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Abstract
Given a finite set A ⊂ R

d , let Covr ,k denote the set of all points within distance r to
at least k points of A. Allowing r and k to vary, we obtain a 2-parameter family of
spaces that grow larger when r increases or k decreases, called the multicover bifil-
tration. Motivated by the problem of computing the homology of this bifiltration, we
introduce two closely related combinatorial bifiltrations, one polyhedral and the other
simplicial, which are both topologically equivalent to the multicover bifiltration and
far smaller than a Čech-based model considered in prior work of Sheehy. Our poly-
hedral construction is a bifiltration of the rhomboid tiling of Edelsbrunner and Osang,
and can be efficiently computed using a variant of an algorithm given by these authors.
Using an implementation for dimension 2 and 3, we provide experimental results. Our
simplicial construction is useful for understanding the polyhedral construction and
proving its correctness.
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1 Introduction

Let A be a finite subset of Rd , whose points we call sites. For r ∈ [0,∞) and an
integer k ∈ N = {0, 1, 2, . . . }, we define

Covr ,k := {b ∈ R
d | ‖b − a‖ ≤ r for at least k sites a ∈ A}.

Thus, Covr ,k is the union of all k-wise intersections of closed balls of radius r centered
at the sites; see Fig. 1. Define a bifiltration to be a collection of sets

C := (Cr ,k)(r ,k)∈[0,∞)×N

such that Cr ,k ⊆ Cr ′,k′ whenever r ≤ r ′ and k ≥ k′. Clearly, the sets

Cov := (Covr ,k)(r ,k)∈[0,∞)×N

form a bifiltration. This is known as the multicover bifiltration. It arises naturally in
topological data analysis (TDA), and specifically, in the topological analysis of data
with outliers or non-uniform density [16, 28, 46].

We wish to study the topological structure of the bifiltration Cov algorithmically in
practical applications, via 2-parameter persistent homology [11]. For this, the natural
first step is to compute a combinatorial model of Cov, that is, a purely combinatorial
bifiltration C which is topologically equivalent to Cov. This step is the focus of the
present paper. For computational efficiency, C should not be too large.

In fact, we propose two closely related combinatorial models C , one polyhedral
and one simplicial. The polyhedral model is a bifiltration of the rhomboid tiling, a
polyhedral cell complex in R

d+1 recently introduced by Edelsbrunner and Osang to
study the multicover bifiltration [28]. Edelsbrunner and Osang have given an efficient
algorithm for computing the rhomboid tiling [29], and this adapts readily to compute
our bifiltration. We use the simplicial model to prove that the polyhedral model is
topologically equivalent to Cov.

1.1 Motivation and PriorWork

For k = 1 fixed, (Covr ,1)r∈[0,∞) is the well-known offset filtration (also known as
the union of balls filtration), a standard construction for analyzing the topology of a
finite point sample across scales [27]. It is a central object in the field of persistent
homology. While the persistent homology of this filtration is stable to small geometric
perturbations of the sites [21], it is not robust with respect to outliers, and it can be
insensitive to topological structure in high density regions of the data.
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Fig. 1 The 2- and 3-fold cover of a few points with respect to a certain radius. The first homology of the
2-fold cover is trivial, while the first homology of the 3-fold cover is non-trivial

Within the framework of 1-parameter persistent homology, there have been many
proposals for alternative constructions which address these issues. These approaches
include the removal of low density outliers [10], filtering by a density function [7, 17,
18], distance to measure constructions [1, 9, 16, 31], kernel density functions [44],
and subsampling [4]. A detailed overview of these approaches can be found in [6].

Several of these constructions have good stability properties or good asymptotic
behavior. However, as explained in [6], all of the known 1-parameter persistence
strategies for handling outliers or variations in density share certain disadvantages:
First, they all depend on a choice of a parameter. Typically, this parameter specifies a
fixed spatial scale or a density threshold at which the construction is carried out. In the
absence of a priori knowledge about the structure of the data, it may be unclear how to
select such a parameter. And if the data exhibits topological features at multiple spatial
or density scales, it may be that no single parameter choice allows us to capture all
the structure present in the data. Second, constructions that fix a scale parameter are
unable to distinguish between small spatial features and large ones, and constructions
that fix a density or measure parameter are unable to distinguish features in densely
sampled regions of the data from features involving sparse regions.

A natural way to circumvent these limitations is to consider a 2-parameter approach,
where one constructs a bifiltration from the data, rather than a 1-parameter filtration
[11]. The multicover bifiltration is one natural option for this. Alternatives include
the density bifiltrations of Carlsson and Zomorodian [11], and the degree bifiltrations
of Lesnick and Wright [41]; again, we refer the reader to [6] for a more detailed
discussion. Among these three options, the multicover bifiltration has two attractive
features which together distinguish it from the others. First, its construction does not
depend on any additional parameters. Second, the multicover bifiltration satisfies a
strong stability property, which in particular guarantees robustness to outliers [6].

There is a substantial and growing literature on the use of bifiltrations in data analy-
sis. Most approaches begin by applying homology with coefficients to the bifiltration,
to obtain an algebraic object called bipersistencemodule. In contrast to the 1-parameter
case, where the algebraic structure of a persistence module is completely described by
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a barcode [51], it is well known that defining the barcode of bipersistence modules is
problematic [11]. Nevertheless, one can compute invariants of a bipersistence module
which serve as useful surrogates for a barcode, and a number of ideas for this have
been proposed [11, 14, 32, 41, 49].

Regardless of which invariants of the multicover bifiltration we wish to consider, to
work with this bifiltration computationally, the natural first step is to find a reasonably
sized combinatorial (i.e., simplicial or polyhedral) model for the bifiltration. With
such a model, recently developed algorithms such as those described in [36, 42] can
efficiently compute minimal presentations and standard invariants of the homology
modules of the bifiltration.

In the 1-parameter setting, there are two well-known simplicial models of the off-
set filtration. The Čech filtration, is given at each scale by the nerve of the balls; the
equivalence of the offset and Čech filtrations follows from the Persistent Nerve The-
orem. For large point sets, the full Čech filtration is too large to be used in practical
computations. However, the alpha filtration (also known as the Delaunay filtration)
[25, 27] is a much smaller subfiltration of the Čech filtration which is also simplicial
model for the offset filtration. It is given at each scale by intersecting each ball with
the Voronoi cell [50] of its center, and then taking the nerve of the resulting regions.
For d small (say d ≤ 3), the Delaunay filtration is readily computed in practice for
many thousands of points.

It is implicit in thework of Sheehy [46] that themulticover bifiltration has an elegant
simplicial model, the subdivision-Čech bifiltration, obtained via a natural filtration on
the barycentric subdivision of each Čech complex; see also [12, App. B] and [6,
Sect. 4]. However, the subdivision-Čech bifiltration has exponentially many vertices
in the size of the data, making it even more unsuitable for computations than the
ordinary Čech filtration.

Edelsbrunner and Osang [28] therefore seek to develop the computational theory
of the multicover bifiltration using higher-order Delaunay complexes [26, 38], taking
the alpha filtration as inspiration. Assuming the sites are in general position, they
define a polyhedral cell complex in R

d+1 called the rhomboid tiling, which contains
all higher-order Delaunay complexes as planar sections. Using the rhomboid tiling,
they present a polynomial time algorithm to compute the barcodes of a horizontal or
vertical slice of the multicover bifiltration (i.e., of a one-parameter filtration obtained
by fixing either one of the two parameters r , k). The case of fixed r and varying k is
more challenging because the order-k Delaunay complexes do not formafiltration. The
authors construct a zigzag filtration for this case. The problem of efficiently computing
2-parameter persistent homology of themulticover bifiltration is not addressed by [28].

We note that the subdivision-Čech bifiltration is more general than the rhomboid
tiling: the rhomboid tiling is defined only for Euclidean data, whereas the topological
equivalence of the subdivision-Čech andmulticover bifiltrations extends to data in any
metric space where finite intersections of balls are contractible.
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1.2 Contributions

We introduce the first efficiently computable combinatorial models of the multicover
bifiltration Cov. First, we introduce a simplicial model, whose construction is based
on two main ideas: In order to connect the higher-order alpha complex constructions
for (r , k) and (r , k + 1), we simply overlay their underlying covers to a “double-
cover”, whose nerve is a simplicial complex that contains both alpha complexes. This
yields a zigzag of simplicial filtrations. The second main idea is that this zigzag can
be “straightened out” to a (non-zigzaging) bifiltration, simply by taking unions of
prefixes in the zigzag sequence. This straightening technique has previously been
used by Sheehy to construct sparse approximations of Vietoris–Rips complexes [47].
Together, these two ideas give rise to a bifiltration S-Del of simplicial complexes.

The bifiltration S-Del can also be obtained directly as the persistent nerve of a
“thickening” of Cov constructed via mapping telescopes. This observation leads to a
simple proof of topological equivalence (i.e., weak equivalence; see Sect. 2) of Cov
and S-Del via the Nerve Theorem. It follows that the persistent homology modules of
Cov and S-Del are isomorphic.

Our second contribution is to show that the rhomboid tiling as defined in [28] also
gives rise to a (non-zigzaging) bifiltration of polyhedral complexes that is topologically
equivalent to themulticover.We proceed in two steps: First, we slice every rhomboid at
each integer value k (slightly increasing the number of cells) and adapt the straightening
trick used to construct S-Del.We prove the topological equivalence of this construction
with the multicover bifiltration by relating the slice rhomboid filtration with S-Del.
The main observation is a one-to-one correspondence of maximal-dimensional cells
in both constructions, which leads to a proof via the Nerve Theorem. Second, we relate
the sliced and unsliced rhomboid tilings at every scale via a deformation retraction.

We give size bounds for both of the bifiltrations we introduce. For n points in R
d ,

we show that their size is O(nd+1). This is a decisive improvement over Sheehy’s
Čech-based construction, which has exponential dependence on n.

An efficient algorithm for computing rhomboid tilings has recently been presented
in [29]; hence, using the accompanying implementation rhomboidtiling of this algo-
rithm, our second contribution gives us an efficient software to compute a bifiltration
of cell complexes equivalent to Cov, currently for points in R

2 and R
3. We combine

this implementation with the libraries mpfree and rivet to demonstrate that mini-
mal presentations of multicover persistent homology modules can now be efficiently
computed, often within seconds, as can invariants such as the Hilbert function.

2 Background

2.1 Filtrations

For P a poset, define a (P-indexed) filtration to be a collection of topological spaces
X = (X p)p∈P indexed by P , such that X p ⊆ Xq whenever p ≤ q ∈ P . For example,
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anN-indexed filtration X is a diagram of spaces and inclusions of the following form:

X0 ↪→ X1 ↪→ X2 ↪→ · · · .

A morphism ϕ : X → Y of P-indexed filtrations is a collection of continuous maps
(ϕp : X p → Yp)p∈P which commute with the inclusions in X and Y . In the language
of category theory, a P-indexed filtration is a functor P → Top whose internal maps
are inclusions, and a morphism is a natural transformation.

Recall that the product poset P × Q of posets P and Q is defined by taking
(p, q) ≤ (p′, q ′) if and only if p ≤ p′ and q ≤ q ′. When P is the product of two
totally ordered sets, we call a P-indexed filtration a bifiltration.

In the classical homotopy theory of diagrams of spaces, there is a standard ana-
logue of the notion of homotopy equivalence for diagrams of spaces, called weak
equivalence. We now define a version of this for P-indexed filtrations: A morphism
of filtrations ϕ : X → Y is called an objectwise homotopy equivalence if each
ϕp : X p → Yp is a homotopy equivalence. If there exists a finite zigzag diagram
of objectwise homotopy equivalences

X → Z1 ← Z2 → · · · ← Zn−1 → Zn ← Y

connecting X and Y , then we say that X and Y areweakly equivalent. The terminology
originates from the theory of model categories [23, 34]. See [5, 39, 45] for discussions
of weak equivalence of diagrams in the context of TDA.

Remark 2.1 To motivate the consideration of zigzags in the definition above, we note
that for X and Y a pair of weakly equivalent P-indexed filtrations, there is not neces-
sarily an objectwise homotopy equivalence f : X → Y . For example, let P = R, X be
the offset filtration on {0, 1} ⊂ R, and Y be the nerve filtration of X . It is easy to check
that there is no objectwise homotopy equivalence f : X → Y . On the other hand, it
follows from the Persistent Nerve Theorem 2.3 that X and Y are weakly equivalent.
Moreover, one can construct a similar example of weakly equivalent filtrations for
which there is no objectwise homotopy equivalence in either direction.

An objectwise homotopy equivalence ϕ : X → Y induces isomorphisms on the
persistent homology modules of X and Y . Hence, weakly equivalent filtrations
have isomorphic persistent homology modules. We say a P-indexed filtration X is
Euclidean if X p ⊂ R

n for some n and all p ∈ P .

2.2 The Persistent Nerve Theorem

A cover of X ⊂ R
n is a collection X = {Xi }i∈I of subsets of X whose union is X .

The nerve of X is the abstract simplicial complex

Nrv(X) :=
{

σ ⊂ I
∣∣∣ ⋂

i∈σ

Xi �= ∅
}

.
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Fig. 2 Left: A bifiltration of good covers over {1 < 2 < 3} × {3 < 2 < 1}. Right: A bifiltration consisting
of the nerves of the covers. The Persistent Nerve Theorem ensures that not only the individual spaces at
scales (n,m) are homotopy equivalent, but also that the two bifiltrations are weakly equivalent.

We say that the cover is good if it is finite and consists of closed, convex sets [27].
One version of the Nerve Theorem asserts that X and Nrv(X) are homotopy equiv-

alent whenever X is a good cover of X [27, 40]. It is TDA folklore that this version of
the Nerve Theorem can be extended to a persistent version; a proof appears in [3]; see
also [19] for formulation of the Persistent Nerve Theorem in terms of open covers. In
order to state the Persistent Nerve Theorem for closed, convex covers, we first extend
the definition of a cover.

Definition 2.2 (cover of a filtration) Let P be a poset and X a P-indexed Euclidean
filtration. A cover of X is a collection X = {Xi }i∈I of P-indexed filtrations such
that for each p ∈ P , {Xi

p | i ∈ I } is a cover of Xp. We say X is good if each
Xp := {Xi

p | i ∈ I } is a good cover.

Thedefinitionof the nerve above extends immediately to yield anerve filtrationNrv(X)

associated to any cover of a filtration.

Persistent Nerve Theorem 2.3 [3] Let P be a poset, X a P-indexed Euclidean fil-
tration, and X a good cover of X. There exists a diagram of objectwise homotopy
equivalences

X
�←− �X

�−→ Nrv(X).

As shown in [3], the intermediate filtration �X in the statement of the theorem can be
taken to be a homotopy colimit of a diagram constructed from X, just as in the proof
of the Persistent Nerve Theorem for open covers [19]. Note that if P is a singleton
set, the Persistent Nerve Theorem specializes to the classical version of the Nerve
Theorem mentioned above.
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Fig. 3 Left: The 2-fold cover of some points with respect to a certain radius overlapped with its Voronoi
diagram of order 2. Vor is combinatorially simpler than Cov. Right: The corresponding 3-fold cover
overlapped with its Voronoi diagram of order 3

2.3 Multicovers

As indicated in the introduction, the multicover bifiltration of a finite set A ⊂ R
d is

the (R × N
op)-indexed bifiltration Cov given by

Covr ,k := {b ∈ R
d | ‖b − a‖ ≤ r for at least k points a ∈ A},

where as above, N := {0, 1, 2, . . . }. Note that Covr ,0 = R
d for all r ∈ [0,∞). Given

this, one may wonder why we allow k to take the value 0 in our definition of Cov.
As we will see in Sect. 4, this turns out to be convenient for comparing Cov to the
rhomboid bifiltration.

As a first step towards constructing a simplicial model of Cov, we identify a good
cover for Covr ,k for fixed r and k. For Ã ⊂ A we define

Covr ( Ã) := {b ∈ R
d | ‖b − ã‖ ≤ r for all ã ∈ Ã}.

Each Covr ( Ã) is closed and convex. Letting

Covr ,k := {Covr ( Ã) | Ã ⊂ A, | Ã| = k},

we have that Covr ,k is a good cover of Covr ,k . Hence by the Nerve Theorem, Covr ,k
is homotopy equivalent to Nrv(Covr ,k). For fixed k and r ≤ r ′, we have an inclusion
Nrv(Covr ,k) ↪→ Nrv(Covr ′,k).

Note that these nerves can be quite large: for large enough r , Nrv(Covr ,k) contains(|A|
k

)
vertices. To obtain a smaller simplicial model of Covr ,k , we use the generalization

of Delaunay triangulations to higher-order Delaunay complexes. For a subset Ã ⊂ A
with | Ã| = k, define its order-kVoronoi region as

Vor( Ã) := {b ∈ R
d | ‖b − ã‖ ≤ ‖b − a‖ for all ã ∈ Ã, a ∈ A \ Ã}.
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Delr,3

Delr,2 Delr,2

Delr,3

Fig. 4 Left: The Delaunay complexes of order 2 and 3 of our running example. Right: The construction of
the simplicial complex D̃elr ,2. D̃elr ,2 consists of the Delaunay complexes Delr ,2 and Delr ,3, and additional
mixed simplices connecting these. This connection arises from intersections of the 2- and 3-fold covers
restricted to their Voronoi diagrams of order 2 and 3, respectively

The set of all order-k Voronoi regions yield a decomposition ofRd into closed convex
subsets having the same k closest points of A in common. This decomposition is called
the order-k Voronoi diagram [2, 30]. We denote it as Vork .

For any r ∈ R and k ∈ N, intersecting each order-k Voronoi region with the
corresponding multicovered region of fixed radius r yields the following good cover
of Covr ,k :

Vorr ,k := {Covr ( Ã) ∩ Vor( Ã) | Ã ⊂ A, | Ã| = k}.

For an illustration, see Fig. 3. The nerve of Vorr ,k , which we will denote Delr ,k ,
is called an order-k Delaunay complex. By the Nerve Theorem, Delr ,k and Covr ,k
are homotopy equivalent. Note that Delr ,1 is the alpha complex of radius r [25, 27],
whereas Delr ,0 is a single point for all r ∈ [0,∞). A different but related concept
is the order-k Delaunay mosaic, which is the geometric dual of the order-k Voronoi
diagram [28]; see Sect. 4.

3 A Simplicial Delaunay Bifiltration

For fixed r ≥ 0, we have inclusions

· · · ↪→ Covr ,2 ↪→ Covr ,1 ↪→ Covr ,0,

but there are no analogous inclusions Delr ,k ↪→ Delr ,k−1 between the higher-order
Delaunay complexes. Indeed, we do not even have inclusions of the vertex sets. Con-
sequently, (Vorr ,k)(r ,k)∈[0,∞)×N is not a bifiltered cover of Cov. To correct for this,
we first define

D̃elr ,k := Nrv(Vorr ,k ∪ Vorr ,k+1).
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Delr,3

Delr,2

Delr,4

Delr,5

Delr,n

Fig. 5 S-Delr ,2 is the union of all D̃elr ,i , i ≥ 2. We have that S-Delr ,k = ∅ for k greater than the number
of sites in A. Thus, in this case, Delr ,k is empty for k ≥ 5

See Fig. 4 for an illustration. Note that Vorr ,k ∪ Vorr ,k+1 covers the same space as
Vorr ,k and that we have inclusions

Delr ,k+1 ↪→ D̃elr ,k ←↩ Delr ,k .

Letting n := |A|, we see that D̃elr ,n = Delr ,n and D̃elr ,k = ∅ for all k > n. We now
define a ([0,∞) × N

op)-indexed simplicial bifiltration S-Del by

S-Delr ,k :=
⋃
i≥k

D̃elr ,i =
n⋃

i=k

D̃elr ,i .

For an illustration, see Fig. 5. Note that S-Delr ,k is generally not equal to the nerve of
the union of all Vorr ,i , i ≥ k, which is a much larger object.

3.1 Weak Equivalence of Cov and S-Del

Theorem 3.1 The multicover bifiltration Cov is weakly equivalent to S-Del.

Proof Our proof strategy is similar to ones used for sparse filtrations [13, 48]. We
will observe that S-Del is isomorphic to the nerve of a good cover of a bifiltration X
which is weakly equivalent to Cov. The result then follows from the Persistent Nerve
Theorem.

Define Xr ,k ⊂ R
d+1 by

Xr ,k =
n⋃

i=k

Covr ,i × [i, i + 1].
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We can think of Xr ,k as a mapping telescope [33, Sect. 3.F] of the sequence

Covr ,n ↪→ Covr ,n−1 ↪→ · · · ↪→ Covr ,k .

Identifying Covr ,k with Covr ,k×{k}, we have a deformation retraction Xr ,k → Covr ,k
given by (x, y) �→ (x, k) for (x, y) ∈ R

d × R. Letting r and k vary, the spaces Xr ,k

assemble into a ([0,∞)×N
op)-indexed bifiltration X , and the deformation retractions

Xr ,k → Covr ,k assemble into an objectwise homotopy equivalence X → Cov. Since
the Cartesian product of two convex sets is convex, the set

Xr ,k := {U × [i, i + 1] | U ∈ Vorr ,i , k ≤ i ≤ n}

is a good cover of Xr ,k , and the collection of all such covers as r and k varies assembles
into a good cover X of X .

To finish the proof, we observe that Nrv(X) is isomorphic to S-Del. First, note that
vertices of Nrv(Xr ,k) correspond bijectively to non-empty elements of

n⊔
i=k

Vorr ,i ,

as do vertices of S-Delr ,k . This gives us a bijection from the vertex set of Nrv(Xr ,k) to
the vertex set of S-Delr ,k . It is easily checked that this bijection is in fact a simplicial
isomorphism ϕr ,k : Nrv(Xr ,k) → S-Delr ,k . These isomorphisms are natural in r and k,
so assemble into an isomorphism from Nrv(X) to S-Del. ��

3.2 Truncations of S-Del

When the point cloud is large, it may be computationally difficult to construct the full
bifiltrationS-Del.We instead consider, for K ∈ N, the bifiltrationS-Del≤K constructed
in the same way, but disregarding all order-k Voronoi cells with k > K ,

S-Del≤K
r ,k :=

⋃
K−1≥i≥k

D̃elr ,i .

Note that S-Del≤|A| = S-Del. Viewing S-Del≤K as a ([0,∞)× {0, . . . , K }op)-in-
dexed bifiltration, the proof of Theorem 3.1 adapts immediately to show that S-Del≤K

is weakly equivalent to the restriction of Cov to [0,∞) × {0, . . . , K }op.

3.3 Size of S-Del

By the size of a bifiltration X , wemean the number of simplices in the largest simplicial
complex in X . If the sites A ⊂ R

d are not in general position, the size of S-Del≤K

can be huge; indeed, if all points of A lie on a circle in R
2 and r is at least the radius

of this circle, then Delr ,k has 2(
n
k) simplices, so S-Del≤K is at least as large. However,

if A is in general position, then the situation is far better:
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Proposition 3.2 Let A ⊂ R
d be a set of n sites in general position, with a constant

dimension d. Then S-Del≤K has size O(n�(d+1)/2�K �(d+1)/2�). In particular, S-Del
has size O(nd+1).

In contrast to Proposition 3.2, the number of vertices in Sheehy’s subdivision-Čech
model [46] grows exponentially with n, regardless of whether A is in general position.

In brief, the idea of the proof is to bound the number of maximal simplices in
S-Del≤K using a bound of Clarkson and Shor on the number of Voronoi vertices
at levels ≤ k [20]. The result then follows by observing that the dimension of the
complex is a constant that only depends on d. However, this dependence on d is
doubly exponential, so the O-notation hides a large factor if d is large. We now give
details of the proof.

For k ∈ N, and a bifiltration X , we let X∞,k denote the largest simplicial complex
of the form Xr ,k , provided this exists. In the following lemmas, A ⊂ R

d is assumed
to be in general position.

Lemma 3.3 For all k ∈ N, we have

dim(Del∞,k) ≤
(

d + 1

�(d + 1)/2�
)

.

Proof A simplex σ ∈ Del∞,k is a set of order-k Voronoi regions with a point of
common intersection. Let x be such a point. Each order-k Voronoi region R ∈ σ is
indexed by a subset of A with k elements, which we denote as sites(R). Let

s = min {r ≥ 0 | x ∈ Covr ,k},
Aon = {p ∈ A | ‖p − x‖ = s},
Ain = {p ∈ A | ‖p − x‖ < s}.

By minimality of s, we have |Ain| < k, and by the assumption of general position,
we have |Aon| ≤ d + 1. Moreover, for all R ∈ σ , we have Ain ⊂ sites(R) and
sites(R) ⊂ Ain ∪ Aon. Thus

dim(σ ) ≤
( |Aon|
k − |Ain|

)
− 1 ≤

(
d + 1

k − |Ain|
)

≤
(

d + 1

�(d + 1)/2�
)

. ��

Lemma 3.4 For all K ∈ N, we have

dim(S-Del≤K ) ≤ 2

(
d + 1

�(d + 1)/2�
)

.

Proof We first observe that

dim(D̃el∞,k) ≤ dim(Del∞,k) + dim(Del∞,k+1) ≤ 2

(
d + 1

�(d + 1)/2�
)

,

by noting that the dimension on the left is upper bounded by the sum of the max-
imal number of order-k Voronoi regions and order-(k + 1) Voronoi regions that
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meet at a fixed point in R
d . Since these two summands equal dim(Del∞,k) − 1 and

dim(Del∞,k+1) − 1, we have the first inequality, and the second one follows from
the previous Lemma 3.3. Since each simplicial complex in S-Del≤K is a union of
simplicial complexes D̃elr ,k , it follows that

dim(S-Del≤K ) ≤ 2

(
d + 1

�(d + 1)/2�
)

,

as desired. ��

Lemma 3.5 If n > d, then for any k ∈ N, the number of maximal simplices in D̃el∞,k

is at most Vk + Vk+1, where Vk, Vk+1 denote the number of Voronoi vertices at level
k or k + 1, respectively.

Proof Recall that Vork and Vork+1 denote the order-k and order-(k + 1) Voronoi dia-
grams, respectively. Let Vork+1/2 denote their overlay, i.e., the polyhedral subdivision
of Rn induced by the closed polyhedra of the form R ∩ S, where R and S are Voronoi
regions of order k such that dim(R ∩ S) = d. The subdivision Vork+1/2 is called the
Voronoi diagram of degree-(k + 1) [28]. It has been studied in [30].

Maximal simplices of D̃el∞,k correspond bijectively to cells in Vork+1/2 with no
proper faces. We claim that the only such cells are vertices. If k ∈ {0, n − 1, n}, then
either Vork or Vork+1 contains only the region Rd , and it is clear that the claim holds.
For 0 < k < n − 1, we observe that since A is in general position and n > d, each
cell of either Vork or Vork+1 is bounded by a vertex, which implies that each cell of
Vork+1/2 is bounded by a vertex. The claim follows.

To finish the proof, we will show that the vertex set of Vork+1/2 is the union of the
vertex sets of Vork and Vork+1. It suffices to show that for any cell σ ⊂ R

d of Vork
with dim(σ ) < d, σ is contained in a cell of Vork+1; then Vork+1/2 does not subdivide
the (d − 1)-skeleton Vork , implying that no new vertex is created.

Let x ∈ σ . As in Lemma 3.3, we let

s = min {r ≥ 0 | x ∈ Covr ,k},
Aon = {p ∈ A | ‖p − x‖ = s},
Ain = {p ∈ A | ‖p − x‖ < s},

and we note that |Ain| < k. Moreover, since dim(σ ) < d, we have |Aon| ≥ 2. The set
of order-k Voronoi regions containing x (and hence any y ∈ σ ) is

{Vor(Ain ∪ Ã) | Ã ⊂ Aon, | Ã| = k − i}.

Therefore Aon and Ain are independent of our choice of x ∈ σ . Hence, for any x ∈ σ ,
the set of order-(k + 1) Voronoi regions containing x is

{Vor(Ain ∪ Ã) | Ã ⊂ Aon, | Ã| = k + 1 − i}.
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The intersection of these Voronoi regions is the closure of a cell of Vork+1 which
contains σ . (In fact, similar reasoning shows that if |Ain| + |Aon| ≥ k + 2, then σ is a
cell in Vork+1, though this is not needed for the argument.) ��
Proof of Proposition 3.2 Assume that n > d. Since

S-Del≤K =
K−1⋃
k=0

D̃el∞,k,

Lemma 3.5 implies that the number of its maximal simplices is at most

(V0 + V1) + (V1 + V2) + . . . + (VK−1 + VK ) ≤ 2V≤K ,

where V≤K is the number of Voronoi vertices at levels ≤ k. Since the number of
simplices of a d-dimensional simplicial complex withm maximal simplices is at most
2d+1m, Lemma 3.4 implies that the size of S-Del≤K is bounded above by

22(
d+1

�(d+1)/2�)+1 · V≤K .

Since the dimension bound only depends on the constant d, it is therefore enough to
bound V≤K .

By a result of Clarkson and Shor [20], we have that e≤K , the number of Voronoi
regions (i.e., d-dimensional Voronoi cells) at levels ≤ K is

e≤K = O
(|A|�(d+1)/2�K �(d+1)/2�).

This bound hides a constant that depends doubly exponentially in d. Moreover, by a
counting argument appearing in [24, Theorem 3.3], we have that the total size of the
Voronoi diagram at level k is bounded by

O (max {ei | k − d + 1 ≤ i ≤ k + d − 2})

with ei the number of Voronoi regions at level i . The same bound applies to Vk as well.
A simple calculation shows that V≤K is then bounded by (2d − 2)e≤K = O(e≤K ).��

4 The Rhomboid Bifiltration

4.1 The Rhomboid Tiling

Let A ⊆ R
d be a set of n sites in general position, and S an arbitrary (d − 1)-sphere

in Rd . Then S yields a decomposition A = Ain � Aon � Aout with Ain the sites in the
interior of S, Aon the sites on the sphere, and Aout the sites in the exterior of S. We
define the combinatorial rhomboid of S to be the collection of sets

ρS := {Ain ∪ Ã | Ã ⊆ Aon}. (1)
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k = 1

k = 2

k = 3

k = 4

k = 5

a b c d e

ab bc de

abc bcd cde

abcd bcde

abcde

cd

Fig. 6 The rhomboid tiling of five points on the real line. The highlighted 2-rhomboid ρ defined by
Ain(ρ) = {c} and Aon(ρ) = {b, d} is the convex hull of the points c, bc, cd, and bcd, simplifying the labels
here and, e.g., writing bcd instead of the cell complex associated to {b, c, d}. The horizontal line at depth
k intersects the tiling in the order-k Delaunay mosaic

We call elements of ρS combinatorial vertices, and call

Rhomb(A) = {ρS | S is a sphere in Rd} (2)

the (combinatorial) rhomboid tiling of A. Elements of Rhomb(A) are called rhom-
boids. Since A is fixed throughout, we write Rhomb instead of Rhomb(A).

As observed in [28], the combinatorial rhomboid tiling canbegeometrically realized
as a polyhedral cell complex [37, Definition 2.38]. For that, a combinatorial vertex
{a1, . . . , ak} (where a1, . . . , ak are sites inRd ) is embedded as

(∑k
i=1 ai ,−k

)
inRd+1.

We call k the depth of the vertex. Embedding a combinatorial rhomboid as the convex
hull of its embedded vertices yields an actual rhomboid in R

d+1 whose dimension
equals the cardinality of Aon in the corresponding partition of A. The collection of
these rhomboids is the (geometric) rhomboid tiling for A.We illustrate the construction
in Fig. 6. In what follows, we identify vertices and rhomboids with their combinatorial
description. In particular, we will use Rhomb both for the combinatorial and the
geometric rhomboid tiling.

Proposition 4.1 ([43, Proposition 4.8] and [24, Sect. 1.2]) The number of cells (of
all dimensions) in Rhomb is at most

2d+1(n + 1)d+1

(d + 1)! ≤ 2(n + 1)d+1.

For any rhomboid ρ ∈ Rhomb, we let

rρ = inf {r | there exists a sphere S of radius r such that ρS = ρ}.
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It is easily checked that if ρ′ is a subset of ρ, then rρ′ ≤ rρ , and therefore, for any
r ≥ 0, the sublevel set Rhombr = {ρ ∈ Rhomb | rρ ≤ r} is also a polyhedral
complex.

4.2 Slicing

Next, we slice the rhomboid tiling by cutting every rhomboid along the hyperplanes
{x ∈ R

d+1 | −xd+1 = k} with k = 0, . . . , n. In this way, a rhomboid decomposes
into its intersections with these hyperplanes and with slabs of the form {x ∈ R

d+1 |
k ≤ −xd+1 ≤ k + 1}. The resulting polyhedra again form a polyhedral complex that
we call the sliced rhomboid tiling S-Rhomb. We refer to its cells as sliced rhomboids.

For a sliced rhomboid ρ, we define kρ as the minimum depth among its vertices.
Moreover, there is a unique (unsliced) rhomboid ρ′ of smallest dimension that con-
tains ρ, and we define rρ := rρ′ . Define

S-Rhombr ,k := {ρ ∈ S-Rhomb | rρ ≤ r , kρ ≥ k}

and observe that for r ≤ r ′ and k ≥ k′, we have S-Rhombr ,k ⊆ S-Rhombr ′,k′ . Hence,
(S-Rhombr ,k)(r ,k)∈[0,∞)×Nop is a bifiltration of combinatorial cell complexes. Again,
wewill abuse notation and use the symbol S-Rhomb both for the sliced rhomboid tiling
and the bifiltration (S-Rhombr ,k)(r ,k)∈[0,∞)×Nop . As shown in [28], the restriction of
S-Rhomb to cells in the hyperplane −xd+1 = k is the order-k Delaunay mosaic, i.e.,
the geometric dual of the order-k Voronoi diagram.

4.3 Comparison of S-Rhomb and S-Del

The next lemma establishes a close relationship between the bifiltrations S-Rhomb
and S-Del. It is closely related to [28, Theorem 1 and Lemma 2].

Lemma 4.2 For all (r , k) ∈ [0,∞) × N,

(i) the vertex sets of S-Rhombr ,k and S-Delr ,k are equal;
(ii) the vertices of each sliced rhomboid in S-Rhombr ,k span a simplex in S-Delr ,k;
(iii) the vertices of each simplex in S-Delr ,k are contained in a sliced rhomboid of

S-Rhombr ,k .

Proof For the first part, note that a set of sites v = {a1, . . . , ak′ } is a vertex in
S-Rhombr ,k if and only if k′ ≥ k and for all r ′ > r there is a sphere S of radius
at most r ′ whose associated decomposition A = Ain � Aon � Aout satisfies

Ain ⊆ v ⊆ Ain ∪ Aon. (3)

Note that (3) holds if and only if the center of S has v among its k′ closest sites,
which is equivalent to the condition that the order-k′ Voronoi region Vor(v) contains
the center of S. Thus, such a sphere S exists if and only v is a vertex of Delr ′,k′ .
Thus, v ∈ S-Rhombr ,k if and only if k′ ≥ k and v ∈ Delr ′,k′ for all r ′ > r . But the
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latter holds if and only if v ∈ S-Delr ,k because, first, the vertex sets of S-Delr ′,k and⊔
k′≥k Delr ′,k′ are equal and, second, v ∈ S-Delr ′,k for all r ′ > r implies v ∈ S-Delr ,k .

Thus, the vertex sets of S-Rhombr ,k and S-Delr ,k are equal, as claimed.
For the second part, let v1, . . . , vm denote the vertices of a sliced rhomboid in

S-Rhombr ,k . Let ρ denote the smallest rhomboid of Rhomb containing this sliced
rhomboid. For any r ′ > r , there exists a sphere S of radius at most r ′ with ρS = ρ.
Let x denote the center of S and A = Ain � Aon � Aout be the decomposition with
respect to S. Now, each vi is the union of Ain with a subset of Aon, and hence, the point
x belongs to the Voronoi region of vi . Since i is arbitrary, it follows that all Voronoi
regions intersect, and x has distance ≤ r ′ to each site in each vi , so v1, . . . , vm span a
simplex in S-Delr ′,k . Since this holds for all r ′ > r , this simplex is also contained in
S-Delr ,k .

For the third part, consider vertices v1, . . . , vm that span a simplex in S-Delr ,k .
Assume that some vi has order k′ ≥ k and that the remaining vertices are of order k′
or k′ − 1. Since v1, . . . , vm span a simplex, the corresponding higher-order Voronoi
regions, intersected with balls of radius r around the involved sites, have non-empty
intersection. Let x be a point in this intersection.

If k′ = 0, then m = 1 and v1 = ∅. As {∅} is a combinatorial rhomboid of dimen-
sion 0, the desired result holds in this case. If k′ = 1 and x is a site, then either m = 1
and v1 = {x}, or else m = 2, in which case {v1, v2} = {{x},∅}. In either case, the
desired result again holds.

Otherwise, there is smallest sphere S centered at x that includes k′ sites (either
on the sphere or in its interior). S induces a partition A = Ain � Aon � Aout and a
rhomboid ρ. Each vertex vi of order k′ must contain all sites of Ain, and some subset
of the sites of Aon, meaning that vi is in ρ. Furthermore, at least one site lies on S;
otherwise, there would be a smaller sphere. This implies that each vertex v j of order
k′ − 1 also has to contain all sites of Ain and some subset of Aon. Thus, all vertices lie
in ρ, and in particular in its (k′ − 1, k′)-slice. Finally, observe that because one of the
sites lies on S, the radius of S is the distance of that site to x , which is at most r . ��
Remark 4.3 Parts (i) and (ii) of Lemma 4.2 establish that we have a vertex-preserving
injection J from the cells of S-Rhombr ,k to the simplices of S-Delr ,k . Moreover, the
third part of Lemma 4.2 implies that J restricts to a bijection from the maximal cells
of S-Rhombr ,k to the maximal simplices of S-Delr ,k . Figure 7 illustrates that J itself
needn’t be a bijection.

We note that J does not preserve dimension: For ν a cell of S-Rhomb spanned
by vertices of cardinality k (i.e., a cell in the order-k Delaunay mosaic), we have
dim(ν) ≤ d. But if d ≥ 3, it can be that dim(J (ν)) > d, even when the sites are in
general position. For a cell ν of S-Rhombr ,k spanned by vertices of cardinality k and
k + 1, we may have dim(ν) �= dim(J (ν)) even for d = 2, see Fig. 7.

Theorem 4.4 The bifiltrations S-Rhomb and S-Del are weakly equivalent.

Proof We define good covers of both bifiltrations: First, for S-Rhombr ,k , we choose
the cover that consists of all its cells. This is a good cover because the cells are convex.
The collection of these covers over all choices of r and k yields a good cover U of
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Fig. 7 An illustration of the difference between S-Del and S-Rhomb for three points in the plane. The
order-1 Voronoi regions of the points {x}, {y}, and {z} intersect in c, as do the order-2 Voronoi regions of
{x, y}, {y, z}, and {x, z}. Consequently, S-Del contains a 5-simplex, but the corresponding cell in S-Rhomb
on the same vertex set is a 3-dimensional triangular skew prism.Many simplices in S-Del do not correspond
to any cell in S-Rhomb, e.g., the 1-simplex {x, yz}

the bifiltration S-Rhomb, and the Persistent Nerve Theorem then gives objectwise
homotopy equivalences

S-Rhomb
�←− �U �−→ Nrv(U)

for some intermediate bifiltration �U . Moreover, we obtain a cover Vr ,k of S-Delr ,k
whose elements are the simplices spanned by the vertices of the sliced rhomboids in
S-Rhombr ,k . By the second part of Lemma 4.2, these cover elements indeed exist.
Moreover, in view of Remark 4.3, every maximal simplex of S-Delr ,k is an element of
Vr ,k . We thus obtain a good cover V of S-Del. Applying the Persistent Nerve Theorem
again, we obtain objectwise homotopy equivalences

S-Del
�←− �V �−→ Nrv(V).

Finally, Nrv(U) and Nrv(V) are isomorphic: The elements of U and of V are in 1-to-1
correspondence, with corresponding cover elements having the same vertex set. In
both cases, an intersection of cover elements is non-empty if and only if the elements
share a vertex, which is determined by their vertex sets. Hence, we have objectwise
homotopy equivalences

S-Rhomb
�←− �U �−→ Nrv(U)

∼=−→ Nrv(V)
�←− �V �−→ S-Del. ��
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4.4 Unslicing the Rhomboid

Next, we define a bifiltration on the (unsliced) rhomboid tiling. Recall that for a
rhomboid ρ, we already defined rρ as the radius of the smallest sphere that gives rise
to that rhomboid. As in the sliced version, we define kρ as the minimal depth among
the vertices of ρ, and

Rhombr ,k := {ρ | rρ ≤ r , kρ ≥ k}.

This yields a bifiltration (Rhombr ,k)(r ,k)∈[0,∞)×Nop , which we denote by Rhomb.

Lemma 4.5 The bifiltrations Rhomb and S-Rhomb are weakly equivalent.

Proof For a rhomboid ρ in Rhomb, set kmin as the minimum depth and kmax as the
maximumdepth among the vertices inρ. Note that kρ = kmin. For r and k′ fixed,we say
ρ is dangling if rρ ≤ r and kmin < k′ < kmax. If ρ is dangling then ρ /∈ Rhombr ,k , but
some of the slices of ρ are contained in S-Rhombr ,k . In fact, all cells of S-Rhombr ,k not
contained in (the geometric realization of) Rhombr ,k are of this form. For example,
taking k = 2 and r very large, the shaded rhomboid {c, bc, cd, bcd} of Fig. 6 is
dangling. S-Rhombr ,2 contains the cell {bc, cd, bcd} but Rhombr ,2 does not.

Observe that there is a deformation retraction of S-Rhombr ,k onto Rhombr ,k which,
for each dangling rhomboid ρ, “pushes”

ρ ∩ {x ∈ R
d+1 | xd+1 ≥ k}

onto the boundary of ρ; for instance, in the example above {bc, cd, bcd} is pushed onto
{bc, bcd} ∪ {cd, bcd}. Thus, for every choice of r and k, the inclusion Rhombr ,k ↪→
S-Rhombr ,k is a homotopy equivalence. Moreover, these inclusions commute with
the inclusion maps in Rhomb and S-Rhomb, hence define an objectwise homotopy
equivalence. ��
Combining the previous lemma with Theorem 4.4 and Theorem 3.1 yields the follow-
ing result:

Theorem 4.6 The bifiltrations Rhomb and Cov are weakly equivalent.

Remark 4.7 (size of the rhomboid bifiltration) In view of Proposition 4.1, Rhomb
has at most 2(n + 1)d+1 = O(nd+1) cells. One can also bound the size of a trun-
cated version of Rhomb, defined analogously to the truncation of S-Del considered in
Proposition 3.2. Indeed, Rhomb is clearly smaller (in terms of number of cells) than
S-Rhomb, and by Remark 4.3, S-Rhomb is at least as small as S-Del. Moreover, this
extends to truncations of these bifiltrations. Thus, the size bound of Proposition 3.2
also holds for truncations of Rhomb.

4.5 Computation

In [29, 43], a relatively simple algorithm is given for computing the rhomboid bifil-
tration. (In fact, [29] explicitly considers only the computation of the rhomboid tiling
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and the radius rρ of each rhomboid ρ; the rhomboid bifiltration is not mentioned. But
it is trivial to extend the algorithm to compute the depth kρ of each rhomboid ρ, thus
computing the rhomboid bifiltration.)

We briefly outline the approach. Given a (d + 1)-dimensional rhomboid ρ, let σ

denote the intersection of ρ with the hyperplane k = kρ +1.We call σ the generation-1
slice of ρ. Note that σ is a d-simplex. Given the combinatorial vertices of σ , we
can easily recover ρ [29, Lem. 2]. The algorithm of [29] computes the rhomboid
tiling by computing the generation-1 slices of all (d + 1)-dimensional rhomboids.
For each k in increasing order, a weighted Delaunay triangulation Wk is computed
which triangulates the order-k Delaunaymosaic and has the same vertex set. Given the
vertex set,Wk can be computed via any algorithm for weighted Delaunay triangulation
computation, e.g., via a (d + 1)-dimensional convex hull computation [8, Sect. 4.4.4].
We explain below how the vertex set is computed.

A simple combinatorial criterion [29, Lem. 3] tells us whether a d-simplex inWk is
a generation-1 slice of a rhomboid. Thus, one can efficiently identify all generation-1
slices in the triangulation by iterating through all the d-simplices of Wk . In this way,
we identify all (d+1)-dimensional rhomboids ρ with kρ = k−1. It remains to explain
how the vertex set of Wk is computed. The vertices of W1 are just the sites A. For
k ≥ 2, [29, Lem. 3] establishes that every vertex v inWk appears in a rhomboid ρ with
kρ ≤ k − 2. We thus discover ρ, and hence v, by the time we finish processing Wk−1.

Complexity. The complexity of this algorithm is discussed in [29, Sect. 4]. While
an explicit runtime bound is not given, it is easy to extract naive bounds from the
discussion; we now do so. We distinguish between two contributions to the runtime:

– computing Wk at all levels k, given the vertices,
– checking, for each k, whether each d-simplex in Wk is a generation-1 slice and if
so, storing the corresponding rhomboid and its faces.

The latter requires O(k) time per d-simplex in Wk . Hence, since the rhomboid tiling
has size O(nd+1) (see Remark 4.7), the total time required over all d-simplices is
O(nd+2).

The complexity of computing the triangulations Wk depends on a choice of algo-
rithm for computing weighted Delaunay triangulations. Some well-known algorithms
have output-sensitive complexity bounds. For example, in the case d = 3, a weighted
Delaunay triangulation of p points can be computed by the algorithm of [15] in time
O((p + m) log2m), where m is the size of the output. In our setting, the total size of
all the Wk is O(nd+1) because the size of each Wk differs from the size of the order-k
Delaunay mosaic by at most a constant factor. Hence for d = 3, which is arguably
the case of primarily interest, the total time to compute all of the triangulations Wk

is O(n4 log2n). Therefore, the total cost of computing the rhomboid bifiltration is
O(n5 + n4 log2n) = O(n5).

For arbitrary d, the approach of [8, Sect. 4.4.4] computes the weighted Delaunay
triangulation of p points inRd in time O

(
p log p+ p�d/2�). In our setting, each vertex

of each Wk is a vertex of the rhomboid tiling, so there are a total of O(nd+1) vertices
among allWk . Thus, for d ≥ 3 the time required to compute allWk is O

(
n(d+1)�d/2�),

and the runtime of the full algorithm satisfies the same asymptotic bound. This bound
is rather large, but it seems likely that it could be improved via a more careful analysis.
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Implementation. The above algorithm has been implemented in the software pack-
age rhomboidtiling1 [29]. The code computes the sliced and unsliced bifiltra-
tions S-Rhomb and Rhomb as well as their free implicit representations (FIREPs), i.e.,
chain complexes [42]. rhomboidtiling is written in C++, using theCgal library2 for
geometric primitives. The current version accepts only 2- and 3-dimensional inputs,
but all steps readily generalize to higher dimensions; adding support for higher-
dimensional inputs is a matter of software design rather than algorithm development.
That said, handing higher-dimension inputs of practical size is likely to be computa-
tionally expensive.

5 Experiments

We performed experiments on point sets in R
2 and R

3. We provide a brief summary
here; for detailed results, see Appendix A. We sampled points uniformly at random
from [0, 1]2 and [0, 1]3, from a disk, from an annulus, and from an annulus with noise
added. We computed the rhomboid bifiltrations Rhomb≤K and S-Rhomb≤K . We then
used mpfree3 to compute minimal presentations of 2-parameter persistent homology
of our bifiltrations.

In one set of experiments, we found that Rhomb≤K is up to 47% smaller than
S-Rhomb≤K , and can be computed more than 20% faster. The experiments suggest
that the relative performance of Rhomb≤K improves with increasing K .

We investigated the size of Rhomb≤K , varying the sample size and the threshold K .
For d = 2, our experiments show a clear subquadratic growth of the size of Rhomb≤K

and its FIREP with respect to increasing K . For d = 3, the growth is clearly subcubic.
These observations also extend to time complexity. Letting the number of points
increase, the size of Rhomb≤K and its FIREP shows roughly linear growth for both
space dimensions, with a slight superlinear tendency. Again, we observed the same
behavior for the computation time.

We conclude this sectionwith a data visualization enabled by the ideas of this paper:
For i ≥ 0, the i th Hilbert function assigns to each parameter (r , k) ∈ R × N the rank
of i th homology module of Covr ,k (with coefficients in some fixed field). The Hilbert
functions are well known to be unstable invariants. Nevertheless, their visualization
can give us a feel for how the Lipschitz stability property of the multicover bifiltration
established in [6] manifests itself in random data. Figure 8 shows a few examples,
plotted using rivet.4

1 https://github.com/geoo89/rhomboidtiling.
2 CGAL, Computational Geometry Algorithms Library, https://www.cgal.org.
3 https://bitbucket.org/mkerber/mpfree.
4 https://github.com/rivetTDA/.
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Fig. 8 An illustration of the first Hilbert function of the multicover bifiltration, using grayscale shading.
The instances are samples of an annulus (top), a noisy annulus (middle), and a disk (bottom). The sample
size is 100 in the left column, and 200 in the right column. Darkness of the shading is proportional to the
value of the Hilbert function, up to some maximum value, above which the shading is taken to be black;
the lightest non-white shade of gray corresponds to a Hilbert function value of 1

6 Conclusion

We have introduced a simplicial model for the multicover bifiltration, as well as a
polyhedral model based on the rhomboid tiling of [28]. For a data set of size n in R

d

with d constant, the size of both constructions is O(nd+1). The size can be controlled
by thresholding the parameter k of the multicover bifiltration. An algorithm of [29]
computes the rhomboid bifiltration, and an implementation is available. In our experi-
mental results, this approach scales well enough to suggest that practical applications
could soon be within reach. A natural next step is to begin exploring the use of the
multicover bifiltration on real world data.

To obtain our combinatorial models of the multicover bifiltration, we begin with a
zigzag of filtrations, and then straighten it out by taking unions of prefixes. Notably,
one could in principle compute the persistent homology modules of the multicover
bifiltration without straightening out the zigzag, by inverting the isomorphisms on
homology induced by the inclusions Delr ,k ↪→ D̃elr ,k . It seems plausible that this
approach could be computationally useful.

We are curious to learn which indecomposables typically arise in the persistent
homology modules of multicover bifiltration, and our approach could be used in con-
junction with existing algorithms [22, 35] to study this. It would also be interesting
to investigate whether there is an interplay between the geometry of a space and the
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multicover bifiltration of a noisy sample of this space; we wonder if invariants of
the bifiltration encode additional information about geometric properties, such as the
reach or differentiability.

Our experiments show a significant increase in the size of our models of multicover
bifiltration for increasing K . This suggests the need for refinements to our algorithmic
approach in order to handle large values of K . Aside from the truncations considered
in this paper, there are a couple of promising ways forward: One could construct a
coarsened bifiltration where some values of k are skipped. Alternatively, one could
make use of the inductive nature of our constructions: for the step from k to k + 1,
one does not need information about the bifiltrations at indices j < k. Therefore,
one could provide the bifiltration as an output stream without storing it completely
in memory. Subsequent algorithmic steps would then have to be implemented as
streaming algorithms as well.
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Appendix A: Details on Experiments

A.1 Implementation

Let us mention an important technicality in our pipeline for computing minimal pre-
sentations: In order to limit the size of the minimal presentations, we “snap” the radius
values of all generators and relations onto a set of 100 evenly spaced points in R. The
values of the parameter k are left unchanged. This snapping is done only after the
minimal presentation is computed. The snapping process in fact can make a minimal
presentation non-minimal, so after snapping, we re-minimize the presentation. All
reported results below are for minimal presentations computed using this pipeline.
The Hilbert functions shown in Fig. 8 were also computed from such “snapped” pre-
sentations.
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Table 4 We sampled points of an annulus around a circle of radius 0.25

p err Snapped minpres size Relative size (%)

1 0.01 2015 0.38

1 0.04 1691 0.32

1 0.08 1526 0.29

1 0.12 5497 1.0

1 0.14 16,183 3.1

1 0.16 29,988 5.7

4 0.01 14,389 2.7

4 0.04 12,852 2.4

4 0.08 15,198 2.9

4 0.12 18,457 3.5

4 0.16 43,917 8.3

16 0.01 70,901 13

16 0.04 84,142 16

16 0.08 99,782 19

16 0.16 146,170 28

64 0.01 344,847 65

64 0.04 365,308 69

64 0.08 416,522 79

64 0.16 427,697 80

100 – 529,128 100

In total, we have 10,000 points whereas p% of these points are uniform noise in the surrounding box
[0, 1]2. The other points are sampled with a random perturbation per coordinate bounded by a number err.
We considered K = 8 as maximal value for k. The size of the snapped minimal presentation increases when
adding more uniform noise. It may increase more drastically within a certain range of p, i.e., for p ∈ {1, 4},
starting at about at 0.12. We also observed a considerable variance of the individual results in such areas.
In particular, the size of the snapped minimal presentations is neither a linear, nor a sub- or superlinear
process. We regard this process mostly as a property of the snapping technique. Furthermore, when p is not
too big, the perturbations around each sampled point can be quite high, i.e., for p ≤ 4 and err = 0.16, the
snapped minimal presentations are still of relative size 5.7% and 8.3%, respectively. Note that the samples
only stay inside the surrounding box [0, 1]2 if err ≤ 0.25

A.2: Experimental Output

We present the concrete outcome of some of our experiments. All results are averaged
over five runs with independently generated data sets. The sizes reflect the number of
elements of the corresponding set, and the times were measured in seconds. We give a
brief overview of the experiments, referring to the tables for further details. We were
curious about the practical improvements from S-Rhomb to Rhomb. We documented
these for a few values of n and K in the plane. The sizes of their truncated versions
both grow linearly in the number of points. See Table 1 for more refined results. In
further experiments, we only used Rhomb. Table 2 shows the behavior of fixed K and
an increasing number of uniformly sampled points. Conversely, Table 3 documents the
behavior of Rhomb in an experiment with a fixed number of points and increasing K .
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Both in dimension 2 and 3, we investigated the size of the bifiltration, the size of the
FIREPs, and the size of minimal presentations thereof. We also kept track of the time
needed for the computations. Finally, we wondered how the measurements change
when data sets are sampled from a particular shape. As an example, we sampled
points from an annulus with random but bounded perturbations and added uniform
background noise to it. Letting both the range of the perturbations and the portion of
the background noise vary, we tracked the size of the minimal presentations in Table 4.
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