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ABSTRACT: Geometry is crucial in our efforts to comprehend the structures and dynamics of biomolecules. For example, volume,
surface area, and integrated mean and Gaussian curvature of the union of balls representing a molecule are used to quantify its
interactions with the water surrounding it in the morphometric implicit solvent models. The Alpha Shape theory provides an
accurate and reliable method for computing these geometric measures. In this paper, we derive homogeneous formulas for the
expressions of these measures and their derivatives with respect to the atomic coordinates, and we provide algorithms that
implement them into a new software package, AlphaMol. The only variables in these formulas are the interatomic distances, making
them insensitive to translations and rotations. AlphaMol includes a sequential algorithm and a parallel algorithm. In the parallel
version, we partition the atoms of the molecule of interest into 3D rectangular blocks, using a kd-tree algorithm. We then apply the
sequential algorithm of AlphaMol to each block, augmented by a buffer zone to account for atoms whose ball representations may
partially cover the block. The current parallel version of AlphaMol leads to a 20-fold speed-up compared to an independent serial
implementation when using 32 processors. For instance, it takes 31 s to compute the geometric measures and derivatives of each
atom in a viral capsid with more than 26 million atoms on 32 Intel processors running at 2.7 GHz. The presence of the buffer zones,
however, leads to redundant computations, which ultimately limit the impact of using multiple processors. AlphaMol is available as
an OpenSource software.

■ INTRODUCTION
Biological nanomachines, such as proteins and nucleic acids, are
essential for all cellular functions due to their abilities to store
information, to provide transport to and out of the cell, to
catalyze chemical reactions, and to interact and recognize
ligands, among other things. Their functions are believed to be
intimately related to their shapes (referred to as structures), as
well as to the dynamics of these shapes. Our current knowledge
of the structures and dynamics of large biomolecules remains
inadequate. This is because only a few experimental techniques
have the ability to gather structural data that are resolved in time
and those that can are typically constrained to small length scales
and to short time windows. Recently, new algorithms have been
proposed for predicting the structures of proteins that have
reached significant success. However, predicting and analyzing
the dynamics of such structures are tasks that are still limited in
scope, both with respect to time scales (usually microseconds to
milli-seconds) and length scales (several nanometers for systems
of up to hundred thousand atoms).

With the success of AlphaFold1 and its successor Alpha-
Fold2,2 artificial intelligence has stormed into structural
molecular biology in the recent years.3,4 This is software
designed by the company DeepMind to predict the structure of a
protein based on its sequence only. AlphaFold has refined
numerous deep learning techniques to predict these structures at
near experimental-scale resolution, inspiring experimental
structural biologists to rethink the way they study the function
and evolution of proteins, as well as their impact on diseases.5−7

AlphaFold’s achievement has been made possible by the wealth
of information present in the Protein Data Bank,8 the database
of experimentally determined protein structures (approximately
200,000 as of October 2022). In return, AlphaFold allowed for
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the prediction of millions of previously unknown protein
structures, all available in an open database.9 There are, however,
limitations to AlphaFold,7 which only generates single-ranked
conformations for a protein. As such, it is currently unable to
provide information on ensembles of conformations for a
protein, which may arise if this protein is intrinsically disordered.
AlphaFold does not solve the protein folding problem as it is
inherently static. It does not capture conformational mecha-
nisms such as allostery. The study of these mechanisms still
relies on simulations of molecular dynamics.

The standard approach to simulating the dynamics of a
biomolecule is to solve numerically the Newton equations
associated with all its atoms. The step size in time required for
finding accurate solutions to those differential equations is
extremely small (in the order of a femtosecond), leading to the
need to compute the energy of the molecular system under study
a large number of times. One evaluation of the energy is of order
O(N log N), with N being the total number of atoms in the
system (including the water molecules in the environment of the
biomolecule). For large values of N, say in the millions, such a
calculation and more importantly its repeats become computa-
tionally prohibitive. While it is possible to design hardware that
is specific to such calculations and while many efforts are
underway to improve the software that implement them10−16

(currently allowing for molecular dynamics simulations of
systems with up to 100 million atoms17−21), parallel efforts are
put into developing simplified models in which the number of
atoms is reduced to make the calculation more tractable. Of
particular interest is to replace the explicit solvent with a
potential of mean force that mimics its effect on the molecule.
This is akin to deriving and computing a solvation free energy,
Wsol, for the biomolecule. How to compute the nonpolar
component of this solvation free energy is the topic of this paper.
It is noteworthy that current versions of AlphaFold focus on the
conformation of the protein alone, independent of its environ-
ment. Inclusion of solvation free energy to further refine the
prediction is likely to be an addition in newer versions of the
software, reinforcing the need to derive accurate and robust
methods for computing such solvation free energies.

A Morphometric Approach to the Nonpolar Solvation
Free Energy. The solvation free energy Wsol(X) of a
biomolecule with conformation X is set to capture the presence
of a cavity within the solvent that enables it to accommodate the
biomolecule and the vdW interactions between the water
molecules and the atoms at the surface of the biomolecule, as
well as the interactions between the charged atoms of the
biomolecule in the presence of water. The first two contributions
define the nonpolar effect, Wnp, while the third one captures the
polar effect,Wpol. These effects are additive, namely,Wsol =Wnp +
Wpol. They can be computed individually with the help of a
thermodynamic cycle, as illustrated in Figure 1.

Eisenberg and McLachlan22 proposed an atomic break down
of the computation of the nonpolar part of the solvation free
energy of a biomolecule. In their model, each atom is
represented with its accessible surface area, ASA,23 which is
then scaled with a surface tensor factor referred to as atomic
solvation parameter, or ASP, such that

=
=

W ASPASAnp
i

N

i i
1 (1)

The ASP is a signed number, positive for nonpolar atoms (large
accessible surface areas are then penalized for such nonpolar

atoms) and negative for polar atoms (i.e., favoring large
accessible surface areas for them). This surface-only model,
referred to as SA, is supported indirectly with the observation
that the Gibbs free energy for transferring small compounds
from nonaqueous liquids to water is linearly related to their
accessible surface area. SA has become the preferred approach
for studying the dynamics of a biomolecule with an implicit
solvent, in conjunction with Poisson−Boltzmann (PBSA) or
generalized Born (GBSA) .24 It is interesting, however, to think
back on the fact that Wnp accounts for two effects, namely, the
hole formation in the solvent and the vdW interactions between
the atoms of the biomolecule and the solvent molecules. While
the latter occurs near the boundary between the biomolecule
and the solvent and is therefore proportional to the accessible
surface area of the molecule, the former is proportional to the
volume of that molecule. This apparent contradiction between a
surface area model only and the fact that Wnp includes a volume-
based contribution currently fuels a debate on the geometric
nature of Wnp. Lum, Chandler, and Weeks for example have
shown that Wnp scales with the volume of the solute for small
solutes, is proportional to the surface area for very large solutes,
and should consider both geometric measures in between.25

This idea that Wnp for a molecular system depends on surface
area and volume is derived from scaled particle theory.26−28 It
was shown to be a better representation of solvent effects than a
surface-based solvation free energy.29,30 However, even a
combined surface area and volume representation for Wnp
seems to be deficient to represent length-scale dependence of
this energy.31 More recently, Wnp has been expressed as a linear

Figure 1. Computing the solvation free energy of a biomolecule. The
solvation free energy, Wsol, is defined as a mean force potential that
quantifies the energy that is required to solvate a molecule. It consists of
two parts: (i) a polar contribution, Wpol, which accounts for the effects
of the solvent on the charges of the biomolecule and (ii) a nonpolar
contribution,Wnp, which accounts for the formation of a hole within the
solvent so that it can fit the biomolecule as well as for the vdW
interactions between the biomolecule and the solvent (at the surface of
the biomolecule). These two parts are best described with a
thermodynamics cycle. First, the charges on the biomolecule
(symbolized by the red balls) are neutralized in vacuo. The
corresponding free energy cost is referred to as Wch

vac. Second, the
corresponding neutral molecule is solvated, with a cost Wnp. Finally, the
charges are added back to the molecule, now in solution, with an
energetic cost Wch

sol. The solvation free energy is the sum of those three
contributions, namely, = + + = +W W W W W W( )sol ch

vac
ch
sol

np pol np

(red arrow).
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combination of the four morphometric measures of the
molecule:32

= + + +W pV A k M k Gnp 1 2 (2)

In this equation, V, A, M, and G are the volume, surface area,
mean curvature, and Gaussian curvature of the molecular
system, while p, σ, and k1 and k2 are the pressure, surface tension,
and bending rigidity parameters. This is under the assumption
that the solvation free energy satisfies (i) motion invariance,
namely, independence with respect to the location and
orientation of the molecular system in space, (ii) continuity,
basically that thermodynamics can be expressed in terms of
geometry (a condition that is only violated for system whose size
is similar to the size of the solvent), and (iii) additivity, i.e., that
the energy of the union of two domains is the sum of the energy
of the single domains subtracted by the energy of the
intersection. This model has proved useful to study the solvation
of proteins and their ligands.33−35

All the solvation models presented above consistently
associate the nonpolar contribution to the solvation free energy
of a molecule to the geometry of this molecule, the continuity
assumption. In what follows, we discuss how different measures
of this geometry, more specifically volume, surface area, mean
curvature, and Gaussian curvature, and their positional
derivatives can be computed efficiently, even for very large
molecular systems.

Computing Geometric Measures of Biomolecules. A
union of balls, with each ball representing an atom, is a typical
geometric representation of a molecule. Lee and Richards36

developed the first approach to computing the accessible surface
area of a protein represented by such a union by first cutting it
with a set of parallel planes. Shrake and Rupley37 proposed
instead a Monte Carlo numerical integration method to
compute regions of the surfaces of atoms that are accessible.
Many efficient implementations of this method have been
proposed, including the use of look-up tables,38 as well as of
algorithms that make use of the parallel architecture of computer
central processing units (CPU) .39,40 All those methods have
been expanded to compute also the volume of a union of
balls.41−44

Numerical integration techniques, while practical, are not
accurate, and more importantly do not easily provide derivatives
for the quantities that they compute. This is true for the
computations of surface area of a union of balls described above.
Analytical alternatives have been proposed, although computing

geometric measures of overlapping balls is not an easy task.
Approximations have been proposed that treat overlapping balls
using a probabilistic model45−47 or by fully ignoring them.48,49

Such approximations are ideally suited for the parallel
architecture of graphics processing units (GPU) .50 They
remain approximations, however, that are prone to singularities
introduced by numerical errors or by discontinuities in the
derivatives.51,52 Better analytical methods refine the geometric
representation of the molecule, considered as a union of pieces
of balls.53−58

This Work. To model the nonpolar contribution to the
solvation energies of a biomolecular system, in support of the
morphometric model described by eq 2, we consider weighted
versions of four measures of the geometry of the union of balls,
namely, the volume, surface area, integrated mean curvature, and
integrated Gaussian curvature, as well as their derivatives with
respect to the positions of the ball centers. This paper presents
an extension of a large body of work in which these measures and
their derivatives have been characterized before in the context of
the Voronoi decomposition of a space filling diagram.59−64 Its
contributions are two-fold. First, we present comprehensive and
consistent sets of equations for the expression of the four
measures and their derivatives in intrinsic geometry, i.e., as
functions of the distances between the centers of the atoms only.
Second, we establish parallel algorithms for computing the
measures and their derivatives, targeting very large molecular
systems with millions of atoms. We use viral capsids to illustrate
the performances of these algorithms. Information about the
structures of such capsids was recovered from the Protein Data
Bank8 or from the VIPER database.65

Outline. The next section, Measuring Union of Balls,
provides a brief description of the Alpha Shape theory and its
application to measuring a union of balls. It includes subsections
that provide expressions for the weighted volume, surface area,
mean curvature, and Gaussian curvature and their derivatives, all
expressed in terms of the distances between the centers of the
balls. The explicit constituents for those expressions are
provided in the Supporting Information, parts A−D. The
following section, Algorithm and Implementation, describes our
parallel implementation of this theory. It includes testing on a set
of large virus capsids. The last section concludes the paper.

■ MEASURING UNION OF BALLS
Given a collection of N 3-dimensional bodies, Pi, any geometric
measure of the union of the Pi can be derived from the principle

Figure 2. Voronoi decomposition and dual complex of a union of disks. (A) Given a finite set of disks, the Voronoi diagram corresponds to a
decomposition of the whole plane into regions, one for each disk, such that any point that belongs to the region corresponding to diskDi is closer to that
disk than to any other disk, with the distance to Di being the power distance (see text for details). In the graphics, we have restricted the Voronoi
diagram to the region covered by the disks. This defines a decomposition of the union of disks into convex regions. (B) The Delaunay triangulation is
the dual of the Voronoi diagram that is constructed by defining edges between disk centers of neighboring Voronoi regions. (C) The dual complex is a
subset of the Delaunay triangulation, limited to the edges and triangles (dark red) whose corresponding Voronoi regions fully intersect within the
union of disks.
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of inclusion−exclusion. That is, a measure of the union, ∪iPi, is
expressed as an alternating sum of the measures of the
intersections of the Pi. To make the inclusion−exclusion
formula amenable to computation, however, two issues need
to be solved. First, we need to reduce significantly the number of
terms it includes, as a brute force application of the formula leads
to an algorithm with exponential running time, as the total
number of potential intersections of Pi terms is 2N − 1. Second,
we need analytical formulas for computing the measures of the
those intersections of bodies. The next three subsections provide
solutions to these two issues when the bodies are 3D balls.

Background on Voronoi Decompositions and Dual
Complexes. Let us consider a finite set of closed balls, Bi, with
centers zi and radii ri, and let Si be the sphere that is the boundary
of Bi. We define the power distance between a point x and a ball Bi

as =x x z r( )i i i
2 2. The Voronoi region of Bi includes all

points x that are at least as close to Bi as to any other ball:
= { | }V x x x( ) ( )i i j

3 . It is a convex polyhedron
obtained as the common intersection of finitely many closed
half-spaces, one per ball Bj ≠ Bi. The collection of all Voronoi
regions, Vi, is the Voronoi diagram of the balls. Note that their
union covers the entire space. The intersection of the Voronoi
diagram with the union of balls Bi decomposes this union into
convex regions, as shown in Figure 2A.

TheDelaunay triangulation is the dual of the Voronoi diagram.
It is obtained by defining an edge between the centers of the balls
Bi and Bj if and only if the two corresponding Voronoi regions
share a common face. In addition, we generate a triangle
connecting zi, zj, zk if Vi, Vj, Vk intersect in a common line
segment, and we generate a tetrahedron connecting zi, zj, zk, zl if
Vi, Vj, Vk, Vl meet at a common point. A 2D version of the
Delaunay triangulation is illustrated in Figure 2B. Assuming
general positions of the balls, those are the only cases to be
considered. We call this the generic case. This generic case is rare
in practical implementations because of finite precision for the
computer representations of the coordinates and radii. It is,
however, possible to simulate a perturbation of the union of balls
that always restores the generic case.66

Next, we limit the construction of Delaunay triangulation to
within the union of balls. In other words, we draw a dual edge
between the two vertices, zi and zj, only if Bi∩Vi andBj∩Vj share a
common face and similarly for triangles and tetrahedra. The
result is a subcomplex of the Delaunay triangulation, which is
referred to as the dual complex of the set of balls (see Figure 2C).
Our objective is to use the dual complex X = ∪iBi, corresponding
to a biomolecule to compute its nonpolar solvation free energy,
which is expressed in a general form as

= + + +

= + + +

W X V X A X M X G X

a V b A c M d G

( ) ( ) ( ) ( ) ( )np w w w

i
i i

i
i i

i
i i

i
i i

w

(3)

Here, Vw, Aw, Mw, and Gw are the total weighted volume,
weighted surface area, integrated weighted mean curvature, and
integrated weighted Gaussian curvature of the union of balls.
The ai, bi, ci, and di are weights, while the Vi, Ai,Mi, andGi are the
contributions of ball i to the total corresponding measure of the
union of balls. The sum extends over all atoms of this union. The
Voronoi decomposition of the union of balls described above
allows us to compute the different terms in these equation based
on intersections of up to four balls only.

Area and Volume Formulas. WriteK for the dual complex.
A simplex, s, in K can be understood abstractly as a collection of
balls: one ball if it is a vertex, two if it is an edge, three if it is a
triangle, and four if it is a tetrahedron. As proved in ref 59, the
inclusion−exclusion formula that corresponds to the dual
complex gives the correct volume and surface area of a union
of balls. Let si be the vertex corresponding to the ball Bi, sij the
edges of balls Bi and Bj, sijk the triangle of balls Bi, Bj, Bk, and
finally, sijkl the tetrahedron of four balls, Bi, Bj, Bk, and Bl. Then:
Proposition 1: (Area)

= +
| | |

Ai i
j s K

i j
j k s K

i jk
j k l s K

i jkl;
( , )

;
( , , )

;

ij ijk ijkl

(4)

= +
| |

i i
j s K

ij i j
j k s K

ijk i jk;
( , )

;

ij ijk (5)

Proposition 2: (Volume)

= +
| | |

Vi i
j s K

i j
j k s K

i jk
j k l s K

i jkl;
( , )

;
( , , )

;

ij ijk ijkl

(6)

= +
| | |

Fvoli i
j s K

ij i j
j k s K

ijk i jk
j k l s K

i jkl;
( , )

;
( , , )

;

ij ijk ijkl

(7)

Here, i is the volume of the ball Bi, i j; is the contribution of Bi

to the volume of the intersection of the balls Bi and Bj, etc.
Similar definitions are used for the surface areas .

Note that even though the eqs 4 and 6 for the surface area and
volume are minimal as they only consider up to four levels in the
inclusion−exclusion formula, it is possible to find even shorter
expressions if noninteger coefficients are considered. Those
expressions correspond to the short inclusion−exclusion
method; it is described in detail in ref 59. In this method, the
areas and volumes are expressed as the sums of the contributions
of intersections of at most three balls, with angular coefficients γi,
γij, and γijk, with the exception of the term vol Fi;jkl (a fraction of
the Voronoi region of Bi; see Supporting Information, part A).
These coefficients γ are the normalized exposed angles of the
simplices;60 they integrate the contributions of the tetrahedra of
the dual complex. For vertices and edges, these angles can be
expressed as fractions of solid and dihedral angles inside
tetrahedra. If we define Ωi;jkl as the solid angle at vertex zi and
ϕij;kl as the dihedral angle at the edge zizj in the tetrahedron
defined by zi, zj, zk, zl, the coefficients are

=
|

1
4i

j k l K

i jkl

, ,

;

ijkl (8)

=
|

1
2ij

k l K

ij kl

,

;

ijkl (9)

=
|

1
1
2ijk

l Kijkl (10)

Expressions for the derivatives with respect to the Cartesian
coordinates of the centers of the balls are available for the surface
area61 and for the volume.60 Alternate expressions are available
for the same derivatives with respect to the distances between
the center of these balls.67 Note that these distances define
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internal coordinates for the system, which are invariant under
rigid body transformations (rotations and translations). We
recall those derivatives here:
Proposition 3: (Area derivative)

= +

+

|

|

i
k
jjjjj

y
{
zzzzz

A
r r r r

r

i

ab

i

ab
i

j s K

ij

ab
i j ij

i j

ab

j k s K
ijk

i jk

ab

;
;

( , )

;

ij

ijk (11)

Proposition 4: (Volume derivative)

= +

+

|

| |

i
k
jjjjj

y
{
zzzzz

V
r r r r

r

F

r

vol

i

ab

i

ab
i

j s K

ij

ab
i j ij

i j

ab

j k s K
ijk

i jk

ab j k l s K

i jkl

ab

;
;

( , )

;

( , , )

;

ij

ijk ijkl (12)

The derivatives of the surface area and volume are expressed
in eqs 11 and 12, respectively. They are derived from the
corresponding simplified, angle-weighted inclusion−exclusion
eqs 5 and 7, respectively. Note that there are no derivatives of i
and i , which are constant, and that there are no terms involving
the derivatives of γijk: these derivatives are piecewise zero
because the γijk are piecewise constant. Their values change at
nongeneric states, where their derivatives are not defined.60,61

Finally, we note that the derivatives of Ai and Vi with respect to
the distance rab between the centers za and zb of the two balls Ba
and Bb are nonzero if and only if i, a, and b belong to a simplex of
K.

Proofs of eqs 4, 5, 6, 7, 11, and 12 and additional formulas are
provided in refs 59−61 and 67. We summarize them in
Supporting Information, part A, for sake of completeness.

Mean Curvature formulas. Akopyan and Edelsbrunner
recently derived theorems for computing the integrated mean
curvature over the surface of a union of balls using the dual
complex.63 They distinguish between two terms: the contribu-
tion of the spherical patches and the contribution of the
accessible circular arcs at the intersections of two spheres. Along
these circular arcs, the mean curvature is partitioned equally
between the two spheres involved. This leads to the following
formula for the mean curvature and its derivatives in terms of the
edge lengths in the dual complex:
Proposition 5: (Mean curvature)

=
|

M
A
r

r
2i

i

i j s K
ij ij ij

ij (13)

Proposition 6: (Mean curvature derivative)

= + +
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In addition to the contribution Ai of the sphere Si to the total
surface area of the union of balls, these equations involve three
new terms, rij, αij, σij, all associated with two balls Bi and Bj that
form a simplex of the dual complex. The spheres Si and Sj that
bound those balls intersect at a circle Sij; rij is the radius of this
circle, and αij is the angle between the unit normals of the
spheres at any point of Sij; see Figure 3. Finally, σij is the fraction
of the length of Sij that is at the boundary of the union of balls

(i.e., not covered by other balls). Akopyan and Edelsbrunner63

established formulas for these three terms as functions of the
Cartesian coordinates of the centers of the balls in the union. In
Supporting Information, part B, we revisit these formulas using
internal coordinates (namely, the distances between the centers
of the balls) instead.

Gaussian Curvature Formulas. In parallel to the mean
curvature formula, Akopyan and Edelsbrunner established a
formula for the Gaussian curvature that distinguishes between
three terms: the contribution of the spherical patches, the
contribution of the circular arcs at the intersections of two
spheres, and the contribution of the accessible corners at the
intersection of three spheres.64 This leads to the following
formula for the Gaussian curvature and its derivatives in terms of
edge lengths in the dual complex:
Proposition 7: (Gaussian curvature)
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Proposition 8: (Gaussian curvature derivative)
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All variables have been defined above, except for λij and σi;jk,
associated with two and three spheres, respectively. Two
spheres, Si and Sj, with centers zi and zj that form an edge in K
intersect at a circle Sij. λij is the combined length of the unit
normals of the spheres at any point of Sij after projection on the
line passing through zi and zj; see Figure 3. Three spheres, Si, Sj,
and Sk, that form a triangle in K intersect in two points, Pijk and
Pikj. σijk is the fraction assigned to i of the solid angle spanned by
the unit normals of Si, Sj, and Sk at one of those points. Akopyan
and Edelsbrunner64 established formulas for those two terms. In
Supporting Information, part C, we revisit those formulas using
internal coordinates.

The Nonpolar Solvation Free EnergyWnp. Recall that the
nonpolar contribution to the solvation free energy of a union of
balls, X, is

= + + +W X a V b A c M d G( )np
i

i i
i

i i
i

i i
i

i i
(17)

in which Vi, Ai, Mi, and Gi are the contributions of ball i to the
total volume, surface area, integrated mean curvature, integrated
Gaussian curvature of X, respectively, and ai, bi, ci, and di are the

Figure 3. Intersection of two disks.
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coefficients corresponding to pressure, surface tension, and
bending rigidities. In the previous subsections, we have
established formulas for those contributions, as well as for
their derivatives with respect to internal coordinates. For any
given pair of balls, Ba and Bb, that belong to the dual complex, K,
of X, we have
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are given by eqs 12, 11, 14, and 16,

respectively, with all details given in the Supporting Information.
Once the derivatives in terms of internal coordinates are
available, derivatives with respect to Cartesian coordinates are
easily computed using the chain rule:
Proposition 9: (Derivative ofWnp) The gradient a of the

nonpolar solvation free energy is
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in which uij = (zi − zj)/rij is the unit vector along the edge from zj
to zi.

■ ALGORITHM AND IMPLEMENTATION
Our software for computing geometric measures of biomole-
cules has gone through successive revisions. AlphaVol was our
original software package, which implemented the Alpha Shape
theory for the volumes and surface areas of biomolecules;62 its
origins can be traced to the Alpha Shape package.68 AlphaVol
was partially redesigned into a new package, UnionBall, with
modification needed to deal with large molecular systems.67 We
have now completely redesigned UnionBall into a new package,
AlphaMol, written in C++. AlphaMol implements all four
intrinsic volumes, as well as their derivatives with respect to
atomic coordinates. Each of these measures is possibly weighted,
i.e., the contribution of each atom is weighted by a constant
provided as input to the software, with a different constant for
each of the intrinsic volumes. AlphaMol takes as input a set of
balls in 3, each specified by the coordinates of its center and the
radius, as well as by its four weights. In the case of biomolecules,
the coordinates of the center of the balls are extracted from the
corresponding PDB file, while the radii are defined according to
the chemical nature of the atoms, using one of several standard
sets of radii (in the following we use the OPLS force field69).
These radii may be enlarged by the radius of a water probe
(usually 1.4 Å), should the measures correspond to the
accessible surface of the molecule. The algorithm includes
three steps:

Step 1. Build the Delaunay triangulation.
Step 2. Extract the dual complex from the Delaunay

triangulation.
Step 3. Compute the geometric measures of the union of balls

using the dual complex.
Just like AlphaVol and UnionBall, AlphaMol uses standard

algorithms from computational geometry for the first two
tasks.70,71 We have designed our own algorithm for measuring
the union (step 3) .60,61,63,64 We have made modifications to

these algorithms compared to AlphaVol and UnionBall, as our
interests are mostly measuring biomolecules, with a focus on
scalability, namely, the ability to deal with very large
biomolecules. We describe those modifications in the following
subsections, for the sequential and parallel version of AlphaMol,
respectively.

A Sequential Algorithm for Measuring Biomolecules.
We implemented the randomized incremental algorithm from
Edelsbrunner and Shah70 to construct the Delaunay triangu-
lation of a union of balls. In this algorithm, the triangulation is
built incrementally, by adding one ball at a time. The input balls
are preprocessed with a random permutation. Four dummy balls
whose centers lie at infinity are added so that all input balls are
contained in the tetrahedron they define. Let DTi be the
Delaunay triangulation at step i of the construction (DTi
contains the four balls at infinity as well as B1, B2, ..., Bi). The
algorithm proceeds by iterating three steps:

for i = 1 to N do
(1) Identify the tetrahedron t ∈ DTi−1 that contains zi.
(2) Add zi as a vertex and decompose t into four tetrahedra.
(3) Flip locally all non-Delaunay triangles attached to zi.

endfor.
The randomization guarantees a theoretical expected running

time ofO(N log N) with an additional linear term in the number
of simplices in the Delaunay triangulation.70 In 3, the number
of simplices can be as large as a constant times N2. However, for
well-packed data�which is typical for biomolecules�this
number is at most a constant times N, leading to an expected
running time of O(N log N).

In practice, a different behavior is observed for very large
molecules (such as macromolecular assemblies with millions of
atoms, for example virus capsids). This is unfortunately a known
problem. Virtual memory operating systems cache recently used
data in memory, under the assumption that they are more likely
to be used again soon. If the new ball to be inserted in step 1 is
not included in one of the recent tetrahedra, the cache will not be
useful. This scenario is likely if the order in which the balls are
inserted is random. A possible solution is to create 3D locality,
by ordering the balls first such that a ball at position i is mostly
local with respect to the previous balls in the ordering.
Interestingly, the order in which atoms are stored in a PDB
file is inherently local.67 UnionBall implemented this idea.
Instead of randomizing the balls, as in AlphaVol, it keeps the
ordering provided by the input PDB file. The effect was
significant: UnionBall is substantially faster than AlphaVol,
especially for large molecular systems.67 With this simple trick,
however, there are no guarantee for the expected running time.

Amenta, Choi, and Rote72 developed a scheme for ordering
points before computing the Delaunay triangulation that
maintains enough randomness so that the theoretical complexity
of the algorithm is conserved. Their Biased Randomized
Insertion Order (BRIO) method was shown to significantly
improve the running time of Delaunay triangulation for large
number of points.72 Later, Liu and Snoeyink73 proposed a
different method for ordering the points based on the Hilbert
curve. They showed that reordering points using such a Hilbert
curve significantly sped up the point location in step 1 of the
Delaunay triangulation algorithm.73

We implemented our own version of BRIO in AlphaMol as an
option. BRIO proceeds by organizing the points randomly into
rounds, using a logarithmic scheme.72 Within each round, points
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can be inserted into any order, allowing for locality. In the
original BRIO, within a round, the points were ordered using a
kd-tree; we used the Hilbert curve instead. We added another
option to AlphaMol, in which the ordering follows the Hilbert
curve directly (this is equivalent to BRIO with a single round).
We compared our versions of BRIO and of the Hilbert curve
ordering with the predefined ordering imposed by the PDB file
(as implemented in UnionBall) and with randomized ordering
(as implemented in AlphaVol) on a set of 68 virus capsids (see
Supporting Information, part E, for a full list). These virus
capsids vary in size from 400,000 atoms to 26,000,000 atoms,
representing a broad range of sizes for large biomolecular
systems. Results of the comparisons of the different ordering
schemes are illustrated in Figure 4.

As illustrated in Figure 4A, not randomizing the order in
which points are inserted resulted in a significant improvement
in performance. This was already observed with UnionBall.67

Removing the randomization leads to an observed linear
dependence of the running time on the number of weighted
spheres considered. Randomization followed by ordering based
on a spacing-filling curve, or on our modified BRIO method,
leads to further speed-up, albeit small; see Figure 4B. Note that
the differences in running time between the Hilbert curve
ordering and BRIO are not significant. In the following, we use
the Hilbert curve ordering when necessary. We note that both
BRIO and the Hilbert curve method require preprocessing of
the data that comes with its own computational cost. This cost,
however, is minimal, representing 1.7% of the total computing
time, on average; see Figure 5. The bulk of the calculation comes
from computing the Delaunay triangulation (52.4% on average),
followed by the extraction of the dual complex (27.4%), and the
computations of the intrinsic volumes and their derivatives
(18.5%).

A Parallel Algorithm for Measuring Biomolecules. As
described above, measuring a biomolecule represented by a
union of balls involves three steps: computing the Delaunay
triangulation of the centers of the balls weighted by their radii,
filtering the simplices of the Delaunay triangulation to build the

dual complex, and building the inclusion−exclusion formulas for
the intrinsic volumes of the union of balls. Of these three steps,
the second and the third can be easily parallelized, as they
basically involve iterating over simplices. Unfortunately,
parallelizing the computation of the Delaunay triangulation is
a difficult task that remains a hot topic in research.74−80

Considering that computing the Delaunay triangulation is more
than 50% of the total computing cost of AlphaMol (see Figure
5), this is a concern.

Figure 4. (A) The running times of AlphaMol for measuring biomolecules (the 68 virus capsids in our database; see Supporting Information, part E),
when the atoms are inserted randomly (red line) or based on the order provided by the PDB file (black line). (B) Comparing the running times of
AlphaMol when atoms are inserted based on the PDB order (black line), or randomly inserted, followed by ordering based on the Hilbert curve (red
line) or followed by BRIO-Hilbert ordering (blue curve). In both (A) and (B), we show the mean and standard deviation over five random trials.
Computations were performed on a single core on an iMac computer with an 3.8 GHz 8-core 10th-generation Intel Core i7.

Figure 5. Fraction of running times of the different components of
AlphaMol for measuring the 68 virus capsids in our database; (see
Supporting Information, part E), in percentage: black, Hilbert curve
ordering of the atoms (average 1.7%); red, weighted Delaunay
triangulation of the ball centers (average 52.4%); green, filtering the
Delaunay triangulation to generate the dual complex (average 27.4%);
and blue, computing the intrinsic volumes based on the dual complex
(average 18.5%).
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Many parallel Delaunay triangulation algorithms have been
proposed. Most focus on partitioning the domain that contains
the points so that each partition can be triangulated separately
and in parallel with the others.74−80 The bottleneck of this
approach, however, is the merging of the triangulations from the
different partitions to generate the complete triangulation.76

The tetrahedra at the borders of a partition have to be connected
to tetrahedra in adjacent partitions, often leading to local
retriangulations. This merging step is sometimes referred to as
stitching and is known to be difficult. We note, however, that the
goal of AlphaMol is to compute the contributions of all atoms to
the intrinsic volumes of the biomolecule of interest and not
generate the overall Delaunay triangulation. We propose a
different parallel strategy for computing these contributions, that
still uses the concept of partitioning the whole domain, but with
a focus on the volumes, and not the Delaunay triangulation. It is
explained in Figure 6 and illustrated for a virus capsid in Figure 7.

Briefly, we partition all atoms of the biomolecule into 3D
rectangular blocks, using a kd-tree algorithm. Our goal is to apply
the sequential algorithm of AlphaMol to each block, using a
different processor for each block. We note, however, that atoms
at the edges of a block may interact with atoms from neighboring
blocks. If those atoms are not included in the calculation, the
intrinsic volumes found for the atoms in the block will be inexact.
We therefore expand each block with a buffer zone to include the
atoms neighboring the block. The width of this buffer zone is set
to 2Rmax, in which Rmax is the radius of the largest ball in the
union of balls representing the biomolecule. This value ensures
that all atoms that potentially interact with the atoms in the
block will be accounted for. We then apply the AlphaMol
algorithm to all atoms in the block and in its buffer zone. We
finally retain the intrinsic volumes of the atoms in the block. The
choice of the buffer zone guarantees that simplices sharing a
vertex in the block are exactly the simplices sharing this vertex in
the complete Delaunay triangulation, a property that does not
hold for the vertices in the buffer zone. It follows that the
intrinsic volumes of the balls whose centers lie in the block are
computed correctly, while those of the balls whose centers lie in
the buffer zone may be incorrect. Each block and its buffer is
dealt with on a different processor, and as the partitioning of the

atoms is balanced, we expect a speed-up proportional to the
number of blocks.

Figure 8 shows the wall time for the execution of AlphaMol on
the capsid of faustovirus (PDB code 5j7z,81 26 million atoms),
with different numbers of threads requested by the software. The
virus capsid is divided into m partitions based on a kd-tree, and
each partition is handled separately on a different thread.
Computations were performed on two different multicore
computers, one with an Intel Xeon multicore CPUs running at
2.70 GHz, with 96 cores (192 threads), and a second with an
AMD Threadripper multicore CPUs running at 2.2 GHz, with
32 cores (64 threads). The AMD computer is more recent than
the Intel computer. As expected, we observe a significant speed-
up when AlphaMol is run on multiple threads. The gain in time
is significant. It takes 605 s with a single Intel Xeon thread and
321 s with a single AMD thread to compute the weighted
volumes and their derivatives for the capsid of faustovirus. In
comparison, it takes 161 or 82.3 s on four Intel threads or four
AMD threads, respectively, and it only takes 30.9 or 21.2 s to do
the same calculation using 32 Intel threads or 32 AMD threads,
respectively. The speed-up is nearly linear between 1 and 32
threads for both types of processors. We note, however, that the
speed-up is marginal between 32 threads and 64 threads for the
AMD processor and between 64 threads and 128 threads for the
Intel processor (see Figure 8). We believe that this behavior is
reflective of the computer architecture, and not of the software
itself. The AMD processor has 64 threads, but only 32 physical
cores. We do not expect that two threads on a single core will be
significantly faster than a single thread on that core, as those two
threads share the same resources. The Intel processor has 96
physical cores. However, those cores are spread equally over four
sockets, each with 24 cores. As such, we also expect a slow down
in speed-up for large numbers of threads that need to share the
same memory resources.

To reduce the risk that our conclusions are anecdotal, we
repeated the calculations on all 68 virus capsids in our database.
We only used the Intel computer, but found similar results with
the AMD computer. Figure 9 shows the wall time as well as the
speed-up for the execution of AlphaMol on the virus capsids,
with different numbers of threads. Just like for the faustovirus,
we observe a significant speed-up when multiple threads are
added. This speed-up is nearly linear up to 32 cores, and then
slows down. There are two reasons for the slow down in speed-
up as more threads are added, namely, the architecture of the
computer and progressively more redundant computations for
larger numbers of threads. To illustrate the latter, we use two
ways to calculate the speed-up. First, we compare the wall time
with the total CPU time, represented as CLOCK/CPU. Based
on this notion, the speed-up is nearly linear up to 32 processors,
and slows down thereafter, still reaching 40 for 64 processors. It
shows that there is little communication between the master
processor and the at least 32 additional processors, indicating
that the parallelism is effective. Second, we compare the wall
time when running on k processors, with the running time from a
serial (i.e., one processor) independent calculation. Based on
this second notion, the speed-up is less effective, with 64
processors not being significantly more effective than 32
processors. The two notions should give similar results if the
splitting is balanced so that each processor deals with about N/k
atoms, N being the total number of atoms in the biomolecule.
This is not the case, however, as the algorithm adds a buffer zone
to each partition to make sure that the computation is correct.
Each atom in the buffer zones will be considered at least twice,

Figure 6. Splitting the computation of the intrinsic volumes of a union
of balls. Let us consider the union of balls represented in panel A (this is
the same union as in Figure 2, in which we show the dual complex
overlaid with the restriction of the Voronoi diagram to within the
portion of the plane covered by the balls). In panel B, we limit this union
to those balls whose centers belong to the rectangular block shown with
solid sides; those balls are colored rose. We expand this block with a
buffer zone, delimited by the dashed, magenta sides. Balls B2 and B3,
whose centers are within this buffer zone, interact with balls from the
rectangular block. All other balls (here B1) are ignored. Applying
AlphaMol to the balls in the block and in the buffer zone leads to the
correct computation of the intrinsic volumes for the balls in the block.
The procedure is repeated in parallel for all blocks covering the union.
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since it also belongs to one of the partitions. As expected, the
number of atoms treated at least twice increases with the number
of processors; see Figure 10. This leads to redundant

computations whose importance increases when the number
of processors increases, ultimately leading to a plateau in the
speed-up brought by the parallelism. It remains that we do reach
a significant speed-up through this parallelism, with an average
factor of 20-folds with 32 processors.

■ CONCLUSION
The Alpha Shape theory provides an accurate and robust
method for computing the geometric measures of a
biomolecule.59−64 Among these measures, the intrinsic volumes
are used to quantify the interaction between a biomolecule and
surrounding water in the so-called morphometric model.33−35

Several implementations of the Alpha Shape theory for
measuring biomolecules exist, including our own, AlphaVol62

and UnionBall.67 These implementations, however, were limited
to computing the volumes and surface areas of biomolecules.

In this paper, we have derived homogeneous formulas for the
expressions of all four intrinsic volumes and their derivatives and
implement them into a new package, AlphaMol. The only
variables in these formulas are the interatomic distances, making
them insensitive to translations and rotations. Recent spectac-
ular advances in structural biology have produced an abundance
of data on large macromolecular complexes, such as full size
virus capsids82 that contain several millions of atoms. Modeling
these large systems is as important as modeling smaller proteins
or nucleic acids; see for example the simulations of the HIV
capsid that include over 60 million atoms.17 To make sure that
AlphaMol remains practical, we have adapted its underlying

Figure 7. Splitting the computation of the intrinsic volumes of the murine polyomavirus (PDB code 1sid) over four processors. The 1,020,180 atoms
are divided into four partitions of approximately equal size, using a kd-tree algorithm. Each partition correspond to a rectangular block. Each block is
complemented with a buffer zone, such that atoms in this buffer zone (shown inmagenta) may interact with the atoms of the block. Each block together
with its buffer zone is assigned to one processor, which then runs the full AlphaMol algorithm. As each block with buffer zone includes approximately
one-quarter of the atoms, and the computations on the blocks are run in parallel, it is expected that the total computation time be reduced by a factor of
4.

Figure 8. Execution (wall) time of AlphaMol as a function of the
number threads requested, for computing the intrinsic volumes and
their derivatives of the capsid of the faustovirus (PDB code 5j7v), which
consists of approximately 26 million atoms. Computations were
performed on an Intel Xeon processor at 2.70 GHz, with 96 cores (192
threads) (red), or an AMD Threadripper processor at 2.2 GHz, with 32
cores (64 threads).
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algorithms in two ways. First, we have included an ordering
scheme based on Hilbert curves to improve the localities of the
atoms as they are introduced sequentially for generating the
Delaunay triangulation of the atom centers, which is at the core
of the Alpha Shape theory. Second, we have introduced a parallel
version of AlphaMol, which partitions the atoms of the
biomolecule of interest into 3D rectangular blocks, using a kd-
tree algorithm. We then apply the sequential algorithm of
AlphaMol to each block, augmented by a buffer zone to account
for atoms that may overlap with atoms in the block. The
presence of the buffer zones, however, leads to redundant
computations that ultimately limit the impact of using multiple
processors. In our current version, 32 processors led to a
significant speed-up (20 times on average for 68 virus capsids
ranging from 400,000 atoms to 26 million atoms), with marginal
improvements for a higher number of processors.

Ultimately, we would like to push the parallelism to hundreds
of processors, such as those that are available on a GPU.
Recently, there was an attempt to do so for computing the Alpha
Shape of a molecule,83 using a mixed CPU-GPU algorithm
showing speed-ups in the order of 25, which is similar to what we
observed for multiple CPUs. We do see, however, some
roadblocks for a GPU-only implementation of AlphaMol. To

our knowledge, all current GPU implementations of the 3D
Delaunay triangulation compute a near-Delaunay structure on
the GPU, followed by transformations on the CPU to generate a
valid Delaunay triangulation.84 In addition, computing a valid
Delaunay triangulation requires robust geometric predicates to
account for possible degeneracies. In our implementation, we
rely on the Simulation of Simplicity (SoS) to remove those
degeneracies.66 The SoS method is based or arbitrary precision
arithmetics. There are currently only limited GPU implementa-
tions of arbitrary precision arithmetics, and they are still under
development. Developing a GPU-based computation of intrinsic
volumes of biomolecules remains, however, a priority for
molecular simulations of very large biomolecular systems.
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