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Growth-mediated negative feedback shapes
quantitative antibiotic response
S Andreas Angermayr1,2,† , Tin Yau Pang3,4 , Guillaume Chevereau5, Karin Mitosch2,6,

Martin J Lercher3,4 & Tobias Bollenbach1,7,*

Abstract

Dose–response relationships are a general concept for quantita-
tively describing biological systems across multiple scales, from
the molecular to the whole-cell level. A clinically relevant example
is the bacterial growth response to antibiotics, which is routinely
characterized by dose–response curves. The shape of the dose–re-
sponse curve varies drastically between antibiotics and plays a key
role in treatment, drug interactions, and resistance evolution.
However, the mechanisms shaping the dose–response curve
remain largely unclear. Here, we show in Escherichia coli that the
distinctively shallow dose–response curve of the antibiotic
trimethoprim is caused by a negative growth-mediated feedback
loop: Trimethoprim slows growth, which in turn weakens the
effect of this antibiotic. At the molecular level, this feedback is
caused by the upregulation of the drug target dihydrofolate reduc-
tase (FolA/DHFR). We show that this upregulation is not a specific
response to trimethoprim but follows a universal trend line that
depends primarily on the growth rate, irrespective of its cause.
Rewiring the feedback loop alters the dose–response curve in a
predictable manner, which we corroborate using a mathematical
model of cellular resource allocation and growth. Our results indi-
cate that growth-mediated feedback loops may shape drug
responses more generally and could be exploited to design evolu-
tionary traps that enable selection against drug resistance.
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Introduction

Dose–response curves are a central concept in systems biology and

essential for understanding emergent nonlinear phenomena at dif-

ferent scales. A prime example is bacterial gene regulation where

cooperativity of transcription factor binding to promoter regions

governs the steepness of dose–response curves that characterize

gene expression as a function of transcription factor concentration

(Bintu et al, 2005). Negative feedback can reduce the steepness of

dose–response curves of gene expression, i.e., change their shape

from sigmoidal to linear (Nevozhay et al, 2009). The steepness of

transcription factor dose–response curves ultimately determines

whether feedback loops in genetic circuits can produce biologically

relevant functions such as bistability or oscillations (Elowitz &

Leibler, 2000; Gardner et al, 2000). At the population level, the bac-

terial response to antibiotics is captured by similar dose–response
curves that quantify the dependence of growth rate on drug concen-

tration. Antibiotic dose–response curves are routinely measured to

characterize antibiotic susceptibility via the minimal inhibitory con-

centration (MIC) or the concentration leading to 50% growth inhibi-

tion (IC50), two classic quantities to describe antibiotic efficacy.

However, the quantitative shape of the antibiotic dose–response
curve – especially its steepness – and its implications are underap-

preciated.

The steepness of the dose–response curve varies drastically

between antibiotics. For many antibiotics, the growth rate drops

gradually from high to low as the drug concentration is increased

(Fig 1A); in particular, this is the case for antibiotics targeting DNA

replication at the gyrase (e.g. ciprofloxacin) or antibiotics targeting

translation at the ribosome (e.g. tetracycline). Beta-lactams like

mecillinam (an antibiotic targeting cell wall biosynthesis at a peni-

cillin binding protein) have extremely steep dose–response curves

where just a slight relative increase in drug concentration – by about

two-fold – causes an abrupt transition from full-speed growth to

near-zero net growth (Fig 1A). At the other end of the spectrum, the

folic acid synthesis inhibitor trimethoprim (TMP) has an extremely
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shallow dose–response curve (Palmer & Kishony, 2014; Chevereau

et al, 2015; Rodrigues et al, 2016; Russ & Kishony, 2018): Reducing

growth from full speed to zero with TMP requires a more than 100-

fold increase in drug concentration (Fig 1A). In general, dose–re-
sponse curves are well approximated by Hill functions and the Hill

slope n (“dose-sensitivity”) is a quantitative measure of their steep-

ness (Chou & Talalay, 1983; Regoes et al, 2004; Chevereau et al,

2015): TMP has n≈1:1, while most antibiotics fall in the range

1:8 ≤ n ≤ 3:5, and beta-lactams such as mecillinam have n> 6

(Fig 1A).

The steepness of the dose–response curve strongly affects the

evolution of resistance by spontaneous mutations (Hermsen et al,

2012; Chevereau et al, 2015). Resistance mutations that slightly

increase the MIC provide greater fitness benefits for drugs with a

A B

C D

Figure 1. Trimethoprim exhibits an extremely shallow dose response curve and its efficacy correlates strongly with growth rate compared to other
antibiotics.

A Dose–response curves (normalized growth rate as a function of drug concentration) for different antibiotics. Growth rate was measured via optical density
measurements over time (Materials and Methods). Antibiotics used: Trimethoprim (TMP), tetracycline (TET), chloramphenicol (CHL), ciprofloxacin (CPR), lincomycin

(LIN), nitrofurantoin (NIT), and mecillinam (MEC). The TMP dose–response curve (dark blue) is by far the shallowest. Lines are fits of the Hill function g cð Þ
g 0ð Þ ¼ 1

1þ c
IC50

� �n to

the data. Drug concentrations were arbitrarily rescaled to better visualize dose–response curve steepness; for unscaled dose–response curves, see Appendix Fig S13.
Error bars show standard deviation of 12 biological replicates.

B Schematic: Effect of growth-mediated feedback loops on dose–response curves. Negative feedback (blue) renders the dose–response curve shallower than in the
absence of feedback (gray); positive feedback (red) steepens the dose–response curve.

C Density scatterplot showing growth response to TMP versus normalized drug-free growth rate for 3,913 gene deletion strains (Baba et al, 2006); these are essentially
all viable gene deletion strains in E. coli, no selection of strains was made. These gene deletion strains exhibit diverse growth rates, offering an unbiased way to test
the relation between the drug-free growth rate and the response to antibiotics. Response is defined as growth rate in the presence of TMP normalized to the
drug-free growth rate of the respective deletion strain. TMP was used at a fixed concentration that inhibits wild type growth by about 30% (Chevereau et al, 2015).
Spearman correlation coefficient ρs is shown.

D Bar chart showing negative Spearman correlation coefficients �ρs:25emcompared across antibiotics (Appendix Fig S1). Error bars show bootstrap standard error of ρs . TMP
(blue) exhibits by far the strongest negative correlation, indicating the existence of a particularly strong growth-mediated negative feedback loop for this antibiotic.

Source data are available online for this figure.
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steep dose–response curve compared to drugs with a shallow curve,

implying a greater chance to fix in the population. Thus, all else

being equal, the rate of resistance evolution for a drug increases

with the steepness of its dose–response curve – a trend that is

observed in evolution experiments (Chevereau et al, 2015). This

effect is strongest for drug concentrations near the IC50, occurring,

for example, when populations of motile bacteria evolve resistance

in spatial drug gradients where growth takes place primarily at a

population front located in the region with drug concentrations that

partially, but not completely, inhibit growth (Baym et al, 2016; Hol

et al, 2016). Despite their fundamental relevance for resistance evo-

lution and bacterial responses to antibiotics, the mechanisms that

shape the dose–response curve are largely unknown.

Feedback loops mediated by growth rate may play a key role in

shaping the dose–response curve (Deris et al, 2013; Greulich et al,

2015). The action of antibiotics affects bacterial growth but the

inverse is also true: Slower growing bacteria are less rapidly killed

by antibiotics targeting cell wall biosynthesis (beta-lactams; Tuoma-

nen et al, 1986; Lee et al, 2018) and non-growing (persister) cells

are fully protected from many antibiotics (Balaban et al, 2004),

offering a possibility to evade antibiotic treatments. However, it is

not clear if there is a more general relation between the drug-free

growth rate and common measures of antibiotic efficacy (such as

MIC or IC50) that would generalize this trend across drug classes for

both bacteriostatic and bactericidal antibiotics. Recent findings fur-

ther suggest that antibiotic lethality depends on bacterial metabolic

state rather than growth rate alone (Lopatkin et al, 2019). Slower

growth caused by nutrient limitation affects the bacterial susceptibil-

ity to ribosome-targeting antibiotics but the IC50 changes in opposite

ways with increasing drug-free growth rate for different ribosome

inhibitors: it decreases for tetracycline and chloramphenicol but

increases for streptomycin and kanamycin (Greulich et al, 2015). In

engineered strains expressing a constitutive resistance gene, a posi-

tive feedback loop leads to high dose-sensitivity and even bistability

(i.e. co-existence of growing and non-growing cells) in the presence

of the ribosome-targeting antibiotic chloramphenicol (Deris et al,

2013). Positive feedback occurs as faster growth leads to the upregu-

lation of the resistance enzyme, which in turn enables even faster

growth. Growth-mediated feedback loops could more generally

explain the drastic differences in dose-sensitivity between antibiotics

(Fig 1A) with positive feedback producing higher (Deris et al, 2013)

and negative feedback lower dose-sensitivity. However, such feed-

back loops shaping the dose–response curve of sensitive wild-type

bacteria have not yet been characterized.

Here, we establish that negative growth-mediated feedback pro-

duces an extremely shallow drug dose–response curve. Focusing on

TMP, we vary bacterial growth rates by diverse environmental and

genetic perturbations and show that, in contrast to most other

antibiotics we investigated, slower growth generally lowers the sus-

ceptibility of Escherichia coli to this antibiotic. The molecular origin

of this phenomenon lies in the expression of the drug target, which

is upregulated in response to TMP but also when the growth rate is

lowered by other means: TMP lowers growth, which in turn reduces

susceptibility to TMP. We show that synthetically reversing this

feedback loop can drastically steepen the dose–response curve. The

negative feedback loop leads to a seemingly paradoxical situation

where adding the antibiotic can even enhance growth under

extreme nutrient limitations. It can be envisioned that such growth-

mediated feedback loops in drug responses could be used to design

evolutionary traps that invert selection for resistance.

Results

Growth-mediated feedback loops can affect the dose–sensitivity
of drugs

We hypothesized that a growth-mediated negative feedback loop

could explain the shallowness of the dose–response curve of TMP.

We focused on TMP because it had by far the shallowest dose–re-
sponse of all antibiotics we investigated (Fig 1A). As an antibiotic,

TMP lowers bacterial growth (by inhibiting dihydrofolate reductase,

DHFR, encoded by folA). If a lower growth rate in turn protects bac-

teria from TMP, the resulting growth-mediated negative feedback

loop could lead to a shallow dose–response curve (Fig 1B). In con-

trast, for antibiotics where faster growth protects bacteria, positive

growth-mediated feedback leads to ultrasensitivity (Fig 1B) and can

even produce bistability as previously reported (Elf et al, 2006;

Deris et al, 2013). These results show that growth-mediated feed-

back loops can affect the dose-sensitivity of drugs in general.

Slower growth generally lowers susceptibility to TMP and
steepens its dose–response curve

To test experimentally whether negative growth-mediated feedback

underlies the shallow TMP dose–response curve, we varied the

growth rate in several independent ways and investigated its effect

on TMP susceptibility compared with susceptibility to other antibi-

otics. We first made use of a purely genetic way of varying growth.

Specifically, we exploited the growth rate variability resulting from

genome-wide gene deletions to expose global trends that are inde-

pendent of the specific effects of individual gene deletions. Non-

essential gene deletions often reduce the drug-free growth rate –
some by up to ∼50% (Chevereau et al, 2015). We re-analyzed a

dataset of growth rates of ∼4,000 E. coli gene deletion mutants

under different antibiotics representing common modes of action

(Chevereau & Bollenbach, 2015); this analysis was genome-wide

and not restricted to a smaller sample of gene deletion mutants,

minimizing potential bias. Growth rates were measured at concentra-

tions that inhibit the reference strain by ∼30% to ensure that (i) most

gene deletion strains exhibit significantly reduced growth compared

to no drug and (ii) most gene deletion strains that are more sensitive

to the antibiotic than the wild type still grow exponentially, allowing

quantitative analysis. While each gene can have specific effects for

each antibiotic (Nichols et al, 2011; Chevereau et al, 2015), most

genes should be unrelated to the drug’s mode of action. The global

trend of drug susceptibility across all gene deletion strains can thus

reveal general consequences of growth inhibition, independent of the

specific cellular limitation causing the growth rate reduction.

Non-specific growth rate changes caused by gene deletions indi-

cate that slower growth protects E. coli from TMP but less so from

other antibiotics. By correlating the drug-free growth rate of deletion

strains with their growth rate in the presence of drugs, we revealed

the dependencies of drug susceptibility on the drug-free growth rate.

The clearest trend emerged for TMP: Its relative effect on growth

was weaker in gene deletion strains that had lower growth rates in
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the absence of drugs (Spearman correlation ρs ¼ �0:6; Fig 1C).

Compared to other antibiotics, this effect was most pronounced for

TMP (Fig 1D and Appendix Fig S1). Slower-growing mutants can

grow at increased TMP concentrations: While it was technically not

feasible to study this genome-wide, full dose–response curve mea-

surements for a smaller set of 78 arbitrarily selected gene deletion

mutants showed that the IC50 is weakly negatively correlated with

the growth rate in the absence of drug for TMP

(ρs ¼ �0:27; p ¼ 0:019) but this correlation is not significantly dif-

ferent from zero for other antibiotics (Appendix Fig S2). Thus, TMP

represents an extreme case, both in terms of dose-sensitivity and in

terms of susceptibility-dependence on growth rate. Overall, these

results suggest that slower growth generally lowers the susceptibil-

ity to TMP.

Slow growth can also protect E. coli from other antibiotics but to

a far lesser extent. For the prodrug nitrofurantoin (NIT) and the

translation inhibitors tetracycline (TET) and chloramphenicol

(CHL), there was a weak negative correlation between the drug-free

growth rate and that in the presence of the drug (ρs ¼ �0:31 for

NIT, ρs ¼ �0:26 for TET, ρs ¼ �0:22 for CHL; Fig 1D;

Appendix Fig S1). For the beta-lactam mecillinam (MEC), this trend

was even weaker (ρs ¼ �0:14) and for ciprofloxacin (CPR) almost

entirely absent (ρs ¼ �0:05). There appears to be a tendency for the

magnitude of this negative correlation to decrease with increasing

dose-sensitivity when compared among drugs (Fig 1A and D),

although this trend is not significant due to the limited number of

different drugs and the outliers NIT and CPR deviate from this trend.

Although other factors certainly contribute to the shape of dose–re-
sponse curves, this observation supports the notion that growth-

mediated feedbacks are an important contributor to the shape of the

dose–response curve for TMP (Fig 1B) and possibly for other antibi-

otics as well.

Reducing growth rate by other means like a nutrient limitation or

imposing a protein burden also protects E. coli from TMP but less so

from other antibiotics. To systematically determine how the efficacy

of different antibiotics changes with drug-free growth rate, we used

several independent approaches to change the growth rate. First, we

used glucose limitation in batch culture by adding a non-

metabolizable structural analog of glucose, α-methyl glucoside, in

varying concentrations to the growth medium. This analog com-

petes with glucose for uptake into the cell, but unlike glucose it can-

not be utilized for growth (Hansen et al, 1975). Second, we used

different carbon sources (glucose, fructose, mannose, glycerol, and

galactose) in the growth medium, which is a classic strategy to test

for growth-dependent effects (Bremer & Dennis, 2008). Third, we

overexpressed a gratuitous protein from an inducible promoter to

burden the cells (Dong et al, 1995; Scott et al, 2010). These

approaches have different physiological consequences, but they all

reduce the growth rate in a gradual and controlled manner, while

the maximal growth rate and the accessible dynamic range of rela-

tive growth inhibition vary between them (Fig 2). Although TMP

can kill bacteria under certain nutrient conditions by causing

thymineless death, it can only stop the growth and cause cell stasis

in minimal media (Kwon et al, 2010). In our experiments, the rele-

vant TMP concentrations are below the MIC and very few cells die,

as confirmed by time-lapse imaging of individual cells in a microflu-

idic chamber (Appendix Fig S16). This facilitates the interpretation

of the data, as the growth rate and the death rate no longer need to

be measured separately. Collectively, the three different approaches

we used enable us to vary growth rate over a wide range and iden-

tify general effects of growth rate, which occur independently of the

exact cause of the growth rate reduction.

TMP inhibits growth less under glucose limitation: Lowering the

growth rate by glucose limitation enabled bacteria to grow at

slightly increased TMP concentrations (Fig 2B and C). This trend

was reflected in an increase in IC90 and IC50, whether these concen-

trations were defined in terms of the highest drug-free growth rate

(Fig 2) or in terms of the drug-free growth rate at each level of glu-

cose depletion (Appendix Fig S15). The observed increases were

even more pronounced when growth was lowered by overexpress-

ing a gratuitous protein – a truncated and inactive version of tufB

(Dong et al, 1995) expressed from a synthetic promoter PLlacO-1
(Lutz & Bujard, 1997) induced by addition of isopropyl β-D-1-
thiogalactopyranoside (IPTG; Fig 2D–F and Appendix Fig S15).

Reducing growth by using different carbon sources in a minimal

medium could also slightly protect bacteria from TMP, in particular

for glycerol (Fig 2G–I and Appendix Fig S15). Changing carbon

sources had modest effects, presumably because even the highest

growth rate (achieved with glucose only) is relatively low and the

fold-change in growth is considerably smaller than for glucose limi-

tation (Fig 2A, D and G). These effects did not occur to a compara-

ble extent for other antibiotics representing common modes of

action (Fig 2C, F and I); however, gratuitous protein overexpression

also lowered the susceptibility to mecillinam (MEC), albeit to a

lesser extent (Fig 2F and Appendix Fig S6), consistent with the

established effect of growth rate on beta-lactam efficacy (Tuomanen

et al, 1986; Lee et al, 2018). The effects of growth rate changes were

clearly drug-specific and strongest for TMP.

Under severe glucose limitation (high ratios of α-methyl glu-

coside over glucose), which does not support growth, the addition

of TMP even rescued bacteria and enabled them to grow again

(Fig 2B). As a result, the TMP dose–response curve in this regime

has a very unusual non-monotonic shape (inset in Fig 2B) that is

hard to interpret in comparison with conventional dose–response
curves of Hill-function shape. Therefore, we restricted further analy-

sis of the effects of drug-free growth rate on the quantitative shape

of the TMP dose–response curve to lower ratios of α-methyl glu-

coside over glucose. The non-monotonic dose–response curve indi-

cates that, under extreme nutrient limitation, the antibiotic TMP can

paradoxically promote bacterial growth (inset in Fig 2B) – perhaps

the most drastic illustration of the close interplay between drug-free

growth rate and TMP susceptibility we observed.

Lowering growth rate by changing temperature does not show a

similar effect: The relative growth reduction by antibiotics remains

the same at different temperatures (Appendix Fig S8). This is plausi-

ble since, in contrast to other means of altering growth rates, many

key physiological parameters are invariant under temperature

changes (Bremer & Dennis, 2008). In particular, the concentrations

of the most relevant macromolecules in the cell are known to

remain constant when the growth rate is altered by a change in tem-

perature in the range from 25°C to 38°C; specific examples include

the total amounts of protein, RNA, and RNA polymerase per cell

mass, the fractions of total RNA synthesis corresponding to stable

RNA and mRNA synthesis, and the DNA replication fork patterns

(Bremer & Dennis, 2008). The reason for this behavior is that the

corresponding chain elongation rates (for DNA, RNA, and
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polypeptides) all depend approximately equally on temperature.

Therefore, it is plausible to expect that temperature changes have

limited effects on the molecular composition and physiology of bac-

teria. The observation that antibiotic dose–response curves are

essentially unaffected by temperature changes indicates that the

changes in TMP efficacy observed in response to other means of

altering growth rate (Fig 2) have a biological origin that involves

changes in the molecular composition of the cell.

Slower growth increases the steepness of the TMP dose–response
curve. We noticed that the extremely shallow dose–response curve

A D G

B

C F I

E H

Figure 2. Slower growth generally lowers the efficacy of trimethoprim but not other antibiotics.

A Growth rate under glucose limitation achieved by adding the non-metabolizable structural glucose analog α-methyl glucoside (αMG) at different ratios to glucose in
a minimal medium (Materials and Methods).

B Normalized growth rate (gray scale) from a checkerboard assay in a two-dimensional concentration gradient of TMP and αMG. Dashed black line shows contour line
of 90% growth inhibition (IC90 line). Red arrow shows increase in IC90 as growth is lowered. Inset: Normalized growth rate as a function of TMP concentration along
the column marked in blue.

C Fold-change in IC90 at αMG/glucose ratio 2.5 in assays as in (B) for different antibiotics (Appendix Fig S5). Lowering growth rate increases IC90 for TMP but not for
other antibiotics.

D Growth rate in rich medium (LB) under different levels of overexpression of a gratuitous protein from a T5-lac promoter; overexpression burden is controlled by IPTG
concentration (Materials and Methods).

E As (B) but for growth rate reduction by protein overexpression in a two-dimensional concentration gradient of TMP and IPTG.
F Fold-change in IC90 at 1.25 mM IPTG in assays as in (E) for different antibiotics (Appendix Fig S6). Overexpression of unnecessary protein increases IC90 for TMP by

almost five-fold; no comparable increase occurs for other antibiotics.
G Growth rate in minimal medium containing different carbon sources (Materials and Methods): Glucose (GLU), fructose (FRU), mannose (MAN), galactose (GAL), and

glycerol (GLY).
H Normalized growth rates (gray scale) on different carbon sources (x-axis) at different TMP concentrations (y-axis).
I Fold-change in IC90 in assays as in (H) for different antibiotics (Appendix Fig S7).

Data information: Error bars in (A, D and G) show standard deviation from 6, 12, and 18 biological replicates, respectively; day-to-day reproducibility of growth rate mea-
surements is high (Appendix Fig S3). Error bars in (C and F) show standard deviation from three neighboring αMG/glucose ratios and IPTG concentrations centered at 2.5
and 1.25 mM, respectively. IPTG alone has no detectable effect on growth at these concentrations (Appendix Fig S4). Error bars in (I) show standard deviation from three
biological replicates. Antibiotic abbreviations are as in Fig 1. CHL was not used in the protein overexpression assay in (F) since the plasmid used for overexpression has a
CHL-resistance marker (Materials and Methods). Sample growth curves are in Appendix Fig S11. The same analysis for the IC50 instead of IC90 and a different normaliza-
tion of the dose–response curves is shown in Appendix Fig S15.
Source data are available online for this figure.
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of TMP (Fig 1A) became steeper when growth was slowed by glu-

cose limitation (Fig 3A): Halving the growth rate increased the

dose-sensitivity from n≈1:1� 0:2 to n≈1:6� 0:3 (Fig 3B). This

steepening occurred similarly when growth was slowed by gratu-

itous protein overexpression (Fig 3C and D) or by changing the car-

bon source in the growth medium (Fig 3E and F). In addition to this

change in steepness, the concentration at which TMP starts to have

an effect on growth is higher for slower-growing bacteria. However,

once the effect of TMP kicks in, the growth rate drops more rapidly

with increasing TMP concentration. To better understand this unex-

pected increase in dose-sensitivity resulting from slower growth, we

next aimed to elucidate the underlying mechanism of TMP’s

growth-rate-dependent action.

Growth-dependent regulation of the TMP drug target leads to a
negative feedback loop that flattens the dose–response curve

Regulation of the drug target DHFR could mediate the growth-rate-

dependent efficacy of TMP. The abundance of the target of TMP

(DHFR/FolA) correlates with growth (Bershtein et al, 2013);

increasing its expression, e.g. by overexpressing folA from a plas-

mid, alleviates the effect of TMP on growth (Palmer & Kishony,

2014). Accordingly, TMP resistance in the lab and in the clinic often

evolves by overexpressing folA, e.g. by mutating its promoter or by

increasing gene copy number (Rood et al, 1980; Flensburg & Sköld,

1987; Toprak et al, 2012; Baym et al, 2016; Nyerges et al, 2018).

These phenomena suggest a specific mechanism for the reduced

susceptibility to TMP at lower growth rates: We hypothesized that

slower growth generally leads to increased folA expression, which

in turn partially protects bacteria from TMP (Soo et al, 2011; Palmer

& Kishony, 2014) – a buffering mechanism against inhibition of FolA

that is specific to TMP.

DHFR expression increases similarly in response to TMP and to

other means of reducing growth rate, indicating that this regulation

is growth rate-dependent and not mediated by a specific molecular

mechanism. Using a folA-promoter-GFP reporter (Materials and

Methods), we confirmed that folA expression increases in response

to TMP (Fig 4A), as previously observed in whole populations (Bol-

lenbach et al, 2009; Bershtein et al, 2015; Rodrigues et al, 2016) and

single cells (Mitosch et al, 2017). Here, however, we noticed that

folA expression increases similarly when growth is slowed by glu-

cose limitation (Fig 4B). This observation suggests that the upregu-

lation of folA under TMP is not a specific response to this drug or

the inhibition of its target, but rather a general response to the

A C E

B D F

Figure 3. Slower growth increases the steepness of the trimethoprim dose–response curve.

A TMP dose–response curve in minimal medium with glucose as carbon source and at lower drug-free growth rate due to glucose limitation, achieved by increasing
the αMG/glucose ratio from 0 (black) to 5 (gray). Glucose limitation results in a steeper dose–response curve. Lines show Hill function fits (cf. Fig 1A).

B Steepness of TMP dose–response curves (dose-sensitivity n) versus drug-free growth rate at different αMG concentrations (Materials and Methods). Numbers next
to data points show αMG/glucose ratio.

C, D As (A and B) but for growth limitation by gratuitous protein overexpression in rich growth medium (Materials and Methods). Inducing overexpression with IPTG at
10 mM (light gray) steepens the dose–response curve compared to no induction (black). Numbers next to data points in (D) show IPTG concentration in mM.

E, F As (A and B) but for growth limitation by varying the carbon source in a minimal medium (Materials and Methods).

Data information: Carbon sources as in Fig 2. Growth rate error bars show standard deviation of three replicates; vertical error bars in (B,D and F) show standard
deviation of parameter estimates from Hill function fit. Non-normalized dose–response curves are shown in Appendix Fig S14.
Source data are available online for this figure.

6 of 19 Molecular Systems Biology 18: e10490 | 2022 � 2022 The Authors

Molecular Systems Biology S Andreas Angermayr et al



reduced growth rate. Expression levels of constitutive genes are gen-

erally expected to increase when the quality of the nutrient environ-

ment is lowered (Scott et al, 2010). While the folA promoter can be

regulated by two transcription factors (TyrR (Yang et al, 2007) and

IHF (Keseler, 2004)) under certain conditions, it behaved similarly

to a constitutive promoter in these experiments. Indeed, folA expres-

sion across a two-dimensional concentration gradient of TMP and

the glucose analog varied (Appendix Fig S9) but was largely deter-

mined by growth rate alone (Fig 4C). Like constitutively expressed

genes (Scott et al, 2010), folA expression followed a general,

approximately linear increase with decreasing growth rate,

approaching a fixed maximum level at zero growth (Fig 4C). Since

increased folA expression protects bacteria from TMP (Palmer & Kis-

hony, 2014), this mode of regulation results in a negative growth-

mediated feedback loop: TMP inhibits growth, leading to upregula-

tion of its target, even though there is no specific molecular mecha-

nism for this, thereby attenuating its own efficacy.

Saturating growth-dependent regulation of the drug target can

explain the steepening of the dose–response curve at lower growth

rates. Higher drug target expression at lower growth rates can com-

pensate for some of the target inhibition caused by TMP. This offers

a plausible explanation as to why the effect of TMP becomes

A

B D

C

Figure 4. Slower growth increases folA expression, irrespective of whether growth is reduced by trimethoprim or by nutrient limitation.

A Dependence of growth rate (black) and folA expression (green) on TMP concentration. Schematic: FolA expression was measured using a promoter-GFP reporter
inserted at a neutral site in the genome (Materials and Methods).

B Growth rate (black) and folA expression (green) in the absence of TMP at different growth rates achieved by different ratios of αMG/glucose.
C Scatterplot of folA expression level with growth rate across all combinations of TMP concentrations and αMG/glucose ratios shown in (A and B) (Appendix Fig S9).

Pearson’s correlation coefficient ρ and P-value from two-sided t-test are shown. FolA expression is largely determined by growth rate, suggesting that this regulation
is growth rate-dependent and not mediated by a specific molecular mechanism.

D Dependence of folA expression on TMP concentration at four different αMG/glucose ratios (0, 2.5, 5, and 10 as shown). Darker green indicates greater αMG/glucose
ratio. FolA expression converges approximately to the same level at high TMP concentrations.

Data information: Black line in (A) shows Hill function fit as in Fig 1A; other lines show polynomial fits of first (C) or second order (A and B) to guide the eye. Horizontal
dotted green line shows folA expression level in the absence of TMP. Error bars show standard deviation of three biological replicates.
Source data are available online for this figure.
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apparent only at higher concentrations when the drug-free growth

rate is lower (Fig 2). But how does slower growth steepen the TMP

dose–response curve (Fig 3)? We noticed that folA expression at dif-

ferent drug-free growth rates converges to a fixed value when TMP

is added (Fig 4D). In other words, the relative upregulation of folA

in response to TMP gets weaker with decreasing drug-free growth

rate; it even disappears completely at high glucose-analog concen-

trations (Fig 4D). This convergence of folA expression in different

conditions may reflect that the promoter reaches its maximal induc-

tion level. At lower drug-free growth rates, the promoter is already

near its maximum expression level without TMP and saturates

quickly when TMP is added, resulting in weaker relative upregula-

tion than at higher growth rates. Consistent with this scenario,

increasing folA expression at low growth rates is deleterious

(Appendix Fig S10). Thus, lower drug-free growth rates weaken –
or even break – the growth-mediated negative feedback loop, result-

ing in steeper dose–response curves.

Artificially breaking the growth-mediated feedback loop
steepens the TMP dose–response curve

To corroborate that the shallowness of the TMP dose–response curve
is due to a growth-mediated negative feedback loop, we aimed to

break this loop even under nutrient conditions that support high

drug-free growth rates. To this end, we constructed a synthetic strain

in which the expression of folA from its endogenous locus is con-

trolled by an inducible promoter PLlac-O1. The strain allowed IPTG-

mediated induction of folA and folA-gfp, respectively, with an

expression level comparable to wild-type folA at low induction

(Materials and Methods). Note that using an inducible promoter

alone does not eliminate the feedback loop since, at constant inducer

levels, expression from this promoter can change with growth rate,

similar to expression from the endogenous folA promoter. Neverthe-

less, we can use this synthetic strain to infer the shape of the TMP

dose–response curve at constant folA expression by continuously

varying the inducer concentration and measuring FolA levels. Specif-

ically, we measured growth rate and folA expression using a FolA-

GFP fusion protein across a two-dimensional concentration gradient

of TMP and inducer (Fig 5A; Materials and Methods). We then deter-

mined the growth rate as a function of TMP concentration on a path

through this two-dimensional concentration space along which folA

expression is constant. The resulting TMP dose–response curve at

constant folA expression is steeper than in wild type (n ¼ 2:0� 0:3;

Fig 5B and C). It becomes even steeper for a positive feedback loop,

which is inferred from a path through the two-dimensional concen-

tration space along which folA expression is inverted compared to

wild type, i.e., starting from a high level, it decreases with increasing

TMP concentration (n ¼ 5:0� 0:9; Fig 5B and C). Placing folA under

an inducible promoter results in a slightly lower drug-free growth

rate compared to wild type (by about 20%); however, this effect

alone cannot explain the observed increases in dose-sensitivity with

constant and inverted folA regulation, because a reduction in the

growth rate of this magnitude increases dose-sensitivity to at most

n≈1:5 for several different ways of changing growth rate (Fig 3B, D

and F). These results provide direct evidence that a negative growth-

mediated feedback loop implemented by the regulation of the drug

target causes the exceptional shallowness of the TMP dose–response
curve.

A cellular resource allocation model captures the effect of
trimethoprim on bacterial growth

To determine whether the metabolic limitation caused by TMP due

to inhibition of its target FolA, together with the growth-

rate-dependent regulation of folA, is sufficient to explain the

experimentally observed phenomena related to the shape of the

TMP dose–response curve, we developed a mechanistic mathemati-

cal model of cellular resource allocation under this drug. The model

is based on Constrained Allocation Flux Balance Analysis (CAFBA;

Mori et al, 2016) and captures how the interaction of TMP with its

target enzyme FolA reduces the metabolic flux through the folate

synthesis pathway, thereby reducing the growth rate (Materials and

Methods). The key assumptions of the model are that the demand

for FolA is constant and that growth is limited by the metabolic flux

catalyzed by FolA when sufficiently many FolA enzymes are

blocked by TMP. These assumptions reflect the basic intuition that

the growth inhibition at sufficiently high TMP concentrations is due

to a bottleneck in the folate synthesis pathway caused by this drug,

whereas growth at low TMP concentrations is limited by ribosomes,

as dictated by bacterial growth laws. The transition between these

two regimes occurs at an intermediate TMP concentration, the value

of which increases with FolA content in the cell, since more copies

of FolA must be blocked by TMP to achieve the same reduction in

metabolic flux. The model has four parameters. Two of these

describe growth in the drug-free regime; these were fitted to the data

at negligible TMP concentration (c < 0.1 μg/ml). We subsequently

fitted the remaining two parameters, which specifically relate to the

drug response, to the remaining data; they quantify the cellular

demand for FolA and the equilibrium constant for the binding

between FolA and TMP. We used the measured regulation of folA

expression in response to TMP and glucose limitation (Fig 4) as an

input to this model and calculated the TMP dose–response curve at

different levels of glucose limitation in wild type.

Using plausible parameter values (Materials and Methods), the

model produces a TMP dose–response curve with a similar steep-

ness (n≈1:1) as observed experimentally (Fig 6A). Glucose limita-

tion leads to a steepening of the dose–response curve (Fig 6A),

similar to that observed experimentally (Fig 3A and B). Further,

moderate glucose limitation can slightly increase the absolute

growth rate under TMP (Appendix Fig S12) as observed experimen-

tally (Fig 2B). In essence, these effects can be intuitively under-

stood: they are due to the upregulation of folA under glucose

limitation, resulting in an excess of FolA in the cell. This excess in

turn buffers the effect of TMP: higher TMP concentrations are

required for the growth rate to decrease as more drug targets

become available at reduced growth, leading to a shift in the TMP

concentration at which a growth inhibitory effect begins to occur to

higher values in Fig 6A. Because the upregulation of folA in

response to TMP also becomes weaker under increasing glucose

limitation (Fig 4D), the decrease in growth rate as a function of

TMP concentration becomes steeper (Fig 6A) as the negative feed-

back loop that dampens the effect of the drug is weakened.

Mimicking synthetic perturbations of this feedback loop in the

model further supports the notion that upregulation of the drug tar-

get with decreasing growth rate is the key mechanism underlying

the shallow dose–response curve of TMP. Replacing the wild-type

regulation of folA expression in the model with alternative modes of

8 of 19 Molecular Systems Biology 18: e10490 | 2022 � 2022 The Authors

Molecular Systems Biology S Andreas Angermayr et al



regulation in which it is forced to a constant value or inverted (i.e.,

downregulated from a high value with increasing TMP concentra-

tion) results in a successive steepening of the dose–response curve

(Fig 6B; Materials and Methods) that is quantitatively similar to that

observed experimentally for these perturbations (Fig 5B and C).

Taken together, the results of the model support that the TMP dose–
response curve is shaped by a transition from ribosome-limited to

FolA-limited growth and by the strength of the negative feedback

loop, which is mediated by the regulation of the drug target FolA.

Discussion

We showed that slower-growing bacteria are generally less affected

by TMP, largely regardless of what causes their slower growth

(Fig 2). This phenomenon, which did not occur for most other

antibiotics tested here, implies a growth-mediated negative feedback

loop causing TMP’s extremely shallow dose–response curve (Fig 1

A): TMP lowers growth, which in turn weakens the inhibitory effect

of the drug. Mechanistically, this feedback loop is rooted in the

expression level of the drug target DHFR, which is upregulated with

decreasing growth rate (Fig 4). Elimination or inversion of this feed-

back loop from negative to positive drastically steepens the dose–re-
sponse curve (Fig 5). Together with recent work on ribosome-

targeting antibiotics (Deris et al, 2013), these results which are

specific to TMP suggest a more general role of growth-mediated

feedbacks in shaping antibiotic dose–response curves (Fig 1B).

Consistent with this view, the steepness of the dose–response
curve of antibiotics with different modes of action often changes in

tandem with the change in drug susceptibility under slower growth

(Fig 1A and D). In particular, while the effect is less extreme than

for TMP, the ribosome inhibitors CHL and TET also exhibit rela-

tively low dose-sensitivity and slightly reduced susceptibility under

slower growth (Fig 1D and Appendix Fig S1). The mechanism

underlying this weaker growth-mediated negative feedback for CHL

and TET, while certainly not mediated by the regulation of folA as

for TMP, is conceptually similar to that for TMP, in that their drug

target, the ribosome, is upregulated in response to these drugs (Scott

et al, 2010)—similar to DHFR in response to TMP. In contrast to

TMP, this upregulation of ribosome production is a specific

response to growth inhibition by CHL or TET since lowering the

growth rate by nutrient limitation results in the opposite behavior,

downregulation of ribosome production (Scott et al, 2010). Other

factors can certainly also play a role in shaping dose–response
curves. For example, the prodrug NIT does not follow the trend: It

has a relatively steep dose–response curve (Fig 1A) despite being

less susceptible under slower growth (Fig 1D). This is probably

caused by additional (unknown) mechanisms acting on top of the

growth-mediated feedback we focus on here. Overall, although there

are indications for a more general role of growth-mediated feedback

loops in antibiotic responses, identification of the molecular mecha-

nisms underlying these feedback loops or other phenomena that

shape dose–response curves will require detailed studies for each

antibiotic or antibiotic class.

Notably, a growth-mediated negative feedback loop could lead to

limit cycle oscillations in growth rate if there is a sufficient time

delay between the onset of the effect of TMP and the resulting

change in growth rate. If they exist, such oscillations could in princi-

ple be observed for the instantaneous growth rate at the single-cell

level: This growth rate should decrease when TMP is added, leading

to slower growth, which in turn decreases the efficacy of TMP a lit-

tle later, leading to faster growth, which in turn increases the

A B C

Figure 5. Breaking the growth-mediated negative feedback loop steepens the trimethoprim dose–response curve.

A Schematic: FolA expression is controlled by varying the IPTG concentration and measured by flow cytometry using a GFP fusion to FolA. Shades of green indicate
different FolA levels. Wells encircled in red indicate how the effect of inverted folA regulation (where folA expression decreases with increasing TMP concentration,
starting from a high level) can be inferred; wells encircled in black illustrate the same for constant FolA expression.

B Growth rate as a function of TMP concentration for different paths through IPTG-TMP concentration space as illustrated in (A) (Materials and Methods). Constant FolA
is shown in black and inverted FolA regulation in red. Wild-type dose–response curve (blue line; fit from Fig 4A) is shown for comparison.

C Steepness of the dose response curve (quantified as dose-sensitivity n) for the three cases in (B). Inset: Normalized FolA expression level as a function of TMP concen-
tration for the three cases in (B); WT (blue) shows fit from Fig 4A; colors as in the bar chart and in (B).

Data information: Error bars in (B) show standard deviation of the measured growth rates used for interpolating the values shown; the entire experiment was replicated
once (Materials and Methods). Error bars in (C) show standard deviation of parameter estimates from Hill function fit.
Source data are available online for this figure.
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efficacy of TMP, and so on. We could not detect such oscillations in

single-cell time-lapse experiments (Appendix Fig S16); if they exist,

their detection may require more precise measurements of the

instantaneous growth rate of individual bacteria (Godin et al, 2010).

We used a mathematical model of resource allocation in the bac-

terial cell to explain the growth rate based on nutrient quality, drug

concentration and folA expression. After a suitable rescaling of these

variables, the model comprises only a single meaningful parameter

(Materials and Methods), which highlights its simplicity. The model

supports that the regulation of TMP’s target DHFR underlies the

growth-mediated feedback for this drug. We assumed that DHFR is

upregulated with decreasing growth rate and approaches a maxi-

mum at zero growth as experimentally observed (Fig 4C). Decou-

pling the DHFR level from the growth rate by forcing it to a constant

value, or even inverting its response to TMP, results in a steeper

dose–response curve (Fig 6B) in agreement with experimental

observations (Fig 5B and C). The mathematical model thus confirms

the intuitive expectation that the negative feedback loop mediated

by the regulation of the drug target is the main cause of the shallow

TMP dose–response curve. It further helps to rationalize why dose–
response curves become steeper when the drug-free growth rate is

decreased, corresponding to a poorer nutrient environment. At very

low drug-free growth rates, the DHFR level becomes almost con-

stant as a function of TMP concentration (Fig 4D), effectively break-

ing the negative feedback loop and thus steepening the dose–
response curve, as observed experimentally (Fig 3). However, we

note that the resource allocation model does not reproduce the

unusual, non-monotonic TMP dose–response curve observed experi-

mentally under severe glucose limitation (inset in Fig 2B), suggest-

ing that this extreme limitation may be too far removed from the

physiological conditions assumed in the model. Explaining the

shape of dose–response curves of other antibiotics using suitable

mathematical models remains a challenge for future work.

We observed that an artificial nutrient limitation that results in

no or extremely slow growth can be alleviated by adding the

antibiotic TMP (Fig 2B). This phenomenon is qualitatively consis-

tent with the TMP-specific mechanism we identified: folA expres-

sion is greatly increased at low drug-free growth rates (Fig 4C),

leading to a situation in which blocking a fraction of FolA in the

cell by TMP promotes growth, probably by rebalancing metabolic

resources in the cell. This indicates that bacteria may not regulate

DHFR expression in a way that maximizes growth under extreme

A

B

Figure 6. Mathematical model of bacterial resource allocation supports that the trimethoprim dose–response curve is shaped by folA regulation.

A Dose–response curves calculated from mathematical model in wild type at different levels of glucose limitation (αMG/glucose ratios) shown by different colors. Inset:
dose-sensitivity n of these dose–response curves. The steepness of the dose–response curve increases with glucose limitation as observed experimentally (cf. Fig 3A
and B).

B Dose–response curves calculated from mathematical model for wild-type folA regulation (blue), constant intracellular FolA level (black), and inverted folA regulation
(red). Inset: dose-sensitivity n of these dose–response curves. Dose–response curve steepens as observed experimentally for these perturbations (cf. Fig 5B and C).
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nutrient limitation. High folA expression as occurs during slow

growth (Fig 4C) is deleterious (Bhattacharyya et al, 2016) because

cellular resources are diverted toward excessive folic acid synthe-

sis. Consistent with this view, TMP facilitated bacterial growth

when folA was artificially overexpressed to levels that were dele-

terious in the absence of TMP (Appendix Fig S10). Together,

these observations show that DHFR level is the main driver of

TMP susceptibility and suggest that deleterious overproduction of

DHFR, which can be rescued by adding TMP, occurs under

extreme nutrient limitation. Since TMP increases the fitness of

bacteria that evolve under extreme nutrient limitation, the usual

selection pressure for antibiotic resistance is inverted under such

conditions: Mutations that usually enhance TMP action (e.g.

increased drug uptake) can be selected. Similar to certain drug

combinations (Chait et al, 2007), this situation provides an oppor-

tunity to select against antibiotic-resistant bacteria. One potential

advantage of creating such conditions with a sugar analog instead

of a second drug is that bacteria can hardly evolve resistance to

such an analog, as impaired sugar uptake would come at a mas-

sive fitness cost.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental Models

E. coli BW25113 Baba et al (2006) N/A

E. coli BWAA01 This study N/A

E. coli BWAA02 This study N/A

E. coli BWAA11 This study N/A

E. coli BWAA12 This study N/A

E. coli BWAA19 This study N/A

E. coli BWAA20 This study N/A

E. coli BW25141 Datsenko & Wanner (2000) CGSC#: 7633

E. coli HG105 Garcia et al (2011) N/A

Recombinant DNA

pSIM19 Datta et al (2006) N/A

pCP20 Cherepanov & Wackernagel (1995) N/A

pKD13-mutgfp Guet lab (IST Austria) Bor Kavcic

pCA24N(-)tufB Kitagawa et al (2005) N/A

pCA24N(-)folA Kitagawa et al (2005) N/A

pCA24N(-) Kitagawa et al (2005) N/A

pAAtufB This study N/A

pAA30 This study N/A

pAA39 This study N/A

pAA40 This study N/A

pCS-λ Kishony & Leibler (2003) N/A

pZS11-pHluorin Mitosch et al (2017) N/A

Oligonucleotides and sequence-based reagents

PCR primers This study Table EV1

Chemicals, enzymes and other reagents

SmaI restriction enzyme New England Biolabs Cat # R0141S

LB Broth Lennox Sigma Aldrich Cat # L3022

Na2HPO4.7H2O Fisher Scientific Acros Organics Cat # 206515000

KH2PO4 Sigma Aldrich Cat # P9791

NaCl Sigma Aldrich Cat # S3014

NH4Cl Sigma Aldrich Cat # A9434
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

CaCl2 Fluka Cat # 223506

MgSO4 Sigma Aldrich Cat # M7506

Triton-X 100 Sigma Aldrich Cat # T8787

Glucose Sigma Aldrich Cat # G8270

Glycerol VWR Cat # 854

Mannose Carl Roth Cat # 4220.2

Fructose Sigma Aldrich Cat # F0127

Galactose Sigma Aldrich Cat # G0750

LB agar Sigma Aldrich Cat # L2897

Chloramphenicol Sigma Aldrich Cat # C0378

Kanamycin Sigma Aldrich Cat # K4000

Ampicillin Sigma Aldrich Cat # A9518

Spectinomycin Sigma Aldrich Cat # S6501

Ethanol Sigma Aldrich Cat # 32221

Trimethoprim Sigma Aldrich Cat # 92131

Nitrofurantoin Sigma Aldrich Cat # N7878

Lincomycin Sigma Aldrich Cat # 62143

Mecillinam Sigma Aldrich Cat # 33447

Tetracycline Sigma Aldrich Cat # 268054

Ciprofloxacin Sigma Aldrich Cat # 17850

IPTG VWR Cat # 437144N

α-methyl glucoside Sigma Aldrich Cat # M9376

ISOTON II Beckman Coulter N/A

Software

Matlab R2016b MathWorks Inc. N/A

Cytexpert 2.3.0.84 Beckman Coulter N/A

Other

Pin tool VP407 V&P Scientific Inc., CA, USA N/A

Pin tool VP408 V&P Scientific Inc., CA, USA N/A

Shaking incubator Innova 44 Eppendorf New Brunswick, DE N/A

Plate reader Synergy Neo2 Biotek Inc., VT, USA N/A

Plate reader Synergy H1 Biotek Inc., VT, USA N/A

Plate reader Infinite M1000 Pro Tecan Inc., CH N/A

Transparent microtiter plates FT 96-well Nunc Thermo Scientific Cat # 236105

White microtiter plates FW 96-well Nunc Thermo Scientific Cat # 260860

Transparent foil TopSeal-A Plus PerkinElmer N/A

CytoFLEX B2-RQ-V2 with 96-well plate module Beckman Coulter N/A

CellASIC ONIX microfluidic device Merck Millipore N/A

Methods and Protocols

Growth conditions and growth rate measurements
The growth medium used was either LB Broth Lennox, pH set to 7.0

with NaOH before autoclaving, or M9 minimal medium made from

Na2HPO4.7H2O, KH2PO4, NaCl, and NH4Cl supplemented with

0.1 mM CaCl2, 2 mM MgSO4, and 0.001% (v/v) Triton-X 100. Triton-

X was added to flatten the meniscus that forms in 96-well plates

(Mitosch et al, 2017). Carbon sources in the M9 medium were glu-

cose, glycerol, mannose, fructose, and galactose, all of which were

added at 0.4% (w/v) and prepared as filter sterilized 20% (w/v) stock

solutions stored at room temperature in the dark. Experiments were

started from a frozen glycerol stock. Bacteria were streaked on an LB

agar plate (containing antibiotics as appropriate) incubated overnight

at 37°C and a single colony was inoculated in 2 ml of the appropriate

growth medium (containing antibiotics if appropriate) and grown for
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about 20 h to obtain a pre-culture that has reached stationary phase.

We inoculated experimental cultures with a 1,000-fold dilution from

a stationary phase culture when growth was determined by optical

density measurements at 600 nm (OD600). For the experiment in

which temperature was varied (Appendix Fig S8), a luminescence

readout was used; here, the pre-culture was grown in a 20 ml LB

medium in a 250 ml flask until the stationary phase; 100 μl aliquots
were transferred to the wells of a 96-well plate, supplemented with

glycerol to 15% and frozen at −80°C. To start a luminescence-based

experiment the plate was thawed, and dilutions were performed in

96-well plates with fresh medium using pin tools (VP407 and VP408,

V&P Scientific Inc., CA, USA), which transfer 1.5 and 0.2 μl per well,

respectively. Subsequent use resulted in a 107-fold dilution from a sta-

tionary phase culture. In all cases, the pre-cultures were incubated at

30°C with a shaking speed of 250 rpm (Innova 44, Eppendorf New

Brunswick, DE).

Pre-cultures carrying plasmids and cultures needed for molecular

cloning procedures were prepared with antibiotics at the following

concentrations: chloramphenicol 35 μg/ml, kanamycin 25 μg/ml,

ampicillin 50 μg/ml, spectinomycin 100 μg/ml.

Unless otherwise noted antibiotics were dissolved in ethanol.

Stock solutions in water were filter-sterilized. Aliquots of stocks

were stored at −20°C in the dark. The antibiotics used were

trimethoprim, nitrofurantoin, chloramphenicol, lincomycin (dis-

solved in water), mecillinam (dissolved in water), tetracycline, and

ciprofloxacin (dissolved in water). IPTG was added to cultures to

control expression from IPTG-responsive promoters (PT5-lac, PLlacO-1)

(Lutz & Bujard, 1997; Kitagawa et al, 2005). A filter-sterilized solu-

tion of 1 M IPTG in water served as a stock solution. IPTG was

stored at −20°C in the dark and aliquots were thawed at room

temperature before use. For the non-metabolizable glucose analog

α-methyl glucoside, which competes for glucose uptake and

essentially imposes glucose limitation (Hansen et al, 1975), a filter

sterilized solution of 50% (w/v) in M9 salts served as the stock

solution.

The experiments shown in Figs 1–3 were performed using a

robotic system as described previously (Chevereau et al, 2015) and

have a day-to-day variability (coefficient of variation, CV) of growth

rate for unperturbed cultures of less than 5% (Ref. Chevereau et al,

2015 and Appendix Fig S3). The experiments shown in Figs 4 and 5

were performed using two plate readers: A Synergy Neo2 and a Syn-

ergy H1 (both from Biotek Inc., VT, USA). Both were set to 30°C
with continuous shaking at an orbital displacement of 1 mm and a

speed of 807 rpm, and after a settling period of 10 s the optical den-

sity at 600 nm and GFP fluorescence were measured every 10 min.

Flat transparent microtiter plates (Nunc Thermo Scientific FT 96-

well) with lids were used. The experiments presented in Appendix

Fig S8 were performed using luminescence measurements in an Infi-

nite M1000 Pro plate reader (Tecan Inc., CH) equipped with an inte-

grated stacking module. The stack was housed in a custom-built

(IST Austria Miba Machine Shop, Klosterneuburg, AT) acrylic glass

box equipped with a custom-built heating block, a thermostat, and

strong ventilation to assure a homogenous temperature over the

plates and the stack (Kavčič et al, 2020). For these experiments

(Appendix Fig S8), the wild-type strain used here (E. coli BW25113)

was transformed with a kanamycin resistance-bearing plasmid

(pCS-λ) carrying luciferase genes used to determine the growth rate

(Kishony & Leibler, 2003; Chait et al, 2007). For the actual growth

experiments kanamycin was omitted; however, this was not a prob-

lem as the plasmid is retained throughout the duration of such an

experiment (Kavčič et al, 2020). We have recently also verified that

the luminescence setup used here results in the same growth rates

as obtained from OD measurements (Kavčič et al, 2020). Lumines-

cence assays were performed using flat white microtiter plates

(Nunc Thermo Scientific FW 96-well). These plates were sealed with

a transparent foil (TopSeal-A Plus, PerkinElmer) and about 10 plates

were used per stack. Luminescence was measured every 10–20 min.

Before each measurement, plates were shaken for 10 s at 582 rpm

with a 1 mm amplitude. The culture volume per well was 150 μl.
The day-to-day CV for unperturbed cultures for the growth rate in

the luminescence-setup was 3%.

The growth rate was determined by a linear fit of the log-

transformed and background-subtracted OD600 from the exponential

growth phase of the cultures using custom Matlab (R2016b, Math-

Works Inc.) scripts. To capture the exponential growth phase for

cultures in LB we used background-subtracted OD600 windows of

0.02 to 0.2 and for minimal medium 0.03 to 0.12; these windows

cover one order of magnitude and at least two doublings and take

the lower growth yield in the minimal medium into account. The

lowest accepted growth rate for LB was 0.1 h−1 and for minimal

medium 0.03 h−1, both corresponding to about 10% of the respec-

tive unperturbed maximal growth rate. For the Hill function fits in

Fig 3C and D, growth rates below 0.2 h−1 were ignored because too

many data points fell in this range at higher IPTG concentrations

(Fig 2E) – these data points would thus dominate the fit, which is

undesirable since they contain less information about the shape of

the dose–response curve (i.e. the dose-sensitivity). The duration of

experiments for LB cultures was about 22 h, for minimal medium

about 46 h. For all experiments performed in LB medium, data after

∼1,000 min were discarded to avoid the inclusion of faster growing

mutants which occurred sporadically in the presence of antibiotics;

this was not necessary for experiments in minimal medium. To cap-

ture the growth rate strictly during the exponential phase from the

luminescence-based experiments, the rate of luminescence increase

was determined by a linear fit of the log-transformed data between

102 cps and 105 cps.

Expression level measurements using plate readers
Two plate readers Synergy Neo2 and a Synergy H1 (see section

Growth conditions for further details) were used for GFP fluores-

cence measurements. The filter set used in the Neo2 provided exci-

tation at 485 nm (BW20) and emission at 516 nm (BW20; Biotek

fluorescent filter #105). The settings for the monochromator-based

H1 model were 485 nm for excitation and 528 nm for emission. Both

readers produced consistent values and results. The measured values

for experiments where both plate readers were used in parallel were

adjusted accordingly (i.e. simply normalized by a constant obtained

from measuring the same sample on both readers). The expression

level was determined essentially as described (Zaslaver et al, 2006;

Mitosch et al, 2017). Briefly, for each GFP-expressing strain, a similar

strain without GFP-expression was grown in parallel in the same con-

ditions (see section Strain construction for further details). For both

strains, the exponential growth phase was determined and the back-

ground subtracted GFP-signal from the GFP-less strain was subtracted

from the GFP-carrying strain for cultures with similar growth rates

and at the same OD600. As the exact same OD600 values were mostly
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not met, linear interpolation (Matlab function interp1) was used to

generate an interpolated GFP-value between the two GFP values of

the two nearest OD600 values. The expression level is obtained from

the slope of a linear fit (Matlab function fit) to the GFP over OD600

data during exponential growth. In the experiments using the strains

with the reporter construct with the native promoter (BWAA01,

Fig 4), fast-folding GFP (Zaslaver et al, 2006) was used whereas in

the experiments with the synthetic IPTG-inducible promoter construct

(BWAA19, Fig 5) the GFP from the ASKA-library (Kitagawa et al,

2005) was used.

Expression level measurements using flow cytometry
For the expression level determination of the strains with IPTG-

induced folA-gfp expression (Fig 5) we used a combination of plate

readers (Biotek Synergy H1) for optical density measurements for

growth rate determination (see section Growth rate measurements

for details) and flow cytometry (Beckman Coulter CytoFLEX B2-RQ-

V2 with 96-well plate module) for fluorescence measurements. Flow

cytometry was used because of its higher signal-to-noise ratio com-

pared to fluorescence measurements on plate readers. Strains were

grown in the plate readers and growth was monitored by measuring

optical density every 10 min. When strains were in mid-exponential

growth phase (OD ∼ 0.1), they were diluted 1,000-fold in ISOTON II

(Beckman Coulter) and measured immediately on the flow cytome-

ter. Gating in SSC-A and GFP FITC-A channels in the flow cytometry

analysis software (Beckman Coulter Cytexpert 2.3.0.84) allows the

finding of (fluorescent) cells and the determination of the mean and

relative coefficient of variation of fluorescence intensity. Strains

used were BWAA11, BWAA12, BWAA19, and BWAA20 (see section

Strain construction for details) and TMP and IPTG gradients starting

at 0.9 μg/ml and 2.5 mM were applied, respectively. Growth rates

at constant or decreasing folA expression levels were calculated by

linear interpolation of the growth rates measured at different IPTG

and TMP concentrations as illustrated in Fig 5A. This experiment

involves two-dimensional concentration gradients on the 96-well

plate and the parallel use of three plate readers (each measuring one

plate over time) and requires repetitive sampling of the 96-well

plates; this is unusually laborious and time-consuming and was

therefore replicated only once.

Strains and strain construction
We used E. coli BW25113 and several derivatives thereof. BW25113

is the parent strain of the KEIO collection, a widely used whole-

genome deletion mutant collection (Baba et al, 2006). For the over-

expression experiments, BW25113 was transformed with the neces-

sary plasmids (Reagents and Tools table) which stem from the

ASKA-library, a plasmid-based whole-genome overexpression col-

lection (Kitagawa et al, 2005). To reduce the growth rate by gratu-

itous protein expression we used a truncated elongation factor Tu

(EF-Tu, tufB) as previously done for a similar purpose (Dong et al,

1995). Briefly, starting with the ASKA-library plasmid carrying tufB

(pCA24N(−)tufB), the SmaI restriction fragment of 243 bp in length

was cut out and the blunt-ended DNA fragment was closed by liga-

tion to form a plasmid again, named pAAtufB here. This deletion

results in a shortened, non-functional gene (ΔtufB), which can be

used to provide gratuitous protein expression, resulting in a burden

that slows down growth (Dong et al, 1995; Scott et al, 2010). The

plasmids from the ASKA-library (Kitagawa et al, 2005) use the PT5-

lac promoter, which allows for a graded control of expression by the

addition of the inducer IPTG (which works sufficiently well in a lac-

operon compromised strain like E. coli BW25113). As a control, we

used pAA30 which is the empty ASKA plasmid modified to not con-

tain a gene to prevent any expression; we created this plasmid since

the original empty ASKA plasmid, pCA24N(−), does in fact encode

a short coding sequence in frame with the promoter. Briefly,

through a PCR with the overlapping primers #1 and # 2 (Table EV1;

for general strategy see Heckman & Pease, 2007; Hansson et al,

2008) a short stretch of pCA24N(−) encompassing start codon over

the His-Tag and until the stop codon, was eliminated. The elimina-

tion was confirmed by sequencing the resulting plasmid with the

primers #3 and #4 (Table EV1) flanking the gene insertion site. For

the strong folA overexpression, the ASKA plasmid pCA24N(−)folA
was used.

We generated reporter strains and a strain with inducible folA

regulation. To construct the first gfp-reporter and corresponding gfp-

less control pair integrated into the chromosome (BWAA01 and

BWAA02), the promoter-reporter construct for PfolA and the corre-

sponding region from the empty plasmid pUA66 from the reporter

library (Zaslaver et al, 2006) were integrated into a neutral site

(phoA) in the genome, respectively. To this end, P1 transduction

was used to move the construct from an MG1655 strain carrying the

reporter constructs (Bollenbach et al, 2009) into the BW25113 back-

ground. The insertion was confirmed by sequencing PCR products

generated using the primers #5 and 6 (Table EV1) binding outside

the phoA locus.

The other reporters were based on folA-gfp fusion constructs

from the ASKA-library (Kitagawa et al, 2005). Again, pairs of strains

were made where each pair consists of a strain with and a strain

without the gfp fused to folA. We generated one pair to induce and

thereby control expression level by an IPTG-responsive promoter

(PLlacO-1; Lutz & Bujard, 1997) and one pair with the native regula-

tion through PfolA. The latter strains (BWAA11 native regulation

folA:gfp:kan and BWAA12 native regulation folA:kan) were made to

validate that the induced expression matches the expression level of

the native regulation. Indeed, the inducible strains (BWAA19 IPTG-

inducible regulation ΔPfolA:kan:PLlacO-1:folA:gfp, intS:PLlacO-1:

lacI, ΔlacI:kan and BWAA20 IPTG-inducible regulation ΔPfolA:kan:
PLlacO-1:folA, intS:PLlacO-1:lacI, ΔlacI:kan) show similar expres-

sion level as WT-regulation when lowly induced (0.5 mM IPTG)

and slightly less than 5-fold induction when strongly induced

(2.0 mM IPTG). To create the gfp fusion strains, folA-chlR and folA-

gfp-chlR fragments were PCR-amplified from the folA-carrying

ASKA-library plasmids (using as template the respective plasmids

from the library, with and without gfp (Kitagawa et al, 2005)) as a

first step and were used for recombineering (Datsenko & Wanner,

2000) into the plasmid pKD13-gfpmut3 (a derivative of pKD13 (Dat-

senko & Wanner, 2000); gift from Bor Kavčič which contains FRT-

flanked kanamycin resitance cassette and the promoter sequence

PLlacO1). Primers used for that step were #7 and #8 (Table EV1).

This resulted in pAA39 and pAA40 where an FRT-flanked kana-

mycin resistance cassette, the promoter PLlacO-1 driving folA and the

folA-gfp fusion, respectively, and a chloramphenicol resistance cas-

sette are present (in this order). These plasmids first served as the

source for the promoter-folA and folA-gfp fusion with a
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chloramphenicol resistance cassette to be inserted into the genome

at the folA locus to generate the strains with the native regulation

(BWAA11 and BWAA12). PCR-fragments for recombineering were

obtained with the previously used forward primer #7 and primer #9

(Table EV1) serving as a reverse primer to get the folA gene with

and without gfp, respectively, and the chloramphenicol resistance

cassette (but not the synthetic promoter) were inserted into the

genome of BW25113 replacing the folA gene (but not the promoter

on the genome). Next, by recombineering with PCR-fragments con-

taining the kanamycin resistance cassette only obtained with the

primer #10 and the primer #11 (Table EV1) from pKD13-gfpmut3

the chloramphenicol resistance cassette was replaced with the FRT-

flanked kanamycin resistance cassette. Next, to obtain a marker-less

strain the kanamycin resistance cassette was removed using the

plasmid pCP20, the FLP helper plasmid, as described (Cherepanov

& Wackernagel, 1995). For the strains with the IPTG-inducible regu-

lation (BWAA19 and BWAA20) a similar strategy was applied.

Primer #12 and primer #13 (Table EV1; putative RBS sequence from

Baba et al, 2006) were used to amplify the FRT-flanked kanamycin

resistance cassette, the promoter PLlacO-1 driving folA and the folA-

gfp respectively of pAA39 and pAA40 (but not the chloramphenicol

resistance cassette). Next, to obtain a marker-less strain the kana-

mycin resistance cassette was removed using pCP20. All four

marker-less strains were further modified by P1 transduction from a

MG1655 strain carrying the lacI gene under the promoter PlacO1 and

a FRT-flanked kanamycin resistance cassette at the neutral insertion

site intS (based on the strain from (Garcia et al, 2011) (HG105) and

a gift from Bor Kavčič). The insertion was confirmed by sequencing

PCR products generated using primers #14 and #15 (Table EV1)

binding outside the intS locus. Next, that kanamycin resistance cas-

sette was removed using pCP20. The resulting markerless strains

were further modified by P1 transduction with the lacI knock-out

strain from the KEIO collection (Baba et al, 2006) replacing the lacI

gene with the kanamycin resistance cassette. The deletion was con-

firmed by sequencing PCR products generated using primers #16

and #17 (Table EV1) binding outside the lacI locus. We reasoned,

that here a PLlacO-1-driven lacI allows a better control of the PLlacO-1-

driven folA based on observations in Klumpp et al (2009) and

Kavčič et al (2020) dealing with growth rate independent negative

autoregulation. Moreover, as mentioned above, with the combina-

tion of the respective RBS and the Lac-repressor driven by PlacO1 we

achieved expression relatively close to wild-type levels (Liu & Nai-

smith, 2008; Deris et al, 2013).

For the recombineering procedure (Datsenko & Wanner, 2000)

the temperature-inducible system from pSIM19, the recombineering

helper plasmid, (Sharan et al, 2009) was used. Chloramphenicol at

10 μg/ml and kanamycin at 25 μg/ml were used. During the whole

strain construction procedure wherever folA was driven by PLlacO1,

1 mM IPTG was added as this inducer controls expression from

PLlacO1 and folA is an essential gene.

Microfluidics-based single-cell experiments to determine cell death
in the presence of TMP
The time-lapse microscopy experiments were performed as previously

described (Mitosch et al, 2017, 2019). Briefly, we used E. coli

BW25113 carrying the low copy plasmid pZS11-pHluorin (Mitosch et

al, 2017) with pHluorin from (Martinez et al, 2012) and PLtetO-1 pro-

moter with absent Tet repressor (Lutz & Bujard, 1997), leading to the

constitutive expression of pHluorin; here, pHluorin is only used as a

cytosolic fluorescent protein for segmentation, i.e., to follow single

cells and determine growth rate, and to detect cell lysis. We used a

microfluidic device (CellASIC ONIX, Merck Millipore) in which bacte-

ria grow in microcolonies. It allows inflow from different inlets; the

growth medium in the microfluidic chamber can be completely

exchanged within minutes. Bacteria were inoculated from frozen glyc-

erol stocks, grown to exponential growth phase, diluted, and then

added into the preheated (30°C) microfluidic device. Images were

taken every 7.5 min. TMP was added after 30 min. The movies were

segmented and analyzed using a slightly adapted version of the

MATLAB (MathWorks) script “SchnitzCells” (Young et al, 2012). To

find cells and segment them we subtracted the fluorescent background

of the surrounding environment (LB medium is autofluorescent) as

the median fluorescence over all pixels outside of bacteria. Cell lysis

was detected as a sudden disappearance of the cytosolic fluorescence

signal; cells were considered intact from birth until the occurrence of

such a lysis event (if any). In this way, we determined the number of

intact and lysed cells at each time point. At later time points (after

about 4 and 8 h, respectively, for the different TMP concentrations

used), the experiments were terminated because the microfluidic

chamber became crowded with cells.

Cellular resource allocation model
Derivation of the model

We built our model using Constrained Allocation Flux Balance Anal-

ysis (CAFBA) (Mori et al, 2016), which divides the proteome of a

bacterial cell into three different sectors: ribosomal proteins (R),

metabolic enzymes (E), and nutrient scavenging (C). A core feature

of CAFBA is its implementation of empirical bacterial growth laws,

where the R and E sectors increase their share in the proteome lin-

early with the growth rate in improving nutritional conditions, while

the C sector follows the opposite trend, i.e., fewer nutrient-

scavenging proteins like transporters are produced in improved

nutritional conditions. Here, we lump the R and E sectors of the

CAFBA model into a single R sector for simplicity. Let us denote the

proteome fractions of the R and C sectors as ϕR and ϕC, respectively,

satisfying the normalization condition ϕR þ ϕC ¼ 1. We follow the

formulation in CAFBA and assume that the R sector is linearly

related to the growth rate:

ϕR ¼ ωRλ

In the original CAFBA model, the influx of nutrient substrate s is

carried out by the C-sector and takes the form ϕC
s

KMsþs. Here, KMs is the

equilibrium constant of substrate binding to the transporter, and
s

KMsþs describes how the variation of s changes the saturation of this

substrate binding. This influx of nutrient is then fed into

the metabolic network (E-sector) to make biomass and ultimately

determines the growth rate λ [h−1]. We assumed that in the absence

of the antibiotic, all nutrients are converted to biomass, and hence

the growth rate is proportional to the nutrient influx, i.e.,

λ ∼ ΦC
s

KMs þ s
:

In our experimental setup for glucose limitation, we maintain a

constant glucose concentration and change the ratio a of αMG
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relative to glucose in the growth medium. As the transporter can

bind to both glucose and αMG, the concentration of importable sub-

strate s follows s ¼ cg aþ 1ð Þ, where cg is the concentration of glu-

cose (constant throughout the experiment), and every glucose

molecule comes with a αMG molecules. Replacing s by aþ 1 entails

the substitution of KMs by KMa≔
KMs

cg
, giving s

KMsþs ¼ aþ1
KMaþaþ1. Further,

only a fraction 1
aþ1 of the imported substrates contributes to growth.

These considerations lead to λ ∼ ϕC
aþ1

KMaþaþ1
1

aþ1 ¼ ϕC
1

KMaþaþ1. Intro-

ducing the proportionality constant ωC gives ωCλ ¼ ϕC
1

KMaþaþ1 or,

after rearrangement,

ΦC ¼ ωCλ KMa þ aþ 1ð Þ:

According to the CAFBA assumptions, we also have

1�ϕC ¼ ϕR ¼ ωRλ, or ϕC ¼ 1�ωRλ. Setting this equal to the above

equation and rearranging, we can thus write the TMP-free growth

rate λ0 as λ0 ajKMa;ωR;ωCð Þ ¼ 1
ωRþωC KMaþaþ1ð Þ. In our case, the sub-

strate concentration is sufficiently high and so that the C-sector is

always saturated. This means s
KMsþs ¼ aþ1

KMaþaþ1≈1, and therefore

1≫KMa≈0. λ0can thus be simplified as

λ0 ajωR;ωCð Þ ¼ 1

ωR þ ωC aþ 1ð Þ :

In the presence of TMP at concentration c, it binds to the FolA

protein according to the following reaction: FolAfree + TMP ⇌ FolA-

TMP. Here FolAfree is the free FolA protein, whereas FolA-TMP is

FolA bound to TMP. At equilibrium, we have

FolAfree½ � TMP½ �
FolA�TMP½ � ¼ KMc

Let us denote the total concentration of FolA proteins in the cell

as χFolA≔ FolA½ � ¼ FolAfree½ � þ FolA�TMP½ �: The concentration of free

FolA can then be written as

FolAfree½ � ¼ χFolA
1þ c

KMc

The growth rate of the cell depends on the availability of and the

demand for FolA. We assume that the demand for FolA is a con-

stant, denoted by χFolAX , and that the growth rate is proportional to

free FolA when its concentration is lower than the demand; other-

wise, the growth rate is not affected. This then gives the growth rate

equation

λ a; c; χFolAjKMc;ωR;ωC ; χFolAXð Þ ¼ λ0 ajωR;ωCð Þmin 1;
χFolA

χFolAX 1þ c
KMc

� �
8<
:

9=
;

It explains the relationship between the variables λ; c; a , and χFolA.

While a is dimensionless, the variables (λ; c; χFolA) have their own

dimension. Thus, three model parameters can be eliminated by rescal-

ing the variables using suitable units. Let us denote these rescaled

variables as λ; c, and χFolA. Starting from the growth law in the drug-

free condition

λ0 ajωR;ωCð Þ ¼ 1

ωR þ ωC aþ 1ð Þ ;

we can rearrange the terms to get

ωRλ0 ajωR;ωCð Þ ¼ 1

1þ ωC

ωR
aþ 1ð Þ :

Therefore, if we define λ ¼ ωRλ and A ¼ ωC=ωR, the growth rate

in the drug free condition can be written as

λ ¼ 1

1þ A aþ 1ð Þ

Defining c ¼ c=KMc and χFolA ¼ χFolA=χFolAX , the general form of

the model becomes

λ ¼ 1

1þ A aþ 1ð Þmin 1;
χFolA
1þ c

� �
:

In this way, the model is simplified to have only a single

meaningful fit parameter A. While the last equation provides

insight into the structural dimensionality of the model, compar-

ison with the data requires us to also fit the scaling variables ωR,

KMc, and χFolAX.

Fitting to determine the numerical values of the model parameters

As we measured the expression level of folA by fusing it to a flu-

orescent protein (Fig 4), we use the corresponding emitted light

intensity to quantify χFolA. We use the model to describe the

behavior of cells within the range a ≤ 10, ignoring data points

with a> 10. We also filtered out data points with high uncer-

tainty, including those with growth rate <0.05 [h−1] or zero fluo-

rescent intensity.

Without the drug TMP, the expression of folA changes with

changing glucose limitation, quantified by a. If we start to increase

the TMP concentration from this point, the expression of folA across

different glucose limitations starts to converge and comes to the

same value at around c ¼ 0:4 μg/ml, independent of a (Fig 4D).

Therefore, we assumed that the expression of folA changes linearly

with c within the range c∈ 0; 0:4½ � at constant glucose limitation a in

the model, and thereafter it becomes independent of TMP concen-

tration for c> 0:4. We implemented this strategy numerically by

defining FFolA a; cð Þ, the functional form to summarize the behavior

of χFolA. FFolA a; cð Þ is obtained by linear regression, followed by two-

dimensional interpolation of χFolA across different carbon limitations

a and TMP concentrations c (Fig 4). Specifically, we used linear

regression to fit χFolA vs. c at four different values of a (a ¼ 0, 2.5, 5,

and 10, data shown in Fig 4D). If multiple measurements were per-

formed at a given combination of a and c, we give each measure-

ment the same weight in the regression. Thereafter, FFolA a; cð Þ was

estimated through the MATLAB interpolation function “scat-

teredInterpolant” based on these four fitted curves. For a TMP con-

centration c0 > 0:4, we set FFolA a; c0ð Þ ¼ FFolA a; 0:4ð Þ.
The resulting model has four parameters: KMc;ωR;ωC , and χFolAX.

Of these, ωR and ωC are associated with the simplified CAFBA model

describing λ0 ajωR;ωCð Þ. To determine the free fitting parameters to

the drug response, we first fit these parameters to data from mea-

surements at negligible drug concentrations (c< 0.1 μg/ml). We

applied the MATLAB function “fit” to fit λ0 ajωR;ωCð Þ using the same

criteria to filter the data as we did in FFolA a; cð Þ:
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The term involving ωC and χFolAX modifies the λ0 model to

explain the drug response. We applied the same MATLAB func-

tion to fit λ a; c; χFolAjKMc;ωR;ωC ; χFolAXð Þ, fixing ωR, and ωC to the

values obtained from the previous fit, and further eliminated one

dynamic variable by substituting χFolA with FFolA a; cð Þ. In this

way, we determined all parameters of our cellular resource allo-

cation model.

Each curve in Fig 6A and B shows the model predictions as a

function of TMP concentration c. The dose-sensitivity n of these

curves (Fig 6, insets) was determined by fitting a Hill function

exactly as for the experimental data; the error bars show 95% confi-

dence intervals estimated from the MATLAB function “fit”. Let us

denote the FolA level of the wild type at c ¼ 1 μg/ml as χ1. For the

constant FolA condition in Fig 6B, the level of FolA was kept at χ1;

for inverted FolA regulation, the FolA level was set to 2χ1 at c ¼ 0,

decreasing linearly to χ1 at c ¼ 1 μg/ml.

Data availability

This study includes no data deposited in external repositories. All

essential data are available as Source Data.

Expanded View for this article is available online.
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