
ar
X

iv
:2

21
0.

06
43

4v
2

 [
cs

.L
G

]
 1

 F
eb

 2
02

3

Cross-client Label Propagation for Transductive Federated Learning

Jonathan Scott 1 Michelle Yeo 1 Christoph H. Lampert 1

Abstract

We present Cross-Client Label Propagation

(XCLP), a new method for transductive federated

learning. XCLP estimates a data graph jointly

from the data of multiple clients and computes

labels for the unlabeled data by propagating la-

bel information across the graph. To avoid clients

having to share their data with anyone, XCLP em-

ploys two cryptographically secure protocols: se-

cure Hamming distance computation and secure

summation. We demonstrate two distinct appli-

cations of XCLP within federated learning. In

the first, we use it in a one-shot way to predict

labels for unseen test points. In the second, we

use it to repeatedly pseudo-label unlabeled train-

ing data in a federated semi-supervised setting.

Experiments on both real federated and standard

benchmark datasets show that in both applica-

tions XCLP achieves higher classification accu-

racy than alternative approaches.

1. Introduction

Federated Learning (FL) (McMahan et al., 2017) is a ma-

chine learning paradigm in which multiple clients, each

owning their own data, cooperate to jointly solve a learn-

ing task. The process is typically coordinated by a central

server. The defining restriction of FL is that client data

must remain on device and cannot be shared with either the

server or other clients. In practice this is usually not due

to the server being viewed as a hostile party but rather to

comply with external privacy and legal constraints that re-

quire client data to remain stored on-device. To date, the

vast majority of research within FL has been focused on

the supervised setting, in which client data is fully labeled

and the goal is to train a predictive model. In this setting

a well-defined template has emerged: first proposed as fed-

erated averaging (McMahan et al., 2017), this consists of

alternating between local model training at the clients and

1Institute of Science and Technology Austria (ISTA),
Klosterneuburg, Austria. Correspondence to: Jonathan Scott
<jonathan.scott@ist.ac.at>.

model aggregation at the server.

However, in many real-world settings fully labeled data

may not be available. For instance, in cross-device FL,

smartphone users are not likely to be interested in anno-

tating more than a handful of the photos on their devices

(Song et al., 2022). Similarly, in a cross-silo setting the

labeling of medical imaging data may be both costly and

time consuming (Dehaene et al., 2020). As such, in re-

cent years there has been growing interest in developing

algorithms that can learn from partly labeled or fully un-

labeled data in a federated setting (Kairouz et al., 2021).

For such algorithms it can be beneficial, or even essen-

tial, to go beyond the standard federated framework of

model-centric learning and develop techniques that directly

leverage client data interactions. Examples include feder-

ated clustering (Dennis et al., 2021) and dimensionality re-

duction (Grammenos et al., 2020), where clients compute

statistics based on their data and the server computes with

aggregates of these statistics.

Contribution In this work we propose Cross-Client La-

bel Propagation (XCLP) which follows a data-centric ap-

proach. XCLP allows multiple clients, each with labeled

and unlabeled data, to cooperatively compute labels for

their unlabeled data. This is done using a transductive

approach, where the goal is label inference restricted to

some predefined set of unlabeled examples. In particular

this approach does not require a model to be trained in

order to infer labels. Specifically, XCLP takes a graph-

based approach to directly assign labels to the unlabeled

data. It builds a joint data graph of a group of clients and

propagates the clients’ label information along the edges.

Naively, this approach would require the clients to cen-

trally share their data. That, however, would violate the

constraints of federated learning.

XCLP allows for multiple clients to jointly infer labels from

a cross-client data graph without them having to share their

data. To achieve this XCLP exploits the modular and dis-

tributed nature of the problem. It uses locality-sensitive

hashing and secure Hamming distance computation to ef-

ficiently estimate the cross-client data graph. It then dis-

tributes the label propagation computation across clients

and aggregates the results using a customized variant of se-

cure summation. The key benefits of this approach are:

http://arxiv.org/abs/2210.06434v2

Cross-client Label Propagation for Transductive Federated Learning

• XCLP enables the data of multiple clients to be lever-

aged when estimating the graph and propagating la-

bels. This is beneficial as the prediction quality of

label propagation increases substantially when more

data is used.

• XCLP preserves privacy in the sense that it does not

require clients to share their data with anyone else.

• XCLP is communication efficient as it does not re-

quire training a model over multiple communication

rounds but requires only a single round of communi-

cation.

As a technique to transfer label information from labeled to

unlabeled points, XCLP is versatile enough to be used in a

variety of contexts. We illustrate this by providing two ap-

plications within federated learning. In the first we employ

XCLP purely for making predictions at inference time. We

demonstrate empirically on a real-world, highly heteroge-

neous, federated medical image dataset that XCLP is able

to assign high quality labels to unlabeled data. When all

clients are partly labeled we observe XCLP to outperform

purely local label propagation, which illustrates the benefits

of leveraging more data. XCLP also obtains strong results

when using fully labeled clients to infer labels on differ-

ent, fully unlabeled clients, even when these clients have

very different data distributions. In both these scenarios we

find that running XCLP on features obtained from models

trained using FederatedAveraging gives significantly better

accuracy than purely using the model predictions.

In the second application we tackle the problem of fed-

erated semi-supervised learning. In this scenario clients

possess only partly labeled data and the goal is to train a

classifier by leveraging both labeled and unlabeled client

data. In this setting we employ XCLP in the training pro-

cess by integrating it into a standard federated learning

pipeline. Specifically, during each round of FederatedAv-

eraging we use XCLP to assign pseudo-labels and weights

to the unlabeled data of the current batch of clients. These

are then used to train with a weighted supervised loss func-

tion. Our experiments show that this pseudo-labelling ap-

proach outperforms all existing methods for federated semi-

supervised learning, as well as a range of natural baselines

in the standard federated CIFAR-10 benchmark. Going be-

yond prior work, we also evaluate on more challenging

datasets, namely CIFAR-100 and Mini-ImageNet, where

we also observe substantial improvements in accuracy.

2. Related Work

Federated Learning Federated learning (FL)

(McMahan et al., 2017) was originally proposed for

learning on private fully labeled data split across multiple

clients. For a survey on developments in the field see

(Kairouz et al., 2021). A number of recent works pro-

pose federated learning in the absence of fully labeled

data. Methods for cluster analysis and dimensional-

ity reduction have been proposed (Dennis et al., 2021;

Grammenos et al., 2020), in which the server acts on

aggregates of the client data, as opposed to client models.

Other works have focused on a model based approach

to federated semi-supervised learning (SSL). Jeong et al.

(2021) propose inter-client consistency and parameter de-

composition to separately learn from labeled and unlabeled

data. Long et al. (2020) apply consistency locally through

client based teacher models. Zhang et al. (2021b) and

Diao et al. (2022) focus on a setting in which the server has

access to labeled data. In this setting (Zhang et al., 2021b)

combine local consistency with grouping of client updates

to reduce gradient diversity while Diao et al. (2022) com-

bine consistency, through strong data augmentation, with

pseudo-labeling unlabeled client data. Our approach to

federated SSL is to iteratively apply XCLP to pseudo-label

unlabeled client data. This approach differs from prior

work by making use of data interactions between multiple

clients to propagate label information over a cross client

data graph. Related to this idea is the notion of federated

learning on graphs (Zhang et al., 2021a; Xie et al., 2021;

Wang et al., 2020). However, these works are primarily

interested in learning from data that is already a graph.

In contrast XCLP estimates a graph based on similarities

between data points, in order to spread label information

over the edges.

Label Propagation Label Propaga-

tion (Zhu & Ghahramani, 2002; Zhou et al., 2004)

was originally proposed as a tool for transductive learning

with partly labeled data. Over time it has proven to be a

versatile tool for a wide range of problems. Several works

have applied LP to the problem of domain adaptation.

Liu et al. (2019) apply LP over a learned graph for few

shot learning. Cai et al. (2021) develop a framework for

domain adaptation by combining LP with a teacher trained

on the source. Khamis & Lampert (2014) use LP as a

prediction-time regularizer for collective classification

tasks. In the context of deep semi-supervised learning

Iscen et al. (2019) make use of LP as a means of obtaining

pseudo-labels for unlabeled data which are then used in

supervised training. Several works apply LP to problems

with graphical data. Huang et al. (2021) observe that

combining linear or shallow MLP models with LP can lead

to performance that is on par with or better than complex

and computationally expensive GNNs. Wang & Leskovec

(2022) apply LP as a regularizer for graph convolutional

neural networks when learning edge weights and quantify

the theoretical connection between them in terms of

smoothing.

Cross-client Label Propagation for Transductive Federated Learning

Algorithm 1: Cross-ClientLabelPropagation

Input: set of participating clients P , client data (V (j), Y (j))j∈P // data stored on-device at clients

1-XS: Setup: clients exchange private and public keys, agree on random seed s
2-CS: for client j ∈ P in parallel do

3-CS: Π ∈ R
L×d with Πij

i.i.d.
∼ Nseed=s(0, 1) // same Π for each client

4-CS: B(j) ← sign(Π (V (j))⊤) // LSH projection

5-XS: H ← SecureHamming((B(j))j∈P) // server gets Hamming matrix

6-SS: A← cos(π
L
H) // estimate cosine similarity matrix

7-SS: B ← sparsify(A) // keep k largest entries per row, set others to 0

8-SS: W = B +B⊤ // symmetrize

9-SS: W ← D− 1
2WD− 1

2 for D = diag(d1, . . . , dn) with di =
∑

jWij // normalize

10-SS: S ← (Idn×n − αW)−1 // influence matrix

11-CS: for client j ∈ P in parallel do

12-CS: S
(j)
L ← labeled-colsj(S) // client gets columns corresponding to labeled data

13-CS: Z̄(j) ← S
(j)
L Y

(j)
L // compute local contribution to overall label propagation

14-XS: Z(j) ← SecureRowSums
(

(Z̄(k))k∈P
)

j
// client gets its part of (securely) aggregated contributions

15-CS: ŷ(j) ←
(

argmaxc=1,...,C Z
(j)
i,c

)

i=1,...,n(j) // predict labels

16-CS: ω(j) ←
(

1− entropy
((Z

(j)
i,c

)c=1,...,C
∑

C
c=1 Z

(j)
i,c

)

/ logC
)

i=1,...,n(j)
// predicted label confidences

Output: predicted labels and confidences (ŷ(j), ω(j))j∈P // available only to respective clients

3. Method

In this section we begin by introducing the problem setting.

In Section 3.1 we present our method XCLP, in Section 3.2

we describe the two cryptographic protocols we make use

of and in Section 3.3 we provide an analysis of XCLP.

Let P be a set of client devices for which labels should

be propagated. Note that we place no restrictions on P .

It could be all clients in a federated learning scenario, a

randomly chosen subset, or a strategically chosen subset,

e.g. based on client similarity, diversity or data set sizes.

Each client j ∈ P possesses a set of n(j) d-dimensional

data vectors, of which l(j) are labeled, i.e. V (j) =
(v

(j)
1 , . . . v

(j)

l(j)
, v

(j)

l(j)+1
, . . . v

(j)

n(j))
⊤ ∈ R

n(j)×d, with partial

labels {y
(j)
1 , . . . , y

(j)

l(j)
} from C classes, which we encode

in zero-or-one-hot matrix form: Y (j) ∈ {0, 1}n
(j)×C with

Y
(j)
ic = 1{y

(j)
i = c} for 1 ≤ i ≤ l(j) and Y

(j)
ic = 0 oth-

erwise. Note that this setup includes the possibility for

a client to have only labeled data, n(j) = l(j) or only

unlabeled data, l(j) = 0. We denote the total amount

of data by n :=
∑

j∈P n
(j). Our goal is to assign la-

bels to the unlabeled data points, i.e., transductive learn-

ing (Vapnik, 1982). The process is coordinated by a central

server, which we assume to be non-hostile. That means, we

trust the server to operate on non-revealing aggregate data

and to return correct results of computations.1 At the same

time, we treat clients and server as curious, i.e., we want to

prevent that at any point in the process any client’s data is

revealed to the server, or to any other client.

Our main contribution in this work is, Cross-Client Label

Propagation (XCLP), an algorithm for assigning labels to

the unlabeled data points. XCLP works by propagating la-

bel information across a neighborhood graph that is built

jointly from the data of all participating clients without re-

vealing their data. Before explaining the individual steps in

detail, we provide a high level overview of the method.

XCLP consists of three phases: 1) the clients jointly com-

pute similarity values between all of their data points and

transfer them to the server, 2) the server uses these sim-

ilarities to construct a neighborhood graph and infers an

influence matrix from this, which it distributes back to the

clients, 3) the clients locally compute how their data influ-

ences others, aggregate this information, and infer labels

for their data.

The key challenge is how to do these steps without the

clients having to share their data and labels with each other

or with the server. XCLP manages this by formulating the

problem in a way that allows us to use only light-weight

1In particular we exclude malicious servers in the crypto-
graphic sense that would, e.g., be allowed to employ attacks such
as model poisoning or generating fake clients in order to break the
protocol.

Cross-client Label Propagation for Transductive Federated Learning

cryptographic protocols for the steps of computing similar-

ities and aggregating label information.

3.1. Cross-Client Label Propagation (XCLP)

Algorithm 1 shows pseudocode for XCLP. To reflect the

distributed nature of XCLP we mark the execution type of

each step: client steps (CS) are steps that clients do locally

using only their own data, server steps (SS) are steps that

the server executes on aggregated data, cross steps (XS) are

steps that require cross-client or client-server interactions.

As a setup step (line 1) the clients use a secure key ex-

change procedure to agree on a shared random seed that

remains unknown to the server. This is a common step in

FL when cryptographic methods, such as secure model ag-

gregation, are employed, see Bonawitz et al. (2017).

Phase 1. The clients use the agreed-on random seed to

generate a common matrix Π ∈ R
L×d with unit Gaus-

sian random entries (line 3). Each client, j, then multi-

plies its data matrix V (j) by Π and takes the component-

wise sign of the result, thereby obtaining a matrix of n(j)

L-dimensional binary vectors, B(j) (line 4). In combina-

tion, both steps constitute a local locality-sensitive hash-

ing (LSH) (Indyk & Motwani, 1998) step for each client.

A crucial property of this encoding is that the (cosine)

similarity between any two data vectors, v, v′, can be re-

covered from their binary encodings b, b′: sim(v, v′) :=
〈v,v′〉

‖v‖‖v′‖ ≈ cos(πh(b, b′)/L),where h(b, b′) =
∑L

l=1 bl⊕b
′
l

is the Hamming distance (number of bits that differ) be-

tween binary vectors and⊕ is the XOR-operation. Since all

clients use identical random projections, this identity holds

even for data points located on different clients. See Ap-

pendix A.2 for details on LSH.

In line 5 the necessary Hamming distance computations

take place using a cryptographic subroutine that we detail

in Section 3.2. Note that cryptographic protocols operate

most efficiently on binary vectors, and Hamming distance

is particularly simple to compute. In fact, this is the rea-

son why we transform the data using LSH in the first place.

Ultimately, from this step the server obtains the matrix of

all pairwise Hamming distances, H ∈ Z
n×n, but no other

information about the data.

Phase 2. Having obtained H the server executes a number

of steps by itself. First, it convertsH to a (cosine) similarity

matrix A ∈ R
n×n (line 6). It sparsifies each row of A by

keeping the k largest values and setting the others to 0 (line

7). From the resulting matrix, B, it constructs a weighted

adjacency matrix of the data graph,W by symmetrization

(line 8) and normalization (line 9).

If not for the aspect of data privacy, we could now achieve

our goal of propagating label information along the graph

edges from labeled to unlabeled points in the following

way: form the concatenation of all partial label matrices,

Y = (Y (j))j∈P ∈ {0, 1}n×C , and compute Z = SY ∈
R
n×C , where S = (Id−αW)−1 is the influence matrix,

and α ∈ (0, 1) is a hyperparameter. See Appendix A.1 for

an explanation how this step corresponds to the propagation

of labels over the graph.

XCLP is able to perform the computation of the unnormal-

ized class scores, Z , without having to form Y , thereby pre-

serving the privacy of the labels. Instead, it computes only

the influence matrix, S, centrally on the server (line 10),

while the multiplication with the labels will be performed

in a distributed way across the clients.

Phase 3. Observe that the computation of Z can also be

written as Z =
∑

j∈P S
(j)Y (j), where S(j) ∈ R

n×n(j)

is the sub-matrix of S consisting of only the columns that

correspond to the data of client j. We can refine this further,

note that all rows of Y (j) that correspond to the unlabeled

data of client j are identically 0 by construction and hence

do not contribute to the multiplication. Therefore, writing

Y
(j)
L ∈ R

l(j)×C for the rows of Y (j) that correspond to

labeled points and S
(j)
L ∈ R

n×l(j) for the corresponding

columns of S(j), it also holds that Z =
∑

j∈P S
(j)
L Y

(j)
L .

Using this observation, Algorithm 1 continues by each

client j receiving S
(j)
L from the server (line 12). It then lo-

cally computes Z̄(j) = S
(j)
L Y

(j)
L ∈ R

n×C (line 13), which

reflects the influence of j’s labels on all other data points.

By now, the clients have essentially computed Z , but the

result is additively split between them: Z =
∑

j∈P Z̄
(j).

To compute the sum while preserving data privacy, XCLP

uses a secure summation routine (line 14), as commonly

used in FL for model averaging (Bonawitz et al., 2017).

However, to increase its efficiency we tailor it to the task,

see Section 3.2 for details. As a result, each client j re-

ceives only those rows of Z that correspond to its own data,

Z(j) ∈ R
n(j)×C (line 13). From these, it computes labels

and confidence values for its data (lines 15-16).

3.2. Cryptographic Subroutines

SecureHamming Several cryptographic protocols for

computing the Hamming distances between binary vec-

tors exist. Here we discuss a variant of the SHADE pro-

tocol (Bringer et al., 2013) that requires only an oblivi-

ous transfer (OT) (Naor & Pinkas, 2001) routine as cryp-

tographic primitive. For a task-specific variant with lower

communication cost see Appendix A.3.

Let b = (b1, . . . , bL) and b′ = (b′1, . . . , b
′
L) be the bit vec-

tors, for which the Hamming distance should be computed,

where b is stored on a client j and b′ on a client k. First,

client j creates L random numbers r1, . . . , rL uniformly in

Cross-client Label Propagation for Transductive Federated Learning

the range [0, L − 1]. For each l = 1, . . . , L, it then offers

two values to be transferred to client k: z0l = rl + bl or

z1l = rl + b̄l, for b̄l = 1 − bl (here and in the following all

calculations are performed in ZL, i.e. in the integers mod-

ulo L). Next, client k initiates an OT operation with input

b′l and result tl. That means, if b′l = 0 it will receive tl = z0l
and if b′l = 1 it will receive tl = z1l , but client i will ob-

tain no information which of the two cases occurred. Note

that in both cases, it holds that tl = rl + bl ⊕ b′l. How-

ever, client k gains no information about the value of bl
from this, because of the uniformly random shift rl that is

unknown to it. Clients j and k now compute R =
∑L

l=1 rl
and T =

∑L

l=1 tl, respectively, and send these values to the

server. From these, the server can infer the Hamming dis-

tance between b and b′ as T −R =
∑L

l=1 bl⊕ b
′
l = h(b, b′).

Performing these steps for all pairs of data points, the server

obtains the Hamming matrix, H ∈ N
n×n, but no other in-

formation about the data. The clients obtain no information

about each others’ data at all during the computation.

SecureRowSums We propose a variation of the secure

summation that is commonly used in FL (Bonawitz et al.,

2017). For simplicity we describe the case where all

values belong to Zl for some l ∈ N, though exten-

sions to fixed-point or floating-point arithmetic also ex-

ist (Catrina & Saxena, 2010; Aliasgari et al., 2013).

Given a set of clients P , each with some matrix Z(j) ∈
Z
n×c
l , ordinary SecureSum computes

∑

j∈P Z
(j) at the

server in such a way that the server learns only the sum but

nothing about the Z(j) matrices. The main idea is as fol-

lows: using agreed upon random seeds clients jointly cre-

ate random matrices M (j) ∈ Z
n×c
l with the property that

∑

j∈P M
(j) = 0. Each client j then obfuscates its data

by computing Z̃(j) := Z(j) +M (j) and sends this to the

server. From the perspective of the server each Z̃(j) is indis-

tinguishable from uniformly random noise. However, when

all parts are summed, the obfuscations cancel out and what

remains is the desired answer:
∑

j∈P Z̃
(j) =

∑

j∈P Z
(j).

For technical details see (Bonawitz et al., 2017).

For XCLP, we propose a modification of the above con-

struction. Suppose we have a partition of the rows,

(Rj)j∈P , where each Rj ⊂ [n]. Each client j knows its

own Rj and the server knows all Rj . SecureRowSums’s

task is to computeZ :=
∑

j∈P Z
(j) in a distributed form in

which each client j ∈ P learns only the rows of Z indexed

by Rj , denoted Z[Rj], and the server learns nothing.

For this, let M (j) and Z̃(j) be defined as above. In addi-

tion, let Ẑ(j) be equal to the obfuscated Z̃(j), except that

the rows indexed by Rj are completely set to 0. Each

client now instead sends Ẑ(j) to the server, which computes

Ẑ :=
∑

j∈P Ẑ
(j). The server then redistributes Ẑ among

the clients, i.e. each client j receives Ẑ[Rj]. Note that

Ẑ[Rj] =
∑

k∈P\{j} Z̃
(k)[Rj] = Z[Rj] − Z̃(j)[Rj]. Con-

sequently, each client obtains the part of Z corresponding

to its own data by computing Z[Rj] = Ẑ[Rj] + Z̃(j)[Rj].
By construction the shared quantities leak nothing to the

server. Specifically Ẑ(j) is random noise with rows Rj set

to 0 and Ẑ is random noise since each block Ẑ[Rj] remains

obfuscated due to client j not sending M (j)[Rj].

3.3. Analysis

In this section, we analyze the efficacy, privacy, efficiency

and robustness of Algorithm 1.

Efficacy Algorithm 1 performs label propagation along

the data graph, as the classical LP algorithm (Zhu, 2005)

does when data is centralized. The similarity measure used

is cosine similarity estimated via the Hamming distance of

the LSH binary vectors. How close this is to the actual

cosine similarity is determined byL, the LSH vector length.

In practice, we observe no difference in behavior between

them already for reasonably small values, e.g. L = 4096.

Privacy The main insight is that Algorithm 1 adheres

to the federated learning principle that clients do not have

to share their data or labels with any other party. This is

ensured by the fact that all cross-steps are computed using

cryptographically secure methods. The only information

seen by the server about client data is contained in the ma-

trix of Hamming distances H , from which it can approxi-

mately recover the matrix of cosine similarities W . While

certainly influenced by the client data, we considerW (and

thereforeH) a rather benign object for a non-hostile server

to have access to because cosine similarity depends only

on angles, hence any rescaling and rotation of the client in-

put vectors would result in the same W matrix. Clients do

not see W but they see some of the columns of S. These

reflect how their labeled data can influence all other data

points according to the data graph as estimated from the

participating clients’ vectors. However, this influence is un-

normalized and hence the influence relative to other clients

cannot be known.

Communication Efficiency XCLP incurs communica-

tion costs at two steps of Algorithm 1. With the protocol of

Section 3.2, for computing the n(j)×n(k) Hamming matrix

between two clients j and k, client j sends n(j)n(k)L inte-

ger values in ZL to client k. With the enhanced protocol

of Appendix A.3, this amount is reduced to sending n(j)L
encrypted values from j to k and n(j)n(k) in the opposite

direction. Each of the two clients sends n(j)n(k) integer

values in ZL to the server. To propagate the labels via the

distributed matrix multiplication, each client j first receives

from the server a matrix of size n× l(j). It transmits a ma-

trix of size n × C to the server, and receives a matrix of

size n(j) × C back from it. In particular, XCLP requires

only a constant number of communication steps, which is

Cross-client Label Propagation for Transductive Federated Learning

in contrast to other methods that train iteratively.

Robustness In cross-device FL clients may be unreliable

and prone to disconnecting spontaneously. Therefore, it

is important that FL algorithms can still execute even in

the event of intermediate client dropouts. This is indeed

the case for Algorithm 1: a client dropping out before the

SecureHamming step (line 5), is equivalent to it not hav-

ing been in P in the first place. Since the Hamming compu-

tation is executed pairwise, a client dropping out during this

step has no effect on the computation of other clients. The

result will be missing entries in the matrix, H , which the

server can remove, thereby leading to the same outcome as

if the client had dropped out earlier. If clients drop out after

H has been computed, but before the SecureRowSums

step (line 14), they will have contributed to the estimate of

the data graph, but they will not contribute label informa-

tion to the propagation step. This has the same effect as

if the client only had unlabeled data. If clients drop out

within SecureRowSums, after the obfuscation matrices

have been agreed on but before the server has computed Ẑ ,

then the secure summation could not be completed. To re-

cover, the server can simply restart the SecureRowSums

step without the dropped client. Any later dropout will only

result in that client not receiving labels for its data, but it

will not affect the results for the other clients.

4. Experiments

In the following section we report experimental results for

XCLP. We present two applications in the context of feder-

ated learning. In Section 4.1 we illustrate how XCLP can

be used in a one-shot way to infer labels at prediction time.

In Section 4.2 we show how XCLP can be used for feder-

ated semi-supervised learning by integrating it into a feder-

ated averaging training loop. As our emphasis here is on

accuracy, not real-world efficiency, we use a simulated set-

ting of federated learning, rather than physically distribut-

ing the clients across multiple devices. Therefore, we also

use plaintext placeholders for the cryptographic steps that

have identical output. Source code for our experiments will

be made publicly available.

4.1. XCLP for prediction

The most straightforward application of XCLP is as a

method to predict labels for new data at inference time. For

this setting suppose a set of clients, P , possess training data

X(j) ∈ Xn
(j)

from some input space X , and a (potentially

partial) label matrix Y (j) ∈ {0, 1}n
(j)×C . The goal is to

infer labels for new batches of data, X
(j)
new. Note that the

above setting is general enough to encompass a number of

settings, including clients with fully labeled or fully unla-

beled training data. Also included is the possibility that a

client j has no training data to contribute, X(j) = ∅, but

has a batch of new data to be labeled, X
(j)
new 6= ∅.

By h : X → R
d we denote a preprocessing function, such

as a feature extractor. Each client applies h to all their data

points, train and new, to obtain their input vectors to the

XCLP routine, V (j) := h
(

X(j) ∪ X
(j)
new

)

. Running Algo-

rithm 1 on (V (j), Y (j))j∈P , each client obtains Ŷ (j), which

are label assignments for all of their data points, in particu-

lar including X
(j)
new as desired.

Experimental Setup We use the Fed-ISIC2019

dataset (Ogier du Terrail et al., 2022), a real-world bench-

mark for federated classification of medical images. It

consists of a total of 23247 images across 6 clients. The

dataset is highly heterogeneous in terms of the amount of

data per client, the classes present at each client as well

as visual content of the images. As baseline classifier, we

follow (Ogier du Terrail et al., 2022) and use an Efficient-

Net (Tan & Le, 2019), pretrained on ImageNet, which

we finetune using federated averaging. As preprocessing

functions, h, we use the feature extraction layers of the

network either at the point of initialization (pretrained) or

after the finetuning. Appendix B.1 gives full details of the

experimental setup.

Results Table 1 reports results for the setting in which

all clients contribute fully-labeled training data and have

new data that should be classified. The left columns (“pre-

trained”) illustrate the one-shot setting: no network train-

ing is required, only features are extracted once using a

pretrained network, and XCLP is run once to infer la-

bels. XCLP performs better than per-client label propa-

gation here, except for the largest dataset size, indicating

that in the limited data regime, it is indeed beneficial to

build the data graph jointly from all data rather than sep-

arately on each clients. The other three columns (“fine-

tuned”) illustrate that with a better –task-adapted– feature

representation, XCLP still outperforms per-client LP, and

also achieves better accuracy than predicting labels using

only the network.

Table 2 reports results for a more challenging setting. We

adopt a leave-one-client-out setup in which one client does

not contribute labeled training but instead its data is meant

to be classified. Given the heterogeneity of the clients, this

means the classifiers have to overcome a substantial distri-

bution shift. XCLP achieves better results than a network

trained by federated averaging in all but one case, where in

several cases the advantage is quite substantial. Note that

per-client LP is not applicable here, as the new data is all

located on a client that does not have labeled training data.

Finally, we also conduct on ablation study on the effect

of unlabeled training data on XCLP, that is when Y (j) is

a (strictly) partial label matrix. In this case the unlabeled

Cross-client Label Propagation for Transductive Federated Learning

Table 1: XCLP for prediction (Fed-ISIC2019 dataset): Classification accuracy [in %] with two different preprocessing

functions (pretrained and finetuned) and training sets of different size (average and standard deviation across three runs).

pretrained finetuned
training set size per-client LP XCLP FedAvg per-client LP XCLP

n = 954 30.70 ± 1.25 34.00± 1.12 43.78 ± 0.88 45.35 ± 1.25 47.48± 1.12

n = 1882 31.40 ± 1.18 34.61± 0.93 46.83 ± 0.75 48.10 ± 1.18 52.34± 0.93

n = 3744 37.41 ± 0.20 38.49± 0.88 52.87 ± 0.14 56.98 ± 0.20 59.49± 0.88

n = 18597 55.10 ± 0.51 53.38 ± 0.67 63.78 ± 0.20 73.30 ± 0.51 74.22± 0.67

Table 2: XCLP for prediction (Fed-ISIC2019 dataset):

Classification accuracy [in %] for leave-one-client-out ex-

periments (average and standard deviation across three

runs).

left-out client FedAvg XCLP

Client 1 35.15 ± 0.96 38.89± 1.34

Client 2 68.75± 0.72 67.05 ± 0.54

Client 3 51.94 ± 2.52 62.02± 1.13

Client 4 42.72 ± 0.79 54.84± 0.78

Client 5 41.53 ± 1.60 52.28± 0.58

Client 6 46.92 ± 3.69 61.27± 3.19

Algorithm 2: FedAvg+XCLP

Input: partially labeled training data (X(j), Y (j))mj=1

1 θ = (φ, ψ)← InitializeModelParameters

2 for round t ∈ [1, . . . T] do

3 P ← server randomly selects τm clients

4 Server broadcasts θ to each client in P
5 for client j ∈ P in parallel do

6 V (j) ← fφ(X
(j))

7 ŷ(j), ω(j) ← XCLP(V (j), Y (j), P, Server)

8 θ(j) ← ClientUpdate(X(j), ŷ(j), ω(j); θ)

9 Client j sends θ(j) to the server

10 θ ← ServerUpdate
(

(θ(j))j∈P)
)

Output: model parameters θ

training data does not contribute label information towards

inference on X
(j)
new, but does contribute to a more densely

sampled graph. The results, shown in Appendix C, demon-

strate that prediction accuracy of XCLP does indeed im-

prove through the addition of unlabeled training data.

4.2. XCLP for federated semi-supervised learning

We now describe how XCLP can be applied iteratively

during a training loop in the context of federated semi-

supervised learning. FedAvg+XCLP, shown in pseudocode

in Algorithm 2, follows a general FL template of alternat-

ing local and global model updates. As such, it is compat-

ible with most existing FL optimization schemes, such as

FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020),

or SCAFFOLD (Karimireddy et al., 2020). The choice of

scheme determines the exact form of the ClientUpdate

and ServerUpdate routines.

The first step (line 1) is to initialize the model parameters,

θ = (φ, ψ), where fφ : X → R
d is the feature extraction

part of a neural network and fψ : Rd → R
C is the classifier

head. The initialization could be random, using weights of

a pretrained network, by an unsupervised technique, such

as contrastive learning, or by a supervised step, such as fed-

erated training on only the labeled examples.

We then iterate the main training loop over T rounds. To

start each round the server samples some fraction τ of the

m total clients. These clients receive the current model pa-

rameters from the server (line 4) and embed their labeled

and unlabeled data with the feature extractor, fφ (line 6).

Clients and server then collaboratively run XCLP on these

feature vectors (line 7). As output of this step each client

updates the pseudo-labels and confidence values for their

unlabeled data, which they then use for local supervised

training (line 8). Lastly, clients send the updated local mod-

els to the server (line 9) which aggregates them (line 10).

The motivation for this approach comes from the insight

gained in Section 4.1, that XCLP assigns high quality la-

bels when run on features obtained from a trained network.

Crucially, pseudo-labels assigned by XCLP are always re-

computed when a client is sampled. Thus as the network

features improve so too does the quality of the pseudo-

labeling.

Experimental Setup We evaluate the accuracy of

FedAvg+XCLP against other methods for federated SSL

as well as report on ablation studies. We adopt a standard

federated averaging scheme, in which ClientUpdate

consists of running 5 epochs of SGD with confidence-

weighted cross-entropy loss on the local device and

ServerUpdate simply averages the local client models.

We use three standard datasets: CIFAR-10 (Krizhevsky,

2009), which has 10 classes and is used in several previous

federated SSL works (Jeong et al., 2021; Long et al., 2020;

Albaseer et al., 2020), as well as the more difficult CIFAR-

100 (Krizhevsky, 2009) and Mini-ImageNet (Vinyals et al.,

Cross-client Label Propagation for Transductive Federated Learning

2016) which have 100 classes. To the best of our knowl-

edge ours is the first work in this federated SSL setting to

evaluate on these more challenging datasets. The datasets

are split in different ways (different number of clients, dif-

ferent amounts of labeled data, i.i.d. vs non-i.i.d.) to simu-

late a diverse range of federated settings.

We compare FedAvg+XCLP to a broad range of other meth-

ods. To enable a fair comparison of results, all methods

use the same network architecture, and hyper-parameters

are chosen individually to maximize each method’s per-

formance. From the existing federated SSL literature,

we report results for FedMatch (Jeong et al., 2021), Fed-

Siam (Long et al., 2020) and FedSem+, which follows

(Albaseer et al., 2020) but additionally uses confidence-

based sample weights, as we found these to consistently

improve its accuracy. Additional baselines are two meth-

ods that follow the same structure as Algorithm 2 but use

alternative ways to obtain pseudo-labels: from per-client

label propagation (FedAvg+perclientLP) or from the net-

work’s classifier predictions (FedAvg+network). Finally,

we also report results for training in a supervised manner on

only the available labeled examples, FedAvg (labeled only).

Note that we do not include comparisons to (Zhang et al.,

2021b) and (Diao et al., 2022) as these methods address a

different federated SSL scenario in which the server has

access to labeled data while the clients have no labels.

Results We report the results of our experiments in Ta-

bles 3 and 4 as the average accuracy and standard deviation

over three random splits of the data for each setting. Ta-

ble 3 provides a comparison of XCLP to other approaches

and baselines in the standard setting of CIFAR-10 with 100

clients, which has been used in prior work. In each case,

we report results when 1,000 or 5,000 of the data points are

labeled. Either all or half of the clients have labels, with

classes distributed either i.i.d. or non-i.i.d. across clients.

Table 4 reports on the harder situation with many more

classes, which prior work has not attempted. Across the

board, XCLP achieves the best results among all methods.

The effect is strongest in settings where clients have only a

limited amount of labeled data. Of the other methods, none

has a consistent advantage over the others.

5. Conclusions

In this work we introduced XCLP, a method for transduc-

tively predicting labels for unlabeled data points in a fed-

erated setting, where the data is distributed across multiple

clients. It makes use of cryptographic routines to preserve

data privacy when estimating a joint neighborhood graph

over the data and propagates label information across this

graph by distributing the computation among the clients.

We presented two applications of XCLP, inferring labels

for new (test) data, and training on partly labeled data in

a federated semi-supervised setting. In our experiments

XCLP led to substantial improvements in classification ac-

curacy in both applications, especially in the most challeng-

ing (but often realistic) setting when the amount of labeled

data per client is limited.

References

Acar, A., Aksu, H., Uluagac, A. S., and Conti, M. A sur-

vey on homomorphic encryption schemes: Theory and

implementation. ACM Computing Surveys, 51(4), 2018.

Albaseer, A., Ciftler, B. S., Abdallah, M. M., and

Al-Fuqaha, A. I. Exploiting unlabeled data in

smart cities using federated edge learning. In

International Wireless Communications and Mo-

bile Computing Conference (IWCMC), 2020. URL

https://doi.org/10.1109/IWCMC48107.2020.9148475.

Aliasgari, M., Blanton, M., Zhang, Y., and Steele,

A. Secure computation on floating point

numbers. In Network and Distributed Sys-

tem Security Symposium (NDSS), 2013. URL

https://www.ndss-symposium.org/ndss2013/secure-computation-floating-point-numbers.

Bonawitz, K. A., Ivanov, V., Kreuter, B., Marce-

done, A., McMahan, H. B., Patel, S., Ramage,

D., Segal, A., and Seth, K. Practical secure ag-

gregation for privacy-preserving machine learn-

ing. In ACM Conference on Computer and

Communications Security (SIGSAC), 2017. URL

https://doi.org/10.1145/3133956.3133982.

Bringer, J., Chabanne, H., and Patey, A. SHADE: Se-

cure HAmming DistancE computation from oblivious

transfer. In International Conference on Finan-

cial Cryptography and Data Security (FC), 2013. URL

https://link.springer.com/chapter/10.1007/978-3-642-41320-9_11.

Cai, T., Gao, R., Lee, J., and Lei, Q. A theory of la-

bel propagation for subpopulation shift. In Meila,

M. and Zhang, T. (eds.), International Confer-

ence on Machine Learing (ICML), volume 139

of Proceedings of Machine Learning Research,

pp. 1170–1182. PMLR, 18–24 Jul 2021. URL

https://proceedings.mlr.press/v139/cai21b.html.

Catrina, O. and Saxena, A. Secure computation with fixed-

point numbers. In Financial Cryptography and Data Se-

curity (FCDS), 2010.

Dehaene, O., Camara, A., Moindrot, O., de Lavergne,

A., and Courtiol, P. Self-supervision closes the

gap between weak and strong supervision in his-

tology. CoRR, abs/2012.03583, 2020. URL

https://arxiv.org/abs/2012.03583.

https://doi.org/10.1109/IWCMC48107.2020.9148475
https://www.ndss-symposium.org/ndss2013/secure-computation-floating-point-numbers
https://doi.org/10.1145/3133956.3133982
https://link.springer.com/chapter/10.1007/978-3-642-41320-9_11
https://proceedings.mlr.press/v139/cai21b.html
https://arxiv.org/abs/2012.03583

Cross-client Label Propagation for Transductive Federated Learning

Table 3: XCLP for federated SSL: classification accuracy [in %] on federated CIFAR-10. m is the number of clients, mL

the number of clients with labeled data, nL is the total number of labels across all clients. i.i.d. and non-i.i.d. refer to how

the data is split among the clients. For details, see the main text and Appendix B.2.

CIFAR-10, i.i.d. (m = 100)

mL = 100 mL = 50

Method nL = 1000 nL = 5000 nL = 1000 nL = 5000

FedAvg (labeled only) 55.46 ± 0.43 76.13 ± 0.46 56.97 ± 0.59 80.36 ± 0.07

FedAvg+perclientLP 61.75 ± 2.22 85.11 ± 0.73 65.29 ± 2.50 84.41 ± 0.25

FedAvg+network 60.12 ± 0.15 79.45 ± 0.31 59.14 ± 0.35 81.04 ± 0.20

FedMatch 50.93 ± 0.56 72.22 ± 0.14 57.10 ± 0.46 77.80 ± 0.32

FedSiam 67.02 ± 0.98 82.06 ± 0.56 62.98 ± 1.61 78.45 ± 0.34

FedSem+ 59.98 ± 0.49 79.49 ± 0.15 59.67 ± 0.47 80.94 ± 0.25

FedAvg+XCLP (ours) 70.91± 0.71 86.65± 0.16 70.81± 1.65 86.29± 0.34

CIFAR-10, non-i.i.d. (m = 100)

mL = 100 mL = 50

Method nL = 1000 nL = 5000 nL = 1000 nL = 5000

FedAvg (labeled only) 50.94 ± 0.14 75.34 ± 1.38 53.26 ± 0.69 79.65 ± 0.12

FedAvg+perclientLP 50.94 ± 0.14 76.61 ± 1.50 53.26 ± 0.69 79.65 ± 0.12

FedAvg+network 60.60 ± 0.60 80.07 ± 0.53 59.82 ± 1.05 81.14 ± 0.23

FedMatch 50.71 ± 1.57 71.99 ± 0.70 48.24 ± 0.86 66.37 ± 0.41

FedSiam 67.85 ± 0.26 82.23 ± 0.46 62.29 ± 1.84 78.84 ± 0.72

FedSem+ 60.93 ± 0.97 79.70 ± 0.78 59.74 ± 0.74 81.30 ± 0.09

FedAvg+XCLP (ours) 73.76± 0.71 85.53± 0.56 70.01± 1.29 85.42± 0.43

Table 4: XCLP for federated SSL: classification accuracy [in %] on federated CIFAR-100 and Mini-ImageNet. m is the

number of clients, mL the number of clients with labeled data, nL is the total number of labels across all clients.

CIFAR-100, i.i.d. Mini-ImageNet, i.i.d.

m = mL = 50 m = mL = 100 m = mL = 50 m = mL = 100

Method nL = 5000 nL = 10000 nL = 5000 nL = 10000

FedAvg (labeled only) 43.80 ± 0.19 53.91 ± 0.25 23.39 ± 0.52 31.72 ± 0.54

FedAvg+network 43.80 ± 0.19 54.19 ± 0.21 23.98 ± 0.36 31.86 ± 0.57

FedAvg+perclientLP 43.82 ± 0.59 54.38 ± 0.36 25.53 ± 0.22 33.09 ± 0.62

FedAvg+XCLP (ours) 50.19± 0.60 57.00± 0.08 26.93± 0.41 35.78± 0.56

Dennis, D. K., Li, T., and Smith, V. Heterogeneity for the

win: One-shot federated clustering. In International

Conference on Machine Learing (ICML), 2021. URL

http://proceedings.mlr.press/v139/dennis21a.html.

Diao, E., Ding, J., and Tarokh, V. SemiFL: Com-

munication efficient semi-supervised federated learning

with unlabeled clients. In Conference on Neural In-

formation Processing Systems (NeurIPS), 2022. URL

https://arxiv.org/abs/2106.01432.

Grammenos, A., Mendoza-Smith, R., Crowcroft, J.,

and Mascolo, C. Federated principal compo-

nent analysis. In Conference on Neural Informa-

tion Processing Systems (NeurIPS), 2020. URL

https://proceedings.neurips.cc/paper/2020/hash/47a658229eb2368a99f1d032c8848542-Abstract.html.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2016. URL

https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html.

Huang, Q., He, H., Singh, A., Lim, S., and Ben-

son, A. R. Combining label propagation and

simple models out-performs graph neural networks.

In International Conference on Learning Repre-

sentations (ICLR). OpenReview.net, 2021. URL

https://openreview.net/forum?id=8E1-f3VhX1o.

Indyk, P. and Motwani, R. Approximate nearest neighbors:

towards removing the curse of dimensionality. In Sym-

posium on Theory of Computing (STOC), 1998. URL

https://dl.acm.org/doi/abs/10.1145/276698.276876.

Iscen, A., Tolias, G., Avrithis, Y., and Chum,

O. Label propagation for deep semi-supervised

learning. In Conference on Computer Vision

and Pattern Recognition (CVPR), 2019. URL

http://openaccess.thecvf.com/content_CVPR_2019/html/Iscen_Label_Propagation_for_Deep_Semi-Supervised_Learning_CVPR_2019_paper.html.

Jeong, W., Yoon, J., Yang, E., and Hwang, S. J. Fed-

erated semi-supervised learning with inter-client

consistency & disjoint learning. In International Confer-

ence on Learning Representations (ICLR), 2021. URL

https://openreview.net/forum?id=ce6CFXBh30h.

http://proceedings.mlr.press/v139/dennis21a.html
https://arxiv.org/abs/2106.01432
https://proceedings.neurips.cc/paper/2020/hash/47a658229eb2368a99f1d032c8848542-Abstract.html
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://openreview.net/forum?id=8E1-f3VhX1o
https://dl.acm.org/doi/abs/10.1145/276698.276876
http://openaccess.thecvf.com/content_CVPR_2019/html/Iscen_Label_Propagation_for_Deep_Semi-Supervised_Learning_CVPR_2019_paper.html
https://openreview.net/forum?id=ce6CFXBh30h

Cross-client Label Propagation for Transductive Federated Learning

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,

M., Bhagoji, A. N., Bonawitz, K. A., Charles, Z., Cor-

mode, G., Cummings, R., D’Oliveira, R. G. L., Eichner,

H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,

Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Har-

chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu,

J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný,

J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint,

T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A.,

Pagh, R., Qi, H., Ramage, D., Raskar, R., Raykova,

M., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh,

A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L.,

Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. Ad-

vances and open problems in federated learning. Foun-

dations and Trends in Machine Learning, 2021. URL

https://doi.org/10.1561/2200000083.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich,

S. U., and Suresh, A. T. SCAFFOLD: stochastic con-

trolled averaging for federated learning. In International

Conference on Machine Learing (ICML), 2020. URL

http://proceedings.mlr.press/v119/karimireddy20a.html.

Khamis, S. and Lampert, C. Coconut: Co-classification

with output space regularization. In British Ma-

chine Vision Conference (BMVC), 2014. URL

http://www.bmva.org/bmvc/2014/papers/paper044/index.html.

Krizhevsky, A. Learning multiple layers of

features from tiny images. Technical re-

port, University of Toronto, 2009. URL

https://www.cs.toronto.edu/˜kriz/learning-features-2009-TR.pdf.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Tal-

walkar, A., and Smith, V. Federated optimiza-

tion in heterogeneous networks. In Machine

Learning and Systems (MLSys), 2020. URL

https://proceedings.mlsys.org/book/316.pdf.

Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang,

S. J., and Yang, Y. Learning to propagate labels:

Transductive propagation network for few-shot

learning. In International Conference on Learning

Representations (ICLR). OpenReview.net, 2019. URL

https://openreview.net/forum?id=SyVuRiC5K7.

Long, Z., Che, L., Wang, Y., Ye, M., Luo, J., Wu, J.,

Xiao, H., and Ma, F. FedSiam: Towards adaptive feder-

ated semi-supervised learning. arXiv:2012.03292, 2020.

URL https://arxiv.org/abs/2012.03292.

McMahan, B., Moore, E., Ramage, D., Hampson,

S., and y Arcas, B. A. Communication-efficient

learning of deep networks from decentralized

data. In International Conference on Artificial In-

telligence and Statistics (AISTATS), 2017. URL

http://proceedings.mlr.press/v54/mcmahan17a.html.

Naor, M. and Pinkas, B. Efficient oblivious transfer pro-

tocols. In Symposium on Discrete Algorithms (SODA),

2001.

Ogier du Terrail, J., Ayed, S.-S., Cyffers, E., Grimberg, F.,

He, C., Loeb, R., Mangold, P., Marchand, T., Marfoq,

O., Mushtaq, E., Muzellec, B., Philippenko, C., Silva,

S., Teleńczuk, M., Albarqouni, S., Avestimehr, S.,

Bellet, A., Dieuleveut, A., Jaggi, M., Karimireddy, S. P.,

Lorenzi, M., Neglia, G., Tommasi, M., and Andreux, M.

FLamby: Datasets and benchmarks for cross-silo feder-

ated learning in realistic healthcare settings, 2022. URL

https://openreview.net/forum?id=GgM5DiAb6A2.

Paillier, P. Public-key cryptosystems based on com-

posite degree residuosity classes. In International

Conference on the Theory and Application of Cryp-

tographic Techniques (EuroCrypt), 1999. URL

https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf.

Song, C., Granqvist, F., and Talwar, K.

FLAIR: federated learning annotated image

repository. CoRR, abs/2207.08869, 2022.

doi: 10.48550/arXiv.2207.08869. URL

https://doi.org/10.48550/arXiv.2207.08869.

Tan, M. and Le, Q. EfficientNet: Rethinking model

scaling for convolutional neural networks. In

Chaudhuri, K. and Salakhutdinov, R. (eds.), Inter-

national Conference on Machine Learing (ICML),

volume 97 of Proceedings of Machine Learning Re-

search, pp. 6105–6114. PMLR, 09–15 Jun 2019. URL

https://proceedings.mlr.press/v97/tan19a.html.

Tarvainen, A. and Valpola, H. Mean teachers

are better role models: Weight-averaged consis-

tency targets improve semi-supervised deep learn-

ing results. In Conference on Neural Informa-

tion Processing Systems (NeurIPS), 2017. URL

https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html.

Vapnik, V. Estimation of Dependences Based

on Empirical Data. Springer, 1982. URL

https://link.springer.com/book/10.1007/0-387-34239-7.

Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu,

K., and Wierstra, D. Matching networks for one

shot learning. In Conference on Neural Informa-

tion Processing Systems (NeurIPS), 2016. URL

https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html.

Wang, B., Li, A., Li, H., and Chen, Y. Graphfl: A feder-

ated learning framework for semi-supervised node clas-

sification on graphs. CoRR, abs/2012.04187, 2020. URL

https://arxiv.org/abs/2012.04187.

https://doi.org/10.1561/2200000083
http://proceedings.mlr.press/v119/karimireddy20a.html
http://www.bmva.org/bmvc/2014/papers/paper044/index.html
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.mlsys.org/book/316.pdf
https://openreview.net/forum?id=SyVuRiC5K7
https://arxiv.org/abs/2012.03292
http://proceedings.mlr.press/v54/mcmahan17a.html
https://openreview.net/forum?id=GgM5DiAb6A2
https://link.springer.com/content/pdf/10.1007/3-540-48910-X_16.pdf
https://doi.org/10.48550/arXiv.2207.08869
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html
https://link.springer.com/book/10.1007/0-387-34239-7
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://arxiv.org/abs/2012.04187

Cross-client Label Propagation for Transductive Federated Learning

Wang, H. and Leskovec, J. Combining graph convolutional

neural networks and label propagation. ACM Trans. Inf.

Syst., 40(4):73:1–73:27, 2022. doi: 10.1145/3490478.

URL https://doi.org/10.1145/3490478.

Xie, H., Ma, J., Xiong, L., and Yang, C. Feder-

ated graph classification over non-iid graphs. In

Conference on Neural Information Processing Sys-

tems (NeurIPS), pp. 18839–18852, 2021. URL

https://proceedings.neurips.cc/paper/2021/hash/9c6947bd95ae487c81d4e19d3ed8cd6f-Abstract.html.

Zhang, K., Yang, C., Li, X., Sun, L., and Yiu, S.

Subgraph federated learning with missing neighbor

generation. In Conference on Neural Information Pro-

cessing Systems (NeurIPS), pp. 6671–6682, 2021a. URL

https://proceedings.neurips.cc/paper/2021/hash/34adeb8e3242824038aa65460a47c29e-Abstract.html.

Zhang, Z., Yang, Y., Yao, Z., Yan, Y., Gonzalez, J. E.,

Ramchandran, K., and Mahoney, M. W. Improv-

ing semi-supervised federated learning by reducing

the gradient diversity of models. In International

Conference on Big Data (Big Data), 2021b. URL

https://doi.org/10.1109/BigData52589.2021.9671693.

Zhou, D., Bousquet, O., Lal, T., Weston, J., and

Schölkopf, B. Learning with local and global

consistency. In Conference on Neural Informa-

tion Processing Systems (NeurIPS), 2004. URL

https://proceedings.neurips.cc/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf.

Zhu, X. Semi-supervised learning with graphs. PhD

thesis, Carnegie Mellon University, 2005. URL

https://pages.cs.wisc.edu/˜jerryzhu/pub/thesis.pdf.

Zhu, X. and Ghahramani, Z. Learning from labeled

and unlabeled data with label propagation. Technical

Report CMU-CALD-02-107, School of Computer

Science, Carnegie Mellon University, 2002. URL

https://mlg.eng.cam.ac.uk/zoubin/papers/CMU-CALD-02-107.pdf.

https://doi.org/10.1145/3490478
https://proceedings.neurips.cc/paper/2021/hash/9c6947bd95ae487c81d4e19d3ed8cd6f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/34adeb8e3242824038aa65460a47c29e-Abstract.html
https://doi.org/10.1109/BigData52589.2021.9671693
https://proceedings.neurips.cc/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf
https://pages.cs.wisc.edu/~jerryzhu/pub/thesis.pdf
https://mlg.eng.cam.ac.uk/zoubin/papers/CMU-CALD-02-107.pdf

Cross-client Label Propagation for Transductive Federated Learning

A. Additional Background

A.1. Propagating values along a data graph

For a graph with n vertices and adjacency matrix W ∈ R
n×n of edge weights, a vector of values, y ∈ R

n, can be

propagated to neighboring vertices by forming z = Wy. By repeatedly multiplying withW values can be propagated all

along the graph structure (Zhu, 2005).

In the context of propagating labels, one wants not only to propagate the labels to unlabeled points, but also to prevent the

information at labeled points to be forgotten. For that, one can uses an extended update rule

zt+1 = αWzt + y (1)

where α ∈ (0, 1) is a trade-off hyperparameter. For ‖W‖ < 1/α, this process has the closed form expression

z∞ = (Id−αW)−1y, (2)

as its (t→∞)-limit. This can be seen from the fact that Equation 1 is a contraction with z∞ as fixed point.

In Section 3.1 we make use of this fact together with the observation that Equation 2 can readily be applied to vectors-

valued data with a matrix Y in place of y. However, the propagation step will not preserve normalization, e.g. of the

L1-norm. When such a property is required, e.g. for the calculation of entropy-based confidence, normalization has to be

performed explicitly post-hoc.

A.2. Computing similarity from hashed data

Locality-sensitive hashing (LSH) (Indyk & Motwani, 1998) is a procedure for hashing real-valued vectors into binary

vectors while preserving their pairwise similarity. Let v ∈ R
d be a vector. To encode v into a binary vector b of length L,

LSH randomly samples L hyperplanes in R
d. For each hyperplane it checks whether v lies above or below it and sets the

ith bit in b as 1 or 0 accordingly. Formally, bi = 1〈v,ui〉≥0, where ui ∈ R
d is the normal vector of the ith hyperplane. A key

property of LSH is that it approximately preserves cosine-similarity. Concretely, for vectors v1, v2 with LSH encodings

b1, b2 (compute with the same projections), one has

〈v1, v2〉

‖v1‖‖v2‖
≈ cos(πh(b1, b2)/L) (3)

where h is the Hamming distance (number of bits that differ) between two binary vectors. The reason is that the probability

of b1 and b2 differing at any bit i is the probability that the i-th sampled hyperplane lies between v1 and v2, which is equal

to ∡(v1, v2)/π. By the law of large numbers, the more hyperplanes one samples, the better the approximation quality.

A.3. Alternative SecureHamming protocol

The SHADE protocol discussed in Section 3.2 is lightweight and flexible due to it reliance on only the oblivious transfer

primitive. However, it has sub-optimal communication cost because each Hamming distance computation is treated inde-

pendently. In this section, we discuss an alternative method based on homomorphic encryption (HE) (Acar et al., 2018),

specifically any partially homomorphic encryption scheme that allows cyphertexts to be added and subtracted, such as

Paillier’s (Paillier, 1999).

HE is a technique that allows computing functions on encrypted arguments. The outcome is an encryption of the value that

would have been the result of evaluating the target function on the plaintext arguments, but the computational devices gain

no information about the actual plaintext. We exploit this paradigm to compute the Hamming distances of a binary vector

from clients j with all binary vectors from a client k in the following way:

1) Client j encrypts its own data vector b(j) ∈ {0, 1}L, using its own public key and transfers the resulting vector y =

b(j) (boxes indicate encryption) to client k. Because the data is encrypted, client k can extract no information about client

j’s data from this.

2) For any of its own data vectors b(k) ∈ {0, 1}L, client k creates a uniformly random value r ∈ [0, L−1]. It then computes

Cross-client Label Propagation for Transductive Federated Learning

the following function in a homomorphic way with encrypted input y = y and plaintext input x = b(k):

f(y;x) = r +
∑

l:xl=1

yl −
∑

l:xl=0

yl

Because of the identity h(x, y) =
∑

l[xlyl + x̄lȳl] =
∑

l:xl=1 yl +
∑

l:xl=0 ȳl =
∑

l:xl=1 yl −
∑

l:xl=0 yl + n −
∑

l xl,

the result, T = f(y ;x), is the value T = h(b(j), b(k)) + r − n+
∑

l bl in encrypted form.

4) Client j send the value R = r − n +
∑

l bl to the server, and the value T to client j. Client j decrypts T using its

own secret key and sends the resulting value T to the server. It gains no information about client k’s data or the Hamming

distance, because the added randomness gives T a uniformly random distribution.

5) The server recovers H(b(j), b(k)) = T −R without gaining any other information about the clients’ data.

Note that for computing single Hamming distances, the above protocol has no advantage over the SHADE variant of

Section 3.2. However, for computing all pairwise Hamming distances between the data of two clients, the protocol above

saves a factor n(k) in communication cost, because y has to be transferred only once and can then be used repeatedly by

client k to compute the distances to all of its vectors.

B. Experimental Details

B.1. XCLP for Prediction

Dataset We use the Fed-ISIC2019 (Ogier du Terrail et al., 2022) dataset which contains over 20, 000 images of skin

lesions. The task is to predict melanoma (cancer) types. There are 6 clients, naturally defined by hospital and scanner used.

As a result the data of each client is highly heterogeneous in terms of the amount of data per client (12413, 3954, 3363,

2259, 819, 439 examples for each client respectively), the classes present at each client as well as visual content of the

images. Due to the class imbalance in the dataset the evaluation metric used is balanced accuracy.

Network Following (Ogier du Terrail et al., 2022) we use an EfficientNet (Tan & Le, 2019) pretrained on ImageNet,

which we denote by f . We initialize a new final linear layer and fine-tune the whole network using federated averaging as

described in (Ogier du Terrail et al., 2022).

Hyper-parameters We set all hyper-parameters for FederatedAveraging to the values specified in

(Ogier du Terrail et al., 2022) except we increase the number of training rounds to T = 40 as we found that the accuracy to

improve with further training. Parameters for XCLP (LSH dimension, k-NN parameter) are chosen using cross-validation.

We use L = 1024 and k = 3. We fix the parameter α = 0.99.

B.2. XCLP for federated semi-supervised learning

Datasets We evaluate XCLP on three standard datasets for multi-class classification: CIFAR-10 (Krizhevsky, 2009),

which has 10 classes and is used in previous federated SSL works, as well as the more difficult CIFAR-100 (Krizhevsky,

2009) and Mini-ImageNet (Vinyals et al., 2016) which both have 100 classes. To the best of our knowledge ours is the

first work in this federated SSL setting to evaluate on these more challenging datasets. All three datasets consist of 60,000
images which we split into training sets of size n := 50,000 and test sets of size 10,000. From the training set, nL
examples are labeled and the remaining n−nL are unlabeled. For CIFAR-10 we evaluate with nL = 1,000 and 5,000. For

CIFAR-100 and Mini-ImageNet we take nL = 5,000 and 10,000.

Federated Setup We simulate a FL scenario by splitting the training data (labeled and unlabeled) between m clients.

mL of these have partly labeled data, while the others have only unlabeled data. Each client is assigned a total of n/m data

points of which nL/mL are labeled if the client is one of themL which possess labels. We simulate statistical heterogeneity

among the clients by controlling the number of classes each client has access to. In the i.i.d. setting all clients have uniform

class distributions and receive an equal number of labels of each class. In the non-i.i.d. setting we assign a class distribution

to each client and clients receive labels according to their own distribution.

Networks Following prior work, we use 13-layer CNNs (Tarvainen & Valpola, 2017) for CIFAR-10 and 100 and a

ResNet-18 (He et al., 2016) for Mini-ImageNet. Feature extractors are all layers except the last fully connected one, thus

embeddings have dimension 128 and 512, respectively.

Cross-client Label Propagation for Transductive Federated Learning

Hyper-parameters We choose hyper-parameters for all methods based on training progress (LSH dimension, k-NN

parameter) or accuracy on a held-out validation set consisting of 10% of the training data (batch size, learning rate).

Federated learning parameters We set the number of clients to m = 100, except for our experiments on CIFAR-100

and Mini-ImageNet with nL = 5000. In these cases we set m = 50 as it is not possible to create an i.i.d. split of the

data over 100 clients since the number of classes (C=100) is too large. For CIFAR-10 we set the number of clients which

possess labels to mL = 100 and mL = 50. On CIFAR-100 and Mini-ImageNet we set mL = m.

The ClientUpdate step corresponds to E epochs of stochastic gradient descent (SGD) of a loss function. We set the

number local epochs to E = 5 and the loss function is (per sample weighted) cross-entropy loss. The ServerUpdate

step corresponds to averaging the model updates:

ServerUpdate(θ(j) for j ∈ P) =
1

|P |

∑

j∈P

θ(j).

The number of training rounds is set to T = 1500 and the number of clients sampled by the server per training round is set

to 5, so τ = 0.05 when m = 100 and τ = 0.1 when m = 50. Note that when mL < m we ensure that the server samples

τmL clients from the labeled portion (and τ(m −mL) from the unlabeled) to ensure that there are some labels present in

the graph.

Network training parameters We use standard data augmentation following (Tarvainen & Valpola, 2017). On CIFAR-10

and CIFAR-100 this is performed by 4×4 random translations followed by a random horizontal flip. On Mini-ImageNet,

each image is randomly rotated by 10 degrees before a random horizontal flip. We use weight decay for all network

parameters which is set to 2×10−4. When carrying out SGD in the ClientUpdatewe use batches of dataB = BL∪BU
whereBL is a batch of labeled data andBU is a batch of pseudo-labeled (previously unlabeled) data. We set |BL| according

to how many labeled samples the client has available, |BL| = min(50,#labels). We set |BU | = |BL|. Learning rate for

SGD is set according to this batch size. On CIFAR-10, for |BL| < 50 we set the learning rate to 0.1 and for |BL| = 50 we

set the learning rate to 0.3. On CIFAR-100 and Mini-ImageNet we always have |BL| = 50 and we set the learning rates to

0.5 and 1.0 respectively. We decay the learning rate using cosine annealing so that the learning rate would be 0 after 2000

rounds.

XCLP parameters We set the LSH dimension toL = 4096 as this gave near exact approximation of the cosine similarities

while still being computationally fast (less than 1 second per round). We set the sparsification parameter to k = 10, so that

each point is connected to its 10 most similar neighbors in the graph, and the label propagation parameter to α = 0.99.

C. Further experimental results

In Table 1 we reported XCLP’s accuracy for training sets of different sizes. Here, we expand on this by studying the same

situation, but when not the training set size changes but only the fraction of labeled data, α, in it.

Table 5 shows the results: the FedAvg column is identical to the one in Table 1, because the federated averaging training

does not benefit from the additionally available unlabeled training data. The other two column report the difference in

behavior of XCLP when used with only the labeled part of the training set (as in Table 1) or with all training data, labeled

and unlabeled. One can see that additional unlabeled data always improves XCLP’s performance. This supports the

hypothesis that a better estimation of the data graph, as enabled by having more unlabeled data, positively affects the

classification accuracy, even if the number of labeled data points remains unchanged.

Table 5: XCLP for prediction (Fed-ISIC2019 dataset): Classification accuracy [in %] when different fractions, α, of train-

ing data are labeled. FedAvg and XCLP (labeled) use only the labeled part of the training set, XCLP (labeled+unlabeled)

uses also the unlabeled part.

FedAvg XCLP (labeled) XCLP (labeled+unlabeled)

α = 0.05 43.78 ± 0.88 47.48 ± 1.12 49.50± 1.42

α = 0.1 46.83 ± 0.75 52.34 ± 0.93 53.78± 0.90

α = 0.2 52.87 ± 0.14 59.49 ± 0.88 61.09± 0.66

α = 1.0 63.78 ± 0.20 74.22 ± 0.67 74.22± 0.67

	1 Introduction
	2 Related Work
	3 Method
	3.1 Cross-Client Label Propagation (XCLP)
	3.2 Cryptographic Subroutines
	3.3 Analysis

	4 Experiments
	4.1 XCLP for prediction
	4.2 XCLP for federated semi-supervised learning

	5 Conclusions
	A Additional Background
	A.1 Propagating values along a data graph
	A.2 Computing similarity from hashed data
	A.3 Alternative SecureHamming protocol

	B Experimental Details
	B.1 XCLP for Prediction
	B.2 XCLP for federated semi-supervised learning

	C Further experimental results

