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ABSTRACT
We review recent results on adiabatic theory for ground states of extended gapped fermionic lattice systems under several different assump-
tions. More precisely, we present generalized super-adiabatic theorems for extended but finite and infinite systems, assuming either a uniform
gap or a gap in the bulk above the unperturbed ground state. The goal of this Review is to provide an overview of these adiabatic theorems and
briefly outline the main ideas and techniques required in their proofs.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0123441

I. INTRODUCTION
We review four recent results on adiabatic theory for ground states of extended finite and infinite fermionic lattice systems at zero

temperature.1–3 These results are generalized super-adiabatic theorems (see Sec. I B) and concern Hamiltonians of the form

Hε = H0 + εV ,

where the unperturbed Hamiltonian H0 is a sum-of-local-terms (SLT) operator describing short-range interacting fermions and is assumed
to have a spectral gap above its ground state. This gap might be closed by the (small) perturbation εV , which is given by a short-range
Hamiltonian, a Lipschitz potential, or a sum of both. Consequently, the results presented in this Review are adiabatic theorems for resonances
of Hε (cf. Refs. 4 and 5).

The most important corollary and main motivation for proving such theorems in the context of extended fermionic lattice systems is the
rigorous justification of linear response theory1,6 and the Kubo formula7 for (topological) insulators,8 such as quantum Hall systems,9 where
the prototypical relevant perturbation is a linear external potential modeling a constant electric field closing the gap of H0 for every ε ≠ 0
(see Fig. 1).

In the remainder of this Introduction, we first briefly discuss the connection between linear response and adiabatic theory in Sec. I A (see
also Refs. 1 and 6). Furthermore, we point out the key ingredients and developments which allowed to prove1–3 the four adiabatic theorems
presented in this Review. Afterward, in Sec. I B, we explain the notion of generalized super-adiabatic theorems and thereby introduce (super-
adiabatic) non-equilibrium almost-stationary states (NEASSs)1 as the above mentioned resonances of Hε. A first brief but somewhat precise
statement and overview of the results is given in Sec. I C.

A. Linear response and adiabatic theory
The formalism of linear response theory7 has been widely used in physics to calculate the response of a system in thermal equilib-

rium to external perturbations. Put briefly, linear response theory provides an answer to the following question: What is the response of a
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FIG. 1. Let H0 be a Hamiltonian with a gapped sector and a gap g. Perturbing with a Lipschitz potential v(x) = ε x, the gap gets closed (for large enough lattices). However,
as indicated, a local gap persists and an electron at location x0 would either need to overcome the gap (vertical arrow) or tunnel along the distance g/ε (horizontal arrow) in
order to make a transition from the gapped sector.1,6

system described by a Hamiltonian H0, which is initially in an equilibrium state ρ0, to a small static perturbation εV? Or, in somewhat more
mathematical terms, what is the change10

ρε(A) − ρ0(A) = ε σA + o(ε)

of the expectation value of an observable A induced by the perturbation εV to leading order in its strength 0 < ε≪ 1? Here, ρε denotes the
state of the system after the perturbation has been (adiabatically) turned on and σA denotes the linear response coefficient.

The answer to this fundamental question of linear response clearly hinges on the problem of determining ρε. Although in few par-
ticular situations one expects ρε to remain an equilibrium state for the perturbed Hamiltonian Hε = H0 + εV , the original linear response
theory7 was developed for situations where the system is driven out of equilibrium, i.e., ρε being a resonance state. As prominently for-
mulated by Simon11 in his “Fifteen problems in mathematical physics” from 1984, the latter non-equilibrium situation causes the main
challenges in a rigorous mathematical treatment. However, in either case, the linear response coefficient σA is customarily expected to be
given by the celebrated Kubo formula,7 and rigorously justifying it was formulated as one of the problems by Simon.11 For a more detailed
recent review on the (mathematical) problem of proving Kubo’s formula and its relevance in the context of quantum Hall systems, we refer
to Ref. 6.

In a nutshell, the problem of justifying linear response theory and proving Kubo’s formula is thus to verify that a system, initially in an
equilibrium state ρ0, is adiabatically driven by a small perturbation εV into a non-equilibrium state ρε ≈ ρ0. Since the perturbation acts over
a very long (macroscopic) time, this problem clearly supersedes standard perturbation theory: The change of the state being small is not a
trivial consequence of the smallness of the perturbation εV . Instead, verifying that the two states, ρε and ρ0, are close to each other requires an
adiabatic-type theorem.

However, even in our rather simple setting (zero temperature, assuming that ρ0 is the gapped ground state of H0 describing an extended
fermionic lattice system, the perturbation εV might close the gap), the problem of justifying the linear response formalism also goes beyond
standard adiabatic theory. In fact, the applicability of the standard adiabatic theorem of quantum mechanics is rather restrictive for the
following three reasons:

(i) The standard adiabatic theorem requires the perturbation εV to not close the spectral gap. In that scenario, it asserts that ρε is (close to)
the gapped ground state of Hε = H0 + εV and, as such, a (nearly) equilibrium state.

(ii) Even if we neglect the first issue, the usual adiabatic theorem estimates the difference between ρε and the ground state of the perturbed
Hamiltonian Hε in operator norm, leaving the translation to local differences in expectation values as an additional and potentially
non-trivial step.

(iii) In general, extended systems are plagued by the orthogonality catastrophe: Whenever for single-particle states ψ, ψ̃ we have ∥ψ − ψ̃∥ ∼ ε,
the non-interacting many-particle states ⊗x∈Λψx and ⊗x∈Λψ̃x satisfy ∥⊗x∈Λψx − ⊗x∈Λψ̃x∥ ∼ ε∣Λ∣, i.e., the norm-estimate deteriorates
when ∣Λ∣ → ∞. This means that the approximation error in the standard adiabatic theorem grows with the systems size, and it is
thus not applicable for macroscopic systems.

A major breakthrough in overcoming these obstacles has recently been achieved by Bachmann, De Roeck, and Fraas12 (see also their
introductory lecture notes13). They proved the first adiabatic theorem for extended (but finite) lattice systems with short-range interactions,
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thereby solving the second and third problem in the list above. More precisely, their result concerns differences in expectation values and
provides error estimates, which are uniform in the system size.

For these lattice systems with short-range interactions, well-known Lieb–Robinson bounds14–16 ensure a finite speed of correlation
and prevent the build-up of long-range entanglement. Having Lieb–Robinson bounds at hand allowed Bachmann et al.18 to prove that
the generator of the spectral flow, introduced by Hastings and Wen,17 is an SLT operator and thus preserves good locality proper-
ties. The general spectral flow technique can then be used to prove automorphic equivalence of two gapped ground states ρ0 and ρ1
of Hamiltonians H(0) and H(1), respectively: Given a smooth path s↦ H(s) of (uniformly) gapped SLT Hamiltonians, their ground
states are automorphically equivalent (equal up to a conjugation by unitaries) with the generator of the automorphism being an SLT
operator.18 This automorphic equivalence allowed Bachmann et al.12 to prove a super-adiabatic theorem (see Sec. I B for an explana-
tion of this notion) for such systems, however, still requiring the spectral gap not only for H0 but also for Hε, i.e., the gap must remain
open.19

The four theorems presented in this Review also solved the last remaining problem given under item (i) in the above list, i.e., they allow
the perturbation εV to close the spectral gap of H0. The main idea for establishing this generalization is that a spatially local gap should
suffice for an adiabatic theorem to hold. This underlies the space-time adiabatic perturbation theory originally developed for non-interacting
fermions by Panati, Spohn, and Teufel,20,21 where one utilizes a gap that exists locally in space (and time) but does not exist globally. It
also underlies the recent results by De Roeck, Elgart, and Fraas,22 where an adiabatic theorem holds even if the “spectral gap” is filled with
eigenvalues, whose corresponding eigenvectors are spatially localized, leaving a gap (with smaller size) locally open. Finally, this is also the
idea behind Theorems III and, especially, IV, where one still has an adiabatic-type theorem although the gap closes at the boundary of the
lattices.

Combining the ideas from the space-time adiabatic perturbation theory with the methods invented in Ref. 12, the first of the four
theorems presented in this Review was proven by Teufel.1 It concerns extended but finite systems and requires a spectral gap for H0, uniformly
in the system size [see Assumption (GAPunif)]. The precise statement is formulated in Theorem I. In order to extend this result from finite
lattices to an infinite system, Henheik and Teufel2 adapted ideas from Nachtergaele, Sims, and Young16 on controlling the thermodynamic
limit of automorphisms with SLT generators. This result is formulated in Theorem II.

So far, all the mentioned results were obtained under the assumption of a (uniform) spectral gap for the finite systems (which also implies
a gap for the infinite system). However, the recent result on automorphic equivalence with a gap only in the bulk (via the GNS construction)
by Moon and Ogata23 opened the door for a new class of adiabatic theorems, where the unperturbed Hamiltonian H0 is no longer required
to have a uniform spectral gap. Instead, Theorem III, originally proven by Henheik and Teufel,3 is a result for the infinite volume states and
requires a gap in the bulk. This technically means a gap for the infinite system [cf. Assumption (GAPbulk)] but can be understood as requiring
a local gap in the interior of the finite lattices (cf. Remark 4).

Moreover, by employing strong locality estimates from Refs. 16 and 23, and assuming fast convergence of ground states, Theorem III
can be traced back to extended but finite systems that only have a gap in the bulk. This was also proven in Ref. 3 and is formulated in
Theorem IV.

B. Non-equilibrium almost-stationary states
For the results presented in this Review, we consider time-dependent families

Hε(t) = H0(t) + εV(t), t ∈ I ⊂ R, (1)

of many-body Hamiltonians for lattice fermions in Γ ⊂ Zd with short-range interactions. Here, Γ will either be a finite box Λ or the whole of
Zd. For each t ∈ I, we denote by ρ0(t) the instantaneous ground state of H0(t) on the (quasi-local) algebra of observables AΓ. For simplicity
of the presentation, we shall assume that the ground state is unique.24 Moreover, we assume that the ground state is separated by a gap from
the rest of the spectrum [see Assumptions (GAPunif) and (GAPbulk) in Sec. III for the precise formulation]. The perturbation V(t) can be a
Hamiltonian with short-range interactions or a possibly unbounded external Lipschitz potential or a sum of both [see Sec. II and Assumptions
(INT1)–(INT4) in Sec. III].

As mentioned above, the main results presented in this Review are so-called generalized super-adiabatic theorems for ρ0(t), which we
briefly explain in the following. For ε = 0, the results are “standard” super-adiabatic theorems and establish the existence of super-adiabatic
states ρη0(t) on AΓ close to ρ0(t), i.e.,

∣ρη0(t)(A) − ρ0(t)(A)∣ = O(η),

such that the adiabatic time-evolution Uηt,t0
on AΓ generated by 1

ηH0(⋅) intertwines the super-adiabatic states to all orders in the adiabatic
parameter η > 0, i.e.,
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∣ρη0(t0)(Uηt,t0
[[A]]) − ρη0(t)(A)∣ = O(η

∞) (2)

for all A in a dense subspace D ⊂ AΓ. Throughout this entire Review, we shall study our system in the Heisenberg picture, meaning that the
observable A evolves in time, not the state ρη0(t0) (see also Proposition 3). Note that the comparison state ρη0(t) does not involve any time
evolution but simply depends on the Hamiltonian at time t (see Definition 1 for details). Here and in the following, we write the arguments
of (densely defined) linear operators on AΓ inside the brackets [[⋅]] for better readability.

For ε > 0, the scope of the adiabatic theorem (2) extends considerably since the perturbation εV(t)might close the spectral gap and turn
the ground state ρ0(t) of H0(t) into an instantaneous resonance state Πε(t) for Hε(t). These states have a lifetime of order O(ε−∞) for the
dynamics s↦ eisL Hε(t) , with LHε(t)[[⋅]] ∶= [Hε(t), ⋅ ] (formally) denoting the derivation associated with Hε(t). That is, for all n ∈ N and fixed
t, it holds that

∣Πε(t)(eisL Hε(t)[[A]]) −Πε(t)(A)∣ = O(εn (1 + ∣s∣d+1)),

which is why they were called non-equilibrium almost-stationary states (NEASSs) in this context by Teufel.1 The generalized super-adiabatic
theorems then establish the existence of a super-adiabatic NEASS Πε,η(t) on AΓ close to Πε(t) such that the adiabatic time-evolution Uε,ηt,t0

generated by 1
ηHε(⋅) approximately intertwines the super-adiabatic NEASSs in the following sense: for any n > d and for all A ∈ D ⊂ AΓ, we

have

∣Πε,η(t0)(Uε,ηt,t0
[[A]]) −Πε,η(t)(A)∣ = O(ηn−d + εn+1

ηd+1 ) (3)

uniformly for t in compact sets, which we call a generalized super-adiabatic theorem.
In our setting of gapped Hamiltonians H0 describing insulating materials, there is indeed a clear and simple physical picture suggesting

the existence of NEASSs for Hε, as observed in Refs. 1 and 6 (see Fig. 1). For simplicity, assume that H0 is a periodic one-body operator in
one spatial dimension and that the Fermi energy μ (chemical potential) lies in a gap of size g. For the perturbation, we consider the potential
of a small constant electric field ε. In the initial state ρ0, before the perturbation is turned on, all one-body states with energy smaller than
μ are occupied. After the voltage has been applied, the energy of an electron located at position x0 gets substantially shifted by ε x0, but is
only subject to small force of order ε. As indicated in Fig. 1, in order to make a transition, such an electron must either overcome the gap of
size g or tunnel a macroscopic distance of order g/ε. Thus, although ρ0 is neither close to the ground state nor any other equilibrium state of
the perturbed Hamiltonian Hε = H0 + εV , it is still almost stationary for Hε. This heuristic picture remains valid if short-range interactions
between the electrons are taken into account.

While for ε = 0 the generalized super-adiabatic theorem (3) reduces to the standard one (2), for 0 < ε≪ 1, the right-hand side of (3) is
small if and only if also η is small, but not too small compared to ε, i.e., ε

n+1
d+1 ≪ η≪ 1 for some n ∈ N. Physically, this simply means that the

adiabatic approximation breaks down when the adiabatic switching occurs at times that exceed the lifetime of the NEASS, an effect that has
been observed in adiabatic theory for resonances before; see, e.g., Refs. 4 and 5. It can also be heuristically understood from the tunneling
picture given in Fig. 1.

Moreover, in view of the linear response problem discussed in Sec. I A, let us only mention here that a statement such as (3), in fact,
yields a solution to this problem after expanding the state Πε,η(t) in powers of ε, where the linear term [eventually stemming from the first
order operator A1 given in (18)] does, in fact, constitute Kubo’s formula. See Refs. 1, 2, and 6 for details.

C. Brief statement of the results
We shall establish the existence of super-adiabatic NEASSs in four generally quite different situations; the main differences are also

summarized in Table I:

(I) On finite systems Λk ⋐ Zd with suitable boundary conditions, assuming that the unperturbed Hamiltonians HΛk
0 (t) have a gapped

ground state uniformly in Λk, there exist NEASSs on AΛk such that the constants in (3) are independent of Λk. See Theorem I
and Ref. 1.

(II) Additionally assuming convergence of the Hamiltonians (they have a thermodynamic limit; cf. Definition 2) and ground states, there
also exists a super-adiabatic NEASS on AZd after taking the thermodynamic limit Λk ↗ Zd. See Theorem II and Ref. 2.

(III) For the infinite system Zd, assuming that the unperturbed Hamiltonian H0 has a unique gapped ground state (via the GNS con-
struction), there exists a NEASS on AZd , while a (uniform) spectral gap for finite sub-systems is not required. See Theorem III
and Ref. 3.

(IV) Additionally assuming a quantitative control on the convergence of the finite volume Hamiltonians HΛk(t) (they have a rapid thermo-
dynamic limit; cf. Definition 5) and the unperturbed ground states in the thermodynamic limit, there also exist NEASSs on AΛk (again
with a uniform constant) up to an error vanishing faster than any inverse polynomial in the distance to the boundary. See Theorem IV
and Ref. 3.
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TABLE I. Overview of the adiabatic theorems and the original papers.

Finite volume Infinite volume

Uniform gap Theorem I; see Ref. 1 Theorem II; see Ref. 2
Gap in the bulk Theorem IV; see Ref. 3 Theorem III; see Ref. 3

A typical example of a physically relevant class of Hamiltonians,1,6,25 to which the above generalized super-adiabatic theorems apply, is
given by

HΛk
0 = ∑

x,y∈Λk

a∗x T(x − y) ay + ∑
x∈Λk

a∗x ϕ(x) ax + ∑
x,y∈Λk

a∗x ax W (dΛk(x, y)) a∗y ay − μNΛk , (4)

modeling Chern or topological insulators. In agreement with the precise locality assumptions (INT1)–(INT4) in Sec. III, we suppose that
the kinetic term T : Zd → L(Cr) is an exponentially decaying function with T(−x) = T(x)∗, the potential term ϕ : Zd → L(Cr) is a bounded
function taking values in the self-adjoint matrices, and the two-body interaction W : [0,∞) → L(Cr) is exponentially decaying and also takes
values in the self-adjoint matrices. Note that x – y in the kinetic term refers to the difference modulo the imposed boundary condition on Λk.
In the first two terms of (4), ax is the column vector of the annihilation operators ax,i (i labels internal degrees of freedom, such as spin) and
a∗x is the row vector of the creation operators a∗x,i (see Sec. II). In addition, with a slight abuse of notation in the third term of (4), we wrote
a∗x ax for the row vector with entries a∗x,iax,i and a∗y ay for the column vector with entries a∗y,iay,i.

It is well known that non-interacting Hamiltonians H0, i.e., with W ≡ 0, of type (4) on a torus (periodic boundary condition) have a
uniform spectral gap [see Assumption(GAPunif)] whenever the chemical potential μ multiplying the number operator lies in a gap of the
spectrum of the corresponding one-body operator on the infinite domain. It was recently shown26,27 that the spectral gap remains open
when perturbing by sufficiently small short-range interactions W ≠ 0. On the other hand, the Hamiltonian H0 on a cube with open boundary
condition has, in general, no longer a spectral gap because of the appearance of edge states. However, away from the boundary, a gap in the
bulk [see Assumption (GAPbulk)] is still present. While also the uniqueness of the ground state is expected to hold for such models, to our
knowledge, it has been shown only for certain types of quantum spin systems; cf. Refs. 28–32. For further details, we refer to the original
papers.1–3 Finally, it is an interesting program to extend Table I by further rows representing different notions of a spectral gap for H0, e.g., a
local gap as in Ref. 32 or even only a mobility gap (see Ref. 22 for a first result in this direction).

After a brief introduction to the relevant mathematical framework in Sec. II, we formulate the four main theorems in Sec. III. Ideas of
their proofs are provided in Sec. IV.

II. MATHEMATICAL FRAMEWORK
In this section, we briefly introduce the (standard) mathematical framework used in the formulation of the adiabatic theorems. More

explanations and details are provided in Refs. 1–3.

A. Algebra of observables
We consider fermions with r spin or other internal degrees of freedom on the lattice Zd. Let {X ⋐ Zd} ∶= {X ⊂ Zd : ∣X∣ < ∞} denote the

set of finite subsets of Zd, where ∣X∣ is the number of elements in X. For each X ⋐ Zd, let FX be the fermionic Fock space built up from the
one-body space ℓ2(X,Cr). The C∗-algebra of bounded operators AX ∶= L(FX) is generated by the identity element 1AX and the creation and
annihilation operators a∗x,i, ax,i for x ∈ X and 1 ≤ i ≤ r, which satisfy the canonical anti-commutation relations (CARs). Whenever X ⊂ X′, then
AX is naturally embedded as a subalgebra of AX′ . For infinite systems, the algebra of local observables is defined as the inductive limit

A loc ∶= ⋃
X⋐Zd

AX , and its completion AZd ∶= A loc
∥⋅∥

with respect to the operator norm ∥ ⋅ ∥ is a C∗-algebra, called the quasi-local algebra. The even elements A +Zd ⊂ AZd form a C∗-subalgebra. In
addition, note that for any X ⋐ Zd, the set of elements A N

X commuting with the number operator NX ∶= ∑x∈X a∗x ax ∶= ∑x∈X∑r
i=1 a∗x,i ax,i forms

a subalgebra of the even subalgebra, i.e., A N
X ⊂ A +X ⊂ AX . As only even observables will be relevant to our considerations, we will drop the

superscript + from now on and redefine AZd ∶= A +Zd .
Since a very similar construction is common for quantum spin systems (see, e.g., Ref. 16), all the results immediately translate to this

setting.

B. Interactions and operator families
We shall consider sequences of Hamiltonians defined on centered boxes Λk ∶= {−k, . . . ,+k}d of size 2k with metric dΛk(⋅, ⋅). This metric

may differ from the standard ℓ1-distance d(⋅, ⋅) on Zd restricted to Λk if one considers discrete tube or torus geometries, but satisfies the
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bulk-compatibility condition,

∀k ∈ N ∀x, y ∈ Λk : dΛk(x, y) ≤ d(x, y) and dΛk(x, y) = d(x, y) whenever d(x, y) ≤ k.

An interaction on a domain Λk is a map

ΦΛk : {X ⊂ Λk} → A N
Λk , X ↦ ΦΛk(X) ∈ A N

X

with values in the self-adjoint operators. Note that the maps ΦΛk can be extended to maps on the whole {X ⋐ Zd} or restricted to a smaller
Λl, trivially. In order to describe fermionic systems on the lattice Zd in the thermodynamic limit, one considers sequences Φ = (ΦΛk)

k∈N
of

interactions on domains Λk and calls the whole sequence an interaction.
An infinite volume interaction is a map,

Ψ : {X ⋐ Zd} → A N
loc, X ↦ Ψ(X) ∈ A N

X ,

again with values in the self-adjoint operators. Such an infinite volume interaction defines a general interaction Ψ = (ΨΛk)
k∈N

by restriction,
i.e., by setting ΨΛk ∶= Ψ∣{X⊂Λk}.33 With any interaction Φ, one associates an operator family, which is a sequence A = (AΛk)k∈N of self-adjoint
operators,

AΛk ∶= AΛk(Φ) ∶= ∑
X⊂Λk

ΦΛk(X) ∈ A N
Λk.

For any a > 0 and n ∈ N0, we define the norm

∥Φ∥a,n ∶= sup
k∈N

sup
x,y∈Zd

∑
X⊂Λk :
x,y∈X

dΛk-diam(X)n ea⋅dΛk (x,y) ∥ΦΛk(X)∥ (5)

on the space of interactions.34 Note that these norms depend on the sequence of metrics dΛk on the cubes Λk, i.e., on the boundary conditions.
Similar constructions for interactions and interaction norms are long known. More commonly, the norms are independent of the par-

ticular lattice Λk and the interaction (ΦΛk)
k∈N

is given by restrictions of a single infinite volume interaction. Moreover, in earlier works,35,36

the authors did not require additional decay properties, which were only added later (see, e.g., Refs. 16, 37, and 38). The use of interactions
and corresponding norms, which are not simply restrictions of an infinite volume interaction, originates in Ref. 25 to incorporate non-trivial
boundary conditions. In order to control commutators with Lipschitz potentials (see Sec. II C), the dependence on the diameter dΛk-diam(X)
was added in Ref. 1. Finally, to ensure the existence of the thermodynamic limit, it is necessary to require the bulk-compatibility condition.2,3

Yet another variant of defining interaction norms is to replace dist(x, y) with diam(X) in (5) (see, e.g., Refs. 38 and 39).
In order to quantify the difference of interactions in the bulk (see Sec. III B), we also introduce for any interaction ΦΛl on the domain Λl

and any ΛM ⊂ Λl the quantity

∥ΦΛl∥a,n,ΛM ∶= sup
x,y∈ΛM

∑
X⊂ΛM :
x,y∈X

diam(X)n ea⋅d(x,y) ∥ΦΛl(X)∥,

where d and diam now refer to the ℓ1-distance on Zd.
Let Ba,n be the Banach space of interactions with finite ∥ ⋅ ∥a,n-norm, and define the space of exponentially localized interactions as the

intersection Ba,∞ ∶= ⋂n∈N0
Ba,n. In the literature, the vector spaces of operator families, which can be written in terms of such interactions, are

denoted by La,n and La,∞. Moreover, we will be a bit sloppy in the following terminology and call the elements AΛk of an operator sequence A
sum-of-local-terms (SLT) operators whenever its interaction ΦA has a finite interaction norm similar to (5), but with the exponential replaced
by a function growing faster than any polynomial. This will allow us to formulate the results and the ideas of the proofs without too many
details. For the precise conditions, see, e.g., see Ref. 2, Sec. 2.2.

Now, let I ⊂ R be an open interval. We say that a map Φ : I → Ba,n is smooth and bounded whenever it is (i) term- and point-wise
smooth in t ∈ I, i.e., t ↦ ΦΛk(t, X) are C∞-functions for all k ∈ N and X ⊂ Λk, and (ii) supt∈I∥ di

dti Φ(t)∥a,n < ∞ for all i ∈ N0. The corresponding
spaces of smooth and bounded time-dependent interactions and operator families are denoted by BI,a,n and LI,a,n and are equipped with the
norm ∥Φ∥I,a,n ∶= supt∈I∥Φ(t)∥a,n. We say that Φ : I → Ba,∞ is smooth and bounded if Φ : I → Ba,n is smooth and bounded for all n ∈ N0,
and we write BI,a,∞ and LI,a,∞ for the corresponding spaces of time-dependent exponentially localized interactions and operator families,
respectively.

For (time-dependent) infinite volume interactions Ψ, we add a superscript ○ to the norms and to the normed spaces defined above,
emphasizing, in particular, the use of open boundary conditions, i.e., dΛk ≡ d. Note that the compatibility condition for the metrics dΛk implies
that ∥Ψ∥a,n ≤ ∥Ψ∥○a,n.
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C. Lipschitz potentials
For the perturbation, we will allow external potentials v = (vΛk : Λk → R)

k∈N
that satisfy the Lipschitz condition,

Cv ∶= sup
k∈N

sup
x,y∈Λk :

x≠y

∣vΛk(x) − vΛk(y)∣
dΛk(x, y) < ∞, (6)

and call them for short Lipschitz potentials.40 With a Lipschitz potential v, we associate the corresponding operator-sequence Vv = (VΛk
v )k∈N

defined by
VΛk
v ∶= ∑

x∈Λk

vΛk(x) a∗x ax

and denote the space of Lipschitz potentials by V. We emphasize that, since supk∈Nsupx∈Λk
∣vΛk(x)∣might be infinite, Vv is, in general, no SLT

operator. However, this is still more restrictive than general onsite potentials because it only varies slowly in space. Moreover, we say that the
map v : I → V is smooth and bounded whenever (i) vΛk(x, ⋅) are C∞-functions for all k ∈ N and x ∈ Λk and (ii) it satisfies supt∈I C di

dti
v(t) < ∞

for all i ∈ N0. The space of smooth and bounded time-dependent Lipschitz potentials is denoted by VI .
As above, we also introduce infinite volume Lipschitz potentials v∞ : Zd → R, which, again by restriction and invoking the compatibility

condition for the metrics dΛk , can be viewed as a Lipschitz potential with dΛk ≡ d in (6). In addition, analogously to Sec. II B, for (time-
dependent) infinite volume Lipschitz potentials, we add a superscript ○ to the constant from (6) and to the spaces, emphasizing the use of open
boundary conditions. Note that the compatibility condition for the metrics dΛk implies that Cv ≥ C○v .

III. ADIABATIC THEOREMS FOR GAPPED QUANTUM SYSTEMS
As mentioned in the Introduction, we shall distinguish two generally quite different settings regarding the presence of a spectral gap of

the unperturbed Hamiltonian H0 grouped as Theorem I and Theorem II in Sec. III A and Theorem III and Theorem IV in Sec. III B. First,
in Sec. III A, we will work under the assumption that there exists a sequence of subsystems (Λk)k∈N equipped with an appropriate metric
(reflecting, e.g., periodic boundary conditions), ensuring that all (but finitely many) HΛk

0 have a uniform gap above their ground state, which is
made precise in Assumption (GAPunif). Then, in Sec. III B, however, we drop this assumption and solely assume that H0 has a gap in the bulk,
meaning that the GNS Hamiltonian, describing the system in the thermodynamic limit, has a spectral gap above its ground state eigenvalue
zero [see Assumption (GAPbulk)]. Note that the second group of results is more general than the first group with regard to the gap condition
since a uniform gap for finite systems guarantees a spectral gap for the GNS Hamiltonian describing the infinite system (see Proposition 5.4 in
Ref. 41). Therefore, the second row in Table I somewhat improves the results in the first row since finding a suitable geometry for which one
already has a spectral gap for finite systems is no longer necessary.

In the precise formulation of the adiabatic theorems, we shall frequently use the abbreviating phrase that a state Πε,η(t) is a super-
adiabatic NEASS (see Sec. I B), which we generally define as follows: reminiscent of Refs. 1–3.

Definition 1 (Super-adiabatic non-equilibrium almost-stationary states).
We assume to be in the following general setting, which is made precise in concrete situations: For (small) ε > 0, define the

time-dependent Hamiltonian,
Hε(t) = H0(t) + εV(t), t ∈ I, on Γ ⊂ Zd,

and let ρ0(t) be (close to)42 the ground state of H0(t). Moreover, denote the Heisenberg time-evolution on the algebra of (quasi-local)
observables AΓ generated by 1

ηHε(t) as Uε,ηt,t0
, where t, t0 ∈ I for some open interval I ⊂ R and η > 0 is a (small) adiabatic parameter.

Then, we say that a state Πε,η(t) on AΓ is a super-adiabatic non-equilibrium almost-stationary state for the state ρ0(t) and the time-
evolution Uε,ηt,t0

on AΓ if it satisfies the following properties:

1. Πε,η almost intertwines the time evolution: For any n ∈ N, there exists a constant Cn such that for any t, t0 ∈ I and for all X ⋐ Γ and
A ∈ AX ⊂ AΓ, we have

∣Πε,η(t0)(Uε,ηt,t0
[[A]]) −Πε,η(t)(A)∣ ≤ Cn

εn+1 + ηn+1

ηd+1 (1 + ∣t − t0∣d+1) ∥A∥ ∣X∣2. (7)

2. Πε,η is local in time: Πε,η(t) only depends on H0 and V and their time derivatives at time t.
3. Πε,η is stationary whenever the Hamiltonian is stationary: If for some fixed t ∈ I all time-derivatives of H0 and V vanish at time t,

then Πε,η(t) equals the NEASS43 Πε(t) for the instantaneous ground state ρ0(t) and the time-evolution s↦ eisL Hε(t) generated by the
time-independent Hamiltonian Hε(t).

4. Πε,η equals the (approximate) ground state ρ0 of H0 whenever the perturbation vanishes and the Hamiltonian is stationary: If for some
t ∈ I all time-derivatives of H0 and V vanish at time t and V(t) = 0, then Πε,η(t) = Πε,0(t) = ρ0(t).
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We could have written bound (7) in a more general form as indicated by (3). For example, we could allow (1 + ∣t − t0∣d+1) to be replaced
by a constant CK < ∞, depending only on a compact subset K ⊂ I of times or, similarly, ∣X∣2 to be replaced by a constant CX < ∞, depending
only on the support X ⋐ Zd of the observable A. In addition, the power of η in the denominator could be allowed to be more general, e.g.,
some constant Cd < ∞ instead of d + 1. However, the concrete form of (7) indeed matches the precise bounds of the results in Sec. III.

A. Systems with a uniform gap
Throughout this section, we assume that H0 has a uniformly gapped unique ground state in the following sense.

(GAPunif) Assumptions on the ground state of H0.
Let ΦH0 = (ΦΛk

H0
)

k∈N
be an interaction. There exists L ∈ N such that for all t ∈ I, k ≥ L, and corresponding Λk, the operator HΛk

0 (t) has
a simple gapped ground state eigenvalue EΛk

0 (t) = inf σ(HΛk
0 (t)), i.e., there exists g > 0 such that dist(EΛk

0 (t), σ(H
Λk
0 (t))/{E

Λk
0 (t)}) ≥ g for

all t ∈ I, k ≥ L. We denote the spectral projection of HΛk
0 (t) corresponding to EΛk

0 (t) by PΛk
0 (t) and write ρΛk

0 (t)(⋅) ∶= tr(PΛk
0 (t) ⋅ ) for the

canonically associated state on AΛk .
A physically relevant class of Hamiltonians satisfying this assumption (possibly up to the uniqueness, which we require for simplicity of

the presentation) was given in (4) in Sec. I C. In the following, we shall present adiabatic theorems for extended but finite systems (Theorem I)
and for infinite systems (Theorem II) under Assumption (GAPunif).

1. Extended but finite systems
The basic assumption on the Hamiltonian says that it is composed of exponentially localized interactions and/or a Lipschitz potential.

(INT1) Assumptions on the interactions.
Let H0, H1 be the Hamiltonians of two time-dependent exponentially localized interactions, i.e., ΦH0 ,ΦH1 ∈ BI,a,∞ for some a > 0, and

v ∈ VI be a time-dependent Lipschitz potential.
The following results due to Teufel1 marks the starting point for generalized super-adiabatic theorems for extended fermionic lattice

systems.

Theorem I [Adiabatic theorem for finite systems with a uniform gap (see Ref. 1, Theorem 5.1)].

Under Assumptions (GAPunif) and (INT1), there exists a sequence of near-identity44 automorphisms βε,η,Λk(t) = eiεL Λk
Sε,η(t) with SLT

generators Sε,η for any ε,η ∈ (0, 1] and t ∈ I such that the states

Πε,η,Λk(t) ∶= ρΛk
0 (t) ○ β

ε,η,Λk(t) (8)

are super-adiabatic NEASSs for the Heisenberg time-evolution Uε,η,Λk
t,t0

on AΛk generated by 1
η Hε,Λk(⋅) with

1
η

Hε,Λk(t) ∶= 1
η
(HΛk

0 (t) + ε (VΛk
v (t) +HΛk

1 (t)))

uniformly in k ≥ L. That is, for every n ∈ N, there exists a constant Cn, such that for any A ∈ AX , ε,η ∈ (0, 1], and all t, t0 ∈ I, it holds that

sup
k≥L
∣Πε,η,Λk(t0)(Uε,η,Λk

t,t0
[[A]]) −Πε,η,Λk(t)(A)∣ ≤ Cn

εn+1 + ηn+1

ηd+1 (1 + ∣t − t0∣d+1) ∥A∥ ∣X∣2.

The proof of this result fundamentally builds on space-time adiabatic perturbation theory20,21 and technical estimates originally derived
in Ref. 12. The latter show that the operations necessary for the construction of the generator of the near-identity automorphism in the
definition of the NEASS in (8) (almost) preserve exponential localization required for the Hamiltonian (see Sec. IV). As already mentioned in
the Introduction, although the adiabatic theorem in Ref. 12 is at first sight quite similar to the one above, it requires the perturbation to not
close the spectral gap of the Hamiltonian H0 and is thus not generalized in the sense explained in Sec. I B.

2. Infinite systems
The next result is obtained from Theorem I by taking Λk ↗ Zd. This requires the interactions and the Lipschitz potential composing the

Hamiltonian (1) to have a thermodynamic limit2 in the following sense.

Definition 2 (Thermodynamic limit of interactions and potentials).

(a) An exponentially localized time-dependent interaction Φ ∈ BI,a,∞ is said to have a thermodynamic limit (have a TDL) if there exists an
infinite volume interaction Ψ ∈ B○I,a,∞ such that
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∀ n ∈ N, i ∈ N0, M ∈ N : lim
k→∞

sup
t∈I
∥ di

dti (Ψ −Φ
Λk)(t)∥

a,n,ΛM

= 0,

and we write Φ tdÐÐ→Ψ in this case.
An operator family is said to have a TDL if and only if the corresponding interaction does.
For more general (non-exponentially localized) SLT operators, the definition is completely analogous.

(b) A Lipschitz potential v ∈ VI is said to have a TDL if there exists an infinite volume Lipschitz potential v∞ ∈ V○I such that

∀M ∈ N, ∃K ≥M ∀k ≥ K, t ∈ I : vΛk(t, ⋅)∣ΛM = v∞(t, ⋅)∣ΛM .

Again, we write v tdÐÐ→ v∞ in this case.

Note that whenever Φ = Ψ for some infinite-volume interaction Ψ or v = v∞ for some infinite volume Lipschitz potential v∞, both Φ
and v trivially have a TDL.

The following proposition is a standard consequence of Lieb–Robinson bounds and shows that the property of having a TDL for interac-
tions and Lipschitz potentials guarantees the existence of the thermodynamic limit for the corresponding evolution operators.16,45 We remark
that it remains true under less restrictive assumptions on the localization quality of the interaction (see, e.g., Proposition 2.2 in Ref. 2).

Proposition 3 (Thermodynamic limit of evolution operators).

Let K0 ∈ LI,a,∞ and w ∈ VI both have a thermodynamic limit, i.e., ΦK0

tdÐÐ→ ΨK0 and w
tdÐÐ→ w∞ for some ΨK0 ∈ B○I,a,∞ and w∞ ∈ V○I . Set

K = K0 + Vw , and let Uη,Λk(t, t0) denote the evolution family generated by KΛk(t) in scaled time with η > 0, i.e., the solution to the Schrödinger
equation

i η
d
dt

Uη,Λk(t, t0) = KΛk(t)Uη,Λk(t, t0)

with Uη,Λk(t0, t0) = id. Then, there exists a co-cycle of automorphisms Uηt,t0
: AZd → AZd such that for all A ∈ Aloc,

U
η
t,t0
[[A]] = lim

k→∞
U
η,Λk
t,t0
[[A]] ∶= lim

k→∞
Uη,Λk(t, t0)∗ A Uη,Λk(t, t0).

The co-cycle Uηt,t0
only depends on ΨK0 and w∞ and is generated by the time-dependent (closed) derivation (LK(t), D(LK(t))) associated

with K(t).

As mentioned above, since Theorem II is deduced from Theorem I by taking Λk ↗ Zd, we will need to assume the existence of a
thermodynamic limit for the building blocks of the Hamiltonian (1).

(INT2) Assumptions on the interactions.
For ΨH0 , ΨH1 ∈ B○I,a,∞ for some a > 0 and v∞ ∈ V○I , there exist ΦH0 ,ΦH1 ∈ BI,a,∞ and v ∈ VI with appropriate boundary conditions

(encoded in the definition of the norms defining the spaces L and the Lipschitz condition) all having a TDL with the respective object as

the limit, i.e., ΦH0

tdÐÐ→ΨH0 , ΦH1

tdÐÐ→ΨH1 , and v
tdÐÐ→v∞.

We also assume the convergence of ground states by means of the Banach–Alaoglu theorem (the unit sphere in A ∗Zd is weak∗-compact),
essentially only in order to avoid the extraction of a subsequence.

(Sunif) Assumptions on the convergence of states.
Assume that for every t ∈ I, the sequence (ρΛk

0 (t))k∈N of ground states (naturally extended to the whole of AZd ) converges in the weak∗-
topology to a state ρ0(t) on AZd , which we call the gapped limit ground state at t ∈ I.

We can now formulate the second generalized super-adiabatic theorem concerning infinite systems with a uniform gap.2

Theorem II [Adiabatic theorem for infinite systems with a uniform gap (see Ref. 2, Theorems 3.2 and 3.5)].
Under Assumptions (GAPunif), (INT2), and (Sunif), there exists a near-identity automorphism βε,η(t) = eiεL Sε,η(t) with SLT generators Sε,η

for any ε,η ∈ (0, 1] and t ∈ I such that the state
Πε,η(t) ∶= ρ0(t) ○ βε,η(t)

is a super-adiabatic NEASS for the Heisenberg time-evolution on AZd generated by 1
ηΨHε(⋅) with

ΨHε ∶= ΨH0 + ε (Vv∞ +ΨH1).

The crucial point in the Proof of Theorem II in Ref. 2 is to show that the property of having a TDL is designed in such a way that it is
preserved under all necessary operations for the construction of the NEASS (see Sec. IV). Therefore, also the near-identity automorphism
from (8) converges as Λk ↗ Zd by means of Proposition 3.
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B. Systems with a gap in the bulk
In this section, we drop Assumption (GAPunif) of a uniform gap for finite systems, but merely work under the condition of a gap in the

bulk, which is formulated via the Gelfand–Naimark–Segal (GNS) construction in Assumption (GAPbulk): LetΨH0 ∈ B○a,0 be an infinite volume
interaction and LH0 denote the induced derivation on (a dense subset of) AZd . A state ω on AZd is called an LH0 -ground state if and only if
ω(A∗LH0(A)) ≥ 0 for all A ∈ D(LH0). Let ω be an LH0 -ground state and (Hω,πω,Ωω) be the corresponding GNS triple [i.e., Hω be a Hilbert
space, i.e., πω : A→ L(Hω) be a representation, and, i.e., Ωω ∈ Hω be a cyclic vector]. Then, there exists a unique densely defined, self-adjoint
positive operator H0,ω ≥ 0 on Hω satisfying

πω(eitL H0 [[A]]) = eitH0,ω πω(A) e−itH0,ω and e−itH0,ω Ωω = Ωω (9)

for all A ∈ A and t ∈ R. We call this H0,ω the bulk Hamiltonian (or GNS Hamiltonian) associated with ΨH0 and ω. See Ref. 46 for the general
theory.

We assume that ΨH0 has a unique gapped ground state in the following sense (cf. Refs. 3 and 23):

(GAPbulk) Assumptions on the ground state of ΨH0 .

(i) Uniqueness. For each t ∈ I, there exists a unique LH0(t)-ground state ρ0(t).
(ii) Gap. There exists g > 0 such that σ(H0,ρ0(t)(t))/{0} ⊂ [g,∞) for all t ∈ I.

(iii) Regularity. For any strictly positive f ∈ S(R) (Schwarz functions), define Df as the set of observables A ∈ AZd for which ∥A∥f ∶= ∥A∥
+ supk∈N (∥(1 − EΛk)[[A]]∥/f (k)) < ∞, where EΛk[[⋅]] denotes the conditional expectation (see Ref. 2, Appendix C). Then, for any
A ∈ Df , t ↦ ρ0(t)(A) is differentiable and there exists a constant C f such that

sup
t∈I
∣ρ̇0(t)(A)∣ ≤ Cf ∥A∥f .

The smoothness of expectation values of (almost) exponentially localized observables as under item (iii) is a rather technical condition
and a consequence of a uniform gap as in Assumption (GAPunif) (see Remark 4.15 in Ref. 23 and Lemma 6.0.1 in Ref. 47). Although the
uniqueness of the ground state in item (i), which we required throughout this Review, is expected to hold for the physically relevant type of
Hamiltonian (4), it has been shown, to our present knowledge, only in very specific quantum spin systems. These include (a) weak perturba-
tions of non-interacting gapped frustration-free systems28,32 and (b) short-range interacting frustration-free models fulfilling local topological
quantum order (LTQO).31,39

Remark 4. As mentioned in the beginning of Sec. III, item (ii) holds, in particular, if one has a uniform gap for finite systems as spelled
out in Assumption (GAPunif) since it cannot close abruptly in the thermodynamic limit for the GNS Hamiltonian (see Proposition 5.4
in Ref. 41). However, we observe that a considerably weaker sufficient condition for having a gap for the GNS Hamiltonian as in
Assumption (GAPbulk) (ii) is to have a gap in the bulk for the finite systems Λk in the following sense: There exists g > 0 such that for all
k ∈ N, there exists some l = l(k) ∈ N with l(k) → ∞ as k→∞, and we have

ρΛk
0 (t)(A

∗L Λk
H0(t)
[[A]]) ≥ g (ρΛk

0 (t)(A
∗A) − ∣ρΛk

0 (t)(A)∣
2
) (10)

for all A ∈ AΛl and all t ∈ I, where ρΛk
0 (t) denotes a suitable ground state of HΛk

0 (t). Indeed, assuming that ρΛk
0 (t) ⇀ ρ0(t) for every

t ∈ I,48 this simply follows after taking the limit k→∞ on both sides of (10) and realizing that, as k→∞, the set of admissible observables
A ∈ AΛl(k) exhausts Aloc, which is dense in AZd by definition. The resulting inequality immediately yields the desired spectral gap for the GNS
Hamiltonian (cf. Ref. 46, Proposition 5.3.19, and Ref. 30, Sec. 7).

In the following, we shall present adiabatic theorems for infinite systems (Theorem III) and for extended but finite systems
(Theorem IV) under Assumption (GAPbulk).

1. Infinite systems
Analogously to Sec. III A, the basic assumptions on the Hamiltonian say that it is composed of exponentially localized interactions and/or

a Lipschitz potential. In addition, the Hamiltonian H0 satisfies a technical regularity assumption in t, for which we recall that I ⊂ R denotes
an open time interval.

(INT3) Assumptions on the interactions.

(i) Let ΨH0 ,ΨH1 ∈ B○I,a,∞ be time-dependent infinite volume interactions and v∞ ∈ V○I be a time-dependent infinite volume Lipschitz
potential.

(ii) Assume that the map I → B○a,∞, t ↦ ΨH0(t) is continuously differentiable.49
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We can now formulate the third generalized super-adiabatic theorem concerning infinite systems with a gap in the bulk.3

Theorem III [Adiabatic theorem for infinite systems with a gap in the bulk (see Ref. 3, Theorem 3.4)].
Under Assumptions (GAPbulk) and (INT3), there exists a near-identity automorphism βε,η(t) = eiεL Sε,η(t) on AZd with SLT generators Sε,η

for any ε,η ∈ (0, 1] and t ∈ I such that the state
Πε,η(t) ∶= ρ0(t) ○ βε,η(t)

is a super-adiabatic NEASS for ρ0(t) and the Heisenberg time-evolution on AZd generated by 1
ηΨHε(⋅) with

ΨHε ∶= ΨH0 + ε (Vv∞ +ΨH1).

The key role of the spectral gap condition is that it allows us to construct an inverse of the LiouvillianLH0(t), appearing in the construction
of the NEASS, which maps SLT operators to SLT operators with slightly deteriorated locality properties. Hence, the inverse of LH0(t) is called
the quasi-local inverse of the Liouvillian.50 Assuming a gap only in the bulk, as done in (GAPbulk), means that the action of the Liouvillian can
only be inverted in the bulk (see Sec. IV).

2. Extended but finite systems
Contrary to the results in Sec. III A, the adiabatic theorem describing an infinite system with a gap in the bulk did not require any notion

of having a TDL in its formulation. Instead, in order to derive a finite-volume analog from Theorem III (with qualitative additional error
terms; see Theorem IV), we need to introduce the stronger notion of having a rapid thermodynamic limit for the exponentially localized
interactions and the Lipschitz potential. We refer to Ref. 3 for a detailed discussion of this property.

Definition 5 (Rapid thermodynamic limit of interactions and potentials).

(a) An exponentially localized time-dependent interaction Φ ∈ BI,a,∞ is said to have a rapid thermodynamic limit with exponent γ ∈ (0, 1)
(have a RTDLγ) if there exists an infinite volume interaction Ψ ∈ B○I,a,∞ such that

∀ n ∈ N, i ∈ N0 ∃λ, C > 0 ∀M ∈ N ∀ k ≥ M + λMγ :

sup
t∈I
∥ di

dti (Ψ −Φ
Λk)(t) ∥

a,n,ΛM

≤ C e−aMγ

,
(11)

and we write Φ rtdÐÐ→Ψ in this case.
A family of operators is said to have a RTDL if and only if the corresponding interaction does.
For more general (non-exponentially localized) SLT operators, the definition is completely analogous.

(b) A Lipschitz potential v ∈ VI is said to have a RTDLγ if it is eventually independent of k, i.e., if there exists an infinite volume Lipschitz
potential v∞ ∈ V○I such that

∃λ > 0 ∀M ∈ N ∀ k ≥ M + λMγ, t ∈ I : v∞(t, ⋅)∣ΛM = v
Λk(t, ⋅)∣ΛM .

Again, we write v rtdÐÐ→ v∞ in this case.

In a nutshell, having a RTDLγ means that the interaction (or the Lipschitz potential) essentially agrees with a corresponding infinite
volume object, up to terms located on a thin shell with relative size of order kγ−1 right at the boundary of Λk. Note that whenever Φ = Ψ for
some infinite-volume interaction Ψ or v = v∞ for some infinite volume Lipschitz potential v∞, both Φ and v trivially have a RTDLγ [with
any exponent γ ∈ (0, 1)].

Theorem IV is deduced from Theorem III by comparing the time evolutionUε,ηt,t0
and the near identity automorphism βε,η in the definition

of the NEASS on the infinite system Zd with the same objects for large (but finite) systems Λk. Therefore, we will need to assume the existence
of a rapid thermodynamic limit for the building blocks of Hamiltonian (1).

(INT4) Assumptions on the interactions.
The interactionsΦH0 ,ΦH1 ∈ BI,a,∞ and the Lipschitz potential v ∈ VI all have a RTDL, i.e.,ΦH0

rtdÐÐ→ ΨH0 ,ΦH1

rtdÐÐ→ ΨH1 , and v
rtdÐÐ→ v∞.

The limiting objects ΨH0 , ΨH1 , and v∞ satisfy Assumption (INT3).
In Theorem IV, we shall consider finite volume states ρΛk

0 (t), which are close to the infinite volume ground state ρ0(t) away from the
boundary in following sense.

(Sbulk) Assumption on the convergence of states.
The sequence (ρΛk

0 (t))k∈N of states on AΛk converges rapidly to ρ0(t) in the bulk: there exist C ∈ R, m ∈ N, and h ∈ S such that for any
finite X ⊂ Zd, A ∈ AX , and Λk ⊃ X,

sup
t∈I
∣ρ0(t)(A) − ρΛk

0 (t)(A)∣ ≤ C ∥A∥ diam(X)m h(dist(X,Zd/Λk)).
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While the sequence ρΛk
0 (t) ≡ ρ0(t)∣AΛk

of simple restrictions satisfies Assumption (Sbulk) trivially, the adiabatic theorem ensures the
existence of a super-adiabatic NEASS constructed for any such sequence.51 Most interesting for physical application would be a sequence of
ground states ρΛk

0 (t) of the finite volume Hamiltonians HΛk
0 (t). While the above assumption is expected to hold for any sequence of finite

volume ground states for Hamiltonians modeling Chern or topological insulators such as in (4), the only result we are aware of indeed proving
such a statement is again [see the discussion below Assumption (GAPbulk)] for weakly interacting spin systems.28 In spirit, assuming is very
similar to supposing that the system satisfies local topological quantum order (LTQO)31,52 or a strong local perturbations perturb locally (LPPL)
principle for perturbations acting at the boundary of the system.32,39

We can now formulate the fourth and last generalized super-adiabatic theorem concerning finite systems with a gap in the bulk.3

Theorem IV [Adiabatic theorem for finite systems with gap in the bulk (see Ref. 3, Theorem 4.1)].

Under Assumptions (GAPbulk), (INT4), and (Sbulk), there exists a sequence of near-identity automorphisms βε,η,Λk(t) = eiεL Λk
Sε,η(t) with SLT

generators Sε,η for any ε,η ∈ (0, 1] and t ∈ I such that the states

Πε,η,Λk(t) ∶= ρΛk
0 (t) ○ β

ε,η,Λk(t)

are super-adiabatic NEASSs for the Heisenberg time-evolution Uε,η,Λk
t,t0

on AΛk generated by 1
η Hε,Λk(⋅) with

1
η

Hε,Λk(t) ∶= 1
η
(HΛk

0 (t) + ε (V
Λk
v (t) +HΛk

1 (t))),

up to an error vanishing faster than any inverse polynomial in the distance to the boundary. That is, for any n ∈ N, there exists a constant Cn,
and for any compact K ⊂ I and m ∈ N, there exists a constant C̃n,m,K such that for all k ∈ N, all X ⊂ Λk, all A ∈ AX , and all t, t0 ∈ K,

∣Πε,η,Λk(t0)(Uε,η,Λk
t,t0
[[A]]) −Πε,η,Λk(t)(A)∣ ≤ Cn

εn+1 + ηn+1

ηd+1 (1 + ∣t − t0∣d+1)∥A∥ ∣X∣2

+ C̃n,m,K (1 + η dist(X,Zd/Λk))
−m
∥A∥ diam(X)2d. (12)

The above theorem asserts that by assuming (GAPbulk), one obtains similar adiabatic bounds also for states of finite systems (without
a spectral gap), which are close to the infinite volume ground state in the bulk as formulated in Assumption (Sbulk). Since the adiabaticity
potentially breaks at the boundaries of the finite systems, non-adiabatic effects arising close to the boundary may propagate into the bulk.
Therefore, an additional error term appears, but it decays faster than any polynomial in the size of the finite system for any fixed η. The actual
form of the additional error term in the last line of (12) coming out of the proof in (see Ref. 3, Sec. 5) is slightly better but more complicated,
which is why we refrain from stating it here.

The main points in the Proof of Theorem IV, which we discuss in Sec. IV, are to show that (i) the property of having a RTDLγ is preserved
under all necessary operations for the construction of the NEASS (similarly as for Theorem II) and (ii) having a RTDLγ for an interaction
provides an explicit rate of convergence for the associated evolution family as in Proposition 3.

IV. IDEA OF THE PROOFS
The goal of the present section is to convey the main ideas relevant for proving the individual theorems from Sec. III, where we already

glimpsed the key steps required in their proofs. For many technical details, we refer the reader to the original works.1–3

A. Systems with a uniform gap
The fundamental conceptual idea behind the proof for all four variants of the generalized super-adiabatic theorems is a perturbative

scheme, which was called space-time adiabatic perturbation theory in Refs. 20 and 21. The basic structure of this computation is most easily
presented for finite systems, where no further technical difficulties arise since all appearing operators are in fact matrices and thus bounded.
However, it is still necessary to show that all estimates are uniform in the size of the system Λk.

1. Extended but finite systems: Proof of Theorem I
The form in which we presented Theorem I differs slightly from the original result (see Ref. 1, Theorem 5.1). The original statement

concerns a sequence Πε,η,Λk
n (t) ∶= ρΛk

0 (t) ○ β
ε,η,Λk
n (t) of states on Λk (indexed by n ∈ N), where

βε,η,Λk
n (t)[[A]] ∶= e

−iεL Λk
Sε,ηn (t)[[A]] and εL Λk

Sε,ηn (t)
∶=

n

∑
j=1
ε jL Λk

Aε,η
j (t)

.

From this, Theorem I (and similarly all other three theorems) follows by a simple resummation of εjL Λk
Aε,η

j (t)
, which will be discussed in

Sec. IV C.
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The main idea of the proof is to choose each operator Aε,η,Λk
j (t), j = 1, . . . , n, in such a way that the jth-order term in the perturbative

scheme vanishes. For the n-dependent result (i.e., prior to resummation), we apply the fundamental theorem of calculus to get

Πε,η,Λk
n (t0)(Uε,η,Λk

t,t0
[[A]]) −Πε,η,Λk

n (t)(A) = −∫
t

t0

ds
d
ds
ρΛk

0 (s)(β
ε,η,Λk
n (s) ○ Uε,η,Λk

t,s [[A]]) (13)

and then aim to bound the integrand. Calculating the derivative by using the chain rule and Duhamel’s formula leaves us with

d
ds
ρΛk

0 (s)(β
ε,η,Λk
n (s) ○ Uε,η,Λk

t,s [[A]]) = − i
η
ρΛk

0 (s)([Q
ε,η,Λk
n (s),βε,η,Λk

n (s) ○ Uε,η,Λk
t,s [[A]]]), (14)

where Qε,η,Λk
n (s) is a shorthand notation for

η I Λk
s (ḢΛk

0 (s)) + η∫
1

0
dλ e−iλεSε,η,Λk

n (s) εṠε,η,Λk
n (s) eiλεSε,η,Λk

n (s) + e−iεSε,η,Λk
n (s) (HΛk

0 (s) + εV
Λk(s)) eiεSε,η,Λk

n (s)

=: HΛk
0 (s) +

n

∑
j=1
εjRε,η,Λk

j (s) + εn+1Rε,η,Λk
n+1 (s), (15)

and VΛk = VΛk
v +HΛk

1 . Here, I Λk
s (ḢΛk

0 (s)) is the SLT generator of the parallel transport within the vector-bundle ΞΛk
0,I over I defined by

t ↦ ρΛk
0 (t).53 This parallel transport is also known as the spectral flow, which plays a fundamental role in proving automorphic equivalence

of gapped ground state phases (see, e.g., Refs. 12 and 18). Moreover, the operator I Λk
s : AΛk → AΛk is called the quasi-local inverse of the

Liouvillian38 L Λk
H0(s)

since it satisfies1,12

ρΛk
0 (s)([L

Λk
H0(s)

○ I Λk
s [[B1]] − i B1, B2]) = 0 for all B1, B2 ∈ AΛk , s ∈ I, (16)

and also preserves good localization of its argument (in particular, it maps SLT operators to SLT operators). This combined property of I Λk
s

heavily relies on the ground state ρΛk
0 (s) being gapped1,12,16 and will be of fundamental importance in the following.

In the last line of (15), we expanded in powers of ε and η in the sense that Rε,η,Λk
j (s), for j ≤ n, are polynomials in η/ε of order (at most) j

with ε- and η-independent SLT operators as coefficients. A more detailed step-by-step calculation can be found in the Proof of Proposition 5.1
in Ref. 1. Let us here only report the general structure

Rε,η,Λk
j (s) = −iL Λk

H0(s)
(Aε,η,Λk

j (s)) + R̃ε,η,Λk
j (s), (17)

where the first remainder term is given by

R̃ε,η,Λk
1 (s) = η

ε
I Λk

s (ḢΛk
0 (s)) − VΛk(s)

and all other R̃ε,η,Λk
j (s) are composed of iterated commutators of the operators Aε,η,Λk

i (s) and Ȧε,η,Λk
i (s), for i < j ≤ n, with HΛk

0 (s) and VΛk(s).
In contrast to general onsite potentials, the commutator of a Lipschitz potential with an SLT operator is an SLT operator itself (see Ref. 1,
Lemma 2.1). For the commutator of SLT operators, this is easy to see.

We now consider individual terms from (15) when plugged into (14). The zero-order term vanishes because ρΛk
0 (s) is the ground state of

HΛk
0 (s). By application of (16), we can iteratively choose

Aε,η,Λk
j (s) = −I Λk

s (R̃ε,η,Λk
j (s)) (18)

such that (14) vanishes up to

− i
εn+1

η
ρΛk

0 (s)([R
ε,η,Λk
n+1 (s),β

ε,η,Λk
n (s) ○ Uε,η,Λk

t,s [[A]]]). (19)

Moreover, all the operations involved in calculating the Aε,η,Λk
j (s), i.e., taking commutators and applying the quasi-local inverse of the

Liouvillian, preserve the locality properties of the operators, as shown in the appendices of Refs. 1 and 25, which are heavily based on Ref. 12.
Hence, also all Aε,η,Λk

j are SLT operators.
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It turns out that also Rε,η,Λk
n+1 is a polynomial in η/ε of order at most n + 1 and its coefficients, as we just explained, are SLT operators (see

Ref. 1, Proof of Proposition 6.1). Thus, the absolute value of (13) is bounded by

εn+1

η
∣∫

t

t0

ds ρΛk
0 (s)([R

ε,η,Λk
n+1 (s),β

ε,η,Λk
n (s) ○ Uε,η,Λk

t,s [[A]]])∣

≤ ε
n+1

η
∣t − t0∣ sup

s∈[t0 ,t]
∥[(βε,η,Λk

n )−1(s)(Rε,η,Λk
n+1 (s)),U

ε,η,Λk
t,s [[A]]]∥

≤ Cn
εn+1

η
∣t − t0∣ (1 + (η

ε
)

n+1
)
⎛
⎝

1 + ( ∣t − t0∣
η
)

d⎞
⎠
∥A∥ ∣X∣2

≤ Cn
εn+1 + ηn+1

ηd+1 ∣t − t0∣ (1 + ∣t − t0∣d) ∥A∥ ∣X∣2, (20)

where we essentially used a generalized Lieb–Robinson bound (see Ref. 1, Lemma B.5) to estimate the commutator. Note that the
(1 + (∣t − t0∣/η)d)-factor comes from the Lieb–Robinson bound and the adiabatic 1/η-scaling of the time evolution Ut,s. The (1 + (η/ε)n+1)-
factor comes from bounding the interaction norm of Rε,η,Λk

n+1 (s) by separating the polynomial dependence on η/ε such that Cn is independent
of Λk, ε, and η. We have thus shown that the NEASS almost intertwines the time evolution, i.e., item 1 of Definition 1.

We are left with discussing the remaining three characterizing properties of the NEASS given in Definition 1: By construction, all
Aε,η,Λk

j (t) depend only on HΛk
0 (t) and VΛk(t) and their jth derivatives at time t. This shows that the NEASS is local in time, i.e., item 2.

Moreover, if all time derivatives of H0 and V vanish for some t ∈ I, then all non-constant (i.e., in front of some positive power of η/ε) coeffi-
cients in Rε,η,Λk

j vanish andΠε,η,Λk
n (t) = Πε,0,Λk

n (t). This shows that the NEASS is stationary whenever the Hamiltonian is stationary, i.e., item 3.

If, for some t ∈ I, ḢΛk
0 (t) and VΛk(t) vanish, then R̃ε,η,Λk

1 and thus Aε,η,Λk
1 also vanish. If additionally all derivatives of HΛk

0 and VΛk at t vanish,
also R̃Λk

j (t) and thus Aε,η,Λk
j (t) vanish. Hence, βε,η,Λk

n (t) = 1Λk and the NEASS equals the ground state, i.e., item 4 holds.
The above listed general arguments immediately translate to the other three theorems.

2. Infinite systems: Proof of Theorem II
Without any further assumptions, the sequence Hamiltonian Hε,Λk and its constituents HΛk

0 and VΛk could have nothing in common for
different lattice sizes k (they might even describe different physical systems), so taking the limit Λk ↗ Zd might not be well-defined. In order
to avoid this somewhat meaningless situation, we assumed that the building blocks of the Hamiltonian have a TDL [see Definition 2 and
Assumption (INT2)] and also the sequence of ground states (ρΛk

0 (t))k∈N converges [Assumption (Sunif)]. Since the property of having a TDL
guarantees the existence of the thermodynamic limit for the corresponding evolution operators (see Proposition 3 and Ref. 16), it remains to
show that the operator sequences (Aε,η,Λk

j (t))
k∈N

, j = 1, . . . , n, constructed in Sec. IV A 1 also have a TDL. More precisely, one needs to show
that taking time-derivatives, sums of commutators with the building blocks of Hε (and Ḣ0), and the inverse of the Liouvillian [see (17)] leaves
the property of having a TDL for SLT operators invariant, which is in fact the main point of the proof in Ref. 2. It is then straightforward
to show that compositions of states and automorphisms, all having a thermodynamic limit, converge as Λk ↗ Zd. Since the constant Cn
from (20) is uniformly bounded in k, the (sketch of a) Proof of Theorem II is complete.

B. Systems with a gap in the bulk
For systems having a spectral gap only in the bulk (i.e., for the GNS Hamiltonian), the characteristic (16) of I Λk

s , that it essentially inverts
the Liouvillian L Λk

H0(s)
(and still maps SLT operators to SLT operators), is now only fulfilled for certain B1 and B2 in a dense domain D ⊂ AZd

after taking the limit Λk ↗ Zd (see Ref. 3, Proposition 3.3). Presuming that the limit actually exists, this point is the main challenge in proving
an adiabatic theorem under the less restrictive gap assumption (GAPbulk).

1. Infinite systems: Proof of Theorem III
As just explained, the main difficulty in proving Theorem III is that (16) only holds if HΛk

0 is gapped. On top of that, we cannot handle
the limit Λk ↗ Zd of R̃ε,η,Λk

j directly nor could they be used in the infinite volume version of (16) because it only holds for B1, B2 ∈ D ⊂ AZd .
However, the rest of the construction from Sec. IV A 1 is still valid, but the lower order terms in (13) have a non-vanishing contribu-
tion in finite domains. We thus repeat this construction but take coefficients Aε,η,Λk ,Λl

j (t), which are built up from HΛk
0 (t) but restricting

J. Math. Phys. 63, 121101 (2022); doi: 10.1063/5.0123441 63, 121101-14

© Author(s) 2022

https://scitation.org/journal/jmp


Journal of
Mathematical Physics REVIEW scitation.org/journal/jmp

the perturbations Ḣ0(t) and V(t) to Λl with l < k. In this way, one can take the limit Λk ↗ Zd in (16) with B1 = limk→∞R̃ε,η,Λk ,Λl
j ∈ AZd

[see (22) and (23) and the comment thereafter for technical obstructions in taking the limit]. Using this notational convention, we introduce
the states

Πε,η,Λk ,Λl
n (t) = ρ0(t) ○ βε,η,Λk ,Λl(t),

where ρ0(t) is the infinite volume ground state, and compare them to the actual objects in infinite volume while estimating

∣Πε,η
n (t0)(Uε,ηt,t0

[[A]]) −Πε,η
n (t)(A)∣ ≤ ∣Πε,η

n (t0)(Uε,ηt,t0
[[A]]) −Πε,η,Λk ,Λl

n (t0)(Uε,η,Λk ,Λl
t,t0

[[A]])∣

+ ∣Πε,η,Λk ,Λl
n (t0)(Uε,η,Λk ,Λl

t,t0
[[A]]) −Πε,η,Λk ,Λl

n (t)(A)∣ (21)

+ ∣Πε,η,Λk ,Λl
n (t)(A) −Πn(t)(A)∣

by means of the triangle inequality. Since all the interactions (and the Lipschitz potential) have a TDL, one can prove [see Ref. 3, Sec. 5.1(b)]
that the first and last summand in (21) can be made arbitrarily small for k, l ∈ N large enough, and we can thus focus on the second summand.
However, since (16) only holds in the limit Λk ↗ Zd and also ρ0(t) is not necessarily a ground state of HΛk

0 (t), the lower order terms in the
analog of (14) and (15) do not vanish for finite k and l. Instead, only

lim
k→∞

ρ0(s)([HΛk
0 (s),β

ε,η,Λk ,Λl
n (s) ○ Uε,η,Λk ,Λl

t,s [[A]]]) = 0 (22)

and

lim
k→∞

ρ0(s)([Rε,η,Λk ,Λl
j (s),βε,η,Λk ,Λl

n (s) ○ Uε,η,Λk ,Λl
t,s [[A]]]) = 0 (23)

for all l ∈ N and uniformly for s and t in compacts. These statements require a careful analysis of deteriorating localization proper-
ties along the expansion and convergence estimates in norms measuring the quality of localization [cf. the norm ∥ ⋅ ∥ f introduced in
Assumption (GAPbulk) (iii)] such that the limits really converge to the infinite volume version of (16) with B1 and B2 in a dense domain
D ⊂ AZd . For further details, we refer to Proposition 3.2 and the statements in Appendix B of Ref. 3, which are adaptions of technical esti-
mates that were originally established for the proof of automorphic equivalence with a gap only in the bulk.23 Now, combining (22) and (23)
with the estimates on the first and third summand in (21), we conclude that all the lower order terms vanish in the limit k→∞ followed by
l →∞, which finishes our sketch of the Proof of Theorem III.

2. Extended but finite systems: Proof of Theorem IV
Let us briefly explain the strategy to prove Theorem IV. In order to show (12), we first estimate

∣Πε,η,Λk
n (t0)(Uε,η,Λk

t,t0
[[A]]) −Πε,η,Λk

n (t)(A)∣ ≤ ∣Πε,η,Λk
n (t0)(Uε,η,Λk

t,t0
[[A]]) −Πε,η

n (t0)(Uε,ηt,t0
[[A]])∣

+ ∣Πε,η
n (t0)(Uε,ηt,t0

[[A]]) −Πε,η
n (t)(A)∣ (24)

+ ∣Πε,η,Λk
n (t)(A) −Πε,η

n (t)(A)∣

and treat the three summands separately. The second summand corresponds to the infinite system and can be estimated by means of
Theorem III such that it accounts for the first contribution on the RHS of (12). We are left with bounding the remaining two summands
in (24). These contribute the additional error term on the RHS of (12). To estimate them, we need explicit control on the speed of conver-
gence (it must be faster than any inverse polynomial) for the states [see Assumption (Sbulk)] and automorphisms βε,η,Λk

n and Uε,η,Λk
t,t0

. For the
time evolution Uε,η,Λk

t,t0
, the rapid convergence to Uε,ηt,t0

is ensured by supposing that the building blocks of Hε have a RTDL [see Definition 5
and Assumption (INT4)]. This was carried out in see Ref. 3, Appendix B, building on estimates from see Ref. 16, Sec. 3. We remark that the
adiabatic 1/η-scaling of the time evolution is responsible for the factor η appearing in the additional error term in (12). In order to show
that also βε,η,Λk

n → βε,ηn converges sufficiently fast, we need to show that all Aε,η
j have a RTDL, i.e., the operations involved in constructing the

generator of βε,ηn leave the property of having a RTDL (essentially) invariant (see Ref. 3, Appendix C). This finishes the sketch of the Proof of
Theorem IV and we refer to see Ref. 3, Sec. V B for further details.

C. Resummation of the NEASS
As mentioned in the beginning of Sec. IV A 1, the statements formulated in Sec. III require a resummation, which we explain in the

following. First, note that the generator εSε,ηn of βε,ηn constructed above can be rewritten as εSε,ηn = ∑n
j=1∑

j
i=0ε

iη j−1Aj,i, where the coefficients Aj,i
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are time-dependent SLT operators and independent of ε and η. Now, it is easy to show (see Ref. 2, Lemma E.1) that there exist a sequence
δj → 0 and constants Cn such that the resummed generator

εSε,η =
∞

∑
j=1
χ[0,1](ε/δj) χ[0,1](η/δj)

j

∑
i=0
εiη j−iAj,i (25)

satisfies
∥εSε,η − εSε,ηn ∥ SLT

≤ Cn (εn + ηn),

where ∥ ⋅ ∥SLT denotes an interaction norm similar to (5). Resummations of this type are standard, e.g., in microlocal analysis,54 and the above
estimate immediately leads to the bounds (cf. Ref. 2, Lemmata E.3, E.4),

sup
t∈I
∣Πε,η,Λk(t)(A) −Πε,η,Λk

n (t)(A)∣ ≤ C′n (εn + ηn) ∥A∥ ∣X∣2 (26)

and

∣Πε,η,Λk(t0)(Uε,η,Λk
t,t0
[[A]]) −Πε,η,Λk

n (t0)(Uε,η,Λk
t,t0
[[A]])∣ ≤ C′′n

εn + ηn

ηd+1 (1 + ∣t − t0∣)d+1 ∥A∥ ∣X∣2, (27)

uniformly in the size of the system Λk. In the context of Theorems II and III, corresponding estimates hold in infinite volume, i.e., without the
subscript Λk.

Next, since the sum in (25) is finite for every fixed ε > 0, also the resummed generator Sε,η,Λk has a TDL as soon as Sε,η,Λk
n has a TDL.

Therefore, the states Πε,η,Λk constructed using Sε,η,Λk instead of Sε,η,Λk
n have a well-defined thermodynamic limit Πε,η (see Ref. 2, Lemma E.2),

and since the bounds (26) and (27) are independent of Λk, they also hold for the respective objects in the thermodynamic limit. Hence,
the results formulated in Sec. III can be concluded by combining the n-dependent statements discussed earlier in this section with the
bounds (26) and (27) (or their infinite volume correspondents).
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