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Abstract. As the complexity and criticality of software increase every
year, so does the importance of run-time monitoring. Third-party moni-
toring, with limited knowledge of the monitored software, and best-e�ort
monitoring, which keeps pace with the monitored software, are especially
valuable, yet underexplored areas of run-time monitoring. Most existing
monitoring frameworks do not support their combination because they
either require access to the monitored code for instrumentation purposes
or the processing of all observed events, or both.
We present a middleware framework, Vamos, for the run-time monitor-
ing of software which is explicitly designed to support third-party and
best-e�ort scenarios. The design goals of Vamos are (i) e�ciency (keep-
ing pace at low overhead), (ii) �exibility (the ability to monitor black-box
code through a variety of di�erent event channels, and the connectability
to monitors written in di�erent speci�cation languages), and (iii) ease-
of-use. To achieve its goals, Vamos combines aspects of event broker and
event recognition systems with aspects of stream processing systems.
We implemented a prototype toolchain for Vamos and conducted exper-
iments including a case study of monitoring for data races. The results
indicate that Vamos enables writing useful yet e�cient monitors, is com-
patible with a variety of event sources and monitor speci�cations, and
simpli�es key aspects of setting up a monitoring system from scratch.

1 Introduction

Monitoring�the run-time checking of a formal speci�cation�is a lightweight
veri�cation technique for deployed software. Writing monitors is especially chal-
lenging if it is third-party and real-time. In third-party monitoring, the monitored
software and the monitoring software are written independently, in order to in-
crease trust in the monitor. In the extreme case, the monitor has very limited
knowledge of and access to the monitored software, as in black-box monitoring.
In real-time monitoring, the monitor must not slow down the monitored software
while also following its execution close in time. In the extreme case, the monitor
may not be able to process all observed events and can check the speci�cation
only approximately, as in best-e�ort monitoring.

We present middleware�called Vamos (�Vigilant Algorithmic Monitoring
of Software�)�which facilitates the addition of best-e�ort third-party monitors
to deployed software. The primary goals of our middleware are (i) performance
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(keeping pace at low overhead), (ii) �exibility (compatibility with a wide range
of heterogeneous event sources that connect the monitor with the monitored
software, and with a wide range of formal speci�cation languages that can be
compiled into Vamos), and (iii) ease-of-use (the middleware relieves the designer
of the monitor from system and code instrumentation concerns).

All of these goals are fairly standard, but Vamos' particular design tradeo�s
center around making it as easy as possible to create a best-e�ort third-party
monitor of actual software without investing much time into low-level details of
instrumentation or load management. In practice, instrumentation�enriching
the monitored system with code that is gathering observations on whose basis
the monitor generates verdicts�is a key part of writing a monitoring system
and a�ects key performance characteristics of the monitoring setup [11]. These
considerations become even more important in third-party monitoring, where the
limited knowledge of and access to the monitored software may force the monitor
to spend more computational e�ort to re-derive information that it could not
observe, or combine it from smaller pieces obtained from more (and di�erent)
sources. By contrast, current implementations of monitor speci�cation languages
mostly o�er either very targeted instrumentation support for particular systems
or some general-purpose API to receive events, or both, but little to organize
multiple heterogeneous event streams, or to help with the kinds of best-e�ort
performance considerations that we are concerned with. Thus, Vamos �lls a gap
left open by existing tools.

Our vision for Vamos is that users writing a best-e�ort third-party monitor
start by selecting con�gurable instrumentation tools from a rich collection. This
collection includes tools that periodically query webservices, generate events for
relevant system calls, observe the interactions of web servers with clients, and
of course standard code instrumentation tools. The con�guration e�ort for each
such event source largely consists of specifying patterns to look for and what
events to generate for them. Vamos then o�ers a simple speci�cation language
for �ltering and altering events coming from the event sources, and simple yet
expressive event recognition rules that produce a single, global event stream
by combining events from a (possibly dynamically changing) number of event
sources. Lastly, monitoring code as it is more generally understood�which could
be written directly or generated from existing tools for run-time veri�cation like
LTL formulae [46], or stream veri�cation speci�cations [8] such as TeSSLa [40]�
processes these events to generate verdicts about the monitored system.

Vamos thus represents middleware between event sources that emit events
and higher-level monitoring code, abstracting away many low-level details about
the interaction between the two. Users can employ both semi-synchronous and
completely asynchronous [11] interactions with any or all event sources. Between
these two extremes, to decouple the higher-level monitoring code's performance
from the overhead incurred by the instrumentation, while putting a bound on
how far the monitoring code can lag behind the monitored system, we provide a
simple load-shedding mechanism that we call autodrop bu�ers, which are bu�ers
that drop events when the monitoring code cannot keep up with the rate of in-
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coming events, while maintaining summarization data about the dropped events.
This summarization data can later be used by our event recognition system when
it is noti�ed that events were dropped; some standard monitoring speci�cation
systems can handle such holes in their event streams automatically [41, 31, 53].
The rule-based event recognition system allows grouping and ordering bu�ers
dynamically to prioritize or rotate within variable sets of similar event sources,
and specifying patterns over multiple events and bu�ers, to extract and combine
the necessary information for a single global event stream.

Data from event sources is transferred to the monitor using e�cient lock-free
bu�ers in shared memory inspired by Cache-Friendly Asymmetric Bu�ers [28].
These bu�ers can transfer over one million events per second per event source
on a standard desktop computer. Together with autodrop bu�ers, this satis�es
our performance goal while keeping the speci�cation e�ort low. As such, Vamos
resembles a single-consumer version of an event broker [17, 57, 47, 54, 25, 1]
specialized to run-time monitoring.

The core features we built Vamos around are not novel on their own, but
to the best of our knowledge, their combination and application to simplify
best-e�ort third-party monitoring setups is. Thus, we make the following contri-
butions:

� We built middleware to connect higher-level monitors with event sources,
addressing particular challenges of best-e�ort third-party monitoring (Sec-
tion 2), using a mixture of e�cient inter-process communication and easy-to-
use facilities for load management (Section 3) on one hand, and bu�er groups
and other event recognition abstractions (Section 4) on the other hand.

� We implemented a compiler for Vamos speci�cations, a number of event
sources, and a connector to TeSSLa [40] monitors (Section 5).

� We conducted some stress-test experiments using our framework, as well as
a case study in which we implemented a monitor looking for data races,
providing evidence of the feasibility of low-overhead third-party monitoring
with simple speci�cations (Section 6).

2 Architectural Overview

Writing a run-time monitor can be a complex task, but a large number of tools
express logical reasoning over streams of run-time observations exists [18, 23, 40,
26, 33, 15, 48]. However, trying to actually obtain a concrete stream of observa-
tions from a real system introduces a very di�erent set of concerns, which in turn
have a huge e�ect on the performance properties of run-time monitoring [11].

The goal of Vamos is to simplify this critical part of setting up a monitoring
system, using the model shown in Figure 1. On the left side, we assume an arbi-
trary number of distinct event sources directly connected to the monitor. This is
particularly important in third-party monitoring, as information may need to be
collected from multiple di�erent sources instead of just a single program, but can
be also useful in other monitoring scenarios, e.g. for multithreaded programs.
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Fig. 1. The components of a Vamos setup.

The right-most component is called the monitor, representing the part of the
monitoring system that is typically generated by a monitoring speci�cation tool,
usually based on a single global event stream. As middleware, Vamos connects
the two, providing abstractions for common issues that monitor writers would
otherwise have to address with boilerplate, but still complicated code.

Given that there are multiple event sources providing their own event streams,
but only one global event stream consumed by the monitor, a key aspect is merg-
ing the incoming streams into one, which happens in the arbiter. Third-party
monitoring often cannot rely on the source-code-based instrumentation that is
otherwise common [13, 15, 4, 20, 24]; for example, TeSSLa1 [40] comes with a
basic way of instrumenting C programs by adding annotations into the speci�-
cation that identify events with function calls or their arguments. Instead, it has
to rely on things that can be reliably observed and whose meaning is clear, for
example system calls, calls to certain standard library functions, or any other
information one can gather from parts of the environment one controls, such as
sensors or �le system. These do not necessarily correspond in a straightforward
way to the events one would like to feed into the higher-level monitor and thus
need to be combined or split up in various ways. For example, when a program
writes a line to the standard output, the data itself might be split into multiple
system calls or just be part of a bigger one that contains multiple lines, and there
are also multiple system calls that could be used. Therefore, the arbiter provides
a way to specify a rule-based event recognition system to generate higher-level
events from combinations of events on the di�erent event sources.

Another common assumption in monitoring systems is some global notion
of time that can be used to order events. This is not necessarily true for multi-
ple, heterogeneous event sources, and even just observing the events of a multi-
threaded program can cause events to arrive in an order that does not represent
causality. Vamos arbiter speci�cations are �exible enough to support many user-
de�ned ways of expressing ways of merging events into a single global stream.

Doing this kind of sorting and merging and then potentially arbitrarily com-
plex other computations in both the arbiter and the monitor may take longer
than it takes the monitored system to generate events. Especially in third-party
monitoring, a monitor may have to reconstruct information that is technically

1 We keep referring to TeSSLa in the rest of the paper and also chose to use it in our
implementation because it is one of the most easily available existing tools we could
�nd. In general, the state of the �eld is that, while many papers describing similar
tools exist, few are actually available [47].
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1 stream type Observation { Op(arg : int, ret : int); }
2 event source Program : Observation to autodrop(16,4)
3 arbiter : Observation {
4 on Program: hole(n) | ;
5 on Program: Op(arg, ret) | yield;
6 }
7 monitor(2) { on Op(arg, reg) $$ CheckOp(arg, ret); $$ }

Listing 1.1. A basic asynchronous best-e�ort monitor.

present in the monitored system but cannot be observed, or, worse, the monitor
may have to consider multiple di�erent possibilities if information cannot be reli-
ably recomputed. However, as part of our performance goal, we want the monitor
to not lag too far behind the monitored system. Therefore, our design splits the
monitoring system into the performance and correctness layers. In between the
two, events may be dropped as a simple load-shedding strategy.

The performance layer, on the other hand, sees all events and processes each
event stream in parallel. Stream processors enable �ltering and altering the events
that come in, reducing pressure and computational load on the correctness layer.
This re�ects that in third-party monitoring, observing coarse-grained event types
like system calls may yield many uninteresting events. For example, all calls to
read may be instrumented, but only certain arguments make them interesting.

A Simple Example Listing 1.1 shows a full Vamos speci�cation (aside from
the de�niton of custom monitoring code in a C function called CheckOp). Stream
types describe the kinds of events and the memory layout of their data that can
appear in a particular bu�er; in this example, streams of type Observation

contain only one possible event named Op with two �elds of type int. For source
bu�ers�created using event source descriptions as in line 2�these need to be
based on the speci�cation of the particular event source. Each event source is
associated with a stream processor; if none is given (as in this example), a default
one simply forwards all events to the corresponding arbiter bu�er, here speci�ed
as an autodrop bu�er that can hold up to 16 events and when full keeps dropping
them until there is again space for at least four new events. Using an autodrop
bu�er means that in addition to the events of the stream type, the arbiter may
see a special hole event notifying it that events were dropped. In this example, the
arbiter simply ignores those events and forwards all others to the monitor, which
runs in parallel to the arbiter with a blocking event queue of size two, and whose
behavior we implemented directly in C code between $$ escape characters.

3 E�cient Instrumentation

Our goals for the performance of the monitor are to not incur too much overhead
on the monitored system, and for the monitor to be reasonably up-to-date in
terms of the lag between when an event is generated and when it is processed. The
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key features Vamos o�ers to ensure these properties while keeping speci�cations
simple are related to the performance layer, which we discuss here.

3.1 Source Bu�ers and Stream Processors

Even when instrumenting things like system calls, in order to extract informa-
tion from them in a consistent state, the monitored system will have to be brie�y
interrupted while the instrumentation copies the relevant data. A common solu-
tion is to write this data to a log �le that the monitor is incrementally processing.
This approach has several downsides. First, in the presence of multiple threads,
accesses to a single �le require synchronization. Second, the common use of string
encodings requires extra serialization and parsing steps. Third, �le-based bu�ers
are typically at least very large or unbounded in size, so slower monitors even-
tually exhaust system resources. Finally, writing to the log uses relatively costly
system calls. Instead, Vamos event sources transmit raw binary data via chan-
nels implemented as limited-size lock-free ring bu�er in shared memory, limiting
instrumentation overhead and optimizing throughput [28]. To avoid expensive
synchronization of di�erent threads in the instrumented program (or just to
logically separate events), Vamos also allows dynamically allocating new event
sources, such that each thread can write to its own bu�er(s). The total number
of event sources may therefore vary across the run of the monitor.

For each event source, Vamos allocates a new thread in the performance
layer to process events from this source2. In this layer, event processors can
�lter and alter events before they are forwarded to the correctness layer, all in
a highly parallel fashion. A default event processor simply forwards all events.
The computations done here should be done at the speed at which events are
generated on that particular source, otherwise the source bu�er will �ll up and
eventually force the instrumentation to wait for space in the bu�er.

3.2 Autodrop Bu�ers

As we already stated, not all computations of a monitor may be able to keep
up with the monitored system. Our design separates these kinds of computa-
tions into the correctness layer, which is connected with the performance layer
via arbiter bu�ers. The separation is achieved by using autodrop bu�ers. These
bu�ers provide the most straightforward form of load management via load shed-
ding [58]: if there is not enough space in the bu�er, it gathers summarization
information (like the count of events since the bu�er became full) and other-
wise drops the events forwarded to it. Once free space becomes available in the
bu�er, it automatically inserts a special hole event containing the summarization
information. The summarization ensures that not all information about dropped

2 When event sources can be dynamically added, the user may specify a limit to how
many of them can exist concurrently to avoid accumulating bu�ers the monitor
cannot process fast enough. When that limit is hit, new event sources are rejected
and the instrumentation drops events that would be forwarded to them.
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events is lost, which can help to reduce the impact of load shedding. At mini-
mum, the existence of the hole event alone makes a di�erence in monitorability
compared to not knowing whether any events have been lost [34], and is used as
such in some monitoring systems [31, 41, 53].

In addition to autodrop bu�ers, arbiter bu�ers can also be �nite-size bu�ers
that block when space is not available, or ininite-size bu�ers. The former may
slow down the stream processor and ultimately the event source, while the latter
may accumulate data and exhaust available resources. For some event sources,
this may not be a big risk, and it eliminates the need to deal with hole events.

4 Event Recognition, Ordering, and Prioritization

Vamos' arbiter speci�cations are a �exible, yet simple way to organize the infor-
mation gathered from a�potentially variable�number of heterogeneous event
sources. In this section, we discuss the key relevant parts of such speci�cations�a
more complete speci�cation can be found in Appendix A.

4.1 Arbiter Rules

We already saw simple arbiter rules in Listing 1.1, but arbiter rules can be
much more complex, specifying arbitrary sequences of events at the front of
arbitrarily many bu�ers, as well as bu�er properties such as a minimum number
of available events and emptiness. Firing a rule can also be conditioned by an
arbitrary boolean expression. For example, one rule in the Bank example we use
in our evaluation in Section 6 looks as follows:

1 on Out : transfer(t2, src, tgt) transferSuccess(t4) |,
2 In : numIn(t0, act) numIn(t1, acc) numIn(t3, amnt) |
3 where $$ t2 == t0 + 4 $$
4 $$ $yield SawTransfer(src, tgt, amnt); ... $$

This rule matches multiple events on two di�erent bu�ers (In and Out), describ-
ing a series of user input and program output events that together form a single
higher-level event SawTransfer, which is forwarded to the monitor component
of the correctness layer. Rules do not necessarily consume the events they have
looked at; some events may also just serve as a kind of lookahead. The �|� charac-
ter in the events sequence pattern separates the consumed events (left) from the
lookahead (right). Code between $$ symbols can be arbitrary C code with some
special constructs, such as the $yield statement (to forward events) above.

The rule above demonstrates the basic event-recognition capabilities of ar-
biters. By ordering the rules in a certain way, we can also prioritize processing
events from some bu�ers over others. Rules can also be grouped into rule sets
that a monitor can explicitly switch between in the style of an automaton.

4.2 Bu�er Groups

The rules shown so far only refer to arbiter bu�ers associated with speci�c,
named event sources. As we mentioned before, Vamos also supports creating
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event sources dynamically during the run of the monitoring system. To be able
to refer to these in arbiter rules, we use an abstraction we call bu�er groups.

As the name suggests, bu�er groups are collections of arbiter bu�ers whose
membership can change at run time. They are the only way in which the arbiter
can access dynamically created event sources, so to allow a user to distinguish
between them and manage associated data, we extend stream types with stream
�elds that can be read and updated by arbiter code. Bu�er groups are declared
for a speci�c stream type, and their members have to have that stream type3.
Therefore, each member o�ers the same stream �elds, which we can use to com-
pare bu�ers and order them for the purposes of iterating through the bu�er
group. Now the arbiter rules can also be choice blocks with more rules nested
within them, as follows (Both is a bu�er group and pos is a stream �eld):

1 choose F,S from Both {
2 on F : Prime(n,p) | where $$ $F.pos < $S.pos $$
3 $$ ... $$
4 on F : hole(n) |
5 $$ $F.pos = $F.pos + n; $$
6 }

This rule is a slightly simpli�ed version of one in the Primes example in Section 6.
This example does not use dynamically created bu�ers, but only has two event
sources, and uses the ordering capabilities of bu�er groups to prioritize between
the bu�ers based on which one is currently �behind� (expressed in the stream
�eld pos, which the bu�er group Both is ordered by). The choose rule tries to
instantiate its variables with distinct members from the bu�er group, trying out
permutations in the lexicographic extension of the order speci�ed for the bu�er
group. If no nested rule matches for a particular instantiation, the next one in
order is tried, and the choose rule itself fails if no instantiation �nds a match.

To handle dynamically created event sources, corresponding stream processor
rules specify a bu�er group to which to add new event sources, upon which the
arbiter can access them through choose rules. In most cases, we expect that
choose blocks are used to instantiate a single bu�er, in which case we only need
to scan the bu�er group in its speci�ed order. Here, a round-robin order allows
for fairness, while �eld-based orderings allow more detailed control over bu�ers
prioritization, as it may be useful to focus on a few bu�ers at the expense of
others, as in our above example.

Another potential option for ordering schemes for bu�er groups could be
based on events waiting in them, or even the values of those events' associated
data.Vamos currently does not support this because it makes sorting much more
expensive�essentially, all bu�ers may have to be checked in order to determine
the order in which to try matching them against further rules. Some of our
experiments could have made use of such a feature, but in di�erent ways�future
work may add mechanisms that capture some of these ways.

3 Note that stream processors may change the stream type between the source bu�er
and arbiter bu�er, so event sources may use di�erent types, but their arbiter bu�ers
may be grouped together if processed accordingly.



Vamos: Middleware for Best-E�ort Third-Party Monitoring 9

5 Implementation

In this section, we brie�y review the key components of our implementation.

5.1 Source Bu�ers and Event Sources

The source bu�er library allows low-overhead interprocess communication be-
tween a monitored system and the monitor. It implements lock-free asynchronous
ring bu�ers in shared memory, inspired by Cache-Friendly Asymmetric Bu�er-
ing [28], but extended to handle entries larger than 64 bits4. The library allows
setting up an arbitrary number of source bu�ers with a unique name, which a
monitor can connect to explicitly, and informing such connected monitors about
dynamically created bu�ers. A user can also provide stream type information so
connecting monitors can check for binary compatibility.

We have used the above library to implement an initial library of event
sources: one that is used for detecting data races, and several which use either
DynamoRIO [9] (a dynamic instrumentation framework) or the eBPF subsys-
tem of the Linux Kernel [10, 27, 49] to intercept the read and write (or any
other) system calls of an arbitrary program, or to read and parse data from �le
descriptors. The read/write related tools allow specifying an arbitrary number
of regular expressions that are matched against the traced data, and associated
event constructors that refer to parts of the regular expressions from which to
extract the relevant data. Example uses of these tools are included in our arti-
fact [12].

5.2 The Vamos Compiler and the TeSSLa Connector

The compiler takes a Vamos speci�cation described in the previous sections and
turns it into a C program. It does some minimal checking, for example whether
events used in parts of the program correspond to the expected stream types,
but otherwise defers type-checking to the C compiler. The generated program
expects a command-line argument for each speci�ed event source, providing the
name of the source bu�er created by whatever actual event source is used. Event
sources signal when they are �nished, and the monitor stops once all event
sources are �nished and all events have been processed.

The default way of using TeSSLa for online monitoring is to run an o�ine
monitor incrementally on a log �le of serialized event data from a single global
event source. A recent version of TeSSLa [32] allows generating Rust code for
the stream processing system with an interface to provide events and drive the
stream processing directly. Our compiler can generate the necessary bridging
code and replace the monitor component in Vamos with a TeSSLa Rust moni-
tor. We used TeSSLa as a representative of higher-level monitoring speci�cation
tools; in principle, one could similarly use other standard monitor speci�cation
languages, thus making it easier to connect them to arbitrary event sources.

4 Entries have the size of the largest event consisting of its �xed-size �elds and iden-
ti�ers for variable-sized data (strings) transported in separately managed memory.
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6 Evaluation

Our stated design goals for Vamos were (i) performance, (ii) �exibility, and
(iii) ease-of-use. Of these, only the �rst is truly quantitative, and the major-
ity of this section is devoted to various aspects of it. We present a number of
benchmark programs, each of which used Vamos to retrieve events from di�er-
ent event sources and organize them for a higher-level monitor in a di�erent way,
which provides some qualitative evidence for its �exibility. Finally, we present a
case study to build a best-e�ort data-race monitor (Section 6.4), whose relative
simplicity provides qualitative evidence for Vamos' ease of use.

In evaluating performance, we focus on two critical metrics:

1. How much overhead does monitoring impose on the monitored system? We
measure this as the di�erence of wall-clock running times.

2. How well can a best-e�ort third-party monitor cover the behavior of the
monitored program? We measure this as the portion of errors a monitor can
(not) �nd.

Our core claim is that Vamos allows building useful best-e�ort third-party
monitors for programs that generate hundreds of thousands of events per second
without a signi�cant slow down of the programs beyond the unavoidable cost of
generating events themselves. We provide evidence that corroborates this claim
based on three arti�cial benchmarks that vary various parameters and one case
study implementation of a data race monitor that we test on 391 benchmarks
taken from SV-COMP 2022 [7].

Experimental setup All experiments were run on a common personal com-
puter with 16GB of RAM and an Intel(R) Core(TM) i7-8700 CPU with 6
physical cores running on 3.20GHz frequency. Hyper-Threading was enabled and
dynamic frequency scaling disabled. The operating system was Ubuntu 20.04.
All provided numbers are based on at least 10 runs of the relevant experiments.

6.1 Scalability Tests

Our �rst experiment is meant to establish the basic capabilities of our arbiter
implementation. An event source sends 10 million events carrying a single 64-bit
number (plus 128 bits of metadata), waiting for some number of cycles between
each event. The performance layer simply forwards the events to autodrop bu�ers
of a certain size, the arbiter retrieves the events, including holes, and forwards
them to the monitor, which keeps track of how many events it saw and how
many were dropped. We varied the number of cycles and the arbiter bu�er sizes
to see how many events get dropped because the arbiter cannot process them
fast enough�the results can be seen in Figure 2.

At about 70 cycles of waiting time, almost all events could be processed
even with very small arbiter bu�er sizes (4 and up). In our test environment,
this corresponds to a delay of roughly 700ns between events, which means that
Vamos is able to transmit approximately 1.4 million of events per second.
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Fig. 2. The percentage of events that reached the �nal stage of the monitor in a stress
test where the source sends events rapidly. Parameters are di�erent arbiter bu�er sizes
(x-axis) and the delay (Waiting) of how many empty cycles the source waits between
sending individual events. The shading around lines shows the 95% con�dence interval
around the mean of the measured value. The source bu�er was 8 pages large, which
corresponds to a bit over 1 300 events.

6.2 Primes

As a stress-test where the monitor actually has some work to do, this benchmark
compares two parallel runs of a program that generates streams of primes and
prints them to the standard output, simulating a form of di�erential monitor-
ing [44]. The task of the monitor is to compare their output and alert the user
whenever the two programs generate di�erent data. Each output line is of the
form #n : p, indicating that p is the nth prime. This is easy to parse using reg-
ular expressions, and our DynamoRIO-based instrumentation tool simply yields
events with two 32-bit integer data �elds (n and p).

While being started at roughly the same time, the programs as event sources
run independently of each other, and scheduling di�erences can cause them to
run out of sync quickly. To account for this, a Vamos speci�cation needs to al-
locate large enough bu�ers to either keep enough events to make up for possible
scheduling di�erences, or at least enough events to make it likely that there is
some overlap between the parts of the two event streams that are not automat-
ically dropped. The arbiter uses the event �eld for the index variable n to line
up events from both streams, exploiting the bu�er group ordering functionality
described in Section 4.2 to preferentially look at the bu�er that is �behind�, but
also allowing the faster bu�er to cache a limited number of events while waiting
for events to show up on the other one. Once it has both results for the same
index, the arbiter forwards a single pair event to the monitor to compare them.

Figure 3 shows results of running this benchmark in 16 versions, generating
between 10 000 and 40 000 primes with arbiter bu�er sizes ranging between 128
and 2024 events. The overheads of running the monitor are small, do not di�er
between di�erent arbiter bu�er sizes, and longer runs amortize the initial cost
of dynamic instrumentation. We created a setting where one of the programs
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Fig. 3. Overheads (left) and percentage of found errors (right) in the primes benchmark
for various numbers of primes and arbiter bu�er sizes relative to DynamoRIO-optimized
but not instrumented runs. DynamoRIO was able to optimize the program so much
that the native binary runs slower than the instrumented one.

generates a faulty prime about once every 10 events and measured how many
of these discrepancies the monitor can �nd (which depends on how many events
are dropped). Unsurprisingly, larger bu�er sizes are better at balancing out the
scheduling di�erences that let the programs get out of sync. As long as the
programs run at the same speed, there should be a �nite arbiter bu�er size that
counters the desynchronization. In these experiments, this size is 512 elements.

Primes with TeSSLa We experimented with a variation of the benchmark
that uses a very simple TeSSLa [16, 40] speci�cation receiving two streams for
each prime generator (i.e., four streams in total): one stream of indexed primes
as in the original experiment, and the other with hole events. The speci�cation
expects the streams to be perfectly lined up and checks that, whenever the last-
seen pairs on both streams have the same index, they also contain the same
prime (and ignores non-aligned pairs of primes). We wrote three variants of an
arbiter to go in front of that TeSSLa monitor:

1. the forward arbiter just forwards events as they come; it is equivalent to writ-
ing a script that parses output of generators and (atomically) feeds events
into a pipe from which TeSSLa reads events.

2. the alternate arbiter always forwards the event from the stream where we
have seen fewer events so far; if streams happen to be aligned (that is, contain
no or only equally-sized hole events), the events will perfectly alternate.

3. the align arbiter is the one we used in our original implementation to intel-
ligently align both streams

Figure 4 shows the impact of these di�erent arbiter designs on how well the
monitor is able to do its task, and that indeed more active arbiters yield better
results�without them, the streams are perfectly aligned less than 1% of the time.
While one could write similar functionality to align di�erent, unsynchronized
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Fig. 4. Percentage of primes checked and errors found (of 40 000 events in total) by
the TeSSLa monitor for di�erent arbiter speci�cations and arbiter bu�er sizes.

streams in TeSSLa directly, the language does not easily support this. As such,
a combination of TeSSLa and Vamos allows simpler speci�cations in a higher-
level monitoring language, dealing with the correct ordering and preprocessing
of events on the middleware level.

6.3 Bank

In this classic veri�cation scenario, we wrote an interactive console application
simulating a banking interface. Users can check bank account balances, and de-
posit, withdraw, or transfer money to and from various accounts. The condition
we want to check is that no operations should be permitted that would allow an
account balance to end up below 0.

We use an event source that employs DynamoRIO [9] to dynamically instru-
ment the program to capture its inputs and outputs, which it parses to forward
the relevant information to the monitor. The monitor in turn starts out with no
knowledge about any of the account balances (and resets any gathered knowl-
edge when hole events indicate that some information was lost), but discovers
them through some of the observations it makes: the result of a check balance
operation gives precise knowledge about an account's balance, while the success
or failure of the deposit/withdraw/transfer operations provides lower and upper
bounds on the potential balances. For example, if a withdrawal of some amount
fails, this amount provides an upper bound on an account's balance, and any
higher successive withdrawal attempt must surely fail too.

In the spirit of third-party monitoring, however, the stateful interface does
not necessarily make it easy to derive these higher level events. For example,
there is no individual con�rmation that says that the withdrawal of some amount
from some account was successful or not. Instead, the user selects an account,
then the withdraw action, is then prompted which amount they would like to
withdraw from said account, and after entering said amount, the system only
displays a message that the withdrawal failed or was successful. The event source
parses each individual step and provides them on two separate streams, one for
the inputs and one for the outputs. This is where Vamos' higher-level event
recognition capabilities (see also the example in Section 4.1) allow the arbiter
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Fig. 5. Results of monitoring a simple banking simulator with Vamos monitor (left)
and TeSSLa monitor (right). Boxplots show the di�erence in the number of reported
errors versus the number of errors the application made, in percent.

to recognize the higher-level events to forward to the monitor, which itself is
therefore again much easier to specify.

To conduct measurements, we randomly generated 10 000 (well-formed) in-
puts and fed them to the banking application as fast as possible. We also let
the application generate erroneous outputs (wrong balances, swapping success
and failure messages) at random and measured how many those our best-e�ort
third-party monitor was able to detect. The size of the source bu�er was one
page (128 events) and we varied the size of arbiter bu�ers from 4 to 2048.

The heavyweight instrumentation we used in this scenario caused the bank-
ing application to run through its script about 40% slower than without instru-
mentation for all sizes of the arbiter bu�er, which is more than in our other
benchmarks, but seems still plausible for interactive programs, and could be
much more optimized. Our second metric is how many errors the monitor actu-
ally detects. Figure 5 shows this for both the monitor we described above and
a TeSSLa variant that only considers exact knowledge about account balances
(no upper or lower bounds) and thus �nds fewer errors, demonstrating both an
alternate monitor design and the use of our TeSSLa connector. The results vary
quite a bit with arbiter bu�er sizes and between runs, and the monitor may re-
port more errors than were inserted into the run. This is because, �rst, especially
with smaller bu�er sizes, the autodrop bu�ers may drop a signi�cant portion (up
to 60% at arbiter bu�er size 4, 5% at size 256) of the events, but the moni-
tor needs to see a contiguous chunk of inputs and outputs to be able to gather
enough information to �nd inconsistencies. Second, some errors cause multiple
inconsistencies: when a transfer between accounts is misreported as successful
or failed when the opposite is true, the balances (or bounds) of two accounts
are wrong. Overall, both versions of the monitor were able to �nd errors with
even smaller sizes of arbiter bu�ers, and increasing numbers improved the results
steadly, matching the expected properties of a best-e�ort third-party monitor.
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6.4 Case Study: Data Race Detection

While our other benchmarks were written arti�cially, we also used Vamos to de-
velop a best-e�ort data race monitor. Most tools for dynamic data race detection
use some variation of the Eraser algorithm [50]: obtain a single global sequence
of synchronization operations and memory accesses, and use the former to estab-
lish happens-before relationships whenever two threads access the same memory
location in a potentially con�icting way. This entails keeping track of the last ac-
cessing threads for each location, as well as of the ways in which any two threads
might have synchronized since those last accesses. Implemented naïvely, every
memory access causes the monitor to pause the thread and atomically update
the global synchronization state. Over a decade of engineering e�orts directed
at tools like ThreadSanitizer [51] and Helgrind [56] have reduced the resulting
overhead, but it can still be substantial.

Vamos enabled us to develop a similar monitor at signi�cantly reduced engi-
neering e�ort in a key area: e�ciently communicating events to a monitor run-
ning in parallel in its own process, and building the global sequence of events.
To build our monitor, we used ThreadSanitizer's source-code-based approach5

to instrument relevant code locations, and for each such location, we reduce
the need for global synchronization to fetching a timestamp from an atomi-
cally increased counter. Based on our facilities for dynamically creating event
sources, each thread forms its own event source to which it sends events. In the
correctness layer, the arbiter builds the single global stream of events used by
our implementation of a version of the Goldilocks [21] algorithm (a variant of
Eraser [50]), using the timestamps to make sure events are processed in the right
order. Autodrop bu�ers may drop some events to avoid overloading the moni-
tor; when this happens to a thread, we only report data races that the algorithm
�nds if all involved events were generated after the last time that events were
dropped. This means that our tool may not �nd some races, often those that
can only be detected looking at longer traces. However, it still found many races
in our experiments, and other approaches to detecting data races in best-e�ort
ways have similar restrictions [55].

Our implementation (contained in our artifact [12]) consists of:

� a straightforward translation of the pseudocode in [21], using the C++ stan-
dard library set and map data structures, with extensions to handle holes;

� a small Vamos speci�cation to retrieve events from the variable number of
event streams in order of their timestamps to forward to the monitor; the
biggest complication here is deciding when to abandon looking for the next
event in the sequence if it may have been dropped;

� an LLVM [39] instrumentation pass post-processing ThreadSanitizer's in-
strumentation to produce an event source compatible with Vamos.

As such, we were able to use Vamos to build a reasonable best-e�ort data-
race monitor with relatively little e�ort, providing evidence that our ease-of-use

5 This decision was entirely to reduce our development e�ort; a dynamic instrumen-
tation source could be swapped in without other changes.
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Fig. 6. Comparing running times of the three tools on all 391 benchmarks (left) and the
correctness of their verdicts on the subset of 118 benchmarks for which it was possible
to determine the ground truth (right). Race vs. no race indicates whether the tool
found at least one data race, correct vs. wrong indicates whether that verdict matches
the ground truth. For benchmarks with unknown ground truth, the three tools agreed
on the existence of data races more than 99% of the time.

design goal was achieved. To evaluate its performance, we tested it on 391 SV-
COMP [7] concurrency test cases supported by our implementation, and com-
pared it to two state-of-the-art dynamic data race detection tools, ThreadSani-
tizer [51] and Helgrind [56]. Figure 6 shows that the resulting monitor in most
cases caused less overhead than both ThreadSanitizer and Helgrind in terms of
time while producing largely the same (correct) verdicts.

7 Related Work

As mentioned before, Vamos' design features a combination of ideas from works
in run-time monitoring and related �elds, which we review in this section.

Event Brokers/Event Recognition A large number of event broker sys-
tems with facilities for event recognition [17, 57, 54, 25, 1] already exist. These
typically allow arbitrary event sources to connect and submit events, and arbi-
trarily many observers to subscribe to various event feeds. Mansouri-Samani and
Sloman [43] outlined the features of such systems, including �ltering and com-
bining events, merging multiple monitoring traces into a global one, and using
a database to store (parts of) traces and additional information for the longer
term. Modern industrial implementations of this concept, like Apache Flink [1],
are built for massively parallel stream processing in distributed systems, sup-
porting arbitrary applications but providing no special abstractions for mon-
itoring, in contrast to more run-time-monitoring-focused implementations like
ReMinds [57]. Complex event recognition systems also sometimes provide capa-
bilities for load-shedding [58], of which autodrop bu�ers are the simplest version.
Most event recognition systems provide more features than Vamos, but are also
harder to set up for monitoring; in contrast, Vamos o�ers a simple speci�cation
language that is e�cient and still �exible enough for many monitoring scenarios.
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Stream Run-Time Veri�cation LoLa [18, 23], TeSSLa [40], and Striver [26]
are stream run-time veri�cation [8] systems that allow expressing a monitor as
a series of mutually recursive data streams that compute their current values
based on each other's values. This requires some global notion of time, as the
streams are updated with new values at time ticks and refer to values in other
streams relative to the current tick, which is not necessarily available in a het-
erogeneous setting. Stream run-time veri�cation systems also do not commonly
support handling variable numbers of event sources. Some systems allow for dy-
namically instantiating sub-monitors for parts of the event stream [23, 3, 48, 6]
in a technique called parametric trace slicing [14]. This is used for logically split-
ting the events on a given stream into separate streams, making them easier
to reason about, and can sometimes be exploited for parallelizing the monitor's
work. These additional streams are internal to the monitoring logic, in contrast,
Vamos' ability to dynamically add new event sources a�ects the monitoring
system's outside connections, while, internally, the arbiter still uni�es the events
coming in on all such connections into one global stream.

Instrumentation The two key questions in instrumentation revolve around
the technical side of how a monitor accesses a monitored system as well as the
behavioral side of what e�ects these accesses can have. On the technical side,
static instrumentation can be either applied to source code [35, 33, 38, 36, 29, 39]
or compiled binaries [22, 19], while dynamic instrumentation, like DyanmoRIO,
is applied to running programs [9, 45, 42]. Alternatively, monitored systems or
the platforms they run on may have speci�c interfaces for monitors already, such
as PTrace and DTrace [10, 27, 49] in the Linux kernel. Any of these can be used
to create an instrumentation tool for Vamos.

On the behavioral side, Cassar et al. surveyed various forms of instrumenta-
tion between completely synchronous and o�ine [11]. Many systems surveyed [13,
15, 4, 20] use a form of static instrumentation that can either do the necessary
monitoring work while interrupting the program's current thread whenever an
event is generated, or o�er the alternative of using the interruption to export the
necessary data to a log to be processed asynchronously or o�ine. A mixed form
called Asynchronous Monitoring with Checkpoints allows stopping the monitored
system at certain points to let the monitor catch up [24]. Our autodrop bu�ers
instead trade precision for avoiding this kind of overhead. Aside from the sur-
vey, some systems [40] incrementalize their default o�ine behavior to provide a
monitor that may eventually signi�cantly lag behind the monitored system.

Executing monitoring code or even just writing event data to a �le or sending
it over the network is costly in terms of overhead, even more so if multiple threads
need to synchronize on the relevant code. Ha et al. proposed Cache-Friendly
Asymmetric Bu�ering [28] to run low-overhead run-time analyses on multicore
platforms. They only transfer 64-bit values, which su�ces for some analyses, but
not for general-purpose event data. Our adapted implementation thus has to do
some extra work, but shares the idea of using a lock-free single-producer-single-
consumer ring bu�er for low overhead and high throughput.
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While we try to minimize it, we accept some overhead for instrumentation
as given. Especially in real-time systems, some run-time monitoring solutions
adjust the activation status of parts of the instrumentation according to some
metrics of overhead, inserting hole events for phases when instrumentation is
deactivated [2, 30, 5]. In contrast, the focus of load-shedding through autodrop
bu�ers is on ensuring that the higher-level part of the monitor is working with
reasonably up-to-date events while not forcing the monitored system to wait.
For monitors that do not rely on extensive summarization of dropped events,
the two approaches could easily be combined.

Monitorability and Missing Events Monitorability [37, 46] studies the abil-
ity of a runtime monitor to produce reliable verdicts about the monitored system.
The possiblity of missing arbitrary events on an event stream without knowing
about it signi�cantly reduces the number of monitorable properties [34]. The au-
todrop bu�ers of Vamos instead insert hole information, which some LTL [31],
TeSSLa [41], and Mealy machine [53] speci�cations can be patched to handle
automatically. Run-time veri�cation with state estimation [52] uses a Hidden
Markov Model to estimate the data lost in missing events.

8 Conclusion

We have presented Vamos, which we designed as middleware for best-e�ort
third-party run-time monitoring. Its goal is to signi�cantly simplify the instru-
mentation part of monitoring, broadly construed as the gathering of high-level
observations that serve as the basis for traditional monitoring speci�cations, par-
ticularly for best-e�ort third-party run-time monitoring, which may often need
some signi�cant preprocessing of the gathered information, potentially collected
from multiple heterogeneous sources. We have presented preliminary evidence
that the way we built Vamos can handle large numbers of events and lets us
specify a variety of monitors with relative ease. In future work, we plan to apply
Vamos' to more diverse application scenarios, such as multithreaded webservers
processing many requests in parallel, or embedded software, and to integrate our
tools with other higher-level languages. If a system's behavior conforms to the
expectation of a third party, this is generally recognized as inspiring a higher
level of trust than if that monitor was written by the system's developers. We
hope that our design can help making best-e�ort third-party run-time monitor-
ing more common.
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Event E Stream Type T Event Source S
Bu�er Group B Stream Processor P Variable/Field X

Hole Operation O

Fig. 7. Identi�ers

Value ν ⊂ n | true | false | . . .
Expression ξ ⊂ X | ν | ξ + ξ | . . .
Statement σ ⊂ {σ} | X = ξ | ξ | τX = ξ | if(ξ) σ else σ | . . .
Type τ ⊂ int | bool | . . .
Exp Evaluation Context E ⊆ · | ν + E | E+ ξ | . . .
Stmt Evaluation Context S ⊆ · | {S++σ} | X = E | τX = E | if(E) σ else σ . . .
Base State Π opaque

Fig. 8. Assumed Base Language Structure

A Language Formalization

This section formalizes the core of Vamos in terms of an extension of some base
language. Our rough notational convention is that greek letters refer to either
the base language or structures of the operational semantics. Patched versions
of base language constructions are marked with ·̃. Figure 7 shows di�erent kinds
of identi�ers we will use - for simplicity, we assume that all sets of identi�ers
are distinct and no shadowing occurs. Grammatical non-terminals that de�ne
an identi�er use ·̂, e.g. Ŝ is the non-terminal for an event source de�nition. Eval-
uation contexts use blackboard bold, e.g. E, and certain reducible non-terminals
that may represent one or more other non-terminals plus a special value ◦ use
the marker ·̇, as in ȧ. We use · to mark lists; the operator ++ works both as cons,
snoc, and concatenate operation, and [] marks an empty list, which in some cases
may also be simply elided.

Our actual language provides additional syntactic shorthands, as well as the
option to limit how many dynamically created event sources can be accepted
to run at the same time, and a notion of rule sets for the arbiter that can
be switched between with a special statement; this serves to be easily able to
activate and deactivate some rules in one fell swoop (see also the examples in
our artifact [12]).

A.1 Base Language

We assume some base language with standard imperative features (in our im-
plementation: C), i.e. standard notions of values ν, Expressions ξ, Statements σ,
and so on, as in Figure 8.

We extend this language with a few extra forms in some places, shown in
Figure 9. In particular, we add an expression for referring to source �elds $S.X,
and several kinds of statements: the �rst can assign a new value to a source �eld,
drop drops a number of events from a given bu�er between the arbiter and the
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Expression ξ̃ extends ξ ::= . . . | $S.X
Statement σ̃ extends σ ::= . . . | $S.X = ξ̃

| drop n from S | yield E(ξ̃)
| add S to B | remove S from B

Stmt Evaluation Context S̃ extends S ::= . . . | yield E(ν++ Ẽ++ ξ̃)

Fig. 9. Extended Language

Event De�nition Ê ::= E(Γ ) | E(Γ ) creates T

Stream Type T̂ ::= stream type T (Γ ) { Ê }
SP Expression e ::= forward E(ξ) | drop | if ξ then e else e
SP Rule p ::= on E(X) e

| on E(X) process using P (ξ)

to k include in B e

Stream Processor P̂ ::= stream processor P (Γ ) : T (ξ) → T (ξ) {p ; Ĥ}
Hole De�nition Ĥ ::= hole E { X̂ }
H. Field De�nition X̂ ::= X : τ = O(E.X)
Bu�er Kind k ::= autodrop(n, n) | infinite | blocking(n)
Event Source Ŝ ::= event source S(Γ ) : T process using P (ξ) to k
Type Env Γ ::= X : τ

Fig. 10. Performance Layer

performance layer, yield forwards and event from the arbiter to a monitor,
and add/remove manage membership in bu�er groups. Of these, only yield
makes a di�erence to evaluation contexts as we compute the data associated
with an event that is going to be forwarded to the monitor.

A.2 The Performance Layer

Figure 10 shows the parts of the performance layer. Stream types de�ne a number
of stream �elds and a list of events, each of which has a number of �elds with
name X and type τ , and some of which may signal the creation of an additional
event source of some stream type.

A stream processor P̂ may specify some arguments Γ to use in instantiating
the �elds of the stream types it uses to describe the events it assumes to receive
and produce. This is mostly important for the output stream, as there is currently
no way for the stream processor itself to access those �elds. The stream processor
then provides a list of rule de�nitions p, which in turn provide a pattern to
match any given event against, and a stream processor expression e that is to
be evaluated on a match. These expressions are limited to nested branches on
base expressions ξ that eventually make a decision whether to drop the current
event or forward something to arbiter. A variant of these rules is for those events
that signal the existence of a new stream source, in which case the rule contains
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Order Expression o ::= round robin | X
Bu�er Group B̂ ::= buffer group B : T order by o {S}
Match Expression b ::= S : done | S : nothing | S : n | S : E(X)

Arbiter Rule â ::= on b where ξ̃ { σ̃ }
| choose S from first n B {â}
| choose S from last n B {â}

Arbiter Â ::= arbiter : T {â}
Monitor Rule m̂ ::= on E(X) where ξ { σ }
Monitor M̂ ::= monitor(n) {m̂}

Fig. 11. Correctness Layer

similar parameters as the speci�cation of event sources (see next). A stream
processor may also specify what summarization data to keep for holes, and what
event name to use for the eventual hole event. This event's �elds are speci�ed
similar to events in stream type declarations, except that they also de�ne the
summarization operation (e.g. count, sum, max, . . . ) and which �elds of which
events are to be used for summarization calculations.

Finally, event sources specify the type of events coming in from some source,
the processor used to process them, and a bu�er kind specifying how much space
there is in the bu�er between the performance layer and the arbiter for events
forwarded by the event processor, and what to do if the bu�er is full. Event
sources also potentially specify arguments they can be instantiated with, which
in turn can be used to instantiate the stream processor and thus the stream
�elds.

A.3 The Correctness Layer

The various components of the correctness layer are shown in Figure 11. The
correctness layers allows grouping various event source bu�ers into bu�er groups.
A de�nition B̂ of such a bu�er group speci�es the name B of the bu�er group,
the stream type of the bu�ers it contains, an order expression o and a list of
bu�ers it contains from the start referred to by their event source name S. The
order expression o speci�es the order in which event sources should be drawn
from the bu�er group in arbiter rules, see below.

The arbiter de�nition Â is the key part of the correctness layer. It speci�es the
type of events it might forward to the monitor and a number of rules that might
do so. These arbiter rules â form arbitrarily branching tree of choose expres-
sions whose leaves are always �nal matching rules (on . . .where). The choose
expressions try instantiating their bu�er variables with distinct members of the
given bu�er group in the order speci�ed by the bu�er group; the two di�erent
versions of choose expressions indicate whether to do this in ascending (first
or descending last order, and whether to limit the instantiation attempts to
the �rst few members (otherwise, one can just provide a large enough n). The
�nal step of rule matching depends largely on bu�er match expressions b. Each
of them references some event source id S, which is either a de�ned event source
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or a variable bound in a choose expression. The bu�er corresponding to that
source can then be constrained to be either done, that is, there are no events
on that bu�er and the event source has indicated no new events will arrive,
or nothing, which just means there are currently no events in the bu�er, or
some number n, which means that there need to be at least n events waiting on
the bu�er, or �nally, a pattern match of potentially multiple events that need
to match the �rst few events currently in the bu�er. In addition to the bu�er
match expressions, a where condition ξ̃ further restricts when a rule can match.
If all conditions are satis�ed, the extended statements in σ̃ are executed.

In contrast to the arbiter, the monitor de�nition M̂ consists of just an indi-
cation of the size of its event queue n and a list of pattern-matching rules m̂ that
can run arbitrary code, but does not have access to our extended expressions or
statements.

A.4 Operational Semantics

The (small-step) operational semantics of Vamos is non-deterministic to re�ect
the asynchronous nature of the various parts of the program. In particular, the
arbiter, the monitor, and every stream processor work on their own threads.
Some additional non-determinism in the order in which bu�er match expressions
are evaluated re�ects an openness to certain optimizations, as discussed below.
The semantics is initialized with every event that eventually shows up on each
event source and as such models the possible behaviors of the system up to some
event in the case of an in�nite event stream.

All of this is re�ected in the data structures we use to track the program
state�shown in Figure 12�and the top-level semantics shown in Figure 13.
The state of the program is split to make it easy to access sub-parts of it in
many cases. The signature of the core stepping relation in Figure 13 is

Σ | Ω | Π ⊢ Θ→Θ ⊣ Σ | Ω | Π

modelling a transition of the core state Θ and the auxiliary state with its three
components:Σ is a list of events representing the event queue between the arbiter
and the monitor, Ω mostly contains the code of the program as written, except
that it also keeps track of membership in bu�er groups (otherwise, it is just
used for reference and the proof of type safety), and Π is the (opaque) store
data structure of the base language�we do not manipulate this on our own,
but thread it through for use by the base transition relation, whose signature we
assume to be:

Π ⊢ σ ⊣ Π

The core Vamos state data structure as shown in Figure 12 essentially keeps
track of the threads of the monitoring system�some number of threads for the
stream processors, and one each for the arbiter and the monitor. The state of
the monitor is simple, as it is just the current (block of) statement(s) that is
being executed�we assume that the base step relation uses the following rule
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Program Ω ::= ⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩
Event ϵ ::= E(ν++Σ)
Maybe Event ϵ̇ ::= ◦ | ϵ
Event List Σ ::= ϵ

Choice State ψ ::= ⟨S, S, S⟩
Choice Stack ϕ ::= ◦ | ⟨ψ, â, â⟩;ϕ
Processor Redex ė ::= ◦ | e
Processor State ρ ::= ⟨S, P,∆,Σ, ė, k, ϵ̇, Σ⟩ | ⟨S, P (ξ), Σ, k,X 7→ ξ,B⟩
Arbiter Redex ȧ ::= ◦ | â | σ̃
Arbiter Local State ς ::= ⟨B, ρ, B̂⟩
Arbiter State α ::= ⟨ȧ, â, ϕ, ς⟩
Monitor State µ ::= σ
Vamos State Θ ::= ⟨ρ, α, µ⟩
Processor Eval Ctx P ::= · | forward E(ν++E++ ξ) | if E then e else e
Source State E-Ctx B ::= · | ⟨S, P,∆,Σ,P, k, ϵ̇, Σ⟩ | ⟨S, P (ν++E++ ξ), Σ, k, [], B⟩

| ⟨S, P (ν), Σ, k,X 7→ ν++X 7→ E++X 7→ ξ,B⟩
Arbiter Eval Ctx A ::= · | ⟨S̃, â, ϕ, ς⟩ | ⟨on b where Ẽ {σ̃}, â, ϕ, ς⟩
Monitor Eval Ctx M ::= S̃
Eval Context X ::= ⟨ρ++B++ ρ, α, µ⟩ | ⟨ρ,A, µ⟩ | ⟨ρ, α,M⟩

Fig. 12. Operational Semantics Grammar

to step in blocks of code:

Π ⊢ {{}++σ}→{σ} ⊣ Π

In turn, we also assume that statements that have �nished their work turn
themselves into {} in the stepping relation. This means that the initial state of
the monitor and the state it ends up in after executing a rule can be {}.

The state of a stream processor is more complex, as it keeps track of the
source S it belongs to, the name P of the processor template it was instantiated
from, a map ∆ of stream �elds, a list Σ of events that may eventually show up on
the event source (as discussed above), a redex ė describing the state of executing
the stream processor's code (◦ means it is ready to process another event), the
bu�er kind k of the bu�er the stream processor forwards events to, the next
hole event ϵ̇ under construction, and another list Σ′ of events in said bu�er. The
second version of a stream processor state keeps track of stream processors as
they are initializing when a stream is opened dynamically.

Finally, the arbiter state keeps track of a redex ȧ as well, but combines this
with continuations â for the next rules to be tried if a match fails or a stack ϕ of
backtracking options for choosing di�erent kinds of event sources. The stack ϕ of
backtracking options in turn consists of entries which keep track of an individual
permutation state ψ for each variable of a choose expression, the list of arbiter
rules â to be tried within that choose expression, and the continuation â′ of
sibling rules of the choose expression we move on to if all potential choices are
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Σ | Ω | Π ⊢ Θ→Θ ⊣ Σ | Ω | Π

Π | [] ⊢ ξ̃→ ξ̃′ ⊣ Π
Σ | Ω | Π ⊢ X[ξ̃]→X[ξ̃′] ⊣ Σ | Ω | Π

Σ | Ω | Π | [] ⊢ σ̃→ σ̃′ ⊣ Σ′ | Ω′ | Π ′ | []
Σ | Ω | Π ⊢ X[σ̃]→X[σ̃′] ⊣ Σ′ | Ω′ | Π ′

Ω | Π ⊢ ρ→ ρ′ ⊣ Ω′

Σ | Ω | Π ⊢ X[ρ]→X[ρ′] ⊣ Σ | Ω′ | Π
Σ | Ω | Π | ρ ⊢ α→α′ ⊣ Σ′ | Ω′ | Π ′ | ρ′

Σ | Ω | Π ⊢ ⟨ρ, α, µ⟩→⟨ρ′, α′, µ⟩ ⊣ Σ′ | Ω′ | Π ′

Ω = ⟨T̂ , Ŝ, P̂ , B̂,arbiter : T {â}, M̂⟩
on E(X) {σ} ∈ M̂ Ω ⊢ σ[E(X 7→ ν) : T ]→σ′

E(ν)++Σ | Ω | Π ⊢ ⟨ρ, α, {}⟩→⟨ρ, α, σ′⟩ ⊣ Σ | Ω | Π

Fig. 13. Operational Semantics�Top Level

exhausted without �nding a match. The individual permutation state ψ consists
of the name of the corresponding variable, a list S of sources in the bu�er group
we have already tried in this permutation attempt, and a list S′ of sources in
the bu�er group that are still to be tried. Each round of checking arbiter rules
keeps track of some local state ς, consisting of three elements. For implementing
the round-robin order of bu�er groups, we keep track of the list of bu�er group
ids B we have explored in this round. Furthermore, in order to stay consistent
about the events in a particular bu�er and the bu�ers in a particular bu�er
group, the �rst check that references either of them makes a local copy for the
particular round, to be used later. This avoids �rst checking a rule that asks for
an event in a particular bu�er while that bu�er is empty but matching on a rule
that asks for two events on that bu�er later when more events have concurrently
appeared, and similar for checks if a bu�er has a member that matches certain
conditions.

The top-level rules of the stepping relation then start with general-purpose
rules to evaluate expressions and statements. The empty list as the last part of
the context on both sides is an argument that in more specialized cases contains
the list of stream processor threads ρ. This only applies in the arbiter, however,
so in general, expressions and statements have to make progress without access
to that information. In addition, the expression rule here requires that the ex-
pressions do not a�ect the global state of the program (this is only allowed for
expressions contained in statements).

The next two rules refer to the individual stepping relations for stream proces-
sors and the arbiter, respectively. The �nal rule starts each cycle of the monitor
processing an event by retrieving the �rst waiting event from the queue between
the arbiter and the monitor (if any), generating appropriate local variable as-
signments for the pattern match variables, and prepending them to the code
associated with the matched rule. All other work by the monitor is covered by
the �rst two rules.
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Ω | Π ⊢ ρ→ ρ ⊣ Ω

Ω = ⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩
stream processor P (. . .) : . . . {p++ p′ ++ p′′; Ĥ} ∈ P̂ p′ ⊢ ϵ→ e ⊣ ρ

Ω | Π ⊢ ⟨S, P,∆, ϵ++Σ, ◦, k, n,Σ′⟩→⟨S, P,∆,Σ, e, k, n,Σ′⟩++ ρ ⊣ Ω

Ω = ⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩ k | Ĥ | Ê | ϵ̇ | Σ′ ⊢ e→ e′ ⊣ ϵ̇′ | Σ′′

stream processor P (X : τ) : T (ξ) → T ′(ξ′) {p; Ĥ} ∈ P̂

stream type T ′(X ′ : τ ′) { Ê } ∈ T̂

Ω | Π ⊢ ⟨S, P,∆,Σ, e, k, ϵ̇, Σ′⟩→ [⟨S, P,∆,Σ, e′, k, ϵ̇′, Σ′′⟩] ⊣ Ω

k = autodrop(n′, n′′) |Σ′| < n′ − n′′

Ω | Π ⊢ ⟨S, P,∆,Σ, e, k, ϵ, Σ′⟩→ [⟨S, P,∆,Σ, e, k, ◦, Σ′ ++ ϵ⟩] ⊣ Ω

Ω = ⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩
stream processor P (X : τ) : T (ξ) → T ′(ξ′) {p; Ĥ} ∈ P̂

stream type T ′(X ′ : τ ′) { Ê } ∈ T̂

Ω | Π ⊢ ⟨S, P (ν), Σ, k, [], B⟩→[⟨S, P (ν), Σ, k,X ′ 7→ ξ′[X 7→ ν], B⟩] ⊣ Ω

Ω ⊢ B + S ⊣ Ω′

Ω | Π ⊢ ⟨S, P (ν′), Σ, k,X 7→ ν,B⟩→[⟨S, P,X 7→ ν,Σ, ◦, k, ◦, []⟩] ⊣ Ω′

p ⊢ ϵ→ e ⊣ ρ
on E(X) e ⊢ E(ν)→ e[X 7→ ν] ⊣ []

p = on E(X) process using P (ξ) to k include in B e

p ⊢ E(ν++Σ)→ e[X 7→ ν] ⊣ [⟨freshS , P (ξ[X 7→ ν]), Σ, k, [], B⟩]

Ω ⊢ B + S ⊣ Ω
Ω ⊢ [] + S ⊣ Ω

Ω = ⟨T̂ , Ŝ, P̂ , B̂l ++ B̂++ B̂r, Â, M̂⟩ Ω′ = ⟨P̂ , B̂l ++ B̂′ ++ B̂r, Â, M̂⟩
B̂ = buffer group B : T order by o {S′} S′′ = S′ ∪ S

B̂′ = buffer group B : T order by o {S′′} Ω′ ⊢ B′ + S ⊣ Ω′′

Ω ⊢ B′ ++B + S ⊣ Ω′′

Fig. 14. Operational Semantics�Performance Layer (High-Level)

A.5 Performance Layer Semantics

The speci�c stepping rules for the performance layer are shown in Figures 14
and 15. The �rst rule resets the current redex to process the next event when the
last one has been processed, potentially also initializing the creation of a new
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event source and stream processor using the �rst helper relation. The second rule
takes a step in evaluating the current redex using the last two helper relations
below. The third rule applies only to event sources that use autodrop bu�ers�
in that case, if a hole event that collects summarization information has been
generated and there is enough space again to enqueue new events in the arbiter
bu�er, we emit that hole event and reset its slot. This also leaves space for at
least one regular event, so at no point there are two consecutive hole events. The
fourth rule takes a step in initializing a dynamically added event source - once
the arguments for the stream processor are evaluated, we can start evaluating
the arguments to the stream type that contains the relevant stream �elds. The
�fth rule rule �nishes this initialization process once all arguments to the stream
type have been evaluated. In that step, the second helper relation takes care of
adding the event source to the speci�ed list of bu�er groups.

The �rst four rules in Figure 15 deal with the stream processor redexes;
the only interesting case is when an event is forwarded, in which case the �rst
helper relation interprets the bu�er kind k to determine whether and how we
can proceed. The important cases here concern the autodrop bu�er: hole event
construction (using the �nal two helper relations) only starts when the arbiter
bu�er is full, and only continues while not enough space is free. Conversely,
events are only forwarded when no hole event is being constructed (if one is, the
rule that emits and resets it is in Figure 14 above).

A.6 Arbiter Semantics

The rules for the arbiter in Figure 16 start by allowing statements to step with
the additional information about the stream processors, in particular, this is
where the stream �elds are stored. The second rule refers to the more speci�c
rules for running the matching process below, while the last rule resets the arbiter
state to look for the next rule to apply. This latter rule also checks if there are
any events left to process anyway before proceeding, and also adjusts the order
of event sources in each bu�er group according to its speci�cation.

The �rst rule of the rule matching process considers the state when a rule
has matched and its statements have been executed to completion. In that case,
we also clear both kinds of continuations: the rules that we might have tried
next if the current one would not have matched, and the stack of potential other
permutations we would try if none of those latter rules apply, either. The second
rule handles that latter case, retrieving a new list of rules to try and an updated
stack, while the third rule handles the former case of simply retrieving the next
rule.

The next two rules are very similar and only di�er in the way they apply the
ordering of the bu�er group, setting up the evaluation of a choice expression by
pushing the initial setup for the given permutation to the stack, also storing the
current arbiter rules continuation there.

The �nal four rules in Figure 16 deal with the top-level aspects of matching
a concrete rule. This is the one case of non-determinism in this semantics that is
not due to multithreading, but rather for optimization: while the arbiter needs to



Vamos: Middleware for Best-E�ort Third-Party Monitoring 31

k | Ĥ | Ê | ϵ̇ | Σ ⊢ e→ e ⊣ ϵ̇ | Σ

k | Ĥ | Ê | ϵ̇ | Σ ⊢ drop→◦ ⊣ ϵ̇ | Σ
k | Ĥ | Ê | ϵ̇ ⊢ Σ + E(ν)→Σ′ ⊣ ϵ̇′

k | ϵ̇ | Σ ⊢ forward E(ν)→◦ ⊣ ϵ̇′ | Σ′

k | Ĥ | Ê | ϵ̇ | Σ ⊢ if true then e1 else e2 → e1 ⊣ ϵ̇ | Σ

k | Ĥ | Ê | ϵ̇ | Σ ⊢ if false then e1 else e2 → e2 ⊣ ϵ̇ | Σ

k | Ĥ | Ê | ϵ̇ ⊢ Σ + ϵ→Σ ⊣ ϵ̇

infinite | Ĥ | Ê | ◦ ⊢ Σ + ϵ→Σ++ ϵ ⊣ ◦

k = blocking(n) |Σ| < n

k | Ĥ | Ê | ◦ ⊢ Σ + ϵ→Σ++ ϵ ⊣ ◦

|Σ| ≥ n ∨ (ϵ̇′ ̸= ◦ ∧ |Σ| ≥ n− n′)

Ĥ | Ê ⊢ ϵ̇+ ϵ = ϵ̇′

autodrop(n, n′) | Ĥ | Ê | ϵ̇ ⊢ Σ + ϵ→Σ ⊣ ϵ̇′
k = autodrop(n, n′) |Σ| < n

k | Ĥ | Ê | ◦ ⊢ Σ + ϵ→Σ++ ϵ ⊣ ◦

Ĥ | Ê ⊢ ϵ̇+ ϵ = ϵ̇
Ê ⊢ E′ : X : τ X̂ ⊢ ν + E′(X = ν′) = ν′′

hole E { X̂ } | Ê ⊢ E(ν) + E′(ν′) = E(ν′′)

Ê ⊢ E′ : X : τ X̂ ⊢ ν X̂ ⊢ ν + E′(X = ν′) = ν′′

hole E { X̂ } | Ê ⊢ ◦+ E′(ν′) = E(ν′′)

X̂ ⊢ ν + E(X = ν) = ν

X : τ = O([]) ⊢ ν + E(X ′ = ν′) = ν

E′′ ̸= E X : τ = O(E′′′.X ′′′) ⊢ ν + E(X ′ = ν′) = ν′′

X : τ = O(E′′′.X ′′′ ++[E′′.X ′′]) ⊢ ν + E(X ′ = ν′) = ν′′

X ′′ = νX ∈ X ′ = ν′

ν′′′ = O(ν′′, νX) X : τ = O(E′′′.X ′′′) ⊢ ν + E(X ′ = ν′) = ν′′

X : τ = O(E′′.X ′′′ ++[E.X ′′]) ⊢ ν + E(X ′ = ν′) = ν′′′

Fig. 15. Operational Semantics�Performance Layer (Event Processing)

try to apply the rules in order, the evaluation of the components of a particular
rule can happen in any order. This allows the compiler to try to re-use existing
information e�ciently to fail fast, and makes little semantic di�erence so long
as the expressions in the where clause do not a�ect the state of the program
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Σ | Ω | Π | ρ ⊢ α→α ⊣ Σ | Ω | Π | ρ

Σ | Ω | Π | ρ ⊢ σ̃→ σ̃′ ⊣ Σ′ | Ω′ | Π ′ | ρ′

Σ | Ω | Π | ρ ⊢ A[σ̃]→A[σ̃′] ⊣ Σ′ | Ω′ | Π ′ | ρ′
Ω | Π | ρ ⊢ α→α′

Σ | Ω | Π | ρ ⊢ α→α′ ⊣ Σ | Ω | Π | ρ

Ω = ⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩ ⊢ ρ not done
ρ | B ⊢ B̂→ B̂′ Â = arbiter : T {â} Ω′ = ⟨T̂ , Ŝ, P̂ , B̂′, Â, M̂⟩

Σ | Ω | Π | ρ ⊢ ⟨◦, [], ◦, ⟨B, ρ′, B̂′′⟩⟩→⟨◦, â, ◦, ⟨[], [], []⟩⟩ ⊣ Σ | Ω′ | Π | ρ

Ω | Π | ρ ⊢ α→α

Ω | Π | ρ ⊢ ⟨{}, â, ϕ, ς⟩→⟨◦, [], ◦, ς⟩

ϕ ⊢ â ⊣ ϕ′

Ω | Π | ρ ⊢ ⟨◦, [], ϕ, ς⟩→⟨◦, â, ϕ′, ς⟩ Ω | Π | ρ ⊢ ⟨◦, â++ â′, ϕ, ς⟩→⟨â, â′, ϕ, ς⟩

Ω | ς ⊢ buffer group B : T order by o {S′} ⊣ ς ′

S′ = S′′ ++S′′′ |S′′| = min(n, |S′|) ψ = ⟨S, [], S′′⟩
Ω | Π | ρ ⊢ ⟨choose S from first n B {â}, â′, ϕ, ς⟩→⟨◦, [], ⟨ψ, â, â′⟩;ϕ, ς ′⟩

Ω | ς ⊢ buffer group B : T order by o {S′} ⊣ ς ′

S′ = S′′′ ++S′′ |S′′| = min(n, |S′|) ψ = ⟨S, [], reverse(S′′)⟩
Ω | Π | ρ ⊢ ⟨choose S from last n B {â}, â′, ϕ, ς⟩→⟨◦, [], ⟨ψ, â, â′⟩;ϕ, ς ′⟩

Ω | Π | ρ ⊢ ⟨on [] where true { σ̃ }, â′, ϕ, ς⟩→⟨σ̃, â′, ϕ, ς⟩

Ω | Π | ρ ⊢ ⟨on b where false { σ̃ }, â′, ϕ, ς⟩→⟨◦, â′, ϕ, ς⟩

Ω | ρ | ς | b ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃′, σ̃′⟩ ⊣ ς ′

Ω | Π | ρ ⊢ ⟨on b++ b++ b′ where ξ̃ { σ̃ }, â′, ϕ, ς⟩→⟨on b++ b′ where ξ̃′ { σ̃′ }, â′, ϕ, ς ′⟩

Π | ρ ⊢ ξ̃→ ξ̃′ ⊣ Π
Ω | Π | ρ ⊢ ⟨on b where ξ̃ { σ̃ }, â′, ϕ, ς⟩→⟨on b where ξ̃′ { σ̃ }, â′, ϕ, ς⟩

Fig. 16. Operational Semantics�Arbiter

(which the semantics requires anyway). Of these rules, the �rst deals with when
a rule applies: all bu�er match expressions must have been evaluated, and the
where clause must be true. Conversely, if the where clause ever turns out to be
false, the rule does not match, and we reset the redex to ◦. The penultimate rule
refers to the rules for evaluating bu�er match expressions belows; the key thing
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ϕ ⊢ â ⊣ ϕ

⟨⟨S, S′, []⟩++ψ, â, â′⟩;ϕ ⊢ â′ ⊣ ϕ

ψp = ⟨Sp, S′
p, S

′′
p ++S′′′

p ⟩
ψ′

p = ⟨Sp, S′
p ++S′′

p , S′′′
p ⟩ ψe = ⟨Se, S′

e, []⟩ ψ′
e = ⟨Se, [], S′

e⟩
⟨ψ++ψp ++ψe ++ψ′, â, â′⟩;ϕ ⊢ [] ⊣ ⟨ψ++ψ′

p ++ψ′
e ++ψ′, â, â′⟩;ϕ

∀Sq. Sq ̸= [] ⟨Sv, Ss, Sq⟩++⟨S′
v, S′

s, Sn ++S′
q⟩ | [] ⊢ â→ â′′

⟨⟨Sv, Ss, Sq⟩++⟨S′
v, S′

s, Sn ++S′
q⟩, â, â′⟩;ϕ ⊢ â′′ ⊣ ⟨⟨Sv, Ss, Sq⟩++⟨S′

v, S′
s ++Sn, S′

q⟩, â, â′⟩;ϕ

ψ | S ⊢ â→ â

[] | S ⊢ â→ â ⟨Sv, Sp, []⟩++ψ | Ss ⊢ â→[]

Sn ∈ Ss ⟨Sv, Sp, S′⟩++ψ | Ss ⊢ â→ â′

⟨Sv, Sp, Sn ++S′⟩++ψ | Ss ⊢ â→ â′

Sn /∈ Ss ψ | Sn ++Ss ⊢ â→ â′

⟨Sv, Sp, Sn ++S′⟩++ψ | Ss ⊢ â→ â′[Sv 7→ Sn]

Fig. 17. Arbiter Rule-Matching (Backtracking)

here is that evaluating a bu�er match expression may a�ect both the where
clause and the statements to be executed when the arbiter rule applies, mainly
by essentially substituting variables in matched events, but also by setting the
where clause to false if a bu�er match expression does not match. Finally, the
arbiter allows expressions in the where clause to access the stream �elds of the
given streams, but not to a�ect the state in terms of the base language.

Choose Expressions and Backtracking The rules in Figure 17 deal with
generating the k-permutations of event sources in bu�er groups for choose
expressions. An element of the choice stack ϕ consists of a list of choice states
ψ, the arbiter rules â to be tried within the current choose expression, and the
arbiter rules â′ forming the continuation of the choose expression. A choice
state ψ corresponds to a bu�er variable S in choose expression and tracks the
current state of its permutation. Essentially, the last (right-most) variable in
that list makes a step every time, moving a variable from the to-be-used list
on the right to the already-used list on the left. Once a variable has exhausted
that list, it resets and lets the variable to its left take a step. The �rst rule in
Figure 17 deals with the case when the �rst (left-most) variable has exhausted
all its options: in this case, we have examined all permutations without success,
so we return the continuation arbiter rules and pop the current entry from the
choice stack. The second rule covers the left-propagation of making steps when
all options are exhausted, while the last rule tries to generate an instantiation of



34 M. Chalupa, S. Muroya Lei, F. Muehlboeck, T. A. Henzinger

Ω | ρ | ς | b ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃, σ̃⟩ ⊣ ς

ρ | ς ⊢ stream(b) 7→ ρ′ ⊣ ς ′ Ω | ρ′ | b ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃′, σ̃′⟩
Ω | ρ | ς | b ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃′, σ̃′⟩ ⊣ ς ′

Ω | ρ | b ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃, σ̃⟩

ρ = ⟨S, P,∆, [], ė, k, []⟩
Ω | ρ | S : done ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃, σ̃⟩

ρ = ⟨S, P,∆,Σ, ė, k,Σ′⟩ Σ++Σ′ ̸= []

Ω | ρ | S : done ⊢ ⟨ξ̃, σ̃⟩→⟨false, σ̃⟩

ρ = ⟨S, P,∆,Σ, ė, k, []⟩
Ω | ρ | S : nothing ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃, σ̃⟩

ρ = ⟨S, P,∆,Σ, ė, k,Σ′⟩ Σ′ ̸= []

Ω | ρ | S : nothing ⊢ ⟨ξ̃, σ̃⟩→⟨false, σ̃⟩

ρ = ⟨S, P,∆,Σ, ė, k,Σ′⟩ |Σ′| ≥ n

Ω | ρ | S : n ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃, σ̃⟩
ρ = ⟨S, P,∆,Σ, ė, k,Σ′⟩ |Σ′| < n

Ω | ρ | S : n ⊢ ⟨ξ̃, σ̃⟩→⟨false, σ̃⟩

ρ = ⟨S, P,∆,Σ, ė, k, E(ν)++Σ′⟩
Ω ⊢ P : T ′ → T

Ω ⊢ σ̃[E(X 7→ ν) : T ]→ σ̃′

Ω | ρ | S : E(X) ⊢ ⟨ξ̃, σ̃⟩→⟨ξ̃[X 7→ ν], σ̃′⟩

ρ = ⟨S, P,∆,Σ, ė, k, E′(ν)++Σ′⟩
|E′(ν)++Σ′| < |E| ∨ (|E′| = |E| ∧ E′ ̸= E)

Ω | ρ | S : E(X) ⊢ ⟨ξ̃, σ̃⟩→⟨false, σ̃⟩

Fig. 18. Bu�er Match Expression Evaluation

the current choose expression's arbiter rules, and makes the last variable take
a step as discussed above. Because each variable has been initialized with the
same list of potential event sources, this would by default generate a k-tuple,
so a helper relation makes sure we skip variables that have already been used.
This may end up with some variable being out of options, in which case we
just generate an empty list of arbiter rules to move on to the next attempt at
generating a permutation.

Bu�er Match Expressions Figure 18 shows the rules for evaluating bu�er
match expressions. The top rule makes sure to either retrieve the local copy of
some bu�er state for the current round, or makes that copy if it does not exist.
Then, for each form of bu�er match expressions, there are two rules: one for the
case where the expression matches the current state of the referred-to bu�er,
and one for the case where it does not. In the second case, we simply adjust
the where expression of the rule to be false. Otherwise, the �rst three cases
leave the expression and statement unchanged, while the last case substitutes
the pattern-match variables in the expression and adds de�nition statements for
them in the statement (code block).
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Σ | Ω | Π | ρ ⊢ σ̃→ σ̃ ⊣ Σ | Ω | Π | ρ

Π ⊢ σ̃→ σ̃′ ⊣ Π ′

Σ | Ω | Π ⊢ σ̃→ σ̃′ ⊣ Σ | Ω | Π ′
Π | ρ ⊢ ξ̃→ ξ̃′ ⊣ Π ′

Σ | Ω | Π | ρ ⊢ S̃[ξ̃]→ S̃[ξ̃′] ⊣ Σ | Ω | Π ′ | ρ

ρ = ρl ++⟨S, P,∆,Σ, ė, k,Σ′⟩++ ρr ρ′ = ρl ++⟨S, P,∆[X 7→ ν], Σ, ė, k,Σ′⟩++ ρr

Σ | Ω | Π | ρ ⊢ $S.X = ν→{} ⊣ Σ | Ω | Π | ρ′

ρ = ρl ++⟨S, P,∆,Σ, ė, k,Σ′ ++Σ′′⟩++ ρr
|Σ′| = n ρ′ = ρl ++⟨S, P,∆,Σ, ė, k,Σ′′⟩++ ρr

Σ | Ω | Π | ρ ⊢ drop n from S→{} ⊣ Σ | Ω | Π | ρ′

Σ | Ω | Π | ρ ⊢ yield E(ν)→{} ⊣ Σ++E(ν) | Ω | Π | ρ

Ω = ⟨T̂ , Ŝ, P̂ , B̂l ++ B̂++ B̂r, Â, M̂⟩
B̂ = buffer group B : T order by o {S′} S′′ = S′ ∪ S

B̂′ = buffer group B : T order by o {S′′} Ω′ = ⟨P̂ , B̂l ++ B̂′ ++ B̂r, Â, M̂⟩
Σ | Ω | Π | ρ ⊢ add S to B→{} ⊣ Σ | Ω′ | Π | ρ

Ω = ⟨T̂ , Ŝ, P̂ , B̂l ++ B̂++ B̂r, Â, M̂⟩
B̂ = buffer group B : T order by o {S′} S′′ = S′ \ S

B̂′ = buffer group B : T order by o {S′′} Ω′ = ⟨P̂ , B̂l ++ B̂′ ++ B̂r, Â, M̂⟩
Σ | Ω | Π | ρ ⊢ remove S from B→{} ⊣ Σ | Ω′ | Π | ρ

Fig. 19. Operational Semantics�Statements

Π | ρ ⊢ ξ̃→ ξ̃ ⊣ Π

Π ⊢ ξ̃→ ξ̃′ ⊣ Π ′

Π | ρ ⊢ ξ̃→ ξ̃′ ⊣ Π ′
⟨S, P,∆,Σ′, ė, k,Σ⟩ ∈ ρ ∆(X) = ν

Π | ρ ⊢ $S.X→ ν

Fig. 20. Operational Semantics�Expressions

A.7 Statements

The semantics for statements are shown in Figure 19. The �rst rule refers to
the semantics of statements in the base language, while the second rule allows
expressions nested in a statement to a�ect the base language program state.
The other rules are similarly straightforward: adjusting stream �elds, dropping
events from bu�ers, forwarding events to the monitor, and adjusting membership
in bu�er groups work just as one would expect.
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A.8 Expressions and Helper Relations

Figure 20 deals with extended expressions, simply referring to the base language
semantics for most except accessing stream �elds, which is straightforward.

Figures 21 and 21 de�ne various helper relations used in other rules. The �rst
two are used to insert variable de�nitions into statements for variables used in
event pattern matches, the third checks whether the arbiter can expect to see any
more events, and the next rules deal with updating the ordering of event sources
in bu�er groups by applying either a round-robin step to the appropriate bu�er
groups that were actually used in the last round of the arbiter trying to match
any rules, and by sorting the others according to values of the selected stream
�eld. Then, some predicates process the lookup of current stream and bu�er
group states if they are not already cached for a given round of checking arbiter
rules, while the �nal three are basic lookup functions for rules used earlier.
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Ω ⊢ σ̃[E(X 7→ ν) : T ]→ σ̃

stream type T (Γ ) { E′(Γ ′)++E(X ′ : τ)++E′′(Γ ′′) } ∈ T̂

⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩ ⊢ σ̃[E(X 7→ ν) : T ]→{τ X = ν++ σ̃}

Ω ⊢ P : T → T

stream processor P (Γ ) : T (ξ) → T ′(ξ′) {p; Ĥ} ∈ P̂

⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩ ⊢ P : T → T ′

⊢ ρ not done

Σ++Σ′ ̸= []

⊢ ⟨S, P,∆,Σ, ė, k,Σ′⟩++ ρ not done

⊢ ρ not done
⊢ ⟨S, P,∆, [], ė, k, []⟩++ ρ not done

ρ | B ⊢ B̂→ B̂

ρ | B ⊢ []→[]

ρ | B′ ⊢ B̂′ → B̂′′′ B̂ = buffer group B : T order by o {S}
ρ | B′ ⊢o

B S→S′ B̂′′ = buffer group B : T order by o {S′}

ρ | B′ ⊢ B̂++ B̂′ → B̂′′ ++ B̂′′′

ρ | B ⊢o
B S→S

ρ | B′ ⊢o
B []→[]

ρ ⊢X S→S′

ρ | B′ ⊢X
B S→S′

B ∈ B′

ρ | B′ ⊢round robin
B S++S′ →S′ ++S

B /∈ B′

ρ | B′ ⊢round robin
B S→S

ρ ⊢X S→S

ρ ⊢X []→[]

ρ ⊢X S′ →S′′ ++S′′′ ∀S′′. ρ ⊢X S′′ ≤ S ∀S′′′. ρ ⊢X S ≤ S′′′

ρ ⊢X S++S′ →S′′ ++S++S′′′

ρ ⊢X S ≤ S

⟨S, P,∆,Σ, ė, k,Σ′⟩ ∈ ρ ⟨S′, P ′,∆′, Σ′′, ė′, k′, Σ′′′⟩ ∈ ρ ∆(X) ≤ ∆′(X)

ρ ⊢X S ≤ S′

Fig. 21. Operational Semantics�Helpers, Part 1
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Ω | ς ⊢ B̂ ⊣ ς

B̂′ = buffer group B′ : T order by o {S′} B̂′ ∈ B̂

Ω | ⟨B, ρ, B̂⟩ ⊢ B̂′ ⊣ ⟨B ∪B′, ρ, B̂⟩

B̂′′ = buffer group B′ : T order by o {S′} B̂′′ /∈ B̂′ B̂′′ ∈ B̂

⟨T̂ , Ŝ, P̂ , B̂, Â, M̂⟩ | ⟨B, ρ, B̂′⟩ ⊢ B̂′′ ⊣ ⟨B ∪B′, ρ, B̂′ ++ B̂′′⟩

ρ | ς ⊢ S 7→ ρ ⊣ ς

ς = ⟨B, ρ′′, B̂⟩
ρ′ /∈ ρ′′ ρ′ ∈ ρ

ρ′ = ⟨S, P,∆,Σ, ė, k,Σ′⟩
ρ | ς ⊢ S 7→ ρ′ ⊣ ς

ρ′ /∈ ρ′′ ρ′ ∈ ρ ρ′ = ⟨S, P,∆,Σ, ė, k,Σ′⟩

ρ | ⟨B, ρ′′, B̂⟩ ⊢ S 7→ ρ′ ⊣ ⟨B, ρ′′ ++ ρ′, B̂⟩

stream(b) 7→ S

b stream(b)

S : done S
S : nothing S
S : n S

S : E(X) S

Ê ⊢ E : Γ

E(Γ ) ∈ Ê

Ê ⊢ E : Γ

E(Γ ) creates T ∈ Ê

Ê ⊢ E : Γ

X̂ ⊢ ν

X : τ = count(E.X) ⊢ 0 X : τ = sum(E.X) ⊢ 0 X : τ = prod(E.X) ⊢ 1

X : τ = max(E.X) ⊢ −∞ X : τ = min(E.X) ⊢ ∞

Fig. 22. Operational Semantics�Helpers, Part 2
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