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Abstract. Following up on the recent work on lower Ricci curvature bounds
for quantum systems, we introduce two noncommutative versions of
curvature-dimension bounds for symmetric quantum Markov semigroups
over matrix algebras. Under suitable such curvature-dimension condi-
tions, we prove a family of dimension-dependent functional inequalities, a
version of the Bonnet–Myers theorem and concavity of entropy power in
the noncommutative setting. We also provide examples satisfying certain
curvature-dimension conditions, including Schur multipliers over matrix
algebras, Herz–Schur multipliers over group algebras and generalized de-
polarizing semigroups.
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1. Introduction

Starting with the celebrated work by Lott–Villani [29] and Sturm [34,35],
recent years have seen a lot of research interest in extending the notion of
Ricci curvature, or more precisely lower Ricci curvature bounds, beyond the
realm of classical differential geometry to spaces with singularities [2–4,16],
discrete spaces [17,30,31] or even settings where there is no underlying space
at all as for example in noncommutative geometry [11,12,15,26,32,38,39].

Most of these approaches take as their starting point either the character-
ization of lower Ricci curvature bound in terms of convexity properties of the
entropy on Wasserstein space [37] or in terms of Bakry–Émery’s Γ2-criterion
[6], which derives from Bochner’s formula, and in many settings, these two
approaches yield equivalent or at least closely related notions of lower Ricci
curvature bounds.
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One of the reasons to seek to extend the notion of Ricci curvature be-
yond Riemannian manifolds is that lower Ricci curvature bounds have strong
geometric consequences and are a powerful tool in proving functional inequal-
ities. This motivated the investigation of lower Ricci curvature bounds in the
noncommutative setting, or for quantum Markov semigroups.

From a positive noncommutative lower Ricci curvature bound in terms of
the Γ2-condition, Junge and Zeng [21,22] derived a Lp-Poincaré-type inequal-
ity and transportation inequalities, and under such non-negative lower Ricci
curvature bounds Junge and Mei proved Lp-boundedness of Riesz transform
[20]. Following Lott–Sturm–Villani, Carlen and Maas [10–12] studied the non-
commutative lower Ricci curvature bound via the geodesic semi-convexity of
entropy by introducing a noncommutative analog of the 2-Wasserstein metric.
The similar approach was carried out by the first-named author in the infinite-
dimensional setting in [38]. These two notions of lower Ricci curvature bounds
are in general different, but they can both be characterized in terms of a gra-
dient estimate [12,38,39]. A stronger notion of lower Ricci curvature bound,
which implies the bound in terms of Γ2-condition and in terms of transporta-
tion, was introduced by Li, Junge and LaRacuente [26]. See also the further
work of Li [25], and Brannan, Gao and Junge [7,8].

However, for many applications in geometric consequences such as the
Bonnet–Myers theorem, and functional inequalities such as the concavity of
entropy power, a lower bound on the Ricci curvature is not sufficient, but one
needs an upper bound on the dimension as well. This leads to the curvature-
dimension condition, whose noncommutative analog will be the main object of
this article. As a finite-dimensional analog of lower Ricci curvature bounds, the
curvature-dimension condition also admits various characterizations. Similar to
the “infinite-dimensional” setting, two main approaches describing curvature-
dimension conditions are Γ2-criterion following Bakry–Émery and convexity
properties of entropy on the 2-Wasserstein space in the spirit of Lott–Sturm–
Villani. For metric measure spaces, the equivalence of various characterizations
on curvature-dimension conditions and their applications have been extensively
studied beginning with [16].

While the notion of dimension is built into the definition of manifolds, it
is not obvious in the extended settings and requires new definitions. The goal
of this article is to provide such a definition of dimension (upper bounds) in the
context of quantum Markov semigroups in a way that it fits well with the pre-
viously developed notions of lower Ricci curvature bounds in this framework.
This definition allows us to prove interesting consequences on the geometry of
the state space as well as some functional inequalities.

Furthermore, for quantum Markov semigroups satisfying an intertwining
condition, which already appeared in [11] and subsequent work, we provide
an easily verifiable upper bound on the dimension, namely the number of
partial derivatives in the Lindblad form of the generator. This sufficient condi-
tion enables us to prove the curvature-dimension condition in various concrete
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examples such as quantum Markov semigroups of Schur multipliers and semi-
groups generated by conditionally negative definite length functions on group
algebras.

It should be mentioned that a notion of dimension for a quantum diffu-
sion semigroup already appeared implicitly in the work of König and Smith on
the quantum entropy power inequality [24]. In particular, from their entropy
power inequality one may also derive the concavity of entropy power for the
associated quantum diffusion semigroup. See [1,14,19] for more related work.
This example fits conceptually well with our framework as it satisfies the in-
tertwining condition and the dimension in the entropy power considered there
is the number of partial derivatives in the Lindblad form of the generator, al-
though the semigroup acts on an infinite-dimensional algebra and is therefore
not covered by our finite-dimensional setting. Here we consider the concavity
of the entropy power for arbitrary symmetric quantum Markov semigroups
over matrix algebras.

In this paper we will focus on two noncommutative analogues of curvature-
dimension conditions: the Bakry–Émery curvature dimension condition
BE(K,N), formulated via the Γ2-condition, and the gradient estimate
GE(K,N), which is in the spirit of Lott–Sturm–Villani when the reference
operator mean is chosen to be the logarithmic mean. They are generaliza-
tions of “infinite-dimensional” notions BE(K,∞) and GE(K,∞) in previous
work, but let us address one difference in the “finite-dimensional” setting,
i.e. N < ∞. As we mentioned above, in the “infinite-dimensional” case, i.e.
N = ∞, GE(K,∞) recovers BE(K,∞) if the operator mean is the left/right
trivial mean. However, this is not the case when N < ∞; BE(K,N) is stronger
than GE(K,N) for the left/right trivial mean.

This article is organized as follows. Section 2 collects preliminaries about
quantum Markov semigroups and noncommutative differential calculus that
are needed for this paper. In Sect. 3 we study the noncommutative Bakry–
Émery curvature-dimension condition BE(K,N), its applications and the com-
plete version. In Sect. 4 we investigate the noncommutative gradient estimate
GE(K,N) for arbitrary operator means, give an equivalent formulation in
the spirit of the Γ2-criterion, and also introduce their complete form. Section
5 is devoted to the gradient estimate GE(K,N), its connection to the geo-
desic (K,N)-convexity of the (relative) entropy and applications to dimension-
dependent functional inequalities. In Sect. 6 we give some examples of quantum
Markov semigroups for which our main results apply. In Sect. 7 we discuss how
to extend the theory from this article to quantum Markov semigroups that are
not necessarily tracially symmetric and explain the main challenge in this case.

2. Quantum Markov Semigroups and Noncommutative
Differential Calculus

In this section we give some background material on quantum Markov semi-
groups, their generators, first-order differential calculus and operator means.
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2.1. Quantum Markov Semigroups

Throughout this article we fix a finite-dimensional von Neumann algebra M
with a faithful tracial state τ . By the representation theory of finite-dimensional
C∗-algebras, M is of the form

⊕n
j=1 Mkj

(C) and τ =
⊕n

j=1 αjtrMkj
(C) with

αj ≥ 0,
∑n

j=1 αjkj = 1. Here Mn(C) denotes the full n-by-n matrix algebra
and trMn(C) is the usual trace over Mn(C).

Denote by M+ the set of positive semi-definite matrices in M. A density
matrix is a positive element ρ ∈ M with τ(ρ) = 1. The set of all density
matrices is denoted by S(M) and the set of all invertible density matrices by
S+(M). We write L2(M, τ) for the Hilbert space obtained by equipping M
with the inner product

〈·, ·〉 : M × M → C, (x, y) �→ τ(x∗y).

The adjoint of a linear operator T : M → M with respect to this inner product
is denoted by T †. We write id for the identity operator, with an index indicating
on which space it acts if necessary.

A family (Pt)t≥0 of linear operators on M is called a quantum Markov
semigroup if
(a) P0 = idM, Ps+t = PsPt for s, t ≥ 0,
(b) Pt is completely positive for every t ≥ 0,
(c) Pt1 = 1 for every t ≥ 0,
(d) t �→ Pt is continuous.

The generator of (Pt) is

L : M → M, Lx = lim
t↘0

1
t
(x − Pt(x)).

It is the unique linear operator on M such that Pt = e−tL. Let us remark that
sign conventions differ and sometimes −L is called the generator of (Pt).

Let σ ∈ S+(M). The quantum Markov semigroup (Pt) is said to satisfy
the σ-detailed balance condition (σ-DBC) if

τ(Pt(x)yσ) = τ(xPt(y)σ)

for x, y ∈ M and t ≥ 0. In the special case σ = 1 we say that (Pt) is tracially
symmetric or symmetric, and denote

E(a, b) := 〈a,Lb〉.
A tracially symmetric quantum Markov semigroup (Pt) is ergodic if 1 is the
unique invariant state of (Pt).

Although it is not necessary to formulate the curvature-dimension con-
ditions, we will deal exclusively with tracially symmetric quantum Markov
semigroups since all examples where we can verify the conditions fall into that
class. As a special case of Alicki’s theorem [5, Theorem 3] (see also [11, Theo-
rem 3.1]) the generator L of a tracially symmetric quantum Markov semigroup
on M = Mn(C) is of the form

L =
∑

j∈J
∂†

j∂j ,
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where J is a finite index set, ∂j = [vj , · ] for some vj ∈ M, and for every j ∈ J
there exists a unique j∗ ∈ J such that v∗

j = vj∗ . We call the operators ∂j partial
derivatives. Using the derivation operator ∂ := (∂j)j∈J : M → M̂ := ⊕j∈J M,
we may also write L = ∂†∂.

2.2. Noncommutative Differential Calculus and Operator Means

Let us shortly recall the definition and some basic properties of operator means.
Let H be an infinite-dimensional Hilbert space. A map Λ: B(H)+ ×B(H)+ →
B(H)+ is called an operator connection if it satisfies the following properties.
(a) monotonicity : if A ≤ C and B ≤ D, then Λ(A,B) ≤ Λ(C,D),
(a) transformer inequality : CΛ(A,B)C ≤ Λ(CAC,CBC) for any A,B,C ∈

B(H)+,
(a) continuity : An ↘ A and Bn ↘ B imply Λ(An, Bn) ↘ Λ(A,B).

An operator connection Λ is called an operator mean if it additionally satisfies
(d) Λ(idH, idH) = idH.

Here by An ↘ A we mean A1 ≥ A2 ≥ · · · and An converges strongly to A.
The operator connection Λ is symmetric if Λ(A,B) = Λ(B,A) for all A,B ∈
B(H)+.

Lemma 2.1. Let Λ be an operator connection. Then for λ ≥ 0, A,B,C,D ∈
B(H)+ and unitary U ∈ B(H), we have
(a) positive homogeneity: Λ(λA, λB) = λΛ(A,B),
(b) concavity: Λ(A,C) + Λ(B,D) ≤ Λ(A + B,C + D),
(c) unitary invariance: Λ(U∗AU,U∗BU) = U∗Λ(A,B)U .

If Λ is an operator mean, then additionally
(d) Λ(A,A) = A.

Proof. See equations (II0), (2.1), Theorem 3.3 and Theorem 3.5 in [23]. �
While operator connections are initially only defined for bounded opera-

tors on an infinite-dimensional Hilbert space, one can easily extend this defini-
tion to operators on finite-dimensional Hilbert spaces as follows. If Λ is an op-
erator connection, H is a finite-dimensional Hilbert space and A,B ∈ B(H)+,
then one can define Λ(A,B) as V ∗Λ(V AV ∗, V BV ∗)V , where V is an isometric
embedding of H into an infinite-dimensional Hilbert space. The unitary invari-
ance from the previous lemma ensures that this definition does not depend on
the choice of the embedding V .

Let L(ρ) and R(ρ) be the left and right multiplication operators on
L2(M, τ), respectively, and fix an operator mean Λ. For ρ ∈ M+ we define

ρ̂ = Λ(L(ρ), R(ρ)).

Of particular interest for us are the cases when Λ is the logarithmic mean

Λlog(L(ρ), R(ρ)) =
∫ 1

0

L(ρ)sR(ρ)1−s ds,

or the left/right trivial mean

Λleft(L(ρ), R(ρ)) = L(ρ), Λright(L(ρ), R(ρ)) = R(ρ).
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With Λ = Λlog being the logarithmic mean, we have the chain rule identity for
log (see [11, Lemma 5.5] for a proof):

∂ρ = ρ̂∂ log ρ =
∫ 1

0

ρs(∂ log ρ)ρ1−sds.

Here and in what follows, we use the notation

ρ̂(x1, . . . , xn) := (ρ̂x1, . . . , ρ̂xn).

3. Bakry–Émery Curvature-Dimension Condition BE(K,N)

This section is devoted to the noncommutative analog of the Bakry–Émery
curvature-dimension condition BE(K,N) defined by the Γ2-criterion. After
giving the definition, we will show that it is satisfied for certain generators
in Lindblad form, where the dimension parameter N is given by the number
of partial derivatives. We will then prove that BE(K,N) implies an improved
Poincaré inequality. In the final part of this section we study a complete version
of BE(K,N), called CBE(K,N), and show that it has the expected tensoriza-
tion properties.

3.1. Bakry–Émery Curvature-Dimension Condition BE(K,N)

Let (Pt) be a quantum Markov semigroup on M with generator L. The asso-
ciated carré du champ operator Γ is defined as

Γ(a, b) :=
1
2

(a∗Lb + (La)∗b − L(a∗b)) ,

and the iterated carré du champ operator Γ2 is defined as

Γ2(a, b) :=
1
2

(Γ(a,Lb) + Γ(La, b) − LΓ(a, b)) .

As usual, we write Γ(a) for Γ(a, a) and Γ2(a) for Γ2(a, a).

Proposition 3.1. Let K ∈ R and N ∈ (0,∞]. For a quantum Markov semigroup
(Pt) over M with generator L, the following are equivalent:
(a) for any t ≥ 0 and any a ∈ M:

Γ(Pta) ≤ e−2KtPtΓ(a) − 1 − e−2Kt

KN
|LPta|2,

(b) for any a ∈ M:

Γ2(a) ≥ KΓ(a) +
1
N

|La|2.

If this is the case, we say the semigroup (Pt) satisfies Bakry–Émery curvature-
dimension condition BE(K,N).

Proof. The proof is essentially based on the following identities: For s ∈ [0, t],

d
ds

Ps((Pt−sa)∗(Pt−sa)) = 2PsΓ(Pt−sa),
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and
d
ds

PsΓ(Pt−sa) = 2PsΓ2(Pt−sa),

which follow by direct computations. To prove (a) =⇒ (b), we set

φ(t) := e−2KtPtΓ(a) − Γ(Pta) − 1 − e−2Kt

KN
|LPta|2.

Since φ(t) ≥ 0 for all t ≥ 0 and φ(0) = 0, we have φ′(0) ≥ 0, which is nothing
but (b).

To show (b) =⇒ (a), we put for any t > 0:

ϕ(s) := e−2KsPsΓ(Pt−sa), s ∈ [0, t].

By the Kadison–Schwarz inequality, Φ(b)∗Φ(b) ≤ Φ(b∗b) for any unital com-
pletely positive map Φ on M and b ∈ M. If we apply this to Ps and use the
assumption from (b), we get

ϕ′(s) = 2e−2KsPs (Γ2(Pt−sa) − KΓ(Pt−sa)) ≥ 2e−2Ks

N
Ps

(|LPt−sa|2)

≥ 2e−2Ks

N
|LPta|2.

So

ϕ(t) − ϕ(0) =
∫ t

0

ϕ′(s)ds ≥ 2
N

∫ t

0

e−2Ksds|LPta|2 =
1 − e−2Kt

KN
|LPta|2,

which proves (a). �

Remark 3.2. From the proof one can see that the function

t �→ 1 − e−2Kt

KN
,

in (a) can be replaced by any f such that f(0) = 0 and f ′(0) = 2/N .

Remark 3.3. The notion BE(K,N) is clearly consistent: If (Pt) satisfies
BE(K,N), then it also satisfies BE(K ′, N ′) for all K ′ ≤ K and N ′ ≥ N .

Remark 3.4. While all our examples of quantum Markov semigroups satisfying
BE are tracially symmetric, let us point out that this is not necessary for the
definition nor for the results in the rest of this section with the exception of
Proposition 3.7. See also the discussion in Sect. 7.

We shall give a sufficient condition for Bakry–Émery curvature-dimension
condition BE(K,N). Before that we need a simple inequality.

Lemma 3.5. For any aj , 1 ≤ j ≤ d, in a C*-algebra, we have

d∑

j=1

|aj |2 ≥ 1
d

∣
∣
∣
∣
∣
∣

d∑

j=1

aj

∣
∣
∣
∣
∣
∣

2

.
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Proof. In fact,

d
d∑

j=1

|aj |2 −
∣
∣
∣
∣
∣
∣

d∑

j=1

aj

∣
∣
∣
∣
∣
∣

2

=
1
2

d∑

j,k=1

(
a∗

jaj + a∗
kak − a∗

jak − a∗
kaj

)

=
1
2

d∑

j,k=1

|aj − ak|2 ≥ 0. �

Definition 3.6. Suppose that L is the generator of the tracially symmetric
quantum Markov semigroup (Pt) with the Lindblad form:

L =
d∑

j=1

∂†
j∂j , (LB)

where ∂j(·) = [vj , ·] with the adjoint being ∂†
j (·) = [v∗

j , ·], and {vj} = {v∗
j }.

Then we say (Pt) satisfies the K-intertwining condition for some K ∈ R if

∂jPt = e−KtPt∂j , 1 ≤ j ≤ d,

or equivalently

∂jL = L∂j + K∂j , 1 ≤ j ≤ d.

Proposition 3.7. Suppose that the generator L of the tracially symmetric quan-
tum Markov semigroup (Pt) admits the Lindblad form (LB). Then for any a,

Γ2(a) = Re
d∑

j=1

(∂jLa − L∂ja)∗∂ja +
d∑

j,k=1

|∂†
k∂ja|2. (3.1)

If (Pt) satisfies the K-intertwining condition for K ∈ R, then (Pt) satisfies
BE(K, d).

Proof. Note that

(∂ja)∗ = a∗v∗
j − v∗

j a∗ = −∂†
j (a

∗).

This, together with the Leibniz rule for ∂j ’s (so also ∂†
j ’s), and the fact

that {∂j} = {∂†
j}, yields

L(a∗b) =
d∑

j=1

(∂†
j ∂ja

∗)b + a∗∂†
j∂jb + (∂†

j a
∗)(∂jb) + (∂ja

∗)(∂†
j b)

= (La)∗b + a∗Lb +
d∑

j=1

(∂†
j a

∗)(∂jb) + (∂ja
∗)(∂†

j b)

= (La)∗b + a∗Lb −
d∑

j=1

(
(∂ja)∗(∂jb) + (∂†

j a)∗(∂†
j b)
)

= (La)∗b + a∗Lb − 2
d∑

j=1

(∂ja)∗(∂jb).
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So by definition, the carré du champ operator is given by:

Γ(a, b) =
1
2

(a∗Lb + (La)∗b − L(a∗b)) =
d∑

j=1

(∂ja)∗∂jb. (3.2)

The above computations yield

Γ(a,L(a)) + Γ(L(a), a) =
d∑

j=1

(∂jLa)∗∂ja + (∂ja)∗∂jLa = 2Re
d∑

j=1

(∂jLa)∗∂ja,

and

LΓ(a) =
d∑

j=1

L ((∂ja)∗∂ja)

=
d∑

j=1

(

(L∂ja)∗∂ja + (∂ja)∗L∂ja − 2
d∑

k=1

(∂k∂ja)∗∂k∂ja

)

= 2Re
d∑

j=1

(L∂ja)∗∂ja − 2
d∑

j,k=1

|∂k∂ja|2.

Thus

Γ2(a) =
1
2

(Γ(a,L(a)) + Γ(L(a), a) − LΓ(a))

= Re
d∑

j=1

(∂jLa)∗∂ja − Re
d∑

j=1

(L∂ja)∗∂ja +
d∑

j,k=1

|∂k∂ja|2

= Re
d∑

j=1

(∂jLa − L∂ja)∗∂ja +
d∑

j,k=1

|∂†
k∂ja|2,

where in the last equality we used again the fact that {∂j} = {∂†
j}. This proves

(3.1). If (Pt) satisfies the K-intertwining condition, then

Re
d∑

j=1

(∂jLa − L∂ja)∗(∂ja) = K
d∑

j=1

(∂ja)∗(∂ja) = KΓ(a).

Moreover, by Lemma 3.5 we get

d∑

j,k=1

|∂†
k∂ja|2 ≥

d∑

j=1

|∂†
j ∂ja|2 ≥ 1

d

∣
∣
∣
∣
∣
∣

d∑

j=1

∂†
j∂ja

∣
∣
∣
∣
∣
∣

2

=
1
d
|La|2.

Therefore (Pt) satisfies BE(K, d):

Γ2(a) = Re
d∑

j=1

(∂jLa − L∂ja)∗∂ja +
d∑

j,k=1

|∂†
k∂ja|2 ≥ KΓ(a) +

1
d
|La|2. �
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3.2. Applications

In this subsection we present two applications of the Bakry–Émery curvature-
dimension condition, namely a Poincaré inequality and a Bonnet–Myers theo-
rem.

It is well-known that when K > 0, the dimensionless bound BE(K,∞)
implies that the smallest non-zero eigenvalue of the generator is at least K. As
a simple application of the dimensional variant we show that this bound can
be improved.

Proposition 3.8. (Poincaré inequality) Let K > 0 and N > 1. If (Pt) satisfies
BE(K,N) and λ1 is the smallest non-zero eigenvalue of L, then

λ1 ≥ KN

N − 1
.

Proof. By BE(K,N) we have

‖La‖2
2 = τ(Γ2(a)) ≥ Kτ(Γ(a)) +

1
N

τ(|La|2) = K〈La, a〉 +
1
N

‖La‖2
2.

In particular, if La = λ1a and ‖a‖2 = 1, then

λ2
1 ≥ Kλ1 +

1
N

λ2
1,

from which the desired inequality follows. �

To state the Bonnet–Myers theorem, we recall the definition of the metric
dΓ on the space of density matrices that is variously known as quantum L1-
Wasserstein distance, Connes distance or spectral distance. It is given by

dΓ(ρ0, ρ1) = sup{τ(a(ρ1 − ρ0)) | a = a∗ ∈ M, Γ(a) ≤ 1}
for ρ0, ρ1 ∈ S(M).

Proposition 3.9. Let K,N ∈ (0,∞). If a symmetric quantum Markov semi-
group (Pt) is ergodic and satisfies Bakry–Émery curvature-dimension condition
BE(K,N), then

dΓ(ρ,1) ≤ π

2

√
N

K

for all ρ ∈ S(M).
In particular,

sup
ρ0,ρ1∈S(M)

dΓ(ρ0, ρ1) ≤ π

√
N

K
.

Proof. The proof follows the same line as that of [28, Theorem 2.4]. The con-
dition BE(K,N) implies

1 − e−2Kt

KN
(LPta)2 ≤ e−2KtPtΓ(a),
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for any a = a∗ ∈ M. If Γ(a) ≤ 1, we have

‖LPta‖ ≤
√

KN

√
1

e2Kt − 1
.

Thus for any ρ ∈ S(M),

|τ((Pta − a)ρ)| ≤
∫ t

0

∣
∣
∣
∣

d
ds

τ((Psa)ρ)
∣
∣
∣
∣ ds ≤

√
KN

∫ ∞

0

1√
e2Ks − 1

ds =
π

2

√
N

K
.

Therefore

τ(a(ρ − 1)) = τ((a − Pta)ρ) + τ(Pta(ρ − 1)) ≤ π

2

√
N

K
+ τ(a(Ptρ − 1)).

Since (Pt) is assumed to be ergodic, we have Ptρ → 1 as t → ∞, and we end
up with

dΓ(ρ,1) = sup
Γ(a)≤1

τ(a(ρ − 1)) ≤ π

2

√
N

K
. �

Remark 3.10. If (Pt) is not ergodic, then the same argument gives

dΓ(ρ,E(ρ)) ≤ π

2

√
N

K
,

where E(ρ) = limt→∞ Pt(ρ). In particular,

dΓ(ρ0, ρ1) ≤ π

√
N

K

whenever E(ρ0) = E(ρ1).

3.3. Complete BE(K,N)

In many applications it is desirable to have estimates that are tensor-stable in
the sense that they hold not only for (Pt), but also for (Pt ⊗ idMn(C)) with a
constant independent of n ∈ N, as this allows to analyze complex composite
systems by studying their subsystems separately.

Even in the case N = ∞, it seems to be unknown if this tensor sta-
bility holds for the Bakry–Émery estimate. For that reason we introduce the
complete Bakry–Émery estimate CBE(K,N), which has this tensor stability
by definition. We will show that this stronger estimate also holds for quantum
Markov semigroups satisfying the K-intertwining condition, and moreover, this
estimate behaves as expected under arbitrary tensor products.

Definition 3.11. Let K ∈ R and N > 0. We say that the quantum Markov
semigroup (Pt) satisfies CBE(K,N) if

[Γ(Ptxj , Ptxk)]j,k ≤ e−2Kt[PtΓ(xj , xk)]j,k − 1 − e−2Kt

KN
[(LPtxj)∗(LPtxk)]j,k,

for all x1, . . . , xn ∈ M and t > 0.
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Just as in Proposition 3.1 one can show that CBE(K,N) is equivalent
to

[Γ2(xj , xk)]j,k ≥ K[Γ(xj , xk)]j,k +
1
N

[(Lxj)∗(Lxk)]j,k

for all x1, . . . , xn ∈ M and t ≥ 0.
For N = ∞, this criterion was introduced in [21] for group von Neumann

algebras under the name algebraic Γ2-condition.
To show that CBE(K,N) for (Pt) is equivalent to BE(K,N) for (Pt ⊗

idMn(C)) with constants independent of n, we need the following elementary
lemma.

Lemma 3.12. Let A,B be two C*-algebras. If x = [xjk] ∈ Mn(A), y = [yjk] ∈
Mn(B) are positive, then

∑

j,k

xjk ⊗ yjk ≥ 0.

Proof. By assumption there are a = [ajk] ∈ Mn(A), b = [bjk] ∈ Mn(B) such
that

xjk =
∑

l

a∗
ljalk,

yjk =
∑

m

b∗
mjbmk.

Thus
∑

j,k

xjk ⊗ yjk =
∑

j,k,l,m

a∗
ljalk ⊗ b∗

mjbmk

=
∑

l,m

⎛

⎝
∑

j

a∗
lj ⊗ b∗

mj

⎞

⎠

(
∑

k

alk ⊗ bmk

)

=
∑

l,m

∣
∣
∣
∣
∣
∣

∑

j

alj ⊗ bmj

∣
∣
∣
∣
∣
∣

2

≥ 0. �

Proposition 3.13. Let (Pt) be a quantum Markov semigroup on M. For K ∈ R

and N ∈ (0,∞], the following assertions are equivalent:
(a) (Pt) satisfies CBE(K,N).
(b) (Pt ⊗ idMn(C)) satisfies BE(K,N) for all n ∈ N.

Proof. (a) =⇒ (b): Write Γ,Γ2 for the (iterated) carré du champ associated
with (Pt) and Γ⊗,Γ⊗

2 for the same forms associated with (Pt ⊗ idMn(C)).
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A direct computation shows

Γ⊗
2

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠ =
∑

j,k

Γ2(xj , xk) ⊗ y∗
j yk,

Γ⊗

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠ =
∑

j,k

Γ(xj , xk) ⊗ y∗
j yk,

∣
∣
∣
∣
∣
∣
(L ⊗ idMn(C))

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠

∣
∣
∣
∣
∣
∣

2

=
∑

j,k

(Lxj)∗(Lxk) ⊗ y∗
j yk.

Hence

Γ⊗
2

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠− KΓ⊗

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠

− 1
N

∣
∣
∣
∣
∣
∣
(L ⊗ idN )

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠

∣
∣
∣
∣
∣
∣

2

=
∑

j,k

(

Γ2(xj , xk) − KΓ(xj , xk) − 1
N

(Lxj)∗(Lxk)
)

⊗ y∗
j yk,

and the result follows from Lemma 3.12 and (a).
(b) =⇒ (a): Let x =

∑
j xj ⊗ |1〉〈j|. The computations from (a) =⇒ (b)

show

Γ⊗
2 (x) =

∑

j,k

Γ2(xj , xk) ⊗ |j〉〈k|

and similar formulas for Γ⊗ and L ⊗ idMn(C). Using the ∗-isomorphism M ⊗
Mn(C) → Mn(M),

∑
j,k xjk ⊗ |j〉〈k| �→ [xjk]j,k, assertion (a) follows. �

In the following two results we will give two classes of examples for which
the condition CBE is satisfied.

Proposition 3.14. Suppose that the generator L of the quantum Markov semi-
group (Pt) admits the Lindblad form (LB) with d partial derivatives ∂1, . . . , ∂d.
If (Pt) satisfies the K-intertwining condition for K ∈ R, then (Pt) satisfies
CBE(K, d).

Proof. A direct computation shows that L ⊗ idMn(C) admits a Lindblad form
with partial derivatives ∂1⊗idMn(C), . . . , ∂d⊗idMn(C). Now the claim is a direct
consequence of Propositions 3.7 and 3.13. �

Proposition 3.15. If M is commutative and (Pt) satisfies BE(K,N), then it
also satisfies CBE(K,N).
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Proof. By assumption, M ∼= C(X) for a compact space X. We have to show

[Γ2(fj , fk)(x)]j,k ≥ K[Γ(fj , fk)(x)]j,k +
1
N

[(Lfj)(x)(Lfk)(x)]j,k

for x ∈ X, which follows from
∑

j,k

αjαkΓ2(fj , fk)(x)

= Γ2

⎛

⎝
∑

j

αjfj

⎞

⎠ (x)

≥ KΓ

⎛

⎝
∑

j

αjfj

⎞

⎠ (x) +
1
N

∣
∣
∣
∣
∣
∣
L
⎛

⎝
∑

j

αjfj

⎞

⎠ (x)

∣
∣
∣
∣
∣
∣

2

= K
∑

j,k

αjαkΓ(fj , fk)(x) +
1
N

∑

j,k

αjαk(Lfj)(x)(Lfk)(x)

for any αj ∈ C. �

Before we state the tensorization property of CBE, we need another ele-
mentary inequality.

Lemma 3.16. Let A be a C*-algebra. If a, b ∈ A and λ > 0, then

|a + b|2 ≤ (1 + λ)|a|2 + (1 + λ−1)|b|2.
Proof. In fact,

(1 + λ)|a|2 + (1 + λ−1)|b|2
= |a + b|2 + λ|a|2 + λ−1|b|2 − a∗b − b∗a

= |a + b|2 + |λ1/2a − λ−1/2b|2
≥ |a + b|2. �

Proposition 3.17. Let M, N be finite-dimensional von Neumann algebras and
let (Pt), (Qt) be tracially symmetric quantum Markov semigroups on M and
N , respectively. If (Pt) satisfies CBE(K,N) and (Qt) satisfies CBE(K ′, N ′),
then (Pt ⊗ Qt) satisfies CBE(min{K,K ′}, N + N ′).

Proof. We use superscripts for the (iterated) carré du champ to indicate the
associated quantum Markov semigroup. Let κ = min{K,K ′}. We have

ΓP⊗Q
2 − κΓP⊗Q = (ΓP⊗idN

2 − κΓP⊗idN ) + (ΓidM⊗Q
2 − κΓidM⊗Q) + 2ΓP ⊗ ΓQ,

where

(ΓP ⊗ ΓQ)

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠ :=
∑

j,k

ΓP (xj , xk) ⊗ ΓQ(yj , yk).
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By CBE(κ,N) for (Pt) and CBE(κ,N ′) for (Qt) we have

(ΓP⊗idN
2 − κΓP⊗idN )

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠ ≥ 1
N

∣
∣
∣
∣
∣
∣

∑

j

LP xj ⊗ yj

∣
∣
∣
∣
∣
∣

2

,

(ΓidM⊗Q
2 − κΓidM⊗Q)

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠ ≥ 1
N ′

∣
∣
∣
∣
∣
∣

∑

j

xj ⊗ LQyj

∣
∣
∣
∣
∣
∣

2

.

Moreover,

(ΓP ⊗ ΓQ)

⎛

⎝
∑

j

xj ⊗ yj

⎞

⎠ ≥ 0

by Lemma 3.12.
Finally,

1
N

∣
∣
∣
∣
∣
∣

∑

j

LP xj ⊗ yj

∣
∣
∣
∣
∣
∣

2

+
1

N ′

∣
∣
∣
∣
∣
∣

∑

j

xj ⊗ LQyj

∣
∣
∣
∣
∣
∣

2

≥ 1
N + N ′

∣
∣
∣
∣
∣
∣

∑

j

LP xj ⊗ yj + xj ⊗ LQyj

∣
∣
∣
∣
∣
∣

2

by Lemma 3.16, which shows BE(κ,N+N ′) for (Pt⊗Qt). To prove CBE(κ,N+
N ′), we can simply apply the same argument to (Pt ⊗ idMn(C)) and (Qt ⊗
idMn(C)) for arbitrary n ∈ N. �

4. The Gradient Estimate GE(K,N)

4.1. Gradient Estimate GE(K,N) and a Sufficient Condition

In [10–12,38], a noncommutative analog of the 2-Wasserstein metric was con-
structed on the set of quantum states. Among other things, it gives rise to a
notion of (entropic) lower Ricci curvature bound via geodesic semi-convexity
of the entropy. This allows to prove a number of functional inequalities un-
der strictly positive lower Ricci curvature bound, including the modified log-
Sobolev inequality that (seemingly) cannot be produced under the Bakry–
Émery curvature-dimension condition BE(K,∞).

This entropic lower Ricci curvature bound is captured in the following
gradient estimate

‖∂Pta‖2
ρ ≤ e−2Kt‖∂a‖2

Ptρ, (GE(K,∞))

or equivalently

Re〈∂La, ρ̂∂a〉 +
1
2

〈
d
dt

∣
∣
t=0

P̂tρ∂a, ∂a

〉

≥ K‖∂a‖2
ρ, (4.1)
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where the notations ρ̂ and ‖ · ‖ρ correspond to the logarithmic mean Λlog.
Recall Sect. 2 for more details. The fact that logarithmic mean comes into
play lies in the use of chain rule

ρ̂∂j log ρ = ∂jρ, 1 ≤ j ≤ d.

In fact, for the gradient estimate (GE(K,∞)) and its equivalent form 4.1
one can work with any operator mean. This not only makes the theory more
flexible, but also includes the Bakry–Émery curvature-dimension condition
BE(K,∞) as a special case. Indeed, one recovers BE(K,∞) by replacing the
logarithmic mean in (4.1) with the left/right trivial mean. In the next section
we discuss the connection between GE(K,N) and (K,N)-convexity of the
(relative) entropy.

The study of (GE(K,∞)) for arbitrary operator means was started in
[38,39]. Here we continue to work within this framework and focus on the
“finite-dimensional” version of (GE(K,∞)) or (4.1), which we call gradient
estimate GE(K,N).

Definition 4.1. Let Λ be an operator mean and (Pt) be a symmetric quantum
Markov semigroup whose generator takes the Lindblad form (LB). We say that
(Pt) satisfies the gradient estimate GE(K,N) for K ∈ R, N ∈ (0,∞] if

‖∂Pta‖2
ρ ≤ e−2Kt‖∂a‖2

Ptρ − 1 − e−2Kt

KN
|E(a, Ptρ)|2, (GE(K,N))

for any t ≥ 0, a ∈ M and ρ ∈ S+(M).

Remark 4.2. Both sides of (GE(K,N)) make sense for arbitrary ρ ∈ S(M)
and are continuous in ρ. Thus, if ρ ∈ S(M) is not invertible, one can apply
(GE(K,N)) to ρε = ρ+ε1

1+ε , which is invertible for ε > 0, and let ε ↘ 0 to see
that

‖∂Pta‖2
ρ ≤ e−2Kt‖∂a‖2

Ptρ − 1 − e−2Kt

KN
|E(a, Ptρ)|2

still holds for any t ≥ 0 and a ∈ M.

Remark 4.3. It is obvious that when N = ∞, (GE(K,N)) becomes the gradi-
ent estimate GE(K,∞). From the definition it is not immediately clear that if
(Pt) satisfies the gradient estimate GE(K,N), then it also satisfies the gradi-
ent estimate GE(K ′, N ′) whenever K ′ ≤ K and N ′ ≥ N . But this can be seen
from the following equivalent formulation in the flavor of the Γ2-condition.

Proposition 4.4. For any operator mean Λ and any symmetric quantum Markov
semigroup (Pt), the gradient estimate (GE(K,N)) holds if and only if

Re〈∂La, ρ̂∂a〉 − 1
2
〈dG(ρ)(Lρ)∂a, ∂a〉 ≥ K‖∂a‖2

ρ +
1
N

|E(a, ρ)|2 (4.2)

for any ρ ∈ S+(M) and any a ∈ M. Here dG(ρ) denotes the Fréchet derivative
of G(ρ) := ρ̂ = Λ(L(ρ), R(ρ)).
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Proof. Assume that (Pt) satisfies (GE(K,N)). Set

φ(t) := e−2Kt‖∂a‖2
Ptρ − ‖∂Pta‖2

ρ − 1 − e−2Kt

KN
|E(a, Ptρ)|2.

Then φ(t) ≥ 0 and φ(0) = 0. Therefore φ′(0) ≥ 0, that is,
〈

d
dt

∣
∣
t=0

P̂tρ∂a, ∂a

〉

− 2K‖∂a‖2
ρ + 〈ρ̂∂La, ∂a〉 + 〈ρ̂∂a, ∂La〉 − 2

N
|E(a, ρ)|2 ≥ 0.

This is nothing but (4.2), since dG(ρ)(Lρ) = − d
dt

∣
∣
t=0

P̂tρ.
Now suppose that (Pt) satisfies 4.2. Fix t > 0 and put

ϕ(s) := e−2Ks‖∂Pt−sa‖2
Psρ, 0 ≤ s ≤ t.

Then applying (4.2) to (ρ, a) = (Psρ, Pt−sa), we get

ϕ′(s) = e−2Ks
(
〈P̂sρ∂LPt−sa, ∂Pt−sa〉 + 〈P̂sρ∂Pt−sa, ∂LPt−sa〉

− 〈dG(Psρ)(Lρ)∂Pt−sa, ∂Pt−sa〉 − 2K‖∂Pt−sa‖2
Psρ

)

≥ 2
N

e−2Ks|E(Pt−sa, Psρ)|2

=
2
N

e−2Ks|E(a, Ptρ)|2.
This, together with the fundamental theorem of calculus, yields

e−2Kt‖∂a‖2
Ptρ − ‖∂Pta‖2

ρ = ϕ(t) − ϕ(0) =
∫ t

0

ϕ′(s)ds ≥ 1 − e−2Kt

KN
|E(a, Ptρ)|2.

Therefore (Pt) satisfies (GE(K,N)). �

Remark 4.5. Similar to Remark 3.2, the function

t �→ 1 − e−2Kt

KN
,

in (GE(K,N)) can be replaced by any f such that f(0) = 0 and f ′(0) = 2/N .

Remark 4.6. In the case N = ∞, the gradient estimate GE(K,∞) for the left
trivial mean is equivalent to the exponential form of BE(K,∞). For N < ∞
this seems to be no longer the case, but one still has one implication: the Bakry–
Émery curvature-dimension condition BE(K,N) is stronger than GE(K,N)
for the left trivial mean. This is a consequence of Cauchy–Schwarz inequality
for the state τ(ρ · ):

|E(a, ρ)|2 = |〈La, ρ〉|2 ≤ 〈|La|2, ρ〉.
Similar to BE(K,N), the intertwining condition is also sufficient to prove

GE(K,N) with the same dimension (upper bound).

Theorem 4.7. Let (Pt) be a symmetric quantum Markov semigroup over M
with the Lindblad form (LB). Suppose that (Pt) satisfies K-intertwining con-
dition for some K ∈ R. Then for any operator mean Λ the quantum Markov
semigroup (Pt) satisfies GE(K, d).



734 M. Wirth, H. Zhang Ann. Henri Poincaré

Proof. For a ∈ M, recall that

Pt(a∗a) − (Pta)∗Pta =
∫ t

0

d
ds

Ps ((Pt−sa)∗Pt−sa) ds = 2
∫ t

0

PsΓ(Pt−sa)ds.

Under the K-intertwining condition, we have (either by Kadison–Schwarz or
BE(K,∞))

PsΓ(Pt−sa) ≥ e2KsΓ(Pta).

So

Pt(a∗a) − (Pta)∗Pta ≥ 2
∫ t

0

e2KsdsΓ(Pta) =
e2Kt − 1

K
Γ(Pta). (4.3)

By (3.2) and Lemma 3.5, we get for any (xj)1≤j≤d ⊂ M
d∑

j=1

Γ(Ptxj) =
d∑

j,k=1

|∂kPtxj |2 =
d∑

j,k=1

|∂†
kPtxj |2 ≥

d∑

j=1

|∂†
j Ptxj |2

≥ 1
d

∣
∣
∣
∣
∣
∣

d∑

j=1

∂†
jPtxj

∣
∣
∣
∣
∣
∣

2

. (4.4)

Let M̂ = ⊕d
j=1M be equipped with the inner product

〈(xj), (yj)〉 :=
d∑

j=1

〈xj , yj〉,

and P̂t be the operator acting on M̂ such that P̂t(x1, . . . , xd) = (Ptx1, . . . , Ptxd).
Fix ρ ∈ S+(M). For simplicity, let us identify ρ with the element (ρ, . . . , ρ) in
M̂. Then for x = (x1, . . . , xd) ∈ M̂, we have by (4.3) and (4.4) that

〈P̂t(x∗x), ρ〉 − 〈(P̂tx)∗P̂tx, ρ〉 =
d∑

j=1

〈Pt(x∗
jxj) − (Ptxj)∗Ptxj , ρ〉

≥e2Kt − 1
K

d∑

j=1

〈Γ(Ptxj), ρ〉

≥e2Kt − 1
dK

〈∣∣
∣
∣
∣
∣

d∑

j=1

∂†
jPtxj

∣
∣
∣
∣
∣
∣

2

, ρ

〉

.

From K-intertwining condition and Cauchy–Schwarz inequality for the state
τ(ρ·) on M, this is bounded from below by

1 − e−2Kt

dK

〈∣∣
∣
∣
∣
∣

d∑

j=1

Pt∂
†
j xj

∣
∣
∣
∣
∣
∣

2

, ρ

〉

≥ 1 − e−2Kt

dK

∣
∣
∣
∣
∣
∣

d∑

j=1

〈
Pt∂

†
j xj , ρ

〉
∣
∣
∣
∣
∣
∣

2

=
1 − e−2Kt

dK
|〈x, ∂Ptρ〉|2 .
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So we have proved that for any x ∈ M̂:

〈x(P̂tρ), x〉 ≥ 〈P̂tx, (P̂tx)ρ〉 +
1 − e−2Kt

dK
〈x, ∂Ptρ〉〈∂Ptρ, x〉,

or equivalently

R(Ptρ) ≥ P̂tR(ρ)P̂t +
1 − e−2Kt

dK
|∂Ptρ〉〈∂Ptρ|.

Replacing x by x∗, we obtain

L(Ptρ) ≥ P̂tL(ρ)P̂t +
1 − e−2Kt

dK
|∂Ptρ〉〈∂Ptρ|.

Note that the second summand is the same in both cases.
Now since Λ is an operator mean, we have

Λ(L(Ptρ), R(Ptρ)) ≥Λ(P̂tL(ρ)P̂t, P̂tR(ρ)P̂t)

+
1 − e−2Kt

dK
Λ (|∂Ptρ〉〈∂Ptρ|, |∂Ptρ〉〈∂Ptρ|)

≥P̂tΛ(L(ρ), R(ρ))P̂t +
1 − e−2Kt

dK
|∂Ptρ〉〈∂Ptρ|,

where in the first inequality we used the monotonicity, concavity (Lemma 2.1
(b)) and positive homogeneity (Lemma 2.1 (a)) of Λ, and in the second in-
equality we used the transformer inequality and Lemma 2.1(d). This, together
with the K-intertwining condition, yields

‖∂Pta‖2
ρ = 〈Λ(L(ρ), R(ρ))∂Pta, ∂Pta〉

= e−2Kt〈P̂tΛ(L(ρ), R(ρ))P̂t∂a, ∂a〉

≤ e−2Kt〈Λ(L(Ptρ), R(Ptρ))∂a, ∂a〉 − e−2Kt − e−4Kt

dK
|〈∂Ptρ, ∂a〉|2

= e−2Kt‖∂a‖2
Ptρ − e−2Kt − e−4Kt

dK
|E(a, Ptρ)|2.

This completes the proof, by Remark 4.5. �

4.2. Bonnet–Myers Theorem

As a first application of the dimensional gradient estimate GE(K,N), we
present here a Bonnet–Myers theorem for the noncommutative analog of the
Wasserstein distance introduced in [11,12]. The proof is quite similar (or, in
fact, similar to the dual) to the proof of Proposition 3.9.

Let us first recall the definition of the metric. The space S+(M) of invert-
ible density matrices is a smooth manifold and the tangent space at ρ ∈ S+(M)
can be canonically identified with the traceless self-adjoint elements of M. As-
sume that (Pt) is an ergodic tracially symmetric quantum Markov semigroup
with generator L with Lindblad form (LB).

Fix an operator mean Λ. For ρ ∈ S+(M) we define

KΛ
ρ : M → M, x �→ ∂†ρ̂∂x =

d∑

j=1

∂†
j (Λ(L(ρ), R(ρ))∂j(x)). (4.5)
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It maps {x ∈ M | τ(x) = 0} bijectively onto itself.
The Riemannian metric gΛ on S+(M) is defined by

gΛ
ρ (ρ̇1(0), ρ̇2(0)) = 〈ρ̇1(0), (KΛ

ρ )−1ρ̇2(0)〉,
where ρ1, ρ2 are smooth curves in S+(M) with ρ1(0) = ρ2(0) = ρ. In partic-
ular, τ(ρ̇j(0)) = d

dt |t=0τ(ρj(t)) = 0 for j ∈ {1, 2}, so that the inverse of KΛ
ρ is

well-defined.
The associated distance function on S+(M) × S+(M) is denoted by W.

By [12, Proposition 9.2], W can be extended to S(M) × S(M) since

Λ(a1, b1) ≥ Λ(min{a, b}1,min{a, b}1) = min{a, b}1
for all a, b > 0.

Proposition 4.8. Fix an operator mean Λ. Let K,N ∈ (0,∞). If (Pt) satisfies
the gradient estimate GE(K,N), then

W(ρ,1) ≤ π

2

√
N

K

for all ρ ∈ S+(M).
In particular,

sup
ρ0,ρ1∈S+(M)

W(ρ0, ρ1) ≤ π

√
N

K
.

Proof. Since (Pt) is ergodic, we have Ptρ → 1 as t → ∞. Let ρt = Ptρ for
t ≥ 0. The gradient estimate GE(K,N) implies

|〈a, ρ̇t〉| = |〈a,Lρt〉| ≤
√

KN

√
e−2Kt

1 − e−2Kt
‖∂a‖ρt

=
√

KN√
e2Kt − 1

‖∂a‖ρt

for all a ∈ M. Choosing a = (KΛ
ρt

)−1ρ̇t, we get

gΛ
ρt

(ρ̇t, ρ̇t) ≤
√

KN√
e2Kt − 1

√
〈KΛ

ρt
a, a〉 =

√
KN√

e2Kt − 1

√
gΛ

ρt
(ρ̇t, ρ̇t).

Hence
√

gΛ
ρt

(ρ̇t, ρ̇t) ≤
√

KN√
e2Kt − 1

,

and we conclude

W(ρ,1) ≤
∫ ∞

0

√
gΛ

ρt
(ρ̇t, ρ̇t) dt ≤

∫ ∞

0

√
KN√

e2Kt − 1
dt =

π

2

√
N

K
. �

Remark 4.9. This result can be extended to the non-ergodic case just as in
Remark 3.10.
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4.3. Complete GE(K,N)
Now we turn to the complete version of GE(K,N). In this part we always fix
an operator mean Λ.

Definition 4.10. We say that a quantum Markov semigroup (Pt) satisfies com-
plete gradient estimate CGE(K,N) for K ∈ R and N ∈ (0,∞] if (Pt⊗idMn(C))
satisfies GE(K,N) for all n ∈ N (for the fixed operator mean Λ).

Similar to Proposition 3.14, the K-intertwining condition is sufficient for
CGE:

Proposition 4.11. Suppose that the generator L of the quantum Markov semi-
group (Pt) admits the Lindblad form (LB) with d partial derivatives ∂1, . . . , ∂d.
If (Pt) satisfies the K-intertwining condition for K ∈ R, then (Pt) satisfies
CGE(K, d).

Also, the complete gradient estimate CGE is tensor stable.

Proposition 4.12. Consider two quantum Markov semigroups (P j
t ) acting on

Mj, j = 1, 2. If (P j
t ) satisfies CGE(Kj , Nj), j = 1, 2, then the tensor product

(P 1
t ⊗ P 2

t ) over M = M1 ⊗ M2 satisfies CGE(K,N) with K = min{K1,K2}
and N = N1 + N2.

Proof. For each j = 1, 2, we denote by Lj the generator of (P j
t ) and ∂j : Mj →

M̂j (to distinguish from partial derivatives ∂j ’s) the corresponding derivation
operator so that Lj = (∂j)†∂j . Denote Pt = P 1

t ⊗ P 2
t . Then its generator is

L = ∂†∂, where the derivation operator ∂ is given by

∂ = (∂1 ⊗ id, id ⊗ ∂2).

Since (P j
t ) satisfies CGE(K,Nj), j = 1, 2, we have for any a ∈ M̂ := ⊗jM̂j

and ρ ∈ S+(M) that

‖∂Pta‖2ρ =‖(∂1 ⊗ id)(P 1
t ⊗ id)(id ⊗ P 2

t )a‖2ρ + ‖(id ⊗ ∂2)(id ⊗ P 2
t )(P 1

t ⊗ id)a‖2ρ
≤e−2Kt

(
‖(∂1 ⊗ id)(id ⊗ P 2

t )a‖2(P 1
t ⊗id)ρ + ‖(id ⊗ ∂2)(P 1

t ⊗ id)a‖2(id⊗P 2
t )ρ

)

− 1 − e−2Kt

K

(
1

N1
|〈(L1 ⊗ id)Pta, ρ〉|2 +

1

N2
|〈(id ⊗ L2)Pta, ρ〉|2

)

.

As we have proven in [39, Theorem 4.1], for the first summand one has

‖(∂1 ⊗ id)(id ⊗ P 2
t )a‖2

(P 1
t ⊗id)ρ + ‖(id ⊗ ∂2)(P 1

t ⊗ id)a‖2
(id⊗P 2

t )ρ ≤ ‖∂a‖2
Ptρ.

As for the second summand, note that L = L1 ⊗ id + id ⊗ L2. So by Cauchy–
Schwarz inequality,

1
N

|〈LPta, ρ〉|2 =
|〈(L1 ⊗ id)Pta, ρ〉 + 〈(id ⊗ L2)Pta, ρ〉|2

N1 + N2

≤ 1
N1

|〈(L1 ⊗ id)Pta, ρ〉|2 +
1

N2
|〈(id ⊗ L2)Pta, ρ〉|2.

All combined, we obtain

‖∂Pta‖2
ρ ≤ e−2Kt‖∂a‖2

Ptρ − 1 − e−2Kt

KN
|〈LPta, ρ〉|2. �
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5. Geodesic (K,N)-Convexity of the (Relative) Entropy and
Relation to the Gradient Estimate GE(K,N)

In the case of the logarithmic mean, the given quantum Markov semigroup
is the gradient flow of the (relative) entropy with respect to the transport
distance W. In this case, the gradient estimate GE(K,∞) is equivalent to
geodesic K-convexity of the (relative) entropy with respect to W, and several
functional inequalities can be obtained using gradient flow techniques.

Similarly, the gradient estimate GE(K,N) is equivalent to geodesic
(K,N)-convexity of the (relative) entropy with respect to W, a notion intro-
duced by Erbar, Kuwada and Sturm [16], and again, gradient flow techniques
allow to deduce several dimensional functional inequalities from the abstract
theory of (K,N)-convex functions on Riemannian manifolds.

5.1. (K,N)-Convexity for the (Relative) Entropy

Let (M, g) be a Riemannian manifold and K ∈ R, N ∈ (0,∞]. A function
S ∈ C2(M) is called (K,N)-convex if

Hess S(x)[v, v] − 1
N

g(∇S(x), v)2 ≥ Kg(v, v)

for all x ∈ M and v ∈ TxM .
With the function

UN : M → R, UN (x) = exp
(

− 1
N

S(x)
)

,

the (K,N)-convexity of S can equivalently be characterized by

Hess UN ≤ −K

N
UN .

For N = ∞, one obtains the usual notion of K-convexity. Moreover, the notion
of (K,N)-convexity is obviously monotone in the parameters K and N in the
sense that if S is (K,N)-convex, then S is also (K ′, N ′)-convex for K ′ ≤ K
and N ′ ≥ N .

Our focus will be on the case when F is the (relative) entropy and the Rie-
mannian metric is the one introduced in [11,12], whose definition was recalled
in Sect. 4.2.

If F : S+(M) → R is smooth, its Fréchet derivative can be written as

dF (ρ) = τ(x ·)
for a unique traceless self-adjoint x ∈ M. This element x shall be denoted by
DF (ρ). In particular, if F (ρ) = τ(ρ log ρ), then DF (ρ) = log ρ + c for some
c ∈ R.

By [11, Theorem 7.5], the gradient of F is given by (recall (4.5) for KΛ
ρ )

∇gΛF (ρ) = KΛ
ρ DF (ρ). (5.1)

Of particular interest to us is the case when F is the (relative) entropy, that
is, the functional

Ent : S+(M) → (0,∞), Ent(ρ) = τ(ρ log ρ).
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If we choose Λ to be the logarithmic mean Λlog, then ρt = Ptρ satisfies the
gradient flow equation

ρ̇t = −∇gΛ Ent(ρt)

for any ρ ∈ S+(M) [11, Theorem 7.6]. For this reason, we fix the operator
mean Λ to be the logarithmic mean in this section.

To formulate the metric formulations of (K,N)-convexity, we need the
following notation: For θ, κ ∈ R and t ∈ [0, 1] put

cκ(θ) =

{
cos(

√
κθ), if κ ≥ 0,

cosh(
√−κθ), if κ < 0,

sκ(θ) =

⎧
⎪⎨

⎪⎩

κ−1/2 sin(
√

κθ), if κ > 0,

θ, if κ = 0,

(−κ)−1/2 sinh(
√

κθ), if κ < 0,

σ(t)
κ (θ) =

⎧
⎪⎨

⎪⎩

sκ(tθ)
sκ(θ) , κθ2 �= 0 and κθ2 < π2,

t, κθ2 = 0,

+∞, κθ2 ≥ π2.

The following theorem is a quite direct consequence of the abstract theory
of (K,N)-convex functions and the computation of the gradient and Hessian
on (S+(M), g) carried out in [11,12]. Nonetheless, it implies some interesting
functional inequalities, as we shall see in the following subsection.

Theorem 5.1. Fix the logarithmic mean Λ = Λlog. Let K ∈ R and N ∈ (0,∞].
Further let

UN (ρ) = exp
(

− 1
N

Ent(ρ)
)

.

The following assertions are equivalent:
(a) The (relative) entropy Ent is (K,N)-convex on (S+(M), gΛ).
(b) For all ρ, ν ∈ S+(M), the following Evolution Variational Inequality

holds for all t ≥ 0:

d+

dt
sK/N

(
1
2
W(Ptρ, ν)

)2

+ KsK/N

(
1
2
W(Ptρ, ν)

)2

≤ N

2

(

1 − UN (ν)
UN (Ptρ)

)

.

(EVIK,N )

(c) For any constant speed geodesic (ρt)t∈[0,1] in S+(M) one has

UN (ρt) ≥ σ
(1−t)
K/N (W(ρ0, ρ1))UN (ρ0) + σ

(t)
K/N (W(ρ0, ρ1))UN (ρ1), t ∈ [0, 1].

(d) The semigroup (Pt) satisfies GE(K,N).

Proof. (a) ⇐⇒ (b) ⇐⇒ (c): These equivalences follow from abstract theory
of (K,N)-convex functionals on Riemannian manifolds [16, Lemmas 2.2, 2.4].

(a) ⇐⇒ (d): With the identification of the gradient from (5.1) and the
Hessian from [12, Proposition 7.16], one sees that the defining inequality of the
(K,N)-convexity of D coincides with the equivalent formulation of GE(K,N)
given in Proposition 4.4. �



740 M. Wirth, H. Zhang Ann. Henri Poincaré

5.2. Dimension-Dependent Functional Inequalities

Let us first collect some consequences of (K,N)-convexity that were already
observed in [16], adapted to our setting. Recall that Ent(ρ) = τ(ρ log ρ). We
use the notation

I(ρ) = τ((Lρ) log ρ)

for the Fisher information.
It satisfies the de Bruijn identity

d
dt

Ent(Ptρ) = −I(Ptρ).

The following inequalities (b) (c) and (d) are finite-dimensional versions
of the HWI-inequality, modified log-Sobolev inequality (MLSI) and Talagrand
inequality, respectively. The infinite-dimensional results (i.e. N = ∞) were
obtained in [11,12,15].

Proposition 5.2. Fix the logarithmic mean Λ = Λlog. Let K ∈ R and N > 0.
If (Pt) satisfies GE(K,N), then the following functional inequalities hold:

(a) W-expansion bound:

sK/N

(
1
2
W(Ptρ0, Psρ1)

)2

≤ e−K(s+t)sK/N

(
1
2
W(ρ0, ρ1)

)2

+
N

K

(
1 − e−K(s+t)

) (
√

t − √
s)2

2(s + t)

for ρ0, ρ1 ∈ S+(M) and s, t ≥ 0.
(b) N -HWI inequality:

UN (ρ1)
UN (ρ0)

≤ cK/N (W(ρ0, ρ1)) +
1
N

sK/N (W(ρ0, ρ1))
√

I(ρ0),

for ρ0, ρ1 ∈ S+(M) and s, t ≥ 0.

If K > 0, then additionally the following functional inequalities hold:

(c) N -MLSI:

KN
(
UN (ρ)−2 − 1

) ≤ I(ρ),

for ρ ∈ S+(M).
(d) N -Talagrand inequality:

Ent(ρ) ≥ −N log cos

(√
K

N
W(ρ,1)

)

,

for ρ ∈ S+(M).

Proof. The proofs of Theorems 2.19, 3.28 and Corollaries 3.29, 3.31 from [16]
can be easily adapted to our setting. �
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5.3. Concavity of Entropy Power

Let us now move on to the concavity of entropy power:

t �→ UN (Ptρ)2 = exp
(

− 2
N

Ent(Ptρ)
)

.

For the heat semigroup on R
n, the concavity of entropy power along the heat

flow was first proved by Costa in [13]. In [36] Villani gave a short proof and
remarked that this can be proved using Γ2-calculus. Recently Li and Li [27]
considered this problem on the Riemannian manifold under the curvature-
dimension condition CD(K,N). Here we show that the geodesic concavity of
the entropy power follows from the (K,N)-convexity of the entropy.

Theorem 5.3. Let K ∈ R and N > 0. If (Pt) satisfies GE(K,N) for the loga-
rithmic mean, then

d2

dt2
UN (Ptρ)2 ≤ −2K

d
dt

UN (Ptρ)2, t ≥ 0.

In particular, if K ≥ 0, then d2

dt2 UN (Ptρ)2 ≤ 0. This implies the concavity of
the entropy power t �→ UN (Ptρ)2.

Proof. Let ρt = Ptρ. Since Ent is (K,N)-convex by Theorem 5.1 and (Pt) is
a gradient flow of Ent in (S+(M), g) by our choice of the operator mean, we
have
d2

dt2
UN (ρt)2 =

d
dt

(

− 2
N

〈∇g Ent(ρt), ρ̇t〉UN (ρt)
)

=
d
dt

(
2
N

〈ρ̇t, ρ̇t〉UN (ρt)2
)

=
(

4
N

〈ρ̇t,∇ρ̇t
ρ̇t〉 +

4
N2

〈ρ̇t, ρ̇t〉2
)

UN (ρt)2

=
4
N

(

−Hess Ent(ρt)[ρ̇t, ρ̇t] +
1
N

〈∇Ent(ρt), ρ̇t〉2
)

UN (ρt)2

≤ −4K

N
〈ρ̇t, ρ̇t〉UN (ρt)2

= −2K
d
dt

UN (ρt)2. �

Remark 5.4. The same proof applies abstractly whenever F is a (K,N)-convex
functional on a Riemannian manifold and (ρt) is a gradient flow curve of F .

The following proof is closer to the spirit of Villani.

Another proof of Theorem 5.3. Put ϕ(t) := −Ent(ρt) = −τ(ρt log ρt) with
ρt = Ptρ. Recall the chain rule

∂ρ = ρ̂∂ log ρ.

Thus

ϕ′(t) = 〈Lρt, log ρt〉 = 〈ρ̂t∂ log ρt), ∂ log ρt〉. (5.2)
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This allows to give two forms of ϕ′′:

ϕ′′(t) =
d
dt

〈Lρt, log ρt〉 = 〈Lρt,
d
dt

log ρt〉 − 〈Lρt,L log ρt〉 =: I, (5.3)

and

ϕ′′(t) =
d
dt

〈ρ̂t∂ log ρt, ∂ log ρt〉

= 2〈ρ̂t∂ log ρt, ∂
d
dr

∣
∣
r=t

log ρr〉 + 〈 d
dr

∣
∣
r=t

ρ̂r∂ log ρt, ∂ log ρt〉

= 2〈Lρt,
d
dt

log ρt〉 + 〈 d
dr

∣
∣
r=t

ρ̂r∂ log ρt, ∂ log ρt〉 =: II. (5.4)

From (5.3) and (5.4) we deduce that

ϕ′′(t) = 2I − II = −2〈Lρt,L log ρt〉 − 〈 d
dr

∣
∣
r=t

ρ̂r∂ log ρt, ∂ log ρt〉. (5.5)

Since (Pt) satisfies GE(K,N) we have by Proposition 4.4 that

〈ρ̂t∂L log ρt, ∂ log ρt〉 +
1
2
〈 d
dr

∣
∣
r=t

ρ̂r∂ log ρt, ∂ log ρt〉 ≥ K‖∂ log ρt‖2
ρt

+
1
N

|E(log ρt, ρt)|2,
that is,

2〈L log ρt,Lρt〉 + 〈 d
dr

∣
∣
r=t

ρ̂r∂ log ρt, ∂ log ρt〉

≥ 2K‖∂ log ρt‖2
ρt

+
2
N

|E(log ρt, ρt)|2.
This, together with (5.2) and (5.5), yields

ϕ′′(t) ≤ −2K‖∂ log ρt‖2
ρt

− 2
N

|E(log ρt, ρt)|2 = −2Kϕ′(t) − 2
N

ϕ′(t)2.

(5.6)

A direct computation gives

d
dt

UN (Ptρ)2 =
2
N

UN (Ptρ)2ϕ′(t),

and

d2

dt2
UN (Ptρ)2 =

2
N

UN (Ptρ)2
(

2
N

ϕ′(t)2 + ϕ′′(t)
)

.

So by (5.6) we get

d2

dt2
UN (Ptρ)2 ≤ −4K

N
UN (Ptρ)2ϕ′(t) = −2K

d
dt

UN (Ptρ)2. �

Remark 5.5. Here we used the fact that I = II, or equivalently,

〈Lρt,
d
dt

log ρt〉 + 〈Lρt,L log ρt〉 + 〈 d
dr

∣
∣
r=t

ρ̂r∂ log ρt, ∂ log ρt〉 = 0.
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If we consider the heat semigroup Pt = etΔ on R
n, then this follows from the

elementary identity

Δf

f
= Δ(log f) + |∇(log f)|2,

as used in Villani’s proof [36].

6. Examples

In this section we present several classes of examples of quantum Markov
semigroups satisfying CBE(K,N) and CGE(K,N). The verification of these
examples relies crucially on the criteria from Propositions 3.14 and 4.11.

6.1. Schur Multipliers Over Matrix Algebras

A Schur multiplier A over the n × n matrix algebra Mn(C) is a linear map of
the form:

Aeij := aijeij ,

where aij ∈ C and {eij}n
i,j=1 are the matrix units. By Schoenberg’s theorem

(see for example [9, Appendix D]),

Pt[xij ] = e−tA[xij ] = [e−taij xij ], t ≥ 0,

defines a symmetric quantum Markov semigroup over Mn(C) if and only if
(a) aii = 0 for all 1 ≤ i ≤ n,
(b) aij = aji ≥ 0 for all 1 ≤ i, j ≤ n,
(c) [aij ] is conditionally negative definite:

n∑

i,j=1

αiαjaij ≤ 0,

whenever α1, . . . , αn are complex numbers such that
∑n

j=1 αj = 0.

If this is the case, then there exists a real Hilbert space H and elements a(j) ∈
H, 1 ≤ j ≤ n, such that

aij = ‖a(i) − a(j)‖2, 1 ≤ i, j ≤ n.

Suppose that (ek)1≤k≤d is an orthonormal basis of H. Define for each 1 ≤ k ≤
d

vk :=
n∑

j=1

〈a(j), ek〉ejj ∈ Mn(C).

Then for any 1 ≤ i, j ≤ n:

[vk, eij ] = vkeij − eijvk = 〈a(i) − a(j), ek〉eij ,

and

[vk, [vk, eij ]] = |〈a(i) − a(j), ek〉|2eij .
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By the choice of (ek), we have
d∑

k=1

[vk, [vk, eij ]] = ‖a(i) − a(j)‖2eij = aijeij .

Therefore,

A =
∑

k=1

[vk, [vk, ·]],

and it is easy to see that [vk, A·] = A[vk, ·] for each k. So by Propositions 3.14
and 4.11 we have CBE(0, d) and CGE(0, d) for any operator mean.

6.2. Herz–Schur Multipliers Over Group Algebras

Let G be a finite group. Suppose that λ is the left-regular representation, i.e.
for g ∈ G,

λg : �2(G) → �2(G), λg1h = 1gh,

where 1h is the delta function at h. The group algebra of G is then the (com-
plex) linear span of {λg | g ∈ G}, denoted by C[G]. It carries a canonical
tracial state τ given by τ(x) = 〈x1e,1e〉, where e is the unit element of G.

We say that � : G → [0,∞) is a conditionally negative definite length
function if �(e) = 0, �(g−1) = �(g) for all g ∈ G and

∑

g,h∈G

αgαh�(g−1h) ≤ 0

whenever αg, g ∈ G, are complex numbers such that
∑

g∈G αg = 0. By Schoen-
berg’s theorem (see for example [9, Appendix D]), there exists a 1-cocycle
(H,π, b) consisting of a real Hilbert space H of dimension dimH ≤ |G| − 1,
a unitary representation π : G → B(H) and a map b : G → H satisfying the
cocycle condition

b(gh) = b(g) + π(g)b(h)

for g, h ∈ G such that �(g) = ‖b(g)‖2.
Every conditionally negative definite length function � on G induces a τ -

symmetric quantum Markov semigroup (Pt) on C[G] characterized by Ptλg =
e−t�(g)λg for g ∈ G. Let e1, . . . , ed be an orthonormal basis of H. As argued in
[39] (or similar to the Schur multipliers case), the generator L of (Pt) can be
written as

L =
d∑

j=1

[vj , [vj , · ]]

with d = dim H and

vj : �2(G) → �2(G), vj1h = 〈b(h), ej〉1h.

The operators vj are not contained in C[G] in general, but one can extend L
to a linear operator on B(�2(G)) by the same formula, and a direct compu-
tation shows [vj ,L · ] = L[vj , · ]. By Propositions 3.14 and 4.11, (Pt) satisfies
CBE(0, d) and CGE(0, d) for any operator mean.
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Example 6.1. The cyclic group Zn = {0, 1, . . . , n−1}; see [21, Example 5.9] or
[39, Example 5.7]: Its group (von Neumann) algebra is spanned by λk, 0 ≤ k ≤
n − 1. One can embed Zn to Z2n, so let us assume that n is even. The word
length of k ∈ Zn is given by �(k) = min{k, n − k}. The associated 1-cocycle
can be chosen with H = R

n
2 and b : Zn → R

n
2 via

b(k) =

⎧
⎪⎪⎨

⎪⎪⎩

0, k = 0,
∑k

j=1 ej , 1 ≤ k ≤ n
2 ,

∑n
2
j=k− n

2 +1 ej ,
n
2 + 1 ≤ k ≤ n − 1,

where (ej)1≤j≤ n
2

is an orthonormal basis of R
n
2 . Thus the quantum Markov

semigroup associated with � satisfies CBE(0, n/2) and CGE(0, n/2) for any
operator mean.

Example 6.2. The symmetric group Sn; see [39, Example 5.8]: Let � be the
length function induced by the (non-normalized) Hamming metric, that is,
�(σ) = #{j : σ(j) �= j}. Let Aσ ∈ Mn(R) be the permutation matrix as-
sociated with σ, i.e., Aσδj = δσ(j). Then the associated cocycle is given by
H = L2(Mn(R), 1

2 tr), b(σ) = Aσ − 1 and π(σ) = Aσ. Thus the quantum
Markov semigroup associated with � satisfies CBE(0, d) and CGE(0, d) for any
operator mean with d = min{|Sn| − 1, n2}.

6.3. Generalized Depolarizing Semigroups

Let τ be the normalized trace on Md(C) and E : Md(C) → Md(C) a τ -
preserving conditional expectation. The Popa–Pimsner index of E [33] is de-
fined as

C(E) = inf{c ≥ 1 | ρ ≤ cE(ρ) for all ρ ∈ S(Md(C))}.

The completely bounded Pimsner–Popa index [18] is given by

Ccb(E) = sup
m∈N

C(E ⊗ idMm(C)).

It is finite for any E and can be computed explicitly in terms of the multiplic-
ities of ran(E) inside of Md(C). In the special case when E(a) = τ(a)1, we
have C(E) = d and Ccb(E) = d2.

The generalized depolarizing semigroup (or dephasing semigroup) asso-
ciated with E is given by

Pt : Md(C) → Md(C), Pt(a) = e−ta + (1 − e−t)E(a).

Let L = id − E be the generator of (Pt) with Lindblad form

L =
∑

j∈J
∂†

j∂j .

Fix k ∈ J . Since LE = 0, we have

‖∂kE(a)‖2
2 ≤

∑

j∈J
‖∂jE(a)‖2

2 = 〈LE(a), E(a)〉 = 0.
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Thus ‖∂kPta‖2
ρ = e−2t‖∂ka‖2

ρ. By positive homogeneity (Lemma 2.1 (a)) and
concavity (Lemma 2.1 (b)) of the operator mean Λ, we get

‖∂ka‖2
Ptρ ≥ e−t‖∂ka‖2

ρ + (1 − e−t)‖∂ka‖2
E(ρ).

Note that by the Leibniz rule,

(∂ka)E(ρ) = ∂k(aE(ρ)) − a∂kE(ρ) = ∂k(aE(ρ)),

that is, R(E(ρ))∂k = ∂kR(E(ρ)). Similarly, we have L(E(ρ))∂k = ∂kL(E(ρ)),
so that functional calculus gives Ê(ρ)∂k = ∂kÊ(ρ). Moreover,

L(aE(ρ)) = aE(ρ) − E(aE(ρ)) = (a − E(a))E(ρ) = (La)E(ρ),

that is, LR(E(ρ)) = R(E(ρ))L. Again, this is also valid for L(E(ρ)) instead
of R(E(ρ)) and implies LÊ(ρ) = Ê(ρ)L.

Hence

‖∂a‖2
Ptρ ≥ e−t‖∂a‖2

ρ + (1 − e−t)
∑

j∈J
〈∂ja, ∂j(Ê(ρ)a)〉

= e−t‖∂a‖2
ρ + (1 − e−t)〈La, Ê(ρ)a〉

= e−t‖∂a‖2
ρ + (1 − e−t)〈La,L(Ê(ρ)a)〉

= e−t‖∂a‖2
ρ + (1 − e−t)〈La, Ê(ρ)La〉,

where we used L2 = L in the second to last step.
By the definition of the Pimsner–Popa index,

Ptρ = e−tρ + (1 − e−t)E(ρ) ≤ (e−tC(E) + (1 − e−t))E(ρ) ≤ C(E)E(ρ).

An application of Cauchy–Schwarz then yields

〈x, xE(ρ)〉 ≥ 1
C(E)

〈x, xPtρ〉 ≥ 1
C(E)

|τ(x(Ptρ))|2,

that is, R(E(ρ)) ≥ 1
C(E) |Ptρ〉〈Ptρ|. The same holds for L(E(ρ)) instead of

R(E(ρ)), which together with the monotonicity of operator means implies

〈x, Ê(ρ)x〉 ≥ 1
C(E)

|τ(x(Ptρ))|2.

Therefore,

‖∂a‖2
Ptρ ≥ e−t‖∂a‖2

ρ + (1 − e−t)〈La, Ê(ρ)La〉

≥ e−t‖∂a‖2
ρ +

(1 − e−t)
C(E)

|(La)Ptρ)|2,

or, equivalently,

‖∂Pta‖2
ρ ≤ e−t‖∂a‖2

Ptρ − f(t)E(a, Ptρ)2

with f(t) = e−t−e−2t

C(E) . As f(0) = 0 and f ′(0) = 1/C(E), this means that (Pt)
satisfies GE(1/2, 2C(E)) for any operator mean.
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Choosing Λ as the right-trivial mean and not applying Cauchy–Schwarz,
one obtains in a similar manner

τ(Γ(Pta)ρ) ≤ e−tτ(Γ(a)Ptρ) − 1 − e−t

C(E)
τ(|La|2Ptρ).

Differentiation at t = 0 then gives BE(1/2, 2C(E)) for (Pt).
As the same argument can be applied to (Pt ⊗ idMm(C)), this shows that

(Pt) satisfies CGE(1/2, 2Ccb(E)) for any operator mean and CBE
(1/2, 2Ccb(E)).

7. Curvature-Dimension Conditions Without Assuming Tracial
Symmetry

In plenty of applications one encounters quantum Markov semigroups that
are not necessarily tracially symmetric, but only satisfy the detailed balance
condition σ-DBC (with σ �= 1) we mentioned in Sect. 2. Many of the results
from this article still apply in this case, with one important caveat, as we will
discuss here.

The definition of the Bakry–Émery gradient estimate BE(K,N) makes
sense for arbitrary quantum Markov semigroups on matrix algebras without
any change, and all the consequences we proved stay valid in this more general
setting with essentially the same proofs.

The gradient estimate GE(K,N) relies on the Lindblad form of the gen-
erator of the semigroup. By Alicki’s theorem, a similar Lindblad form exists
for generators of quantum Markov semigroups satisfying the σ-DBC, and the
norms ‖ξ‖ρ have been defined in this setting in [11,12] – in fact, instead of
a single operator mean one can choose a family of operator connections that
depends on the index j. With this norm, one can formulate GE(K,N) as

‖∂Pta‖2
ρ ≤ e−2Kt‖∂a‖2

P †
t ρ

− 1 − e−2Kt

KN
|τ((LPta)ρ)|2,

where one now has to distinguish between Pt and P †
t because of the lack of

tracial symmetry.
The connection between a generalization of the metric W, the semigroup

(Pt) and the relative entropy still remains true in this more general setting
with an appropriate modification of the definition of W [11,12], so that the
identification of GE(K,N) with the (K,N)-convexity condition for an entropy
functional from Theorem 5.1 along with its applications also has an appropriate
analog for quantum Markov semigroups satisfying the σ-DBC.

However, the criteria from Proposition 3.7 and Theorem 4.7, which ac-
tually allow us to verify BE(K,N) and GE(K,N) in concrete examples, rely
crucially on the Lindblad form of generators of tracially symmetric quantum
Markov semigroups and do not immediately carry over to the σ-detailed bal-
ance case. Thus the question of proving BE(K,N) and GE(K,N) for not
necessarily tracially symmetric quantum Markov semigroups remains open, so
its usefulness in this case is still to be proven.
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