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Abstract. We consider the problem of estimating a signal from measure-
ments obtained via a generalized linear model. We focus on estimators based
on approximate message passing (AMP), a family of iterative algorithms with
many appealing features: the performance of AMP in the high-dimensional limit
can be succinctly characterized under suitable model assumptions; AMP can also
be tailored to the empirical distribution of the signal entries, and for a wide class
of estimation problems, AMP is conjectured to be optimal among all polynomial-
time algorithms. However, a major issue of AMP is that in many models (such
as phase retrieval), it requires an initialization correlated with the ground-truth
signal and independent from the measurement matrix. Assuming that such an
initialization is available is typically not realistic. In this paper, we solve this
problem by proposing an AMP algorithm initialized with a spectral estimator.
With such an initialization, the standard AMP analysis fails since the spectral
estimator depends in a complicated way on the design matrix. Our main contri-
bution is a rigorous characterization of the performance of AMP with spectral
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initialization in the high-dimensional limit. The key technical idea is to define
and analyze a two-phase artificial AMP algorithm that first produces the spectral
estimator, and then closely approximates the iterates of the true AMP. We also
provide numerical results that demonstrate the validity of the proposed approach.

Keywords: machine learning, message-passing algorithms, statistical inference,
learning theory
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1. Introduction

We consider the problem of estimating a d-dimensional signal x ∈ Rd from n i.i.d. mea-
surements yi ∼ p(y|〈x ,a i〉), i ∈ {1, . . . , n}, where 〈·, ·〉 is the scalar product, {ai}1�i�n

are given sensing vectors, and the (stochastic) output function p(·|〈x ,a i〉) is a given
probability distribution. This is known as a generalized linear model (GLM) [McC18],
and it encompasses many settings of interest in statistical estimation and signal pro-
cessing [RG01, BB08, YLSV12, EK12]. One notable example is the problem of phase
retrieval [Fie82, SEC+15], where yi = |〈x ,a i〉|2 + wi, with wi being noise. Phase retrieval
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appears in several areas of science and engineering, see e.g. [FD87, Mil90, DJ17], and
the last few years have witnessed a surge of interest in the design and analysis of efficient
algorithms; see the review [FS20] and the discussion at the end of this section.

Here, we consider GLMs in the high-dimensional setting where n, d→∞, with their
ratio tending to a fixed constant, i.e. n/d→ δ ∈ R. We focus on a family of iterative
algorithms known as approximate message passing (AMP). AMP algorithms are derived
via approximations of belief propagation on the factor graph representing the estimation
problem. AMP algorithms were first proposed for estimation in linear models [DMM09,
BM11], and for estimation in GLMs [Ran11]. AMP has since been applied to a wide
range of high-dimensional statistical estimation problems including compressed sens-
ing [KMS+12, BM12, MAYB13], low rank matrix estimation [RF12, DM14, KKM+16],
group synchronization [PWBM18], and specific instances of GLMs such as logistic
regression [SC19] and phase retrieval [SR14, MXM19, MLKZ20].

Starting from an initialization x0 ∈ R
d, the AMP algorithm for GLMs produces iter-

atively refined estimates of the signal, denoted by x t, for t � 1. An appealing feature of
AMP is that, under suitable model assumptions, its performance in the high-dimensional
limit can be precisely characterized by a succinct deterministic recursion called state evo-
lution [BM11, Bol14, JM13]. Specifically, in the high-dimensional limit, the empirical
distribution of the estimate x t converges to the law of the random variable μtX+ σtWt,
for t � 1. Here X ∼ PX (the signal prior), and Wt ∼ N(0, 1) is independent of X. The
state evolution recursion specifies how the constants (μt, σt) can be computed from
(μt−1, σt−1) (see section 3 for details).

Using the state evolution analysis, it has been shown that AMP provably achieves
Bayes-optimal performance in some special cases [DJM13, DM14, MV21]. Indeed, a
conjecture from statistical physics posits that AMP is optimal among all polynomial-
time algorithms. The optimality of AMP for GLMs is discussed in [BKM+19].

However, when used for estimation in GLMs, a major issue in current AMP theory
is that in many problems (including phase retrieval) we require an initialization x 0

that is correlated with the unknown signal x but independent of the sensing vectors
{a i}. It is often not realistic to assume that such a realization is available. For such
GLMs, without a correlated initialization, asymptotic state evolution analysis predicts
that the AMP estimates will be uninformative, i.e. their normalized correlation with
the signal vanishes in the large system limit. Thus, developing an AMP theory that
does not rely on unrealistic assumptions about the initialization is an important open
problem.

In this paper, we solve this open problem for a wide class of GLMs by rigorously
analyzing the AMP algorithm with a spectral estimator . The idea of using a spectral esti-
mator for GLMs was introduced in [Li92], and its performance in the high-dimensional
limit was recently characterized in [LL19, MM19]. It was shown that the normalized
correlation of the spectral estimator with the signal undergoes a phase transition, and
for the special case of phase retrieval, the threshold for strictly positive correlation with
the signal matches the information-theoretic threshold [MM19].

Our main technical contribution is a novel analysis of AMP with spectral initializa-
tion for GLMs, under the assumption that the sensing vectors {a i} are i.i.d. Gaussian.
This yields a rigorous characterization of the performance in the high-dimensional limit
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(theorem 1). The analysis of AMP with spectral initialization is far from obvious since
the spectral estimator depends in a non-trivial way on the sensing vectors {a i}. The
existing state evolution analysis for GLMs [Ran11, JM13] crucially depends on the AMP
initialization being independent of the sensing vectors, and therefore cannot be directly
applied.

At the center of our approach is the design and analysis of an artificial AMP
algorithm. The artificial AMP operates in two phases: in the first phase, it performs
a power method, so that its iterates approach the spectral initialization of the true
AMP; in the second phase, its iterates are designed to remain close to the iterates of the
true AMP. The initialization of the artificial AMP is correlated with x , but indepen-
dent of the sensing vectors {a i}, which allows us to apply the standard state evolution
analysis. Note that the initialization of the artificial AMP is impractical (it requires the
knowledge of the unknown signal x !). However, this is not an issue, since the artificial
AMP is employed solely as a proof technique: we prove a state evolution result for the
true AMP by showing that its iterates are close to those in the second phase of the
artificial AMP.

Initializing AMP with a (different) spectral method has been recently shown to
be effective for low-rank matrix estimation [MV21]. However, our proof technique for
analyzing spectral initialization for GLMs is different from the approach in [MV21]. The
argument in that paper is specific to the spiked random matrix model and relies on a
delicate decoupling argument between the outlier eigenvectors and the bulk. Here, we
follow an approach developed in [MTV20], where a specially designed AMP is used to
establish the joint empirical distribution of the signal, the spectral estimator, and the
linear estimator.

For the case of phase retrieval, in [MXM18] it is provided a heuristic argument for
the validity of spectral initialization, and it is stated that establishing a rigorous proof
is an open problem. Our paper not only solves this open problem, but it also gives a
provable initialization method valid for a class of GLMs.

We note that, for some GLMs, AMP does not require a special initialization that
is correlated with the signal x . In section 3, we give a condition on the GLM out-
put function that specifies precisely when such a correlated initialization is required
(see (3.13)). This condition is satisfied by several popular GLMs, including phase
retrieval. It is in these cases that AMP with spectral initialization is most useful.

Other related work. For the problem of phase retrieval, several algorithmic solu-
tions have been proposed and analyzed in recent years. An inevitably non-exhaustive list
includes semi-definite programming relaxations [CSV13, CESV15, CLS15a, WdM15], a
convex relaxation operating in the natural domain of the signal [GS18, BR17], alter-
nating minimization [NJS13], Wirtinger flow [CLS15b, CC17, MWCC20], iterative pro-
jections [LGL15], the Kaczmarz method [Wei15, TV19], and mirror descent [WR20].
A generalized AMP (GAMP) algorithm was introduced in [SR14], and an AMP to
solve the non-convex problem with �2 regularization was proposed and analyzed in
[MXM19]. Most of the algorithms mentioned above require an initialization correlated
with the signal x and, to obtain such an initialization, spectral methods are widely
employed.
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Beyond the Gaussian setting, spectral methods for phase retrieval with random
orthogonal matrices are analyzed in [DBMM20]. Statistical and computational phase
transitions in phase retrieval for a large class of correlated real and complex random
sensing matrices are investigated in [MLKZ20], and a general AMP algorithm for rota-
tionally invariant matrices is studied in [Fan20]. In [ESAP+20], it is characterized the
generalization error of GLMs via the multi-layer vector AMP of [FRS18, PSAR+20].
Thus, the extension of our techniques to more general sensing models represents an
interesting avenue for future research.

2. Preliminaries

Notation and definitions. Given n ∈ N, we use the shorthand [n] = {1, . . . , n}. Given
a vector x , we denote by ‖x‖2 its Euclidean norm. The empirical distribution of a

vector x = (x1, . . . , xd)
T is given by 1

d

∑d
i=1δxi , where δxi denotes a Dirac delta mass on

xi. Similarly, the empirical joint distribution of vectors x, x′ ∈ R
d is 1

d

∑d
i=1δ(xi,x′i).

GLMs. Let x ∈ Rd be the signal of interest, and assume that ‖x‖22 = d. The
signal is observed via inner products with n sensing vectors (ai)i∈[n], with each
ai ∈ R

d having independent Gaussian entries with mean zero and variance 1/d,
i.e. (ai) ∼i.i.d. N(0, Id/d). Given gi = 〈x ,a i〉, the components of the observed vector
y = (y1, . . . , yn) ∈ Rn are independently generated according to a conditional distribu-
tion pY|G, i.e. yi ∼ pY|G(yi|gi). We stack the sensing vectors as rows to define the n× d

sensing matrixA, i.e.A = [a1, . . . ,an]
T. For the special case of phase retrieval, the model

is y = |Ax|2 +w, where w is a noise vector with independent entries. We consider a
sequence of problems of growing dimension d, and assume that, as d→∞, the sampling
ratio n/d→ δ, for some constant δ ∈ (0,∞). We remark that, as d→∞, the empirical
distribution of g = (g1, . . . , gn) converges in Wasserstein distance (W2) to G ∼ N(0, 1).

Spectral initialization. The spectral estimator x̂s is the principal eigenvector of
the d× d matrix Dn, defined as

Dn = ATZsA, with Zs = diag(Ts(y1), . . . , Ts(yn)), (2.1)

where Ts :R→ R is a preprocessing function. We now review some results from [MM19,
LL19] on the performance of the spectral estimator in the high-dimensional limit.

Let G ∼ N(0, 1), Y ∼ p(·|G), and Zs = Ts(Y ). We will make the following assump-
tions on Zs.

(A1) P(Zs = 0) < 1.
(A2) Zs has bounded support and τ is the supremum of this support:

τ = inf{z :P(Zs � z) = 1}. (2.2)

(A3) As λ approaches τ from the right, we have

lim
λ→τ+

E

{
Zs

(λ− Zs)2

}
= lim

λ→τ+
E

{
Zs ·G2

λ− Zs

}
= ∞. (2.3)
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For λ ∈ (τ ,∞) and δ ∈ (0,∞), define

φ(λ) = λE

{
Zs ·G2

λ− Zs

}
, ψδ(λ) =

λ

δ
+ λE

{
Zs

λ− Zs

}
. (2.4)

Note that φ(λ) is a monotone non-increasing function and that ψδ(λ) is a convex func-
tion. Let λ̄δ be the point at which ψδ attains its minimum, i.e. λ̄δ = argminλ�τ ψδ(λ).
For λ ∈ (τ ,∞), also define

ζδ(λ) = ψδ(max(λ, λ̄δ)). (2.5)

We remark that ζδ is an increasing function and, from lemma 2 in [MM19], we have
that the equation ζδ(λ) = φ(λ) admits a unique solution for λ > τ .

The following result characterizes the performance of the spectral estimator x̂s. Its
proof follows directly from lemma 2 in [MM19].

Lemma 2.1. Let x be such that ‖x‖22 = d, {ai}i∈[n]∼i.i.d.N(0d, Id/d), and y = (y1, . . . , yn)
with {yi}i∈[n]∼i.i.d.pY |G. Let n/d→ δ, G ∼ N(0, 1) and define Zs = Ts(Y ) for Y ∼ pY|G.
Assume that Zs satisfies the assumptions (A1), (A2) and (A3). Let x̂s be the principal
eigenvector of the matrix Dn defined in (2.1), and let λ∗

δ be the unique solution of ζδ(λ) =
φ(λ) for λ > τ . Then, as n→∞,

|〈x̂s, x〉|2
‖x̂s‖22 ‖x‖

2
2

a.s.−−→a2 �

⎧⎪⎨
⎪⎩
0, if ψ′

δ(λ
∗
δ) � 0,

ψ′
δ(λ

∗
δ)

ψ′
δ(λ

∗
δ)− φ′(λ∗

δ)
, if ψ′

δ(λ
∗
δ) > 0,

(2.6)

where ψ′
δ and φ′ are the derivatives of the respective functions.

Remark 2.1 (equivalent characterization). Using the definitions (2.4) and (2.5), the
conditions ζδ(λ

∗
δ) = φ(λ∗

δ) and ψ′
δ(λ

∗
δ) > 0 are equivalent to

E

{
Zs(G

2 − 1)

λ∗
δ − Zs

}
=

1

δ
, and E

{
Z2

s

(λ∗
δ − Zs)2

}
<

1

δ
. (2.7)

When these conditions are satisfied, the limit of the normalized correlation in (2.6) can
be expressed as

a2 =

1
δ
− E

{
Z2
s

(λ∗δ−Zs)2

}
1
δ
+ E

{
Z2
s (G

2−1)
(λ∗δ−Zs)2

} . (2.8)

Remark 2.2 (optimal preprocessing function). In [MM19] it is derived the prepro-
cessing function minimizing the value of δ necessary to achieve weak recovery, i.e. a
strictly positive correlation between x̂s and x . In particular, let δu be defined as

https://doi.org/10.1088/1742-5468/ac9828 6
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δu =

(∫
R

(EG{p(y|G)(G2 − 1)})2

EG{p(y|G)} dy

)−1

, (2.9)

with G ∼ N(0, 1). Furthermore, let us also define

T̄ (y) =

√
δu · T ∗(y)√

δ − (
√
δ −

√
δu)T ∗(y)

, (2.10)

where

T ∗(y) = 1− EG{p(y|G)}
EG{p(y|G) ·G2} . (2.11)

Then, by taking Ts = T̄ , for any δ > δu, we almost surely have

lim
n→∞

|〈x̂s, x〉|
‖x̂s‖2 ‖x‖2

> ε, (2.12)

for some ε > 0. Furthermore, for any δ < δu, there is no pre-processing function T such
that, almost surely, (2.12) holds. For a more formal statement of this result, see theorem 4
of [MM19]. The preprocessing function that, at a given δ > δu, maximizes the correlation
between x̂s and x is also related to T ∗(y) as defined in (2.11), and it is derived in [LAL19].

3. GAMP with spectral initialization

We make the following additional assumptions on the signal x , the output distribution
pY|G, and the preprocessing function Ts used for the spectral estimator.

(B1) Let P̂ X,d denote the empirical distribution of x ∈ Rd. As d→∞, P̂ X,d converges

weakly to a distribution PX such that limd→∞ EP̂X,d
{|X |2} = EPX

{|X |2}. We note

that EPX
{|X |2} = 1, since we assume ‖x‖22 = d.

(B2) We have E{|Y |2} < ∞, for Y ∼ pY|G(·|G) and G ∼ N(0, 1). Furthermore, there
exists a function q :R× R→ R and a random variable V independent of G such
that Y = q(G,V). More precisely, for any measurable set A ⊆ Y and almost every

g, we have P(Y ∈ A|G = g) = P(q(g,V ) ∈ A). We also assume that E{|V |2} < ∞.
This is without loss of generality due to the functional representation lemma, see
page 626 of [EGK11].

(B3) The function Ts :R→ R is bounded and Lipschitz.

Following the terminology of [Ran11], we refer to the AMP for GLMs as GAMP. In
each iteration t, the proposed GAMP algorithm produces an estimate x t of the signal
x . The algorithm is defined in terms of a sequence of Lipschitz functions ft :R→ R and
ht :R× R→ R, for t � 0. We initialize using the spectral estimator x̂s:

https://doi.org/10.1088/1742-5468/ac9828 7
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x0 =
√
d

1√
δ
x̂s, (3.1)

u0 =
1√
δ
Af0(x

0)− b0

√
δ

λ∗
δ

ZsAx0, (3.2)

where b0 =
1
n

∑d
i=1 f

′
0(x

0
i ), the diagonal matrix Z s is defined in (2.1), and λ∗

δ is given by
(2.7). Then, for t � 0, the algorithm computes:

xt+1 =
1√
δ
ATht(u

t ; y)− ctft(x
t), (3.3)

ut+1 =
1√
δ
Aft+1(x

t+1)− bt+1ht(u
t ;y). (3.4)

Here the functions ft and ht are understood to be applied component-wise, i.e.
ft(x

t) = (ft(x
t
1), . . . , ft(x

t
d)) and ht(u

t ; y) = (ht(u
t
1
; y1), . . . , ht(u

t
n
; yn)). The scalars bt, ct

are defined as

ct =
1

n

n∑
i=1

h′
t(u

t
i
; yi), bt+1 =

1

n

d∑
i=1

f′t+1(x
t+1
i ), (3.5)

where h′
t(·, ·) denotes the derivative with respect to the first argument.

The asymptotic empirical distribution of the GAMP iterates x t,u t, for t � 0, can be
succinctly characterized via a deterministic recursion, called state evolution. Our main
result, theorem 1, shows that for t � 0, the empirical distributions of u t and x t converge
in Wasserstein distance W2 to the laws of the random variables Ut and Xt, respectively,
with

Xt ≡ μX,tX + σX,tWX,t, (3.6)

Ut ≡ μU ,tG+ σU ,tWU ,t, (3.7)

where (G,WU ,t)∼i.i.d.N(0, 1). Similarly, X ∼ PX and WX,t ∼ N(0, 1) are independent.
The deterministic parameters (μU,t, σU,t, μX,t, σX,t) are recursively computed as follows,
for t � 0:

μU ,t =
1√
δ
E{Xft(Xt)},

σ2
U ,t =

1

δ
E
{
ft(Xt)

2
}
− μ2

U ,t,

μX,t+1 =
√
δE{Ght(Ut ;Y )} − E{h′

t(Ut ;Y )}E{Xft(Xt)},
σ2
X,t+1 = E{ht(Ut ;Y )2}. (3.8)

For the spectral initialization in (3.1) and (3.2), with a as defined in (2.6), the
recursion is initialized with

μX,0 = a/
√
δ, σ2

X,0 = (1− a2)/δ. (3.9)

https://doi.org/10.1088/1742-5468/ac9828 8
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We state the main result in terms of pseudo-Lipschitz test functions. A function
ψ :Rm → R is pseudo-Lipschitz of order 2, i.e. ψ ∈ PL(2), if there is a constant C > 0
such that

‖ψ(x)− ψ(y)‖2 � C(1 + ‖x‖2 + ‖y‖2)‖x− y‖2, (3.10)

for all x, y ∈ Rm. Examples of test functions in PL(2) with m = 2 include ψ(a, b) =
(a− b)2, ψ(a, b) = ab.

Theorem 1. Let x be such that ‖x‖22 = d, {ai}i∈[n]∼i.i.d.N(0d, Id/d), and y = (y1, . . . , yn)
with {yi}i∈[n]∼i.i.d. pY |G. Let n/d→ δ, G ∼ N(0, 1), and Zs = Ts(Y ) for Y ∼ pY|G(·|G).
Assume that (A1), (A2), (A3) and (B1), (B2), (B3) hold. Assume further that
ψ′
δ(λ

∗
δ) > 0, and let x̂s be the principal eigenvector of Dn, defined as in (2.1), with the

sign of x̂s chosen so that 〈x̂s, x〉 � 0.
Consider the GAMP iteration in equations (3.3) and (3.4) with initialization in

equations (3.1) and (3.2). Assume that for t � 0, the functions ft, ht are Lipschitz with
derivatives that are continuous almost everywhere. Then, the following limits hold almost
surely for any PL(2) function ψ :R× R→ R and t such that σ2

X,k is strictly positive for
0 � k � t:

lim
d→∞

1

d

d∑
i=1

ψ(xi, x
t+1
i ) = E{ψ(X , μX,t+1X + σX,t+1WX,t+1)}, (3.11)

lim
n→∞

1

n

n∑
i=1

ψ(yi, u
t
i) = E{ψ(Y , μU ,tG+ σU ,tWU ,t)}. (3.12)

The result (3.11) also holds for (t+ 1) = 0. In (3.11) (resp. (3.12)), the expecta-
tion is over the independent random variables X ∼ PX and WX,t ∼ N(0, 1) (resp.
(G,WU ,t)∼i.i.d.N(0, 1)). The scalars (μX,t,μU ,t, σ

2
X,t, σ

2
U ,t)t�0 are given by the recursion

(3.8) with the initialization (3.9).

We give a sketch of the proof in section 5 and defer the technical details to the
appendices.

We now comment on some of the assumptions in the theorem. The assumption
ψ′
δ(λ

∗
δ) > 0 is required to ensure that the spectral initialization x 0 has non-zero correla-

tion with the signal x (lemma 2.1). From remark 2.2, we also know that for any sampling
ratio δ > δu there exists a choice of Ts such that ψ′

δ(λ
∗
δ) > 0. We also note that, for δ < δu,

GAMP converges to the ‘un-informative fixed point’ (where the estimate has vanishing
correlation with signal) even if the initial condition has non-zero correlation with the
signal, see theorem 5 of [MM19].

There is no loss of generality in assuming the sign of x̂s to be such that 〈x̂s, x〉 � 0.
Indeed, if the sign were chosen otherwise, the theorem would hold with the state
evolution initialization in (3.9) being μX,0 = −a/

√
δ, σ2

X,0 = (1− a2)/δ.

The assumption that σ2
X,k is positive for k � t is natural. Indeed, if σ2

X,k = 0, then

the state evolution result for iteration k implies that
∥∥x− μ−1

X,kx
k
∥∥2
/d→ 0 as d→∞.

That is, we can perfectly estimate x from x k, and thus terminate the algorithm after
iteration k.
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Let us finally remark that the result in (3.11) is equivalent to the statement that the
empirical joint distribution of (x , x t+1) converges almost surely in Wasserstein distance
(W2) to the joint law of (X, μX,t+1X+ σX,t+1W). This follows from the fact that a
sequence of distributions Pn with finite second moment converges in W2 to P if and only
if Pn converges weakly to P and

∫
‖a‖22 dPn(a)→

∫
‖a‖22 dP (a), see definition 6.7 and

theorem 6.8 of [Vil08].
When does GAMP require spectral initialization? For the GAMP to give

meaningful estimates, we need either x 0 or x 1 to have strictly non-zero asymptotic
correlation with x . To see when this can be arranged without a special initializa-
tion, consider the linear estimator x̂L(ξ) :=ATξ(y), for some function ξ :R→ R that
acts component-wise on y . If there exists a function ξ such that the asymptotic nor-
malized correlation between x̂L(ξ) and x is strictly non-zero, then AMP does not
require a special initialization (spectral or otherwise) that is correlated with x . Indeed,
in this case we can replace the initialization in (3.1) and (3.2) by x 0 = 0, u0 = 0

(by taking f0 = 0), and let h0(u
0 ;y) =

√
δξ(y). This gives x1 = ATξ(y) = x̂L(ξ), which

has strictly non-zero asymptotic correlation with x . This ensures that |μX,1| > 0, and
the standard AMP analysis [JM13] directly yields a state evolution result similar to
theorem 1.

The output function pY|G determines whether a non-trivial linear estimator exists
for the GLM. From appendix C.1 in [MTV20], we have that, if∫

R

(
EG∼N(0,1)

{
GpY |G(y|G)

})2
EG∼N(0,1)

{
pY |G(y|G)

} dy = 0, (3.13)

then the correlation between ATξ(y) and x will asymptotically vanish for any choice
of ξ. The condition (3.13) holds for many output functions of interest, including all
distributions pY|G that are even in G (and, therefore, including phase retrieval). It is for
these models that spectral initialization is particularly useful.

We remark that our analysis covers not only the (Wirtinger flow) phase retrieval
model y = |Ax |2, but also the amplitude flow phase retrieval model y = |Ax |. In fact,

one can analyze the approximate model y =
√

|Ax|2 + ε and then let ‖ε‖2 → 0. This is
similar to the approach taken, e.g. by [MXM18] and [LWL20]. Since the functions used
in each AMP iteration are Lipschitz, state evolution holds as ‖ε‖2 → 0. For other GLMs
with non-differentiable output functions, we can use a similar approach to construct a
smooth approximation to the output function and obtain the state evolution result.

Bayes-optimal GAMP. Applying theorem 1 to the PL(2) function ψ(x, y) =
(x− ft(y))

2, we obtain the asymptotic mean-squared error (MSE) of the GAMP estimate
ft(x

t). In formulas, for t � 0, almost surely,

lim
d→∞

1

d

∥∥x− ft(x
t)
∥∥2

2
= E{(X − ft(μX,tX + σX,tW ))2}. (3.14)

If the limiting empirical distribution PX of the signal is known, then the choice of ft that
minimizes the MSE in (3.14) is

f∗t (s) = E{X |μX,tX + σX,tW = s}. (3.15)
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Similarly, applying the theorem to the PL(2) functions ψ(x, y) = xft(y) and ψ(x, y) =
ft(y)

2, we obtain the asymptotic normalized correlation with the signal. In formulas, for
t � 0, almost surely

lim
d→∞

|〈x, ft(xt)〉|
‖x‖2‖ft(xt)‖2

=
|E{Xft(μX,tX + σX,tW )}|√

E{ft(μX,tX + σX,tW )2}
. (3.16)

For fixed (μX,t, σ
2
X,t), the normalized correlation in (3.16) is maximized by taking ft = cf∗t

for any c �= 0. This choice also maximizes the ratio μ2
U ,t/σ

2
U ,t in (3.8). For ft = cf∗t , from

(3.8) we have

μU ,t =
c√
δ
E{f∗t (Xt)

2}, σ2
U ,t =

c√
δ
μU ,t − μ2

U ,t. (3.17)

We now specify the choice of ht(u ; y) that maximizes the ratio μ2
X,t+1/σ

2
X,t+1 for fixed

(μU ,t, σ
2
U ,t).

Proposition 3.1. Assume the setting of theorem 1. For a given (μU ,t, σ
2
U ,t), the ratio

μ2
X,t+1/σ

2
X,t+1 is maximized when ht(u ; y) = c h∗

t (u ; y) where c �= 0 is any constant, and

h∗
t (u ; y) � E{G|Ut = u, Y = y} − E{G|Ut = u}

Var (G|Ut = u)
(3.18)

=
EW{WpY |G(y | ρtu+

√
1− ρt μU ,t W )}√

1− ρt μU ,t EW{pY |G(y | ρtu+
√

1− ρt μU ,t W )} , (3.19)

where ρt = μU ,t/(μ
2
U ,t + σ2

U ,t) and W ∼ N(0, 1). In (3.18), the random variables Ut and
Y are conditionally independent given G with

Y ∼ pY |G( · |G), Ut = μU ,tG+ σU ,tWU ,t,

(G,WU ,t)∼i.i.d.N(0, 1).
(3.20)

The optimal choice for h∗
t in proposition 3.1 was derived by [Ran11] by approximating

the belief propagation equations. For completeness, we provide a self-contained proof in
appendix A. The proof also shows that with ht = ch∗

t ,

μX,t+1 = c
√
δ E{|h∗

t (Ut ;Y )|2}, σ2
X,t+1 = c

μX,t+1√
δ

.

As the choices f∗t , h
∗
t maximize the signal-to-noise ratios μ2

U ,t/σ
2
U ,t and μ2

X,t+1/σ
2
X,t+1,

respectively, we refer to this algorithm as Bayes-optimal GAMP. We note that to apply
theorem 1 to the Bayes-optimal GAMP, we need f∗t , h

∗
t to be Lipschitz. This holds under

relatively mild conditions on PX and pY|G, see lemma F.1 in [MV21].

4. Numerical simulations

We now illustrate the performance of the GAMP algorithm with spectral initialization
via numerical examples. For concreteness, we focus on noiseless phase retrieval, where
yi = |〈ai, x〉|2, i ∈ [n].
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Figure 1. Performance comparison between GAMP with spectral initialization (in
red) and the spectral method alone (in black) for a Gaussian prior PX ∼ N(0, 1).
The solid lines are the theoretical predictions of theorem 1 for GAMP with spectral
initialization, and of lemma 2.1 for the spectral method. Error bars indicate one
standard deviation around the empirical mean.

Gaussian prior. In figure 1, x is chosen uniformly at random on the d-dimensional
sphere with radius

√
d and {ai}i∈[n] ∼i.i.d. N(0, Id/d). Note that, as d→∞, the limiting

empirical distribution PX of x is a standard Gaussian. We take d = 8000, and the numer-
ical simulations are averaged over nsample = 50 independent trials. The performance of
an estimate x̂ is measured via its normalized squared scalar product with the signal
x . The black points are obtained by estimating x via the spectral method, using the
optimal pre-processing function Ts reported in equation (137) of [MM19]. The empirical
results match the black curve, which gives the best possible squared correlation in the
high-dimensional limit, as given by theorem 1 of [LAL19]. The red points are obtained
by running the GAMP algorithm (3.3) and (3.4) with the spectral initialization (3.1)

and (3.2). The function ft is chosen to be the identity, and ht =
√
δh∗

t , for h∗
t given by

proposition 3.1. The algorithm is run until the normalized squared difference between
successive iterates is small. As predicted by theorem 1, the numerical simulations agree
well with the state evolution curve in red, which is obtained by computing the fixed
point of the recursion (3.8) initialized with (3.9). We also remark that the threshold
for exact recovery can be obtained from the fixed points of state evolution, see e.g.
[BKM+19].

Bayes-optimal GAMP for a binary-valued prior. Assume now that each entry
of the signal x takes value in {−1, 1}, with PX(1) = 1− pX(−1) = p. In figure 2, we take
p = 1

2
, and compare the performance of the GAMP algorithm with spectral initialization

for two different choices of the function ft : ft equal to identity (in blue) and ft = f∗t
(in red), where f∗t is the Bayes-optimal choice (3.15). By computing the conditional
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Figure 2. Performance comparison between two different choices of ft for a binary
prior PX(1) = PX(−1) = 1

2 . The Bayes-optimal choice ft = f∗t (in red) has a lower
threshold compared to ft equal to identity (in blue).

expectation, we have

f∗t (s) = 2P(X = 1|μX,tX + σX,tW = s)− 1 =
2

1 + 1−p
p exp

(
−2sμX,t

σ2
X,t

) − 1. (4.1)

The rest of the setting is analogous to that of figure 1. There is a significant performance
gap between the Bayes-optimal choice ft = f∗t and the choice ft(x) = x. As in the previ-
ous experiment, we observe very good agreement between the GAMP algorithm and the
state evolution prediction of theorem 1. We remark that for this setting, the information-
theoretically optimal overlap (computed using the formula in [BKM+19]) is 1 for all
δ > 0. Since the components of x are in {−1, 1}, there are 2d choices for x . The
information-theoretically optimal estimator picks the choice that is consistent with
yi = 〈x ,a i〉, i ∈ [n]. (Since A is Gaussian, with high probability this solution is unique.)

Coded diffraction patterns. We consider the model of coded diffraction patterns
described in section 7.2 of [MM19]. Here the signal x is the image of figure 3(a), and it
can be viewed as a d1 × d2 × 3 array with d1 = 820 and d2 = 1280. The sensing vectors
are given by

ar(t1, t2) = d�(t1, t2) · ei2πk1t1/d1 · ei2πk2t2/d2 , (4.2)

where r ∈ [n], t1 ∈ [d1], t2 ∈ [d2], i denotes the imaginary unit, ar(t1, t2) is the (t1, t2)th
component of ar ∈ Cd, and the (d�(t1, t2))’s are i.i.d. and uniform in {1,−1, i,−i}. The
index r ∈ [n] is associated to a pair (�, k), with � ∈ [L]; the index k ∈ [d] is associated to
a pair (k1, k2) with k1 ∈ [d1] and k2 ∈ [d2]. Thus, n = L · d and, therefore, δ = L ∈ N. To
obtain non-integer values of δ, we set to 0 a suitable fraction of the vectors a r, chosen
uniformly at random.

In this model, the scalar product 〈x j,a r〉 can be computed with an FFT algorithm.
Furthermore, in order to evaluate the principal eigenvector for the spectral initializa-
tion, we use a power method which stops if either the number of iterations reaches the
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Figure 3. Visual comparison between the reconstruction of the GAMP algorithm
with spectral initialization and that of the spectral method alone for measurements
given by coded diffraction patterns.

maximum value of 100 000 or the modulus of the scalar product between the estimate
at the current iteration T and at the iteration T− 10 is larger than 1–10−7.

The GAMP algorithm with spectral initialization for the complex-valued setting
is described in appendix D. Figure 3 shows a visual representation of the results. The
improvement achieved by the GAMP algorithm over the spectral estimator is impressive,
with GAMP achieving full recovery already at δ = 2.4. A numerical comparison of the
performance of the two methods is given in figure 5 in appendix D. We emphasize
that the state evolution result of theorem 1 is only valid for Gaussian sensing matrices.
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Figure 4. Performance comparison between complex GAMP with spectral initial-
ization (in red) and the spectral method alone (in black) for a Gaussian prior
PX ∼ CN(0, 1). On the x-axis, we have the sampling ratio δ = n/d; on the y-axis,
we have the normalized squared scalar product between the signal and the estimate.
The experimental results (∗ and � markers) are in excellent agreement with the the-
oretical predictions (solid lines) given by state evolution for GAMP and lemma 2.1
for the spectral method. Error bars indicate one standard deviation around the
empirical mean.

Figure 5. Performance comparison between complex GAMP with spectral initial-
ization (in red) and the spectral method alone (in black) for a model of coded
diffraction patterns.

Extending it to structured matrices such as coded diffraction patterns is an interesting
direction for future work.
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5. Sketch of the proof of theorem 1

We give an outline of the proof here, and provide the technical details in the appendices.
The artificial GAMP algorithm. We construct an artificial GAMP algorithm,

whose iterates are denoted by x̃t, ũt, for t � 0. Starting from an initialization (x̃0, ũ0),
for t � 0 we iteratively compute:

x̃t+1 =
1√
δ
ATh̃t(ũ

t ; y)− c̃tf̃t(x̃
t), (5.1)

ũt+1 =
1√
δ
Af̃t+1(x̃

t+1)− b̃t+1h̃t(ũ
t ; y). (5.2)

For t � 0, the functions f̃t :R→ R and h̃t :R× R→ R are Lipschitz, and will be specified
below. The scalars c̃t and b̃t+1 are defined as

c̃t =
1

n

n∑
i=1

h̃′
t(ũ

t
i
; yi), b̃t+1 =

1

n

d∑
i=1

f̃′t+1(x̃
t+1
i ), (5.3)

where h̃′
t denotes the derivative with respect to the first argument. The iteration is

initialized as follows. Choose any α ∈ (0, 1), and a standard Gaussian vector n ∼ N(0, Id)
that is independent of x and A. Then,

x̃0 = α x+
√
1− α2 n, ũ0 =

1√
δ
Af̃0(x̃

0). (5.4)

The artificial GAMP is divided into two phases. In the first phase, which lasts up to
iteration T, the functions f̃t, h̃t for 0 � t � (T− 1), are chosen such that as T→∞, the
iterate x̃T approaches the initialization x 0 of the true GAMP algorithm defined in (3.1).

In the second phase, the functions f̃t, h̃t for t � T, are chosen to match those of the true
GAMP. The key observation is that a state evolution result for the artificial GAMP
follows directly from the standard analysis of GAMP [JM13] since the initialization x̃0

is independent of A. By showing that as T→∞, the iterates and the state evolution
parameters of the artificial GAMP approach the corresponding quantities of the true
GAMP, we prove that the state evolution result of theorem 1 holds.

We now specify the functions used in the artificial GAMP. For 0 � t � (T− 1),
we set

f̃t(x) =
x

βt

, h̃t(x ; y) =
√
δ x

Ts(y)

λ∗
δ − Ts(y)

, (5.5)

where Ts is the pre-processing function used for the spectral estimator, λ∗
δ is the unique

solution of ζδ(λ) = φ(λ) for λ > τ (also given by (2.7)), and (βt)t�0 are constants coming
from the state evolution recursion defined below. Furthermore, for t � T, we set

f̃t(x) = ft−T (x), h̃t(x ; y) = ht−T (x ; y). (5.6)
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With these choices of f̃t, h̃t, the coefficients c̃t and b̃t in (5.3) become:

c̃t =

√
δ

n

n∑
i=1

Ts(yi)

λ∗
δ − Ts(yi)

, b̃t =
1

δβt
, 0 � t � (T − 1),

c̃t =
1

n

n∑
i=1

h′
t−T (ũ

t
i
; yi), b̃t =

1

n

d∑
i=1

f′t−T (x̃
t
i), t � T .

(5.7)

Since the initialization x̃0 in (5.4) is independent of A, the state evolution result of
[JM13] can be applied to the artificial GAMP. This result, formally stated in proposition
B.1 in appendix B.1, implies that for t � 0, the empirical distributions of x̃t and ũt

converge in W2 distance to the laws of the random variables X̃t and Ũ t, respectively,
with

X̃t ≡ μX̃,tX + σX̃,tWX̃,t, Ũ t ≡ μŨ ,tG+ σŨ ,tWŨ ,t. (5.8)

Here WX̃,t,WŨ ,t are standard normal and independent of X and G, respectively. The
state evolution recursion defining the parameters (μX̃,t, σX̃,t,μŨ ,t, σŨ ,t, βt) has the same
form as (3.8), except that we use the functions defined in (5.5) for 0 � t � (T− 1), and
the functions in (5.6) for t � T. The detailed expressions are given in appendix B.1.

Analysis of the first phase. The first phase of the artificial GAMP is designed so
that its output vectors after T iterations (x̃T , ũT ) are close to the initialization (x 0,u0)
of the true GAMP algorithm given by (3.1) and (3.2). This part of the algorithm is
similar to the GAMP used in [MTV20] to approximate the spectral estimator x̂s. In
particular, the state evolution recursion of the first phase (given in (B.2)) converges as
T→∞ to the following fixed point:

lim
T→∞

μX̃ ,T =
a√
δ
, lim

T→∞
σ2
X̃,T

=
1− a2

δ
, (5.9)

where a is the limit (normalized) correlation between the spectral estimator x̂s and the
signal, see (2.8). Furthermore, the GAMP iterate x̃T approaches x̂s, i.e.

lim
T→∞

lim
d→∞

∥∥∥√d x̂s −
√
δ x̃T

∥∥∥2

d
= 0 a.s. (5.10)

These results are formally stated in lemmas B.2 and B.3, respectively, contained in
appendix B.2.

Analysis of the second phase. The second phase of the artificial GAMP is
designed so that its iterates x̃T+t, ũT+t are close to x t,u t, respectively for t � 0, and the
corresponding state evolution parameters are also close. In particular, in order to prove
theorem 1, we first analyze a slightly modified version of the true GAMP algorithm in
(3.3) and (3.4) where the ‘memory’ coefficients bt and ct in (3.5) are replaced by deter-
ministic values obtained from state evolution. The iterates of this modified GAMP,
denoted by x̂t, ût, are as follows. Start with the initialization

x̂0 = x0 =
√
d

1√
δ
x̂s, (5.11)
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û0 =
1√
δ
Af0(x̂

0)− b̄0

√
δ

λ∗
δ

ZsAx̂0, (5.12)

where b̄0 =
1
δ
E{f′0(X0)}. Then, for t � 0:

x̂t+1 =
1√
δ
ATht(û

t ; y)− c̄tft(x̂
t), (5.13)

ût+1 =
1√
δ
Aft+1(x̂

t+1)− b̄t+1ht(û
t ;y). (5.14)

Here, for t � 0, the deterministic memory coefficients b̄t and c̄t are

c̄t = E{h′
t(Ut ; Y )}, b̄t = E{f′t(Xt)}/δ, (5.15)

where Xt,Ut are defined in (3.6) and (3.7).
Let us now summarize our approach. We have defined three different GAMP itera-

tions: (i) the true GAMP with iterates (x t,u t) given by (3.3) and (3.4) and initialization
(x 0,u0) given by (3.1) and (3.2), (ii) the modified GAMP with iterates (x̂t, ût) given
by (5.13) and (5.14) and initialization (x̂0, û0) given by (5.11) and (5.12), and (iii) the
artificial GAMP with iterates (x̃t, ũt) given by (5.1) and (5.2) and initialization (x̃0, ũ0)
given by (5.4). We recall that the true GAMP is the algorithm with spectral initial-
ization that is actually implemented and whose performance we want to study. As the
true GAMP is initialized with the spectral estimator x̂s which depends on A, its per-
formance cannot be characterized using the existing theory. To solve this problem, we
introduce the artificial GAMP purely as a proof technique. In fact, the initialization
of the artificial GAMP assumes knowledge of the signal, which makes it impractical.
Finally, the modified GAMP is a slight modification of the true GAMP to simplify
the proof.

Lemma B.5 in appendix B.3 proves that, for each t � 0, (i) the iterates (x̃t+T , ũt+T )
are close to (x̂t, ût) for sufficiently large T, and (ii) the corresponding state evolution
parameters are also close. We then use this lemma to prove theorem 1 by showing that
the iterates of the true GAMP have the same asymptotic empirical distribution as those
of the modified GAMP . In particular, we show in appendix B.4 that, almost surely,

lim
d→∞

1

d

d∑
i=1

ψ(xi, x
t
i) = lim

d→∞

1

d

d∑
i=1

ψ(xi, x̂
t
i)

= E{ψ(X , μX,tX + σX,t W )}. (5.16)

6. Discussion

A major shortcoming in existing AMP theory for GLMs like phase retrieval is the
unrealistic assumption that the initialization of the algorithm is correlated with the
ground-truth signal and, at the same time, independent of the measurement matrix.
This paper solves this problem by providing a rigorous analysis of AMP with a spec-
tral initialization. Spectral initializations have been widely studied in recent years,
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and have two attractive features. First, for phase retrieval, they meet the informa-
tion theoretic threshold for weak recovery [MM19]. This means that, when the spectral
initialization fails, no other method can work. Second, for a large class of GLMs,
if the spectral method is unsuccessful, then AMP has an attractive fixed point at
0, see theorem 5 in [MM19]. This is a strong indication that, when the spectral
initialization fails, the problem is computationally hard. An interesting future direc-
tion is to analyze the fixed points of AMP with spectral initialization, and compare
with those of other algorithms that can be initialized with a spectral estimator, e.g.
gradient descent.

Our analysis is based on an artificial AMP that first closely approximates the spectral
estimator and then the true AMP algorithm. This technical tool is versatile and could
be used beyond GLMs with Gaussian sensing matrices. Examples include more general
measurement models [Fan20, ESAP+20], other message passing algorithms, e.g. vector
AMP [SRF16], or the design of an artificial AMP that leads to a different estimator. We
also highlight that the AMP analyzed here is rather general, and it includes as special
cases both the Bayes-optimal AMP for GLMs and AMPs designed to optimize objective
functions tailored to the signal prior.
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Appendix A. Proof of proposition 3.1

From assumption (B2) on page 6, we recall that ht(u ; y) = ht(u ; q(g, v)). We write
∂ght(u ; q(g, v)) for the partial derivative with respect to g. We will show that μX,t+1 in
(3.8) can be written as:

μX,t+1 =
√
δE{∂ght(Ut ; q(G,V ))}, (A.1)

=
√
δE

{
ht(Ut ;Y )

(
E{G|Ut, Y } − E{G|Ut}

Var {G|Ut}

)}
. (A.2)

From (A.2), we have that

μX,t+1

σX,t+1
=

√
δ√

E{ht(Ut ;Y )2}
E

{
ht(Ut ;Y )

(
E{G|Ut, Y } − E{G|Ut}

Var {G|Ut}

)}
. (A.3)

The absolute value of the rhs is maximized when ht = c h∗
t , for c �= 0 and h∗

t is given
in (3.18). To obtain the alternative expression in (3.19) from (3.18) we recall that Ut
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is Gaussian with zero mean and variance (μ2
U ,t + σ2

U ,t). Furthermore, the conditional
distribution of G given Ut = u is Gaussian with E{G|Ut = u} = ρtu and Var (G|Ut =
u) = (1− ρtμU ,t). Therefore, with W ∼ N(0, 1) we have

E{G|Ut = u, Y = y} =
EW{(ρtu+

√
1− ρt μU ,t W ) pY |G(y | ρtu+

√
1− ρt μU ,t W )}

EW{pY |G(y | ρtu+
√

1− ρt μU ,t W )}

= ρtu +
√

1− ρt μU ,t

E{WpY |G(y | ρtu+
√
1− ρt μU ,t W )}

EW{pY |G(y | ρtu+
√

1− ρt μU ,t W )} . (A.4)

Substituting (A.4) in (3.18) yields (3.19).
It remains to show (A.2), which we do by first showing (A.1). Define et :R

3 → R by

et(g,w, v) = ht(μU ,tg + σU ,tw ; q(g, v)). (A.5)

Then, using the chain rule, the partial derivative of et(g,w, v) with respect to g is

∂get(g,w, v) = μU ,th
′
t(μU ,tg + σU ,tw ; q(g, v)) + ∂ght(u ; q(g, v)). (A.6)

The parameter μX,t+1 in (3.8) can be written as

μX,t+1 =
√
δ[E{Get(G,WU ,t,V )} − μU ,tE{h′

t(μU ,tG+ σU ,tWU ,t ; Y )}]
(i)
=
√
δ[E{∂get(G,WU ,t,V )} − μU ,tE{h′

t(μU ,tG+ σU ,tWU ,t ; Y )}]

=
√
δ E{∂ght(Ut ; q(G,V ))}, (A.7)

where the last equality is due to (A.6), and (i) holds due to Stein’s lemma. Finally, we
obtain (A.2) from (A.1) as follows:

E{∂ght(Ut ; q(G,V ))} = E
{
EG|Ut

[∂ght(Ut ; q(G,V ))|Ut]
}

(ii)
= E

{
EG|Ut

[ht(Ut ; q(G,V )) · (G− E{G|Ut})/Var {G|Ut}|Ut]
}

= E
{
EG|Ut,Y [ht(Ut ; Y ) · (G− E{G|Ut})/Var {G|Ut}|Ut, Y ]

}
= E{ht(Ut ; Y ) · ((E{G|Ut, Y } − E{G|Ut})/Var {G|Ut})}. (A.8)

Here step (ii) holds due to Stein’s lemma. This completes the proof of the
proposition. �
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Appendix B. Proof of the main result

B.1. The artificial GAMP algorithm

The state evolution parameters for the artificial GAMP are recursively defined as follows.
Recall from (5.8) that X̃ t = μX̃ ,tX + σX̃ ,tWX̃ ,t and Ũ t ≡ μŨ ,tG+ σŨ ,tWŨ ,t. Using
(5.4), the state evolution initialization is

μX̃ ,0 = α, σ2
X̃ ,0

= 1− α2, β0 =
√
μ2

X̃ ,0
+ σ2

X̃ ,0
= 1. (B.1)

For 0 � t � (T− 1), the state evolution parameters are iteratively computed by using
the functions defined in (5.5) in (3.8):

μŨ ,t =
μX̃ ,t√
δβt

, σ2
Ũ ,t

=
σ2

X̃ ,t

δ β2
t

,

μX̃ ,t+1 =
μX̃ ,t√
δβt

, σ2
X̃ ,t+1

=
1

β2
t

E

{
Z2

s (G
2μ2

X̃ ,t
+ σ2

X̃ ,t
)

(λ∗
δ − Zs)2

}
,

βt+1 =
√
μ2

X̃ ,t+1
+ σ2

X̃ ,t+1
. (B.2)

Here we recall that G ∼ N(0, 1), Y ∼ pY|G(·|G), Zs = Ts(Y ), and the equality in (2.7)
which is used to obtain the expression for μX̃ ,t+1. For t � T, the state evolution
parameters are:

μŨ ,t =
1√
δ
E{Xft−T ( X̃ t)},

σ2
Ũ ,t

=
1

δ
E

{
ft−T ( X̃ t)

2
}
− μ2

Ũ ,t
,

μX̃ ,t+1 =
√
δE{Ght−T ( Ũ t ;Y )} − E{h′

t−T ( Ũ t ; Y )}E{Xft−T ( X̃ t)},

σ2
X̃ ,t+1

= E{ht−T ( Ũ t ;Y )2}. (B.3)

Proposition B.1 (state evolution for artificial GAMP). Consider the setting of
theorem 1, the artificial GAMP iteration described in (5.1)–(5.7), and the corresponding
state evolution parameters defined in (B.1)–(B.3).

For any PL(2) function ψ :R2 → R, the following holds almost surely for t � 1:

lim
d→∞

1

d

d∑
i=1

ψ(xi, x̃
t
i) = E{ψ(X , X̃ t)}, (B.4)

lim
n→∞

1

n

n∑
i=1

ψ(yi, ũ
t
i) = E{ψ(Y , Ũ t)}. (B.5)

Here X ∼ PX and Y ∼ PY|G, with G ∼ N(0, 1). The random variables X̃ t, Ũ t are defined
in (5.8).
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The proposition follows directly from the state evolution result of [JM13] since the
initialization x̃ 0 of the artificial GAMP is independent of A.

B.2. Analysis of the first phase

Lemma B.2 (fixed point of state evolution for first phase). Consider the setting of
theorem 1. Then, the state evolution recursion for the first phase, given by (B.1) and
(B.2), converges as T→∞ to the following fixed point:

μX̃ � lim
T→∞

μX̃ ,T =
a√
δ
, σ2

X̃
� lim

T→∞
σ2

X̃ ,T
=

1− a2

δ
, (B.6)

where a is defined in (2.8).

Proof. Recall that λ∗
δ denotes the unique solution of ζδ(λ) = φ(λ) for λ > τ (also given

by (2.7)), and define Z = Zs/(λ
∗
δ − Zs), where Zs = Ts(Y ). Note that

E{Z(G2 − 1)} = E

{
Zs(G

2 − 1)

λ∗
δ − Zs

}
=

1

δ
, (B.7)

where the second equality follows from the equality in (2.7). Moreover, the inequality
in (2.7) implies that

E{Z2}
(E{Z(G2 − 1)})2 = δ2E

{
Z2

s

(λ∗
δ − Zs)2

}
< δ. (B.8)

Thus, by recalling that the state evolution initialization μX̃ ,0 = α is strictly positive,
the result follows from lemma 5.2 in [MTV20]. �
Lemma B.3 (convergence to spectral estimator). Consider the setting of theorem 1,
and consider the first phase of the artificial GAMP iteration, given by (5.1) and (5.2)

with f̃ t and h̃ t defined in (5.5). Then,

lim
T→∞

lim
d→∞

∥∥∥√d x̂ s −
√
δ x̃ T

∥∥∥2

d
= 0 a.s.. (B.9)

Furthermore, for any PL(2) function ψ :R× R→ R, almost surely we have:

lim
d→∞

1

d

d∑
i=1

ψ(xi,
√
d x̂ s

i) = lim
T→∞

lim
d→∞

1

d

d∑
i=1

ψ(xi,
√
δ x̃ T

i ) = E{ψ(X ,
√
δ (μX̃ X + σX̃W ))}.

(B.10)

Here X ∼ PX and W ∼ N(0, 1) are independent.

Proof. As in the proof of the previous result, let Z = Zs/(λ
∗
δ − Zs) and note that (B.7)

and (B.8) hold. Also define
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Z ′ � Z

Z + δE{Z(G2 − 1)} =
Z

Z + 1
=

Z

λ∗
δ

. (B.11)

Then, the assumptions of lemma 5.4 in [MTV20] are satisfied, with the only difference
of the initialization of the GAMP iteration (cf (5.4) in this paper and (5.4) in [MTV20]).
However, it is straightforward to verify that the difference in the initialization does not
affect the proof of lemma 5.4 in [MTV20]. Thus, (B.9) follows from (5.87) of [MTV20],
and (B.10) follows by taking k = 2 in (5.31) of [MTV20]. �

We will also need the following result on the convergence of the GAMP iterates.

Lemma B.4 (convergence of GAMP iterates). Consider the first phase of the arti-

ficial GAMP iteration, given by (5.1) and (5.2) with f̃ t and h̃ t defined in (5.5). Then,
the following limits hold almost surely:

lim
T→∞

lim
n→∞

1

n

∥∥ ũ T−1 − ũ T−2
∥∥2

2
= 0, lim

T→∞
lim
d→∞

1

d

∥∥ x̃ T − x̃ T−1
∥∥2

2
= 0. (B.12)

Though the initialization of the GAMP in [MTV20] is different from (5.4), the proof
of lemma B.4 is the same as that of lemma 5.3 in [MTV20] since it only relies on
μX̃ ,0 = α being strictly non-zero.

B.3. Analysis of the second phase

Lemma B.5. Assume the setting of theorem 1. Consider the artificial GAMP algorithm
(5.1) and (5.2) with the related state evolution recursion (B.2) and (B.3), and the mod-
ified version of the true GAMP algorithm (5.13) and (5.14). Fix any ε > 0. Then, for
t � 0 such that σ2

X,k > 0 for 0 � k � t, the following statements hold:

(a)

lim
T→∞

∣∣μŨ ,t+T − μU ,t

∣∣ = 0, lim
T→∞

∣∣∣σ2
Ũ ,t+T

− σ2
U ,t

∣∣∣ = 0, (B.13)

lim
T→∞

∣∣μX̃ ,T+t+1 − μX,t+1

∣∣ = 0, lim
T→∞

∣∣∣σ2
X̃ ,T+t+1

− σ2
X,t+1

∣∣∣ = 0. (B.14)

(b) Let ψ :R× R→ R be a PL(2) function. Then, almost surely,

lim
T→∞

lim
n→∞

∣∣∣∣∣1n
n∑

i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣ = 0, (B.15)

lim
T→∞

lim
d→∞

∣∣∣∣∣1d
d∑

i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ = 0. (B.16)

The limits in (B.14) and (B.16) also hold for t+ 1 = 0.

Proof. We will use κt, κ
′
t, ct, γt to denote generic positive constants which depend on t,

but not on n, d, or ε. The values of these constants may change throughout the proof.
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Proof of (B.13) and (B.14). We prove the result by induction, starting from the base
case

∣∣μX̃ ,T − μX,0

∣∣, |σ2
X̃ ,T

− σ2
X,0|. From lemma B.2, we have

lim
T→∞

μX̃ ,T = μX̃ =
a√
δ
, lim

T→∞
σ2

X̃ ,T
= σ2

X̃
=

1− a2

δ
. (B.17)

Recalling from (3.9) that μX,0 =
a√
δ
, σ2

X,0 =
1−a2

δ
, (B.17) implies that

lim
T→∞

∣∣μX̃ ,T − μX,0

∣∣ = 0, lim
T→∞

∣∣∣σ2
X̃ ,T

− σ2
X,0

∣∣∣ = 0. (B.18)

Assume toward induction that (B.14) holds with (t+ 1) replaced by t, and that
σ2
X,k > 0 for 0 � k � t. We will show that (B.13) holds, and then that (B.14) holds.
For brevity, we write Δμ,t, Δσ,t for (μX,t − μX̃ ,t+T ) and (σX,t − σX̃ ,t+T ), respectively.

By the induction hypothesis, given any ε > 0, for T sufficiently large we have

|Δμ,t| < κtε, |Δσ,t| <
κt

σX,t + σX̃ ,t+T

ε = κ′
tε. (B.19)

Since σX,t is strictly positive, κ′
t is finite and bounded above.

From (3.8) we have

μU ,t =
1√
δ
E{Xft(μX,tX + σX,tWX,t)}

=
1√
δ
E{Xft(μX̃ ,T+tX + σX̃ ,T+tWX,t + Δμ,tX +Δσ,tWX,t). (B.20)

Recalling that ft is Lipschitz and letting Lt denote its Lipschitz constant, we have∣∣ft(μX̃ ,T+tX + σX̃ ,T+tWX,t + Δμ,tX +Δσ,tWX,t) − ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)
∣∣

� Lt|Δμ,tX +Δσ,tWX,t|. (B.21)

Using (B.21) in (B.20), we obtain
√
δμU ,t �E{Xft(μX̃ ,T+tX + σX̃ ,T+tWX,t)} − LtE{|X ||Δμ,tX +Δσ,tWX,t|},

√
δμU ,t �E{Xft(μX̃ ,T+tX + σX̃ ,T+tWX,t)} + LtE{|X ||Δμ,tX +Δσ,tWX,t|}.

(B.22)

Since WX,t
d
=WX̃ ,t+T and independent of X, we have that E{Xft(μX̃ ,T+tX +

σX̃ ,T+tWX,t)} =
√
δμŨ ,t+T . Therefore, (B.22) implies

√
δ
∣∣μU ,t − μŨ ,t+T

∣∣ � Lt(Δμ,t + Δσ,tE{|WX,t|}), (B.23)

where we have used E{|X |2} <
√

E{X2} = 1. Noting that E{|WX,t|} =
√
2/π, from

(B.19) it follows that for sufficiently large T:

∣∣μU ,t − μŨ ,t+T

∣∣ � Lt√
δ
(κt + κ′

t

√
2/π) ε < γt ε. (B.24)
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Next consider σ2
U ,t. From (3.8), we have

σ2
U ,t =

1

δ
E{ft(μX,tX + σX,tWX,t)

2} − μ2
U ,t. (B.25)

Furthermore, as WX,t
d
=WX̃ ,t+T and independent of X, we also have that

σ2
Ũ ,t+T

=
1

δ
E{ft(μX̃ ,t+TX + σX̃ ,t+TWX,t)

2} − μ2
Ũ ,t+T

. (B.26)

Using the reverse triangle inequality, we have∣∣ft(μX̃ ,T+tX + σX̃ ,T+tWX,t + Δμ,tX +Δσ,tWX,t)
∣∣

� |ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)|

−
∣∣ft(μX̃ ,T+tX + σX̃ ,T+tWX,t + Δμ,tX +Δσ,tWX,t) − ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)

∣∣
� |ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)| − Lt|Δμ,tX +Δσ,tWX,t|, (B.27)

where the last inequality follows from (B.21). Similarly,∣∣ft(μX̃ ,T+tX + σX̃ ,T+tWX,t + Δμ,tX +Δσ,tWX,t)
∣∣

� |ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)| + Lt|Δμ,tX +Δσ,tWX,t|. (B.28)

Using (B.27), we obtain the bound

E{ft(μX,tX + σX,tWX,t)
2}

� E{ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)
2} − L2

tE{|Δμ,tX +Δσ,tWX,t|2}

− 2Lt

√
E{ft(μX,tX + σX,tWX,t)2} · E{|Δμ,tX +Δσ,tWX,t|2}. (B.29)

Similarly, using (B.28) we get

E{ft(μX,tX + σX,tWX,t)
2}

� E{ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)
2}+ L2

tE{|Δμ,tX +Δσ,tWX,t|2}

+ 2Lt

√
E{ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)2} · E{|Δμ,tX +Δσ,tWX,t|2}. (B.30)

Furthermore,

E{|Δμ,tX +Δσ,tWX,t|2} � 2|Δμ,t|2E{X2}+ 2|Δσ,t|2E{WX,t}2 = 2(|Δμ,t|2 + |Δσ,t|2).

From (3.8) and (B.3), we note that

E{ft(μX,tX + σX,tWX,t)}2 = δ(μ2
U ,t + σ2

U ,t),

E{ft(μX̃ ,T+tX + σX̃ ,T+tWX̃ ,T+t)}2 = δ(μ2
Ũ ,T+t

+ σ2
Ũ ,T+t

).
(B.31)

Therefore, equations (B.29) and (B.30) imply that

https://doi.org/10.1088/1742-5468/ac9828 25

https://doi.org/10.1088/1742-5468/ac9828


J.S
tat.

M
ech.

(2022)
114003

Approximate message passing with spectral initialization for generalized linear models∗∣∣E{ft(μX,tX + σX,tWX,t)
2} − E{ft(μX̃ ,T+tX + σX̃ ,T+tWX,t)

2}
∣∣

� 2L2
t (|Δμ,t|2 + |Δσ,t|2) + 2Lt

√
2δ(μ2

U ,t + σ2
U ,t + μ2

Ũ ,T+t
+ σ2

Ũ ,T+t
)(|Δμ,t|2 + |Δσ,t|2).

(B.32)

Using this in (B.25) and (B.26), we have∣∣∣σ2
U ,t − σ2

Ũ ,t+T

∣∣∣ �
∣∣μŨ ,T+t − μU ,t

∣∣ · ∣∣μŨ ,T+t + μU ,t

∣∣ +(
2

δ
L2

t (|Δμ,t|2 + |Δσ,t|2)

+
2√
δ
Lt

√
2(μ2

U ,t + σ2
U ,t + μ2

Ũ ,T+t
+ σ2

Ũ ,T+t
)(|Δμ,t|2 + |Δσ,t|2)

)
.

(B.33)

From (B.19), we obtain

|Δμ,t|2 + |Δσ,t|2 <
(
κ2
t + (κ′

t)
2
)
ε2. (B.34)

Furthermore, as ft is Lipschitz, from (B.31) and the induction hypothesis we have

|μŨ ,T+t|+ |μU ,t|+ σU ,t + σŨ ,T+t � ct, (B.35)

for some constant ct. Using (B.24), (B.34) and (B.35) in (B.33), we conclude that for
sufficiently large T:∣∣∣σ2

U ,t − σ2
Ũ ,T+t

∣∣∣ < γtε. (B.36)

Next, we show that if (B.13) holds for some t � 0 and σ2
X,k > 0 for k � t, then:

lim
T→∞

∣∣μX̃ ,T+t+1 − μX,t+1

∣∣ = 0, lim
T→∞

∣∣∣σ2
X̃ ,T+t+1

− σ2
X,t+1

∣∣∣ = 0. (B.37)

We denote the Lipschitz constant of ht by L̄ t, and write Δ̄ μ,t, Δ̄ σ,t for (μU ,t − μŨ ,t+T )
and (σU ,t − σŨ ,t+T ), respectively. Using this notation, we have∣∣ht(μŨ ,T+tG+ σŨ ,T+tWU ,t + Δ̄ μ,tG+ Δ̄ σ,tWU ,t ; Y )− ht(μŨ ,T+tG+ σŨ ,T+tWU ,t ; Y )

∣∣
� L̄ t

∣∣ Δ̄ μ,tG+ Δ̄ σ,tWU ,t

∣∣. (B.38)

The induction hypothesis (B.13) implies that for sufficiently large T:∣∣ Δ̄ μ,t

∣∣ < γtε,
∣∣ Δ̄ σ,t

∣∣ < γt
σU ,t + σŨ ,t+T

ε = γtε. (B.39)

We note that σU,t > 0 since σX,t > 0. Indeed, from the discussion leading to (3.17),
for a fixed μX,t, σX,t the smallest possible ratio σ2

U ,t/μ
2
U ,t is achieved by the Bayes-

optimal choice ft = cf∗t , where f
∗
t (Xt) = E{X |Xt}. Furthermore, from (3.17), in order for

σU,t = 0, we need E{E{X |Xt}2} = 1. From Jensen’s inequality, we also have
E{E{X |Xt}2} � E{E{X2|Xt}} = 1. Therefore, E{E{X |Xt}2} = 1 only if X is a deter-
ministic function of Xt = μX,tX+ σX,tW. But this is impossible when σX,t > 0. Therefore
σU,t > 0, and γt in (B.39) is strictly positive.
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From (B.38), we obtain

E{Ght(μŨ ,T+tG+ σŨ ,T+tWU ,t ; Y )} − L̄ tE{
∣∣ Δ̄ μ,t

∣∣G2 +
∣∣ Δ̄ σ,t

∣∣ · |G| · |WU ,t|}
� E{Ght(μU ,tG+ σU ,tWU ,t ; Y )}
� E{Ght(μŨ ,T+tG+ σŨ ,T+tWU ,t ; Y )}+ L̄ tE{

∣∣ Δ̄ μ,t

∣∣G2 +
∣∣ Δ̄ σ,t

∣∣ · |G| · |WU ,t|}.
(B.40)

Now, using (3.8) and (B.3), we have:

1√
δ

∣∣∣μX̃ ,T+t+1 − μX,t+1

∣∣∣ = ∣∣∣E{G(ht( Ũ T+t ; Y )− ht(Ut ; Y ))} − μU ,t

(
E{h′

t( Ũ T+t ;Y )} − E{h′
t(Ut ;Y )}

)

− E{h′
t( Ũ T+t ; Y )}(μŨ ,T+t − μU ,t)

∣∣∣
� L̄ t

(∣∣ Δ̄ μ,t

∣∣+ ∣∣ Δ̄ σ,t

∣∣(2/π)) + |μU ,t| · |E{h′
t( Ũ T+t ;Y )} − E{h′

t(Ut ;Y )}| + L̄ t

∣∣ Δ̄ μ,t

∣∣.
(B.41)

For the inequality above, we used (B.40) (noting that E{|WU ,t|} = E{|G|} =
√

2/π
and E{G2} = 1), and the fact that |h′

t| is bounded by L̄ t, the Lipschitz constant of ht.
Now,∣∣∣E{h′

t(Ut ; Y ) − E{h′
t( Ũ T+t ;Y )}

∣∣∣
=

∣∣E{h′
t(μU ,tG+ σU ,tWU ,t ;Y )} − E{h′

t(μŨ ,T+tG+ σŨ ,T+tWU ,t ;Y )}
∣∣. (B.42)

By the induction hypothesis (B.13), we have

lim
T→∞

μŨ ,T+t = μU ,t, lim
T→∞

σŨ ,T+t = σU ,t. (B.43)

Thus, as T→∞, the random variable (μŨ ,T+tG+ σŨ ,T+tWU ,t) converges in distribution
to μU,tG+ σU,tWU,t. Then, lemma C.1 in appendix C implies that

lim
T→∞

∣∣∣E{h′
t(Ut ;Y ) − E{h′

t( Ũ T+t ;Y )}
∣∣∣ = 0. (B.44)

Using (B.44), (B.39) and (B.35) in (B.41) proves that the first limit in (B.37) holds.
Finally, we prove the second limit in (B.37). From (3.8), (B.3) and arguments along

the same lines as (B.29)–(B.32), we obtain the bound∣∣∣σ2
X,t+1 − σ2

X̃ ,T+t+1

∣∣∣ = ∣∣∣E{ht(Ut ; Y )2} − E{ht( Ũ t+T ; Y )2}
∣∣∣

� 2 L̄ 2
t (
∣∣ Δ̄ μ,t

∣∣2 + ∣∣ Δ̄ σ,t

∣∣2)
+ 2 L̄ t

√
(σ2

X,t+1 + σ2
X̃ ,T+t+1

)(
∣∣ Δ̄ μ,t

∣∣2 + ∣∣ Δ̄ σ,t

∣∣2).
(B.45)

Furthermore, as ht is Lipschitz, the formulas for σ2
X,t+1 and σX̃ ,T+t+1 (in (3.8) and (B.3))

along with the induction hypothesis (B.43) imply that

σ2
X,t+1 + σ2

X̃ ,T+t+1
� ct, (B.46)
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for some constant ct. By using (B.46) and (B.39), we can upper bound the rhs of (B.45)
with κt+1ε, for sufficiently large T. This completes the proof of the second limit in (B.37).

Proof of (B.15) and (B.16). Since ψ ∈ PL(2), for i ∈ [d] we have

∣∣ψ(xi, x̃
T+t+1
i )− ψ(xi, x̂

t+1
i )

∣∣ � C
(
1 + |xi|+ | x̃ T+t+1

i |+ | x̂ t+1
i |

)∣∣ x̃ T+t+1
i − x̂ t+1

i

∣∣,
(B.47)

for a universal constant C > 0. Therefore,

∣∣∣∣∣1d
d∑

i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣
� C

d

d∑
i=1

(
1 + |xi|+ | x̃ T+t+1

i |+ | x̂ t+1
i |

)∣∣ x̃ T+t+1
i − x̂ t+1

i

∣∣

� 4C

[
1 +

1

d

d∑
i=1

(
|xi|2 + | x̃ T+t+1

i |2 + | x̂ t+1
i |2

)]1/2 ∥∥ x̃ T+t+1 − x̂ t+1
∥∥
2√

d
,

(B.48)

where the second inequality follows from Cauchy–Schwarz. By the same argument,∣∣∣∣∣1n
n∑

i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣
� 4C

[
1 +

1

n

n∑
i=1

(
|yi|2 + | ũ T+t

i |2 + | û t
i|2

)] 1
2
∥∥ ũ T+t − û t

∥∥
2√

n
. (B.49)

We will show via induction that as d→∞: (i) the terms inside the square brackets
in (B.48) and (B.49) converge almost surely to finite deterministic values, and (ii) as

T→∞ (with the limit in T taken after the limit in d), the terms
‖ x̃ T+t− x̂ t‖

2√
d

and

‖ ũ T+t+1− û t+1‖
2√

d
converge to 0 almost surely.

Base case t = 0: the result (B.16) for t+ 1 = 0 directly follows from lemma B.3. Next,
using (B.49), the lhs of (B.15) for t = 0 can be bounded as

∣∣∣∣∣1n
n∑

i=1

ψ(yi, ũ
T
i )−

1

n

n∑
i=1

ψ(yi, û
0
i )

∣∣∣∣∣ � 4C

[
1 +

‖y‖22
n

+

∥∥ ũ T
∥∥2

2

n
+

‖ û 0‖22
n

] 1
2
∥∥ ũ T − û 0

∥∥
2√

n
.

(B.50)
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From the definition of the artificial GAMP (5.1)–(5.6), we have

ũ T =
1√
δ
Af0( x̃

T )−
√
δ b̃ T Z ũ T−1, (B.51)

where we define

Z = Zs(λ
∗
δI− Zs)

−1, (B.52)

with Zs = diag(Ts(y1), . . . , Ts(yn)). Similarly, defining

e1 := ũ T−1 − ũ T−2, (B.53)

we obtain ũ T−1 = 1√
δβT−1

[
Ax̃ T−1 − Z ũ T−1 + Ze1

]
, or

ũ T−1 =
1√

δβT−1

(
I+

1√
δβT−1

Z

)−1[
Ax̃ T−1 + Ze1

]
. (B.54)

Substituting (B.54) in (B.51), we obtain

ũ T =
1√
δ
Af0( x̃

T )− b̃ T

βT−1
Z

(
I+

1√
δβT−1

Z

)−1

Ax̃ T−1

− b̃ T

βT−1
Z2

(
I+

1√
δβT−1

Z

)−1

e1. (B.55)

Using (B.55) and the expression for û 0 from (5.12), we have

1

d

∥∥ ũ T − û 0
∥∥2

2
� 3

∥∥Af0( x̃
T )−Af0( x̂

0)
∥∥2

2

δ d
+ 3

∥∥∥∥∥ b̃ T

βT−1
Z2

(
I+

1√
δβT−1

Z

)−1
e1√
d

∥∥∥∥∥
2

2

+
3

d

∥∥∥∥∥ b̄ 0

√
δ

λ∗
δ

ZsAx̂ 0 − b̃ T

βT−1
Z

(
I+

1√
δβT−1

Z

)−1

Ax̃ T−1

∥∥∥∥∥
2

2

:= 3(S1 + S2 + S3). (B.56)

We now bound each of the three terms. By Cauchy–Schwarz inequality,

S1 � ‖A‖2op

∥∥f0( x̃ T )− f0( x̂
0)
∥∥2

2

δ d
� ‖A‖2op

L2
0

δ
·
∥∥ x̃ T − x̂ 0

∥∥2

2

d
, (B.57)

where L0 is the Lipschitz constant of f0. Since the entries of A are i.i.d. N(0, 1/d), almost
surely the operator norm of A is bounded by a universal constant for sufficiently large
d [AGZ09]. From lemma B.3 and the definition of x̂ 0 in (5.11), we also have

lim
T→∞

lim
d→∞

∥∥ x̃ T − x̂ 0
∥∥2

2

d
=

1

δ
·

∥∥∥√δ x̃ T −
√
d x̂ s

∥∥∥2

2

d
= 0 a.s.. (B.58)

Therefore,
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lim
T→∞

lim
d→∞

S1 = 0 a.s. . (B.59)

Next, recalling the definition of e1 from (B.53) we bound S2 as follows:

S2 � b̃ 2
T

β2
T−1

∥∥∥∥Z2
(
I+ Z/(

√
δβT−1)

)−1
∥∥∥∥
2

op

·
∥∥ ũ T−1 − ũ T−2

∥∥2

2

d
. (B.60)

From lemma B.4, we know that limT→∞ limd→∞
‖ ũ T−1− ũ T−2‖2

2

d
= 0 almost surely. We now

show that the other terms on the rhs of (B.60) are bounded almost surely. Recall from

(5.7) that b̃ T = 1
n

∑d
i=1f

′
0( x̃

T
i ). Proposition B.1 guarantees that the empirical distribu-

tion of x̃ t converges to the law of X̃ t ≡ μX̃ ,tX + σX̃ ,tW . Since f0 is Lipschitz, lemma
C.1 in appendix C therefore implies that almost surely:

lim
d→∞

b̃ T =
1

δ
E{f′0(μX̃ ,TX + σX̃ ,TW )}. (B.61)

From lemma B.2, we know that limT→∞ μX̃ ,T = a√
δ
and limT→∞ σ2

X̃ ,T
= 1−a2

δ
. Therefore,

letting T→∞ and applying lemma C.1 again, we obtain

lim
T→∞

lim
d→∞

b̃ T =
1

δ
E

{
f′0

(
a√
δ
X +

√
1− a2√

δ
W

)}
a.s. (B.62)

From lemma B.2, we have βT−1 → 1/
√
δ as T→∞. Also recall from assumption (A2)

on page 4 that τ is the supremum of the support of Zs, and that λ∗
δ > τ . Therefore,

Z = Zs

λ∗δ−Zs
has bounded support, due to which

∥∥∥∥Z2
(
I+ Z/(

√
δβT−1)

)−1
∥∥∥∥
2

op

< C for a

universal constant C > 0. Hence,

lim
T→∞

lim
d→∞

S2 = 0 a.s.. (B.63)

To bound S3, we first write the term inside the norm on the second line of (B.56) as
√
δ

λ∗
δ

ZsAx̂ 0( b̄ 0 − b̃ T ) +
b̃ T

λ∗
δ

ZsA

(√
δ x̂ 0 − x̃ T−1

βT−1

)

+
b̃ T

βT−1

(
Zs

λ∗
δ

− Z

(
I+

1√
δβT−1

Z

)−1
)
Ax̃ T−1.

Then, using triangle inequality and Cauchy–Schwarz, we have
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S3 � 3δ

(λ∗
δ)

2

‖ZsAx̂ 0‖22
d

( b̄ 0 − b̃ T )
2 +

3 b̃ 2
T

(λ∗
δ)

2
‖ZsA‖2op

∥∥∥√δ x̂ 0 − x̃ T−1/βT−1

∥∥∥2

2

d

+
3 b̃ 2

T

β2
T−1

∥∥Ax̃ T−1
∥∥2

2

d

∥∥∥∥∥ 1

λ∗
δ

Zs − Z

(
I+

1√
δβT−1

Z

)−1
∥∥∥∥∥
2

op

:= 3(S3a + S3b + S3c). (B.64)

Using the expression for x̂ 0 from (5.11) and applying Cauchy–Schwarz, we can bound
S3a as:

S3a � 1

(λ∗
δ)

2
‖Zs‖2op‖A‖2op‖ x̂ s‖22( b̄ 0 − b̃ T )

2. (B.65)

We note that Zs is bounded, ‖ x̂ s‖2 = 1, and ‖A‖2op is bounded almost surely by a

universal constant for sufficiently large d. Moreover, recalling the definitions of b̄ 0 and
X0 = μX,0X+ σX,0WX,0 from (5.15) and (3.9), we see that b̄ 0 =

1
δ
E{f′0(X0)} is the limit

of b̃ T in (B.62). Therefore limT→∞ limd→∞ S3a = 0 almost surely.

Next, we bound S3b. Recalling that x̂ 0 =
√
d x̂ s/

√
δ, we have

∥∥∥√δ x̂ 0 − x̃ T−1/βT−1

∥∥∥2

2

d
=

∥∥∥√d x̂ s −
√
δ x̃ T +

√
δ x̃ T −

√
δ x̃ T−1 +

√
δ x̃ T−1 − x̃ T−1/βT−1

∥∥∥2

2

d

�
3
∥∥∥√d x̂ s −

√
δ x̃ T

∥∥∥2

2

d
+

3
∥∥∥√δ x̃ T −

√
δ x̃ T−1

∥∥∥2

2

d

+
3‖ x̃ T−1‖22

d
(
√
δ − 1/βT−1)

2. (B.66)

Lemmas B.3 and B.4 imply that the first two terms on the rhs of (B.66) tend to zero in
the iterated limit T→∞, d→∞. Furthermore, from lemma B.2, we have limT→∞ βT−1 =
1/

√
δ. From proposition B.1, we also have

lim
d→∞

∥∥ x̃ T−1
∥∥2

2

d
= μ2

X̃ ,T−1
+ σ2

X̃ ,T−1
= β2

T−1 a.s. (B.67)

Therefore, limT→∞ limd→∞ S3b = 0 almost surely.
To bound S3c, recalling from (B.52) that Z = Zs

λ∗δ−Zs
, we have

1

λ∗
δ

Zs − Z

(
I+

1√
δβT−1

Z

)−1

=
1

βT−1

Z2
s

(
λ∗
δI+ Zs

(
1√

δβT−1

− 1

))−1

×

(
1√
δ
− βT−1

)
λ∗
δ

. (B.68)
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Since limT→∞ βT−1 =
1√
δ
, almost surely

lim
T→∞

∥∥∥∥∥ 1

λ∗
δ

Zs − Z

(
I+

1√
δβT−1

Z

)−1
∥∥∥∥∥
2

op

= 0. (B.69)

Thus limT→∞ limd→∞ S3c = 0 almost surely. Using the results above in (B.64), we have
shown that

lim
T→∞

lim
d→∞

S3 = 0 a.s. (B.70)

Using (B.59), (B.63) and (B.70) in (B.56), and recalling that n/d→ δ, we obtain

lim
T→∞

lim
n→∞

∥∥ ũ T − û 0
∥∥
2√

n
= 0. (B.71)

To complete the proof for the base case, we show that the term inside the brackets
in (B.50) is finite almost surely as n→∞. First, by assumption (B2) on page 6, we
have limn→∞‖y‖22/n = E{Y 2} almost surely. Furthermore, by proposition B.1, we almost
surely have

lim
n→∞

‖ ũ T‖22/n = μ2
Ũ ,T

+ σ2
Ũ ,T

. (B.72)

Next, using the triangle inequality, we have

‖ ũ T‖2 −
∥∥ ũ T − û 0

∥∥
2
� ‖ û 0‖2 � ‖ ũ T‖2 +

∥∥ ũ T − û 0
∥∥
2
. (B.73)

Combining this with (B.71), we obtain

lim
T→∞

lim
n→∞

‖ û 0‖22
n

= lim
T→∞

μ2
Ũ ,T

+ σ2
Ũ ,T

= μ2
U ,0 + σ2

U ,0 a.s. (B.74)

Therefore, using (B.50), we have shown that

lim
T→∞

lim
n→∞

∣∣∣∣∣1n
n∑

i=1

ψ(yi, ũ
T
i )−

1

n

n∑
i=1

ψ(yi, û
0
i )

∣∣∣∣∣ = 0 a.s. (B.75)

Induction step: assume that (B.15) holds for some t, and that (B.16) holds with t+ 1
replaced by t. Also assume toward induction that almost surely

lim
T→∞

lim
d→∞

∥∥ x̃ T+t − x̂ t
∥∥2

2

d
= 0, lim

T→∞
lim
n→∞

∥∥ ũ T+t − û t
∥∥2

2

n
= 0. (B.76)

The limits in (B.76) hold for t = 0, as established in the proof of the base case
(see (B.66) and (B.71)).

From (B.48), we have the bound

https://doi.org/10.1088/1742-5468/ac9828 32

https://doi.org/10.1088/1742-5468/ac9828


J.S
tat.

M
ech.

(2022)
114003

Approximate message passing with spectral initialization for generalized linear models∗∣∣∣∣∣1d
d∑

i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣
� 4C

[
1 +

‖x‖22
d

+

∥∥ x̃ T+t+1
∥∥2

2

d
+

‖ x̂ t+1‖22
d

] 1
2
∥∥ x̃ T+t+1 − x̂ t+1

∥∥
2√

d
. (B.77)

Using (5.1), (5.6), (5.13) and the triangle inequality, we obtain:∥∥ x̃ T+t+1 − x̂ t+1
∥∥2

2

d
� 2

δd

∥∥ATht( ũ
T+t ;y)−ATht( û

t ;y)
∥∥2

2

+ 2

∥∥ c̃ T+tft( x̃
T+t)− c̄ tft( x̂

t)
∥∥2

2

d

� 2

δd

∥∥ATht( ũ
T+t ;y)−ATht( û

t ;y)
∥∥2

2

+ 4

∥∥ft( x̃ T+t)
∥∥2

2

d
( c̃ T+t − c̄ t)

2 + 4 c̄ 2
t

∥∥ft( x̃ T+t)− ft( x̂
t)
∥∥2

2

d

:= 2S1 + 4S2 + 4S3. (B.78)

The term S1 can be bounded as

S1 � ‖A‖2op

∥∥ht( ũ
T+t ; y)− ht( û

t ;y)
∥∥2

2

δd
� ‖A‖2op L̄ 2

t

∥∥ ũ T+t − û t
∥∥2

2

δd
, (B.79)

where L̄ t is the Lipschitz constant of the function ht. Since the operator norm of
A is bounded almost surely as d→∞, by the induction hypothesis (B.76) we have

limT→∞ limd→∞
‖ ũ T+t− û t‖2

δd
= 0 almost surely. Therefore,

lim
T→∞

lim
d→∞

S1 = 0 a.s. . (B.80)

To bound S2, we recall from (5.7) that c̃ T+t =
1
n

∑
ih

′
t( ũ

t
i
; yi). Proposition B.1

guarantees that the joint empirical distribution of ( ũ T+t, y) converges to the law of

( Ũ T+t, Y ) ≡ (μŨ ,T+tG+ σŨ ,T+tWU ,T+t, Y ). Since ht is Lipschitz, lemma C.1 in appendix
C implies that

lim
n→∞

c̃ T+t = E{h′
t(μŨ ,T+tG+ σŨ ,T+tWU ,T+t, Y )} a.s.. (B.81)

From (B.13), we know that limT→∞ μŨ ,T+t = μU ,t and limT→∞ σ2
Ũ ,T+t

= σ2
U ,t. Therefore

applying lemma C.1 in appendix C again, we obtain:

lim
T→∞

lim
n→∞

c̃ T+t = E{h′
t(μU ,tG+ σU ,tWU ,t, Y )} = c̄ t a.s. (B.82)

Next, using the result in proposition B.1 with the test function ψ(x, x̃ ) = (ft( x̃ ))
2, we

almost surely have
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lim
T→∞

lim
d→∞

∥∥ft( x̃ T+t)
∥∥2

2

d
= lim

T→∞
E{ft( X̃ T+t)

2} = E{ft(Xt)
2}, (B.83)

where the last equality follows from (B.13) since ft is Lipschitz. Combining the above
with (B.82), we obtain

lim
T→∞

lim
d→∞

S2 = 0 a.s. . (B.84)

For the third term S3 in (B.78), since ft is Lipschitz (with Lipschitz constant denoted by
Lt), we have the bound:

S3 � c̄ 2
t L

2
t

∥∥ x̃ T+t − xt
∥∥2

2

d
. (B.85)

Thus, by the induction hypothesis (B.76), we obtain

lim
T→∞

lim
d→∞

S3 = 0 a.s. . (B.86)

We have therefore shown that

lim
T→∞

lim
d→∞

∥∥ x̃ T+t+1 − x̂ t+1
∥∥2

d
= 0 a.s.. (B.87)

Next, we show that the terms inside the brackets on the rhs of (B.77) are finite
almost surely as d→∞. Using the pseudo-Lipschitz test function ψ(x, x̃ ) = x2 + x̃ 2,
proposition B.1 implies that almost surely

lim
d→∞

1

d

d∑
i=1

(
|xi|2 + | x̃ T+t+1

i |2
)
= E{X2}+ μ2

X̃ ,T+t+1
+ σ2

X̃ ,T+t+1
. (B.88)

Moreover, (B.14) implies that limT→∞ μ2
X̃ ,T+t+1

+ σ2
X̃ ,T+t+1

= μ2
X,t+1 + σ2

X,t+1. Using the

triangle inequality, we have

‖ x̃ T+t+1‖2 − ‖ x̃ T+t+1 − x̂ t+1‖2 � ‖ x̂ t+1‖2 � ‖ x̃ T+t+1‖2 +
∥∥ x̂ t+1 − x̃ T+t+1

∥∥
2
.

(B.89)

Hence, using (B.87) and proposition B.1, we almost surely have

lim
T→∞

lim
d→∞

‖ x̂ t+1‖22
d

= lim
T→∞

lim
d→∞

‖ x̃ T+t+1‖22
d

= lim
T→∞

(
μ2

X̃ ,T+t+1
+ σ2

X̃ ,T+t+1

)
= μ2

X,t+1 + σ2
X,t+1. (B.90)

We have thus shown via (B.77) that almost surely

lim
T→∞

lim
d→∞

∣∣∣∣∣1d
d∑

i=1

ψ(xi, x̃
T+t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ = 0. (B.91)
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To complete the proof via induction, we need to show that if (B.87) and (B.91) hold
with (t+ 1) replaced by t for some t > 0, then almost surely

lim
T→∞

lim
n→∞

∥∥ ũ T+t − û t
∥∥2

2

n
= 0, lim

T→∞
lim
n→∞

∣∣∣∣∣ 1n
n∑

i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣ = 0.

(B.92)

From (B.49), we have the bound

∣∣∣∣∣1n
n∑

i=1

ψ(yi, ũ
T+t
i )− 1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣
� 4C

[
1 +

‖y‖22
n

+
‖ ũ T+t‖22

n
+

‖ û t‖22
n

] 1
2
∥∥ ũ T+t − û t

∥∥
2√

n
. (B.93)

Using (5.2), (5.6), (5.14) and the triangle inequality, we obtain

∥∥ ũ T+t − û t
∥∥2

2

n
� 2

δn

∥∥Aft( x̃
T+t)−Aft( x̂

t)
∥∥2

2

+ 2

∥∥∥ b̃ T+tht−1( ũ
T+t−1 ;y)− b̄ tht−1( û

t−1 ; y)
∥∥∥2

2

n

� 2

δn

∥∥Aft( x̃
T+t)−Aft( x̂

t)
∥∥2

2
+ 4

‖ht−1( û
t−1 ;y)‖22
n

( b̃ T+t − b̄ t)
2

+ 4 b̄ 2
t

∥∥ht−1( ũ
T+t−1 ; y)− ht−1( û

t−1 ;y)
∥∥2

2

n

:= 2S1 + 4S2 + 4S3. (B.94)

Using arguments along the same lines as (B.80)–(B.86) (omitted for brevity), we can
show that almost surely

lim
T→∞

lim
n→∞

S1 = lim
T→∞

lim
n→∞

S2 = lim
T→∞

lim
n→∞

S3 = 0.

Hence limT→∞ limn→∞
‖ ũ T+t− û t‖

2√
n

= 0 almost surely. Furthermore, using a triangle

inequality argument as in (B.89), we obtain limT→∞ limn→∞
‖ ũ T+t‖22

n
= limT→∞ limn→∞

‖ û t‖22
n

almost surely. By proposition B.1 and (B.13), the latter limit equals μ2
U ,t + σ2

U ,t. Using
these limits in (B.93) yields the result (B.92), and completes the proof of the lemma. �
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B.4. Putting everything together: proof of theorem 1

We will first use lemma B.5 to show that the result of the theorem holds for the GAMP
iteration ( x̂ t, û t), i.e. under the assumptions of theorem 1, we almost surely have

lim
n→∞

1

n

n∑
i=1

ψ(yi, û
t
i) = E{ψ(Y , μU ,tG+ σU ,tWU ,t)}, t � 0, (B.95)

lim
d→∞

1

d

d∑
i=1

ψ(xi, x̂
t+1
i ) = E{ψ(X , μX,t+1X + σX,t+1 WX,t+1}, t+ 1 � 0.

(B.96)

Consider the lhs of (B.96). Using the triangle inequality, for any T > 0, we have∣∣∣∣∣1d
d∑

i=1

ψ(xi, x̂
t+1
i )− E{ψ(X , μX,t+1X + σX,t+1 WX,t+1}

∣∣∣∣∣
�

∣∣∣∣∣1d
d∑

i=1

ψ(xi, x̂
t+1
i )− 1

d

d∑
i=1

ψ(xi, x̃
T+t+1
i )

∣∣∣∣∣
+

∣∣∣∣∣1d
d∑

i=1

ψ(xi, x̃
T+t+1
i )− E{ψ(X ,μX̃ ,T+t+1X + σX̃ ,T+t+1WX̃ ,T+t+1)}

∣∣∣∣∣
+

∣∣E{ψ(X ,μX̃ ,T+t+1X + σX̃ ,T+t+1WX̃ ,T+t+1)}

− E{ψ(X ,μX,t+1X + σX,t+1WX,t+1)}|
:=T1 + T2 + T3. (B.97)

We first bound T3 using the pseudo-Lipschitz property of ψ, noting that WX̃ ,T+t and
WX,t are both ∼ N(0, 1):

T3 � E
{∣∣ψ(X ,μX̃ ,T+t+1X + σX̃ ,T+t+1W )− ψ(X ,μX,t+1X + σX,t+1W )

∣∣}, W ∼ N(0, 1)

� CE

{(
1 +

[
X2 + μ2

X̃ ,T+t+1
X2 + σ2

X̃ ,T+t+1
W 2

]1/2
+

[
X2 + μ2

X,t+1X
2 + σ2

X,t+1W
2
]1/2)

·
(
X2(μX̃ ,T+t+1 − μX,t+1)

2 +W 2(σX̃ ,T+t+1 − σX,t+1)
2
)1/2}

� 3C
(
3 + μ2

X̃ ,T+t+1
+ σ2

X̃ ,T+t+1
+ μ2

X,t+1 + σ2
X,t+1

)1/2

·
(
(μX̃ ,T+t+1 − μX,t+1)

2 + (σX̃ ,T+t+1 − σX,t+1)
2
)1/2

, (B.98)

where we have used Cauchy–Schwarz inequality in the last line. From
lemma B.5 (equation (B.14)), we know that limT→∞

∣∣μX̃ ,T+t+1 − μX,t+1

∣∣ = 0 and

limT→∞
∣∣σX̃ ,T+t+1 − σX,t+1

∣∣ = 0. Therefore, limT→∞T3 = 0. Next, from (B.16) we have
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that limT→∞ limd→∞T1 = 0 almost surely. Furthermore, by proposition B.1, for any
T > 0 we almost surely have limd→∞ T2 = 0. Letting T, d→∞ (with the limit in d
taken first) and noting that the lhs of (B.97) does not depend on T, we obtain that
(B.96) holds.

The proof of (B.95) uses a bound similar to (B.97) and arguments along the same
lines. It is omitted for brevity.

Next, we prove the main result by showing that under the assumptions of the
theorem, almost surely

lim
n→∞

∣∣∣∣∣1n
n∑

i=1

ψ(yi, u
t
i)−

1

n

n∑
i=1

ψ(yi, û
t
i)

∣∣∣∣∣ = 0, lim
n→∞

‖ut − û t‖22
n

= 0, t � 0 (B.99)

lim
d→∞

∣∣∣∣∣1d
d∑

i=1

ψ(xi, x
t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ = 0, lim
d→∞

‖xt+1 − x̂ t+1‖22
d

= 0, t+ 1 � 0.

(B.100)

Combining (B.99) and (B.100) with (B.95) and (B.96) yields the results in (3.11)
and (3.12).

The proof of (B.99) and (B.100) is via induction and uses arguments very similar
to those to prove (B.15) and (B.16). To avoid repetition we only provide a few steps.
Noting that x0 = x̂ 0, we now show (B.100), under the induction hypothesis that (B.99)
holds and also that (B.100) holds with t+ 1 replaced by t.

Since ψ ∈ PL(2), we have∣∣∣∣∣1d
d∑

i=1

ψ(xi, x
t+1
i )− 1

d

d∑
i=1

ψ(xi, x̂
t+1
i )

∣∣∣∣∣ � 4C

[
1 +

‖x‖22
d

+
‖xt+1‖22

d
+

‖ x̂ t+1‖22
d

] 1
2

× ‖xt+1 − x̂ t+1‖2√
d

. (B.101)

Furthermore, using the definitions of x t+1 and x̂ t+1, and the triangle inequality we have

‖xt+1 − x̂ t+1‖22
d

� 2

δd

∥∥ATht(u
t ; y)−ATht( û

t ;y)
∥∥2

2
+ 4

‖ft(xt)‖22
d

(ct − c̄ t)
2

+ 4 c̄ 2
t

‖ft(xt)− ft( x̂
t)‖22

d

� 2 L̄ 2
t

δ
‖A‖2op

‖ut − û t‖22
d

+ 4
‖ft(xt)‖22

d
(ct − c̄ t)

2

+ 4 c̄ 2
tL

2
t

‖xt − x̂ t‖22
d

, (B.102)
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where Lt, L̄ t are the Lipschitz constants of ft, ht, respectively. By the induction hypoth-

esis and lemma C.1, the terms
‖ut− û t‖2

2
d

, ‖xt− x̂ t‖22
d

, and (ct − c̄ t)
2 tend to zero. Further-

more, by the induction hypothesis, we almost surely have
‖ft(xt)‖2

2
d

→ E{ft(Xt)
2}, and by

(B.96), ‖ x̂ t+1‖22
d

→ (μ2
X,t+1 + σ2

X,t+1) as d→∞. Finally, by a triangle inequality argument
analogous to (B.89), we also have

lim
d→∞

‖xt+1‖22
d

= lim
d→∞

‖ x̂ t+1‖22
d

= (μ2
X,t+1 + σ2

X,t+1) a.s..

Using these limits in (B.101) proves (B.100). The proof of (B.99) (under the induction
hypothesis that (B.100) holds with (t+ 1) replaced by t) is along the same lines: we

use a bound similar to (B.101) and a decomposition of
‖ut− û t‖2

2

n
similar to (B.102). This

completes the proof of the theorem. �

Appendix C. An auxiliary lemma

The following result is proved in [BM11, lemma 6].

Lemma C.1. Let F :R2 → R be a Lipschitz function, and let F′(u, v) denote its deriva-
tive with respect to the first argument at (u, v) ∈ R

2. Assume that F′(·, v) is continuous
almost everywhere in the first argument, for each v ∈ R. Let (Um,Vm) be a sequence of
random vectors in R2 converging in distribution to the random vector (U,V) as m→∞.
Furthermore, assume that the distribution of U is absolutely continuous with respect to
the Lebesgue measure. Then,

lim
m→∞

E{F ′(Um,Vm)} = E{F ′(U ,V )}.

Appendix D. Complex-valued GAMP

Consider a complex sensing matrix A with rows distributed as (ai) ∼i.i.d. CN(0, Id/d)),
for i ∈ [n]. The output of the GLM y ∈ Cn is generated as pY|G(y |g), where g = Ax .
The GAMP algorithm for the complex setting has been studied in the context of phase
retrieval by [SR14, MXM19]. Here, we briefly review the complex GAMP and present
some numerical results for complex GAMP with spectral initialization.

As in section 4, we take ft to be the identity function, and ht =
√
δh∗

t , where h∗
t is

given in (3.18). To obtain a compact state evolution recursion, we initialize with a scaled
version of the spectral estimator x̂ s:

x0 =
√
d

a

1− a2
x̂ s, u0 =

1√
δ
Ax0 − 1√

δλ∗
δ

ZsAx0. (D.1)
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The iterates are then computed as:

xt+1 = AHh∗
t (u

t ;y)− ctft(x
t), (D.2)

ut+1 =
1√
δ
Axt+1 − 1√

δ
h∗
t (u

t ; y). (D.3)

Here, the Onsager coefficient ct is given by [SR14]:

ct =

√
δ

Var (G|Ut = u)

(
Var {G|Ut = u, Y = y}

Var (G|Ut = u)
− 1

)
. (D.4)

For this choice of ft, ht, the state evolution iteration can be written in terms of a single
parameter μt ≡ μX,t. For t � 0:

μU ,t =
1√
δ
μt, σ2

U ,t =
μt

δ
, σ2

X,t = μX,t = μt,

μt+1 =
√
δE

{
|h∗

t (Ut ; Y )|2
}
.

(D.5)

The recursion is initialized with μ0 =
a2

1−a2
. Moreover, the parameter μt+1 can be con-

sistently estimated from the iterate u t as μ̂ t+1 =
√
δ‖h∗(ut ;y)‖22/n. It can also be

estimated as the positive solution of the quadratic equation μ̂ 2
t+1 + μ̂ t+1 = ‖xt+1‖22/d.

We now discuss some numerical results for noiseless (complex) phase retrieval, where

yi = |(Ax)i|2, for i ∈ [n]. For a given measurement matrix A, note that replacing x by
eiθx leaves the measurement y unchanged. Therefore the performance of any estimator
is measured up to a constant phase rotation:

min
θ∈[0,2π)

∣∣〈 x̂ , eiθx〉∣∣2
‖x‖22 ‖ x̂ ‖22

. (D.6)

Figure 4 shows the performance of GAMP with spectral initialization when the signal x
is uniform on the d-dimensional complex sphere with radius

√
d, and the sensing vectors

(ai) ∼i.i.d. CN(0, Id/d).
Figure 5 shows the performance with coded diffraction pattern sensing vectors, given

by (4.2). The signal x is the image in figure 3(a), which is a d1 × d2 × 3 array with
d1 = 820 and d2 = 1280. The three components xj ∈ Rd (j ∈ {1, 2, 3} and d = d1 · d2) are
treated separately, and the performance is measured via the average squared normalized

scalar product 1
3

∑3
j=1

|〈 x̂ j ,xj〉|2
‖ x̂ j‖22‖xj‖

2
2

.

The red points in figure 5 are obtained by running the complex GAMP algorithm
with spectral initialization, as given in (D.1)–(D.4). We perform nsample = 5 independent
trials and show error bars at one standard deviation. For comparison, the black points
correspond to the empirical performance of the spectral method alone, and the black
curve gives the theoretical prediction for the optimal squared correlation for Gaussian
sensing vectors (see theorem 1 of [LAL19]).
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