. First,
we expect that ξc inherits the non-monotonic dependence on W and has a minimum
approximately when the effective disorder strengths is maximal in Fig. 4.3. Second,
since W̃ ∝ U , we expect that localization length diverges as ξc ∝ 1/U2 at small values
of U where weak disorder approximation is controllable. To confirm these predictions,
we extract the localization length of c-bosons from numerical simulations. Using the
effective disorder obtained from the eigenstates of the d-boson Hamiltonian, we use exact

2We note, that in the limit of small W dynamics of c-bosons becomes faster, potentially invalidating
the static Hartree approximation. Nevertheless, the effective disorder remains well defined even in this
case.
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Figure 4.4: The localization length of the c-boson from the Hartree approximation for
initial period-3 density wave state of d-bosons. Inset shows bare data, for different values
of U ranging from U = 0.5 (dark blue) to U = 5 (yellow). For a broad range of interaction
strength, ξc has a minimum at W ∗ ≈ 5. The main plot shows the collapse of data,
confirming the scaling ξc ∼ U−2.

diagonalization to calculate the single-particle wave functions of c-bosons resulting from
the Hamiltonian HHartree

c = Hc +∑︁
i U⟨n̂d,i⟩n̂c,i. Each eigenstate |ϕε⟩ of this Hamiltonian

can be characterized by an (energy-dependent) localization length ξc(ε). After obtaining
ξc(ε) for each eigenstate through an exponential fit of its probability distribution in the
real space, | ⟨i|ϕε⟩|2, we average the localization length over all eigenstates and further
over 50 disorder realizations.

The localization length resulting from the numerical simulation is shown in Fig. 4.4, where
the non-monotonic behavior of ξc and its scaling with the interaction strength becomes
apparent. We note that for the adopted choice of hoppings td = tc = 1, ξc always exceeds
the localization length of d-bosons and is tunable by the interaction strength in a broad
range. In particular, for disorder strength W = 6.5, used in the accompanying paper [65],
ξd ≈ 0.5 is smaller than one lattice spacing, while ξc takes values from 1.5 to 100 lattice
spacings, as the interaction strength is decreased from U = 5 to U = 0.5 respectively. This
result also assists in the choice of disorder strength: in order to facilitate the numerical
studies, we fix disorder at W = 6.5 so that the localization length of c-bosons is close to
its minimum.

Analytic criterion for stability of localization

The drawback of the Hartree approximation presented above is that it ignores fluctuations
of d-bosons density, thus always resulting in localization. However, it provides a useful
starting point to address the perturbative stability of such localized system. To this
end, we use the basis of Anderson localized orbitals provided by Hartree approximation
to address the stability of the system with respect to interactions between clean and
disordered bosons.

We transform the interaction Hamiltonian (4.3) to the basis of localized orbitals via the
relation d̂α = ∑︁

i ψdα(i)d̂i, where d̂α is the annihilation operator of an Anderson orbital
and ψdα(i) = ⟨α|i⟩ is the corresponding wave function and similar expressions hold for
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4. Many-body localization proximity effect

c-bosons. This leads to
Ĥ int =

∑︂
αβγδ

Vαβγδd̂
†
αĉ

†
βd̂γ ĉδ. (4.12)

As shown in the schematic representation in the inset of Figure 4.5, the matrix element
Vαβγδ corresponds to a correlated hopping process with its value being given by the overlap
of the wave functions of the corresponding localized orbitals,

Vαβγδ = U
L∑︂
i=1

ψ∗
dα(i)ψ∗

cβ(i)ψdγ(i)ψcδ(i), (4.13)

where the envelope of the wave functions decays on the scale of the corresponding
localization length, |ψdα(i)| ∼ e−|i−xα|/(2ξd)/

√
2ξd, where xα is the site around which the

orbital is localized. In order to address the stability of localization with respect to such
correlated hoppings triggered by interaction, we compare the matrix element of this
process to the corresponding level spacing.

Keeping only the leading behavior of the wave functions, i.e. the exponential decay, and
neglecting their oscillatory behavior results in an upper bound for the matrix element in
Eq. (4.13) and thus favors delocalization. In this case, the matrix element can be easily
estimated as

Vαβγδ ≈ U

4ξcξd

L∑︂
i=1

e
− |xα−i|+|xγ −i|

ξd e−
|xβ−i|+|xδ−i|

ξc , (4.14)

from where one can immediately realize that it is exponentially suppressed whenever any
of terms in the exponents |x− i|/ξc/d > 1 exceeds one. This restricts the localized orbitals
that can efficiently participate in the hopping process:⎧⎨⎩|xα − xγ| ≲ ξd, |xα − xβ| ≲ max(ξc, ξd)

|xβ − xδ| ≲ ξc, |xγ − xδ| ≲ max(ξc, ξd).
(4.15)

Using the fact that ξc ≥ ξd, the summation cancels the ξd in the denominator resulting in
a simple estimate

Vαβγδ ≈ U

4ξc
. (4.16)

The second element needed to understand if such tunnelling processes are resonant is
the typical level spacing δcd, obtained as the ratio of the typical energy difference ∆E
to the number of states N connected by the interaction. Since the two states differ for
the position of the two bosons, the typical energy difference is given by the sum of the
two disorder strengths: ∆E ≈ W + W̃ . To account for the number of states (|ψ⟩ , |ψ′⟩)
connected by the interaction we need to consider the constraints (4.15), which restrict
the possible configurations. First, in the initial state the two bosons must lie within a
distance ξc from one another, as ξc ≥ ξd, thus contributing 2ξc possible configurations.
Due to the localized nature of wave functions, the position of the bosons in the final state
must lie within a distance ξc and ξd for the c-boson and the d-bosons respectively. A naïve
computation would then give N = (2ξc)(2ξc)(2ξd) = 8ξ2

c ξd. However, one must be careful
as also in the final state the two bosons must be separated by at most ξc for the matrix
element not to vanish. This reduces the total number of states, as not all the moves
increasing the distance among the bosons are allowed. A careful computation reveals
that for a given d-boson hopping there are only (3/2)ξc possible choices, thus reducing
the total number of states. Finally, one has to take into account the finite density of the
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4.3. Strong coupling regime

Figure 4.5: (a) The typical ratio between matrix element and level spacing as a function
of disorder for different coupling strengths U rapidly decreases as the interaction strength
increases. In the left inset we compare analytic expression for R with its numerical
estimate. The right inset shows the tunnelling process induced by Ĥ int. (b)The phase
diagram obtained using the average ratio of adjacent level spacings, ⟨r⟩, for the central
500 eigenstates of a system of L = 15 sites shows good qualitative agreement with the
criterion R = 1 for the transition, especially at strong U . At weak U localization appears
to be stable beyond the limit obtained with the criterion, while at intermediate interaction
higher-order processes neglected in our analytical estimate lead to a larger extent of
delocalized phase.

d-bosons, together with their hard-core nature, that requires that an initially occupied
site must be left empty after the hopping and vice versa, leading to

N ≈ 6ξ2
c ξdνd(1 − νd), δcd = (W + W̃ )/N . (4.17)

Gathering the results of Eqs. (4.16)-(4.17) we obtain the expression for the ratio of level
spacing to the matrix element,

R = 3
2U

ξcξdνd(1 − νd)
W + W̃

. (4.18)

Condition R < 1 provides a criterion for stability of localization. Recalling that the
c-boson localization length depends on the interaction strength ξc ≈ ξ0

c/U
2, the criterion

R < 1 can be rearranged as

(W + W̃ )U >
3
2ξ

0
c ξdνd(1 − νd), (4.19)

suggesting that localization remains stable at strong interactions and large disorder. For
the disorder strength used in the numerical simulations in the remainder of this work,
W = 6.5, the criterion (4.19) yields a critical interaction strength Uc ≈ 1.5, therefore at
strong interaction U = 12 used in the numerical simulations the system is expected to
remain localized.

The typical probability of resonance R can also be evaluated numerically and compared
with the prediction of Eq. (4.18). To this end, after diagonalizing the Hamiltonian in
the Hartree approximation, for each c-boson eigenstate we select states lying within the
localization lengths ξc and ξd from one another and evaluate for all of them the matrix
element Vαβγδ and the energy difference. Then we define the resonance value rβ fixing
the initial state of the c-boson, e.g. β, and maximizing the ratio of the matrix element
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4. Many-body localization proximity effect

to the energy difference over all other available states. In a similar way we define the
resonance rαβ, where both the initial state of the c-boson (β) and of the d-boson (α) are
fixed. Being a more constrained version of rβ, the following inequality holds

rβ = max
αγδ

[︃
Vαβγδ
∆E

]︃
≥ rαβ = max

γδ

[︃
Vαβγδ
∆E

]︃
. (4.20)

Finally, we obtain the typical resonance probability by taking the median of the distribution
of rβ and rαβ. The results of this numerical evaluation are shown in the inset of Figure 4.5(a)
together with the analytic prediction (4.18) and show an overall agreement. In particular,
we notice that rαβ is always smaller than rβ.

From Figure 4.5(a) we observe that the disorder W at which the condition (4.19) is
satisfied decreases as the interaction strength U increases. Taking the disorder value
where R = 1 as a critical point, we obtain the transition line shown in Figure 4.5(b). Note,
that our considerations assume a homogeneous initial distribution of d-bosons, as discussed
at the end of Sec. 4.2. The transition line is compared with the average ratio of adjacent
level spacings for a system of L = 15 sites. The ratio of adjacent level spacing defined
as r = min(δi, δi+1)/max(δi, δi+1), where δi is the energy difference of two neighboring
eigenstates, has a well known behavior in the thermal and MBL regimes. Its average
for the Gaussian orthogonal ensemble (GOE) reads rGOE ≈ 0.54, and is approached in
ergodic phase, while for MBL it reaches the Poisson value rP = 2 log(2)−1 ≈ 0.39 [51, 53].
In Fig. 4.5(b), we show results for the average over the central 500 eigenstates, further
averaged over 200 disorder realizations. We notice a good qualitative agreement with
the transition line obtained through the criterion (4.19), especially at large values of U .
Figure 4.5(b) suggests that at disorder W = 6.5 the system is expected to be localized
for sufficiently large U ⪆ 1.5. In what follows we explore the properties of the localized
system for U = 12, a point that is located deep in the localized regime according to our
stability condition and results from exact diagonalization for small system sizes.

4.3.2 Quench dynamics as a probe of localization
The static Hartree approximation introduced above allowed to formulate a criterion for
the stability of localization. Below we proceed with probing the dynamics of the full
model in the localized regime. First, we study the dynamics of a clean boson in the
random landscape of the static Hartree disorder, gaining insight in the expected dynamics
for localized particles. Next, we extend the Hartree approximation attempting to include
dynamical effects in the system via a time-dependent update of the mean field. Finally
and more importantly, we study the full quantum dynamics using TEBD.

Numerical simulations

To check the criterion (4.19), we numerically study dynamics of large systems over long
times. We fix W = 6.5, which is close to the value that maximizes the effective disorder
W̃ [89] and typically consider a quantum quench from an initial period-3 density wave of
d-bosons corresponding to density νd = 1/3, a setup often used in cold atoms experiments
on localization [161, 191, 202]. The large local Hilbert space dimension restricts the use
of exact diagonalization, hence requiring the use of more advanced techniques.

We first imply a time-dependent version of the Hartree approximation presented above,
where the mean fields are updated after each time step. In this approximation ⟨n̂c/d(t)⟩
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4.3. Strong coupling regime

are affecting the dynamics |ψ(t)⟩ → |ψ(t+ dt)⟩, and are then calculated again with the
evolved wave function. However, this approach neglects the development of quantum
correlations and of entanglement, thus limiting its applicability. The use of matrix product
states (MPS) techniques, instead, can be considered almost exact, as far as the bond
dimension is not saturated, and the truncation error is kept small enough. As we will
show in the following, this system develops a large amount of entanglement, thus requiring
a large bond dimension for a faithful description. Hence we study the dynamics using a
parallel version of the TEBD algorithm [114] implemented using the ITensor library [176].
The parallelization of the algorithm, although relatively straightforward, allows the study
of states with extremely large bond dimension, χ = 3000, enabling us to explore large
systems (up to L = 60) on experimentally relevant timescale of T ≤ 200.

Finally, we also investigate the behavior of highly excited eigenstates, which give insight
on the fate of the system at infinite times. To go beyond exact diagonalization, again we
resort in the powerful MPS methods. In particular, we use the DMRG-X [110, 111, 112]
algorithm, an extension of the celebrated DMRG [108], where the operator which is locally
minimized corresponds to the shift-inverted Hamiltonian, (σI − Ĥ)−1, with σ the target
energy. Details about the DMRG-X and parallel TEBD implementation can be found in
appendices C.2 and C.1 respectively.

Clean boson dynamics in static Hartree disorder

The static Hartree approximation discussed in Section 4.3.1, yields an effective disorder
acting on the c-boson and consequently its localization. As the effective disorder changes
with the filling fraction of the d-bosons, we expect also the localization length to change
accordingly. This should lead to a weaker localization whenever the d-bosons density, νd,
deviates from half filling. This is confirmed by the numerical results shown in Figure 4.6,
where we observe stronger localization for νd = 1/2. Additionally, we compare the
data with the prediction of Eq. (4.11) (dashed lines). Although qualitatively similar,

5 10 15 20 25 30
W

100

101

102

ξ

ξd

νd = 1/2

νd = 1/3

νd = 1/4

Figure 4.6: Hartree induced localization length compared with the analytic result of
Eq.(4.11), dashed lines, reveals good agreement at weak disorder, while at larger W the
deviation of P (ϵ̃i) from Gaussian leads to a worse agreement. The localization length ξc
reflects the behavior of the effective disorder, leading to larger ξc for systems far from half
filling. The weaker nature of the effective disorder results in ξc ≫ ξd for all the parameters
studied, thus highlighting the much weaker localization of the c-boson.
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Figure 4.7: The density profiles (a) of the single particle in the static Hartree disorder at
U = 2.5 show an exponential decay within a range R(t), outside of which they rather have
a Gaussian behavior. The exponential decay is characterized by a decay length ℓc(t) (b),
which after an initial transient is constant in time and saturates to the value obtained
in Fig. 4.6. The extent of the exponentially suppressed region, R(t), instead grows in a
power-law fashion until it reaches the boundaries of the system (c).

the quantitative agreement fails as the disorder strength W increases. We attribute
this discrepancy to the deviation of the distribution of effective disorder from Gaussian
discussed in Section 4.3.1.

Next, we consider the c-boson dynamics in the static Hartree approximation fixing the
disorder strength affecting d-bosons to W = 6.5, close to the minimum of the c-boson
localization length. After the replacement of n̂d with its infinite time average, the dynamics
can be obtained numerically for large systems without resorting to large computational
resources, as the single-particle Hilbert space dimension only scales as the system size L.
Therefore, we study the density dynamics of a c-boson initialized in the center of a L = 120
chain evolving the initial state up to t ≈ 104. The density profiles obtained in this way in
Figure 4.7(a) reveal the presence of two distinct behaviors, depending on the distance from
the center. Close to the initial position of the particle, the density in Fig. 4.7(a) decays
exponentially, consistently with the expectation for a localized particle. However, further
away from the initial location of the particle, the density dependence is consistent with a
Gaussian profile. While the Gaussian profile is expected from the diffusive spreading of
the particle that could take place at early times for weak disorder (weak localization), the
coherent backscattering from static disorder leads to the localization of the particle.

The two distinct regimes in the density profile can be described by introducing two separate
lengthscales: the distance R(t) corresponds to crossover from exponential to diffusive
behavior, and ℓc(t) describes the slope of exponential decay. Using these lengthscales, the
dynamics of the density can be captured by the following ansatz,

n(x, t) ∝ exp
(︃

− |x|
ℓc(t) tanh

(︂
R(t)/|x|

)︂)︃, (4.21)

that smoothly interpolates between exponential and Gaussian decays for x < R(t) and
x > R(t) respectively.

The ansatz (4.21) can then be used to fit the numerical data and to obtain the behavior
of the two parameters ℓc(t) and R(t), shown in Figure 4.7(b)-(c). We observe that for the
static Hartree approximation, the decay length after a transient quickly saturates to the
corresponding localization length ξc shown in Figure 4.6. The extent of the exponential
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4.3. Strong coupling regime

decay region around the center, R(t), instead increases as a power-law, before its saturation
to half system size, meaning that the localized region extends over the whole chain. Later
in this work, we use the same ansatz to study the dynamics in the fully interacting system,
obtaining similar results, although interactions result in much more intricate dynamics.

Time-dependent Hartree approximation

The static Hartree approximation relies on the assumption of quick equilibration of the d-
boson density and overestimates localization in the system, as we shall demonstrate below
comparing with the results obtained in the previous Section. Here, we adopt a different
approximation: we assume that the full many-body wave function can be decomposed into
a product of c- and d-bosons wave functions respectively. Such representation completely
ignores entanglement between the two boson species. However, it allows performing fast
and efficient simulation of dynamics on long timescales for large systems. We note here
that similar approaches to the approximation of dynamics in MBL system have already
been used [204, 205], showing results qualitatively similar to what we present below.

The product state structure of the wave function of the full system allows to reduce the
full many-body Schrödinger equation to the simultaneous evolution of two non-interacting
but time dependent Hamiltonians. Specifically, the time evolution of c- and d-bosons is
governed by time-dependent Hamiltonians ĤdH

c (t) and Ĥ
dH
d (t) respectively:

Ĥ
dH
d (t) = td

L−1∑︂
i=1

(d̂†
i+1d̂i + h.c.) +

L∑︂
i=1

Vd,i(t)n̂d,i,

Vd,i(t) = ϵi + U⟨n̂c,i(t)⟩
(4.22)

Ĥ
dH
c (t) = tc

L−1∑︂
i=1

(ĉ†
i+1ĉi + h.c.) +

L∑︂
i=1

Vc,i(t)n̂c,i,

Vc,i(t) = U⟨n̂d,i(t)⟩,
(4.23)
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Figure 4.8: Evolution of the density profile of the clean boson in the dynamic Hartree
approximation has a clear diffusive behavior. The red line corresponds to the diffusive
“lightcone”, ⟨n̂c,x(t)⟩ =

√︂
t/0.02, obtained as a fit to the curve where ⟨n̂c,x(t)⟩ > 10−10.

The data is averaged over 400 disorder realizations, L = 90.
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4. Many-body localization proximity effect

Figure 4.9: Fluctuations of the c-boson density decay slightly faster than polynomially in
time. Inset shows that the saturation value of density fluctuations reached at late times
decreases monotonically with the system size as 1/Lb, with b ≈ 1.6. This data is obtained
averaging over 400 disorder realizations.

where the expectation value of densities of corresponding boson species reads ⟨n̂c/d,i(t)⟩ =⟨︂
ψc/d(t)

⃓⃓⃓
n̂c/d

⃓⃓⃓
ψc/d(t)

⟩︂
, and

⃓⃓⃓
ψc/d(t)

⟩︂
is the wave function obtained from the time-evolution

of the initial state (4.7) with the correspondent time-dependent Hamiltonian:
⃓⃓⃓
ψc/d(t)

⟩︂
= T̂ exp

(︃
− ı

∫︂ t

0
dt′Ĥ

dH
c/d(t′)

)︃ ⃓⃓⃓
ψ0
c/d

⟩︂
. (4.24)

Although the d-bosons formally are described by a many-body wave function due to
their finite density, one can exploit their non-interacting nature to perform an efficient
simulation of dynamics. In fact, as explained after Eq. (4.8), both the initial state and
the eigenstates can be written as product states. After rotating the orbitals into the real
space basis and back, the time-evolution reduces to a double sum over initially occupied
sites and orbitals. The d-bosons can, then, be treated separately as single particles, and
their overall wave-function can be reconstructed from the single-particle evolved states,
thus reducing the complexity from exponential to poly(L).

First, we study the dynamics of the c-boson, illustrated in Figure 4.8, where we plot
the density profile of the clean boson ⟨n̂c,x(t)⟩ as a function of distance from its initial
location, x = i− L/2, and time. We observe that in contrast to the case of static Hartree
approximation, where the c-boson spreads within an exponentially localized envelope
(see Section 4.3.2), the dynamic Hartree approximation results in a diffusive spreading
of c-boson and its complete delocalization over the entire system on a timescale t ∼ L2.
Once the c-boson spreads over the whole chain, it does not reach a steady state, which
can be attributed to the fact that this approximation oversimplifies the true many-body
character of the problem.

The fluctuations of the c-boson density result in a time-dependent potential acting on
disordered bosons, see Eq. (4.22). In order to quantify the density fluctuations of the
clean boson, we average the absolute value of the deviation of its density from the mean
value, δnc,i(t) = |⟨n̂c,i(t)⟩−⟨n̂c,i⟩|, where ⟨n̂c,i⟩ corresponds to the average over the interval
t ∈ [9.9 × 103, 104]. As shown in Figure 4.9, the density fluctuations around the initial
position of the c-boson decay in time, until they eventually reach a plateau. Note the long
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4.3. Strong coupling regime

timescale involved in reaching the saturation value, even for a relatively small system of
L = 30 this happens at times t ≳ 103.

The dynamics of the d-bosons can be intuitively understood as resulting from an Anderson
insulator globally coupled to a weak, non-Markovian, local noise. While it is known [205,
206, 207, 208, 209] that Anderson localization is unstable with respect to global noise,
a recent work [193] has demonstrated that coupling of an Anderson insulator to a local
Markovian white noise leads to a logarithmically slow particle transport and entanglement
growth. Our dynamics differs from that of Ref. [193] in that d-bosons are coupled to
fluctuations of the c-boson density globally throughout the entire length of the chain.
Another important difference is that the density fluctuations of the clean boson produce
a temporally and spatially correlated noise.

In Figure 4.10(a) we show the density profile of d-bosons at late times, T = 104, for
different system sizes L = 30, 60, and 90. Although the relaxation is strongest in the
middle of the chain, the memory of the initial density wave configuration survives even at
late times. To understand the dynamics of relaxation of the density profile, we consider
the imbalance I(t) [66]. The imbalance quantifies the memory of the initial state using the
difference in occupation among initially occupied and empty sites (No and Ne respectively),

I(t) = No(t) −Ne(t)
No(t) +Ne(t)

. (4.25)

For the initial period-3 density wave state considered here, the explicit form of No/e reads:

No =
L/3∑︂
i=1

n̂d,3i−2 , Ne = 1
2

L/3∑︂
i=1

(︃
n̂d,3i + n̂d,3i−1

)︃
. (4.26)

Figure 4.10(b) reveals that I(t) decays without any signs of saturation even at times
T = 104. As show in Ref. [210], the time-dependent Hartree approximation leads to
delocalization in the MBL phase, while it produces accurate results in the ergodic side of
the transition. After rescaling the time axis with a factor of 1/L2 we observe the collapse
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Figure 4.10: (a) The density profile of d−bosons at late time T = 104 retains memory
of the initial state. Comparing data for different system sizes, we observe that larger
systems keep stronger memory of the initial state. (b) Inset shows that the imbalance in
the middle of the chain follows an approximate power-law relaxation without any signs of
saturation at late times. The main panel reveals that imbalance dynamics collapses for
different system sizes after rescaling of the time axis by 1/L2. The averaging is performed
over 400 disorder realizations.
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4. Many-body localization proximity effect

of the data, which further supports the intuition that the delocalization observed in this
approximate approach is an artifact of the diffusive spreading of the c-boson. In fact,
although the imbalance is not a conserved quantity, its relaxation will happen at time
t ∝ L2. The decay of imbalance, after a plateau extending up to t ≈ 0.1L2 follows a
power-law scaling, I(t) ∼ (L2/t)β. The exponent β is obtained by fitting the behavior of
I(t) in a time window t ∈ [tmin(L), T ], with tmin = 2410, 5410, 6820 for L = 30, 60, 90
respectively to account for the different duration of the plateau. The power-law fit results
in β ≈ 0.4 as shown in the inset of Fig. 4.15(a). These results however show a significant
dependence on the system size, that we attribute to the boundary effects that influence
the spreading of the c-boson even at L = 90, as shown in Figure 4.8.

In summary, the dynamic Hartree approximation suggests a complete delocalization of
the clean particle, that is followed by the melting of the imbalance of disordered bosons.
This does not agree with our expectations from the criterion for stability of localization
obtained in Sec. 4.3.1, and also disagrees with the results of the TEBD dynamics presented
below. It is natural to attribute the delocalization observed here to the nature of dynamic
Hartree approximation, that completely neglects the many-body character of the problem
and discards the correlations between the two species of bosons. The inclusion of such
correlations is expected to lead to a more efficient relaxation of density fluctuations and
may stop the diffusive spreading of c-boson as we illustrate below.

MPS simulations and many-body localization proximity effect

After having approached the dynamics of the system using the static and time-dependent
Hartree approximation, leading to localization and thermalization respectively, we now
tackle the problem using the quasi-exact TEBD algorithm. As discussed in Section 4.3.2,
the choice of parameters of our simulation are such that, until saturation of the bond
dimension, the results obtained can be considered exact.

Localization of the clean boson We first analyze the dynamics of the c-boson
initialized at the center of the chain for strong interaction U = 12 so that Eq. (4.19)
is satisfied and we expect the c-boson to localize. Indeed, the density profiles ⟨nc,i(t)⟩
shown for different times in Fig. 4.11(a) have a clear exponential decay, characterized by
a time-dependent decay length ℓc(t). However, this behavior is limited to a region R(t)
beyond which we observe a Gaussian decay of the density [89]. The Gaussian density
profile could be interpreted as a signature of diffusive spreading within an exponentially
localized profile, and indeed R(t) grows approximately like

√
t [89]. At the same time,

the decay of the c-boson density away from its original position becomes exponential,
signaling localization. We notice that this behavior is akin to the one observed in the
static Hartree approximation (Sec. 4.3.2), hence an accurate description of the density
profile for the considered range of times is given by the ansatz

nc(x, t) ≈ Nc(t) exp
(︃

− |x|
ℓc(t) tanh

(︂
R(t)
|x|

)︂)︃, (4.27)

that depends on two parameters, ℓc(t) and R(t) and smoothly interpolates between an
exponential decay for x ≪ R(t), and a Gaussian decay with σ2 = ℓc(t)R(t) when instead
x ≫ R(t). Nc(t) is a normalization factor that depends on values of ℓc(t) and R(t). To
reduce the effect of the period-3 density wave structure originating from the initial state of
d-bosons, we coarse-grain the density over a unit cell of three sites ñc,i(t) = 1

3
∑︁i+3
j=i⟨n̂c,j(t)⟩
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4.3. Strong coupling regime

Figure 4.11: (a) The density profile of c-boson at different times reveals an exponential
decay with distance from its initial position within a region of size R(t) with decay length
ℓc(t), both changing with time. Color intensity corresponds to time from t = 0.4 (darkest)
to t = 200 (brightest). (b) Dynamics of the coarse-grained density ñc,i reveals saturation
and agrees reasonably well with the ansatz (4.27). (c) The decay length of c-boson
density profile extracted from fit to Eq. (4.27) shows a logarithmic increase for t ≥ 1 and
eventually saturates to a finite value. Dynamics of ℓc(t) agrees with ansatz (4.28) shown
by dashed line. The inset shows the saturation value of ℓc(t → ∞) extracted from fit
to ansatz that remains constant between different system sizes. The data shown here
are obtained averaging over Ndis = 50 disorder realizations for L = 30, 48, 60 and 5000
realizations for L = 15. Error bars correspond to standard deviation.

and fit its real-space profile to Eq. (4.27) to extract the time-dependent decay length and
R(t). Figure 4.11(b) shows that the prediction of the ansatz (dashed lines) is adequately
describing ñc(i, t). The dynamics of the coarse-grained density suggests that both R(t)
and ℓc(t) eventually saturate, confirming the localized nature of the c-boson due to the
MBL proximity effect.

In Figure 4.12 we compare the time-evolution of the density profile of the clean boson
with the ansatz of Eq. (4.27). While at early times ⟨n̂c,i(t)⟩ approximately agrees with
a diffusive profile extracted from time-dependent Hartree approximation (red line and
Fig. 4.8), at times of order one, the density spreading slows down. To describe the envelope
of the density profile, we use the fact that when R(t) saturates to L/2, the ansatz (4.27)
reduces to nc(x, t) ≈ e−|x|/ℓc(t). By imposing the condition nc(x, t) = const, we obtain the
scaling |x| ≈ ℓc(t) shown in Fig. 4.12 by the blue line, that provides a better description
for the envelope of the density profile.

The saturation of R(t) is due to the finite size of the system, which limits its growth to
L/2 [89]. On the other hand the behavior of the decay length is non-trivial. The plateaus
in ñc(i, t) and the slowdown of the growth of ℓc(t), arising around time t ≈ 10, suggest
a saturation of ℓc(t) to a finite value ξc = ℓc(t → ∞) that we take as a proxy for the
localization length of c-boson. In Figure 4.11(c) we observe a logarithmic growth of ℓc(t)
that saturates at longer times. In order to extract the saturation value of ℓc we fit its
time dependence to the following phenomenological ansatz,

ℓc(t) = ξc
log (1 + t/T0)

α + log (1 + t/T0)
, (4.28)

where parameter α affects crossover from ballistic growth to logarithmic dynamics and
T0 sets the timescale of saturation to towards ξc. The numerical results are in good
agreement with the fit to Eq. (4.28), shown as a black dashed line in Fig. 4.11(c), allowing
to extract the localization length, shown in the inset of Figure 4.11(c) for U = 12. The
localization length is constant in L within error bars, suggesting that the system remains
localized in the thermodynamic limit.
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4. Many-body localization proximity effect

Figure 4.13 considers the dynamics of decay length of the c-boson depending on the
interaction strength. As expected, we observe that weaker interactions lead to much faster
increase of ℓc(t), with its growth becoming faster than logarithmic between U = 2.5 and
U = 4. Moreover, the saturation value of decay length [inset of Fig. 4.13(a)] for U ≤ 4 is
larger than system size, indicating that the available system size is insufficient to determine
the fate of the c-boson at this interaction. As shown in [89], these values of interaction
strength should satisfy the criterion for localization (4.19), however, higher order effects
could enhance delocalization. In addition, we analyze the bipartite entanglement entropy
of system including c- and d-bosons S(i) = − tr ρi ln ρi, where ρi is the reduced density
matrix of the first i sites, at fixed time T = 130. The large values of S(L/2) for weak
interactions in Fig. 4.13(b) highlight the increasing complexity of simulations. In the
remainder of this Section we focus on analyzing the regime of U = 12. The study of
weaker interactions is instead analyzed in detail in Section 4.4

Localization of d-bosons We proceed with the characterization of the effect of the
c-boson on the localized d-bosons for large values of U . We study the memory of d-bosons
initial state in Fig. 4.14(a), where we show the density profiles at late time T = 200 for
system sizes L = 30, 48, 60. The ⟨nd,i⟩ curves immediately suggest that the time evolution
did not wash out the initial period-3 density wave structure, providing a clear sign of
absence of thermalization, at least on the timescales considered. We notice however an
enhanced relaxation close to the center of the chain. This is readily explained by the
interaction with the c-boson (i = L/2) localized in the central region of the chain.

Next, we consider the dynamics of imbalance of d-bosons, defined in Eq. (4.25) and shown
in Fig. 4.15(a). While TEBD and time-dependent Hartree approximation approximately
agree at times up to t ≈ 10, at later times the imbalance obtained from TEBD remains
approximately constant, while the time-dependent Hartree approximation predicts a
power-law decay of the imbalance. This is further highlighted by the exponent β obtained
from the fit of I(t) in the time window t ∈ [10, 200], shown in the inset, that is compatible
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Figure 4.12: The spreading of the c-boson density in the L = 60 system is well described
by the ansatz of Eq. (4.27) (blue curve), while it deviates from the diffusive behavior (red
curve).

78



4.3. Strong coupling regime

Figure 4.13: (a) Upon decreasing the interaction strength U the growth of decay length
ℓc(t) accelerates and its time dynamics becomes faster than logarithmic for U = 2.5. At
intermediate values of U the asymptotic value of ℓc(t) becomes larger than system size as
shown in inset. Dashed lines correspond to the fit to Eq.(4.28). (b) The entanglement
profile at time T = 130 rapidly increases with decreasing U and becomes concave for
U = 2.5. The deviations from phenomenology that predicts a convex behavior for the
entanglement profile imply potential thermalization. The data are for L = 30, Ndis = 50.

within error bars with value β = 0 for TEBD dynamics, which corresponds to non-decaying
imbalance.

In order to quantify the stronger relaxation close to the center of the chain, triggered by
the presence of the clean boson, we also study the local imbalance in the middle of the
chain, Imid(t) defined according to Eq. (4.25) but restraining the sum in Eq. (4.26) to the
six central sites. The quantity Imid(t) shows a stronger decay in Fig. 4.15(b) as compared
to its global counterpart in Fig. 4.15(a). However, again TEBD dynamics reveals a much
weaker effect of the c-boson compared to the Hartree approximation. Fitting the decay to
the power-law form, the resulting exponent remains small and it does not change with
system size (inset). Hence, we expect the effect on the central region to be system size
independent, thus leaving the boundaries unaffected as L → ∞.

Figure 4.14: (a) The density profiles at late times T = 200 show memory of initial state
of d-bosons. The c-boson leads to an additional small relaxation of density only near the
center of the chain. (b) The decay length of d-bosons also reveals logarithmic in time
dynamics and saturates even in the middle of the chain. Inset: the difference between
saturation values of ℓd(t → ∞, i) for U = 12 and U = 0 extracted from Eq. (4.28) shows
enhancement of the decay length in the central region compared to Anderson insulator.
Averaging is done over Ndis = 50 disorder realizations.
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4. Many-body localization proximity effect

Figure 4.15: (a) TEBD dynamics (blue line) reveals a broad plateau in imbalance at
late times, whereas time-dependent Hartree approximation (red line) predicts a power-
law decay. (b) The imbalance of central six sites in TEBD dynamics reveals a weak
power-law decay. The stronger deviation between TEBD and approximate time-dependent
Hartree data highlights the importance of entanglement for the accurate description of the
dynamics. Data is shown for L = 60 and averaged over 400 and 50 disorder realizations
for time-dependent Hartree and TEBD respectively.

As the density dynamics shows, the localized c-boson induces an effective interaction
between d-bosons that can be probed via the connected correlation functions

⟨nd,i(t)nd,j(t)⟩c = ⟨nd,i(t)nd,j(t)⟩ − ⟨nd,i(t)⟩⟨nd,j(t)⟩. (4.29)

The exponential decay of the absolute value of the disorder-averaged connected correlation
function with distance x,

|⟨nd,i−x/2(t)nd,i+x/2(t)⟩c|∼e−|x|/ℓd(t,i) (4.30)

allows to define a time and position dependent decay length of d-bosons, ℓd(t, i). In
Figure 4.14(b) we show the dynamics of ℓd(t) for the central site, i = L/2. Although
the value of ℓd is larger than the Anderson value (dashed colored lines), it remains close
to one lattice spacing even at late times and shows clear signs of saturation. We use
the asymptotic value of ℓd(t → ∞, i) at large times, obtained from the fit to Eq. (4.28)
(black dashed line), as a proxy for the d-bosons localization length, ξd(i). Given the
inhomogeneity of the system, we expect ℓd(t, i) to depend on the distance from the middle
of the chain. In the inset of Fig. 4.14(b) we show the profile of the difference of ξd(i) and
the localization length for the Anderson insulator, ∆ξd, that confirms that the effect of
the interaction is limited to the center of the chain.

Entanglement dynamics Finally, we study the dynamics of entanglement entropy.
In the MBL phase, entanglement growth is known to be logarithmic [55, 56, 57] while
it quickly saturates to a small value in the Anderson insulator. In our system, despite
the absence of interactions between d-bosons, entanglement entropy for different cuts
shows logarithmic growth in Fig. 4.16(a). However, the onset of this increase strongly
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Figure 4.16: (a) The logarithmic entanglement dynamics with the delayed start of the
growth away from the center is explained by the interactions triggered by c-boson. (b) The
entanglement profile at fixed times has linear growth with distance to the position of
c-boson, |i− L/2|. Dashed lines in both panels are prediction from Eq. (4.31). System
size is L = 60, Ndis = 50.

depends on the location within the chain. We attribute such entanglement dynamics to
the presence of the c-boson. While a single c-boson is incapable of producing more than
ln 2 entanglement, the non-zero c-boson density induces effective interactions between
d-bosons thus turning the former Anderson insulator into a genuine MBL phase.

Although the c-boson is eventually localized, its density is spreading throughout the chain
within an exponential envelope (see Fig. 4.11(b)) effectively triggering propagation of
MBL. Phenomenologically we describe the entanglement profile as

S(i, t) = SAI + ξS log
(︂
1 + Ueff(i− L/2, t)t

)︂
, (4.31)

which captures the logarithmic growth of entanglement in the MBL phase [55, 56, 57]
with an effective interaction strength Ueff(x, t) = Unc(x, t) set by the c-boson density from
Eq. (4.27). Eq. (4.31) predicts that far from the center (large |i− L/2|) the logarithmic
growth starts only when the many-body localization front xMBL(t) reaches the position
of the cut. The value of xMBL(t) obtained from the condition tUeff(x, t) ≈ 1 reads
xMBL ≈ ℓc(t) log

(︂
Nc(t)Ut

)︂
, where we used that at late times tanh(R(t)/|x|) ≈ 1. The

MBL front at first grows as the decay length ℓc(t) and continues to grow logarithmically,
even after the saturation of ℓc(t), eventually reaching the boundaries of the system.3
Comparison of the prediction of Eq. (4.31) with data in Fig. 4.16(a) shows good agreement.
Furthermore, from Eq.(4.31) the late time entanglement profile can be predicted to be
linear in |x|, with a slope given by −ξS/ℓc(t). This is supported by Fig. 4.16(b), where the
entanglement entropy decreases linearly with the distance from the center of the chain.
The linear decrease of the entanglement profile allows us to interpret the curvature of
entanglement profile at weak U in Fig. 4.13(b) as a breakdown of this picture, potentially
indicating delocalization.

3We note that in the thermodynamic limit the transition of the boundaries to MBL is not trivial and
depends on ξc.
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Figure 4.17: (a) The configuration entropy shows a steady logarithmic growth, whose
start is delayed as the cut gets farther from the center of the chain, due to the weaker
effect of the interaction at the boundaries. (b) The real space profile of the configuration
entropy is highly non-uniform, with entropy being maximal in the center of the chain,
where the c-boson is localized. Far from the center, SC(i) is close to zero, indicating the
absence of interactions in the boundaries up to late times. (c) The growth of number
entropy is similarly delayed with increasing distance from the center of the chain. It shows
slow growth, compatible with the weak relaxation of d-bosons observed in the imbalance
dynamics. (d) The number entropy also has a non-uniform profile, with its values far
from the center being consistent with the particle entropy of the Anderson insulator. This
data refer to a system of L = 60 sites, averaged over 50 disorder realizations.

Thanks to U(1) conservation, we can write the reduced density matrix of the first i sites
from the left, ρi, in block-diagonal form, ρi = ∑︁

n p
(n)
i ρ

(n)
i , where p(n)

i corresponds to the
weight of the n-particles sector, considering both c- and d-bosons, and trρ(n)

i = 1. It
is then convenient to separate the total entanglement entropy, S(i) = −trρi log ρi, in
two contributions: the configuration entanglement SC(i) and the particle entanglement
Sn(i) [68]

S(i) = Sn(i) + SC(i) (4.32)
SC(i) = −

∑︂
n

p
(n)
i trρ(n)

i log ρ(n)
i (4.33)

Sn(i) = −
∑︂
n

p
(n)
i log p(n)

i , (4.34)

where the two bosonic species are left indistinguishable.

The configuration entropy SC(i, t) arises from the superposition of different product
states in |ψ(t)⟩ and measures the correlation between particle configurations in the two
subsystems. The growths of configuration entropy can be attributed to the interacting
nature of the system. Thus configuration entropy does not show interesting dynamics in
the Anderson insulator, while displaying a logarithmic growth in the many-body localized
phase [68] providing the main contribution to the entanglement growth [55]. Particle

82



4.3. Strong coupling regime

−20 0 20
x

10−1

100

101

102

t

xMBL

`c

0.0

0.2

0.4

0.6

0.8

1.0

S
C

Figure 4.18: The configuration entropy SC(i, t) at U = 12 and L = 60, characterizing
the interacting nature of the system, presents an extremely inhomogeneous growth. In
agreement with the picture of propagation of MBL, its growth is constrained within the
“MBL light-front” xMBL(t) shown by the red line. When x ≫ xMBL, the configuration
entropy SC is close to zero, suggesting that system remains effectively non-interacting
until late times. For comparison we show also the behavior of ℓc(t), confirming that the
c-boson affects the system on a scale beyond its decay length.

number entanglement entropy Sn(i) arises from the occupation of different sub-sectors of
the density matrix ρi and hence accounts for the particle transport in the system. Recent
studies [179, 211] suggested an extremely slow, albeit finite, growth Sn(i, t) ∼ log log t,
which they attributed to slow particle transport. Subsequent work by [180] however
suggested absence of such transport and saturating particle number entanglement.

The dynamics of the two contributions to the entanglement in our model is presented in
Figure 4.17, where the first row shows the configuration entanglement growth for different
cuts in the chain (a) and its profile at different times (b). In the second row, we show
the dynamics of particle number entanglement. Similarly to the configuration entropy,
Sn(i, t) has a non-homogeneous growth across the system shown in Fig. 4.17(c)-(d).

Separating entanglement S(i) into configurational and particle part, it is clear that the
logarithmic growth is due to the configuration entropy, SC(i) ∼ ξS log(t), as clearly
shown in Figure 4.17(a). The configuration entanglement growth has a non-homogeneous
behavior in the system, explained by the propagation of MBL phenomenology discussed
above. Using the effective interaction Ueff previously introduced, the dynamics of SC(i)
can be described by the ansatz SC(i, t) ≈ ξS log(1 + Ueff(i, t)t). This explains the delayed
onset of the growth of configurational entropy in Fig. 4.17(a) away from the center of
the chain. Similarly to the full entanglement entropy, a linearly decreasing entanglement
profile away from the center of the chain is predicted, with the following asymptotic
behavior of the configurational entanglement

SC(i, t ≫ 1) ∼ const − ξS
ℓc(t)

|i− L/2|. (4.35)

This prediction is confirmed by the numerical results shown in Fig. 4.17(b), yielding the
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4. Many-body localization proximity effect

value of ξS ≈ 0.31.

According to the effective interaction picture describing the propagation of MBL, the
interacting nature spreads through the system producing a many-body localization front
xMBL(t)4. As shown in Figure 4.18, the prediction of the MBL lightcone (red curve)
provides an accurate description of the actual behavior of the spread of configuration
entropy, thus testing the genuine propagation of the many-body nature through the chain.

4.3.3 Probing eigenstates with DMRG-X
As shown throughout the previous Section, TEBD allowed the accurate simulation of
dynamics for large systems. However, the maximal time is limited by entanglement
growth, and the fate of the system at late times remains open to interpretation. Below
we use the DMRG-X algorithm [110, 111, 112] to probe eigenstates of large systems,
providing an effective insight into the infinite time behavior.

c- and d-boson localization

We extract highly excited eigenstates of the Hamiltonian (4.4) with L = 30 and 60 sites,
U = 12 and 1/3 filling of d-bosons. We obtain in total 250 (500) eigenstates in the
middle of the spectrum by targeting 25 different energies for each of the 10 (20) disorder
realizations considered for L = 30 (60) chain respectively. 5 The states are obtained as

Figure 4.19: The density profile of the c-boson averaged over different eigenstates as
a function of the distance from localization center imax shows an exponential decay for
both the system sizes considered. Through a fit to the density in different regions we
obtain an upper and lower bound for the localization length, with ξlow

c ≈ 2.1 (red dashed
line) corresponding to the fit excluding the central site and ξup

c ≈ 3 (black dashed line)
obtained from the fit that exclude 12 central sites.

4In the thermodynamic limit there might be the possibility of the boundaries of the system remaining
Anderson localized. For a system of size L, the time on which the edges of the system see interactions
and become MBL reads tMBL ≈ eL/(2ξc). Comparison of the Heisenberg time, tH ≈ ecL, with c given by
log 3

22/3 , with tMBL then suggests that true propagation of MBL takes place whenever the localization
length of clean particles measured in units of lattice spacing is ξc > 1/2c ≈ 0.58.

5We note, that the first 10 disorder realizations for L = 60 system are chosen in such a way that the
values of the random energies of the 30 central sites agree with those for L = 30 system. Such choice of
disorder is motivated by possibility of direct comparison with the data from smaller system sizes.
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a result of 100 sweeps where the targeted eigenstate is variationally approximated by
an MPS of maximum bond dimension χ = 500 and 250 for systems of size 30 and 60,
respectively. The algorithm is initialized with different copies of the initial state (4.7),
where the c-boson initial position is chosen among empty sites in the central region. We
refer the reader to Appendix C.2 for details on the implementation of the algorithm as
well as its performance metrics.

For each of the eigenstates we extract the position where the c-boson density is maximal,
imax. This position may be viewed as a localization center of c-boson. When averaging
over different eigenstates, the distances are measured with respect to the localization
center imax. For instance, density is calculated as a function of i− imax for each individual
disorder realization and then resulting function is averaged over disorder. The average
c-boson density plotted as a function of the distance from its peak presents an exponential
profile, as shown in Fig. 4.19. We notice that the density profile around the peak is
enhanced with respect to the tails, which can be potentially attributed to the large
value of U producing stable doublons. The exponentially decaying density confirms the
localization of the clean particle and allows us to extract the upper and lower bound on
the localization length, ξlow

c ≈ 2.1 and ξup
c ≈ 3 resulting from fitting its profile close to

the center (excluding the central site) and at the edges of the chain. The two bounds
quantitatively agree with the lengthscale ℓc(t → ∞) = ξc = 2.5 extrapolated from TEBD
dynamics in Section 4.3.2 suggesting that the localization of the c-boson observed in
dynamics is not a transient effect, but it is a property of the system, provided the correct
sector of the Hilbert space is explored.

Probing potential localization of d-bosons in eigenstates is more complicated: the finite
particle density does not allow to define a localization center. Therefore, we consider the
average deviations of the d-bosons density from the thermal value given by their average
density νd = 1/3 as a function of the distance from imax. In Figure 4.20, we show the
averaged absolute value of the deviation of the density expectation value from νd, which
is limited to the range of values 0 < ⟨|n̂d,i − ν|⟩ < 1 − νd. While in a thermalizing system
we expect this quantity to be small and decrease exponentially with the system size, the
eigenstates of our problem have on average large expectation value of ⟨|n̂d,i − ν|⟩. In

Figure 4.20: Strong deviation of the d-bosons density away from the thermal value νd = 1/3
consistent between different system sizes indicates the breakdown of thermalization in
eigenstates.
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4. Many-body localization proximity effect

addition, increasing the system size does not lead to a decrease of the average distance
from the thermal value, thus suggesting that the d-bosons density strongly fluctuates
around νd in eigenstates due to their localization. Interestingly, we notice a slight peak
of this quantity at i = imax, which is in agreement with the enhancement of the c-boson
density observed in Fig. 4.19 and may be attributed to the effect of doublons. In the region
around the center, however, we observe a slight weakening of localization, corresponding
to smaller values of ⟨|n̂d,i − ν|⟩. This can be attributed to the fact that in the vicinity of
the peak of the c-boson, the interactions are effectively stronger, leading to an increased
relaxation of the d-bosons.
Further evidence of localization for both types of particles is found in the spectrum of
the single-particle correlation matrices Cij = (1/Nc)⟨ĉ†

i ĉj⟩ (Dij = (1/Nd)⟨d̂
†
i d̂j⟩) [76, 212].

In the particular case treated here, the von Neumann entropy of C corresponds to the
intra-species entanglement Scd = − trC logC. We study its distribution and average
value among eigenstates, obtaining average entropy of Scd ≈ 0.85 for both system sizes.
Furthermore, the eigenvalues of C(D), wc,i(wd,i), sorted by decreasing value, can be
interpreted as occupation numbers of single-particle orbitals [76, 212]. In the case of an
MBL system, it is expected that particles sit on almost localized sites, hence only the
first Nc/d orbitals should be significantly occupied. In Figure 4.21 we show the average,
⟨·⟩, and log-average, x = e⟨lnx⟩, value of the ordered eigenvalues for D and C respectively.
The scaling of Nd⟨wd,i⟩ exhibits a step behavior with the value of ⟨wd,i⟩ dropping to zero
for i > Nd, consistent with the localization of the d-bosons. Similarly, the typical value
wc,i presents a single large eigenvalue, while the rest decay exponentially.

Figure 4.21: The spectrum of D shows a step behavior, dropping quickly to small values
at i/L = νd = 1/3 (dashed line). This corresponds to the presence of Nd occupied
single-particle orbitals, thus confirming localization. Here we show the spectrum of D
multiplied by the total number of particles Nd to highlight the similarity between the two
system sizes. We note that Ndwd,i > 1 is due to the bosonic nature of these particles.
The inset shows the log-averaged spectrum of C on a logarithmic scale, revealing that
there is a single significantly occupied orbital, while all the others have an exponentially
decaying weight.

Entanglement structure of eigenstates

In Figure 4.22(a) we show the bipartite entanglement profile averaged as a function of the
position of the cut i. While the entanglement profile of eigenstates suggests an area-law

86



4.4. Weak coupling regime

Figure 4.22: (a) Average entanglement as a function of the cut position results in a
featureless profile. The agreement in entanglement between different system sizes where
they overlap is due to particular disorder choice. (b) Averaging the entanglement profile
as a function of the distance from the center of localization of c-boson, imax, shows
enhancement in entanglement caused by the presence of the clean boson. The dashed line
shows the comparison to an exponential fit. The collapse of entanglement profile between
different system sizes suggests area-law entanglement scaling.

entanglement scaling characteristic of many-body localization [56, 79], this representation
of data does not show any effect from the presence of the clean boson. To observe the
influence of the c-boson, we average the entanglement profile defined with respect to
the distance from the localization site of the c-boson, i − imax. Figure 4.22(b) reveals
a peak in S(i − imax) around zero, indicating that the clean boson is responsible for
additional entanglement in eigenstates. Away from imax entanglement saturates to a
constant value, revealing a clear area-law scaling. Fitting the decay of entanglement away
from the center with an exponential of the type S0 + ce−|i−imax|/ζS allows to extract the
value of ζS ≈ 4, suggesting that the single c-boson is capable of generating non-trivial
entanglement patterns on a scale larger than its localization length. This is due to the
fact that entanglement entropy is a very sensitive measure of the interacting nature of
the system, hence even a small coupling introduced at i > ξc produces an enhancement in
entanglement.

The increase in entanglement of eigenstates that decays exponentially with the distance
away from the location of c-boson provides further support to the localized nature
of eigenstates. Moreover, this provides a complementary view on the picture of the
inhomogeneous effective interaction triggered by the presence of c-boson and resulting in
the dynamical “propagation of MBL” presented in [65] and in Section 4.3.2 of this thesis.

4.4 Weak coupling regime
As we already showed in the previous Section, at strong interactions the disordered bosons
induce localization of the small bath. Here we address the presence of a transition to
thermal phase as the interaction strength is decreased, using both quasi-exact large scale
numerical simulations and analytical considerations.

4.4.1 Delocalization of clean boson
Using the highly efficient parallel implementation of the time-evolving block decimation
(TEBD) algorithm [114] with large bond dimension χ = 5000 and small truncation error
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4. Many-body localization proximity effect

ε = 10−9, we simulate the dynamics generated by the Hamiltonian (4.4) in large systems
of L = 252 sites. This choice of parameters, together with the fourth order Suzuki-Trotter
decomposition with small time-step used, guarantees almost exact numerical results up
to the times when bond dimension saturates. We further explore Floquet dynamics of
matrix product states of maximal bond dimension χ = 2048 and systems with up to
L = 2000 sites. The large system sizes studied and the long timescales achieved in our
work allow to exclude boundary effects due to the finite size of the system and achieve
high entanglement regime. As we shall demonstrate below, this is particularly important
in the weak interaction case due to delocalization and spreading of the clean boson to
large distances.

In both the Hamiltonian and Floquet case, we focus on the dynamics of an initial product
state corresponding to a d-bosons density wave of period 1/νd = 3 and a single clean
boson initialized in the middle of the system at site i = L/2, as explained in Section 4.2

Diffusive behavior of the bath at weak interaction

We analyze the behavior of the clean particle that constitutes the bath by studying the
evolution of its density profile ⟨n̂c,i(t)⟩ = ⟨ψ(t)| n̂c,i |ψ(t)⟩ with time. In the localized
and ergodic phases, the bath spreading is expected to show very different characteristic
properties. When the c-boson gets localized through the MBL proximity effect, the density
profile decays exponentially away from the initial position and localization lengths is
expected to saturate at long times. In contrast, when the MBL proximity effect fails to
localize the bath, the clean boson is expected to spread diffusively due to the influence of
the disordered system, hence showing a Gaussian density profile with the density at the
original site decaying as ∝ 1/

√
t.

To characterize the dynamics of the c-boson, we perform collapses of its density profile at
different times, using the following scaling form:

⟨n̂c,i(t)⟩ = t−αf
(︃
i− L/2
tα

)︃
. (4.36)

The value of the exponent α(U) can be thought as a proxy for the inverse dynamical
exponent and is used to distinguish the diffusive and localized behavior of the bath. These
density profile collapses are shown in Figure 4.23(a)-(b) for Floquet dynamics and in
Figure 4.23(e)-(f) for Hamiltonian evolution. At weak interaction strength U , the value of
α ≈ 0.5 in both Hamiltonian and Floquet cases suggests a delocalized bath. At strong U ,
instead, in the Floquet case the small exponent α ≈ 0 highlights the saturation of the
c-boson spreading, thus confirming the MBL proximity effect already observed at stronger
interactions in the previous Section. In the Hamiltonian time-evolution, however, the
exponent α attains a larger value, that can be ascribed to the shorter times achieved in
this regime. Indeed, comparison with the collapse in the corresponding time-window of
the Floquet evolution results in good agreement of the value of α as shown in Fig. 4.23(c),
suggesting that at later times the exponent will eventually decay also in the Hamiltonian
case.

In addition to different values of α obtained from the rescaling, the density profiles of clean
boson in Figure 4.23(a)-(b) and (e)-(f) also have a qualitatively different form. In the
delocalized phase, the boson density shows a characteristic Gaussian profile, as opposed
to the exponential decay at strong interactions.
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Figure 4.23: Top row: Floquet dynamics. (a) At U = 1 the density profiles at long times
150 ≤ t ≤ 200 collapse when rescaling the space axis by

√
t indicating diffusive behavior

of the c-boson. (b) At U = 6, a similar collapse of the density profile is obtained with a
much smaller exponent α = 0.03, a value that could be consistent with zero suggesting
localization. (c) The exponent α(U) as a function of interaction strength U shows that
diffusive spreading of c-bosons at weak interactions α ≈ 1/2 slows down and it becomes
localized at strong U as is witnessed by α → 0. Color indicates the time range used
to obtain the exponent, range of accessible times is limited at weak U by entanglement
growth. (d) Decay of the c-boson density at its original site i = L/2 is consistent with
1/

√
t (black dashed line) in the delocalized phase, and it shows signatures of saturation at

strong interaction U ≥ 4. Bottom row shows similar data but for Hamiltonian dynamics
limited to shorter times. (e) Hamiltonian dynamics show a similar behavior indicating
diffusion of the c-boson at weak interaction. (f) At larger U , density profiles collapse with
a larger exponent α than in the Floquet case. This can be attributed to the shorter times
achieved in Hamiltonian dynamics, as Floquet dynamics shows comparable values of α
at earlier times, see panels (g)-(h). System size is L = 252, data are averaged over 10
disorder realizations.

The study of the exponent α at different times and as a function of U is presented in
Figure 4.23(c) and (g). Saturation towards α = 1/2 is observed at U < 2, and is especially
apparent for Floquet evolution. For Hamiltonian dynamics the values of the exponent
remains close to α = 1 at times t ≈ 150. This suggests that a much longer time evolution
is needed to see the crossover to diffusion. In contrast, for U ≥ 2.5 the value of α decreases
with increasing evolution time. This suggests that a transition from delocalization to
localization occurs in the window of interaction strengths 1 ≲ U ≲ 2.5. Due to the fast
entanglement growth observed in it, this critical region is also the most challenging to
treat numerically, thus preventing a more accurate estimate of the transition point. The
transition in the behavior of the bath can also be captured by the different dynamics of
the central site density decaying as ≈ 1/

√
t in the delocalized case and saturating to a

finite value at strong U , as shown in Fig. 4.23(d) and (h). Note, that the saturation of the
density in the Floquet dynamics for U = 2 in Fig. 4.23(d) at long times may suggest that
the bath localized at this interaction strength. The range of times in the Hamiltonian
dynamics is insufficient to decide on the fate of the system. Finally, in Appendix C.3.2
we provide further evidence of the c-boson transition by showing a diverging decay length
at U < 2.
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4. Many-body localization proximity effect

Slow delocalization of disordered bosons

Due to the small bath size, changing the interaction strength U has a much weaker
influence on the density profiles of d-bosons. Indeed, comparing the density profiles and
the imbalance at different values of U naïvely suggests that the disordered particles remain
localized throughout all the values of interaction strengths, at least on the accessible
timescales. A deeper investigation of more sensitive probes, provided by the entanglement
entropy and the connected correlation functions of d-bosons, however, reveals the existence
of two contrasting behaviors at weak and strong U .

As shown in Appendix C.3.3, the global half-chain entanglement entropy grows al-
gebraically for weak values of the interaction, characterized by a universal behavior
SL/2(t) ∝ (tUβ)γ, with γ ≈ 0.39 and β ≈ 1.1 in the Floquet case. In the Hamiltonian
case a qualitatively similar picture holds, although the value of β suddenly drops to
≈ 0.6 as U > 1. This deviation from the logarithmic growth of the entanglement entropy
indicates that the system cannot be fully localized. The analysis of the entanglement
profile provides further evidence in favor of delocalization, as its growth is not limited to
the central part of the chain, but it propagates to regions far from the initial position of
the clean particle. The emergence of large regions where entanglement grows fast can
then be a possible mechanism destabilizing localization [62].

To further probe the behavior of the d-bosons, we analyze their density-density connected
correlations

⟨n̂d,in̂d,j⟩c = ⟨n̂d,in̂d,j⟩ − ⟨n̂d,i⟩⟨n̂d,j⟩, (4.37)

shown in Figure 4.24 (Floquet (a)-(c), Hamiltonian (d)-(f)) as a function of the distance
from the center and at different times. At weak interactions below the transition U < Uc,
the connected correlations present a slow 1/i decay in space (black dashed line) and
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Figure 4.24: Density-density connected correlation functions for d-bosons in Floquet (a)-(c)
and Hamiltonian (d)-(f) time evolution. At weak interactions, (a) and (d), correlations
decay algebraically with distance, consistent with 1/i dependence (black dashed line).
Such algebraic decay of connected correlation functions suggests delocalization of d-bosons
on long timescales. As U is increased, however, the localized behavior is eventually
recovered, and panels (b)-(c) and (e)-(f) show exponentially decaying correlation functions
for U = 4. We notice the emergence of a plateau far from i = L/2 in the Floquet case,
which is due to the truncation error arising from the faster saturation of bond dimension
in this type of time-evolution.
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4.4. Weak coupling regime

spread in time to regions far from the center, confirming the slow delocalization of the d-
bosons. On the other hand, in the MBL proximity effect phase, density correlations decay
exponentially, with a decay length slowly increasing in time and eventually saturating,
as highlighted by the collapse of the curves at late times. For values of U ≥ 4 we notice
that the decay length of the d-bosons correlations, ℓd(t), seems to saturate to a value
comparable with the lengthscale of the exponential suppression of the c-boson density,
ℓc(t). The saturation value of ℓc,d ≈ 5 obtained for U = 4, is much smaller compared to
the simulated system size, thus confirming the localization of c and d-bosons.

In conclusion, our large scale numerical simulations reveal two qualitatively different
behaviors in the system at large and weak interaction strengths. Such distinction would
be hard to make in smaller systems where the finite size affects the spreading of both
particle types. In the regime of large U , both boson species are localized. At weak U ,
while we observe a spreading of c-bosons over the distances comparable to hundreds of
lattice sites, the dynamics of d-bosons is much slower, and we are unable to decide their
fate despite reaching long times t ≥ 200 in our simulations.

4.4.2 Estimate for the critical coupling from mapping to Bethe
lattice

After identifying numerically the existence of two different phases, we construct a phe-
nomenological picture of the transition that allows to obtain analytical estimates. To
analyze the behavior of our model in the weak interaction regime, we first consider the
Hartree picture presented in Sec 4.3.1, where both the bath and the d-bosons are localized
with localization length ξc ≫ ξd at weak coupling. As explained in Section 4.3.1 the
interaction in the Anderson orbitals basis corresponds to simultaneous c- and d-bosons
hopping among different localized orbitals

U
∑︂
i

n̂c,in̂d,i =
∑︂
αβγδ

V γδ
αβ d̂

†
αd̂β ĉ

†
γ ĉδ. (4.38)

In particular, we focus on the motion of the clean boson comprising the quantum bath.
The hopping between different orbitals, arising from the interaction term in Eq. (4.38) can
be depicted on a graph representing the Fock space. Each node in this graph corresponds
to a certain filling of localized orbitals, and edges connect different configurations with the
matrix element obtained from Eq. (4.38). While long-range hoppings are allowed, they
are exponentially suppressed due to the localization of both particle species in the Hartree
limit. Therefore, neglecting the edges connecting configurations where the particles move
farther than their localization length, we approximate the full Fock space as a graph of
connectivity K ≈ ξ2

c ξdνd(1 − νd), where the νd(1 − νd) term accounts for the finite density
of d-bosons and their hard-core nature as derived in Section 4.3.1.

A second, crucial, approximation corresponds to neglecting all loops in the graph, resulting
in a Bethe lattice with coordination number K, as shown pictorially in Figure 4.25 for
K = 4. In this graph we distinguish two types of hopping processes for the clean boson,
elastic and inelastic. In elastic hoppings, the c-boson moves without changing the pattern
of occupation of d-bosons orbitals, i.e. α = β in Eq. (4.38). These processes, depicted
by solid arrows in Figure 4.25, correspond to the motion of the clean-particle in the
random environment created by the d-bosons. Alternatively, the c-boson motion can
simultaneously produce a scattering of d-boson from one orbital to another. We refer
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4. Many-body localization proximity effect

Figure 4.25: Schematic representation of the Bethe lattice, where a small K = 4 is chosen
for clarity. Each node represents a different boson configuration in Fock space. Elastic
scattering (horizontal edges) connects nodes where only the c-boson moves with a hopping
amplitude V . The simultaneous hopping of clean and disordered bosons, instead, gives
rise to inelastic processes (vertical edges) with amplitude V ′.

to this second type of processes as inelastic and represent them as dashed arrows in
Figure 4.25.

A phenomenological mapping of the motion of the c-boson to a finite coordination number
Bethe lattice allows us to use the results of [213] and obtain a condition for the stability
of localization. The stability of the localized phase is controlled by the interplay of the
disorder strength on the lattice W, the connectivity, K, and the matrix element of the
hopping processes, V . Ref. [213] derives a trascendental equation for the critical value
of the matrix element Vc, 2KeVc

W log
(︂

W
2Vc

)︂
= 1, such that the localized phase is stable for

V < Vc. To apply this result to our model, we estimate the typical matrix element V ,
the disorder strength W and the connectivity K. In order to establish the typical matrix
element V , we first consider its approximate expression

V γδ
αβ ≈ U

ξcξd

∑︂
i

e
−

|i−xα|+|i−xβ |
ξd e− |i−xγ |+|i−xδ |

ξc , (4.39)

where we replace the orbital-specific localization length with its average and neglect the
oscillatory part of the wave function. In Appendix C.3.4, we estimate the typical value
of V , which in the case of ξc ≫ ξd ≈ 1 can be approximated as V ≈ U/(2ξd). Finally,
using the estimate for the connectivity K ≈ ξ2

c ξdνd(1 − νd), we can estimate the transition
solving numerically the equation for the critical hopping amplitude on the Bethe lattice
at fixed tc = td = 1 and W = 6.5. In the Hartree approximation the effective disorder
results from the interaction with the d-bosons, and it is thus proportional to the coupling
strength, W ∝ U . Also, the localization length of the c-boson scales as ξc ∝ U−2, as
shown in the previous Section. Thus, the decrease of the hopping amplitude at weak U
is counteracted by a larger effective connectivity and weaker effective disorder, leading
to instability of localization below a certain critical value of interaction strength. The
numerical estimate suggests that in this parameter range, localization becomes unstable
at a critical value of the coupling Uc ≈ 3, in good agreement with the transition window
inferred from the numerical results of Section 4.4.1.
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In summary, the phenomenological mapping of the hopping of the single clean boson to
the Bethe lattice discussed above predicts an instability of localization at sufficiently weak
interactions U in agreement with our numerical simulations. The present approach differs
from the method used in Section 4.3.1, where the ratio of the typical matrix element to
the level spacing was used as a criterion for delocalization. While the resulting critical
curves are qualitatively similar, we expect the current mapping to the Bethe lattice to be
more accurate in the weak coupling regime. Indeed, in the present work we focus primarily
on the behavior of the c-boson in the case of ξc ≫ ξd ≈ 1, where the problem can be
interpreted as a weakly localized single particle occasionally perturbed by the inelastic
scattering of d-bosons. Additionally, considering the motion of the c-boson in the Bethe
lattice gives an intuitive explanation of the diffusive behavior observed in Section 4.4.1.
In the standard picture of single particle localization on the Bethe lattice, the motion
of the particle in the delocalized phase is ballistic, since the majority of steps increase
the distance of the particle to the origin. In contrast, our mapping naturally reproduces
diffusion in the delocalized phase, since at each point half of the hopping processes
move the c-boson to the left, and the remaining half moves it to the right, see Fig. 4.25.
Understanding if the present phenomenological mapping to the Bethe lattice is capable
of reproducing other aspects of numerical simulations, such as entanglement dynamics
or very slow relaxation of d-bosons in the delocalized phase remains an interesting open
question.

4.5 Extensive bath
In the previous Section we provided evidence of a transition between regimes of localized
and delocalized small bath, tuned by the interaction strength, U . In this Section we
study the effect of increasing the density of c-bosons that constitute the bath to a finite
value. First, in Subsec. 4.5.1 we consider the case when the density of c-bosons is close to
half-filling, and investigate the transport of bosons. Afterwards, we study the regime of
finite but small density of clean bosons in Section 4.5.2.

4.5.1 Large particle density in the bath and charge transport
We first approach the regime where the clean-particles composing the bath have a large
overall density νc ≥ 1/5. In this regime we expect that the bath triggers delocalization
of the d-bosons. To characterize the resulting delocalized phase, we study the transport
of bosons using the time-evolution of density matrices close to infinite temperature
represented as MPOs. This has several advantages over simulating states directly, which
we discuss in Appendix C.4.

Following a well-established approach [156], we initialize the system in a density matrix
characterized by a small step in the center of the particle density profile. Figure 4.26
illustrates such an initial density profile, with density in the left (right) part of the chain
being set to νc/d ± µc/d. This condition translates to an initial density matrix written as a
tensor product of density matrices on individual sites. The density matrix of individual
site of c-bosons (and analogously, d-bosons) can be written as

ρ(i)
c =

(︄
1 − νc − µc(i) 0

0 νc + µc(i)

)︄
, (4.40)
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Figure 4.26: Density profile of disordered and clean bosons at late (solid lines) and initial
(dashed lines) times. The small density step of magnitude 2µ slowly melts due to the
particle current running from the left to the right part of the chain. Data are averaged
over 30 disorder realizations, other parameters of numerical simulation are specified in
the main text.

where µc(i) = ±0.01 in the left and right half respectively. Since the time-evolution of
density matrices represented as MPOs is most efficient when they are close to infinite
temperature, we fix the d-bosons density to be νd = 1/2. We then apply operator
TEBD to large chains of L = 100 sites up to times T = 300, using a maximal bond
dimension in the range χ ∈ [128, 192], depending on the convergence of the results, shown
in Appendix C.4.1.

To characterize particle transport, we study the evolution of the transferred particle
number, δnd/c(t), defined as a difference between the density profile at zero time and time
t, ⟨n̂d/c,i(t)⟩,

δnd/c(t) =
L/2∑︂
i=1

[︂
⟨n̂d/c,i(0)⟩ − ⟨n̂d/c,i(t)⟩

]︂
. (4.41)

The change of density with time corresponds to the current across the central site,
integrated over time, thus quantifying the transport of particles. In particular, the
logarithmic derivative of δnc/d with respect to time can be related to the instantaneous
inverse dynamical exponent 1/z(t),

1
z(t) = d ln δn(t)

d ln t . (4.42)

We study the particle flow as a function of interaction strength U and density of particles
in the bath, νc. As we show in Figure 4.27, δnc/d(t) at times larger than t ≥ 10 has
a clear power-law behavior for both particle species, confirming the delocalization of
the originally Anderson localized d-bosons due to the coupling to the bath. However,
the fact that d-bosons without coupling to the bath are localized, is reflected by the
qualitatively different behavior of the transported number of particles with changing U
apparent in Fig. 4.27(a)-(b). With increasing interaction strength, the c-bosons exhibit
slower transport, whereas the d-bosons are characterized by faster transport.
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Figure 4.27: (a)-(b) Dynamics of the particles flow across the central site for d and
c-bosons at large νc = 1/2, and νd = 1/2, W = 6.5. In both cases δn(t) shows a clear
power-law behavior close to diffusion ≈

√
t (dashed line). However, while for the c-bosons

δnc increases as the interaction strength decreases, in agreement with their free nature
at U = 0, for the disordered particles the opposite behavior is observed. (c)-(f) Inverse
dynamical exponent of d-bosons 1/zd(t) and c-bosons 1/zc(t) for different values of the
bath size νc = 1/2 (c),(e) and νc = 1/3 (d)-(f). At large U , 1/zd(t) saturates to a diffusive
value zd = 2 for both clean particle densities. As U is decreased and the Anderson
localized phase is approached, however, d-boson transport shows signatures of subdiffusive
behavior. On the other hand, c-boson transport is almost unaffected by the coupling
strength, always showing diffusive behavior, except for U = 1. In this case 1/zc vanishes
at late times due to the finite size of the system, thus requiring larger systems to properly
evaluate the dynamical exponent.

In Figure 4.27(c)-(f), we show the instantaneous dynamical exponent zc/d(t) extracted
using Eq. (4.42). We report results for two different particle densities in the bath, νc = 1/2
in panels (c)-(e) and νc = 1/3 in panels (d)-(f), at different coupling strengths U . Panels
(e)-(f) show that the transport features of the bath are unaffected by the variation of the
bath particle density and interaction strength, U , with 1/zc(t) always rapidly converging
to a value of 1/zc ≈ 1/2 at late times. Note, that at U = 1 and νc = 1/2 the transport of
c-bosons is affected by the boundaries, as highlighted by the slowdown of the growth of
δnc(t) shown in panel (b), thus requiring larger systems to properly assess its value.

In contrast to the c-bosons, the transport of the disordered bosons is more sensitive to
the choice of the parameters. In particular, the value of the inverse dynamical exponent
systematically decreases as the interaction strength and the density of particles in the
bath are lowered, as indicated by the weakly subdiffusive behavior observed for U ≤ 2.
This slight subdiffusive behavior, however, is in contrast with previous results showing
strong subdiffusion in a wide parameter range in the vicinity of the transition in the
ergodic phase of disordered Hamiltonians [198, 199, 214].

In order to highlight the difference between transport observed in the present model to
standard many-body localized systems, we investigate transport in the the disordered
Heisenberg chain [52, 53]. In the two-species Hubbard model considered here interactions
and hopping are of the same order, while disorder is larger and fixed to W = 6.5. Inspired
by these values of parameters, we consider the disordered Heisenberg chain with fixed
disorder W = 6.5 and hopping J = 1 . We use interaction strength as a control parameter
to tune delolcalization. Indeed, at weak values of Jz ≤ 1 the model is allegedly localized,
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whereas for larger Jz delocalization is expected.

Using density matrix simulation of the Heisenberg chain, as shown in Appendix C.4.2, we
first confirm that the inverse dynamical exponent 1/z(t) decreases with increasing time
at small values of Jz, consistent with localization. For larger values of Jz we observe a
reversal of this trend, with 1/z(t) increasing with time. Nevertheless, even for longest
accessible times 100 ≤ t ≤ 250 and for the considered broad range of Jz = 1.5 . . . 10, the
value of 1/z(t) remains well below one half. This is consistent with previous numerical
studies [198, 199, 214] that suggested the presence of a broad subdiffusive regime even for
parameter values for which the model is deep into the delocalized phase. Since interaction,
disorder strength and hopping are comparable in the two Hamiltonians, this result suggests
that the presence of the bath in our model cannot simply be replaced by an effective
local interaction. Intuitively, the rapid onset of diffusion for the disordered bosons in
the present model may be attributed to an effective long-range coupling among them,
mediated via the particles in the quantum bath, thus providing a faster transport channel.
Quantifying such emergent long-range interaction via specific observables that can be
probed in TEBD time evolution remains an interesting avenue for the future work.

4.5.2 Potential delocalization at small particle density in the
bath

The ergodic behavior observed in the previous Section suggests the presence of a transition
as function of the bath size. In order to capture this transition, we explore the parameter
space close to the MBL phase, fixing U = 6 and slowly increasing the bath size νc =
1/24, 1/12 . . . 1/6.

As the clean particle density decreases, density matrices as Eq. (4.40) are too far from
infinite temperature and give rise to large operator entanglement, thus becoming inefficient.
We hence again use MPS time-evolution, which can still capture the dynamics of the
system, although the timescales may be limited by the relatively fast entanglement growth.
In this framework, we modify the initial state defined in Eq. (4.7) by replacing the single
c-boson with a density wave of period 1/νc

|ψ0⟩ = | ••◦⏞⏟⏟⏞
1/νd

• ◦ ◦ • • ◦ • ◦ ◦•⏞ ⏟⏟ ⏞
1/νc

• ◦ • ◦ ◦ • • ◦ • . . . ⟩, (4.43)

so that it can accommodate an extensive number of clean bosons. We further choose a
large system size L = 126 such that even at the smallest density, νc = 1/24, the bath
hosts a significant number of clean bosons, Nc = ⌊L/24⌋.

In Appendix C.4.3, we report on the behavior of density profiles and imbalance, confirming
delocalization at large νc characterized by relaxation of the initial density wave pattern.
At smaller bath densities, however, signatures of thermalization are absent up to the
timescales T ≈ 50. In order to capture the transition, then, we analyze the behavior of
the more sensitive probe – entanglement entropy.

Since entanglement growth is influenced by the distance to the closest c-boson, we compare
bipartite entanglement across a cut lp such that ⟨n̂c,lp(t = 0)⟩ = 1 for all considered
densities of clean bosons. This comparison is shown in Figure 4.28(a), together with
the entanglement entropy relative to the single-particle bath. After an initial transient
logarithmic regime, entanglement entropy eventually curves upwards, indicating a faster
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Figure 4.28: (a): Entanglement entropy across a cut between sites lp and lp + 1, where
⟨n̂c,lp(t = 0)⟩ = 1 for all the densities studied. For densities νc ≥ 1/12 we observe a
deviation from the corresponding curve for a single c-boson (purple line) at a time τS(νc).
In the inset we show the behavior of this characteristic timescale as a function of density,
suggesting a power-law behavior. Comparison of τ obtained from the entanglement
entropy (blue dots) and the one obtained from the growth of the correlation functions
(red squares) suggests that both timescales behave in a similar way. (b): The decay length
ℓc(t) averaged among all c-bosons composing the bath also deviates from a decay length
of a single clean boson (black dashed line) at late times for νc ≥ 1/12.

power-law growth with time. We observe such deviation from the single-particle case for
all values νc ≥ 1/12 and track its characteristic onset time τS(νc). The scaling of τS(νc) is
shown in the inset of Fig. 4.28(a). Within the considered range of densities, behavior of
τS(νc) is consistent with the power-law increase at low νc, τS(νc) ∝ 1/ν−2.48

c , that implies
eventual delocalization at any finite density of clean bosons. Of course, limited data
range does not allow us to rule the possibility that τS(νc) diverges at a finite value of νc,
signaling stability of localization at a finite density of clean bosons.

The analysis of the density-density correlation functions of the c-bosons shown in Ap-
pendix C.4.3, provides a possible explanation for the power-law entanglement growth. We
notice that the correlations among two initially occupied sites lp and l′p become relevant
at a timescale scaling with the bath density with the same power-law exponent observed
for τS, as shown by the red line in the inset of Fig. 4.28(a). The agreement between the
scaling of the two timescales implies that the faster entanglement growth is triggered only
when c-boson correlations become significant. As a consequence of strong suppression
of the spreading of clean bosons degrees of freedom, correlations may saturate to a very
small value when νc is small enough, thus possibly leading to a localized phase even at
the finite density of clean bosons.

Deviations from single-particle behavior can also be observed in the time-evolution of
the c-boson density profiles. In particular, we probe this by studying the decay length
ℓc(t) of each individual c-boson obtained by fitting the density profile in the vicinity of
each lp to the Ansatz proposed in Eq. (4.27). In the present case, we average the results
for ℓc(t) obtained for each clean boson. As shown in Figure 4.28(b), at early times the
decay length behaves in agreement with the single-particle case for all densities νc (note
that the deviations from the dashed curve can be ascribed to the additional averaging for
finite νc). At later times marked by the circles, however, for all bath sizes νc ≥ 1/12 the
decay length grows consistently faster than in the case of an intensive bath.

While the scaling of τ shown in the inset of Fig. 4.28(a) seems to suggest thermalization
at all finite νc, the potential localization of the individual c-bosons indicated by the
agreement of the decay length for νc = 1/24 with the single c-boson curve might lead
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to a breakdown of the delocalization mechanism at small, albeit extensive, bath sizes.
Unfortunately, on the timescales available to our numerical simulations, we are not able
to confirm that the νc = 1/24 bath leads to power-law growth of entanglement or to
deviations in the growth of ℓc(t). Using the power-law fit for τS(νc), we can estimate
that the deviation from logarithmic growth at small bath size would take place at a time
T ≈ 100, corresponding to a nearly uniform entanglement entropy S ≥ 3 – an extremely
challenging albeit potentially achievable regime in TEBD simulations.

4.6 Discussion
In this Chapter, we investigate novel physical aspects of localization that can be studied
using multi-species lattice models. First, we investigated the fate of an Anderson localized
system coupled to a small local bath, represented by a single disorder-free particle, showing
evidence of a phase transition driven by the interaction strength.

In the strong coupling regime, we used a static Hartree approximation that overestimates
localization to obtain the parameters range most favorable for localization. In addition,
we analyzed the effect of two-particle resonances triggered by the interaction, estimating
the region of parameters where localization is perturbatively stable with respect to such
resonances. Focusing on the parameter values where the perturbative criterion predicts
localization, we studied the dynamics in the coupled system. We demonstrated that the
time-dependent Hartree approximation, which neglects entanglement between the localized
particles and the degree of freedom representing the bath, predicts a slow delocalization of
the system consistent with diffusion. In contrast, unbiased TEBD numerical simulations,
which take into account all quantum correlations among the two bosonic species, shows
evidence of MBL proximity effect within the experimentally relevant timescales achieved
and confirm our analytic criterion for the stability of localization. In addition, our
MPS simulations reveal potential delocalization at weak interactions, in agreement with
the picture of resonances-driven instability. At strong interactions, when the system
is localized, the imbalance of disordered particles saturates, suggesting that memory
of the initial density-wave configuration is retained even at long times. Furthermore,
simulations reveal logarithmic growth of entanglement, in agreement with the MBL
phenomenology, and extremely slow growth of particle number entanglement, ascribed to
the weak relaxation of the disordered particles due to the interaction with the small bath.

Based on these observations, we propose a phenomenological picture of propagation of
MBL in the Anderson insulator, triggered by the localized c-boson. We explain the
retarded growth of entanglement far from the initial position of the c-boson and the
enhanced relaxation in the region close to it. Evidence of the localized behavior of the
system is also found in the analysis of highly excited eigenstates obtained numerically with
the DMRG-X method [110, 111, 112]. We observe that the clean boson remains localized
in eigenstates, confirming the intuition gained from the study of dynamics. We further
notice area-law scaling of the entanglement entropy of eigenstates, with an enhancement
in the vicinity of the localization site of the c-boson, imax. These results provide evidence
for the effective stability of localization even at infinite times and further support the
picture proposed.

We then analyzed the stability of localization as the interaction strength is decreased.
Using both Hamiltonian and Floquet dynamics, we investigate the behavior of both
particle species in extremely large systems and up to experimentally relevant timescales.
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4.6. Discussion

Finding qualitatively different behavior of both particle species at weak and strong
interaction, we demonstrate the presence of a phase transition separating the two distinct
regimes.
In addition to the single particle bath case, we also study the effect of introducing
a bath whose number of particles increases proportionally to the system size. Our
study of transport highlights that at large densities of clean particles the system is
delocalized, showing clear signatures of diffusive dynamics. The investigation of the
putative delocalization transition at small but finite density of clean bosons, however, is
not conclusive due to rapid entanglement growth preventing our simulation from reaching
long times. Thus, further studies are needed in order to understand if there exists a
critical density of clean particles below which the entire system stays localized [215], or if
delocalization happens at any finite density of clean particles akin to scenario suggested
by Refs. [196, 197].
In summary, our work provides evidence for MBL proximity effect and a phenomenological
picture of dynamics [65] for large systems that are beyond the reach of numerical exact
diagonalization. Our predictions are readily verifiable in state of the art experimental
setups [70, 72] that are capable of probing the particle dynamics with a single-site
resolution, although probing the long-time behavior of the boundaries of the system may
be beyond the reach of currently available resources.
Numerous other questions remain open. In particular, although the single clean particle
spreads diffusively at weak interactions, the disordered bosons show extremely slow
relaxation. Such behavior is intuitively similar to the delocalized yet non-ergodic phase
suggested to exist on Bethe lattices [216, 217]. It remains to be understood, if our
phenomenological mapping of the two-species Hubbard model to the Bethe lattice can
reproduce the relaxation of disordered bosons, entanglement dynamics, and other physical
properties, such as the behavior of connected correlation functions. More broadly, the
delocalization of a single particle atop of the infinite sea of localized bosons presents a
deviation from the standard thermodynamic limit, where typically densities of all particle
species are assumed to be finite. Building a theory of the delocalization transition for
such a system remains an interesting challenge. Also, the role of interactions between
disordered particles and of the nature of disorder (random or quasiperiodic) provide a
complementary set of control parameters, that was not explored in our work.
In a different direction, consideration of the finite density of clean particles allows for a
standard thermodynamic limit, but turns out to be an extremely challenging problem for
numerical simulations. In this regime, although we were able to confirm delocalizaiton
at large density of clean particles, the intermediate density regime proved to be hard to
access due to entanglement growth. Understanding the structure of this entanglement
and searching for a quasi-local basis transformation may potentially assist one in reaching
longer simulation times. This may be crucial for getting insights into microscopic processes
and structure of resonances created by the clean particles that drive the delocalization of
the entire system. Additionally, further investigation of the diffusive transport at large
densities of particles in the bath may provide useful insight for a better understanding
of the subdiffusion observed in standard disordered models used to study many-body
localization [198, 199, 214].
Finally, modern experiments with ultracold atoms motivate study of other geometries
and setups for the many-body lozalization proximity effect. In particular, the study
involving the two dimensional cold atom microscope [70], that inspired our work, calls
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for extension of our results to two-dimensional systems. While simulating dynamics with
two-dimensional tensor network ansatzes is extremely challenging, the study of the present
model on ladders with MPS methods may provide useful insights into the qualitative
difference between one- and two-dimensional systems. Likewise, large scale numerical
studies of models where the coupling between localized system and the bath is local [72]
may provide useful insights for the theory of many-body localization and its potential
instabilities known as bubbles or avalanches [62, 87, 94, 218].
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APPENDIX A
Appendices to Chapter 2

A.1 Thermalization within the largest subsector of
the Hilbert space

In order to show the ergodic behavior of the eigenstates of the Hamiltonian, we study the
distribution P (s) of the energy differences in the sorted eigenspectrum weighted by the
mean level spacing ∆, si = (ϵi − ϵi−1)/∆. It is known that thermal systems which satisfy
the eigenstate thermalization hypothesis are characterized by level statistics in agreement
with the prediction of the Gaussian orthogonal ensemble (GOE), PGOE(s) = π

2se
− π

4 s
2
.

However, before discussing the level statistics, the discussion of the density of states is in
order. The Hamiltonian Ĥ2 has a spectral reflection property with respect to E = 0 and
it presents an exponentially large in system size number of zero modes, as highlighted
by the peak in the density of states ρ(0) shown in Figure A.1(a). The large number of
zero energy eigenstates is explained by the bipartite nature of the adjacency graph that
describes the Hamiltonian, see Figure 2.8 for an example. In a bipartite graph there
exist two sets of nodes P1,2 labeled by different product states, such that the action
of the Hamiltonian on states belonging to the set P1 yields a state in the set P2 and
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Figure A.1: (a): As shown in the left sub-panel, the spectrum is symmetric with respect
to En = 0, such that for any eigenstate with eigenvalue En there is a second state with
energy −En. Additionally, the model has a large number of zero energy eigenstates,
as highlighted by the peak of the density of states ρ(En) in the right sub-panel. We
show data for Np = 7 and L = 19. (b): The level spacing distribution P (s) shows good
agreement with the GOE prediction, shown as a black dashed line, thus confirming the
presence of level repulsion within the largest subsector.
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vice versa. These two partitions are identified by the eigenvalue of the parity operator
P̂ = ∏︁

j(1 − 2n̂j)j = ∏︁
j(−σzj )j, where σzj = 2n̂j − 1 is the corresponding Pauli matrix. It

is known that a bipartite graph has a number of zero modes bounded from below by the
difference in the size of the two sets P1 and P2 [219].

In fact, when the two partitions have a different number of states, a non-trivial solution
of the Schrödinger equation for a zero energy eigenstate can be expressed as a system
of n1 linear equations for n2 variables. If n2 > n1, there are at least n2 − n1 linearly
independent solutions. In this case, in spite of the bound not being tight, both the
number of zero modes and the lower bound from the bipartite structure of the graph
describing the Hamiltonian increase exponentially with system size, albeit with different
prefactors in the exponent. This suggests that the present understanding of the zero mode
subspace is incomplete, inviting further research. In particular, using the disentangling
algorithm [220] may give valuable insights. This may also help to develop a more complete
understanding of the recursive Hilbert space fragmentation, since its mechanism relies on
the zero energy eigenstates with vanishing particle density on the last sites of the system,
see Section 2.3.2.

In Figure A.1(b) we show the level spacing distribution for L ∈ [16, 22] in the interval
[EGS,−0.1], where EGS corresponds to the ground state energy. Note that due to the
spectral reflection property of the Hamiltonian, taking into account only negative energies
yields the same results as considering the whole spectrum. To obtain P (s), we unfold the
spectrum in the given interval through polynomial interpolation of the integrated density
of states. The agreement with the GOE prediction suggests that despite the presence of a
constraint, the levels develop repulsion within the largest connected sector of the Hilbert
space and the model is not integrable.

A.2 Ground state characterization
In this Appendix we characterize the ground state, studying the scaling of the energy
gap and of the entanglement entropy. As the Hamiltonian (refEq: East-Hr) only has
hopping terms, the low lying eigenstates need to have a large overlap with product states

Figure A.2: (a): The density profile of the ground state ⟨n̂i⟩GS shows large particle
occupation up to i = 2Np. Outside this region, the density starts decaying exponentially,
as shown in the inset. (b):The finite size scaling of the energy gap ∆E shows that it
vanishes as 1/L, thus indicating that the model is gapless in the thermodynamic limit. (c):
Entanglement entropy across the central cut grows logarithmically with strong finite size
corrections (dashed orange and green lines show logarithmic fits), providing additional
evidence that the ground state is critical.
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that maximize a number of configurations to which hopping is allowed to. In graph
language, see Figure 2.8 for an example, these product states correspond to vertices
with the largest possible connectivity. For r = 2, the state with highest connectivity is
| • ◦ • ◦ • · · · • ◦⏞ ⏟⏟ ⏞

2Np

◦ ◦ ◦ · · · ◦⏞ ⏟⏟ ⏞
L−2Np

⟩, with connectivity 2Np − 1, hence we expect the ground state

to have a large weight on the initial 2Np sites. In Figure A.2(a) we plot the density profile
of the ground state of the Hamiltonian (2.2) for different system sizes from L = 4 to
L = 25 against a rescaled x-axis i/2Np. The figure confirms the prediction, the ground
state is confined within the first 2Np sites, with an exponentially decaying density outside
of this region, as shown in the inset. This behavior is different from the one observed in
the quantum East model in absence of particle conservation [129, 135], where occupation
immediately decays exponentially.

We further study the scaling of the energy gap and of the entanglement entropy. As
clearly shown in Figure A.2(b), the energy gap ∆E vanishes as the inverse system size,
suggesting that model is in a gapless phase in the thermodynamic limit. Additionally, the
entanglement entropy of the ground state across the central cut in the chain presents a
slow logarithmic growth. These results suggest that the ground state is critical.

A.3 Construction of left parts of separable
eigenstates

In this section we report the left-restricted eigenvectors entering Eq. (refEq: East-zero S
evec) for all sub-system sizes we were able to investigate numerically for r = 2. These
were used in the main text to correctly count the global number of zero entanglement
eigenstates NS shown in Figure 2.3(b). We remind here that these eigenstates have to
fulfill two conditions

(i) they have to be an eigenstate on the problem restricted to m particles in ℓ sites,
with ℓ ≤ 3m− 2.

(ii) They must have zero density on the boundary site ℓ:
⟨︂
ψℓm
⃓⃓⃓
n̂ℓ
⃓⃓⃓
ψℓm
⟩︂

= 0.

Additionally we observe that these left-restricted eigenvectors always correspond to zero
energy.

To obtain these states, we take advantage of the large number of zero modes of the
Hamiltonian (refEq: East-Hr=2). Within the degenerate sub-space, one can perform
unitary transformations and obtain a new set of zero energy eigenstates where at least
one satisfies the condition (ii) above. To find the correct states in an efficient way, we
build the matrix Nα,β =

⟨︂
Em,ℓ
α

⃓⃓⃓
n̂ℓ
⃓⃓⃓
Em,ℓ
β

⟩︂
of the expectation values of the density on the

last site on eigenstates of the Hamiltonian reduced to (m, ℓ). We then diagonalize Nα,β

and check whether it has zero eigenvalues. If so, the corresponding eigenvector is still
an eigenstate of the reduced Hamiltonian, and, by construction, it satisfies condition (ii).
We notice that this method implements a sufficient condition, which implies that there
could be other states that fulfill the same set of restrictions. However, our goal here is
merely to provide evidence of existence of these states in several different system sizes.
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In the following, we list the states for m = 3, 4, 5 and ℓ = 6, 9, 11 respectively.⃓⃓⃓
ψ6

3

⟩︂
= 1√

2
(︂

|• • ◦ ◦ •◦⟩ − |• ◦ • • ◦◦⟩
)︂

⃓⃓⃓
ψ9

4

⟩︂
= 1

2
(︂

|• • ◦ ◦ • ◦ ◦ • ◦⟩ − |• • • ◦ ◦ ◦ ◦ • ◦⟩
)︂

+ 1
4
(︂

|• ◦ ◦ • • • ◦ ◦ ◦⟩ + |• ◦ • • ◦ • ◦ ◦ ◦⟩

+ |• ◦ ◦ • ◦ • • ◦ ◦⟩ + |• • • ◦ ◦ • ◦ ◦ ◦⟩ − |• • ◦ • • ◦ ◦ ◦ ◦⟩ − |• • ◦ ◦ • • ◦ ◦ ◦⟩
− |• ◦ ◦ • • ◦ ◦ • ◦⟩ − |• ◦ • ◦ • ◦ • ◦ ◦⟩

)︂
⃓⃓⃓
ψ11

5

⟩︂
= 1√

6
(︂

|• ◦ ◦ • • • • ◦ ◦ ◦ ◦⟩ + |• ◦ • • ◦ ◦ • • ◦ ◦ ◦⟩ + |• • ◦ ◦ • • ◦ ◦ • ◦ ◦⟩

+ |• • • ◦ ◦ ◦ • ◦ ◦ • ◦⟩ − |• ◦ • ◦ • • ◦ • ◦ ◦ ◦⟩ − |• • ◦ • ◦ ◦ • ◦ • ◦ ◦⟩
)︂

(A.1)

Additional states are present, which we do not write down for the sake of brevity. However,
we point out the existence of recursively stacked eigenstates, as mentioned in the main
text, and of states where the right part corresponds to a single isolated particle.

A.4 Quantum Hilbert space fragmentation for
generic Hamiltonian parameters

Throughout the main text, we often mentioned that the results regarding quantum
fragmentation hold irrespective of the range of the constraint r and of the values of the
hopping amplitudes tℓ. In the following, we provide evidence in support of the generality
of recursive fragmentation.

In Figure A.3, we first show the entanglement entropy of eigenstates for r = 2 and
Hamiltonian

Ĥ =
L−1∑︂
i=2

(t1n̂i−1 + t2n̂i−2 − t2n̂i−1n̂i−2)(ĉ†
i+1ĉi + H.c.), (A.2)

with generic, although homogeneous, hopping amplitudes t1, t2. In the leftmost panel,
we highlight the presence of zero entanglement eigenstates in the half-chain cut for a
random choice of the hopping parameters. The density profile of these special eigenstates
is similar to the one showed in Figure 2.3(a), although the density profile in the left region
has more complicated pattern due to the different values of t1,2.

Next, we show the presence of recursive fragmentation in the generic Hamiltonian (2.3).
In the central and right panels of Figure A.3 zero entanglement eigenstates (red crosses)
appear across the central cut for both r = 1 and r = 3. As for the random t1,2 case, the
structure of these eigenstates is akin to the one obtained in Eq. (2.11), featuring an empty
region of r + 1 sites disconnecting the left region from the right one. Thus we provide
numerical evidence in support of the generic form of the zero entropy eigenstates |ES=0⟩
proposed in the main text.

A.5 Transport in different initial states
In the main text, we discuss the transport properties of the domain wall initial state,
observing an unexpected superdiffusive behavior. Although at a finite time t∗, the
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Figure A.3: Top left: entanglement entropy of the eigenstates of the Hamiltonian for
range r = 2, random hopping parameters t1 = 0.84, t2 = 0.49 , and system size L = 16.
The presence of zero entanglement eigenstates, highlighted by the red crosses, confirms
that quantum fragmentation is insensitive to the value of the hopping amplitudes. Top
right and bottom: A similar result is obtained for different values of the range r. The
central panels refer to r = 1, Np = 8 and L = 15, while the right ones show r = 3, Np = 5
and L = 17.

dynamics slow down, showing signatures of logarithmically slow transport, the linear
increase of t∗ with system size suggests that this feature persists in the thermodynamic
limit. In this Appendix, we explore the dynamics of random initial states with varying
density to understand the generality of the dynamics observed in the |DW⟩ initial state.

To this end, we initialize the system in a random superposition of all product states |φi⟩
with average particle density ν = 3/4 in the leftmost sites

|ψ0⟩ = 1
N

∑︂
i

cie
ıϕi |φi⟩ , (A.3)

where the amplitude ci and the phase ϕi are drawn randomly from a uniform distribution
in [0, π] and N is the normalization factor. After running the dynamics up to time t = 100
for 10 different random initial states, we obtain the inverse dynamical exponent 1/z as in
the main text and average among the different states.

As shown in Figure A.4, the inverse dynamical exponent presents a behavior qualitatively
similar to the one observed for the |DW⟩ initial state, with a plateau extending up to time
t∗(ν) before eventually slowing down to a logarithmic behavior. In this case, however,
the plateau suggests diffusive dynamics, suggesting the possibility of a density-dependent
transport exponent. In panel (b) of the same Figure, we show the average t∗(ν) as a
function of system size, clearly showing that the plateau becomes longer as L increases
both for the |DW⟩ initial state (ν = 1) and for the present case. Finally, we study the
value of the dynamical exponent within the plateau, 1/z, by averaging 1/z(t) in a time
window [t0(L), t1(L)] for each realization of the initial state. The values of t0(L) and t1(L)
are given in the following table.
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Figure A.4: (a) The inverse dynamical exponent for different system sizes (L ∈ [16, 37]
from more to less opaque) averaged over 10 random initializations. The behavior of 1/z is
qualitatively similar to the one observed for the |DW⟩ initial state, although the plateau
is compatible with diffusion in this case. (b) The onset time of the logarithmic behavior,
t∗(ν), averaged over the different choices of |ψ0⟩ (ν = 3/4) and for the domain wall initial
state (ν = 1), shows a clear increase with system size. (c) The average value of the inverse
dynamical exponent within the plateau 1/z shows an initial decrease with system size,
before eventually saturating to a value compatible with 1/z = 0.5 (black dashed line).

L t0 t1
16 1 5
19 2.5 7.5
22 3 8
25 4 9.5

L t0 t1
28 5 10
31 5 12
34 5 13
37 5 13

As shown in panel (c), after a decrease with system size at small values of L, the average
inverse dynamical exponent 1/z among different |ψ0⟩ realizations stabilizes to a value
compatible with diffusion 1/z = 0.5. We also notice that the small standard deviation,
represented by the error bars, suggests that this behavior is typical among the studied
states.

A.6 Dynamics of the domain wall initial state for
different values of r

In the main text we provided evidence of slow dynamics from the time-evolution of
the density operator in large systems and from the behavior of the root-mean-square
displacement. Here, we present some additional data regarding system size scaling of the
density dynamics as well as the observation of slow dynamics for generic r. Finally, we
present an additional measure for the logarithmic behavior of the particles spreading.

In Figure A.5(a) we show the system size scaling of the dynamics of the density on the
last site of the chain, ⟨n̂L(t)⟩. All the curves present logarithmic growth, and for larger
system sizes L ≥ 19 the slope becomes roughly constant. The absence of logarithmic
behavior for smaller system sizes L < 16 is in agreement with the data shown in the main
text, where R(t) quickly saturates for L = 13.
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Similar slow dynamics are observed in the time-evolution generated by Hamiltonians
with generic constraint range r. In Figure A.5(b) we present the growth of the density
in the last three sites of two chains of length L = 17 and L = 21 for r = 1 and r = 3
respectively. As the data suggest, the dynamics in the rightmost part of the chain always
presents logarithmic behavior, irrespective of the range of the constraint. However, the
quantitative details are affected by r.

To analyze the spreading of the density, in the main text we presented the behavior of
the root-mean-square displacement R(t) together with the respective dynamical exponent
zR(t). Here, we approach the same question using a different measure, namely the time-
dependence of the expansion of the density profile. This spreading distance δr is defined
as the distance from the domain wall boundary, i = Np, at which density becomes larger
than a certain threshold ε ≪ 1. The spreading distance δr is expected to asymptotically
behave as a power-law in time, defining a dynamical exponent zr such that δr ≈ t1/zr .
However, the limited system sizes available to our numerical study do not allow us to
reach the asymptotic regime, and we are forced to study the time-dependent analogue
zr(t), obtained through the logarithmic derivative of the spreading distance with respect
to time, (zr(t))−1 = d ln δr/d ln t.

In panel (a) of Figure A.6 we show a heat-map of the density dynamics for L = 37 sites,
superimposed with curves of constant ⟨n̂i(t)⟩ = ε, for values of ε ∈ [0.1, 10−10], above the
accuracy limit O(10−12) of the 4-th order Runge-Kutta algorithm. For each threshold,
we show in panel (b) the time-dependent dynamical exponent. For the largest values of
ε the dynamical exponent has a super-diffusive plateau at 1/zr(t) ≈ 0.7 before quickly
vanishing as expected from the logarithmic dynamics of the density. On the other hand,
at smaller thresholds the dynamical exponent seems to saturate to a finite value, before it
eventually starts decreasing due to boundary effects.

The saturation value of the time-dependent dynamic exponent for small thresholds has a
weak dependence on the value of ε. As ε → 0, 1/zr approaches a r-dependent saturation
value, monotonically increasing as the range of the constraint becomes larger, as shown in
the right panel of Figure A.6(b). This behavior is in agreement with the expectation that
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Figure A.5: (a): The dynamics of the density on the last site ⟨n̂L(t)⟩ for several different
system sizes. The slow logarithmic growth is evident for all L ≥ 16. At larger system
sizes L ≥ 19 the slope becomes independent of system size, as well as the saturation
value, thus suggesting a universal behavior. (b): The density dynamics for different
values of the range r shows always a logarithmic behavior. While the quantitative details
change between different values of r, the qualitative feature of the logarithmic growth is a
constant, thus confirming our claim of generality of the results. The data are obtained on
a chain of Np = 9 and L = 17 for r = 1, and Np = 6 and L = 21 for r = 3.
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Figure A.6: (a) Spreading of the density in a system with L = 37 sites and Np = 13
bosons. Lines of constant value ε highlight the very different behavior observed in the two
regions i ≶ 2Np. (b) The inverse dynamical exponent 1/zr(t) is always super-diffusive.
While for a large threshold it decays to 0 indicating the onset of logarithmic growth, for
small values of ε the dynamical exponent seems to saturate approaching the asymptotic
value (weakly dependent on the threshold value), before the onset of boundary effects.
As shown in the right panel, the asymptotic 1/zr is super-diffusive behavior is generic
irrespective of the choice of the range of the constraint. The data shown in this panel
correspond to Np = 11 and L = 21, 31, 41 for r = 1, 2, 3 respectively.

at r → ∞ the system should approach ballistic dynamics.
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APPENDIX B
Benchmark of TEBD algorithm for

Chapter 3

In this Appendix, we provide benchmarks of the TEBD algorithm and its accuracy for
the model used in Chapter 3. While the instantaneous errors related to the truncation
and finite time step are known, understanding the propagation of these errors with time
and their possible interference is challenging.

First we tested the TEBD algorithm by evolving the ground state of the same model.
Provided that the time evolution is numerically exact, the overlap between the TEBD-
evolved ground state,

|ψ0(t)⟩ = UTEBD(t) |GS⟩ (B.1)
and the exact time evolution of the ground state, |GS(t)⟩ = e−ıE0t |GS⟩, is supposed to
give the identity ⟨ψ0(t)|GS(t)⟩ = 1 at all times. For the fourth-order Trotterization the
behavior of the deviation from unity is known to be proportional to (δt)8

F = 1 − | ⟨ψ0(t)|GS(t)⟩ | ∝ (δt)8 (B.2)

The numerical results plotted in Fig. B.1(a), confirm these expectations.

Next, we performed a benchmarking of TEBD algorithm against ED time evolution
for several disorder realizations and simulation parameters. An illustration of such
benchmarking is shown in Fig. B.1(c) and (d). In particular, we observed that time
step δt = 0.05 and cutoff ε = 10−9 result in a good agreement between ED and TEBD
dynamics. Smaller values of δt, ε would improve the agreement but would result in a
dramatic slowdown of the evolution time. Therefore, we decided to use these parameters
in the simulations presented in the main text.

When larger system sizes are involved, as it is the case for the simulations actually used in
the main text, comparison with exact results is not available. Therefore, other indicators
for the accuracy must be studied. Among these, energy conservation through the time
evolution is a straightforward probe. The energy deviation

∆E(t) = |E(0) − E(t)|/E(0), E(t) = ⟨ψ(t)| Ĥ |ψ(t)⟩ , (B.3)

allows to control the propagation of the error during the Trotter time evolution. In the
left panel of Fig. B.2 we show the results for ∆E(t) in the two quenches presented in the
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Figure B.1: (a-b) Deviation of ground state fidelity from 1 in Trotter time evolution,
F (t, δt), shows power-law behavior both in time and in time-step, as expected. The
data is obtained at density ν = 1/5, system size L = 20 and disorder W = 6.5 for a
particular disorder realization. The plots for other disorder realizations are qualitatively
similar. (c-d) The comparison between ED and TEBD time evolution reveals that the
most effective way to increase accuracy of TEBD is to decrease the time-step δt. Indeed,
the change in the truncation between ε = 10−9 and ε = 10−12 does not have much effect
on the the difference between density profiles of exact diagonalization and TEBD. At the
same time, the decrease of time step brings the local density profile closer to ED results.
The density profiles are calculated by propagating uniform density wave (c) and uniform
pair-density wave (d) initial states to time t = 500 for a particular disorder realization
with L = 20, ν = 1/5, W = 6.5.

main text, for L = 30. The two plots highlight that the average energy deviation is very
small in both configurations. In spite of that, a clear difference can be observed among
the two quenches, noticing that the non-uniform state has larger error. This is probably
due to the enhanced entanglement caused by the presence of the bubble in the lattice.
Nevertheless, ∆E(t) remains very small even at long times, thus confirming the reliability
of our long-time numerical simulations.

Besides the inaccuracies due to Trotterization and studied in detail above, the truncation
on the singular values can also affect the validity of the results. Although we chose a small
truncation error ε = 10−9, if the bond dimension saturates the approximation of the wave
function becomes uncontrolled, and eventually as time increases relevant information will
be discarded. To support the accuracy of our results, already benchmarked against exact
diagonalization, we report the statistics of the maximal bond dimension reached by the
various states. To obtain the results presented in the main text, we set the bond dimension
to be χ1 = 500 and χ2 = 3000 for the density-wave and bubble state respectively. As
the histograms in Fig. B.2 show, all the disorder realizations remained well below the
maximum threshold. This fact ensures that we have a control on the error encountered
in the evolution, in contrast to time evolution with TDVP with fixed bond dimension,
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Figure B.2: Left: the normalized absolute value of the energy difference from the initial
energy ∆E(t) = |⟨H(t)⟩ − E(0)|/|E(0)| remains very small for both the density wave,
blue curve, and the non-uniform, red curve, configurations, confirming the good accuracy
of our numerical simulations beyond the ED benchmark. The larger deviation displayed
by the non-uniform configuration is understood as a result of the presence of the bubble
in the lattice, that increases entanglement growth. The results here shown are obtained
averaging over 100 disorder realizations, for the system sizes, L = 30, and initial states
described in the main text. Center and right: the histogram representing the maximum
bond dimension of different disorder realizations show that the threshold values of 500 and
3000 for the uniform density wave (center) and bubble states (right) were never saturated
in our simulations.

where error estimation is more challenging [221].

Finally, we remark that in all the simulations performed using ITensor [176], we took
advantage of the conserved U(1) symmetry. Indeed, simulations that use quantum
numbers have an advantage as the tensors can be written in block diagonal form, each
block being labeled by a quantum number. Consequently, even at large bond dimensions,
the operations are done on smaller matrices with a net increase in the efficiency of the
algorithm.
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APPENDIX C
Appendices to Chapter 4

C.1 Parallel implementation of TEBD
In Chapter 4 we use the TEBD algorithm [114] to perform the time evolution of the wave
function of the large system represented as an MPS. The algorithm splits the unitary
evolution into time steps (Trotterization), dt, and further divides them into even and
odd gates, Ĝi,i+1 = exp

{︂(︂
− ıdtĥi,i+1

)︂}︂
, where ĥi,i+1 is the Hamiltonian density on sites i

and i+ 1. Since even(odd) gates do not overlap with one another, all even (odd) gates
commute and can be applied independently to the state. This allows a natural parallel
implementation of the algorithm, where all even (odd) gates are applied simultaneously.
The time-evolution can thus be performed in parallel, assigning to one thread a portion
of the chain, as pictorially shown in Figure C.1. When multiple nodes are involved, one
must carefully transfer information after each sweep, as the time-evolved states at the
boundaries between different nodes need to be transferred in order for the evolution to be

Figure C.1: Cartoon representation of the TEBD algorithm. The time evolution can be
naturally parallelized, by sharing each of the operations contoured in red to a different
core.
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exact. Additionally, the dishomogeneity of the problem naturally introduces a workload
imbalance, that can however be taken care of rebalancing the portion of the chain assigned
to each node.

The TEBD algorithm has two main sources of error: the finite value of time-step used
in Trotterization and the truncation error in the singular-value decomposition (SVD).
The time step error naïvely scales as O(dt2), but it can be reduced to O(dt4) with an
appropriate higher order Suzuki-Trotter decomposition. By choosing sufficiently small
time steps, then, the accuracy of the simulation remains reliable for long timescales.
The accuracy of the simulation can be controlled by the degree of energy conservation
violation, i.e. by tracking ∆E(t) = | ⟨ψ0| Ĥ |ψ0⟩ − ⟨ψ(t)| Ĥ |ψ(t)⟩. In our simulations, we
fixed dt = 0.05. In spite of a slower execution time, such a small time-step ensures very
accurate results, as evidenced by ∆E(T ) < 10−4 at the final simulation time T = 200.

The second source of error, i.e. the singular values truncation ε, arises from the singular-
value decomposition performed after each gates application in order to restore the MPS
form. In order to avoid the exponential growth of the MPS bond dimension χ, one needs
to select the most relevant singular values by neglecting all those which are smaller than
a certain threshold ε. The truncation then corresponds to neglecting some weight of the
wave-function, and the error can be estimated by the sum of the discarded singular values∑︁
λi<ε λ

2
i . A further limit on the number of singular values is imposed by the maximal

bond dimension, χ. If during the time evolution the number of singular values smaller
than ε becomes larger than χ, i.e. the bond dimension is saturated, then the control on
the accuracy of the results is lost, as there is no guarantee that large singular values will
be discarded in the future. In our simulations, we fix ϵ = 10−9 and χ = 3000. This set
of parameters guarantees the reliability of the results as the maximum bond dimension
is saturated only in the last 10 time-steps (in hopping parameter units) of less than
1/10 of the central bonds. Furthermore, we can ensure accuracy by comparison to exact
diagonalization results on smaller systems, which for the chosen simulation parameters
show discrepancies in local observables and entanglement typically of the order O(10−4).

The choice of these parameters, however, makes the simulations extremely demanding.
However, the structure of the algorithm is naturally suited for parallelization, as shown in
Figure C.1, and the use of a parallel implementation of the code allowed us to study the
dynamics even in the high entanglement regime, where most of the tensors have a large
bond dimension of order 1000.

C.2 Details and benchmark on DMRG-X
The DMRG-X algorithm [110, 111, 112] used to obtain the highly excited eigenstates of
the Hamiltonian (4.4) relies on the shift-invert method applied to MPS states. The variant
of the algorithm used in this work is described in detail in the supplementary material
of [111]. In this section, we will give a brief overview of the algorithm and then explore
the dependence of the quality of the results with respect to various tuning parameters
such as bond dimension, system size, etc.

The DMRG-X algorithm used can be understood as a simple modification of the standard
two-site DMRG [102] algorithm which is extensively used to target ground states of
one-dimensional systems. We describe the two differences compared to the ground state
algorithm.
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Figure C.2: (a) Increasing the bond dimension χ leads to a better distribution of the
variance of the energy of the states σ2, shifting it to lower values. Similarly, the increase
of the number of conjugate gradient iterations at fixed χ improves the dataset quality. (b)
The distribution of the distance of the final energy E from the target energy E0. At fixed
bond dimension χ = 250 doubling the number of conjugate gradient iterations produces
a dramatic improvement of the final energy distribution. Further increasing the bond
dimension to χ = 500 then gives an additional refinement of the distribution. (c) The
entanglement distribution P (S) for the bonds closest to imax becomes narrower as the
number of conjugate gradient iterations is increased. However, as the bond dimension is
increased at fixed CG the MPS states can host larger entanglement, as is confirmed by
the broader P (Smax) at χ = 500.

First, the ground state DMRG uses the matrix product operator (MPO) form of the
Hamiltonian, H, to perform the variational optimization. The DMRG-X algorithm, in
contrary, employs H = (H − E0)2, which is still efficiently represented by a MPO with
a slightly larger bond dimension. The energy E0 is the target energy, i.e. the energy of
the eigenstates we are aiming to calculate. We square the operator in order to make it
semi-positive definite. This is done in order to use iterative inversion algorithms (see
below) which require such property and can be avoided if a different iterative algorithm is
chosen. We have numerically observed that different iterative algorithms are less stable
and converge slower for most cases.

Second, in the DMRG-X algorithm, we are not aiming to find the eigenstate of H with
the largest magnitude eigenvalue. Instead, the goal is to find the eigenstate corresponding
to the lowest magnitude eigenvalue, i.e. the one which corresponds to the eigenstate
closest to energy E0. This is taken into account in the local optimization step, present in
DMRG-type algorithms, i.e. when two adjacent local tensors are optimized. In this step,
one generates an effective operator by tracing the left and right environments, Heff [102].
Calculating the lowest magnitude eigenvalue of Heff is equivalent to calculating the
largest eigenvalue of H−1

eff . We use a power-method to converge to the largest magnitude
eigenvalue geometrically. Instead of applying H−1

eff at each iteration, we solve the linear
system Heffxi+1 = xi using a conjugate gradient algorithm. Due to the sweeping nature
of the DMRG-type algorithms we have observed that a single iteration of the local power
method leads to a faster convergence of the global wavefunction (for fixed runtime),
indicating that increasing the number of sweeps is a more important factor. The iterative
algorithm scales as O(CGχ3), where CG is the number of conjugate gradient iterations,
instead of the O(χ6) scaling of the exact diagonalization of Heff. This scaling, together
with the explicit conservation of both particle numbers, allow us to reach bond dimensions
up to χ = 500.

For the simulations presented in this work we used the following parameters: In the global
level we restricted to 100 DMRG sweeps. However, we do not always keep the final state
but the state with the least energy variance as measured at the end of every sweep for the
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Figure C.3: The distribution of the peak of the c-boson is almost homogeneous through
the whole system in the L = 30 case, but as the system size is doubled the typical position
of imax is more restrained to the center of the chain. The broad distribution of imax is
expected, as the local optimization performed in the algorithm can indeed update the
position of the c-boson from its initial value and “move” it through the system.

last 50 sweeps. This is because the algorithm tends to switch between different eigenstates
as it converges towards the target energy and during the switching period it is not always
accurately converged. This behaviour is not present in the standard DMRG algorithm and
is attributed to the exponentially large density of states around the target energy. For the
solution of each local optimization problem, we use a single power method iteration which
is performed using the conjugate gradient algorithm. For the singular value decomposition
which is used to extract the updated local tensors we have used a very low probability
truncation cutoff ϵ = 10−28, in order to avoid any statistical bias towards eigenstates of
low entanglement. We found that the most important tuning parameters are the bond
dimension χ and the number of conjugate gradient iterations CG. Below we show various
benchmarks for different parameters and system sizes.

We compare the quality of the resulting eigenstates for χ = 250, 500 and CG = 600, 1200.
A first check is obtained by comparison of the energy variance

σ2 = ⟨Ĥ
2
⟩ − ⟨Ĥ⟩2 (C.1)

of the resulting states. As true eigenstates have exactly 0 energy variance, a small σ2 is
an indicator of good convergence. In Figure C.2(a), we compare the variance distribution
for the different range of parameters, observing, as expected, that increasing both the
number of iterations and the bond dimension leads to a better quality result.

The low-valued distribution of the variance suggests that the final states obtained with
the DMRG-X algorithm are actually extremely close to exact eigenstates of Ĥ. As a
next step, one must check whether the obtained states are indeed highly excited. We
thus study the distribution of the energy difference among the obtained state and the
target energy E0. As shown in Figure C.2(b), increasing χ and CG yields a narrower
distribution close to 0.

Since the amount of entanglement entropy an MPS state can host is strictly related to its
bond dimension, it is important to observe how the entanglement varies as we increase χ.
We thus study the distribution of the entanglement entropy on the 10 bonds closer to
the peak of the c-boson, imax, where entanglement is supposed to be largest. The results
are shown in Figure C.2(c) and show that at fixed bond dimension, a larger number of
iterations leads to a narrower distribution, in agreement with the small entanglement
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of exact eigenvalues of MBL Hamiltonians. On the other hand, fixing CG = 1200 and
increasing the bond dimension gives access to states with larger entanglement, as verified
by the broader distribution of S at χ = 500.

Finally, we study the distribution of the position of the peak of the c-boson. As initial
state in the DMRG-X algorithm we always used a version of |ψ0⟩, Eq. (4.7), with the
c-boson shifted of a few sites from the center, provided the site is not already occupied by
a d-boson to avoid stable doublons. However, the local optimization performed by the
algorithm can easily “move” the c-boson, as can be seen by the almost even distribution
of imax shown in Figure C.3, for L = 30. This behavior is consistent in all the datasets
studied and does not seem to have a particular relation with the quality of the eigenstates.
As the system size is doubled, the distribution of the peak of the c-boson becomes more
centered around L/2, probably due to the larger density of state which increases the
possibility of finding an eigenstate close to the target energy for smaller displacement of
the c-boson.

C.3 Weak coupling regime for the intensive bath
In the main text, we showed numerical results suggesting the existence of a transition
to a delocalized phase as the interaction strength between the bath and the disordered
particles is decreased. In this Appendix, we provide some additional numerical results for
the dynamics of the bath, of the d-bosons and of the system as a whole.

C.3.1 Evaluation of the accuracy of TEBD simulations
Due to the finite bond dimension χ and the finite truncation error ε, the wavefunction
evolved using the TEBD algorithm |ψχ(t)⟩ deviates from the true state |ψ(t)⟩. The
error produced by the truncation of the singular values λa and corresponding Schmidt
states, however, is well controlled and can be easily evaluated. At each singular value
decomposition, the local weight of the wavefunction lost is given by

ϵn =
∑︂
λa<ε

λ2
a or ϵn =

∑︂
a>χ

λ2
a (C.2)

depending on whether the bond dimension at the evaluated link is saturated or not.

The global error at each timestep, then, corresponds to

ϵ(t) = 1 − | ⟨ψ(t)|ψχ(t)⟩ |2 = 1 −
∏︂
n

(1 − ϵn). (C.3)

The total discarded weight at the end of the time evolution finally amounts to the
integrated error ϵ(t).

In the work presented in the main text, we use extremely large bond dimension and low
truncation error, thus ensuring the good accuracy of our simulations. In the Hamiltonian
case we set χ = 5000 and ε = 10−9, resulting in a maximum error of ϵ = 2 × 10−5 arising
close to the putative transition, at U = 1.25. In the Floquet simulations we use a smaller
χ = 2048 and the same truncation as the Hamiltonian evolution. This gives rise to a
maximum error of ϵ = 8 × 10−3, again at an interaction strength U = 1 in the vicinity of
the transition.
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C.3.2 Additional evidence of bath delocalization
In Section 4.4.1, we studied the density profile of the clean boson, highlighting the stark
difference at weak and strong U . We now use the ansatz for the density introduced in
Eq. (4.27) to study the behavior of the decay length ℓc(t) as the interaction is changed.

In Figure C.4, the dynamics of the decay length is presented for both the Floquet (a)
and the Hamiltonian (b) models. The data show a continuous increase of the value of
ℓc(t) as U is decreased, in agreement with the transition predicted. In particular, the
decay length shows signatures of saturation to a value much smaller than the system size
for U ≥ 2 and U ≥ 4 in the Floquet and Hamiltonian dynamics respectively. At weaker
interactions, instead, it keeps growing suggesting delocalization.
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Figure C.4: c-boson decay length ℓc(t) shows different behavior at weak and strong
interactions both in the Floquet (a) and Hamiltonian (b) time evolution. At small values
of U , below the estimated transition, ℓc(t) grows persistently with no signs of saturation,
reaching the value of half system size L/2 = 126 for the Hamiltonian dynamics (black
dashed line). As the interaction is increased, the decay length first grows as a power-law in
time (shaded dashed lines), but at eventually at long times accessible in Floquet evolution,
starts saturating. This saturation suggests stability of localization at large U .

C.3.3 Disordered bosons imbalance and global entanglement
Due to the vanishing density of the bath particle in the extremely large systems we
study, its effect on the d-bosons density is weak and hard to capture from the study
of their density alone. In Section 4.4.1, however, we demonstrate that a study of the
density-density connected correlations allows to observe a qualitative change in behavior
at weak interaction strength U also for the disordered particles.

We now show numerical results concerning the density profiles and the relative imbalance,
to highlight the necessity of studying more complicated operators, such as the connected
correlations, and entanglement entropy, to distinguish weak and strong interactions behav-
ior. In Figure C.5 (a)-(c) we show the d-boson density profile in Floquet (Hamiltonian)
dynamics at late times T = 205 (T = 54), respectively. Close to the central site i = L/2
a monotonously enhanced relaxation is observed as the interaction increases. This obser-
vation that density of localized bosons is more affected by the clean particle at strong
interactions (when the clean particle is localized) is readily explained by the fact that
confinement of the clean boson to smaller regions helps to relax the density pattern of
disordered particles within the localization volume. Far from the center of the chain,
however, no significant variation is shown as U changes.
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Figure C.5: Late time d-boson density profiles [shown for the latest common time among
different values of U , T = 205 and T = 54 for Floquet (a) and Hamiltonian (c) dynamics]
show very weak dependence on the interaction strength. The slight enhancement of
relaxation at the center of the chain at large U is caused by the increased effect of
localized c-bosons on disordered particles. The dynamics of imbalance I(t) in panels (b)
[Floquet] and (d) [Hamiltonian] also illustrates nearly complete absence of density pattern
relaxation.

A more quantitative understanding can be obtained from the study of the imbalance

I(t) = No(t) −Ne(t)
No(t) +Ne(t)

, (C.4)

where N̂ o/e represent the density in the initially occupied/empty sites. For a period
1/νd = 3 density wave, they read

N̂ o =
L/3∑︂
i=1

n̂d,3i−2, N̂ e = 1
2

L/3∑︂
i=1

(n̂d,3i + n̂d,3i−1). (C.5)

As imbalance measures the memory of the initial condition, its vanishing implies delocal-
ization. However, as can be seen in panels (b)-(d) of Figure C.5, both in Floquet and
Hamiltonian dynamics the imbalance does not show any sign of decay on the accessible
timescales, irrespective of the interaction strength. This suggests that the relaxation of
the d-bosons quantified by their density pattern is extremely slow.

The study of the entanglement entropy

S(i, t) = − tr ρA(t) log ρA(t), (C.6)

where the chain is split into two subsystems A = [1, i], B = [i + 1, L], and we consider
density matrix ρA(t) = trB |ψ(t)⟩ ⟨ψ(t)|, provides further evidence in favor of the existence
of a transition. In many-body localized systems, entanglement entropy is expected to
grow logarithmically [55, 80], hence a deviation from the logarithmic behavior can be
interpreted as a breakdown of MBL. As we show in Figure C.6 (a)-(c) entanglement entropy
at weak interactions shows faster than logarithmic behavior, suggesting thermalization. In
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Figure C.6: Dynamics of entanglement entropy shows signatures of delocalization for weak
coupling U both in Floquet (a)-(b) and Hamiltonian (c)-(d) dynamics. The power-law
growth of entanglement across the central cut shown in panels (a)-(c) at weak coupling is
clearly distinct from the logarithmic behavior observed for U ≥ 4. The different behavior
is also highlighted by the entanglement collapse shown in the inset, suggesting a universal
power-law behavior in the ergodic phase. The behavior of real-space entanglement profile
at fixed time (T = 205 for Floquet (b) and T = 52 for Hamiltonian dynamics (d)) in panels
(b)-(d) also shows non-monotonic behavior, with a peak in the region U ∈ [1, 2] separating
two distinct regimes. At weaker interaction, entanglement spreads more uniformly through
the chain, suggesting the presence of a large ergodic region close to the center. In contrast,
at strong coupling, entanglement growth remains limited to the center of the chain, in
agreement with the phenomenology of the MBL proximity effect.

particular, this leads to a universal power-law scaling of entanglement given by S ≈ (tUβ)γ
with the value of γ ≈ 0.39 for both Floquet (a) and Hamiltonian (b) case. The value of β
is similar between the two models β ≈ 1.1, however only for U ≤ 1. For larger values of
U up to 1.5, β stays the same in the Floquet case and abruptly changes to β ≈ 0.6 (not
shown) in the Hamiltonian case. The universal behavior is captured by the collapse of
the different entanglement curves shown in the inset of Fig. C.6 (a)-(c). As interaction
strength increases logarithmic growth is eventually restored at U = 4, 6, in agreement
with MBL.

The different behavior is also highlighted by the spatial profile of entanglement, i.e. the
entanglement entropy shown as a function of the size of subsystem A at a fixed time T
(T = 205 in panel (b) and T = 52 in panel (d)). Figure C.6 (b)-(d) shows that at strong
interactions entanglement growth is limited to the center of the chain, in agreement with
the phenomenology proposed in Section 4.3. At weaker interactions entanglement starts
spreading more uniformly through the chain, indicating the creation of large ergodic
regions in the chain. Interestingly, this phenomenon gives rise to a non-monotonicity of
the peak of the entanglement profile as a function of interaction strength. At very weak
interactions, entanglement spreads to far regions, and in turn its value in the center is
lower than at intermediate U , where its spreading is reduced. We observe then a maximum
of the peak around U ≈ 2 in the Floquet case and U ≈ 1.5 in the Hamiltonian dynamics,
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which could correspond to the transition point, clearly separating the two entanglement
regimes. The value U at which we observe the largest entanglement appears to be stable
with respect to the fixed time T for all accessible times T > 10.

C.3.4 Hopping matrix element for effective mapping to Bethe
lattice

In the main part of the text, we used the approach of Ref. [213] to estimate the critical
interaction strength separating the localized and ergodic phases. In this appendix, we
detail the evaluation of the typical matrix element, crucial in estimating the transition.
As mentioned in the text, the functional form of the matrix element Eq. (4.39) depends on
the relative position of the different particles involved in the process. In particular, they
can be either mixed, i.e. dcdc, dccd, cdcd, cddc, or they can be ordered, corresponding to
ddcc, ccdd.

Let us consider first the mixed case, and analyze in detail the case cdcd. We define the
different positions of the particles as x(1,2)

c,d where the numerical indices represent the
ordering from left to right. It will be useful to define the distance among same type
particles rc(d) = x

(2)
c(d) − x

(1)
c(d) and the centre of mass xc(d) = (x(2)

c(d) + x
(1)
c(d))/2. In this setup,

we identify three different regions. Region (I): j ≤ x
(1)
d . Region (II): x(1)

d < j < x(2)
c .

Region (III): j ≥ x(2)
c . In region (I) the summand f(j) ≤ e−rc/ξce−2(xd−j)/ξd , in region

(II) f(j) is constant and attains its maximal value f(j) = e−rc/ξc−rd/ξd , finally in region
(III) f(j) ≤ e−rd/ξde−2(j−xc)/ξc . Consequently, the sum in Eq. (4.39) can be split into
three terms

V ≤ U

ξcξd

[︂
e−rc/ξc

∑︂
j≤x(1)

d

e−2(xd−j)/ξd +e−rc/ξc−rd/ξd(dcd−2)+e−rd/ξd
∑︂
j≥x(2)

c

e−2(j−xc)/ξc

]︂
, (C.7)

where we introduce dcd = x(2)
c − x

(1)
d as the distance between the two middle particles.

The two sums now can be reshaped to reproduce the geometric series

∑︂
j≤x(1)

d

e−2(xd−j)/ξd =
∑︂
j≤x(1)

d

e−(rd−2(j−x(1)
d

)/ξd = e−rd/ξd
∑︂
k≥0

e−2k/ξd = e−rd/ξd

1 − e−2/ξd
(C.8)

and similarly for the second sum in Eq. (C.7). The matrix element for the case of cdcd
configuration can thus be estimated to be

V ≈ U

ξcξd
e−rd/ξd−rc/ξc

[︂ 1
1 − e−2/ξd

+ (dcd − 2) + 1
1 − e−2/ξc

]︂
. (C.9)

With a similar approach, we can also obtain the upper bound for the matrix element in
the remaining cases of mixed bosons, leading to the same result for the dcdc case and to

V ≈ U

ξcξd
e−rd/ξd−rc/ξc

[︂ 2
1 − e−2/ξc(d)

+ (dcc(dd) − 2)
]︂

(C.10)

for the dccd (cddc) cases. We checked numerically that, in most cases, the bound is
reasonably tight, yielding a very small percentage difference from the actual value.

Now, we consider the case of ordered particles. In this case, the summand f(j) is peaked
at the position of the middle boson with shorter localization length. Again, for the sake
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Figure C.7: The critical curve obtained from solving Eq. (C.13) numerically (red line)
compared with the level spacing ratio for a small L = 15 system. Our analytical approach
predicts a transition at a critical interaction strength Uc ≈ 3 for the disorder W = 6.5
used in the numerical simulations. This estimate is compatible with the transition window
that shows up in the results of our large scale numerical simulations.

of clarity, we illustrate a particular configuration, but an analogous approach can be used
for the other configurations. We choose to show the results for the case ddcc where the
localization length of d-bosons is shorter than the one of the c-boson (the most typical
case). In this setup we can identify two different regions. Region (I), j ≤ x

(2)
d , where

f(j) ≤ e−rd/ξde−2(xc−j)/ξc . Region (II), j > x
(2)
d , where f(j) ≤ e−2(j−xd)/ξd−2(xc−j)/ξc . The

matrix element in region (I) then is upper bounded by

V (I) ≤ U

ξcξd
e−rd/ξd

∑︂
j≤x(2)

d

e
2j−x

(1)
c −x

(2)
c

ξc = U

ξcξd
e−rd/ξd−rc/ξc−2ddc/ξc

∑︂
j≤x(2)

d

e
2(j−x

(2)
d

)
ξc

= U

ξcξd

e−rd/ξd−rc/ξc−2ddc/ξc

1 − e−2/ξc
.

(C.11)

In region (II) instead we obtain

V (II) ≤ U

ξcξd

∑︂
j≥x(1)

d
+1

e
−2j+x

(1)
d

+x
(2)
d

ξd e
2j−x

(1)
c −x

(2)
c

ξc = U

ξcξd
e

− rd+2
ξd e− rc+2ddc−2

ξc

∑︂
k≥0

e
−2 ξc−ξd

ξcξd
k

= U

ξcξd

e
− rd+2

ξd e− rc+2ddc−2
ξc

1 − e
−2 ξc−ξd

ξcξd

.

(C.12)

The case for ξc < ξd can be obtained in the same way, bearing in mind that now f(j)
is peaked at j = x(1)

c , and yields the same results as Eqs. (C.11)-(C.12), except with
subscripts for c- and d-bosons exchanged. A similar statement is valid for the case of ccdd
ordered bosons.

Now the estimate of the typical matrix element corresponds to evaluating the average
distances rc/d and dcd, which results in ⟨rc/d⟩ ≈ ξc/d/2 and dcd ≈ min(ξc, ξd). Finally,
using the localization length obtained numerically in the Hartree approximation [89] and
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solving the equation for the critical point

2KeVc
W

log
(︃ W

2Vc

)︃
= 1 (C.13)

numerically, we draw the critical line shown in red in Figure C.7. In the heat map we
additionally show results for the average level spacing ratio ⟨r⟩ obtained from exact
diagonalization of the Hamiltonian (4.4) on L = 15 sites. From this approximate analysis,
then, we extract a critical value of the coupling Uc ≈ 3 for the disorder strength W = 6.5
used throughout this work. This result is somewhat counterintuitive, given that the
hopping amplitude V ∝ U . Nevertheless, as already obtained in our previous work [89],
the effective disorder for the c-boson is proportional to the coupling strength, and hence
its localization length ξc ∝ U−2. This results in the observed trend yielding delocalization
at weak U and localization at strong interactions.

C.4 Extensive bath
When studying the behavior of the model with a finite density of c-bosons we employ two
distinct approaches. At relatively low densities we use MPS simulations with the c-bosons
initially equidistant to one another. However at higher densities this approach will lead
to a prohibitively fast growth of entanglement entropy, which slows down numerical
simulations and prohibits us from reaching long timescales. To avoid this issue, at large
densities around half-filling we employ an MPO-based approach, where we simulate the
dynamics of the system’s density matrix. In particular we prepare an initial density
matrix with a small step in the c and d boson densities, which can be written as a trivial
MPO with bond dimension one. Provided, the local boson density remains near half-filling
(such as 1/2 or 1/3) this initial density matrix leads to relatively slow growth of operator
space entanglement entropy (as was also observed in earlier work [156]). This allows us
to reach the timescales necessary to extract information on the transport properties of
our model at a high density of c bosons.

C.4.1 Bond dimension comparison for density matrix TEBD
In order to estimate the accuracy of our simulations, we compare the value of observables
throughout time-evolution for different bond dimensions. In Figure C.8 we present the
different density profiles of the d-bosons and the bath for different values of the interaction
and different size of the bath. In the top row we show U = 6 and νc = 1/2, while
panels (c)-(d) present U = 2 and νc = 1/3. The density profiles at T = 300, shown in
the main panels, are converged at the bond dimensions used in the simulations presented
in the main text, thus confirming their accuracy. Additionally, in the insets we plot the
time-evolution of the density at the central site for different bond dimensions, similarly
showing converged dynamics at the largest bond dimensions.

C.4.2 Transport in the disordered Heisenberg chain
The clear diffusive behavior observed in the transport of d-bosons in Section 4.5.1 is not
commonly observed in disordered systems. Previous studies [198, 199, 214] have reported
slow, subdiffusive, transport in the ergodic phase of disordered Hamiltonians.
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Figure C.8: Bond dimension comparison for the two exemplary values of interaction
strength and density, U = 6, νc = 1/2 in panels (a)-(b) and U = 2, νc = 1/3 in
panels (c)-(d). The main panels show the density profiles for d- and c-bosons at the latest
time T = 300, confirming the convergence of our results for the bond dimensions used.
Additionally, in the insets we compare the time-evolution of the density at the central
site, which also shows good convergence with increasing bond dimension.

In this Appendix, we explore dynamics in the disordered Heisenberg chain in a parameter
range where disorder and hopping comparable to the one investigated in our work. The
aim of this study is to check whether there exists a coupling strength such that the
nearest-neighbor interaction of the disordered Heisenberg chain can reproduce diffusive
dynamics in a similar timescale as the one observed in the main text.

Although the two species Hubbard model and Heisenberg chain have different local
Hilbert space, one can transform the Hubbard model to the spin language to identify
the comparable range of parameters. Under this transformation the hopping td becomes
equivalent to exchange terms that are proportional to J in Heisenberg model, and we
set J = 1. The random chemical potential ϵi acting on bosons translates to a random
magnetic field hi = ϵi/2. Thus we choose the Heisenberg model with the following
parameters,

Ĥ =
∑︂
i

[︃
sxi s

x
i+1 + syi s

y
i+1 + Jz

2 s
z
i s
z
i+1 + ϵi

2 s
z
i

]︃
. (C.14)

We set W = 6.5 that controls distribution of ϵi ∈ [−W,W ], and sweep through different
interaction strengths Jz since nearest neighbor interaction does not have a direct analog to
on-site Hubbard interaction. The Heisenberg model (C.14) conserves total magnetization,
allowing for the study of spin transport across a small step, in analogy with the mixed
state used in Eq. (4.40) in the main text.

A similar analysis to the one carried out in the main text results in the inverse dynamical
exponent 1/z(t) shown in Figure C.9. The data reveal much slower transport as compared
to the results of Figure 4.27 in the whole parameter range explored, suggesting that the
effect of the c-bosons cannot be accounted for by an emergent local interaction term
among disordered bosons. A possible explanation, then, is that the c-bosons effectively
act as a long-range interaction, justifying the faster transport observed for the two particle
species Hubbard model.
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Figure C.9: The inverse dynamical exponent as a function of the interaction strength
U . At small values of Jz, dynamics are extremely slow and oscillations complicate the
estimation 1/z on available timescales. For larger Jz ≥ 3, 1/z shows more regular behavior,
highlighting much slower transport in the Heisenberg chain compared to the two species
Hubbard model. The data are obtained averaging over 50 disorder realizations and using
a bond dimension χ = 256.

C.4.3 Dynamics at small density of clean bosons
In the main text, we reported the deviation from logarithmic entanglement growth as
a probe of delocalization at small, albeit extensive, bath size. Here we present some
additional data regarding the density profiles and the imbalance, as defined in Eq. (C.4).
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Figure C.10: The density profiles of both particle types show a clear trend suggesting
thermalization at large bath density. However, at νc = 1/24 ⟨n̂c,i⟩ keeps the characteristic
density wave structure and the d-bosons density profile is significantly farther from
relaxation than at larger densities. The imbalance confirms a monotonous slow down
of the relaxation towards thermal equilibrium as the bath density is decreased. The
density profiles are shown at the latest time reached by the νc = 1/6 simulation, the most
expensive, T = 16. The value of the coupling is fixed to U = 6.
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Figure C.10 (a) and (b) show the behavior of d-bosons. In panel (a) we compare the
density profile for different bath densities νc ∈ [1/24, 1/6] at fixed U = 6 and W = 6.5.
The relaxation of the initial density wave towards equilibrium becomes monotonously
more pronounced as the density νc is increased, in agreement with the results of the main
text. A similar phenomenology can be observed in the dynamics of the imbalance, that
shows much faster decay at νc = 1/6 compared to νc = 1/24.

The bottom panels in Fig. C.10 are dedicated to the c-bosons. Similarly to the disordered
particles, the density wave is substantially smeared at large c-bosons density, while at
νc = 1/24 large regions with nearly zero density of clean bosons are visible. Panel (d)
reveals that at every bath size explored in this work the imbalance of the c-bosons (Ic)
decays in time, although in a slower fashion at smaller bath densities.

Finally, we analyze the connected correlation function of c-bosons. The data shown in
the main text leads to hypothesis that the deviation from logarithmic growth of the
entanglement entropy could be generated by a significant correlation among the different
c-bosons. To check this hypothesis, we studied the behavior of density-density connected
correlation function among different sites lp and l

′
p, where distance between sites lp and

l′p corresponds to the initial position of adjacent c-bosons. The results are shown in
Figure C.11. The density-density correlations start growing at progressively earlier times
as the density νc is increased and the correlation function crosses the threshold value
ε = 10−4 (dashed line) at a timescale τcc scaling in bath size with the power-law observed
for the onset of the deviation of entanglement growth from logarithmic. This indeed
suggests that correlations among clean bosons may be responsible for the onset of more
rapid entanglement growth shown in Fig. 4.28 in the main text. Also, consistent with all
other probes, the connected correlation function for the lowest density case, νc = 1/24,
does not cross the threshold value ε within the available simulation time.
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Figure C.11: Density-density connected correlations among different c-bosons at fixed
U = 6. The characteristic time at which they become larger than ε = 10−4 defines
an additional timescale τcc(νc) that shows approximate power-law dependence on νc,
τcc ∝ 1/νkc with k ≈ −2.53 for larger values of νc. For the smallest density νc = 1/24,
correlations may be speculated to show signatures of saturation to a value much smaller
than ε, but longer times are needed to support this conclusion.
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