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Abstract
We present a simple algorithm for computing higher-order Delaunay mosaics that
works in Euclidean spaces of any finite dimensions. The algorithm selects the vertices
of the order-k mosaic from incrementally constructed lower-order mosaics and uses
an algorithm for weighted first-order Delaunay mosaics as a black-box to construct
the order-k mosaic from its vertices. Beyond this black-box, the algorithm uses only
combinatorial operations, thus facilitating easy implementation. We extend this algo-
rithm to compute higher-order α-shapes and provide open-source implementations.
We present experimental results for properties of higher-order Delaunay mosaics of
random point sets.

Keywords Delaunay mosaics · Voronoi tessellations · Algorithms · Software ·
Computational experiments

1 Introduction

Order-k Voronoi tessellations are a generalization of ordinary Voronoi tessellations.
Instead of each domain corresponding to a single point in the input, A ⊆ R

d , each
order-k domain corresponds to a subset, Q ⊆ A, of size k, and consists of the set of
points x ∈ R

d for whom the points in Q are the closest k points within A. Its dual is
the order-k Delaunaymosaic.Wewill formally define both in Sect. 2. Order-k Voronoi
tessellations were introduced by [22] as a data structure for fast k closest point queries,
namely in time O(k+ log n)with n = #A. A less direct application is the computation
of the distance-to-measure introduced in [6] and related to k closest point search in [14].
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Furthermore, certain subcomplexes of the order-k Delaunaymosaic realize the order-k
α-shapes introduced in [15]. Order-k α-shapes are a generalization of α-shapes [10]
used to approximate the shape of a point set. Unlike ordinary α-shapes and depending
on the parameter k, they exhibit robustness to noisy data points.

In the plane, the number of domains in the order-k Voronoi tessellation or, equiv-
alently, the number of vertices in the order-k Delaunay mosaic is �(k(n − k)); see
[16, 22]. For dimensions d ≥ 3, this number can vary significantly depending on

the way the input points are distributed. The upper bound of O(k� d+1
2 �n� d+1

2 �) on the
total size of the first k higher-order Delaunay mosaics [7] is tight, while the lower
bound of �(kdn) [18] is only conjectured. For individual order-k Delaunay mosaics,
the complexity is poorly understood. The problem is closely related to the (d + 1)-
dimensional k-set problem. Specifically, the points in A ⊆ R

d can be mapped to
equally many points inRd+1 such that the order-k domains inRd correspond to k-sets
in Rd+1, see e.g. [7].

The first algorithm to compute order-k Voronoi tessellations and Delaunay mosaics
in the plane was described by Lee [16]. The algorithm computes the Voronoi tessel-
lations one by one, in increasing order and in time O(k2n log n). Mulmuley [18]
extended this algorithm beyond two dimensions, computing the first k levels in
a special (d + 1)-dimensional hyperplane arrangement, which implicitly yield the
order-k Voronoi tessellations and Delaunay mosaics in time O(s log n + kdn2), in
which s denotes the output size. Mulmuley [19] later described another algorithm,

which instead adds hyperplanes one by one, and runs in time O(k� d+1
2 �n� d+1

2 �) for
d ≥ 3, which equals the worst-case output size. For d = 2, the expected runtime is
O(k2n log n

k ). Another incremental algorithm with similar complexity for d ≥ 3 has
been described by Agarwal et al. [1].

In this paper, we describe a new algorithm for computing order-k Delaunaymosaics
in Euclidean space of any finite dimension that stands out in its simplicity. It employs
an algorithm for weighted first-order Delaunaymosaics, and otherwise uses only com-
binatorial operations. It thus benefits from highly optimized existing implementations
and, if desired, can build upon their use of exact arithmetic. Its complexity depends
on the complexity of the algorithm used for weighted Delaunay mosaics. Assum-
ing it is linear in its output size, then our algorithm computes the order-k from the
order-(k − 1) Delaunay mosaic in time that is linear in the size of the two mosaics,
and overall runs in time linear in the total size of the order-k Delaunay mosaics from
order 1 to k. We implement this algorithm and run it on various point sets, shedding
light on the size and other properties of order-k Delaunay mosaics. In particular, we
compare the total size of the first k Delaunay mosaics of random point sets with the
(tight) worst-case upper bound, and we study the size of individual order-k Delaunay
mosaics, for which no tight bounds are known in general. As far as we are aware, no
such experimental investigations have been performed in the past, possibly due to the
lack of a practical algorithm. We extend our algorithm to compute the radius function
on an order-k Delaunay mosaic, which gives us the subcomplexes realizing order-k
α-shapes. Open-source implementations of our algorithm are available [20, 21].

Our algorithm makes use of the rhomboid tiling [11], which we will introduce
in Sect. 2 alongside other necessary definitions. We will explore the combinatorial

123



Algorithmica (2023) 85:277–295 279

Fig. 1 Superposition of the order-2 Voronoi tessellation (in black) and the order-2 Delaunay mosaic (in
blue) of a set of six points in the plane. Each domain of the tessellation corresponds to two of these six
points, and the corresponding vertex of the mosaic is the average of these two points (Color figure online)

properties of this tiling and, by proxy, the properties of order-k Delaunay mosaics in
Sect. 3. Using these results, we explain our algorithm in Sect. 4.We present experimen-
tal results obtained with two implementations of this algorithm in Sect. 5. Section 6
introduces a radius function on the order-k Delaunay mosaics and a way to compute
it to yield order-k α-shapes. We close with a discussion of possible extensions and
optimizations in Sect. 7.

2 Definitions

Given a locally finite set, A ⊆ R
d , the (Voronoi) domain of Q ⊆ A is dom(Q) = {x ∈

R
d | ‖x − q‖ ≤ ‖x − a‖,∀q ∈ Q,∀a ∈ A\Q}. Its order is #Q. For each positive

integer k, the order-k Voronoi tessellation is Vork(A) = {dom(Q) | Q ⊆ A, #Q = k}.
The order-k Delaunay mosaic is the cell complex dual to Vork(A), denoted Delk(A).
To realize the mosaic geometrically, we usually use the average of the points in Q
as the location of the corresponding vertex in R

d . In a few instances we use the sum
rather than the average, for convenience. Figure 1 shows an example for k = 2. As we
will see shortly, in d ≥ 3 dimensions, the order-k Delaunay mosaic is not necessarily
simplicial even if the points are in general position.

Assuming A is in general position, [11] established the existence of a tiling inRd+1

whose horizontal integer slices are the Delaunay mosaics. We recall the definition of
the tiling and its most important properties. Let A ⊆ R

d be locally finite and in general
position. We construct a rhomboid, �, for each partition A = Ain � Aon � Aout for
which there exists a sphere S in R

d such that all points in Ain lie inside S, all points
in Aon lie on S, and all points in Aout lie outside S. Whenever convenient, we write
Ain(�) = Ain, Aon(�) = Aon, and Aout(�) = Aout to indicate the correspondence.
Due to general position of A, we have #Aon ≤ d + 1. A combinatorial vertex of � is
a collection of points that contains Ain and is contained in Ain ∪ Aon, and we write

V (�) = {Ain ⊆ Q ⊆ Ain ∪ Aon} (1)
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Fig. 2 Left: the rhomboid tiling of five points in R
1. The highlighted rhomboid defined by Ain = {c} and

Aon = {b, d} is the convex hull of the points yc , y{b,c}, y{c,d}, and y{b,c,d}. The horizontal line at depth k
intersects the tiling in the order-k Delaunay mosaic. Right: the dual hyperplane arrangement. Following the
dotted lines connecting the points of A on the horizontal axis to the paraboloid, we find the corresponding
tangent hyperplanes. The highlighted rhomboids of dimension j = 0, 1, 2 are dual to the highlighted cells
of dimension 2 − j in the arrangement

for the collection of combinatorial vertices of �. Setting ya = (a,−1) ∈ R
d+1, for

every a ∈ A, we draw the rhomboids in Rd+1 by mapping every combinatorial vertex
Q belonging to some rhomboid to yQ = ∑

q∈Q yq , in which y∅ = 0, by convention.
The (d + 1)-st coordinate of yQ is therefore −#Q, and we call #Q the depth of the
vertex. The geometric realization of a rhomboid � is the convex hull of the locations
of its combinatorial vertices, which is a rhomboid. We refer to Ain(�) as the anchor
vertex of �.

The rhomboid tiling of A, denoted Rho(A), is the collection of thus defined rhom-
boids. By assumption of general position, every face of a rhomboid is again defined
by a sphere as described above and thus belongs to the rhomboid tiling. As proved
in [11], any two rhomboids are either disjoint or intersect in a common face, which
implies that the rhomboid tiling is a complex embedded in R

d+1; see Fig. 2 for an
example. The following properties have been observed in [11]:

Proposition 1 (Rhomboid Tiling) Let A ⊆ R
d be locally finite and in general position.

1. Rho(A) is dual to an arrangement of hyperplanes in Rd+1;
2. the slice of Rho(A) at depth k is the order-k Delaunay mosaic of A, scaled by a

factor k.

The hyperplane arrangement will be introduced in Sect. 3.2. We elaborate on the
second property: that each cell of the order-k Delaunay mosaic is a slice of some
rhomboid. Combinatorially, each rhomboid is a cube and, again combinatorially, each
cell of Delk(A) is a slice orthogonal to the cube diagonal that passes through a non-
empty set of the vertices. For the (d + 1)-cube, there are d + 2 such slices, which we
index from top to bottom by the generation 0 ≤ g ≤ d + 1, see Fig. 3. The g-th slice
passes through

(d+1
g

)
vertices, so we have a vertex at generations g = 0, d + 1, a d-

simplex at generations g = 1, d, and someotherd-dimensional polytope at generations
2 ≤ g ≤ d−1. In d+1 = 3 dimensions, we have a vertex, a triangle, another triangle,
and another vertex, see Fig. 3; but already in d + 1 = 4 dimensions, the middle slice
is not a simplex; see Fig. 4. We remark that in addition to the order-k Delaunay
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Fig. 3 Slices of a
(d + 1)-dimensional rhomboid
for d = 2 defined by
Ain(�) = {p, q} and
Aon(�) = {a, b, c}. The
generation g of a slice of the
rhomboid is the depth of the
slicing plane relative to the
anchor vertex of the rhomboid.
For example, the slice in red is a
d-dimensional cell of generation
1 (“first-generation slice” or
“first-generation d-cell”) while
the slice in blue is of generation
d

mosaic, also the degree-k Delaunay mosaic, which is the dual of the degree-k Voronoi
tessellation [12], can be obtained as a slice of Rho(A) at depth k − 1

2 .

3 Combinatorial Properties

As proved in [4], the order-k Delaunay mosaic is the projection of the boundary com-
plex of a convex polyhedron in R

d+1. To explain this construction, we define the
lift of a ∈ R

d as the point lift(a) = (a, ‖a‖2) ∈ R
d+1. For each k-tuple Q ⊆ A,

we take the barycenter of their lifts, 1
k

∑
q∈Q lift(q), and obtain the order-k Delaunay

mosaic as the vertical projection of the lower faces of the convex hull of these barycen-
ters. Equivalently, we can interpret each barycenter of lifts as a weighted point in R

d

and get the order-k Delaunay mosaic as the weighted order-1 Delaunay mosaic of the
weighted points. By itself, this approach does not scale well with k since there are

(#A
k

)

such barycenters. Most barycenters, however, are irrelevant as they do not contribute
to the lower faces of the convex hull. If we could, somehow, identify the relevant
barycenters without wasting time on the irrelevant ones, this procedure would effi-
ciently construct the cells of the order-k Delaunay mosaic by computing the weighted
first-order Delaunay mosaic. We will see how this can be done in Sect. 3.2.

In d ≥ 3 dimension, not all cells of Delk(A) are simplicial, even if the points
in A are in general position. The cells carry important information, which for some
applications is essential and cannot be easily recovered from a triangulation. This
poses an additional challenge because most algorithms for computing convex hulls
or weighted first-order Delaunay mosaics return a triangulated version of the correct
mosaic. As explained in the following section, we address this issue by predicting the
cells from their corresponding rhomboids.

3.1 Predicting Cells

Given a cell σ in the order-k Delaunay mosaic, the following lemma identifies the
rhomboid, �, that σ is a slice of; see Figs. 3 and 5 for an illustration. Write V (σ )
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Fig. 4 Slices of a 4-dimensional rhomboid defined by Ain(�) = ∅ and Aon(�) = {a, b, c, d}. The non-trivial
slices are a tetrahedron at generation g = 1, an octahedron at generation g = 2, and another tetrahedron at
generation g = 3

for the set of combinatorial vertices whose locations are the vertices of σ . Clearly,
V (σ ) ⊆ V (�).

Lemma 2 Let � ∈ Rho(A) be a rhomboid and σ ∈ Delk(A) a slice of �. Then
Ain(�) = ⋂

V (σ ), Aon(�) = ⋃
V (σ )\Ain(�), and the generation of σ is k−#Ain(�).

Proof Recall that V (�) = {Ain(�) ⊆ Q ⊆ Ain(�) ∪ Aon(�)}, in which Ain(�) and
Aon(�) are disjoint. Since the depth of a vertex is determined by its cardinality, and the
vertices of a slice are by definition all at the same depth, the vertices of the generation-
g slice all satisfy #Q − #Ain(�) = g. The intersection of all g-subsets of Aon(�)

is of course empty, which implies that the intersection of the combinatorial vertices
of the slice is Ain(�). Furthermore,

⋃
V (σ ) = ⋃

V (�) for every slice σ of � with
generation g ≥ 1. The union of all g-subsets of Aon(�) is Aon(�) itself, and thus
Aon(�) = ⋃

V (σ )\Ain(�). Finally, the generation of σ is the difference in depth of
the anchor vertex, Ain(�), and the slice defining σ . The depth of σ is k and the depth
of Ain(�) is its cardinality, which completes the proof. ��

If all of our order-k Delaunay cells are triangulated—e.g. due to being the output
of a weighted first-order Delaunay algorithm—we cannot directly apply Lemma 2.
Indeed, if τ is a simplex that is part of a triangulation of a slice σ of a rhomboid �,
then

⋂
V (τ ) and

⋃
V (τ ) do not necessarily equal Ain(�) and Ain(�) ∪ Aon(�). We

can, however, still identify whether τ is a first-generation slice of � and thus in fact is
equal to σ . Using Lemma 2, we can then obtain �.

Lemma 3 A d-simplex, τ , in a triangulation of Delk(A) is a first-generation d-cell of
Delk(A) if and only if the intersection of its combinatorial vertices is of size k − 1.

Proof Let σ be the d-cell in Delk(A) that contains τ in its triangulation, and assume
σ is a generation-g slice of �. From Lemma 2, we know that Ain(�) ⊆ v for all
v ∈ V (σ ), and #Ain(σ ) = k − g. The remaining g points in every v are from Aon(�).
We have V (τ ) ⊆ V (σ ) with #V (τ ) = d + 1. So for τ to consist of vertices whose
common intersection is of size k − 1, there need to be d + 1 distinct g-subsets of
Aon(�) that all have g − 1 points in common. However, as #Aon(�) = d + 1, this is
not possible unless g = 1. ��
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Fig. 5 First-, second-, and third-order Delaunay mosaics of the set A = {a, b, c, d, e} in R2 as slices of the
3-dimensional rhomboid tiling. For clarity, only two of the rhomboids are shown, with their first-generation
slices in red and second-generation slices in dark blue. The rhomboids on the left and right are defined by
Ain = {b}, Aon = {a, c, d} and Ain = ∅, Aon = {c, d, e}, respectively (Color figure online)

3.2 IdentifyingVertices

Given a triangulation of the order-k Delaunay mosaic, we just saw how to identify its
first-generation d-cells. From these, we can obtain the corresponding rhomboids that
these cells are slices of via Lemma 2, and their higher-generation slices by definition,
also see Fig. 3. We shall now prove that if we have triangulations of the order- j
Delaunay mosaics, for all j < k, we can assemble the complete vertex set of the
order-k Delaunay mosaic by taking slices at depth k obtained from first-generation
cells at lower depths. The key observation here is that for k ≥ 2, there are no vertices
in Delk(A) whose incident d-cells are all of generation 1, also see Fig. 5. We note that
this only holds in the unweighted setting.

To prepare the proof of this result, we recall the definition of the hyperplane arrange-
ment postulated by Proposition 1. For each point a ∈ A, write fa : Rd → R for the
affine map defined by fa(x) = 2〈x, a〉−‖a‖2 = ‖x‖2−‖x − a‖2. The graph of fa is
a hyperplane inRd+1 that is tangent to the paraboloidP of points (x, z) ∈ R

d ×R that
satisfy z = ‖x‖2. The collection of such hyperplanes decomposes Rd+1 into convex
cells, which we call the hyperplane arrangement of A, denoted Arr(A); see Fig. 2. The
cells in the arrangement are intersections of hyperplanes and closed half-spaces. More
formally, for each cell there is an ordered three-partition A = Ain � Aon � Aout such
that the cell consists of all points (x, z) ∈ R

d × R that satisfy z ≤ fa(x), if a ∈ Ain;
z = fa(x), if a ∈ Aon; and z ≥ fa(x), if a ∈ Aout . This three-partition is the key to
establishing the bijection between the cells of Arr(A) and the rhomboids of Rho(A)
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that proves the duality claimed in Proposition 1, which is also illustrated in Fig. 2.
We call top-dimensional cells of Arr(A) chambers; they satisfy Aon = ∅. The depth
of a chamber is #Ain or, equivalently, the number of hyperplanes that are above this
chamber; it equals the depth of the dual vertex in Rho(A). To see the aforementioned
relationship between the arrangement and the higher-order Voronoi tessellations, we
observe that the chamber in Arr(A) with Ain = Q vertically projects to dom(Q).
We can therefore construct Vork(A) by computing and projecting all chambers whose
ordered three-partitions satisfy #Ain = k; see [9, Chapter 13] or [12].

We call a chamber γ a bowl if only one of its facets bounds it from above or,
equivalently, if there is only one chamber at the next lower depth that shares a facet
with γ . We call the hyperplane that contains this facet the lid of the bowl.

Lemma 4 A hyperplane that is a lid of a bowl at depth 1 is not a lid of any other
chambers.

Proof Let γ be a bowl at arbitrary depth, and let P be its lid. Every other hyperplane
that contains a facet of γ bounds γ from below. The top facet of γ is the only part of
P that is above all of these hyperplanes; that is: all other parts of P are below at least
one of the other hyperplanes. This implies that every other bowl with lid P has at least
one other hyperplane above it, and is thus of depth at least 2.

Now assume γ is at depth 1. If there were another bowl γ ′ with lid P , then the
above argument would yield that all other bowls are at depth at least 2, contradicting
our assumption on γ . Thus γ has to be the unique bowl with lid P . ��

With this lemma, we are ready to state and prove the main combinatorial insight
that motivates our algorithm. In a nutshell, it says that the first-generation cells form
clusters without interior vertices. In R2, this is equivalent to saying that these clusters
have outer-planar 1-skeletons.

Theorem 5 Let A ⊆ R
d be locally finite and k ≥ 2. Then every vertex in Delk(A) is

vertex of some d-cell of generation g ≥ 2.

Proof In the unweighted setting, each hyperplane is tangent to the paraboloid P and
contains a facet of the unique depth-0 chamber. Thus, each hyperplane is the lid to a
chamber at depth 1. As this is true for every hyperplane, all chambers of depth 2 or
higher have no lids by Lemma 4. This means that any chamber of depth at least 2 has at
least two upper facets. Because the upper boundary is connected, there are two upper
facets that meet in a (d − 1)-face, the dual rhomboid of this face has dimension 2, and
its bottom vertex is dual to the chamber. Thus we can obtain this vertex, v, knowing
the other three vertices of the 2-rhomboid.

Any 2-rhomboid is a face of some (d + 1)-dimensional rhomboid, �, which thus
contains v at generation at least 2, i.e. v has depth at least #Ain(�) + 2. Knowing
Ain(�) and Aon(�), we obtain this vertex via Eq. (1).
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4 Algorithm

We outline our algorithm in this section; its correctness follows from the results of
the previous sections. Figure 5 visualizes the process, and Algorithm 1 gives a more
formal write-up of the outline below.

We compute the Delaunay mosaics one by one in sequence of increasing order.
We start by computing Del1(A) using any existing algorithm for Delaunay triangu-
lations. In this case, all d-cells are first generation d-cells. Using the definition of
rhomboid slices as illustrated in Fig. 3, from these first generation d-cells we obtain
second-generation slices which are d-cells of Del2(A), third-generation slices which
are d-cells of Del3(A), and so on up to dth-generation slices. More generally, when-
ever we know the first-generation d-cells of Del j (A), we compute the gth-generation
d-cells for g ≤ d from these, which are part of Del j+(g−1)(A). By the time we need
to compute Delk(A) for some k, we will have already computed its gth-generation
d-cells for g ≥ 2, and only the first-generation d-cells are missing. By Theorem 5,
from knowing the gth-generation d-cells for g ≥ 2 we also know the complete vertex
set of Delk(A). From the vertex set of Delk(A), we compute its (triangulated) d-cells
(of any generation) using an off-the-shelf algorithm for weighted Delaunay trian-
gulations, such as the Bowyer–Watson algorithm [5, 24] which underlies the CGAL
implementationwe use.We useLemma3 to identify the first-generation d-cells (which
are simplices and thus not triangulated any further), while discarding all other cells.
Together with the gth-generation d-cells for g ≥ 2 which we obtained before, these
give us the complete order-k Delaunay mosaic.

A dimension-agnostic python implementation of this algorithm and a 2- and 3-
dimensional C++ implementation using CGAL [23] are available at [20, 21]. If we
store all first-generation cells with their anchor vertices, we can use this algorithm to
implicitly construct the rhomboid tiling, as done in [21].

To get a handle on the runtime of the algorithm, we consider the two steps used to
compute the order-k Delaunay mosaic after finishing the construction of the first k−1
mosaics. The first step is geometric and invokes the black-box algorithm to construct
the weighted Delaunay mosaic from which we get vertices and cells of (unweighted)
higher-order Delaunay mosaics. The runtime of this step depends on the runtime of
the black box algorithm, which in many cases is output-dependent. The second step is
combinatorial and determines, for each output simplex from the first step, whether it
is first generation, in which case it is a genuine cell of the mosaic. Identifying whether
an order-k cell is of first generation comes down to computing the intersection of
d + 1 sets of size k by Lemma 3, which can be done in expected O(dk). For those
cells, obtaining their higher-generation cells takes time O(2d(k + d)), as these higher
generation cells have O(2d) vertices in total (they are a subset of the vertices of a
(d + 1)-dimensional rhomboid), and each vertex is a set of at most k + d points. So
assuming constant dimension, d, processing of each d-cell takes time O(k). Thus, for
a given k, the combinatorial step takes time O(kCk), in which Ck is the number of
d-cells of Delk(A). With each vertex being represented as a k-tuple of points, this is
linear in the output size, assuming we store each cell naively as a set of its vertices.
If the runtime of each black-box invocation were linear in the output size, the total
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Algorithm 1 computes the order-k Delaunay mosaic of a finite set of (unweighted)
points, A ⊆ R

d . We represent each d-cell of Delk(A) by the collection of its com-
binatorial vertices, stressing that these collections are sets and thus contain every
combinatorial vertex only once. Duplicity is avoided by checking before adding. The
locations of the combinatorial vertices are the barycenters of their points, and the cell
is the convex hull of these locations. While the software for computing the weighted
Delaunay mosaic may return all cells triangulated, our algorithm outputs the (non-
triangulated) cells of the order-k Delaunay mosaic.We recall that in d ≥ 3 dimensions
such non-simplicial cells appear generically for k ≥ 2.
V (Del1(A)) := A
for j from 1 to k do//

Compute the location and weight of each combinatorial vertex
for all v ∈ V (Del j (A)) do

loc(v) := 1
j
∑

a∈v a

wt(v) := ‖ 1
j
∑

a∈v a‖2 − 1
j
∑

a∈v ‖a‖2
end for//

Get the (triangulated) cells of the order- j Delaunay mosaic
D := weightedDelaunay(loc, wt)//

Infer vertices and higher-generation cells of later Delaunay mosaics
for all d-simplices σ in D do//

Check whether the generation of σ is 1 via Lemma 3
//

We already obtained higher-generation cells of Del j (A) earlier.
if #

⋂
V (σ ) = j − 1 then

Add σ to Del j (A)
//

Get Ain(�) and Aon(�) via Lemma 2
Ain(�) := ⋂

V (σ )

Aon(�) := ⋃
V (σ )\Ain(�)

for g from 2 to d do//
Get the generation-g cell, σ ′, of the rhomboid of σ , via Equation (1)

V (σ ′) := {Ain(�) ∪ Q | Q ∈ Aon(�), #Q = g}
Add all v ∈ V (σ ′) to V (Del j+g−1(A))

Add σ ′ to Del j+g−1(A)

end for
end if

end for
end for
return V (Delk (A)), Delk (A)

runtime for producing the first k higher-order Delaunay mosaics would thus be linear
in the output size as well.

In practice, it is more efficient to store a cell as a set of pointers or indices to its
vertices, only requiring space O(kVk +Ck), with Vk denoting the number of vertices
of Delk(A). Using this representation, the combinatorial step is not linear in the output
size unless the number of cells of Delk(A) is linear in the number of vertices.
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Fig. 6 Number of vertices (left) and of 3-dimensional cells (right) in the order-k Delaunay mosaics of four
sets with n = 200 points in R

3 each

5 Experimental Results

In 2 dimensions, the number of cells in the (order-1) Delaunay mosaic is always linear
in the number of input points, while in d ≥ 3 dimensions, the size of the mosaic
depends on the input set itself—and not just its cardinality—and ranges from �(n) to
O(n�d/2�) [17]. The asymptotic worst case is realized by points located on themoment
curve, (t, t2, . . . , td) with t ∈ R, while e.g. uniformly sampled points within a sphere
have expected linear size [8], as do uniformly sampled points on a convex polytope in
R
3 [13]. Under appropriate sampling conditions for points on a smooth surface, the

size of the mosaic is O(n log n) [3].

5.1 Size in 3 dimensions

To shed light on the size range of order-k Delaunay mosaics, we compute them for a
few 3-dimensional point sets relevant to these bounds. Note that for order-k Delaunay
mosaics the number of vertices varies as well. Figure 6 shows the numbers of vertices
and 3-dimensional cells for all higher-order Delaunay mosaics of four sets of size
n = 200 each: points on the moment curve, points sampled on the torus (with
major radius 1 and minor radius 0.5 obtained by uniformly sampling the angles of
its parametrization), points uniformly sampled inside the unit ball, and a point
set in convex position forming a polytope (obtained by uniformly sampling points
inside a ball and randomly choosing 200 vertices of the convex hull). The plots of
vertex numbers and cell numbers generally resemble each other, with roughly three
times as many cells as vertices. Other than in Fig. 6, we therefore omit the information
about the vertices and show only the plots for the cells. The moment curve and
polytope sets are both in convex position. Nevertheless, the size of the mosaic for
the moment curve grows large faster for small k, and reaches its peak at k ≈ n/3,
while for the polytope the peak is at k ≈ n/2. Notice how a faster rise also goes along
with an earlier decay. This is a consequence of the fact that the total size of all order-k
Delaunay mosaics together—or, equivalently of the rhomboid tiling—only depends
on the input size, n, and not on the relative position of the input points.
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Fig. 7 Number of cells in the order-k Delaunay mosaics for small k in relation to the input size, for various
3-dimensional point sets

5.2 Size increase for small order

Looking more closely at the growth for small k relative to the input size, we observe
that the polytope and unit ball exhibit linear growth while the size of the
mosaic seems to grow quadratically for the moment curve, see Fig. 7.

This is consistent with the bounds on first-order Delaunay mosaics mentioned ear-
lier. For the torus, the size seems to grow slightly superlinearly, which is again
consistent with the O(n log n) bound for smooth surfaces mentioned above.

5.3 Variance

To probe whether the above figures are representative, we investigate the variance in
number of cells for the polytope and the unit ball. As shown in Fig. 8, the
variance is particularly small for the polytope, and it is considerably larger of the
unit ball. Curiously, the variance dips at k = n/2.

5.4 Generations

We also investigate the distribution of cells of different generations. All point sets
exhibit a pattern similar to that in Fig. 9, with the fraction of first-generation cells
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Fig. 8 Variance of the number of 3-dimensional cells in the order-k Delaunaymosaics of randomly sampled
points in convex position (left) and in a unit ball (right). The statistics of each plot are obtained from 30
sets of 50 points each. In black: the mean; in red: the range of one standard deviation around the mean; in
grey: the range between the minimum and maximum (Color figure online)

Fig. 9 Fraction of cells of each generation in the order-k Delaunay mosaic, for 50 random points in the unit
3-ball (left) and 20 random points in the unit 5-ball (right)

decreasing and the fraction of d-th-generation cells increasing as the order grows. The
change is most prominent for small and large k, while the fractions remain almost
constant in the range k ≈ n/2, provided n is significantly larger than the dimension d.

5.5 Curse of dimensionality

Like many geometric structures, order-k Delaunay mosaics are subject to the dimen-
sionality curse. Figure 10 shows how the size of order-k Delaunay mosaics behaves
for point sets in different dimensions.

5.6 Vertex degrees

Order-k Delaunay mosaics in R
3 exhibit an interesting distribution of vertex degrees

for random point sets; see Fig. 11. The distribution looks like the sum of two
distributions—with the second one only covering values 2 modulo 3—and is exhib-
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Fig. 10 Number of d-cells in the order-k Delaunaymosaic for 20 points (left) and 50 points (right) randomly
sampled in the unit ball for different dimensions d

Fig. 11 Vertex degree distribution in the order-50 Delaunay mosaic for 100 points sampled in the unit ball
(left) and on the torus (right) in dimension 3

ited for all k except very small and very large ones. We do not know the reason for
vertices being frequently incident to 5, 8, 11, . . . d-cells, but suspect these numbers
correspond to geometric configurations of cells of different generations, such as three
octahedra sharing a common vertex with two tetrahedra.

5.7 Clusters

First-generation cells of any order-k Delaunay mosaic come in clusters connected by
shared facets. We investigate the distribution of their sizes, leaving the discussion of
their potential algorithmic significance for later. Figure 12 shows cluster size distribu-
tions in R3 for different orders. For very small k, the distribution depends on how the
points are sampled, while for all other k, the cluster sizes seem to follow an exponential
distribution. The decay rate increases with k and seems to be linked to the fraction of
first-generation cells. It culminates in all clusters being singletons for k = n − 3. For
k > n − 3, there are no more first-generation cells.
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Fig. 12 From left to right: distribution of cluster sizes in Delaunay mosaics of order 2, 50, and 90 for 100
random points in the unit ball

6 Order-k Alpha Shapes

Beyond order-k Delaunay mosaics, our algorithm can be extended to compute order-
k alpha shapes, as introduced in [15]. To this end, the rhomboid tiling is endowed
with a radius function on its rhomboids [11]. It is inherited by the Delaunay mosaics,
which are slices of the rhomboid tiling, and their sublevel setswith respect to this radius
function are complexes that geometrically realize the order-k α-shapes. In this section,
we recall the definition of the radius function from [11], and present an efficient way
of computing it.

To get started, we note that the radius function needs a representation for every
rhomboid in the tiling, but the algorithm in Sect. 4 computes only the top-dimensional
rhomboids. This is easily remedied by noticing that the dimension of a rhomboid
is k = #Aon(�) and its 3k faces correspond to the different ways of partitioning
Aon(�) into three sets. For the remainder of the discussion, assume that we have a
representation for the rhomboids of all dimensions 0 ≤ j ≤ d + 1 in Rho(A). Each
j-dimensional rhomboid, � ∈ Rho(A), corresponds to a (d + 1 − j)-dimensional
cell in the dual arrangement, �∗ ∈ Arr(A). We introduce Pt (x) : Rd → R defined by
mapping x ∈ R

d to Pt (x) = 1
2 (‖x‖2 − t). With slight abuse of notation, we write Pt

for the graph of this function. This graph is the paraboloidP0 dropped down vertically
by a distance t

2 . We define the squared radius function R2 : Rho(A) → R, which
maps a rhomboid to the minimum t such that Pt has a non-empty intersection with
�∗. We call a sphere constrained by � if it encloses Ain(�), passes through all points
of Aon(�), and has no other points of A inside. Letting Smin(�) be the smallest such
sphere, we get an alternative interpretation of the radius function:

Lemma 6 R2(�) equals the squared radius of Smin(�).

Proof The proof of Theorem 1 of [11] establishes a map from points in the Arr(A)

to spheres: a point y = (x, z) ∈ R
d × R below the paraboloid P is mapped to the

sphere, S, with center x and squared radius ‖x‖2 − 2z. Importantly, if �∗ is the cell in
the dual arrangement whose interior contains y, then S is constrained by �, which is
the rhomboid dual to �∗.

Now let t = R2(�), and let r2 be the squared radius of Smin(�). By definition, t
is the smallest value for which Pt contains a point y ∈ �∗. The aforementioned map
maps y to a sphere constrained by �, thus r2 ≤ t . When reversing this map, Smin(�)
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is mapped to a point of �∗. As t was the smallest value for which Pt touches �∗, we
have t ≤ r2. Thus the squared radius of Smin(�) equals R2(�). ��

To compute this radius function, we first get the smallest sphere constrained by a
rhomboid. While Welzl’s algorithm [25] for smallest enclosing sphere can be adapted
to this task, it takes O(n) with n = #A for each such sphere computation. To improve
on this bound, we recall that Lemma 3 of [11] establishes that rhomboids of the same
radius value come in intervals [�min, �max ] := {� ∈ Rho(A) | �min ⊆ � ⊆ �max }
whose lower bound, �min , is a vertex. To identify the vertex v that a rhomboid � forms
an interval with, we need to identify its vertex with the same radius value. By Lemma 6
this means the radii of Smin(�) and Smin(v) have to be the same, and it is not difficult
to see that the spheres Smin(�) and Smin(v) are in fact the same. As Aon(v) = ∅ for any
vertex v, the sphere achieving the radius value of v is defined solely by inclusions and
exclusion constraints. Therefore all constraints of � that require points of Aon(�) to
be on the sphere need to be converted to inclusion and exclusion constraints without
affecting the resulting sphere. We know that such constraints exist because the lower
bound of the interval is a vertex. This observation gives rise to the following lemma.

Lemma 7 Let � be a rhomboid that is an upper bound of an interval. Let AI ⊆ Aon(�)

such that the smallest enclosing sphere S of AI that excludes Aon(�)\AI is the same as
the circumsphere of Aon(�). Then � forms an interval with the vertex v = Ain(�)∪ AI .

Proof As � is an upper bound of an interval, its sphere, Smin(�), is only supported
by Aon(�). Indeed, if there were another point a ∈ Ain(�)—or a ∈ Aout(�)—on
the surface of this sphere, then the rhomboid � with Aon(�) = Aon(�) ∪ {a} and
Ain(�) = Ain(�)\{a}—or Aout(�) = Aout(�)\{a}—would be a higher-dimensional
rhomboid with the same sphere Smin(�) = Smin(�), contradicting that � be an upper
bound of an interval.

As Smin(�) is only supported by Aon(�), this means that Smin(�) is the same as
the circumsphere of Aon(�), which by our assumption is the same as S. Now the
inclusion and exclusion constraints of S are part of the constraint set for Smin(v),
but because S = Smin(�) it does in fact fulfill all the constraints of Smin(v). Thus
Smin(v) = S = Smin(�), proving that they are in the same interval. ��

6.1 Algorithm

Assume � is a j-rhomboid that is an upper bound of an interval. Let S be the circum-
sphere of Aon(�). For each point a ∈ Aon(�), we need to decide whether to impose an
inclusion or exclusion constraint on it. Let Sa be the circumsphere of Aon(�)\{a}. If
a is outside of Sa , then imposing an exclusion constraint for a would yield Sa rather
than S, thus we add a to AI in order to impose an inclusion constraint for it. Similarly,
if a is inside of Sa , we have to impose an exclusion constraint for a and thus do not
add it to AI .

While this is difficult for an individual rhomboid, it becomes straightforward if we
compute all intervals in the rhomboid tiling. We know that all (d + 1)-rhomboids are
upper bounds of intervals. After marking all rhomboids that are contained in such
intervals, we know that all remaining unmarked d-rhomboids are upper bounds of
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intervals. Thus by processing the rhomboids in decreasing dimension, all unmarked
rhomboids we encounter are upper bounds.

7 Discussion

This paper presents a simple algorithm for computing order-k Delaunay mosaics in
Euclidean space of constant dimension. Implementations of the algorithm—in C++
for points in R2 and R3 and in python for points in Rd—are provided [20, 21]. This
software includes the application to the persistence of k-fold covers described in [11].
The remainder of this section discusses this application and possible extensions and
optimizations of our algorithm.

7.1 k-fold covers

The sublevel sets of the order-k Delaunay mosaics with respect to the radius function
introduced in Sect. 6 are homotopy equivalent to k-fold covers of Euclidean balls. It
follows that our algorithms facilitate the computation of persistence of these k-fold
covers. Furthermore, the circumcenters of the spheres that are used in the computation
of the radius function provide the geometric locations of the order-k Voronoi vertices
and allow reconstructing the order-k Voronoi tessellation via duality.

7.2 Weighted setting

Our algorithm generalizes to points with real weights, but not easily. The main chal-
lenge is the extraction of the vertices of the order-k mosaic from lower-order mosaics.
This extraction relies on Theorem 5, which does not hold for weighted points. Indeed,
a crucial assumption in this theorem is that every lifted hyperplane is incident to
the depth-0 chamber of the arrangement, and this property is generally violated for
weighted points. This is the same assumption used in the prior dimension-agnostic
algorithms [1, 18, 19]. For sets of weighted points that satisfy this assumption, our
algorithm and these prior algorithms still work. To overcome this limitation, we would
need a way to detect all bowls in the arrangement, because they correspond to the ver-
tices in the Delaunay mosaics our algorithm is not able to find. Identifying the bowls
is an independent problem, and any solution to it can be combined with our algo-
rithm. Once we know the bowls and add the corresponding vertices to the appropriate
mosaics, our algorithm works as before.

7.3 Clusters of cells

As mentioned in Sect. 5, first-generation cells in the order-k Delaunay mosaic are
organized in clusters. To formally define them, consider the graph whose nodes are
the cells and whose arcs are the shared facets (i.e. the 1-skeleton of the order-k Voronoi
tessellation). A cluster is a connected component in the subgraph induced by the first-
generation cells. It is not difficult to see that two such cells belong to a common cluster

123



294 Algorithmica (2023) 85:277–295

if and only if the corresponding rhomboids have the same anchor vertex. Let � be one
of these rhomboids and recall that the anchor vertex is Ain(�), which in this case is a
collection of k − 1 points of A. Each combinatorial vertex of any cell in the cluster
contains these k − 1 points, plus one additional point, which differentiates between
these vertices. In other words, the cluster as a subcomplex of the order-1 Delaunay
mosaic of these additional points.

With this insight, we could replace the weighted Delaunay mosaic of the entire
vertex set by multiple instances of unweighted Delaunay mosaics, namely one per
cluster. This alternative strategy avoids the need to compute averages of points at the
cost of extra book-keeping to group the vertex set of Delk(A) into clusters.Wemention
that in R

2, the structure of each cluster satisfies the requirements that allow for the
construction in time linear in the number of points [2].

7.4 Exact arithmetic

The CGAL software library [23] supports exact arithmetic by distinguishing between
exact constructions and exact predicates. The latter are geometric tests with a true or
false answer, such as whether or not a given point lies on a given sphere. By itself,
the CGAL algorithm for weighted Delaunay triangulations requires exact predicates
but no exact constructions. Our algorithm, on the other hand, computes averages of
collections of input points, which are the locations of the vertices of themosaic. This is
an exact construction and indeed the only one needed to run our algorithm with exact
arithmetic. In practice, exact constructions are a significant overhead with noticeable
impact on the runtime, which would be nice to avoid.
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