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Abstract. Safety and liveness are elementary concepts of computation,
and the foundation of many verification paradigms. The safety-liveness
classification of boolean properties characterizes whether a given prop-
erty can be falsified by observing a finite prefix of an infinite computation
trace (always for safety, never for liveness). In quantitative specification
and verification, properties assign not truth values, but quantitative val-
ues to infinite traces (e.g., a cost, or the distance to a boolean property).
We introduce quantitative safety and liveness, and we prove that our def-
initions induce conservative quantitative generalizations of both (1) the
safety-progress hierarchy of boolean properties and (2) the safety-liveness
decomposition of boolean properties. In particular, we show that every
quantitative property can be written as the pointwise minimum of a
quantitative safety property and a quantitative liveness property. Con-
sequently, like boolean properties, also quantitative properties can be
min-decomposed into safety and liveness parts, or alternatively, max-
decomposed into co-safety and co-liveness parts. Moreover, quantitative
properties can be approximated naturally. We prove that every quan-
titative property that has both safe and co-safe approximations can be
monitored arbitrarily precisely by a monitor that uses only a finite num-
ber of states.

1 Introduction

Safety and liveness are elementary concepts in the semantics of computation [39].
They can be explained through the thought experiment of a ghost monitor—an
imaginary device that watches an infinite computation trace at runtime, one
observation at a time, and always maintains the set of possible prediction values
to reflect the satisfaction of a given property. Let @ be a boolean property,
meaning that @ divides all infinite traces into those that satisfy @, and those that
violate @. After any finite number of observations, True is a possible prediction
value for @ if the observations seen so far are consistent with an infinite trace
that satisfies @, and False is a possible prediction value for @ if the observations
seen so far are consistent with an infinite trace that violates ¢. When True is no
possible prediction value, the ghost monitor can reject the hypothesis that @ is
satisfied. The property & is safe if and only if the ghost monitor can always reject
the hypothesis @ after a finite number of observations: if the infinite trace that is
being monitored violates @, then after some finite number of observations, True is
no possible prediction value for @. Orthogonally, the property @ is live if and only
if the ghost monitor can never reject the hypothesis @ after a finite number of
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observations: for all infinite traces, after every finite number of observations, True
remains a possible prediction value for .

The safety-liveness classification of properties is fundamental in verification.
In the natural topology on infinite traces—the “Cantor topology”—the safety
properties are the closed sets, and the liveness properties are the dense sets [4].
For every property @, the location of @ within the Borel hierarchy that is in-
duced by the Cantor topology—the so-called “safety-progress hierarchy” [17]—
indicates the level of difficulty encountered when verifying @. On the first level,
we find the safety and co-safety properties, the latter being the complements of
safety properties, i.e., the properties whose falsehood (rather than truth) can
always be rejected after a finite number of observations by the ghost monitor.
More sophisticated verification techniques are needed for second-level properties,
which are the countable boolean combinations of first-level properties—the so-
called “response” and “persistence” properties [17]. Moreover, the orthogonality
of safety and liveness leads to the following celebrated fact: every property can be
written as the intersection of a safety property and a liveness property [4]. This
means that every property @ can be decomposed into two parts: a safety part—
which is amenable to simple verification techniques, such as invariants—and a
liveness part—which requires heavier verification paradigms, such as ranking
functions. Dually, there is always a disjunctive decomposition of @ into co-safety
and co-liveness.

So far, we have retold the well-known story of safety and liveness for boolean
properties. A boolean property @ is formalized mathematically as the set of infi-
nite computation traces that satisfy @, or equivalently, the characteristic function
that maps each infinite trace to a truth value. Quantitative generalizations of
the boolean setting allow us to capture not only correctness properties, but also
performance properties [31]. In this paper we reveal the story of safety and live-
ness for such quantitative properties, which are functions from infinite traces to
an arbitrary set D of values. In order to compare values, we equip the value
domain D with a partial order <, and we require (D, <) to be a complete lattice.
The membership problem [18] for an infinite trace f and a quantitative property
& asks whether @(f) > v for a given threshold value v € D. Correspondingly,
in our thought experiment, the ghost monitor attempts to reject hypotheses of
the form @(f) > v, which cannot be rejected as long as all observations seen
so far are consistent with an infinite trace f with @(f) > v. We will define ¢
to be a quantitative safety property if and only if every hypothesis of the form
&(f) > v can always be rejected by the ghost monitor after a finite number of
observations, and we will define @ to be a quantitative liveness property if and
only if some hypothesis of the form @(f) > v can never be rejected by the ghost
monitor after any finite number of observations. We note that in the quantita-
tive case, after every finite number of observations, the set of possible prediction
values for @ maintained by the ghost monitor may be finite or infinite, and in
the latter case, it may not contain a minimal or maximal element.

Let us give a few examples. Suppose we have four observations: observation
rq for “request a resource,” observation gr for “grant the resource,” observa-
tion tk for “clock tick,” and observation oo for “other.” The boolean property
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Resp requires that every occurrence of rq in an infinite trace is followed even-
tually by an occurrence of gr. The boolean property NoDoubleReq requires that
no occurrence of rq is followed by another rq without some gr in between. The
quantitative property MinRespTime maps every infinite trace to the largest num-
ber k such that there are at least k occurrences of tk between each rq and the
closest subsequent gr. The quantitative property MaxRespTime maps every in-
finite trace to the smallest number k£ such that there are at most k occurrences
of tk between each rq and the closest subsequent gr. The quantitative property
AvgRespTime maps every infinite trace to the lower limit value lim inf of the in-
finite sequence (v;);>1, where v; is, for the first ¢ occurrences of tk, the average
number of occurrences of tk between rq and the closest subsequent gr. Note that
the values of AvgRespTime can be co for some computations, including those for
which the value of Resp is True. This highlights that boolean properties are not
embedded in the limit behavior of quantitative properties.

The boolean property Resp is live because every finite observation sequence
can be extended with an occurrence of gr. In fact, Resp is a second-level liveness
property (namely, a response property), because it can be written as a countable
intersection of co-safety properties. The boolean property NoDoubleReq is safe
because if it is violated, it will be rejected by the ghost monitor after a finite
number of observations, namely, as soon as the ghost monitor sees a rq followed
by another occurrence of rq without an intervening gr. According to our quan-
titative generalization of safety, MinRespTime is a safety property. The ghost
monitor always maintains the minimal number k& of occurrences of tk between
any past rq and the closest subsequent gr seen so far; the set of possible predic-
tion values for MinRespTime is always {0, 1, ..., k}. Every hypothesis of the form
“the MinRespTime-value is at least v” is rejected by the ghost monitor as soon
as k < v; if such a hypothesis is violated, this will happen after some finite num-
ber of observations. Symmetrically, the quantitative property MaxRespTime is
co-safe, because every wrong hypothesis of the form “the MaxRespTime-value is
at most v” will be rejected by the ghost monitor as soon as the smallest possible
prediction value for MaxRespTime, which is the maximal number of occurrences
of tk between any past rq and the closest subsequent gr seen so far, goes above v.
By contrast, the quantitative property AvgRespTime is both live and co-live be-
cause no hypothesis of the form “the AvgRespTime-value is at least v,” nor of the
form “the AvgRespTime-value is at most v,” can ever be rejected by the ghost
monitor after a finite number of observations. All nonnegative real numbers and
oo always remain possible prediction values for AvgRespTime. Note that a ghost
monitor that attempts to reject hypotheses of the form @(f) > v does not need
to maintain the entire set of possible prediction values, but only the sup of the set
of possible prediction values, and whether or not the sup is contained in the set.
Dually, updating inf (and whether it is contained) suffices to reject hypotheses
of the form &(f) < w.

By defining quantitative safety and liveness via ghost monitors, we not only
obtain a conservative and quantitative generalization of the boolean story, but
also open up attractive frontiers for quantitative semantics, monitoring, and ver-
ification. For example, while the approximation of boolean properties reduces to
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adding and removing traces to and from a set, the approximation of quantitative
properties offers a rich landscape of possibilities. In fact, we can approximate
the notion of safety itself. Given an error bound «, the quantitative property &
is a-safe if and only if for every value v and every infinite trace f whose value
&(f) is less than v, all possible prediction values for @ are less than v + « after
some finite prefix of f. This means that, for an a-safe property @, the ghost
monitor may not reject wrong hypotheses of the form &(f) > v after a finite
number of observations, once the violation is below the error bound. We show
that every quantitative property that is both a-safe and (§-co-safe, for any fi-
nite a and [, can be monitored arbitrarily precisely by a monitor that uses only
a finite number of states.

We are not the first to define quantitative (or multi-valued) definitions of
safety and liveness [41,27]. While the previously proposed quantitative gener-
alizations of safety share strong similarities with our definition (without coin-
ciding completely), our quantitative generalization of liveness is entirely new.
The definitions of [27] do not support any safety-liveness decomposition, be-
cause their notion of safety is too permissive, and their liveness too restrictive.
While the definitions of [41] admit a safety-liveness decomposition, our definition
of liveness captures strictly fewer properties. Consequently, our definitions offer
a stronger safety-liveness decomposition theorem. Our definitions also fit natu-
rally with the definitions of emptiness, equivalence, and inclusion for quantitative
languages [18].

Overview. In Section 2, we introduce quantitative properties. In Section 3, we
define quantitative safety as well as safety closure, namely, the property that
increases the value of each trace as little as possible to achieve safety. Then, we
prove that our definitions preserve classical boolean facts. In particular, we show
that a quantitative property @ is safe if and only if @ equals its safety closure
if and only if @ is upper semicontinuous. In Section 4, we generalize the safety-
progress hierarchy to quantitative properties. We first define limit properties. For
¢ € {inf, sup, lim inf, lim sup}, the class of ¢-properties captures those for which
the value of each infinite trace can be derived by applying the limit function ¢ to
the infinite sequence of values of finite prefixes. We prove that inf-properties co-
incide with safety, sup-properties with co-safety, lim inf-properties are suprema
of countably many safety properties, and lim sup-properties infima of countably
many co-safety properties. The lim inf-properties generalize the boolean persis-
tence properties of [17]; the lim sup-properties generalize their response prop-
erties. For example, AvgRespTime is a lim inf-property. In Section 5, we intro-
duce quantitative liveness and co-liveness. We prove that our definitions preserve
the classical boolean facts, and show that there is a unique property which is
both safe and live. As main result, we provide a safety-liveness decomposition
that holds for every quantitative property. In Section 6, we define approximate
safety and co-safety. We generalize the well-known unfolding approximation of
discounted properties for approximate safety and co-safety properties over the
extended reals. This allows us to provide a finite-state approximate monitor for
these properties. In Section 7, we conclude with future research directions. For
complete proofs of all results, we refer the reader to the full version of the paper.
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Related Work. The notions of safety and liveness for boolean properties ap-
peared first in [39] and were later formalized in [4], where safety properties were
characterized as closed sets of the Cantor topology on infinite traces, and liveness
properties as dense sets. As a consequence, the seminal decomposition theorem
followed: every boolean property is an intersection of a safety property and a
liveness property. A benefit of such a decomposition lies in the difference between
the mathematical arguments used in their verification. While safety properties
enable simpler methods such as invariants, liveness properties require more com-
plex approaches such as well-foundedness [42,5]. These classes were characterized
in terms of Biichi automata in [5] and in terms of linear temporal logic in [46].

The safety-progress classification of boolean properties [17] proposes an or-
thogonal view: rather than partitioning the set of properties, it provides a hi-
erarchy of properties starting from safety. This yields a more fine-grained view
of nonsafety properties which distinguishes whether a “good thing” happens at
least once (co-safety or “guarantee”), infinitely many times (response), or even-
tually always (persistence). This classification follows the Borel hierarchy that
is induced by the Cantor topology on infinite traces, and has corresponding pro-
jections within properties that are definable by finite automata and by formulas
of linear temporal logic.

Runtime verification, or monitoring, is a lightweight, dynamic verification
technique [6], where a monitor watches a system during its execution and tries
to decide, after each finite sequence of observations, whether the observed finite
computation trace or its unknown infinite extension satisfies a desired property.
The safety-liveness dichotomy has profound implications for runtime verification
as well: safety is easy to monitor [28], while liveness is not. An early definition of
boolean monitorability was equivalent to safety with recursively enumerable sets
of bad prefixes [35]. The monitoring of infinite-state boolean safety properties
was later studied in [26]. A more popular definition of boolean monitorabil-
ity [44,8] accounts for both truth and falsehood, establishing the set of moni-
torable properties as a strict superset of finite boolean combinations of safety and
co-safety [23]. Boolean monitors that use the set possible prediction values can
be found in [7]. The notion of boolean monitorability was investigated through
the safety-liveness lens in [43] and through the safety-progress lens in [23].

Quantitative properties (a.k.a. “quantitative languages”) [18] extend their
boolean counterparts by moving from the two-valued truth domain to richer
domains such as real numbers. Such properties have been extensively studied
from a static verification perspective in the past decade, e.g., in the context
of model-checking probabilistic properties [38,37], games with quantitative ob-
jectives [10,15], specifying quantitative properties [11,1], measuring distances
between systems [2,16,22,29], best-effort synthesis and repair [9,20], and quan-
titative analysis of transition systems [47,14,21,19]. More recently, quantitative
properties have been also studied from a runtime verification perspective, e.g., for
limit monitoring of statistical indicators of infinite traces [25] and for analyzing
resource-precision trade-offs in the design of quantitative monitors [33,30].

To the best of our knowledge, previous definitions of (approximate) safety
and liveness in nonboolean domains make implicit assumptions about the spec-
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ification language [48,34,24,45]. We identify two notable exceptions. In [27], the
authors generalize the framework of [43] to nonboolean value domains. They
provide neither a safety-liveness decomposition of quantitative properties, nor a
fine-grained classification of nonsafety properties. In [41], the authors present a
safety-liveness decomposition and some levels of the safety-progress hierarchy on
multi-valued truth domains, which are bounded distributive lattices. Their mo-
tivation is to provide algorithms for model-checking properties on multi-valued
truth domains. We present the relationships between their definitions and ours
in the relevant sections below.

2 Quantitative Properties

Let X = {a,b,...} be a finite alphabet of observations. A trace is an infinite
sequence of observations, denoted by f,g,h € X* and a finite trace is a finite
sequence of observations, denoted by s,r,t € 2*. Given s € X* and w € X*UX¥,
we denote by s < w (resp. s < w) that s is a strict (resp. nonstrict) prefix of w.
Furthermore, we denote by |w| the length of w and, given a € X, by |w|, the
number of occurrences of a in w.

A wvalue domain D is a poset. Unless otherwise stated, we assume that D is
a nontrivial (i.e., L # T) complete lattice and, whenever appropriate, we write
0,1, —00,00 instead of L and T for the least and the greatest elements. We
respectively use the terms minimum and maximum for the greatest lower bound
and the least upper bound of finitely many elements.

Definition 1 (Property). A quantitative property (or simply property) is a
function @ : X — D from the set of all traces to a value domain.

A boolean property P C X% is defined as a set of traces. We use the boolean
domain B = {0,1} with 0 < 1 and, in place of P, its characteristic property
&p : X — B, which is defined by &p(f) =1if f € P, and &p(f) =01if f ¢ P.

For all properties @1,P2 on a domain D and all traces f € X« we let
min(®1, P2)(f) = min(@1(f), P2(f)) and max(P1, P2)(f) = max(P1(f), P2(f))-
For a domain D, the inverse of D is the domain D that contains the same el-
ements as D but with the ordering reversed. For a property @, we define its
complement @ : X — D by &(f) = &(f) for all f € Xv.

Some properties can be defined as limits of value sequences. A finitary prop-
erty m: X* — D associates a value with each finite trace. A wvalue function
£: D¥ — D condenses an infinite sequence of values to a single value. Given a
finitary property w, a value function ¢, and a trace f € X%, we write £,y (s)
instead of ¢(m(sg)m(s1)...), where each s; fulfills s; < f and |s;| = .

3 Quantitative Safety

Given a property @ : X¥ — D, a trace f € X¥, and a value v € D, the quanti-
tative membership problem [18] asks whether @(f) > v. We define quantitative
safety as follows: the property @ is safe iff every wrong hypothesis of the form
&(f) > v has a finite witness s < f.
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Definition 2 (Safety). A property @ : X« — D is safe iff for every f € X and
value v € D with @(f) 7 v, there is a prefiz s < f such that sup ¢ 5o P(sg) 7 v.

Let us illustrate this definition with the minimal response-time property.

Ezample 3. Let X = {rq, gr, tk,00} and D = NU {co}. We define the minimal
response-time property @i, through an auxiliary finitary property mmi, that
computes the minimum response time so far. In a finite or infinite trace, an
occurrence of rq is granted if it is followed, later, by a gr, and otherwise it is
pending. Let mas(s) = oo if the finite trace s contains a pending rq, or no
rq, and Tpast(s) = |7]wx — |t]sx otherwise, where r < s is the longest prefix of
s with a pending rq, and ¢t < r is the longest prefix of r without pending rq.
Intuitively, m,st provides the response time for the last request when all requests
are granted, and co when there is a pending request or no request. Given s € X*,
taking the minimum of the values of 7,5 over the prefixes r < s gives us the
minimum response time so far. Let mmin(s) = min, <5 mase(r) for all s € X*, and
Pmin(f) = limg<f Tmin(s) for all f € X*. The limit always exists because the
minimum is monotonically decreasing.

The minimal response-time property is safe. Let f € X* and v € D such
that @pin(f) < v. Then, some prefix s < f contains a rq that is granted after
u < v ticks, in which case, no matter what happens in the future, the minimal
response time is guaranteed to be at most u; that is, sup ¢ s DPrnin(sg) <u < w.
If you recall from the introduction the ghost monitor that maintains the sup
of possible prediction values for the minimal response-time property, that value
is always mmin; that is, sup,e sw Drin(89) = Tmin(s) for all s € X*. Note that
in the case of minimal response time, the sup of possible prediction values is
always realizable; that is, for all s € X*, there exists an f € X“ such that

SUP,e s Pmin(59) = Pmin(sf).- O

Remark 4. Quantitative safety generalizes boolean safety. For every boolean
property P C X% the following statements are equivalent: (i) P is safe ac-
cording to the classical definition [4], (ii) its characteristic property ®@p is safe,
and (iii) for every f € X* and v € B with @p(f) < v, there exists a prefix s < f
such that for all g € X* we have ®p(sg) < v.

We now generalize the notion of safety closure and present an operation that
makes a property safe by increasing the value of each trace as little as possible.

Definition 5 (Safety closure). The safety closure of a property ® is the prop-
erty ®* defined by &*(f) = infs<y sup e 5w P(sg) for all f € X,

We can say the following about the safety closure operation.

Proposition 6. For every property @ : X% — D, the following statements hold.

1. &* is safe.

2. &*(f) > D(f) for all f € X%,

3. D*(f) = D**(f) for all f € Xv.

4. For every safety property W : X — D, if &(f) < W(f) for all f € X%, then
U(g) £ D*(g) for allg € X¥.
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3.1 Alternative Characterizations of Quantitative Safety

Consider a trace and its prefixes of increasing length. For a given property,
the ghost monitor from the introduction maintains, for each prefix, the sup of
possible prediction values, i.e., the least upper bound of the property values
for all possible infinite continuations. The resulting sequence of monotonically
decreasing suprema provides an upper bound on the eventual property value.
Moreover, for some properties, this sequence always converges to the property
value. If this is the case, then the ghost monitor can always dismiss wrong
lower-bound hypotheses after finite prefixes, and vice versa. This gives us an
alternative definition for the safety of quantitative properties which, inspired by
the notion of Scott continuity, was called continuity [33]. We now believe that
upper semicontinuity is a more appropriate term, as becomes clear when we
consider the Cantor topology on X* and the value domain R U {—o0, +00}.

Definition 7 (Upper semicontinuity [33]). 4 property @ is upper semicon-
tinuous iff @(f) = lims<ysup,c s D(sg) for all f € Xv.

We note that the minimal response-time property is upper semicontinuous.

FEzample 8. Recall the minimal response-time property @i, from Example 3.
For every trace f € X, the @, value is the limit of the 7, values for the
prefixes of f. Therefore, @, is upper semicontinuous. ]

In general, a property is safe iff it maps every trace to the limit of the suprema
of possible prediction values. Moreover, we can also characterize safety properties
as the properties that are equal to their safety closure.

Theorem 9. For every property @, the following statements are equivalent:
1. @ is safe. 2. D is upper semicontinuous. 3. D(f) = *(f) for all f € X¥.

3.2 Related Definitions of Quantitative Safety

In [41], the authors consider the model-checking problem for properties on multi-
valued truth domains. They introduce the notion of multi-safety through a clo-
sure operation that coincides with our safety closure. Formally, a property @ is
multi-safe ift (f) = d*(f) for every f € X¢. It is easy to see the following.

Proposition 10. For every property @, we have @ is multi-safe iff @ is safe.

Although the two definitions of safety are equivalent, our definition is con-
sistent with the membership problem for quantitative automata and motivated
by the monitoring of quantitative properties.

In [27], the authors extend a refinement of the safety-liveness classification for
monitoring [43] to richer domains. They introduce the notion of verdict-safety
through dismissibility of values not less than or equal to the property value.
Formally, a property @ is verdict-safe iff for every f € X* and v £ &(f), there
exists a prefix s < f such that for all g € X%, we have ®(sg) # v.

We demonstrate that verdict-safety is weaker than safety. Moreover, we pro-
vide a condition under which the two definitions coincide. To achieve this, we
reason about sets of possible prediction values: for a property @ and s € 1™ let
Pyy = {(sf) | f € Z°}.
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Lemma 11. A property & is verdict-safe iff &(f) = sup(lims<s Py ) for all
fex«.

Notice that @ is safe iff (f) = lims.(sup Ps s) for all f € 2. Below we
describe a property that is verdict-safe but not safe.

Ezample 12. Let X = {a,b}. Define @ by &(f) = 0 if f = a¥, and &(f) = |s]
otherwise, where s < f is the shortest prefix in which b occurs. The property &
is verdict-safe. First, observe that D = NU {oo}. Let f € X« and v € D with
v>P(f). HD(f) > 0, then f contains b, and @(f) = |s| for some s < f in which
b occurs for the first time. After the prefix s, all g € X yield ¢(sg) = |s|, thus
all values above |s| are rejected. If §(f) =0, then f = a*. Let v € D with v > 0,
and consider the prefix a” < f. Observe that the set of possible prediction values
after reading a” is {0,v+ 1,v+2,...}, therefore a¥ allows the ghost monitor to
reject the value v. However, @ is not safe because, although #(a*) = 0, for every
s < a¥, we have sup ¢ .. @(sg) = 0. ]

The separation is due to the fact that, for some finite traces, the sup of
possible prediction values cannot be realized by any future. Below, we present a
condition that prevents such cases.

Definition 13 (Supremum closedness). A property @ is sup-closed iff for
every s € X* we have sup Pp s € Pgp 5.

We remark that the minimal response-time property is sup-closed.

Example 1. The safety property minimal response-time ®,,;;, from Example 3
is sup-closed. This is because, for every s € X*, the continuation gr* realizes
the value sup ¢ .. (sg). O

Recall from the introduction the ghost monitor that maintains the sup of
possible prediction values. For monitoring sup-closed properties this suffices;
otherwise the ghost monitor also needs to maintain whether or not the supremum
of the possible prediction values is realizable by some future continuation. In
general, we have the following for every sup-closed property.

Lemma 15. For every sup-closed property @ and for all f € X, we have
lims ¢ (sup Po,s) = sup(lims<s Pg o).

As a consequence of the lemmas above, we get the following.

Theorem 16. A sup-closed property @ is safe iff ® is verdict-safe.

4 The Quantitative Safety-Progress Hierarchy

Our quantitative extension of safety closure allows us to build a Borel hierarchy,
which is a quantitative extension of the boolean safety-progress hierarchy [17].
First, we show that safety properties are closed under pairwise min and max.

Proposition 17. For every value domain D, the set of safety properties over D
is closed under min and max.
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The boolean safety-progress classification of properties is a Borel hierarchy
built from the Cantor topology of traces. Safety and co-safety properties lie on
the first level, respectively corresponding to the closed sets and open sets of
the topology. The second level is obtained through countable unions and inter-
sections of properties from the first level: persistence properties are countable
unions of closed sets, while response properties are countable intersections of
open sets. We generalize this construction to the quantitative setting.

In the boolean case, each property class is defined through an operation that
takes a set S C X* of finite traces and produces a set P C X* of infinite traces.
For example, to obtain a co-safety property from S C X* the corresponding
operation yields SX“. Similarly, we formalize each property class by a value
function. For this, we define the notion of limit property.

Definition 18 (Limit property). A property & : X — D is a limit prop-
erty iff there exists a finitary property m : X* — D and a value function
¢ : DY — D such that &(f) = ls<yn(s) for all f € X¥. We denote this by
& = (m,0), and write D(s) instead of w(s). In particular, if & = (w,L), where
¢ € {inf,sup, lim inf, lim sup}, then @ is an ¢-property.

To account for the value functions that construct the first two levels of the
safety-progress hierarchy, we start our investigation with inf- and sup-properties
and later focus on lim inf- and lim sup- properties [18].

4.1 Infimum and Supremum Properties

Let us start with an example by demonstrating that the minimal response-time
property is an inf-property.

Ezample 19. Recall the safety property @i, of minimal response time from
Example 3. We can equivalently define @.,;, as a limit property by taking the
finitary property 7.5 and the value function inf. As discussed in Example 3,
the function 7. outputs the response time for the last request when all re-
quests are granted, and oo when there is a pending request or no request. Then
infs f Mast(5) = Pmin(f) for all f € X*, and therefore @i = (Mast, inf). O

In fact, the safety properties coincide with inf-properties.
Theorem 20. A property @ is safe iff & is an inf-property.

Defining the minimal response-time property as a limit property, we observe
the following relation between its behavior on finite traces and infinite traces.

Ezample 21. Consider the property @min = (Mast, inf) from Example 19. Let
f € X¥and v € D. Observe that if the minimal response time of f is at least v,
then the last response time for each prefix s < f is also at least v. Conversely, if
the minimal response time of f is below v, then there is a prefix s < f for which
the last response time is also below v. O

In light of this observation, we provide another characterization of safety
properties, explicitly relating the specified behavior of the limit property on
finite and infinite traces.
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Theorem 22. A property @ : X¥ — D is safe iff @ is a limit property such that
for every f € X¥ and value v € D, we have ®(f) > v iff &(s) > v for all s < f.

Recall that a safety property allows rejecting wrong lower-bound hypotheses
with a finite witness, by assigning a tight upper bound to each trace. We de-
fine co-safety properties symmetrically: a property & is co-safe iff every wrong
hypothesis of the form @(f) < v has a finite witness s < f.

Definition 23 (Co-safety). A property @ : X¥ — D is co-safe iff for every
f € X% and value v € D with &(f) £ v, there exists a prefic s < f such that

infgepo P(sg) £ v.

We note that our definition generalizes boolean co-safety, and thus a dual of
Remark 4 holds also for co-safety. Moreover, we analogously define the notions
of co-safety closure and lower semicontinuity.

Definition 24 (Co-safety closure). The co-safety closure of a property & is
the property @.(f) defined by D.(f) = sup,_;infgexw @(sg) for all f € Lv.

Definition 25 (Lower semicontinuity [33]). A property @ is lower semicon-
tinuous iff ¢(f) = lims< s infyexw P(sg) for all f € Xv.

Now, we define and investigate the maximal response-time property. In partic-
ular, we show that it is a sup-property that is co-safe and lower semicontinuous.

Ezample 26. Let ¥ = {rq,gr,tk,00} and D = NU{oo}. We define the maximal
response-time property @max through a finitary property that computes the cur-
rent response time for each finite trace and the value function sup. In particular,
for all s € X*, let meurr () = [S|ex — |7|sx, where r < s is the longest prefix of s
without pending rq; then @yax = (Teurr, Sup). Note the contrast between ey,
and 7,e from Example 3. While 7.y, takes an optimistic view of the future
and assumes the gr will follow immediately, m,s; takes a pessimistic view and
assumes the gr will never follow. Let f € X* and v € D. If the maximal response
time of f is greater than v, then for some prefix s < f the current response time
is greater than v also, which means that, no matter what happens in the future,
the maximal response time is greater than v after observing s. Therefore, @,ax
is co-safe. By a similar reasoning, the sequence of greatest lower bounds of pos-
sible prediction values over the prefixes converges to the property value. In other
words, we have lim, ¢ inf e o Prmax(59) = Pmax(f) for all f € ¢ Thus Ppax
is also lower semicontinuous, and it equals its co-safety closure. Now, consider
the complementary property @.,.x, which maps every trace to the same value
as @ax On a domain where the order is reversed. It is easy to see that @, is
safe. Finally, recall the ghost monitor from the introduction, which maintains
the infimum of possible prediction values for the maximal response-time prop-
erty. Since the maximal response-time property is inf-closed, the output of the
ghost monitor after every prefix is realizable by some future continuation, and
that output is Tmax($) = max,<s Teur (r) for all s € 2%, O

Generalizing the observations in the example above, we obtain the following
characterizations due to the duality between safety and co-safety.
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Theorem 27. For every property @ : X% — D, the following are equivalent.

P is co-safe.

. @ is lower semicontinuous.

D(f) = D.(f) for every f € X¥.

. @ is a sup-property.

@ is a limit property such that for every f € X“ and value v € D, we have
D(f) <v iff P(s) <w forall s < f.

6. @ is safe.

SRR

4.2 Limit Inferior and Limit Superior Properties
Let us start with an observation on the minimal response-time property.

Ezample 28. Recall once again the minimal response-time property @i, from
Example 3. In the previous subsection, we presented an alternative definition of
Dnin to establish that it is an inf-property. Observe that there is yet another
equivalent definition of @,,;, which takes the monotonically decreasing finitary
property mmin from Example 3 and pairs it with either the value function lim inf,
or with lim sup. Hence @, is both a lim inf- and a lim sup-property. O

Before moving on to investigating lim inf- and lim sup-properties more closely,
we show that the above observation can be generalized.

Theorem 29. FEvery {-property @, for ¢ € {inf,sup}, is both a liminf- and a
lim sup-property.

An interesting response-time property beyond safety and co-safety arises
when we remove extreme values: instead of minimal response time, consider
the property that maps every trace to a value that bounds from below, not all
response times, but all of them from a point onward (i.e., all but finitely many).
We call this property tail-minimal response time.

Ezample 30. Let ¥ = {rq, gr,tk,o0} and m,s be the finitary property from
Example 3 that computes the last response time. We define the tail-minimal
response-time property as @Pimin = (Mast, lim inf). Intuitively, it maps each trace
to the least response time over all but finitely many requests. This property
is interesting as a performance measure, because it focuses on the long-term
performance by ignoring finitely many outliers. Consider f € Y“ and v € D.
Observe that, if the tail-minimal response time of f is at least v, then there is
a prefix s < f such that for all longer prefixes s < r < f, the last response time
in r is at least v, and vice versa. ]

Similarly as for inf-properties, we characterize lim inf-properties through a
relation between property behaviors on finite and infinite traces.

Theorem 31. A property @ : X¥ — D is a liminf-property iff @ is a limit
property such that for every f € X and value v € D, we have ®(f) > v iff there
exists s < f such that for all s 2 r < f, we have &(r) > v.

Now, we show that the tail-minimal response-time property can be expressed
as a countable supremum of inf-properties.
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Ezample 32. Let i € N and define ; o5t as a finitary property that imitates
Tast from Example 3, but ignores the first i observations of every finite trace.
Formally, for s € X*, we define m; jast($) = Tast(r) for s = s; where s; < s
with |s;| = ¢, and r € X*. Observe that an equivalent way to define @iy from
Example 30 is sup;cn(info< ¢ (7 1ast(s))) for all f € X, Intuitively, for each
i € N, we obtain an inf-property that computes the minimal response time of
the suffixes of a given trace. Taking the supremum over these, we obtain the
greatest lower bound on all but finitely many response times. 0O

We generalize this observation and show that every lim inf-property is a
countable supremum of inf-properties.

Theorem 33. FEvery lim inf-property is a countable supremum of inf-properties.

We would also like to have the converse of Theorem 33, i.e., that every
countable supremum of inf-properties is a lim inf-property. Currently, we are
able to show only the following.

Theorem 34. For every infinite sequence (P;);en of inf-properties, there is a
lim inf-property @ such that sup;cy @i (f) < P(f).

We conjecture that some lim inf-property that satisfies Theorem 34 is also
a lower bound on the countable supremum that occurs in the theorem. This,
together with Theorem 34, would imply the converse of Theorem 33. Proving
the converse of Theorem 33 would give us, thanks to the following duality, that
the liminf- and lim sup-properties characterize the second level of the Borel
hierarchy of the topology induced by the safety closure operator.

Proposition 35. A property @ is a liminf-property iff its complement @ is a
lim sup-property.

5 Quantitative Liveness

Similarly as for safety, we take the perspective of the quantitative membership
problem to define liveness: a property @ is live iff, whenever a property value is
less than T, there exists a value v for which the wrong hypothesis @(f) > v can
never be dismissed by any finite witness s < f.

Definition 36 (Liveness). A property @ : X% — D is live iff for all f € X¥,
if (f) < T, then there exists a value v € D such that (f) # v and for all
prefizes s < f, we have sup ¢ 5o P(sg) > v.

An equivalent definition can be given through the safety closure.

Theorem 37. A property @ is live iff D*(f) > P(f) for every f € X% with
S(f)<T.

Our definition generalizes boolean liveness. A boolean property P C X* is
live according to the classical definition [4] iff its characteristic property @p is
live according to our definition. Moreover, the intersection of safety and liveness
contains only the single degenerate property that always outputs T.
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Proposition 38. A property @ is safe and live iff &(f) =T for all f € X¥.

We define co-liveness symmetrically, and note that the duals of the observa-
tions above also hold for co-liveness.

Definition 39 (Co-liveness). A property @ : X¥ — D is co-live iff for all
fexe if o(f) > L, then there exists a value v € D such that ¢(f) £ v and
for all prefives s < f, we have inf e 5w P(sg) < v.

Next, we present some examples of liveness and co-liveness properties. We
start by showing that lim inf- and lim sup-properties can be live and co-live.

Ezample 40. Let X = {a, b} be an alphabet, and let P = O00a and @ = ¢Ob be
boolean properties defined in linear temporal logic. Consider their characteristic
properties @p and @. As we pointed out earlier, our definitions generalize their
boolean counterparts, therefore ®p and @ are both live and co-live. Moreover,
&p is a lim sup-property: define 7p(s) =1 if s € X*a, and wp(s) = 0 otherwise,
and observe that @p(f) = limsup,_,7p(s) for all f € Y. Similarly, &q, is a
lim inf-property. a

Now, we show that the maximal response-time property is live, and the min-
imal response time is co-live.

Example 41. Recall the co-safety property @pax of maximal response time from
Example 26. Let f € X such that @n.x(f) < co. We can extend every prefix
s < f with ¢ = rqtk“, which gives us @p.x(sg) = oo > &(f). Equivalently,
for every f € X, we have &% (f) = 00 > Ppax(f). Hence Py is live and,

analogously, the safety property @i, from Example 3 is co-live. O
Finally, we show that the average response-time property is live and co-live.

Ezample 42. Let ¥ = {rq,gr,tk,o00}. For all s € X*, let p(s) = 1 if there is
no pending rq in s, and p(s) = 0 otherwise. Define myaia(s) = [{r < s | 3t €
X* i r = trq A p(t) = 1} as the number of valid requests in s, and define
Ttime($) as the number of tk observations that occur after a valid rq and before

us ime(s)
777\t/alid(5) for ag

s € X* with Tyana(s) > 0, and mayg(s) = oo otherwise. For example, Tavg(s) = 5
for s = rqtkgrtkrqtkrqtk. Note that @, is a lim inf-property.

The property ®ayg is defined on the value domain [0, co] and is both live and
co-live. To see this, let f € X* such that 0 < ®ave(f) < 00 and, for every prefix
s < f, consider g = rqtk“ and h = gr (rqgr)“. Since sg has a pending request
followed by infinitely many clock ticks, we have @,4(sg) = co. Similarly, since
sh eventually has all new requests immediately granted, we get $avg(sh) =0. O

the matching gr. Then, ®Pavg = (Tavg, liminf), where m,yg(s) =

5.1 The Quantitative Safety-Liveness Decomposition

A celebrated theorem states that every boolean property can be expressed as an
intersection of a safety property and a liveness property [4]. In this section, we
prove the analogous result for the quantitative setting.
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Ezample 43. Let ¥ = {rq, gr, tk, oo}. Recall the maximal response-time prop-
erty @max from Example 26, and the average response-time property ®ayvg from
Example 42. Let n > 0 be an integer and define a new property @ by @(f) =
Pove(f) if Pmax(f) < n, and D(f) = 0 otherwise. For the safety closure of &,
we have &*(f) = n if Ppax(f) < n, and &*(f) = 0 otherwise. Now, we further
define ¥(f) = Puve(f) if Prmax(f) < n, and ¥(f) = n otherwise. Observe that ¥
is live, because every prefix of a trace whose value is less than n can be extended
to a greater value. Finally, note that for all f € X* we can express @(f) as
the pointwise minimum of ¢*(f) and ¥(f). Intuitively, the safety part ¢* of
this decomposition checks whether the maximal response time stays below the
permitted bound, and the liveness part ¥ keeps track of the average response
time as long as the bound is satisfied. ]

Following a similar construction, we show that a safety-liveness decomposi-
tion exists for every property.

Theorem 44. For every property @, there exists a liveness property ¥ such that

O(f) = min(P*(f),¥(f)) for all f € X¥.
In particular, if the given property is safe or live, the decomposition is trivial.

Remark 45. Let @ be a property. If @ is safe (resp. live), then the safety (resp.
liveness) part of the decomposition is @ itself, and the liveness (resp. safety) part
is the constant property that maps every trace to T.

For co-safety and co-liveness, the duals of Theorem 44 and Remark 45 hold.
In particular, every property is the pointwise maximum of its co-safety closure
and a co-liveness property.

5.2 Related Definitions of Quantitative Liveness

In [41], the authors define a property @ as multi-live iff &*(f) > L for all
f € X¥. We show that our definition is more restrictive, resulting in fewer
liveness properties while still allowing a safety-liveness decomposition.

Proposition 46. FEvery live property is multi-live, and the inclusion is strict.
We provide a separating example on a totally ordered domain below.

Ezample 47. Let X = {a,b, c}, and consider the following property: @¢(f) = 0 if
fEOa,and &(f) =1if f | Oc, and &(f) = 2 otherwise (i.e., if f = ObAT—c).
For all f € ¥ and prefixes s < f, we have &(s¢”) = 1. Thus &*(f) # L, which
implies that @ is multi-live. However, @ is not live. Indeed, for every f € 3¢
such that f = Oc, we have &(f) = 1 < T. Moreover, f admits some prefix s
that contains an occurrence of ¢, thus satisfying sup ¢ . @(sg) = 1. ]

In [27], the authors define a property @ as wverdict-live iff for every f € X¥
and value v € &(f), every prefix s < f satisfies @(sg) = v for some g € X*. We
show that our definition is more liberal.
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Proposition 48. FEvery verdict-live property is live, and the inclusion is strict.

We provide a separating example below, concluding that our definition is
strictly more general even for totally ordered domains.

Ezample 49. Let X = {a,b}, and consider the following property: &(f) = 0 if
f = Ob, and &(f) = 1 if f = O(b A QOb), and &(f) = 271¥l otherwise, where
s < f is the shortest prefix in which b occurs. Consider an arbitrary f € X*.
If &(f) = 1, then the liveness condition is vacuously satisfied. If @(f) = 0, then
f = a¥, and every prefix s < f can be extended with g = ba® or h = b“ to obtain
®(sg) = 27UsIFY) and @(sh) = 1. If 0 < &(f) < 1, then f satisfies Ob but not
QO(OAOOD), and every prefix s < f can be extended with b to obtain $(sb*) = 1.
Hence @ is live. However, @ is not verdict-live. To see this, consider the trace
f = aFba® for some integer k > 1 and note that &(f) = 2~ *+1)_ Although all
prefixes of f can be extended to reach the value 1, the value domain contains
elements between &(f) and 1, namely the values 2™ for 1 < m < k. Each of
these values can be rejected after reading a finite prefix of f, because for n > m
it is not possible to extend a™ to reach the value 27, O

6 Approximate Monitoring through Approximate Safety

In this section, we consider properties on extended reals R*> = RU{—o0, +o0}.
We denote by R the set of nonnegative real numbers.

Definition 50 (Approximate safety and co-safety). Let o € R>. A prop-
erty @ is a-safe iff for every f € X% and value v € R*>® with &(f) < v, there
exists a prefiv s < [ such that sup ¢ s &(sg) < v+ a. Similarly, @ is a-co-safe
iff for every f € X% and v € RT> with ®(f) > v, there exists s < f such that
infgesw @(sg) > v — . When @ is a-safe (resp. a-co-safe) for some o € R,
we say that @ is approximately safe (resp. approximately co-safe).

Approximate safety can be characterized through the following relation with
the safety closure.

Proposition 51. For every error bound a € R>o, a property ¢ is a-safe iff
S*(f) —D(f) <« forall feXv.

An analogue of Proposition 51 holds for approximate co-safety and the co-
safety closure. Moreover, approximate safety and approximate co-safety are dual
notions that are connected by the complement operation, similarly to their pre-
cise counterparts (Theorem 27).

6.1 The Intersection of Approximate Safety and Co-safety

Recall the ghost monitor from the introduction. If, after a finite number of obser-
vations, all the possible prediction values are close enough, then we can simply
freeze the current value and achieve a sufficiently small error. This happens for
properties that are both approximately safe and approximately co-safe, general-
izing the unfolding approximation of discounted properties [13].
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Proposition 52. For every limit property ® and all error bounds «, 5 € Rxg,
if @ is a-safe and [B-co-safe, then the set Ss = {s € X* | sup, ¢ P(sr1) —
inf,,cx+ ®(sre) > 6} is finite for all reals § > o+ 3.

Based on this proposition, we show that, for limit properties that are both
approximately safe and approximately co-safe, the influence of the suffix on the
property value is eventually negligible.

Theorem 53. For every limit property @ such that &(f) € R for all f € X¥,
and for all error bounds «, § € R>q, if @ is a-safe and B-co-safe, then for every
real § > a + B and trace f € X¥, there is a prefix s < [ such that for all
continuations w € X* U XY, we have |P(sw) — P(s)| < 4.

We illustrate this theorem with a discounted safety property.

Example 5. Let P C X be a boolean safety property. We define the finitary
property mp : X* — [0,1] as follows: wp(s) = 1 if sf € P for some f € X¥,
and 7p(s) = 1 — 27"l otherwise, where 7 < s is the shortest prefix with rf ¢ P
for all f € Y. The limit property & = (7p,inf) is called discounted safety [3].
Because @ is an inf-property, it is safe by Theorem 20. Now consider the finitary
property 7/ defined by p(s) = 1 — 2751 if sf € P for some f € X% and
74 (s) = 1 — 271" otherwise, where r < s is the shortest prefix with rf ¢ P for
all f € X% Let & = (nlp,sup), and note that &(f) = &'(f) for all f € Xv.
Hence @ is also co-safe, because it is a sup-property.

Let f € X% and 6 > 0. For every prefix s < f, the set of possible prediction
values is either the range [1 — 271%!,1] or the singleton {1 —2~I"!}, where r < s
is chosen as above. In the latter case, we have |®(sw) — @(s)| = 0 < J for all
w € XY* U XY, In the former case, since the range becomes smaller as the prefix
grows, there is a prefix s’ < f with 2715l < §, which yields |@(s'w) — &(s')] < &
for all w € X* U X«. O

6.2 Finite-state Approximate Monitoring

Monitors with finite state spaces are particularly desirable, because finite au-
tomata enjoy a plethora of desirable closure and decidability properties. Here,
we prove that properties that are both approximately safe and approximately
co-safe can be monitored approximately by a finite-state monitor. First, we recall
the notion of abstract quantitative monitor from [30].

A binary relation ~ over X* is an equivalence relation iff it is reflexive,
symmetric, and transitive. Such a relation is right-monotonic iff s; ~ so implies
s11r ~ sor for all sq, so,7 € X*. For an equivalence relation ~ over X* and a finite
trace s € X*, we write [s]. for the equivalence class of ~ to which s belongs.
When ~ is clear from the context, we write [s] instead. We denote by X*/~ the
quotient of the relation ~.

Definition 55 (Abstract monitor [30]). An abstract monitor M = (~,7)
is a pair consisting of a right-monotonic equivalence relation ~ on X* and a
function y: (X*/ ~) — R*>®. The monitor M is finite-state iff the relation



366 T. A. Henzinger et al.

~ has finitely many equivalence classes. Let Ogn, Oim € RE>® be error bounds.
We say that M is a (0gn, Olim )-monitor for a given limit property @ = (m, ) iff
for all s € X* and f € X%, we have |n(s) — v([s])| < dan and [lsf(m(s)) —
Lazy (VD] < Gtim-

Building on Theorem 53, we identify a sufficient condition to guarantee the
existence of an abstract monitor with finitely many equivalence classes.

Theorem 56. For every limit property @ such that &(f) € R for all f € X%,
and for all error bounds «, 8 € R>q, if @ is a-safe and B-co-safe, then for every
real 0 > « + 3, there exists a finite-state (0, 8)-monitor for ®.

Due to Theorem 56, the discounted safety property of Example 54 has a
finite-state monitor for every positive error bound. We remark that Theorem 56
is proved by a construction that generalizes the unfolding approach for the ap-
proximate determinization of discounted automata [12], which unfolds an au-
tomaton until the distance constraint is satisfied.

7 Conclusion

We presented a generalization of safety and liveness that lifts the safety-progress
hierarchy to the quantitative setting of [18] while preserving major desirable
features of the boolean setting, such as the safety-liveness decomposition.

Monitorability identifies a boundary separating properties that can be ver-
ified or falsified from a finite number of observations, from those that cannot.
Safety-liveness and co-safety-co-liveness decompositions allow us separate, for an
individual property, monitorable parts from nonmonitorable parts. The larger
the monitorable parts of the given property, the stronger the decomposition.
We provided the strongest known safety-liveness decomposition, which consists
of a pointwise minimum between a safe part defined by a quantitative safety
closure, and a live part which corrects for the difference. We then defined ap-
proximate safety as the relaxation of safety by a parametric error bound. This
further increases the monitorability of properties and offers monitorability at a
parametric cost. In fact, we showed that every property that is both approx-
imately safe and approximately co-safe can be monitored arbitrarily precisely
by a finite-state monitor. A future direction is to extend our decomposition to
approximate safety together with a support for quantitative assumptions [32].

The literature contains efficient model-checking procedures that leverage the
boolean safety hypothesis [36,40]. We thus expect that also quantitative safety
and co-safety, and their approximations, enable efficient verification algorithms
for quantitative properties.
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