Discrete & Computational Geometry
https://doi.org/10.1007/s00454-022-00476-8

®

Check for
updates

Computing the Multicover Bifiltration

René Corbet’® - Michael Kerber? - Michael Lesnick® - Georg Osang*

Received: 31 July 2021 / Revised: 15 June 2022 / Accepted: 28 June 2022
© The Author(s) 2023

Abstract

Given a finite set A C R?, let Cov, x denote the set of all points within distance r to
at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of
spaces that grow larger when r increases or k decreases, called the multicover bifil-
tration. Motivated by the problem of computing the homology of this bifiltration, we
introduce two closely related combinatorial bifiltrations, one polyhedral and the other
simplicial, which are both topologically equivalent to the multicover bifiltration and
far smaller than a Cech-based model considered in prior work of Sheehy. Our poly-
hedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang,
and can be efficiently computed using a variant of an algorithm given by these authors.
Using an implementation for dimension 2 and 3, we provide experimental results. Our
simplicial construction is useful for understanding the polyhedral construction and
proving its correctness.
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1 Introduction

Let A be a finite subset of RY, whose points we call sites. For r € [0, c0) and an
integer k € N = {0, 1, 2, ...}, we define

Cov, y :=1{b e R? | ||b — al| < r for at least ksites a € A}.

Thus, Cov;, x is the union of all k-wise intersections of closed balls of radius r centered
at the sites; see Fig. 1. Define a bifiltration to be a collection of sets

C := (Cr k) (r,k)€[0,00)xN

such that C, y € C, p» whenever r < r” and k > k’. Clearly, the sets

Cov := (Cov, k) (r,k)€[0,00) xN

form a bifiltration. This is known as the multicover bifiltration. It arises naturally in
topological data analysis (TDA), and specifically, in the topological analysis of data
with outliers or non-uniform density [16, 28, 46].

We wish to study the topological structure of the bifiltration Cov algorithmically in
practical applications, via 2-parameter persistent homology [11]. For this, the natural
first step is to compute a combinatorial model of Cov, that is, a purely combinatorial
bifiltration C which is topologically equivalent to Cov. This step is the focus of the
present paper. For computational efficiency, C should not be too large.

In fact, we propose two closely related combinatorial models C, one polyhedral
and one simplicial. The polyhedral model is a bifiltration of the rhomboid tiling, a
polyhedral cell complex in R4*! recently introduced by Edelsbrunner and Osang to
study the multicover bifiltration [28]. Edelsbrunner and Osang have given an efficient
algorithm for computing the rhomboid tiling [29], and this adapts readily to compute
our bifiltration. We use the simplicial model to prove that the polyhedral model is
topologically equivalent to Cov.

1.1 Motivation and Prior Work

For k = 1 fixed, (Cov,, 1)r€[0,00) 1s the well-known offset filtration (also known as
the union of balls filtration), a standard construction for analyzing the topology of a
finite point sample across scales [27]. It is a central object in the field of persistent
homology. While the persistent homology of this filtration is stable to small geometric
perturbations of the sites [21], it is not robust with respect to outliers, and it can be
insensitive to topological structure in high density regions of the data.
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Fig. 1 The 2- and 3-fold cover of a few points with respect to a certain radius. The first homology of the
2-fold cover is trivial, while the first homology of the 3-fold cover is non-trivial

Within the framework of 1-parameter persistent homology, there have been many
proposals for alternative constructions which address these issues. These approaches
include the removal of low density outliers [10], filtering by a density function [7, 17,
18], distance to measure constructions [1, 9, 16, 31], kernel density functions [44],
and subsampling [4]. A detailed overview of these approaches can be found in [6].

Several of these constructions have good stability properties or good asymptotic
behavior. However, as explained in [6], all of the known 1-parameter persistence
strategies for handling outliers or variations in density share certain disadvantages:
First, they all depend on a choice of a parameter. Typically, this parameter specifies a
fixed spatial scale or a density threshold at which the construction is carried out. In the
absence of a priori knowledge about the structure of the data, it may be unclear how to
select such a parameter. And if the data exhibits topological features at multiple spatial
or density scales, it may be that no single parameter choice allows us to capture all
the structure present in the data. Second, constructions that fix a scale parameter are
unable to distinguish between small spatial features and large ones, and constructions
that fix a density or measure parameter are unable to distinguish features in densely
sampled regions of the data from features involving sparse regions.

A natural way to circumvent these limitations is to consider a 2-parameter approach,
where one constructs a bifiltration from the data, rather than a 1-parameter filtration
[11]. The multicover bifiltration is one natural option for this. Alternatives include
the density bifiltrations of Carlsson and Zomorodian [11], and the degree bifiltrations
of Lesnick and Wright [41]; again, we refer the reader to [6] for a more detailed
discussion. Among these three options, the multicover bifiltration has two attractive
features which together distinguish it from the others. First, its construction does not
depend on any additional parameters. Second, the multicover bifiltration satisfies a
strong stability property, which in particular guarantees robustness to outliers [6].

There is a substantial and growing literature on the use of bifiltrations in data analy-
sis. Most approaches begin by applying homology with coefficients to the bifiltration,
to obtain an algebraic object called bipersistence module. In contrast to the 1-parameter
case, where the algebraic structure of a persistence module is completely described by
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a barcode [51], it is well known that defining the barcode of bipersistence modules is
problematic [11]. Nevertheless, one can compute invariants of a bipersistence module
which serve as useful surrogates for a barcode, and a number of ideas for this have
been proposed [11, 14, 32, 41, 49].

Regardless of which invariants of the multicover bifiltration we wish to consider, to
work with this bifiltration computationally, the natural first step is to find a reasonably
sized combinatorial (i.e., simplicial or polyhedral) model for the bifiltration. With
such a model, recently developed algorithms such as those described in [36, 42] can
efficiently compute minimal presentations and standard invariants of the homology
modules of the bifiltration.

In the 1-parameter setting, there are two well-known simplicial models of the off-
set filtration. The Cech filtration, is given at each scale by the nerve of the balls; the
equivalence of the offset and Cech filtrations follows from the Persistent Nerve The-
orem. For large point sets, the full Cech filtration is too large to be used in practical
computations. However, the alpha filtration (also known as the Delaunay filtration)
[25, 27] is a much smaller subfiltration of the Cech filtration which is also simplicial
model for the offset filtration. It is given at each scale by intersecting each ball with
the Voronoi cell [50] of its center, and then taking the nerve of the resulting regions.
For d small (say d < 3), the Delaunay filtration is readily computed in practice for
many thousands of points.

Itis implicit in the work of Sheehy [46] that the multicover bifiltration has an elegant
simplicial model, the subdivision-Cech bifiltration, obtained via a natural filtration on
the barycentric subdivision of each Cech complex; see also [12, App. B] and [6,
Sect. 4]. However, the subdivision-Cech bifiltration has exponentially many vertices
in the size of the data, making it even more unsuitable for computations than the
ordinary Cech filtration.

Edelsbrunner and Osang [28] therefore seek to develop the computational theory
of the multicover bifiltration using higher-order Delaunay complexes [26, 38], taking
the alpha filtration as inspiration. Assuming the sites are in general position, they
define a polyhedral cell complex in RY*! called the rhomboid tiling, which contains
all higher-order Delaunay complexes as planar sections. Using the rhomboid tiling,
they present a polynomial time algorithm to compute the barcodes of a horizontal or
vertical slice of the multicover bifiltration (i.e., of a one-parameter filtration obtained
by fixing either one of the two parameters r, k). The case of fixed r and varying k is
more challenging because the order-k Delaunay complexes do not form a filtration. The
authors construct a zigzag filtration for this case. The problem of efficiently computing
2-parameter persistent homology of the multicover bifiltration is not addressed by [28].

We note that the subdivision-Cech bifiltration is more general than the rhomboid
tiling: the rhomboid tiling is defined only for Euclidean data, whereas the topological
equivalence of the subdivision-Cech and multicover bifiltrations extends to data in any
metric space where finite intersections of balls are contractible.
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1.2 Contributions

We introduce the first efficiently computable combinatorial models of the multicover
bifiltration Cov. First, we introduce a simplicial model, whose construction is based
on two main ideas: In order to connect the higher-order alpha complex constructions
for (r,k) and (r,k + 1), we simply overlay their underlying covers to a “double-
cover”, whose nerve is a simplicial complex that contains both alpha complexes. This
yields a zigzag of simplicial filtrations. The second main idea is that this zigzag can
be “straightened out” to a (non-zigzaging) bifiltration, simply by taking unions of
prefixes in the zigzag sequence. This straightening technique has previously been
used by Sheehy to construct sparse approximations of Vietoris—Rips complexes [47].
Together, these two ideas give rise to a bifiltration S-Del of simplicial complexes.

The bifiltration S-Del can also be obtained directly as the persistent nerve of a
“thickening” of Cov constructed via mapping telescopes. This observation leads to a
simple proof of topological equivalence (i.e., weak equivalence; see Sect. 2) of Cov
and S-Del via the Nerve Theorem. It follows that the persistent homology modules of
Cov and S-Del are isomorphic.

Our second contribution is to show that the rhomboid tiling as defined in [28] also
gives rise to a (non-zigzaging) bifiltration of polyhedral complexes that is topologically
equivalent to the multicover. We proceed in two steps: First, we slice every rhomboid at
eachinteger value k (slightly increasing the number of cells) and adapt the straightening
trick used to construct S-Del. We prove the topological equivalence of this construction
with the multicover bifiltration by relating the slice rhomboid filtration with S-Del.
The main observation is a one-to-one correspondence of maximal-dimensional cells
in both constructions, which leads to a proof via the Nerve Theorem. Second, we relate
the sliced and unsliced rhomboid tilings at every scale via a deformation retraction.

We give size bounds for both of the bifiltrations we introduce. For 7 points in R?,
we show that their size is O (n9*!). This is a decisive improvement over Sheehy’s
Cech-based construction, which has exponential dependence on 7.

An efficient algorithm for computing rhomboid tilings has recently been presented
in [29]; hence, using the accompanying implementation RHOMBOIDTILING of this algo-
rithm, our second contribution gives us an efficient software to compute a bifiltration
of cell complexes equivalent to Cov, currently for points in R? and R3. We combine
this implementation with the libraries MPFREE and RIVET to demonstrate that mini-
mal presentations of multicover persistent homology modules can now be efficiently
computed, often within seconds, as can invariants such as the Hilbert function.

2 Background
2.1 Filtrations

For P a poset, define a (P-indexed) filtration to be a collection of topological spaces
X = (X)pep indexed by P, such that X, € X, whenever p < g € P.For example,
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an N-indexed filtration X is a diagram of spaces and inclusions of the following form:
Xo—=> X1 = Xo—> .-

A morphism ¢: X — Y of P-indexed filtrations is a collection of continuous maps
(¢p: Xp — Y})pep which commute with the inclusions in X and Y. In the language
of category theory, a P-indexed filtration is a functor P — Top whose internal maps
are inclusions, and a morphism is a natural transformation.

Recall that the product poset P x Q of posets P and Q is defined by taking
(p,q) < (p',q) ifand only if p < p’ and ¢ < ¢'. When P is the product of two
totally ordered sets, we call a P-indexed filtration a bifiltration.

In the classical homotopy theory of diagrams of spaces, there is a standard ana-
logue of the notion of homotopy equivalence for diagrams of spaces, called weak
equivalence. We now define a version of this for P-indexed filtrations: A morphism
of filtrations ¢: X — Y is called an objectwise homotopy equivalence if each
¢p: Xp — Yp is a homotopy equivalence. If there exists a finite zigzag diagram
of objectwise homotopy equivalences

X—>Z1«<Zy—> -<«—Zy1—>7Z,«<7Y

connecting X and Y, then we say that X and Y are weakly equivalent. The terminology
originates from the theory of model categories [23, 34]. See [5, 39, 45] for discussions
of weak equivalence of diagrams in the context of TDA.

Remark 2.1 To motivate the consideration of zigzags in the definition above, we note
that for X and Y a pair of weakly equivalent P-indexed filtrations, there is not neces-
sarily an objectwise homotopy equivalence f: X — Y. Forexample,let P = R, X be
the offset filtration on {0, 1} C R, and Y be the nerve filtration of X. It is easy to check
that there is no objectwise homotopy equivalence f: X — Y. On the other hand, it
follows from the Persistent Nerve Theorem 2.3 that X and Y are weakly equivalent.
Moreover, one can construct a similar example of weakly equivalent filtrations for
which there is no objectwise homotopy equivalence in either direction.

An objectwise homotopy equivalence ¢: X — Y induces isomorphisms on the
persistent homology modules of X and Y. Hence, weakly equivalent filtrations
have isomorphic persistent homology modules. We say a P-indexed filtration X is
Euclidean if X, C R" for some n and all p € P.

2.2 The Persistent Nerve Theorem

A cover of X C R" is a collection ¥ = {X'},c; of subsets of X whose union is X.
The nerve of X is the abstract simplicial complex

Nrv(X) = {o CI‘ BES 7&@}.

ieo
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Fig.2 Left: A bifiltration of good covers over {1 < 2 < 3} x {3 < 2 < 1}. Right: A bifiltration consisting
of the nerves of the covers. The Persistent Nerve Theorem ensures that not only the individual spaces at
scales (n, m) are homotopy equivalent, but also that the two bifiltrations are weakly equivalent.

We say that the cover is good if it is finite and consists of closed, convex sets [27].

One version of the Nerve Theorem asserts that X and Nrv(X) are homotopy equiv-
alent whenever X is a good cover of X [27, 40]. It is TDA folklore that this version of
the Nerve Theorem can be extended to a persistent version; a proof appears in [3]; see
also [19] for formulation of the Persistent Nerve Theorem in terms of open covers. In
order to state the Persistent Nerve Theorem for closed, convex covers, we first extend
the definition of a cover.

Definition 2.2 (cover of a filtration) Let P be a poset and X a P-indexed Euclidean
filtration. A cover of X is a collection X = {X'};es of P-indexed filtrations such
that for each p € P, {.’f;, | i € I}is a cover of X,. We say X is good if each

X, = {f{fp | i € 1}1is a good cover.

The definition of the nerve above extends immediately to yield a nerve filtration Nrv(X)
associated to any cover of a filtration.

Persistent Nerve Theorem 2.3 [3] Let P be a poset, X a P-indexed Euclidean fil-
tration, and X a good cover of X. There exists a diagram of objectwise homotopy
equivalences

X <— AX — Nrv(X).

As shown in [3], the intermediate filtration AX in the statement of the theorem can be
taken to be a homotopy colimit of a diagram constructed from X, just as in the proof
of the Persistent Nerve Theorem for open covers [19]. Note that if P is a singleton
set, the Persistent Nerve Theorem specializes to the classical version of the Nerve
Theorem mentioned above.
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Fig. 3 Left: The 2-fold cover of some points with respect to a certain radius overlapped with its Voronoi
diagram of order 2. Yor is combinatorially simpler than Cov. Right: The corresponding 3-fold cover
overlapped with its Voronoi diagram of order 3

2.3 Multicovers

As indicated in the introduction, the multicover bifiltration of a finite set A C R is
the (R x N°P)-indexed bifiltration Cov given by

Cov, :=1{b € RY | |b —a| < r for at least k points a € A},

where as above, N := {0, 1, 2, ... }. Note that Cov, o = RY forall r € [0, 00). Given
this, one may wonder why we allow & to take the value O in our definition of Cov.
As we will see in Sect. 4, this turns out to be convenient for comparing Cov to the
rhomboid bifiltration.

As a first step towards constructing a simplicial model of Cov, we identify a good
cover for Cov, j for fixed r and k. For A C A we define

Cov,(g) =1{be RY | |16 —al <rforalla e Z}.
Each Covr(X) is closed and convex. Letting
Cov, ;. :={Cov,(A) | A C A, |A| =k},
we have that Cov, ; is a good cover of Cov, ;. Hence by the Nerve Theorem, Cov,
is homotopy equivalent to Nrv(€ov, ;). For fixed k and r < r’, we have an inclusion
Nrv(€ov, ;) — Nrv(€ov, t).
Note that these nerves can be quite large: for large enough r, Nrv(€ov, ;) contains

("2') vertices. To obtain a smaller simplicial model of Cov, , we use the generalization
of Delaunay triangulations to higher-order Delaunay complexes. For a subset A C A

with |A| = k, define its order-kVoronoi region as

Vor(A) :=={beR?|||b—a| < ||b—al foralla € A, a € A\ A}.
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Del,» Del,»

Del, 3 Del, 3

Fig.4 Lefi: The Delaunay complexes of order 2 and 3 of our running example. Right: The construction of
the simplicial complex Delr 2. Del; 5 consists of the Delaunay complexes Del,- > and Del,- 3, and additional
mixed simplices connecting these. This connection arises from intersections of the 2- and 3-fold covers
restricted to their Voronoi diagrams of order 2 and 3, respectively

The set of all order-k Voronoi regions yield a decomposition of R? into closed convex
subsets having the same k closest points of A in common. This decomposition is called
the order-k Voronoi diagram [2, 30]. We denote it as Vory.

For any r € R and k € N, intersecting each order-k Voronoi region with the
corresponding multicovered region of fixed radius r yields the following good cover
of Cov, j:

Vot ; := {Cov,(A) N Vor(A) | A C A, |A| = k}.

For an illustration, see Fig. 3. The nerve of Yot, , which we will denote Del, f,
is called an order-k Delaunay complex. By the Nerve Theorem, Del, ; and Cov,
are homotopy equivalent. Note that Del, | is the alpha complex of radius r [25, 27],
whereas Del, o is a single point for all r € [0, co). A different but related concept
is the order-k Delaunay mosaic, which is the geometric dual of the order-k Voronoi
diagram [28]; see Sect. 4.

3 A Simplicial Delaunay Bifiltration

For fixed r > 0, we have inclusions

- < Cov, 2 = Cov, 1 — Cov, ,
but there are no analogous inclusions Del, y < Del, x—; between the higher-order
Delaunay complexes. Indeed, we do not even have inclusions of the vertex sets. Con-
sequently, (Bot, 1) (- k)e[0,00)xN is not a bifiltered cover of Cov. To correct for this,
we first define

If)\élr,k = Nrv (Uor, U Dot t41).
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Fig.5 S-Del, 7 is the union of all ]ﬂ)seil,’i, i > 2. We have that S-Del, ; = ¢ for k greater than the number
of sites in A. Thus, in this case, Del, ; is empty for k > 5

See Fig. 4 for an illustration. Note that Yot, ; U Yot, ;41 covers the same space as
Uor, ; and that we have inclusions

Del; 41 < If)\e/lr‘k < Del, .

Letting n := | A|, we see that ]%r,n = Del, , and ]/Dar,k = @ for all k > n. We now
define a ([0, co) x N°P)-indexed simplicial bifiltration S-Del by

n
S-Del, x := U]f)\é/lr,i = Ulf)\e/l,,,-.
i>k i=k

For an illustration, see Fig. 5. Note that S-Del, x is generally not equal to the nerve of
the union of all Yor, ;, i > k, which is a much larger object.

3.1 Weak Equivalence of Cov and S-Del
Theorem 3.1 The multicover bifiltration Cov is weakly equivalent to S-Del.

Proof Our proof strategy is similar to ones used for sparse filtrations [13, 48]. We
will observe that S-Del is isomorphic to the nerve of a good cover of a bifiltration X
which is weakly equivalent to Cov. The result then follows from the Persistent Nerve
Theorem.

Define X, ;  R4*t! by

n
Xex = JCovri x [i,i +1].
i=k
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We can think of X, ; as a mapping telescope [33, Sect. 3.F] of the sequence
Cov, , = Cov, y—1 < -+ < Cov, .

Identifying Cov,  with Cov, x x {k}, we have a deformation retraction X, y — Cov,
given by (x, y) — (x, k) for (x,y) € R? x R. Letting » and k vary, the spaces X,
assemble into a ([0, co) x N°P)-indexed bifiltration X, and the deformation retractions
X, x — Cov, ; assemble into an objectwise homotopy equivalence X — Cov. Since
the Cartesian product of two convex sets is convex, the set

X ={U x[i,i+ 11| U € Dor,;, k <i <n}

is a good cover of X, i, and the collection of all such covers as r and k varies assembles
into a good cover X of X.

To finish the proof, we observe that Nrv(X) is isomorphic to S-Del. First, note that
vertices of Nrv(X, ;) correspond bijectively to non-empty elements of

n
|_| gz]Utr,i’
i=k

as do vertices of S-Del, ;. This gives us a bijection from the vertex set of Nrv(X, ) to
the vertex set of S-Del, ;. It is easily checked that this bijection is in fact a simplicial
isomorphism ¢, x : Nrv(X, ) — S-Del, . These isomorphisms are natural in r and k,
so assemble into an isomorphism from Nrv(X) to S-Del. O

3.2 Truncations of S-Del

When the point cloud is large, it may be computationally difficult to construct the full
bifiltration S-Del. We instead consider, for K € N, the bifiltration S-Del=X constructed
in the same way, but disregarding all order-k Voronoi cells with & > K,

S-Dels¢ = | J Del,,.
K—-1>i>k

Note that S-Del=l4l = S-Del. Viewing S-Del=X as a ([0, 0c0) x {0, ..., K}°P)-in-
dexed bifiltration, the proof of Theorem 3.1 adapts immediately to show that S-Del=X
is weakly equivalent to the restriction of Cov to [0, c0) x {0, ..., K}°P.

3.3 Size of S-Del

By the size of a bifiltration X, we mean the number of simplices in the largest simplicial
complex in X. If the sitess A C R? are not in general position, the size of S-Del=K
can be huge; indeed, if all points of A lie on a circle in R2 and r is at least the radius
of this circle, then Del, ; has 2G) simplices, so S-Del=X is at least as large. However,
if A is in general position, then the situation is far better:
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Proposition 3.2 Let A C RY be a set of n sites in general position, with a constant
dimension d. Then S-Del=X has size O (n\@+D/21 gTE@+D/21) 1y particular, S-Del
has size O (n?Th.

In contrast to Proposition 3.2, the number of vertices in Sheehy’s subdivision-Cech
model [46] grows exponentially with 7, regardless of whether A is in general position.

In brief, the idea of the proof is to bound the number of maximal simplices in
S-Del=X using a bound of Clarkson and Shor on the number of Voronoi vertices
at levels < k [20]. The result then follows by observing that the dimension of the
complex is a constant that only depends on d. However, this dependence on d is
doubly exponential, so the O-notation hides a large factor if d is large. We now give
details of the proof.

For k € N, and a bifiltration X, we let X x denote the largest simplicial complex
of the form X, 4, provided this exists. In the following lemmas, A C R? is assumed
to be in general position.

Lemma 3.3 Forall k € N, we have

) ( d+1 )
dim(Delso k) < .
[(d+1)/2]

Proof A simplex o0 € Dely x is a set of order-k Voronoi regions with a point of
common intersection. Let x be such a point. Each order-k Voronoi region R € o is
indexed by a subset of A with k elements, which we denote as sites(R). Let

s =min{r > 0| x € Cov, },
Aon={peAllp—x|=s},
Ain={pe€Alllp—xll <s}

By minimality of s, we have |Ajy| < k, and by the assumption of general position,
we have |Aon| < d + 1. Moreover, for all R € o, we have Aj, C sites(R) and
sites(R) C Ajn U Agn. Thus

dim(0)§< |Aonl )_15( d+1 >§< d+1 ) g
k — [ Ain| k = [Ain] L(d +1)/2]

Lemma3.4 Forall K € N, we have

dim(S-DelfK)fz( d+1 )
L(d+ 1)/2]

Proof We first observe that

— d+1
dim (Del < dim(Del dim (Del <2 ,
im (Deloo k) < dim (Delog ) + dim (Deloo k41) < (L(d+l)/2j>

by noting that the dimension on the left is upper bounded by the sum of the max-
imal number of order-k Voronoi regions and order-(k 4+ 1) Voronoi regions that
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meet at a fixed point in R?. Since these two summands equal dim (Delo ) — 1 and
dim(Dels k+1) — 1, we have the first inequality, and the second one follows from
the previous Lemma 3.3. Since each simplicial complex in S-Del=X is a union of
simplicial complexes ]5\éllr, k» it follows that

dim (S-Del=X) < 2( d+1 )
L(d+1)/2]

as desired. O

Lemma 3.5 Ifn > d, then for any k € N, the number of maximal simplices in If)\eJloo,k
is at most Vy + Vi41, where Vi, Viy1 denote the number of Voronoi vertices at level
k or k + 1, respectively.

Proof Recall that Vorg and Vorg| denote the order-k and order-(k 4+ 1) Voronoi dia-
grams, respectively. Let Vorg 1,2 denote their overlay, i.e., the polyhedral subdivision
of R" induced by the closed polyhedra of the form R N S, where R and S are Voronoi
regions of order k such that dim (R N §) = d. The subdivision Vory 11,3 is called the
Voronoi diagram of degree-(k + 1) [28]. It has been studied in [30].

Maximal simplices of lf)\elloo,k correspond bijectively to cells in Vorg/, with no
proper faces. We claim that the only such cells are vertices. If k € {0, n — 1, n}, then
either Vor, or Vory 1 contains only the region R?, and it is clear that the claim holds.
For 0 < k < n — 1, we observe that since A is in general position and n > d, each
cell of either Vory or Voryy is bounded by a vertex, which implies that each cell of
Voryy1/2 is bounded by a vertex. The claim follows.

To finish the proof, we will show that the vertex set of Voryy1,; is the union of the
vertex sets of Vory and Vorg 1. It suffices to show that for any cell ¢ C R¥ of Vor
withdim(o) < d, o is contained in a cell of Vory1; then Vori 1,2 does not subdivide
the (d — 1)-skeleton Vory, implying that no new vertex is created.

Let x € 0. As in Lemma 3.3, we let

s =min{r > 0| x € Cov, },
Am={peAllp—x|=s}
Ain={pe€Alllp—xll <s},

and we note that |Aj,| < k. Moreover, since dim(c) < d, we have |Agy| > 2. The set
of order-k Voronoi regions containing x (and hence any y € o) is

{(Vor(Ain UA) | A C Aon, |A| = k —i}.

Therefore Aon and Aj, are independent of our choice of x € o. Hence, for any x € o,
the set of order-(k 4 1) Voronoi regions containing x is

(Vor(Ain UA) | A C Ao, |Al =k +1—i}.
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The intersection of these Voronoi regions is the closure of a cell of Vorgy| which
contains o. (In fact, similar reasoning shows that if |Ajn| 4+ |Aon| > k+ 2, theno is a
cell in Vorg1, though this is not needed for the argument.) O

Proof of Proposition 3.2 Assume that n > d. Since
K—1
S-Del=K = U Deloo £,
k=0

Lemma 3.5 implies that the number of its maximal simplices is at most
M+VD+ Wi+ V) +...4+ (Vk-1 + Vi) =2V,

where V<g is the number of Voronoi vertices at levels < k. Since the number of
simplices of a d-dimensional simplicial complex with m maximal simplices is at most
2¢+1 1, Lemma 3.4 implies that the size of S-Del=X is bounded above by

d+1
22([(d+1)/2j)+1 -Vek.

Since the dimension bound only depends on the constant d, it is therefore enough to
bound V<g.

By a result of Clarkson and Shor [20], we have that e<g, the number of Voronoi
regions (i.e., d-dimensional Voronoi cells) at levels < K is

ek = 0(|A|L(d+1)/2jKT(d+1)/21).
This bound hides a constant that depends doubly exponentially in d. Moreover, by a
counting argument appearing in [24, Theorem 3.3], we have that the total size of the
Voronoi diagram at level & is bounded by

O(max{e; |k—d+1<i<k+4+d-2})

with e; the number of Voronoi regions at level i. The same bound applies to Vj as well.
A simple calculation shows that V< is then bounded by (2d — 2)e<x = O(e<k).O

4 The Rhomboid Bifiltration

4.1 The Rhomboid Tiling

Let A € R? be a set of n sites in general position, and S an arbitrary (d — 1)-sphere
in R4, Then S yields a decomposition A = Aj, U Aop U Aout With Ajy, the sites in the
interior of S, Aoy the sites on the sphere, and Ay the sites in the exterior of S. We

define the combinatorial rhomboid of S to be the collection of sets

ps = {AnUA | A C Ag). (1
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0
a b cd e k=1
ab bc cd de k=2
abc bed cde k=3
abcd bcde =4
abcde k=5

Fig. 6 The rhomboid tiling of five points on the real line. The highlighted 2-rhomboid p defined by
Ain(p) = {c}and Aon(p) = {b, d} is the convex hull of the points c, bc, cd, and bed, simplifying the labels
here and, e.g., writing bcd instead of the cell complex associated to {b, ¢, d}. The horizontal line at depth
k intersects the tiling in the order-k Delaunay mosaic

We call elements of pg combinatorial vertices, and call
Rhomb(A) = {ps | S is a sphere in Rd} 2)

the (combinatorial) rhomboid tiling of A. Elements of Rhomb(A) are called rhom-
boids. Since A is fixed throughout, we write Rhomb instead of Rhomb(A).

Asobserved in [28], the combinatorial thomboid tiling can be geometrically realized
as a polyhedral cell complex [37, Definition 2.38]. For that, a combinatorial vertex
{ai, ..., ar}(whereay, ..., ayare sitesian) isembedded as (Z{‘(:l a;, —k) inRI+L,
We call k the depth of the vertex. Embedding a combinatorial rhomboid as the convex
hull of its embedded vertices yields an actual rhomboid in R?*! whose dimension
equals the cardinality of Aoy, in the corresponding partition of A. The collection of
these rhomboids is the (geometric) rhomboid tiling for A. We illustrate the construction
in Fig. 6. In what follows, we identify vertices and rhomboids with their combinatorial
description. In particular, we will use Rhomb both for the combinatorial and the
geometric thomboid tiling.

Proposition 4.1 ([43, Proposition 4.8] and [24, Sect. 1.2]) The number of cells (of
all dimensions) in Rhomb is at most

2d+1 (n+ l)d—i-l

ES <2(n+ D,

For any thomboid p € Rhomb, we let
rp, = inf {r | there exists a sphere § of radius r such that pg = p}.
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It is easily checked that if p’ is a subset of p, then ry < 1p, and therefore, for any
r > 0, the sublevel set Rhomb, = {p € Rhomb | r, < r} is also a polyhedral
complex.

4.2 Slicing

Next, we slice the rhomboid tiling by cutting every rhomboid along the hyperplanes
{x € R | —x441 = k) withk = 0, ..., n. In this way, a rhomboid decomposes
into its intersections with these hyperplanes and with slabs of the form {x € RZ*! |
k < —xg441 < k + 1}. The resulting polyhedra again form a polyhedral complex that
we call the sliced rhomboid tiling S-Rhomb. We refer to its cells as sliced rhomboids.

For a sliced rhomboid p, we define k, as the minimum depth among its vertices.
Moreover, there is a unique (unsliced) rhomboid p’ of smallest dimension that con-
tains p, and we define r, := r,. Define

S-Rhomb;, ; := {p € S-Rhomb | r, <r, k, > k}

and observe that for r < 7" and k > k’, we have S-Rhomb, ; € S-Rhomb, ;. Hence,
(S-Rhomb; &) (r.k)e[0,00)xNop 1 a bifiltration of combinatorial cell complexes. Again,
we will abuse notation and use the symbol S-Rhomb both for the sliced rhomboid tiling
and the bifiltration (S-Rhomb, 1) k)e[0,00)xNop. As shown in [28], the restriction of
S-Rhomb to cells in the hyperplane —x44+1 = k is the order-k Delaunay mosaic, i.e.,
the geometric dual of the order-k Voronoi diagram.

4.3 Comparison of S-Rhomb and S-Del

The next lemma establishes a close relationship between the bifiltrations S-Rhomb
and S-Del. It is closely related to [28, Theorem 1 and Lemma 2].

Lemma4.2 Forall (r,k) € [0, 00) x N,

(1) the vertex sets of S-Rhomb, y and S-Del, y are equal;
(i) the vertices of each sliced rhomboid in S-Rhomb, i span a simplex in S-Del, j;
(iii) the vertices of each simplex in S-Del, y are contained in a sliced rhomboid of
S-Rhomb; .

Proof For the first part, note that a set of sites v = {aj,...,ar} is a vertex in
S-Rhomb;, ; if and only if &’ > k and for all > r there is a sphere S of radius
at most r’ whose associated decomposition A = Ajy U Aoy LI Aoy satisfies

Ain Cv C Ajp U App. 3)
Note that (3) holds if and only if the center of S has v among its k” closest sites,
which is equivalent to the condition that the order-k’ Voronoi region Vor(v) contains

the center of S. Thus, such a sphere S exists if and only v is a vertex of Del, .
Thus, v € S-Rhomb;,  if and only if " > k and v € Del,» ;s for all ¥ > r. But the
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latter holds if and only if v € S-Del, ; because, first, the vertex sets of S-Del, ; and
|li/=x Del,s x are equal and, second, v € S-Del, ; forall 7’ > r implies v € S-Del, .
Thus, the vertex sets of S-Rhomb;, ; and S-Del, ; are equal, as claimed.

For the second part, let vy, ..., v, denote the vertices of a sliced rhomboid in
S-Rhomb; . Let p denote the smallest rhomboid of Rhomb containing this sliced
rhomboid. For any r’ > r, there exists a sphere S of radius at most r’ with ps = p.
Let x denote the center of S and A = Aj, U Aon L Aoy be the decomposition with
respect to S. Now, each v; is the union of A;, with a subset of Ay, and hence, the point
x belongs to the Voronoi region of v;. Since i is arbitrary, it follows that all Voronoi
regions intersect, and x has distance < r’ to each site in each v;, so vy, ..., v, span a
simplex in S-Del, ;. Since this holds for all #" > r, this simplex is also contained in
S-Del; k.

For the third part, consider vertices vy, ..., v, that span a simplex in S-Del, .
Assume that some v; has order K’ > k and that the remaining vertices are of order k’
or k' — 1. Since vy, ..., v, span a simplex, the corresponding higher-order Voronoi
regions, intersected with balls of radius r around the involved sites, have non-empty
intersection. Let x be a point in this intersection.

If K = 0, then m = 1 and v| = . As {fJ} is a combinatorial rhomboid of dimen-
sion 0, the desired result holds in this case. If k¥’ = 1 and x is a site, then either m = 1
and v; = {x}, or else m = 2, in which case {v(, v2} = {{x}, ¥}. In either case, the
desired result again holds.

Otherwise, there is smallest sphere S centered at x that includes &’ sites (either
on the sphere or in its interior). S induces a partition A = Aj, U Aop Ll Aoy and a
rhomboid p. Each vertex v; of order k¥’ must contain all sites of Aj,, and some subset
of the sites of Ay, meaning that v; is in p. Furthermore, at least one site lies on S;
otherwise, there would be a smaller sphere. This implies that each vertex v; of order
k' — 1 also has to contain all sites of A;, and some subset of Ao,. Thus, all vertices lie
in p, and in particular in its (k" — 1, k")-slice. Finally, observe that because one of the
sites lies on S, the radius of S is the distance of that site to x, which is at most . O

Remark 4.3 Parts (i) and (ii) of Lemma 4.2 establish that we have a vertex-preserving
injection J from the cells of S-Rhomb;, ; to the simplices of S-Del, ;. Moreover, the
third part of Lemma 4.2 implies that 7 restricts to a bijection from the maximal cells
of S-Rhomb, 4 to the maximal simplices of S-Del, . Figure 7 illustrates that 7 itself
needn’t be a bijection.

We note that 7 does not preserve dimension: For v a cell of S-Rhomb spanned
by vertices of cardinality k (i.e., a cell in the order-k Delaunay mosaic), we have
dim(v) < d. Butif d > 3, it can be that dim (7 (v)) > d, even when the sites are in
general position. For a cell v of S-Rhomb, 4 spanned by vertices of cardinality k£ and
k + 1, we may have dim(v) # dim (7 (v)) even for d = 2, see Fig. 7.

Theorem 4.4 The bifiltrations S-Rhomb and S-Del are weakly equivalent.

Proof We define good covers of both bifiltrations: First, for S-Rhomb, x, we choose
the cover that consists of all its cells. This is a good cover because the cells are convex.
The collection of these covers over all choices of » and k yields a good cover U of
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*(

exyZ

Fig. 7 An illustration of the difference between S-Del and S-Rhomb for three points in the plane. The
order-1 Voronoi regions of the points {x}, {y}, and {z} intersect in ¢, as do the order-2 Voronoi regions of
{x, v}, {y, z}, and {x, z}. Consequently, S-Del contains a 5-simplex, but the corresponding cell in S-Rhomb
on the same vertex set is a 3-dimensional triangular skew prism. Many simplices in S-Del do not correspond
to any cell in S-Rhomb, e.g., the 1-simplex {x, yz}

the bifiltration S-Rhomb, and the Persistent Nerve Theorem then gives objectwise
homotopy equivalences

S-Rhomb <— AU —> Nrv(U)

for some intermediate bifiltration AY{. Moreover, we obtain a cover V;, ; of S-Del,
whose elements are the simplices spanned by the vertices of the sliced rhomboids in
S-Rhomb;, . By the second part of Lemma 4.2, these cover elements indeed exist.
Moreover, in view of Remark 4.3, every maximal simplex of S-Del, x is an element of
V; k. We thus obtain a good cover V of S-Del. Applying the Persistent Nerve Theorem
again, we obtain objectwise homotopy equivalences

S-Del <— AV — Nrv(V).

Finally, Nrv(U/) and Nrv()) are isomorphic: The elements of / and of V are in 1-to-1
correspondence, with corresponding cover elements having the same vertex set. In
both cases, an intersection of cover elements is non-empty if and only if the elements
share a vertex, which is determined by their vertex sets. Hence, we have objectwise
homotopy equivalences

IR

S-Rhomb <— AU —> Nrv(U) —> Nrv(V) <— AV —> S-Del. o
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4.4 Unslicing the Rhomboid

Next, we define a bifiltration on the (unsliced) rhomboid tiling. Recall that for a
rhomboid p, we already defined r,, as the radius of the smallest sphere that gives rise
to that rhomboid. As in the sliced version, we define k,, as the minimal depth among
the vertices of p, and

Rhomb, ; :={p | r, <r, k, > k}.

This yields a bifiltration (Rhomb, 1) k)e[0,00)xNop, Which we denote by Rhomb.

Lemma 4.5 The bifiltrations Rhomb and S-Rhomb are weakly equivalent.

Proof For a rhomboid p in Rhomb, set ki, as the minimum depth and kp,x as the
maximum depth among the vertices in p. Note thatk, = kmin. Forr and &’ fixed, we say
pisdanglingifr, < r and kyjn < k" < kmax. If p is dangling then p ¢ Rhomb, j, but
some of the slices of p are contained in S-Rhomb, . In fact, all cells of S-Rhomb, ; not
contained in (the geometric realization of) Rhomb, j are of this form. For example,
taking k = 2 and r very large, the shaded rhomboid {c, bc, c¢d, bcd} of Fig. 6 is
dangling. S-Rhomb, > contains the cell {bc, cd, bcd} but Rhomb, > does not.

Observe that there is a deformation retraction of S-Rhomb, ; onto Rhomb, ; which,
for each dangling rhomboid p, “pushes”

pNix e R x> k)

onto the boundary of p; for instance, in the example above {bc, cd, bcd} is pushed onto
{bc, bcd} U {cd, bed}. Thus, for every choice of r and k, the inclusion Rhomb, ; —
S-Rhomb;, ; is a homotopy equivalence. Moreover, these inclusions commute with
the inclusion maps in Rhomb and S-Rhomb, hence define an objectwise homotopy
equivalence. O

Combining the previous lemma with Theorem 4.4 and Theorem 3.1 yields the follow-
ing result:

Theorem 4.6 The bifiltrations Rhomb and Cov are weakly equivalent.

Remark 4.7 (size of the rhomboid bifiltration) In view of Proposition 4.1, Rhomb
has at most 2(n + l)d‘"l = O(nd“) cells. One can also bound the size of a trun-
cated version of Rhomb, defined analogously to the truncation of S-Del considered in
Proposition 3.2. Indeed, Rhomb is clearly smaller (in terms of number of cells) than
S-Rhomb, and by Remark 4.3, S-Rhomb is at least as small as S-Del. Moreover, this
extends to truncations of these bifiltrations. Thus, the size bound of Proposition 3.2
also holds for truncations of Rhomb.

4.5 Computation

In [29, 43], a relatively simple algorithm is given for computing the rhomboid bifil-
tration. (In fact, [29] explicitly considers only the computation of the rhomboid tiling
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and the radius r, of each rhomboid p; the rhomboid bifiltration is not mentioned. But
it is trivial to extend the algorithm to compute the depth k, of each thomboid p, thus
computing the rhomboid bifiltration.)

We briefly outline the approach. Given a (d + 1)-dimensional rhomboid p, let
denote the intersection of p with the hyperplane k = k,+1. We call o the generation-1
slice of p. Note that o is a d-simplex. Given the combinatorial vertices of o, we
can easily recover p [29, Lem. 2]. The algorithm of [29] computes the rhomboid
tiling by computing the generation-1 slices of all (d + 1)-dimensional rhomboids.
For each k in increasing order, a weighted Delaunay triangulation Wy is computed
which triangulates the order-k Delaunay mosaic and has the same vertex set. Given the
vertex set, Wy can be computed via any algorithm for weighted Delaunay triangulation
computation, e.g., via a (d + 1)-dimensional convex hull computation [8, Sect. 4.4.4].
We explain below how the vertex set is computed.

A simple combinatorial criterion [29, Lem. 3] tells us whether a d-simplex in Wy is
a generation-1 slice of a rhomboid. Thus, one can efficiently identify all generation-1
slices in the triangulation by iterating through all the d-simplices of Wj. In this way,
we identify all (d + 1)-dimensional rhomboids p with k, = k— 1. It remains to explain
how the vertex set of Wy is computed. The vertices of W; are just the sites A. For
k > 2,[29, Lem. 3] establishes that every vertex v in Wy appears in a rhomboid p with
ko, < k — 2. We thus discover p, and hence v, by the time we finish processing Wj_;.

Complexity. The complexity of this algorithm is discussed in [29, Sect. 4]. While
an explicit runtime bound is not given, it is easy to extract naive bounds from the
discussion; we now do so. We distinguish between two contributions to the runtime:

— computing Wy at all levels k, given the vertices,
— checking, for each k, whether each d-simplex in Wy is a generation-1 slice and if
so, storing the corresponding rhomboid and its faces.

The latter requires O (k) time per d-simplex in Wi. Hence, since the rhomboid tiling
has size O(n¢t!) (see Remark 4.7), the total time required over all d-simplices is
0 (nd +2) .

The complexity of computing the triangulations Wy depends on a choice of algo-
rithm for computing weighted Delaunay triangulations. Some well-known algorithms
have output-sensitive complexity bounds. For example, in the case d = 3, a weighted
Delaunay triangulation of p points can be computed by the algorithm of [15] in time
O ((p + m) log?m), where m is the size of the output. In our setting, the total size of
all the Wy is 0(nd+1) because the size of each Wy differs from the size of the order-k
Delaunay mosaic by at most a constant factor. Hence for d = 3, which is arguably
the case of primarily interest, the total time to compute all of the triangulations Wy
is O(n*log®n). Therefore, the total cost of computing the rhomboid bifiltration is
own’ +n* logzn) = 0®).

For arbitrary d, the approach of [8, Sect. 4.4.4] computes the weighted Delaunay
triangulation of p points in RY in time O ( plog p+ pld/?1 ) In our setting, each vertex
of each Wy is a vertex of the thomboid tiling, so there are a total of O (n9t1) vertices
among all W. Thus, for d > 3 the time required to compute all Wy is O (n@+D14/21),
and the runtime of the full algorithm satisfies the same asymptotic bound. This bound
is rather large, but it seems likely that it could be improved via a more careful analysis.
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Implementation. The above algorithm has been implemented in the software pack-
age RHOMBOIDTILING' [29]. The code computes the sliced and unsliced bifiltra-
tions S-Rhomb and Rhomb as well as their free implicit representations (FIREPs), i.e.,
chain complexes [42]. RHOMBOIDTILING is written in C++, using the CGAL library? for
geometric primitives. The current version accepts only 2- and 3-dimensional inputs,
but all steps readily generalize to higher dimensions; adding support for higher-
dimensional inputs is a matter of software design rather than algorithm development.
That said, handing higher-dimension inputs of practical size is likely to be computa-
tionally expensive.

5 Experiments

We performed experiments on point sets in R? and R®. We provide a brief summary
here; for detailed results, see Appendix A. We sampled points uniformly at random
from [0, 1]2 and [0, 1]3, from a disk, from an annulus, and from an annulus with noise
added. We computed the rhomboid bifiltrations Rhomb=X and S-Rhomb=X_. We then
used MPFREE? to compute minimal presentations of 2-parameter persistent homology
of our bifiltrations.

In one set of experiments, we found that Rhomb=X is up to 47% smaller than
S-Rhomb=%X | and can be computed more than 20% faster. The experiments suggest
that the relative performance of Rhomb=X improves with increasing K.

We investigated the size of Rhomb=X | varying the sample size and the threshold K .
For d = 2, our experiments show a clear subquadratic growth of the size of Rhomb=X
and its FIREP with respect to increasing K. For d = 3, the growth is clearly subcubic.
These observations also extend to time complexity. Letting the number of points
increase, the size of Rhomb=X and its FIREP shows roughly linear growth for both
space dimensions, with a slight superlinear tendency. Again, we observed the same
behavior for the computation time.

We conclude this section with a data visualization enabled by the ideas of this paper:
Fori > 0, the ith Hilbert function assigns to each parameter (r, k) € R x N the rank
of ith homology module of Cov, ; (with coefficients in some fixed field). The Hilbert
functions are well known to be unstable invariants. Nevertheless, their visualization
can give us a feel for how the Lipschitz stability property of the multicover bifiltration
established in [6] manifests itself in random data. Figure 8 shows a few examples,
plotted using RIVET.*

1 https://github.com/geoo89/rhomboidtiling.

2 CGAL, Computational Geometry Algorithms Library, https://www.cgal.org.
3 https://bitbucket.org/mkerber/mpfree.

4 https://github.com/rivetTDA/.
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Fig. 8 An illustration of the first Hilbert function of the multicover bifiltration, using grayscale shading.
The instances are samples of an annulus (top), a noisy annulus (middle), and a disk (bottom). The sample
size is 100 in the left column, and 200 in the right column. Darkness of the shading is proportional to the
value of the Hilbert function, up to some maximum value, above which the shading is taken to be black;
the lightest non-white shade of gray corresponds to a Hilbert function value of 1

6 Conclusion

We have introduced a simplicial model for the multicover bifiltration, as well as a
polyhedral model based on the rhomboid tiling of [28]. For a data set of size n in R?
with d constant, the size of both constructions is O (nd'H). The size can be controlled
by thresholding the parameter k of the multicover bifiltration. An algorithm of [29]
computes the rhomboid bifiltration, and an implementation is available. In our experi-
mental results, this approach scales well enough to suggest that practical applications
could soon be within reach. A natural next step is to begin exploring the use of the
multicover bifiltration on real world data.

To obtain our combinatorial models of the multicover bifiltration, we begin with a
zigzag of filtrations, and then straighten it out by taking unions of prefixes. Notably,
one could in principle compute the persistent homology modules of the multicover
bifiltration without straightening out the zigzag, by inverting the isomorphisms on
homology induced by the inclusions Del, y < Del, . It seems plausible that this
approach could be computationally useful.

We are curious to learn which indecomposables typically arise in the persistent
homology modules of multicover bifiltration, and our approach could be used in con-
junction with existing algorithms [22, 35] to study this. It would also be interesting
to investigate whether there is an interplay between the geometry of a space and the
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multicover bifiltration of a noisy sample of this space; we wonder if invariants of
the bifiltration encode additional information about geometric properties, such as the
reach or differentiability.

Our experiments show a significant increase in the size of our models of multicover
bifiltration for increasing K. This suggests the need for refinements to our algorithmic
approach in order to handle large values of K. Aside from the truncations considered
in this paper, there are a couple of promising ways forward: One could construct a
coarsened bifiltration where some values of k are skipped. Alternatively, one could
make use of the inductive nature of our constructions: for the step from k to k + 1,
one does not need information about the bifiltrations at indices j < k. Therefore,
one could provide the bifiltration as an output stream without storing it completely
in memory. Subsequent algorithmic steps would then have to be implemented as
streaming algorithms as well.
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Appendix A: Details on Experiments
A.1 Implementation

Let us mention an important technicality in our pipeline for computing minimal pre-
sentations: In order to limit the size of the minimal presentations, we “snap” the radius
values of all generators and relations onto a set of 100 evenly spaced points in R. The
values of the parameter k are left unchanged. This snapping is done only after the
minimal presentation is computed. The snapping process in fact can make a minimal
presentation non-minimal, so after snapping, we re-minimize the presentation. All
reported results below are for minimal presentations computed using this pipeline.
The Hilbert functions shown in Fig. 8 were also computed from such “snapped” pre-
sentations.
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Table4 We sampled points of an annulus around a circle of radius 0.25

P err Snapped minpres size Relative size (%)
1 0.01 2015 0.38
1 0.04 1691 0.32
1 0.08 1526 0.29
1 0.12 5497 1.0
1 0.14 16,183 3.1
1 0.16 29,988 5.7
4 0.01 14,389 2.7
4 0.04 12,852 2.4
4 0.08 15,198 2.9
4 0.12 18,457 35
4 0.16 43,917 8.3
16 0.01 70,901 13
16 0.04 84,142 16
16 0.08 99,782 19
16 0.16 146,170 28
64 0.01 344,847 65
64 0.04 365,308 69
64 0.08 416,522 79
64 0.16 427,697 80
100 - 529,128 100

In total, we have 10,000 points whereas p% of these points are uniform noise in the surrounding box
[0, 112. The other points are sampled with a random perturbation per coordinate bounded by a number err.
We considered K = 8 as maximal value for k. The size of the snapped minimal presentation increases when
adding more uniform noise. It may increase more drastically within a certain range of p, i.e., for p € {1, 4},
starting at about at 0.12. We also observed a considerable variance of the individual results in such areas.
In particular, the size of the snapped minimal presentations is neither a linear, nor a sub- or superlinear
process. We regard this process mostly as a property of the snapping technique. Furthermore, when p is not
too big, the perturbations around each sampled point can be quite high, i.e., for p < 4 and err = 0.16, the
snapped minimal presentations are still of relative size 5.7% and 8.3%, respectively. Note that the samples
only stay inside the surrounding box [0, 112 iferr < 0.25

A.2: Experimental Output

We present the concrete outcome of some of our experiments. All results are averaged
over five runs with independently generated data sets. The sizes reflect the number of
elements of the corresponding set, and the times were measured in seconds. We give a
brief overview of the experiments, referring to the tables for further details. We were
curious about the practical improvements from S-Rhomb to Rhomb. We documented
these for a few values of n and K in the plane. The sizes of their truncated versions
both grow linearly in the number of points. See Table 1 for more refined results. In
further experiments, we only used Rhomb. Table 2 shows the behavior of fixed K and
an increasing number of uniformly sampled points. Conversely, Table 3 documents the
behavior of Rhomb in an experiment with a fixed number of points and increasing K.

@ Springer
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Both in dimension 2 and 3, we investigated the size of the bifiltration, the size of the
FIREPs, and the size of minimal presentations thereof. We also kept track of the time
needed for the computations. Finally, we wondered how the measurements change
when data sets are sampled from a particular shape. As an example, we sampled
points from an annulus with random but bounded perturbations and added uniform
background noise to it. Letting both the range of the perturbations and the portion of
the background noise vary, we tracked the size of the minimal presentations in Table 4.
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