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Abstract

In this thesis, we study two of the most important questions in Arithmetic ge-
ometry: that of the existence and density of solutions to Diophantine equations.
In order for a Diophantine equation to have any solutions over the rational
numbers, it must have solutions everywhere locally, i.e., over R and over Qp

for every prime p. The converse, called the Hasse principle, is known to fail
in general. However, it is still a central question in Arithmetic geometry to
determine for which varieties the Hasse principle does hold. In this work, we
establish the Hasse principle for a wide new family of varieties of the form

f(t) = NK/Q(x) ̸= 0,

where f is a polynomial with integer coefficients and NK/Q denotes the norm
form associated to a number field K. Our results cover products of arbitrarily
many linear, quadratic or cubic factors, and generalise an argument of Irving [69],
which makes use of the beta sieve of Rosser and Iwaniec. We also demonstrate
how our main sieve results can be applied to treat new cases of a conjecture
of Harpaz and Wittenberg on locally split values of polynomials over number
fields, and discuss consequences for rational points in fibrations.
In the second question, about the density of solutions, one defines a height
function and seeks to estimate asymptotically the number of points of height
bounded by B as B →∞. Traditionally, one either counts rational points, or
integral points with respect to a suitable model. However, in this thesis, we
study an emerging area of interest in Arithmetic geometry known as Campana
points, which in some sense interpolate between rational and integral points.
More precisely, we count the number of nonzero integers z1, z2, z3 such that
gcd(z1, z2, z3) = 1, and z1, z2, z3, z1 + z2 + z3 are all squareful and bounded by
B. Using the circle method, we obtain an asymptotic formula which agrees in
the power of B and logB with a bold new generalisation of Manin’s conjecture
to the setting of Campana points, recently formulated by Pieropan, Smeets,
Tanimoto and Várilly-Alvarado [96]. However, in this thesis we also provide the
first known counterexamples to leading constant predicted by their conjecture.
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Notation

Geometry
We let Pn denote projective space of dimension n. The ring over which Pn
is defined will be clear from the context, and will usually be Q or Z. For a
homogeneous polynomial f ∈ Z[x1, . . . , xn], we let V (f) denote the zero locus
of f , viewed as a closed subscheme of Pn. By a variety, we mean a separated,
geometrically integral scheme of finite type over a field. For a smooth variety
X, we let ωX denote the canonical line bundle on X.

Analysis
For real functions f and g, we write f(x) = O(g(x)) to mean that there exist
real constants C, x0 such that |f(x)| ⩽ Cg(x) for all x ⩾ x0. We also use the
alternative notation f(x)≪ g(x) to mean f(x) = O(g(x)) and f(x)≫ g(x)
to mean g(x) = O(f(x)). Estimates involving the parameter ϵ are assumed to
hold for all sufficiently small ϵ > 0, but with the implied constants C, x0 allowed
to depend on ϵ. For example, we write f(x) = O(xϵ) to mean that for all
ϵ > 0, there exist constants C, x0, depending on ϵ, such that f(x) ⩽ Cxϵ for all
x ⩾ x0. Moreover, we adopt the convention that ϵ is allowed to take different
values at different points in the argument, so that we do not have to keep track
of coefficients of ϵ in our estimates. We indicate dependence of the implied
constants C, x0 on parameters other then ϵ with a subscript in the notation
O,≪ and≫. We write f(x) = o(g(x)) to mean that limx→∞(f(x)/g(x)) = 0,
and f(x) ∼ g(x) to mean that limx→∞(f(x)/g(x)) = 1. Unless otherwise
stated, | · | denotes the supremum norm of a vector in Rn.

Number Theory
We take N = Z⩾1. We denote by µ : N → {−1, 0, 1} the Möbius function,
which is 0 on integers that are not squarefree, and (−1)r on integers with exactly
r distinct prime factors. We let τ(n) denote the number of divisors of an integer
n. The letter p will always denote a prime number unless otherwise stated.
We denote by (Zn̸=0)prim the set of vectors (a1, . . . , an) such that a1, . . . , an
are nonzero integers and gcd(a1, . . . , an) = 1. We write n = □ to mean that

xv



n = m2 for some m ∈ Z. We let νp denote the p-adic valuation, and | · |p the
p-adic norm. A field K is assumed to be a number field unless otherwise stated.
For a finite set of places S of K, we let OK,S denote the ring of S-integers of
K.

xvi



CHAPTER 1
Introduction

Given a polynomial equation f(x1, . . . , xn) = 0 with integer coefficients, what
are its solutions over the integers or the rational numbers? Such equations
are named Diophantine equations after Greek mathematician Diophantus of
Alexandria, who lived in the 3rd Century A.D. Whilst extensively studied for
more than two millennia, Diophantine equations remain a central and difficult
topic in Number theory to this day, and have been the driving force behind the
development of many new areas of mathematics.

In practice, it is often too ambitious to ask for an explicit list or parameterisation
of all the solutions, and so we instead focus on counting the number of
solutions. Some of the most natural questions, given a Diophantine equation
f(x1, . . . , xn) = 0 include

1. Are there any solutions?

2. Are there finitely or infinitely many solutions?

3. If there are infinitely many solutions, how are they distributed?

We remark that similar questions can be asked for systems of Diophantine
equations f1 = · · · = fm = 0. However, in this thesis, we shall focus on
solutions to a single equation f = 0.

Suppose that the polynomial f under consideration is homogeneous, i.e., all of
its monomials have the same degree. In this case, (0, . . . , 0) is always a trivial
solution to f = 0. Moreover, rational and integral solutions are essentially
the same, in that any rational solution (x1, . . . , xn) can be transformed into
an integral solution after scaling by an appropriate rational number λ. To
formalise this, in the homogeneous case we consider the solutions not as
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1. Introduction

elements (x1, . . . , xn) of Zn or Qn, but as rational points [x1 : · · · : xn] in
projective space Pn−1, so that two solutions are viewed as the same if they are
scalar multiples of each other, and the trivial solution (0, . . . , 0) is automatically
excluded.

In this introduction, we briefly summarise the main results of this thesis, leaving
further comment of the context and surrounding literature to the relevant
chapters.

1.1 Existence
Often, it is easy to see that f = 0 has no integer or rational solutions by
showing that there are no solutions over some larger field or ring. For example,
the polynomial f(x, y) = x2 + y2 has no nontrivial solutions over R, and since
Z ⊆ Q ⊆ R, this implies there are no nontrivial solutions over Q or Z either. As
another example, consider the polynomial f(x, y) = x2−3y2−7. Whilst f = 0
has solutions over R, it has no solutions modulo 4, and hence no solutions in
the ring of 2-adic integers Z2. Since Z ⊆ Z2, this implies that f = 0 has no
solutions over Z.

For the remainder of this introduction, we consider for simplicity solutions to
f = 0 over the rational numbers unless otherwise stated. We say that the
equation f = 0 is everywhere locally soluble if it has solutions over R and over
the p-adic fields Qp for every prime p. (We recall that when f is homogeneous,
we require these solutions to be nontrivial.) Determining whether a given
equation f = 0 is everywhere locally soluble is a relatively easy problem, thanks
to tools such as Hensel’s lemma. A natural question to therefore ask is whether
f = 0 being everywhere locally soluble is enough to guarantee that f = 0 has
solutions over Q; in this case, we say that the Hasse principle holds.

The Hasse principle is known to hold for many important families of equations,
including for example quadratic forms (i.e., f is homogeneous of degree 2) by the
Hasse–Minkowski theorem [106, Theorem 8]. However, for higher degree forms,
the Hasse principle can sometimes fail. One of the simplest counterexamples is
due to Selmer [103], who demonstrated that the equation 3x3 + 4y3 + 5z3 = 0
has solutions everywhere locally but not over Q. It therefore becomes an
interesting question to determine under what circumstances the Hasse principle
does still hold.

In Chapter 8, we consider the Hasse principle for a family of equations of the
form

f(t) = NK/Q(x1, . . . , xn) ̸= 0, (1.1.1)

where here, f ∈ Z[t] is a polynomial, and NK/Q(x1, . . . , xn) is the norm form
associated to a number field K/Q of degree n, as we shall now define. We fix a

2



1.1. Existence

basis ω1, . . . , ωn for K, viewed as an n-dimensional vector space over Q. Then
the norm form NK/Q(x1, . . . , xn) is a polynomial of degree n in n variables
defined by the equation

NK/Q(x1, . . . , xn) = NK/Q(ω1x1 + · · ·+ ωnxn), (1.1.2)

where NK/Q : K → Q denotes the field norm. Whilst the norm form itself
depends on the particular choice of basis ω1, . . . , ωn, the set of values it takes
as x1, . . . , xn range over Q does not. Therefore, for us the choice of basis will
be unimportant.
A basic example is the number field K = Q(

√
d), where d ∈ Z is squarefree. A

basis for K is {1,
√
d}, and so the norm form is given by N(x, y) = x2 − dy2.

Even in the family (1.1.1), the Hasse principle sometimes fails. The following
counterexample was provided by Iskovskikh [70]. We make the choice f(t) =
(t2 − 2)(−t2 + 3) and K = Q(i), so that N(x, y) = x2 + y2. Then Iskovskikh
showed that (1.1.1) has solutions over R and over Qp for all primes p, but not
over Q.
Local to global questions for (1.1.1) have received much attention over the years,
and several results have been obtained when f and K have relatively small
degree. (A more detailed account is provided in the introduction of Chapter 8.)
In this work, we establish the Hasse principle for (1.1.1) for a wide family of
polynomials f , which may be a product of arbitrarily many linear, quadratic or
cubic factors. This represents the first result of its kind where the polynomial f
can have arbitrarily large degree, besides a result of Browning and Matthiesen
[19] in which all irreducible factors of f are assumed to be linear.
Let G denote the Galois group of the Galois closure of K/Q, viewed as a
permutation group acting on the n roots of the minimum polynomial of K/Q.
We define

T (G) = 1
#G#{σ ∈ G : the cycle lengths of σ are not coprime}. (1.1.3)

Roughly speaking, the Hasse norm principle holds for K/Q if every element
c ∈ Q× that is a local norm at every place of K is also a norm of an element
of K. Examples include when [K : Q] is prime [2], or [K : Q] = n and G = Sn
[76] or G = An [83].
We now state the main results of Chapter 8 in a slightly simplified form, referring
the reader to Theorems 8.1.1 and 8.1.2 for more general statements.

Theorem A. Suppose K is a number field satisfying the Hasse norm principle.
Let f ∈ Z[t] be a polynomial, all of whose irreducible factors have degree at
most 2. Suppose that T (G) < 0.39006...

deg f+1 . Then the Hasse principle holds for
(1.1.1).

3



1. Introduction

An interesting example of Theorem A is the case when f is a product of two
non-proportional quadratic polynomials and G = Sn. In Chapter 8, we obtain
the following corollary.

Corollary B. Let f ∈ Z[t] be a product of two non-proportional irreducible
quadratic polynomials. Let K be a number field of degree n with G = Sn. Let
L be the biquadratic number field generated by f , and ˆ︂K the Galois closure of
K/Q. Suppose that L ∩ ˆ︂K = Q. Then the Hasse principle holds for (1.1.1),
provided that

n ̸∈ {2, 3, . . . , 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36, 42, 48}.

In the Appendix, we show that Corollary B is consistent with what we know
about the Brauer group for equations of the form (1.1.1). More precisely, we
show that if X is a smooth projective model of (1.1.1), and (f,K) satisfy the
hypotheses of Corollary B, then Br(X) = Br(Q).

Our second main result allows f to contain irreducible cubic factors, but requires
a more restrictive assumption on the number field K.

Theorem C. Let f ∈ Z[t] be a polynomial, all of whose irreducible factors have
degree at most 3. Let K be a number field of the form Q[x]/(xq − r), where q
is a prime and r is an integer such that the polynomial xq − r is irreducible in
Z[x]. Suppose that q ⩾ (4.08825...) deg f + 1. Then the Hasse principle holds
for (1.1.1).

We prove Theorems A and C by generalising an argument of Irving [69], which
proceeds via an algebraic reduction to a sieve problem, followed by an application
of the beta sieve of Rosser and Iwaniec [52, Chapter 11]. We introduce sieve
methods in Chapter 5, as well as stating the main auxiliary sieve results which
we use to prove Theorems A and C. In Section 8.4, we demonstrate a further
application of these sieve results to a conjecture of Harpaz and Wittenberg on
locally split values of polynomials over number fields, which has consequences
for rational points in fibrations.

1.2 Density
We now turn to one of the other main questions stated at the beginning, namely
the distribution of rational points. One way to interpret this is to fix a height
function H, which assigns to each rational solution a non-negative real number
measuring the “complexity" of the solution. For homogeneous polynomials
f ∈ Z[x1, . . . , xn], where we view solutions as points x = [x1 : · · · : xn] in
projective space, the most naive choice of height is given by scaling x1, . . . , xn
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1.2. Density

so that they are integers with gcd(x1, . . . , xn) = 1, and then defining

H([x1 : · · · : xn]) = max
1⩽i⩽n

|xi|. (1.2.1)

However, there are many other possible height functions one can take. We
discuss heights in more generality in Section 2.2. Let

N(B) = #{x ∈ Pn−1(Q) : f(x) = 0, H(x) ⩽ B}.

A key feature of the height in (1.2.1) is the Northcott property, which states
that N(B) is finite for any given real number B. For a height satisfying the
Northcott property, it makes sense to ask about the asymptotic behaviour of
N(B) as B →∞.
A more geometric way to set up the above problem is to consider a projective
algebraic variety X defined by a polynomial f . The nonzero rational solutions
to f = 0 modulo scaling coincide with the set of rational points X(Q), and we
can view the height as a function H : X(Q)→ R⩾0. In Chapter 2, we discuss
Manin’s conjecture [50], which, for a projective variety X, gives a prediction
for the asymptotic behaviour of N(B) in terms of the geometry of X. Manin’s
conjecture applies only to smooth Fano varieties, for which we expect X(Q) to
be infinite as soon as it is non-empty. For example, a smooth variety X ⊆ Pn−1

defined by f(x1, . . . , xn) = 0 is Fano if f homogeneous of degree d < n.
Manin’s conjecture [50], together with a refinement due to Peyre [92, Formule
empirique 5.1] predicts an asymptotic formula for N(B) of the shape

N(B) ∼ cBa(logB)b−1

for explicit constants a, b ⩾ 1 and c > 0. It turns out that in order for Manin’s
conjecture to hold, the contribution to N(B) from certain accumulating sets
(e.g. proper closed subvarieties and thin sets) must first be removed, since
these have the potential to dominate the count.
Similar questions can be asked for integral points, although these are less well
understood, even conjecturally. As already remarked, if X is a projective variety
(so f is homogeneous), then rational and integral points coincide, but in other
cases, we must fix a choice of integral model X for X and try to count points in
X (Z) of bounded height. To date, we have no analogue of Manin’s conjecture
in this setting, although partial conjectures do exist. Questions concerning the
existence of integral points are also often more subtle than their counterparts
for rational points.
In this work, we study the notion of Campana points, which is an area of
growing interest in Arithmetic geometry thanks to its ability to interpolate
between rational and integral points. Roughly speaking, Campana points on
a projective variety X are rational points which are integral with respect to a

5



1. Introduction

weighted boundary divisor. We provide a more detailed discussion in Chapter 3.
Arithmetically, Campana points correspond to powerful values of polynomials
(see Example 3.0.5). We say that a nonzero integer n is m-full if for any prime
p dividing n, we have that pm also divides n, and squareful if it is 2-full.
Similarly to rational and integral points, we can seek to understand Campana
points quantitatively by studying asymptotically the number N(B) of Campana
points of height bounded by B as B →∞. One of the motivating examples
for the development of the theory is the counting problem

#Nk(B) = #
{︄

z ∈ (Z̸=0)kprim : |zi| ⩽ B, zi squareful for all i,
k∑︂
i=1

zi = 0
}︄
,

(1.2.2)
where (Z̸=0)kprim denotes the condition that z = (z1, . . . , zk) ∈ Zk should satisfy
zi ≠ 0 for all i and gcd(z1, . . . , zk) = 1. We remark that if we remove the
equation ∑︁k

i=1 zi = 0 from (1.2.2), then the resulting counting problem can be
treated using elementary methods. We demonstrate this in Section 3.3.
The counting problem in (1.2.2) generalises a question posed by Poonen in 2006
[98], who asked for an asymptotic formula for #N3(B). This corresponds to
counting Campana points on X = P1 with a divisor 1

2 [1 : 0] + 1
2 [1 : 1] + 1

2 [0 : 1]
and with the naive height defined in (1.2.1). Whilst Poonen’s question seems
out of reach at the moment, an asymptotic formula for #Nk(B) when k ⩾ 5
was found by Van Valckenborgh [117]. In Chapter 6, we treat the case k = 4.
For an integer n, we write n = □ to mean that n = m2 for some m ∈ Z. A
new feature that appears when k = 4 is the presence of an accumulating set of
the form

T = {(z1, . . . , z4) ∈ (Z ̸=0)4
prim : z1 · · · z4 = □}. (1.2.3)

We remove the contribution from this set by considering the counting problem

N(B) = #(N4(B)\T ). (1.2.4)

In Chapter 6, we prove the following theorem.

Theorem D. We have

N(B) = cB +O(B734/735+ϵ), (1.2.5)

where the implied constant depends only on ϵ. The constant c is positive and
is given explicitly in (6.5.9) and Lemma 6.6.1.

The proof of Theorem D proceeds via an application of circle method. Whilst a
classical form of the circle method was employed by Van Valckenbourgh to treat
(1.2.2) for k ⩾ 5, for k = 4 this is not sufficient. We instead appeal to a more
modern formulation known as the delta method, which was introduced by Duke,
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1.2. Density

Friedlander and Iwaniec in 1993 [46], and further developed by Heath–Brown
in 1995 [61]. In Chapter 4, we introduce the circle method and indicate how it
can be applied to study #Nk(B).
In 2019, Pieropan, Smeets, Tanimoto and Várilly-Alvarado formulated a bold
new prediction for the density of Campana points in the Fano case, which
provides a vast generalisation of Manin’s conjecture [96]. Henceforth, we
shall refer to their conjecture as the PSTV-A conjecture. We give the precise
statement in Conjecture 3.0.8, and summarise the main known cases in Section
3.1.
In Chapter 6, we demonstrate that the power of B and logB obtained in
Theorem D are consistent with the PSTV-A conjecture. However, the leading
constant c seems more problematic. In Chapter 7, we carry out a detailed
investigation of the leading constant in the PSTV-A conjecture, and obtain the
following counterexample. For odd, squarefree and coprime integers a and b, let

N(B) = 1
2#

{︂
(x, y) ∈ Z2

prim : |x|, |y| ⩽ B, ax2 + by2 squareful
}︂
.

Theorem E. Let a = 37 and b = 109. Then the PSTV-A conjecture does not
hold for N(B).

In fact, we demonstrate that there are infinitely many choices of a and b for
which the conjecture does not hold, and in Theorem 7.1.5 we find an asymptotic
formula for N(B) for any a and b.
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CHAPTER 2
Manin’s conjecture

2.1 Geometry determines arithmetic
A key principle in Arithmetic geometry is that the existence and density of
rational solutions to polynomial equations should be governed by geometric
properties of the corresponding algebraic variety. Perhaps one of the most
striking demonstrations of this principle is the effect the anticanonical line
bundle ω∨

X can have on the density of rational points on a smooth projective
variety X.
At one extreme, we have Fano varieties, which are smooth varieties with ω∨

X

ample. Here, if the set of rational points X(Q) is non-empty, we expect it to
be infinite. In fact, a far-reaching conjecture of Colliot-Thélène [31] predicts
that if X is rationally connected (a more general notion than that of being
Fano) and X(Q) ̸= ∅, then X(Q) is Zariski dense in X, and so in particular,
X(Q) is infinite.
At the other extreme, we have varieties of general type, where ωX is ample.
Here, we expect very few rational points. In the case of curves, Mordell’s
conjecture, proved by Faltings in 1983, states that if X is of general type,
then X(Q) is finite [48]. Very little is known about higher-dimensional cases,
although it is conjectured by Bombieri and Lang that if X is of general type,
then X(Q) is not Zariski dense, i.e., X(Q) is contained in a proper closed
subvariety of X [66, Section F.5.2].
Varieties that do not fit into either of the above categories are called intermediate
type. This very rich class of varieties can exhibit a wide range of different
behaviours, and here X(Q) is sometimes Zariski dense, and sometimes not.
However, even when X(Q) is infinite, rational points are typically much more
“sparse" compared to Fano varieties, in the sense that the number of points of
height bounded by B grows very slowly as we increase B.

9



2. Manin’s conjecture

For example, suppose that X ⊆ Pn is a hypersurface of degree d. Then
ω∨
X
∼= OX(n + 1 − d) [59, Example II.8.20.3]. Since OX(k) is very ample if

and only if k ⩾ 1, we see that X is Fano if d ⩽ n, general type if d ⩾ n+ 2,
and intermediate type if d = n+ 1. We collect together some further examples
in Table 5.2.

Definition Curves Surfaces Hypersurfaces
in Pn of
degree d

Fano ω∨
X ample P1, conics del Pezzo

surfaces
d ⩽ n

Intermediate
type

ωX , ω
∨
X

not ample
elliptic
curves

K3 surfaces,
abelian surfaces

d = n+ 1

General type ωX ample curves of
genus ⩾ 2

d ⩾ n+ 2

Table 2.1: Examples of Fano, intermediate type and general type varieties

2.2 Heights
When X(Q) is infinite, we can seek to understand the distribution of rational
points more quantitatively using the notion of heights. We recall from the
introduction that a height function on X is a map H : X(Q) → R⩾0. If we
are given an embedding X ⊆ Pn, the most obvious choice of height is the one
from (1.2.1), which we recall is given by

H(x) = max
0⩽i⩽n

|xi| (2.2.1)

for (x0, . . . , xn) ∈ Zn+1
prim representing x. For a given height H, we seek an

asymptotic formula for the quantity

N(B) = #{x ∈ X(Q) : H(x) ⩽ B}. (2.2.2)

As a first example, it is easy to show using Möbius inversion that when X = Pn
and H is given by (2.2.1), we have

N(B) ∼ 2n

ζ(n+ 1)B
n+1. (2.2.3)

We consider again the example of a smooth hypersurface X ⊆ Pn of degree d.
By the above example, there are up to a constant Bn+1 choices for x ∈ Pn(Q)

10
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with H(x) ⩽ B. We represent each such x by a vector x = (x0, . . . , xn) ∈
Zn+1

prim. Let f be the polynomial defining X. Since |xi| ⩽ B for each i, we
know that f(x) = O(Bd), where the implied constant depends only on f . We
might therefore expect the probability f(x) is zero to be roughly B−d, and
hence N(B) to have size roughly Bn+1−d. This naive heuristic suggests that
Fano hypersurfaces, where d ⩽ n, should contain infinitely many rational points,
whilst intermediate and general type hypersurfaces should contain far fewer
rational points.
All known asymptotic formulas for N(B) take the shape

N(B) ∼ cBa(logB)b (2.2.4)

for some constants a, b, c ⩾ 0. For varieties of intermediate type, the growth
of N(B) is often logarithmic. This holds true, for example, if X is an abelian
variety [104, Section 5.4]. In contrast, for Fano varieties, we expect that
whenever X(Q) ̸= ∅, there are many rational points, in the sense that (2.2.4)
holds for some a, c > 0.
The choice of embedding X ⊆ Pn significantly impacts the asymptotic behaviour
of N(B). We now explain how to keep track of this dependence by relating
embeddings X ⊆ Pn to very ample line bundles L on X. This has the
advantage of making our counting problems more intrinsic to the variety, and
paves the way for more precise conjectures about the growth rate of N(B).
Suppose that X is a projective variety and L is a line bundle on X. By a
cohomological result of Serre [59, Theorem III.5.2], the global sections of L
form a finite dimensional vector space over Q, which we denote by Γ(X,L ).
Let (s0, . . . , sn) be a generating set for Γ(X,L ). Suppose that s0, . . . , sn
never simultaneously vanish at any point x of X (in this case, we say that L
is basepoint-free). Then we have a well-defined map

φ : X → Pn

x ↦→ [s0(x) : · · · : sn(x)].

In fact, as shown in [59, Theorem II.7.1], we can recover L and (s0, . . . , sn)
up to isomorphism from φ via the pullbacks L = φ∗O(1) and si = φ∗(xi),
where x0, . . . , xn are coordinates on Pn. Consequently, there is a bijective
correspondence between ismorphism classes of basepoint-free line bundles L
on X with a choice of generating set (s0, . . . , sn), and morphisms φ : X → Pn.
We could already define the height of x ∈ X(Q) to be H(φ(x)), where H
is given in (2.2.1). However, in order to ensure that our height satisfies the
Northcott property, we would like φ to be an embedding. We say that L is
very ample if it is basepoint-free, and the map φ is an embedding for some
choice of generating set (s0, . . . , sn).

11



2. Manin’s conjecture

We denote a height function resulting from the above construction by HL ;
typically, we suppress the dependence on s0, . . . , sn in our notation. We say
that L is ample if some tensor power L ⊗k for k ⩾ 1 is very ample. For ample
line bundles L , it is natural to define a height function HL : X(Q)→ R⩾0 by
HL (x) = (HL ⊗k(x))1/k.
For example, let X = Pn with coordinates x0, . . . , xn and L = OX(d). Then
the global sections of L are generated by the set of all monomials of degree d in
x0, . . . , xn. With this generating set, the corresponding morphism φ : Pn → PN
is the Veronese embedding of degree d, with N =

(︂
n+d
n

)︂
−1. The height function

we obtain is

HL (x) = max
(α0,...,αn)∈Nn+1

α0+···+αn=d

|xα0
0 xα1

1 · · ·xαn
n | = max

0⩽i⩽n
|xi|d,

where x = (x0, . . . , xn) ∈ Zn+1
prim. However, there are many other generating sets

we could choose. For example, in Chapter 7, we consider X = P1,L = O(1),
and the generating set (x0, x1, x0 + x1) for Γ(X,L ). This gives rise to the
height HL (x) = max(|x0|, |x1|, |x0 + x1|), where (x0, x1) ∈ Z2

prim represents
x.

2.2.1 Local heights
In some situations, it is convenient to express a height function H : X(Q)→
R⩾0 as a product of local heights at the places of Q. For example, consider the
naive height from (1.2.1). Let v denote a place of Q, and let | · |v denote the
p-adic metric if v = p is prime, or the usual Euclidean metric if v =∞. Then
H can be expressed as H(x) = ∏︁

vHv(x), where

Hv(x) = max
0⩽i⩽n

|xi|v.

Whilst the individual heights Hv depend on the representative [x0 : · · · : xn] of
x, their product does not, thanks to the product formula [72, Fact 1.8].
In the more general setting of heights HL for a line bundle L on X, we can
define local heights by fixing an adelic metrization on L , which is a system
of metrics ∥ · ∥v on the line bundles L ⊗Q Qv of X(Qv) satisfying certain
properties [94, Definition 2.5]. However, for our purposes, it will be sufficient
to consider local heights of the form

HL ,v(x) = max
0⩽i⩽n

⃓⃓⃓⃓
⃓si(x)
s(x)

⃓⃓⃓⃓
⃓
v

, (2.2.5)

where s0, . . . , sn is the choice of generating set for Γ(X,L ) and s is a section
of L satisfying s(x) ̸= 0. Again, by the product formula, we recover the global
height HL defined above (at least away from the zero locus of s) when taking
the product of the local heights over all places v.
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2.3. Manin’s conjecture

2.3 Manin’s conjecture
In 1989, Batyrev and Manin [50] formulated a major conjecture on the asymp-
totic behaviour of N(B) for Fano varieties admitting a rational point, which
is commonly referred to as Manin’s conjecture. In this section, we introduce
Manin’s conjecture and discuss various known cases and refinements.

Sometimes, the count N(B) from (2.2.2) may be dominated by rational points
on a proper closed subvariety of X. Such subvarieties are called accumulating.
For example, consider a cubic surface X ⊆ P3. The naive heuristic from Section
2.2 would suggest that (2.2.4) should hold with exponent a = 1. However, it is
a classical fact that X contains 27 lines over Q [59, Theorem V.4.9]. If some
of these lines happen to be defined over Q, they will each contain B2 rational
points up to a constant, by (2.2.3). It is natural to ask how N(B) behaves
after removing all accumulating subvarieties. For a Zariski open subset U ⊆ X,
we therefore define a new counting function

NU,L (B) = #{x ∈ U(Q) : HL (x) ⩽ B}. (2.3.1)

Let Pic(X) denote the Picard group, which is the abelian group of isomorphism
classes of line bundles on X, with multiplication given by the tensor product.
Below, we freely make use of the isomorphism between Pic(X) and the group
Cl(X) of Weil divisors on X modulo linear equivalence (see [59, Corollary
II.6.16]). For a divisor D, we denote by [D] its class in Cl(X), and we write
D ⩾ 0 to mean that D is effective. The real cone of effective divisors Λeff is
defined as

Λeff = {[D] ∈ Cl(X)⊗Z R : D ⩾ 0}. (2.3.2)
Let [KX ] ∈ Cl(X) be the canonical divisor class, which corresponds to the
canonical line bundle ωX , and let [L] be the divisor class corresponding to L .
We define

a = inf{t ∈ R : t[L] + [KX ] ∈ Λeff}, (2.3.3)
and we define b to be the codimension of the minimal supported face of Λeff
which contains a[L] + [KX ].

Example 2.3.1. We consider once more the case of a smooth hypersurface X ⊆
Pn of degree d, and L = OX(1). We have ωX ∼= O(d− n− 1) [59, Example
8.20.3], and so t[L] + [KX ] is effective if and only if t ⩾ n+ 1− d. Therefore,
a = n+1−d. We observe that this agrees with the exponent of B predicted by
the naive heuristic from Section 2.2. Moreover, we have a[L] + [KX ] = 0, and
so the minimal supported face of Λeff containing a[L] + [KX ] is {0}. Therefore,
b is equal to the dimension of Λeff , which is the rank of the Picard group
Pic(X), commonly referred to as the Picard number ϱ(X). When n ⩾ 4, so
X has dimension at least 3, it turns out that b = 1. This is because for smooth
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2. Manin’s conjecture

complete intersections of dimension at least 3, the Picard number is 1 by a
version of the Lefschetz hyperplane theorem [79, Example 3.1.25].

We now come to the statement of Manin’s conjecture. We begin by stating
the conjecture in its classical form, before discussing a refinement due to Peyre
which allows for the removal of thin accumulating sets (see Conjecture 2.3.4).

Conjecture 2.3.2 (Manin’s conjecture [50]). Let X be a Fano variety and let
L be an ample line bundle on X, with a corresponding height function HL .
Suppose that X(Q) is Zariski dense in X. Then there exists a constant c > 0
and a Zariski open subset U ⊆ X such that

NU,L (B) ∼ cBa(logB)b−1, (2.3.4)

where a and b are given by (2.3.3).

The leading constant c has also been given a conjectural interpretation by Peyre
[92, Formule empirique 5.1]. It should be noted that the exponents a and b
depend on the choice of line bundle L , but not the generating set s0, . . . , sn
used to define HL . In contrast, the leading constant c does depend on the
particular choice of generating set. We remark also that Manin’s conjecture is
commonly stated with the choice [L] = [−KX ], so that HL is an anticanonical
height. In this case, it is clear from (2.3.3) that a = 1 and b is the Picard
number ϱ(X).
When the variety X has a very large dimension compared to its degree, the
Hardy–Littlewood circle method is an effective tool to count rational points.
The seminal work of Birch [7] establishes that if f ∈ Z[x0, . . . , xn] is a non-
singular homogeneous polynomial of degree d ⩾ 2 satisfying n ⩾ (d − 1)2d,
then there exists a constant c such that N(B) ∼ cBn+1−d. This is consistent
with Conjecture 2.3.2 (which Birch’s result predates), since by Example 2.3.1,
we have a = n+1−d and b = 1 in this setting. Whilst Birch’s result represents
a major step forward, we note that it assumes a much stronger condition on
the size of n compared to the Fano range n ⩾ d where we expect Manin’s
conjecture to hold. We discuss Birch’s result and the circle method further in
Chapter 4.
A very different approach is to study the height zeta function associated to an
open subset U ⊆ X, which is defined as

ZU(s) =
∑︂

x∈U(Q)
H(x)−s. (2.3.5)

A Tauberian theorem can then be used to relate analytic properties of Z(s)
with the counting problem N(B). This method has has been successfully
employed by Franke, Manin and Tschinkel to establish Manin’s conjecture for
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2.3. Manin’s conjecture

flag varieties [50], Batyrev and Tschinkel for toric varieties [5], and Chambert-
Loir and Tschinkel for smooth equivariant compactifications of vector groups
[28].
Fano varieties of dimension 2 are known as del Pezzo surfaces. Del Pezzo
surfaces are either isomorphic to P1 × P1 or the blowup of P2 at 9− d points
in general position. The quantity d is called the degree of the del Pezzo
surface. The study of rational points on del Pezzo surfaces becomes much
more challenging as the degree decreases. For d ⩾ 6, Manin’s conjecture is
known to hold as a special case of [5], since these del Pezzo surfaces are toric.
There are very few known cases of Manin’s conjecture for d ⩽ 5, with notable
exceptions including split del Pezzo surfaces of degree 5 [42], and a quartic
del Pezzo surface with a conic fibration [43]. However, there are many known
upper and lower bounds, as well as results for singular del Pezzo surfaces. A
survey can be found in [9].
It turns out that Manin’s conjecture, as stated in Conjecture 2.3.2, is false.
Whilst we have stated Manin’s conjecture over Q, in [50] it is formulated over
an arbitrary number field. The first known counterexamples were found by
Batyrev and Tschinkel in 1996 [4], over the number field Q(

√
−3). Let X be a

Fano cubic bundle in P3 × P3, defined by the equation
3∑︂
i=0

xiy
3
i = 0. (2.3.6)

Batyrev and Tschinkel [4, Corollary 2.4] demonstrate that whenever a0, . . . , a3
are all cubes in Q(

√
−3)∗, the rational points on the hypersurface Ya defined by∑︁3

i=0 aiy
3
i grow more quickly than predicted by (2.3.4). Moreover, the infinite

union over all such hypersurfaces is not a Zariski closed subset of X. Thanks
to the work of Loughran [82], we now have counterexamples over any number
field, including Q itself. Later, Browning and Heath-Brown [17] studied rational
points on the quadric bundle X ⊆ P3 × P3 given by the equation

3∑︂
i=0

xiy
2
i = 0. (2.3.7)

Here, rational points for which x0x1x2x3 is a square of a rational number are
shown to dominate, providing a further counterexample to Conjecture 2.3.2.
Whilst Conjecture 2.3.2 is false, all hope is not lost. Peyre has introduced
several reformulations of the conjecture. For example, Peyre [92] suggests
adapting Manin’s conjecture to allow for the removal of thin accumulating sets,
which we discuss in more detail below. More recently, in [94, Section 4], Peyre
formulates a way to consider not just a single height associated to some ample
line bundle, but all the heights simultaneously. Another idea introduced in [93]
is to allow for the removal of rational points with a small freeness. Roughly
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speaking, freeness measures how large the slopes of the lattice defined by the
tangent bundle TxX are compared to the height of the point x. However, it
was shown by Sawin [100] that Manin’s conjecture still does not hold in this
setting.
Thin sets arise from the following two geometric constructions:

1. Proper Zariski closed subsets Z ⊆ X (as encountered already in Conjec-
ture 2.3.2),

2. Images of dominant morphisms φ : V → X of degree at least 2 from an
integral projective variety V with dim V = dimX.

Definition 2.3.3. Let Z and φ : V → X be as in (1) and (2) above, and let
K be a number field. A subset A ⊂ X(K) is type I if A = Z(K), and type II
if A = φ(V (K)). A thin set is a subset of X(K) which is contained in a finite
union of type I and type II sets.

As a basic example, let K = Q, X = V = P1, and let φ : V → X be the
morphism sending [x0 : x1] to [x2

0 : x2
1]. Then φ(V (Q)) is a type II thin set,

consisting of the point [0 : 1] and all points of the form [1 : t], where t is the
square of a rational number.
We now state a modified version of Manin’s conjecture allowing for the removal
of thin sets.

Conjecture 2.3.4 (Manin–Peyre conjecture [92]). Let X and L be as in
Conjecture 2.3.2. Then there exists a constant c > 0 and a thin subset
A ⊆ X(Q) such that

#{x ∈ X(Q)\A : HL (x) ⩽ B} ∼ cBa(logB)b−1, (2.3.8)

where a and b are given by (2.3.3).

To date, Conjecture 2.3.4 remains consistent with all known results about the
density of rational points on Fano varieties. In the counterexample (2.3.6)
considered by Batyrev and Tschinkel, the union of the cubic hypersurfaces Ya is
a thin subset of X(Q(

√
−3)), coming from the morphism

π : V → X

([x0 : x1 : x2 : x3],y) ↦→ ([x3
0 : x2

1 : x3
2 : x3

3],y),

where V ⊆ P3 × P3 is the variety defined by ∑︁3
i=0 x

3
i y

3
i = 0. In the context of

the quadric bundle (2.3.7) considered by Browning and Heath-Brown, the set
of rational points such that x0x1x2x3 is a square also forms a thin set. This
follows from a very similar argument to Lemma 6.2.1, which we prove later
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in this work. Moreover, the authors were able to count rational points on the
complement of this thin set, thus establishing Conjecture 2.3.4 for this quadric
bundle.
Whilst Conjecture 2.3.4 does not stipulate which thin set should be removed,
we would in general expect there to be a choice which somehow reflects the
geometry of X. Lehmann, Sengupta and Tanimoto [81] have pursued this idea,
formulating an explicit geometric prediction for a choice of thin exceptional
set A such that the asymptotic (2.3.8) should hold. Their work also provides
geometric evidence that thin sets are the correct notion of exceptional sets to
consider when studying rational points on Fano varieties [81, Theorem 1.3].
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CHAPTER 3
Campana points

The notion of Campana points, first discussed by Campana [25], [26], and
Abramovich [1], is receiving increasing attention in the field of Arithmetic
geometry. Campana points can be viewed as rational points on a variety X
which are integral with respect to a weighted boundary divisor D, and thus
provide a way to interpolate between integral and rational points. In this
chapter we define Campana points, and discuss a Manin-type conjecture for
the quantitative arithmetic of Campana points developed by Pieropan, Smeets,
Tanimoto and Várilly-Alvarado [96, Conjecture 1.1]. In this thesis, we primarily
work over Q, but below we state the definitions for an arbitrary number field
K.

Definition 3.0.1. Let A denote a finite set of indices. A Campana orbifold is
a pair (X,D), where X is a smooth variety over K and

D =
∑︂
α∈A

ϵαDα

is an effective Weil Q-divisor of X over K (where the Dα are prime divisors)
such that

1. For all α ∈ A , either ϵα = 1 or ϵα takes the form 1 − 1/mα for some
integer mα ⩾ 2.

2. The support Dred := ∑︁
α∈A Dα of D has strict normal crossings on X.

(This means that for any 1 ⩽ r ⩽ |A |, the intersection of any r of the
divisors Dα is either empty of smooth of codimension r in X.)

We say that a Campana orbifold is klt if ϵα ̸= 1 for all α ∈ A .
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Let (X,D) be a Campana orbifold. Campana points will be defined as points
P ∈ X(K) satisfying certain conditions. These conditions are dependent on a
finite set S of places of K, which contains all archimedean places, and a choice
of good integral model of (X,D) over OK,S. This model is defined to be a pair
(X ,D), where X is a flat, proper model of X over OK,S, with X regular,
and

D =
∑︂
α∈A

ϵαDα,

where Dα denotes the Zariski closure of Dα in X .

Definition 3.0.2. Let P ∈ (X\Dred)(K). For a place v /∈ S, let Pv denote
the induced point in X (Ov) obtained via the valuative criterion for properness,
as stated in [59, Theorem II.4.7]. For α ∈ A , we define the intersection
multiplicity nv(Dα, P ) of Dα and P at v to be the colength of the ideal P∗

vDα

in Ov. The intersection number of P and D at v is defined to be

nv(D , P ) =
∑︂
α∈A

ϵαnv(Dα, P ).

Definition 3.0.3. Let (X,D) be a Campana orbifold with a good integral model
(X ,D) over OK,S. A point P ∈ (X\Dred)(K) is a Campana OK,S-point of
(X ,D) if for all v /∈ S and all α ∈ A , we have

1. If ϵα = 1, then nv(Dα, P ) = 0.

2. If ϵα ̸= 1, so that ϵα = 1− 1/mα for some integer mα ⩾ 2, then either
nv(Dα, P ) = 0 or nv(Dα, P ) ⩾ mα.

We denote the set of Campana OK,S-points of (X ,D) by (X ,D)(OK,S).

Example 3.0.4. In this example, we demonstrate how Campana points inter-
polate between integral and rational points. Let K = Q and X = P1, with
coordinates x0, x1, and take the obvious model over Z. We have X(Q) = X(Z).
In fact, as discussed in the Introduction, rational and integral points coincide
for any proper variety, by clearing denominators, or more formally, by the
valuative criterion for properness [59, Theorem II.4.7]. However, when we
consider rational and integral points on X\D for a boundary divisor D, the
situation is very different. We suppose for convenience that D is given by
the point [0 : 1]. Again, by the valuative criterion for properness, we have
(X\D)(Q) = X(Q)\D(Q) = X(Z)\D(Z), which we can identify with the set
A1(Q) = Q using the affine chart x0 ≠ 0. In contrast, (X \D)(Z) is not equal
to X(Z)\D(Z). Indeed, in a morphism Spec Z→X \D , the image of every
prime ideal (p) ∈ Spec Z must not be contained in D . In other words, we
require [x0 : x1] /∈ D(Z/pZ) for every prime p, so (X \D)(Z) corresponds to
coprime integers (x0, x1) ∈ Z2

prim such that x0 ∈ Z× = {±1}.
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We now consider the weighted boundary divisor (1 − 1/m)D for an integer
m ⩾ 2. Suppose that [x0 : x1] is a rational point of P1, with (x0, x1) ∈ Z2

prim.
For a prime p, the intersection multiplicity of [x0 : x1] and [0 : 1] at p is νp(x0),
the p-adic valuation of x0. Indeed, the pullback P∗

v (D) is the ideal in Zp
generated by pνp(x0), which has colength νp(x0). Consequently, [x0 : x1] is a
Campana point in (X ,D)(Z) if νp(x0) = 0 or νp(x0) ⩾ m for all primes p. In
other words, we require that x0 is m-full.
The larger the integer m, the closer we get to the set of integral points
(X \Dred)(Z). If we take the intersection over all m ⩾ 2, we recover the
integral points, since ±1 are the only integers that are m-full for arbitrarily
large m. The situation is summarised in the following diagram.

(X\D)(Q) = X(Q)\D(Q) ={x1/x0 : (x0, x1) ∈ Z2
prim}

⊆

(X , (1− 1
2)D)(Z) ={x1/x0 : (x0, x1) ∈ Z2

prim, p | x0 =⇒ p2 | x0}

⊆
(X , (1− 1

3)D)(Z) ={x1/x0 : (x0, x1) ∈ Z2
prim, p | x0 =⇒ p3 | x0}

⊆

...

⊆⋂︁
m∈Z⩾2(X , (1− 1

m
)D)(Z) ={x1/x0 : (x0, x1) ∈ Z2

prim, x0 = ±1}

=

(X \D)(Z).

Example 3.0.5. More generally, when K = Q, Campana points are related
to m-full values of polynomials. We consider projective space X = Pn, and a
strict normal crossings divisor

D =
k∑︂
i=0

(︃
1− 1

mi

)︃
Di,

where mi ⩾ 2 are integers, and Di are prime divisors on X defined by irre-
ducible polynomials fi with integral coefficients. Choosing the obvious good
integral model (X ,D), a rational point z ∈ (X\⋃︁ki=0 Di)(Q), represented
by (z0, . . . , zn) ∈ Zn+1

prim, is a Campana Z-point of (X ,D) if and only if
fi(z0, . . . , zn) is mi-full for all i ∈ {0, . . . , k}.

Definition 3.0.6. We recall the notion of a thin subset of rational points
from Definition 2.3.3. We define a thin set of Campana OK,S-points to
be the intersection of a thin set of X(K) with the set of Campana points
(X ,D)(OK,S).
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3. Campana points

We conclude this section by introducing the Manin-type conjecture for Campana
points as stated in [96, Conjecture 1.1]. Let (X,D) be a Campana orbifold
over K with a good integral model (X ,D) over OK,S. Let (L , ∥ · ∥) be an
adelically metrized ample line bundle on X with associated divisor class [L].
Let HL : X(K)→ R⩾0 denote the corresponding height function, as defined
in [91, Section 1]. We recall the definition of the cone of effective divisors Λeff
from (2.3.2).

Definition 3.0.7. Let [KX ] denote the canonical divisor class. In analogy to
(2.3.3), we define

a = inf{t ∈ R : t[L] + [KX ] + [D] ∈ Λeff},

and we define b to be the codimension of the minimal supported face of Λeff
which contains a[L] + [KX ] + [D].

Conjecture 3.0.8 (Pieropan, Smeets, Tanimoto, Várilly-Alvarado). Suppose
that (X,D) is a klt Campana orbifold, with −(KX +D) ample (in this case
we say that the orbifold is Fano). Assume that the set of Campana points
(X ,D)(OK,S) is not itself thin. Then there is a thin set T of Campana
OK,S-points such that

#{P ∈ (X ,D)(OK,S)\T : HL (P ) ⩽ B} ∼ cPSTV-AB
a(logB)b−1

as B →∞, where a, b are as in Definition 3.0.7, and cPSTV-A > 0 is an explicit
constant described in Section 3.2 and [96, Section 3.3].

Henceforth, we refer to Conjecture 3.0.8 as the PSTV-A conjecture for brevity.

Remark 3.0.9. The hypothesis that the Campana points themselves are not
thin is discussed by Nakahara and Streeter in [90]. The authors establish in
[90, Theorem 1.1] a connection between thin sets of Campana points and
weak approximation, in the spirit of Serre’s arguments in [105, Theorem 3.5.7].
Combining this with [90, Corollary 1.4], it can be shown that this hypothesis
holds for the orbifolds we consider in Chapter 6 and 7.

3.1 Known results
The arithmetic study of Campana points is still in its early stages. Initial
results in [22], [117] and [23], which predate the formulation of the PSTV-
A conjecture, concern squareful and m-full values of hyperplanes of Pn+1.
Following discussions in the Spring 2006 MSRI program on rational and integral
points on higher-dimensional varieties, Poonen [98] posed the problem of finding
the number of coprime integers z0, z1 such that z0, z1 and z0+z1 are all squareful
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3.1. Known results

and bounded by B. In the language of the PSTV-A conjecture, this corresponds
to counting Campana points on the orbifold (P1, D), where D is the divisor
1
2 [0] + 1

2 [1] + 1
2 [∞]. Upper and lower bounds for this problem were obtained

by Browning and Van Valckenborgh [22], but finding an asymptotic formula
remains wide open. Van Valckenborgh [117] considers a higher-dimensional
analogue of this problem by defining a Campana orbifold (Pn, D), where

Di =

⎧⎨⎩{zi = 0}, if 0 ⩽ i ⩽ n,

{z0 + · · ·+ zn = 0}, if i = n+ 1.

Let H : Pn(Q)→ R⩾0 be the height function defined by

H(z) = max(|z0|, . . . , |zn|, |z0 + · · ·+ zn|) (3.1.1)

for a representative (z0, . . . , zn) ∈ Zn+1
prim of z. Then we have

#{P ∈ (X ,D)(Z) : H(P ) ⩽ B} = 1
2#Nn+2(B),

where Nn+2(B) is as defined in (1.2.2). Van Valckenborgh [117, Theorem 1.1]
proves that for any n ⩾ 3, we have #Nn+2(B) ∼ cBn/2 as B → ∞, for an
explicit constant c > 0, and the main aim of Chapter 6 will be to handle the
case n = 2. The work of Browning and Yamagishi [23] treats a more general
orbifold (Pn, D), where the Di are as above, and D = ∑︁n+1

i=0 (1 − 1
mi

)Di for
integers m0, . . . ,mn+1 ⩾ 2. Their main result is an asymptotic formula for the
number of Campana points on this orbifold (with the same height as in (3.1.1)),
under the assumption that there exists some j ∈ {0, . . . , n+ 1} such that

∑︂
0⩽i⩽n+1
i ̸=j

1
mi(mi + 1) ⩾ 1.

The general approach in all the aforementioned results is summarised in Section
4.5, and makes use of a unique representation of squareful numbers given in
Lemma 3.3.1 (or a generalisation of it tom-full numbers) in order to parameterise
the problem as a sum of counting problems over a family of projective varieties.
Following the formulation of the PSTV-A conjecture, several further cases have
been treated. In the same paper that the PSTV-A conjecture is introduced,
the authors establish their conjecture for vector group compactifications [96,
Theorem 1.2]. This formed an ideal testing ground for the PSTV-A conjecture,
since both integral and rational points on vector group compactifications had
previously been studied by Chambert-Loir and Tschinkel using the height zeta
function method [28], [29]. Pieropan and Schindler [95] establish the PSTV-A
conjecture for complete smooth split toric varieties satisfying an additional
technical assumption, by developing a very general version of the hyperbola
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3. Campana points

method. Xiao [119] treats the case of biequivariant compactifications of the
Heisenberg group over Q, using the height zeta function method. Finally,
Streeter [115] studies m-full values of norm forms by counting Campana points
on the orbifold (Pd−1

K , (1− 1
m

)V (NE/K)), where K is a number field, V (NE/K)
is the divisor cut out by a norm form associated to a degree-d Galois extension
E/K, and m ⩾ 2 is an integer which is coprime to d if d is not prime.
In [96], [95] and [119], the leading constants for the counting problems consid-
ered were reconciled with the prediction from the PSTV-A conjecture. In the
case of Campana points for norm forms, Streeter [115, Section 7.3] provides
an example where the leading constant in [115, Theorem 1.4] differs from the
constant defined in the PSTV-A conjecture. It remains unclear whether this
could be explained by the removal of a thin set. For the papers [22], [117] and
[23], however, no subsequent attempts to compare the leading constants have
been made. In Chapter 7, we make a detailed study of the leading constant for
#N3(B) in the context of Conjecture 3.0.8.

3.2 The leading constant cPSTV-A

We now turn our attention to the definition of the leading constant cPSTV-A.
For a description of cPSTV-A in full generality, we refer the reader to [96, Section
3.3]. Here, for simplicity, we define cPSTV-A in the case when X is a smooth
projective variety over Q satisfying a[L]+[KX ]+[D] = 0 (this latter hypothesis
in particular holds when Pic(X) ∼= Z, see Example 2.3.1). The constant
cPSTV-A is given by the formula

cPSTV-A = αβτ

a(b− 1)! , (3.2.1)

and we proceed to discuss each of the factors α, β, τ in turn.
Let ϱ denote the Picard number of X, i.e., the rank of Pic(X). The dual
effective cone Λ∗

eff is defined as

Λ∗
eff = {y ∈ (Pic(X)⊗Z R)∗ : ⟨y, r⟩ ⩾ 0 for all r ∈ Λeff}.

Here (Pic(X)⊗Z R)∗ ∼= (Rϱ)∗ = HomR(Rϱ,R) is the usual vector space dual,
and ⟨·, ·⟩ is the tautological pairing defined by ⟨y, r⟩ = y(r).
The definition of α from [96, Section 3.3] is closely related to the α-constant
from the classical Manin conjecture. In general, the definition involves a rigid
effective divisor E which is Q-linearly equivalent to aL+KX +D. However, if
(X,D) is any Campana orbifold with E = 0 and we write D = ∑︁k

i=0 ϵiDi for
prime divisors Di, then the definition of α simplifies to

α =
k∏︂
i=0

(1− ϵi)
∫︂

Λ∗
eff

e−⟨[L],x⟩dx. (3.2.2)
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When a[L] + [KX ] + [D] = 0, the constant β from [96, Section 3.3] agrees
with the definition of β in Manin’s conjecture. We have β = 1 whenever
Pic(XQ) ∼= Z [72, Definition 5.12, Remark 5.13]. In this work, we shall only
consider examples where Pic(XQ) ∼= Z, and so the β-constant will not play a
role.
We now describe the Tamagawa number τ . Again, we do not give the definition
in full generality, but assume for simplicity that a[L] + [KX ] + [D] = 0. It
follows from [96, Section 3.3] that

τ =
∫︂

U (AQ)
HD(x) dτX . (3.2.3)

We explain the notation used in this equation. In [96, Section 3.3], two
alternative definitions of U (AQ) are given. The first is as a topological closure
of the Campana points (X ,D)(OK,S) in the adelic points X(AQ), and the
second is in terms of the Brauer–Manin pairing. In general, it is not known
whether the two definitions coincide, but in all examples we consider in this
thesis, the definitions do agree since there will be no Brauer–Manin obstruction.
The notation HD represents a height function associated to D, defined as
follows. We write D = ∑︁k

i=0 ϵiDi for prime divisors Di. We fix an adelic
metrization on the line bundles OX(Di) associated to each of the divisors Di.
This induces a height HDi

as described in [91, Définition 1.2]. We then define

HD =
k∏︂
i=1

Hϵi
Di
. (3.2.4)

Finally, the measure τX is defined to be the usual Tamagawa measure appearing
in Manin’s conjecture, as defined in [91, Section 2].

3.3 A basic example
We now study in detail a particular example of Conjecture 3.0.8. Let X = Pn,
with coordinates z0, . . . , zn, and let D be the divisor D = ∑︁n

i=0{zi = 0}. We
choose the usual height on Pn(Q), as given in (1.2.1). We take the obvious
smooth proper model over Z. The resulting counting problem is

N(B) = 1
2#

{︂
(z0, . . . , zn) ∈ (Z̸=0)n+1

prim : |zi| ⩽ B, zi squareful for all i
}︂
.

(3.3.1)
An asymptotic formula for N(B) is known thanks to the much more general
work of Pieropan and Schindler, in which the authors develop a version of the
hyperbola method in order to establish the PSTV-A conjecture for certain split
toric varieties [95]. However, in this section, we give a self-contained proof of
an asymptotic formula for N(B) and demonstrate the consistency with the
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3. Campana points

PSTV-A conjecture. We begin with some basic facts about m-full numbers
which we shall also use in Chapters 6 and 7.

Lemma 3.3.1. Every nonzero squareful integer z can be written uniquely in
the form z = x2y3, for a positive integer x and a squarefree integer y.

Proof. Clearly, the sign of y is uniquely determined by the sign of z. For a prime
p, let νp(x) = rp, νp(y) = sp and νp(z) = tp. Then the equation z = y3x2 is
equivalent to the equations tp = 2rp + 3sp for all primes p. The property that z
is squareful is equivalent to tp = 0 or tp ⩾ 2 for all primes p, and the property
that y is squarefree is equivalent to sp ∈ {0, 1} for all primes p. The result now
follows from the fact that for a fixed integer tp = 0 or tp ⩾ 2, there is a unique
solution to the equation tp = 2rp + 3sp with sp ∈ {0, 1} and rp ∈ Z⩾0.

Lemma 3.3.2. Let F (B) denote the number of squareful positive integers
bounded by B. Then F (B) = cB1/2 +O(B1/3), where

c =
∏︂
p

(1 + p−3/2) = ζ(3/2)
ζ(3) . (3.3.2)

Proof. Suppose that z is a positive squareful integer bounded by B. Using
Lemma 3.3.1, we write z = x2y3 for positive integers x, y with y squarefree.
We obtain

F (B) =
∑︂

y⩽B1/3

µ2(y)
∑︂

x⩽(B/y3)1/2

1 =
∑︂

y⩽B1/3

µ2(y)
(︄
B1/2

y3/2 +O(1)
)︄
.

The error term in the above expression is O(B1/3). We may also extend the
summation over y to an infinite sum with an error term O(B1/3). We conclude
that F (B) = cB1/2 +O(B1/3), where

c =
∞∑︂
y=1

µ2(y)
y3/2 .

The summand is multiplicative in y, and can be expressed as the Euler product
in (3.3.2).

Remark 3.3.3. With a more refined analysis, it is possible to find a secondary
main term for F (B). Bateman and Grosswald prove in [3, Theorem 3] that

F (B) = ζ(3/2)
ζ(3) B1/2 + ζ(2/3)

ζ(2) B1/3 +OA(B1/6(logB)−A)

for any A ⩾ 1. They remark that an improvement of the error term to
O(Bθ) for some θ < 1/6 would imply the quasi-Riemann hypothesis that there
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exists a δ > 0 such that ζ(s) ̸= 0 whenever Re(s) > 1 − δ. Assuming the
Riemann hypothesis, the exponent θ has undergone a series of improvements,
which are summarised in [118, Table 1]. The current record, due to Wang, is
θ = 328/2333 + ϵ for any ϵ > 0 [118, Theorem 1].

A similar parameterisation to Lemma 3.3.1 can be found for m-full numbers for
any m ⩾ 2. Using this, we obtain the following generalisation of Lemma 3.3.2,
first proved by Erdös and Szekeres [47].

Lemma 3.3.4. For an integer m ⩾ 2, let Fm(B) denote the number of m-full
positive integers bounded by B. Then Fm(B) = CmB

1/m + O(B1/(m+1)),
where

Cm =
∏︂
p

⎛⎝1 +
2m−1∑︂
j=m+1

p−j/m

⎞⎠ . (3.3.3)

3.3.1 The asymptotic formula
We proceed to find an asymptotic formula for the quantity N(B) from (3.3.1).
Below, all implied constants are allowed to depend on a small parameter ϵ > 0,
which for convenience we allow to take different values at different points in
the argument.
By Möbius inversion, we have

N(B) = 2n
∑︂

d⩽B1/2

µ(d)(Nd(B))n+1, (3.3.4)

where
Nd(B) = #{z ∈ N : z ⩽ B, z squareful, d | z}. (3.3.5)

The factor 2n in (3.3.4) comprises of a factor 2n+1 coming from counting over
N rather than Z in (3.3.5), and the factor 1/2 in the definition of N(B) from
(3.3.1). We can write z uniquely in the form z = y3x2 for positive integers x, y
with y squarefree using Lemma 3.3.1. Define d2 = gcd(y, d), d1 = d/d2, y

′ =
y/d2, and x′ = x/d1. Then

Nd(B) =
∑︂
d2|d

∑︂
y⩽B1/3

gcd(y,d)=d2

µ2(y)
∑︂

x⩽(B/y3)1/2

d1|x

1

=
∑︂
d2|d

∑︂
y′⩽B1/3/d2
gcd(y′,d)=1

µ2(y′d2)
⎛⎝(︄ B

y′3d3
2d

2
1

)︄1/2

+O(1)
⎞⎠ .

Note that gcd(y′, d) = 1 may be replaced by gcd(y′, d1) = 1 in the last line
above, because the factor µ2(y′d2) takes care of the condition gcd(y′, d2) = 1.
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We deal with the coprimality condition gcd(y′, d1) = 1 by a further application
of Möbius inversion. Below, we make the substitution y′′ = y′/e. We obtain

Nd(B) =
∑︂
d2|d

∑︂
e|d1

µ(e)
∑︂

y′′⩽B1/3/d2e

µ2(y′′d2e)
⎛⎝(︄ B

y′′3e3d3
2d

2
1

)︄1/2

+O(1)
⎞⎠ .
(3.3.6)

The error term coming from the O(1) factor in (3.3.6) can be bounded by∑︂
d2|d

∑︂
e|d1

∑︂
y′′⩽B1/3/d2e

O(1)≪ B1/3 ∑︂
d2|d

∑︂
e|d1

1≪ B1/3+ϵ,

where we have applied the trivial estimate for the divisor function to the sums
over d2 and e [56, Section 18.1]. Similarly, we may extend the y′′-sum in (3.3.6)
to an infinite sum with an error term bounded by

B1/2 ∑︂
d2|d

1
d

3/2
2

∑︂
e|d1

1
e3/2

∑︂
y′′>B1/3/d2e

1
(y′′)3/2 ≪ B1/3 ∑︂

d2|d

1
d2

∑︂
e|d1

1
e
≪ B1/3+ϵ.

Changing notation from y′′ back to y, we conclude that

Nd(B) =
⎛⎝B1/2

d

∑︂
d2|d

1
d

1/2
2

∑︂
e|d1

µ(e)
e3/2

∞∑︂
y=1

µ2(yd2e)
y3/2

⎞⎠+O(B1/3+ϵ). (3.3.7)

We shall use (3.3.7) when d ⩽ Bδ, for some δ > 0 to be determined later. For
larger values of d, we require a separate estimate. Below, we allow ϵ to depend
on δ.

Lemma 3.3.5. Suppose that d ⩾ Bδ. Then

Nd(B)≪ B1/2

d1−ϵ .

Proof. Every squareful number 1 ⩽ z ⩽ B with d | z can be written in the
form z = uv, where u, v are squareful, gcd(v, d) = 1, and uv ⩽ B. (Explicitly,
we take u = ∏︁

p|d p
νp(z).) All primes dividing u also divide d; we write this

condition as u | d∞. We claim that the number of choices for u is

#{u ⩽ B : u | d∞} ≪ (Bd)ϵ. (3.3.8)
To see this, we fix ϵ > 0 and note that

#{u ⩽ B : u | d∞} ⩽ Bϵ
∑︂
u⩽B

p|u =⇒ p|d

u−ϵ ⩽ Bϵ
∏︂
p|d

(︄
1

1− p−ϵ

)︄
⩽ Bϵ

∏︂
p|d
Cϵ,
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where Cϵ = (1 − 2−ϵ)−1. Using the fact that the number of prime divisors
p | d is O(log d/ log log d), which is a consequence of the divisor bound in [56,
Section 18.1], we obtain

#{u ⩽ B : u | d∞} ≪ BϵCO(log d/ log log d)
ϵ ≪ BϵdO(Cϵ/ log log d).

For d sufficiently large, the exponent O(Cϵ/ log log d) is less than ϵ. Therefore,
we obtain the bound O(Bϵdϵ) claimed in (3.3.8).

Since u is squareful and d is squarefree, we have d2 | u, and so v ⩽ B/d2. By
Lemma 3.3.2, the number of choices for v is therefore O(B1/2/d). Overall, we
have O(B1/2+ϵ/d1−ϵ) choices for u, v, and since d ⩾ Bδ, we may remove the
Bϵ factor by redefining ϵ.

Combining (3.3.4) with (3.3.7) and Lemma 3.3.5, we obtain

N(B) = B(n+1)/2 ∑︂
d<Bδ

(cd +O(B−1/6+ϵ)) +O

⎛⎝B(n+1)/2 ∑︂
d⩾Bδ

d−(n+1)+ϵ

⎞⎠
= B(n+1)/2

⎛⎝ ∑︂
d<Bδ

cd +O(Bδ−1/6+ϵ) +O(B−nδ+ϵ)
⎞⎠ , (3.3.9)

where

cd = 2nµ(d)
dn+1

⎛⎝∑︂
d2|d

1
d

1/2
2

∑︂
e|d1

µ(e)
e3/2

∞∑︂
y=1

µ2(yd2e)
y3/2

⎞⎠n+1

. (3.3.10)

By applying once more the trivial bound for the divisor function to the sum over
d2, and e, we see that cd = O(d−n−1+ϵ). Therefore, the sum in (3.3.9) can be
extended to an infinite sum over d, with an error term O(B−nδ+ϵ) which can be
absorbed into the error term already present in (3.3.9). Choosing δ = 1

6(n+1) ,
we conclude that

N(B) = cB(n+1)/2 +O
(︃
B

n+1
2 − n

6(n+1)

)︃
, (3.3.11)

where c = ∑︁∞
d=1 cd.

We now realise c as an Euler product. The inner summand of (3.3.10) is a
multiplicative function of y, and we recall that gcd(d2, e) = 1. Therefore,

∞∑︂
y=1

µ2(yd2e)
y3/2 =

∏︂
p∤d2e

(︂
1 + p−3/2

)︂
=
∏︂
p|d2

(1 + p−3/2)−1∏︂
p|e

(1 + p−3/2)−1∏︂
p

(1 + p−3/2).
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Hence ∏︂
p

(1 + p−3/2)−1 ∑︂
d2|d

1
d

1/2
2

∑︂
e|d1

µ(e)
e3/2

∞∑︂
y=1

µ2(yd2e)
y3/2

=
∑︂
d2|d

d
−1/2
2

⎛⎝∏︂
p|d2

(1 + p−3/2)−1 ∑︂
e|d1

⎛⎝µ(e)
e3/2

∏︂
p|e

(1 + p−3/2)−1

⎞⎠⎞⎠
=
∑︂
d2|d

d
−1/2
2

⎛⎝∏︂
p|d2

(1 + p−3/2)−1 ∏︂
p|d1

(︂
1− p−3/2(1 + p−3/2)−1

)︂⎞⎠
=
∏︂
p|d

(1 + p−3/2)−1 ∑︂
d2|d

d
−1/2
2 .

Substituting this into (3.3.10), we conclude that

c = 2n
∏︂
p

(1 + p−3/2)n+1
∞∑︂
d=1

µ(d)
dn+1

⎛⎝∏︂
p|d

(1 + p−3/2)
∑︂
d2|d

d
−1/2
2

⎞⎠n+1

= 2n
∏︂
p

(1 + p−3/2)n+1
∞∑︂
d=1

µ(d)
dn+1

⎛⎝∏︂
p|d

1
1− p−1/2 + p−1

⎞⎠n+1

= 2n
∏︂
p

(1 + p−3/2)n+1
(︄

1− 1
(1− p1/2 + p)n+1

)︄
. (3.3.12)

3.3.2 Consistency with the PSTV-A conjecture
We conclude this section by proving that the asymptotic formula from (3.3.11)
and the Euler product for the leading constant from (3.3.12) agree with the
asymptotic predicted by the PSTV-A conjecture, without the removal of any
thin sets being required.
We recall the divisor is D = ∑︁n

i=0
1
2{zi = 0}, which has degree (n + 1)/2.

We have Pic(Pn) ∼= Z, with the isomorphism given by n ↦→ n[H] where [H]
denotes the hyperplane class. Under this isomorphism, the cone of effective
divisors is Λeff = R⩾0. The canonical line bundle is ωPn

∼= OPn(−n− 1), so the
canonical divisor is [KX ] = −(n+ 1)[H]. The line bundle used to define the
height (1.2.1) is L = OPn(1), and so corresponds to the divisor L = [H].
We now work out the constants a and b which are the exponents of B and
logB in the PSTV-A conjecture. We have

a = inf{t ∈ R : t[L] + [KX ] + [D] ∈ Λeff}

= inf
{︃
t ∈ R : t− (n+ 1) + n+ 1

2 ⩾ 0
}︃

= n+ 1
2 .
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The minimal supported face of Λeff which contains a[L] + [KX ] + [D] = 0 is
{0}, which has codimension 1 in Λeff , and so b = 1. Therefore, the powers of
B and logB in (3.3.11) agree with the PSTV-A conjecture. Substituting into
(3.2.1), we obtain

cPSTV-A = αβτ

ab! = 2αβτ
n+ 1 . (3.3.13)

From (3.2.2), we have

α =
n∏︂
i=0

(︃
1− 1

2

)︃ ∫︂
Λ∗

eff

e−⟨[L],x⟩ dx = 1
2n
∫︂
R⩾0

e−x dx = 1
2n .

As remarked in Section 3.2, since Pic(Pn) ∼= Z, we have β = 1. Therefore,

cPSTV-A = τ

2n(n+ 1) . (3.3.14)

It remains to compute the Tamagawa number τ , for which we need to compute
HD from (3.2.4). Each component Di = {zi = 0} of D gives rise to the height
HDi

(z) = max0⩽i⩽n |zi| for (z0, . . . , zn) ∈ (Z̸=0)n+1
prim representing z. In view of

(3.2.4), this means that

HD(z) = max
0⩽i⩽n

|zi|(n+1)/2.

As a product of local heights over places v of Q, we have HD = ∏︁
vHD,v,

where HD,v : Pn(Qp)→ R⩾0 sends z to max0⩽i⩽n |zi|(n+1)/2
p for a representative

(z0, . . . , zn) of z. We note that 2D has degree n+ 1 so corresponds to the line
bundle OPn(n+ 1). Hence there is a rational section s on the line bundle L
associated to D defined by s(x) = (∏︁n+1

i=0 xi)1/2.
We can now write τ as a product τ∞

∏︁
p τp. Below, we use the notation

(Zn+1
p )prim to denote p-adic integers x0, . . . , xn such that νp(xi) = 0 for some

i ∈ {0, . . . , n}, and dxi,p to denote the usual p-adic measure of the variable xi.
We have

τp =
∫︂

(x0...,xn)∈(Zn+1
p )prim

νp(xi )̸=1 for all i

n∏︂
i=0
|xi|−1/2 · dx0,p · · · dxn,p

max0⩽i⩽n(|xi|n+1
p ) .

If (x0, . . . , xn) ∈ (Zn+1
p )prim then νp(xi) = 0 for some i, and so the integrand

is ∏︁n
i=0 |xi|−1/2. We have τp = I1 − I2, where

I1 =
∫︂

(x0...,xn)∈Zn+1
p

νp(xi )̸=1 for all i

n∏︂
i=0
|xi|−1/2 · dx0,p · · · dxn,p,

I2 =
∫︂

(x0...,xn)∈Zn+1
p

νp(xi)⩾2 for all i

n∏︂
i=0
|xi|−1/2 · dx0,p · · · dxn,p.
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To compute I2, we change variables from xi to p−2xi to obtain

I2 = p−(n+1)
n+1∏︂
i=0

∫︂
xi∈Zp

|xi|−1/2
p dxi,p.

The measure of the set νp(xi) = j with respect to dxi,p is (1− p−1)p−j , and so

I2 = p−(n+1)

⎛⎝ ∞∑︂
j=0

(1− p−1)p−j/2

⎞⎠n+1

= p−(n+1)
(︄

1− p−1

1− p−1/2

)︄n+1

.

A similar computation yields

I1 =
n+1∏︂
i=0

∫︂
xi∈Zp

νp(xi )̸=1
|xi|−1/2

p dxi,p

=

⎛⎜⎜⎝ ∞∑︂
j=0
j ̸=1

(1− p−1)p−j/2

⎞⎟⎟⎠
n+1

= (1− p−1)n+1
(︄

1
1− p−1/2 − p

−1/2
)︄n+1

.

Therefore,

τp = (1− p−1)n+1
(︄

1
1− p−1/2 − p

−1/2
)︄n+1

− p−(n+1)
(︄

1− p−1

1− p−1/2

)︄n+1

= (1 + p−3/2)n+1

⎛⎝1−
(︄
p−1(1 + p−1/2)

1 + p−3/2

)︄n+1⎞⎠
= (1 + p−3/2)n+1(1− (1− p1/2 + p)−n+1),

which agrees with the Euler factor computed in (3.3.12).

Finally, we compute τ∞. We can consider the affine charts Ui = {x ∈
Pn(R) : |xi| = maxj=0,...,n |xj|} where i runs from 0 to n. These charts
cover Pn(R), and their intersections have measure zero. Using the maps
fi : [x0 : · · · : xi−1 : 1 : xi+1 : · · ·xn] ↦→ (x1, . . . , xi−1, xi+1, . . . , xn), the
measure on Ui is given by
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∏︁
j ̸=i dxj

maxj ̸=i(1, |xj|)
=
∏︂
j ̸=i

dxj,

where dxj denotes the usual Lebesgue measure. Therefore

τ∞ =
n∑︂
i=0

∫︂
(x0,...,ˆ︁xi,...,xn)∈Rn

|xj |⩽1 for all j

∏︂
j=0,...,n
j ̸=i

|xj|−1/2dxj

= (n+ 1)
(︄∫︂

|x|⩽1
|x|−1/2dx

)︄n
= (n+ 1)4n.

Combining with (3.3.14), we conclude that cPSTV-A = c.
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CHAPTER 4
The circle method

In this section, we introduce the circle method in its classical form, and discuss
various refinements, including the delta method of Duke, Friedlander and Iwaniec
[46], which was further developed by Heath-Brown [61]. This latter version
is particularly well suited to counting points on quadratic forms, and we shall
apply it in this context in Chapter 6. The expository material in this chapter is
based on [11] and [12]. Let

δ(n) =

⎧⎨⎩1, if n = 0,
0, if n ∈ Z̸=0.

(4.0.1)

The genesis of the Hardy–Littlewood circle method lies in the simple observation
that for any integer n, ∫︂ 1

0
e(αn)dα = δ(n). (4.0.2)

Let F ∈ Z[x1, . . . , xn] be a homogeneous polynomial of degree d. Let x =
(x1, . . . , xn), and define |x| = max1⩽i⩽n |xi|. We consider the counting function

N(B) = #{x ∈ Zn : F (x) = 0, |x| ⩽ B}. (4.0.3)

In order to compare N(B) with Manin’s conjecture for the corresponding
projective hypersurface X ⊆ Pn−1 and the naive height (1.2.1), we must
reinsert the coprimality condition gcd(x1, . . . , xn) = 1 into (4.0.3). This is
a straightforward application of Möbius inversion provided we can prove an
asymptotic formula for N(B) whose exponent in B is larger than 1. In this
case, the coprimality condition will only affect N(B) by a constant factor.
Using (4.0.2), we have

N(B) =
∫︂ 1

0
S(α)dα, (4.0.4)
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where
S(α) =

∑︂
x∈Zn

|x|⩽B

e(αF (x)). (4.0.5)

Heuristically, for “typical” choices of α ∈ (0, 1) and for large values of B, we
would expect the quantities e(F (x)) to be distributed uniformly at random
on the unit circle {z ∈ C : |z| = 1} as x ∈ Zn ranges over vectors with
|x| ⩽ B. If this were true, then the central limit theorem would suggest that
S(α) has size approximately Bn/2. (This is the idea underpinning square-root
cancellation, which is a commonly used heuristic in Analytic number theory.)
However, this heuristic breaks down if α is very close to a rational number with
a small denominator. In this case, the values of e(αF (x)) are concentrated
near a small number of points on the unit circle, and less cancellation occurs in
the sum S(α).

In view of the above discussion, it is natural to consider the decomposition

N(B) =
∫︂
M
S(α)dα +

∫︂
m
S(α)dα,

where M consists of those α ∈ (0, 1) which are suitably close to a rational
number with small denominator, and m = (0, 1)\M. We refer to M as the
major arcs and m as the minor arcs. We recall from Chapter 2 that we expect
the exponent of B in the asymptotic formula for N(B) to be n− d. Therefore,
according to the principle of square-root cancellation, if n/2 < n − d (i.e.,
n > 2d), then we might hope that ∫︁m |S(α)|dα makes a negligible contribution
to N(B). However, this is very difficult to establish rigorously, and we are
usually forced to make much stronger assumptions on the size of n than this.
We discuss further the treatment of the minor arcs in Section 4.2.

In the groundbreaking work “forms in many variables” from 1962, Birch used
the circle method to establish the following very general result.

Theorem 4.0.1 ([7]). Let F1, . . . , FR ∈ Z[x1, . . . , xn] be homogeneous forms
of degree d ⩾ 2. Let

N(B) = #{x ∈ Zn : |x| ⩽ B,F1(x) = · · · = FR(x) = 0}.

Let σ denote the dimension of the variety in Pn−1 defined by the condition
that the Jacobian

(︂
∂Fi(x)
∂xj

)︂
ij

has rank < R, with the convention dim ∅ = −1.
Suppose that

n− 1− σ > (d− 1)2d−1R(R + 1). (4.0.6)

Then there is a constant c such that

N(B) ∼ cBn−dR.
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The constant c comes out of the treatment of the major arcs, and can be
written as a product of a singular integral and a singular series, which we discuss
further in Section 4.1. In fact, this constant is consistent with Peyre’s prediction
for the leading constant in Manin’s conjecture [92, Formule empirique 5.1], and
in particular is strictly positive provided that the system F1 = · · · = FR has
non-singular solutions everywhere locally.

We remark that when R = 1, the quantity σ is the dimension of the singular
locus of F1 = 0. In the case of non-singular cubic forms (R = 1, d = 3, σ = −1),
Theorem 4.0.1 provides an asymptotic formula for N(B) provided that n ⩾ 17.
Birch’s result therefore generalises and improves on earlier work of Davenport,
which treats non-singular cubic forms in at least 32 variables [41].

We briefly mention some directions in which Theorem 4.0.1 has been generalised.
Birch’s results have been extended to number fields by Skinner [109], and
function fields by Lee [80]. Schindler [101] studied bihomogeneous forms in
many variables. Browning and Heath-Brown [15] generalised Theorem 4.0.1 to
the setting where F1, . . . , FR may have differing degrees. In this chapter, we
shall focus our discussion around the case R = 1 of a single homogeneous form
F . However, the behaviour in terms of R is also interesting, and we remark that
Rydin Myerson has improved the dependence on R in (4.0.6) from quadratic to
linear [99].

It seems intrinsic to methods based on Weyl differencing discussed in Section
4.2 that increasing the degree by one should at least double the number of
variables required, so that n has to grow exponentially with d in order for the
circle method to work. Indeed, for general values of d, very few improvements
to Theorem 4.0.1 have been found, a notable exception being the work of
Browning and Prendiville [20], which replaces the factor (d− 1) appearing in
(4.0.6) with d−

√
d

2 in the case R = 1.

However, by restricting to particular small values of d (namely d ⩽ 4), substantial
improvements to the bounds provided in Theorem 4.0.1 have been found. These
results typically rely on some form of the Kloosterman circle method, which
we discuss in Section 4.3. For example, Heath-Brown [60] uses this approach
to treat non-singular cubic forms in n ⩾ 10 variables. By further developing
the delta method of Duke, Friedlander and Iwaniec [46], Heath-Brown [61],
demonstrated for the first time that the circle method can handle the case
d = 2 of quadratic forms even for n = 3 and n = 4. The current record
for non-singular quartic forms is n ⩾ 29 (compared to n ⩾ 49 obtained from
Theorem 4.0.1), which was recently established by Marmon and Vishe [84] by a
delicate refinement of the aforementioned ideas.
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4.1 The major arcs
To analyse the integral over the major arcs M, we replace each α ∈M with
the rational number a/q with small denominator that it approximates. With an
appropriate choice of M, the error in doing so is negligible, since by continuity,
S(α) is close to S(a/q).
Let η > 0. A common choice for the major arcs is

M =
⋃︂
q<Bη

⋃︂
0⩽a<q

gcd(a,q)=1

M(a, q), (4.1.1)

where
M(a, q) =

{︄
α ∈ [0, 1) :

⃓⃓⃓⃓
⃓α− a

q

⃓⃓⃓⃓
⃓ < B−d+η

}︄
.

We choose η sufficiently small that these major arcs are non-overlapping. It is
immediate from the definition of M that∫︂

M
S(α)dα =

∑︂
q<Bη

∑︂
0⩽a<q

gcd(a,q)=1

∫︂
|θ|<B−d+η

S(a/q + θ) dθ. (4.1.2)

Suppose that α ∈M(a, q), and write α = a/q+θ. Since the quantity e(aF (x))
only depends on the value of x modulo q, we have

S(α) =
∑︂

x (mod q)
eq(aF (x))

∑︂
y∈Zn

|y|⩽B
y≡x (mod q)

e(θF (y)). (4.1.3)

Using [11, Lemma 8.1], we can smooth out the inner sum of (4.1.3) by replacing
it with the corresponding integral. Let

Sa,q =
∑︂

x (mod q)
eq(aF (x)).

We obtain

S(α) ∼ Sa,q
qn

∫︂
|y|⩽B

e(θF (y))dy = BnSa,q
qn

∫︂
|y|⩽1

e(θBdF (y))dy, (4.1.4)

where in the last line we have made a change of variables from y to By. The
purpose of the above manipulations is that we have now completely separated
the dependence of S(α) on a/q from its dependence on θ. Returning to (4.1.2),
and changing variables from Bdθ to θ, we deduce that

∫︂
M
S(α)dα ∼ Bn−d

⎛⎜⎜⎜⎝ ∑︂
q<Bη

∑︂
0⩽a<q

gcd(a,q)=1

Sa,q
qn

⎞⎟⎟⎟⎠
(︄∫︂

|θ|<Bη

∫︂
|y|⩽1

e(θF (y))dydθ
)︄
.

(4.1.5)
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When n is sufficiently large in terms of d, we may complete the sum over q and
the integral over θ to obtain

∫︂
M
S(α)dα ∼ Bn−dSFJF , (4.1.6)

where

SF =
∞∑︂
q=1

∑︂
0⩽a<q

gcd(a,q)=1

Sa,q
qn

, (4.1.7)

JF =
∫︂
θ∈R

∫︂
|y|⩽1

e(θF (y))dydθ. (4.1.8)

The quantities SF and JF are called the singular series and singular integral
respectively, and when F is non-singular they are compatible with the leading
constant predicted by Peyre’s refinement of Manin’s conjecture [91, Section
4.2]. Assuming SF is absolutely convergent, it follows from multiplicativity of
Sa,q that

SF =
∏︂
p

σp,

where

σp = lim
t→∞

p−t(n−1)#{x (mod pt) : F (x) ≡ 0 (mod pt)}.

If the equation F = 0 has non-singular solutions everywhere locally, then by
Hensel’s lemma, we see that σp > 0 for all p, and in fact, assuming in addition
that the product is absolutely convergent, we have SF > 0. The typical
approach to analyse the singular series is discussed in more detail in [12, Section
2.3].

4.2 The minor arcs

A basic approach in order to tackle the minor arcs is to use Weyl differencing,
which is a technique that can be applied iteratively to reduce the degree of the
polynomial F under consideration. This leads to a key lemma known as Weyl’s
inequality. Below, we sketch the main ideas behind Weyl’s inequality, leaving a
more precise statement and proof to [12, Lemma 2.4]. In this section, boldface
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letters will always denote vectors in Zn. We have

|S(α)|2 = S(α)S(α)
=

∑︂
|x1|,|x2|⩽B

e(α(F (x1)− F (x2)))

=
∑︂

|x1|⩽2B

∑︂
|x2|⩽B

|x1+x2|⩽B

e(α(F (x1 + x2)− F (x2)))

⩽
∑︂

|x1|⩽2B

⃓⃓⃓⃓
⃓ ∑︂

|x2|⩽B
|x1+x2|⩽B

e(α(F (x1 + x2)− F (x2)))
⃓⃓⃓⃓
⃓. (4.2.1)

We denote the inner sum in (4.2.1) by T (α; x1). Now F (x1 + x2) − F (x2)
is a polynomial of degree d − 1 in the variables x2. Therefore, the quantity
T (α; x1) is similar to S(α) but for a polynomial with degree one lower. To
continue the process, we apply the Cauchy–Schwarz inequality to obtain

|S(α)|4 ⩽ (4B)n
∑︂

|x1|⩽2B
|T (α; x1)|2.

The quantity |T (α; x1)|2 may be treated analogously to (4.2.1) to obtain

|S(α)|4 ⩽ (4B)n
∑︂

|x1|⩽2B

∑︂
|x2|⩽2B

∑︂
|x3|⩽B

|x2+x3|⩽B
|x1+x3|⩽B

|x1+x2+x3|⩽B

e(α(F (x1,x2; x3)),

where

F (x1,x2; x3) = F (x1 + x2 + x3)− F (x2 + x3)− F (x1 + x3) + F (x3)

is a polynomial of degree d− 2 in the variables x3.
Iterating this process d− 1 times yields an estimate for |S(α)|2d−1 in terms of
sums of exponentials e(αL(x1, . . . ,xd−1; xd)), where L(x1, . . . ,xd−1; xd) are
linear polynomials in the variables xd. Writing xd = (x(1)

d , . . . , x
(n)
d ), it can be

checked that

e(αL(x1, . . . ,xd−1; xd)) = e(h)
n∏︂
i=1

e(βix(i)
d ), (4.2.2)

where h = h(x1, . . . ,xd−1) is independent of xd and βi = βi(x1, . . . ,xd−1) is
multilinear in x1, . . . ,xd−1. We must now take a sum of (4.2.2) over xd ∈ Zn
lying in some box which depends on x1, . . . ,xd−1. This sum splits into a product
of geometric series, which can be treated using the elementary fact that⃓⃓⃓⃓

⃓⃓∑︂
x⩽X

e(βx)

⃓⃓⃓⃓
⃓⃓≪ 1
∥β∥

(4.2.3)
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for any X ⩾ 1, where ∥β∥ denotes the distance of β to the nearest integer. If
∥β∥ is extremely small, this estimate is not useful, so we resort to the trivial
bound |∑︁x⩽X e(βx)| ⩽ X. Applying this for all i ∈ {1, . . . , n} would recover
the trivial estimate S(α) ⩽ Bn. In order to do better than this, the task is
now to show that the quantities ∥β1∥, . . . , ∥βn∥ are very rarely this small as we
average over x1, . . . ,xd−1.

4.3 The Kloosterman circle method
Given the difficulties in finding good estimates for the minor arcs, a more
ambitious approach is to do away with the minor arcs completely, and instead
try to find an asymptotic formula for S(α) for all α. This is the idea behind
Kloosterman’s version of the circle method. Typically, the major arcs are defined
using Farey dissection. For a parameter Q ⩾ 1, we define the Farey sequence
to be the sequence of all reduced fractions a/q with 0 ⩽ a ⩽ q ⩽ Q, arranged
in ascending order. We then divide [0, 1) into a disjoint union of intervals
Ma,q = [b, c), where b, c are the medians of the consecutive terms a′

q′ <
a
q
< a′′

q′′

of the Farey sequence. This results in the expression

δ(n) =
∑︂
a

∑︂
q

∫︂
Ma,q

e(nα)dα,

where the summation is over all reduced fractions a/q in the Farey sequence.
An elementary manipulation [71, Proposition 20.7] yields

δ(n) = 2 Re
∫︂ 1

0

∑︂∑︂
q⩽Q<b⩽q+Q

gcd(b,q)=1

(bq)−1e

(︄
nb

q
− nθ

bq

)︄
dθ,

where b denotes the multiplicative inverse of b modulo q.
A major advantage of this approach over the Hardy–Littlewood circle method
is that there is potential to exploit cancellation in the sums over a and q. (The
ability to do this in the Hardy–Littlewood method is lost when we take modulus
signs in ∫︁m |S(α)|dα.) Cancellation in the sum over a was first exploited by
Kloosterman [75], who gave a complete classification of the integers a, b, c, d
for which ax2 + by2 + cz2 + dt2 represents every sufficiently large integer, a
problem just out of reach of the classical Hardy–Littlewood circle method. Such
a cancellation in a is now referred to as a Kloosterman refinement. In rare
cases, a cancellation in both the a and q sums has been achieved (known as
a double Kloosterman refinement). This idea was first used by Hooley when
studying Waring’s problem for cubes in 7 variables [67].
One disadvantage of the Kloosterman circle method is the presence of expo-
nential sums involving b, which in practice are often awkward to analyse. In
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the next section, we introduce the delta method, which provides a way to
circumvent this issue.

4.4 The delta method
We now discuss the delta method, as introduced by Duke, Friedlander and
Iwaniec [46] and further developed by Heath-Brown [61]. Let g : R→ R⩾0 be
a function which is normalised so that ∑︁∞

q=1 g(q) = 1 and g(0) = 0. Then for
any integer n, we have

δ(n) =
∑︂
q|n

{︄
g(q)− g

(︄
|n|
q

)︄}︄
.

We can detect the condition q | n using the fact that 1
q

∑︁
a (mod q) eq(an) is

equal to 1 if q | n and 0 otherwise. Therefore,

δ(n) =
∞∑︂
q=1

1
q

{︄
g(q)− g

(︄
|n|
q

)︄}︄ ∑︂
a (mod q)

eq(an).

Finally, we convert the fractions a/q that feature in the expressions eq(an)
into reduced fractions by extracting a sum over j | gcd(a, q). We obtain the
following identity, first considered by Duke, Friedlander and Iwaniec [46].

δ(n) =
∞∑︂
q=1

∑︂
a (mod q)
gcd(a,q)=1

eq(an)
∞∑︂
j=1

1
jq

{︄
g(jq)− g

(︄
|n|
jq

)︄}︄
. (4.4.1)

In practice, g is often taken to be an infinitely differentiable function supported
on [Q/2, Q]. With such a choice, the q-sum in (4.4.1) can be restricted to
q ≪ max(Q, 2|n|/Q), and so it seems natural to take Q = |n|1/2.
Heath-Brown’s variant of (4.4.1) replaces the condition ∑︁∞

q=1 g(q) = 1 with
the smooth analogue ∫︁∞

−∞ g(x)dx = 1. In order to apply estimates involving
repeated integration by parts, it is desirable to also have good control over the
derivatives of g. This can be achieved by building g out of the standard bump
function ψ : R→ R⩾0 given by

ψ(t) =

⎧⎨⎩exp( 1
t2−1), if |t| < 1,

0, otherwise,
(4.4.2)

which is an infinitely differentiable function supported on [−1, 1], all of whose
derivatives are O(1). More precisely, we let w0(x) = cψ(4x− 3), where c is the
constant such that ∫︁∞

−∞ w0(x)dx = 1, and then define g(x) = w0(x/Q). We
note that this makes g supported on [Q/2, Q] as before. It can be shown by
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4.4. The delta method

applying Poisson summation and repeated integration by parts that ∑︁∞
q=1 g(q) =

CQ, where CQ = 1 +ON(Q−N). We therefore almost recover the assumption∑︁∞
q=1 g(q) = 1 used in the formulation of (4.4.1). Proceeding as above, we

deduce the following estimate for δ(n) [61, Theorem 1].

δ(n) = CQ
Q2

∞∑︂
q=1

∑︂
0⩽a<q

gcd(a,q)=1

eq(an)h
(︄
q

Q
,
n

Q2

)︄
, (4.4.3)

where
h(x, y) =

∞∑︂
j=1

1
xj

{︄
w0(xj)− w0

(︄
|n|
xj

)︄}︄
. (4.4.4)

We now apply (4.4.3) to count zeros of a polynomial F ∈ Z[x1, . . . , xn]. Let
w : Rn → R⩾0 be a compactly supported infinitely differentiable function. We
define

N(w,B) =
∑︂

x∈Zn

F (x)=0

w(B−1x),

which is a smoothly weighted analogue of the counting function N(B) from
(4.0.3). Typically, we let w be a smooth approximation to the characteristic
function 1[−1,1]n so that N(w,B) approximates N(B). We have

N(w,B) =
∑︂

x∈Zn

|x|⩽B

w(B−1x)δ(F (x))

= CQ
Q2

∞∑︂
q=1

∑︂
a(mod q)

gcd(a,q)=1

∑︂
x∈Zn

|x|⩽B

eq(aF (x))w(B−1x)h
(︄
q

Q
,
F (x)
Q2

)︄

= CQ
Q2

∞∑︂
q=1

∑︂
a(mod q)

gcd(a,q)=1

∑︂
b(mod q)

eq(aF (b))
∑︂

x∈Zn

x≡b(q)

w(B−1x)h
(︄
q

Q
,
F (x)
Q2

)︄
.

(4.4.5)

The n-dimensional Poisson summation formula [114, Theorem VII.2.4] states
that for a smooth compactly supported function f : Rn → R, we have

∑︂
y∈Zn

f(y) =
∑︂

c∈Zn

∫︂
Rn
f(y)e(−c · y)dy.

Applying this to the inner summand of (4.4.5), with the change of variables
x = qy + b, we obtain the following result.
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Theorem 4.4.1 ([61, Theorem 2]). We have

N(w,B) = CQ
Q2

∑︂
c∈Zn

∞∑︂
q=1

q−nSq(c)Iq(c), (4.4.6)

where

Sq(c) =
∑︂

a (mod q)
gcd(a,q)=1

∑︂
b (mod q)

eq(aF (b) + b · c),

Iq(c) =
∫︂
Rn
w(B−1x)h

(︄
q

Q
,
F (x)
Q2

)︄
eq(−c · x) dx.

(4.4.7)

Thinking of w as an approximation for 1[−1,1]n , we expect F (x) to typically
have size Bd for x ∈ Zn satisfying w(B−1x) ̸= 0. Recalling the discussion
after (4.4.1), it is therefore natural to take Q = Bd/2. However, it turns out
in some cases to be beneficial to choose Q smaller than this. For example, in
their study of quartic forms in n ⩾ 29 variables, Marmon and Vishe make the
choice Q = B8/5+ϵ [84] by applying a level lowering trick of Munshi [89].

Usually when applying Theorem 4.4.1, the main term comes from the case
c = 0, and we aim to show that the sum over all other values c ̸= 0 is negligible.
This intuitively makes sense, since Sq(c) and Iq(c) exhibit greater oscillation
for larger values of c. A basic way to exploit this is via the first derivative test,
which is essentially repeated integration by parts for Iq(c), where we integrate
the factor eq(c · x). We combine this idea with some more refined estimates in
Section 6.4.

4.5 Application to counting Campana points
In this section, we indicate how the delta method is applied to count Campana
points in Chapter 6, thus providing a sketch proof of Theorem D. We recall
from the introduction the definition

Nk(B) =
{︄

z ∈ (Z̸=0)kprim : |zi| ⩽ B, zi squareful for all i,
k∑︂
i=1

zi = 0
}︄
.

(4.5.1)
Using Lemma 3.3.1, we may write each zi uniquely in the form zi = x2

i y
3
i

for xi positive integers and yi squarefree integers. The resulting equation∑︁k
i=1 y

3
i x

2
i = 0 defines a quadric for each fixed choice of y = (y1, . . . , yk).

Therefore,
#Nk(B) = 1

2k
∑︂

y∈(Z̸=0)k

y1,...,yk squarefree

Ny(B), (4.5.2)
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where

Ny(B) = #

⎧⎨⎩x ∈ (Z̸=0)k :
k∑︂
i=1

x2
i y

3
i = 0,

gcd(x1y1, . . . , xkyk) = 1
max1⩽i⩽k |y3

i x
2
i | ⩽ B

⎫⎬⎭ .
The factor 1/2k comes from the fact that for each i ∈ {1, . . . , k}, there are
two choices for the sign of xi corresponding to the same choice of zi.

Non-singular quadrics conform to Manin’s conjecture (Conjecture 2.3.2). This
is because such quadrics are examples of flag varieties, for which Manin’s
conjecture is known to hold by the work of Franke, Manin and Tschinkel [50].
In fact, the Picard number ϱ of the quadric ∑︁4

i=1 y
3
i x

2
i is 2 if y1 · · · y4 = □, and

1 otherwise. Therefore, we have asymptotic formulas of the shape

Ny(B) ∼

⎧⎨⎩cyB, if y1 · · · y4 ̸= □,

cyB logB, if y1 · · · y4 = □,
(4.5.3)

for explicit constants cy ⩾ 0 depending on y. This explains why we need to
remove the thin set defined by the condition z1 · · · z4 = □ from N4(B) in order
to compare our count with the PSTV-A conjecture (Conjecture 3.0.8). We
therefore consider (4.5.2) with the added condition y1 · · · y4 ̸= □, which is
equivalent to z1 · · · z4 ̸= □.

Whilst (4.5.3) provides an asymptotic formula for each individual Ny(B),
crucially, we need enough uniformity in our estimates that we can take a sum
over y and still maintain sufficient control over the error terms. For k ⩾ 5,
Van Valckenborgh demonstrated that sufficient uniformity can be obtained
by applying the classical circle method as introduced at the beginning of this
chapter to each Ny(B). In the case k = 4, we require a better dependence of
the error terms on y than the classical circle method can provide, so we instead
apply the delta method as discussed in Section 4.4. We consider a slightly more
general counting function

Na(B) = #
{︄

x ∈ (Z̸=0)4 :
4∑︂
i=1

aix
2
i = 0, max

1⩽i⩽4
|aix2

i | ⩽ B

}︄
, (4.5.4)

where we have removed the coprimality condition and replaced (y3
1, . . . , y

3
4) with

an arbitrary vector a = (a1, . . . , a4) ∈ (Z̸=0)4. We conclude this section by
stating the main result of Section 6.4, which is an estimate for Na(B) obtained
from the delta method in which the dependence of the error terms on a is made
completely explicit. Our result features the quantities

∆ =
4∏︂
i=1

gcd
⎛⎝ai,∏︂

j ̸=i
aj

⎞⎠ , A = a1 · · · a4,
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4. The circle method

as well as a singular series Ga and a singular integral σ∞(ϵ)|A|−1/2, defined
respectively in (6.4.1) and (6.4.2). Note that σ∞(ϵ) only depends on the signs
ϵ = (ϵ1, . . . , ϵ4) of (a1, . . . , a4).

Theorem 4.5.1. Let a ∈ (Z̸=0)4 be such that A ̸= □ and |A| ⩽ B4/7. Then

Na(B) = Gaσ∞(ϵ)B
|A|1/2 +O

(︄
B41/42+ϵ∆1/3

|A|11/24

)︄
, (4.5.5)

where the implied constant depends only on ϵ.

To complete the proof of Theorem D, in Section 6.5, we apply Theorem 4.5.1
together with an inclusion-exclusion argument in order to reinsert the coprimality
condition gcd(x1y1, . . . , x4y4) = 1 and obtain an estimate forNy(B). Returning
to (4.5.2), we can take a sum over these estimates for Ny(B) in the range
max1⩽i⩽4 |yi| ⩽ D, where D is a small power of B. The contribution from
the remaining range max1⩽i⩽4 |yi| > D is dealt with in Section 6.3 using an
elementary argument, and forms part of the error term in Theorem D.
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CHAPTER 5
Sieves

Sieve theory is an ancient but continually evolving area of mathematics, which
has traditionally been used as a way to estimate the distribution of primes in sets
of arithmetic interest. In this chapter, we give an account of the development
of combinatorial sieves. We begin with the Legendre–Eratosthenes sieve in
Section 5.1, which is based on the inclusion-exclusion principle. In Sections
5.2-5.6 (which are based on [52, Chapters 1,4,6,11] and [116]), we discuss
various refinements and generalisations, eventually arriving in Section 5.6 at a
powerful result known as the beta sieve, first introduced by Rosser and Iwaniec.
We discuss these developments through the lens of two main examples, namely
the prime counting function π(x), and the twin prime conjecture. However,
modern applications of sieve theory are extremely diverse. In Section 5.7, we
state the main sieve results we prove in Chapter 8 in order to study the Hasse
principle for polynomials represented by norm forms. These results concern
values of binary forms which avoid prime factors belonging to certain sifting
sets. The density of the sifting sets we consider is governed by the Chebotarev
density theorem, which we introduce in Section 5.8. Finally, in Section 5.9,
we prove a level of distribution result which is an essential ingredient in the
application of the beta sieve in Chapter 8.

5.1 The Legendre–Eratosthenes sieve
One of the first sieves was the sieve of Eratosthenes from the 3rd century BC,
which provides a way to list all the prime numbers up to a given integer x. The
algorithm can be stated as follows:

1. Begin with the list of integers (2, . . . , x).
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5. Sieves

2. Find the first integer k in the list which is not circled or crossed out, and
circle it. Cross out all integers up to x of the form nk, where n ⩾ 2.

3. Repeat (2) iteratively until an integer greater than or equal to √x has
been circled.

4. Circle all remaining integers which have not been crossed out.

The list of circled integers obtained from this algorithm is the list of prime
numbers up to x, due to the fact that every composite integer m ⩽ x contains
a prime factor p ⩽ √x.

Often, we do not want to list prime numbers explicitly, but instead want
estimates for the density of primes in a given interval. Let π(x) denote the
number of primes p ⩽ x. The Legendre–Eratosthenes sieve is a quantitative
version of the sieve of Eratosthenes, and provides an estimate for π(x).
Let A = [1, x] ∩ N, let P denote the set of all primes, and let z > 1 be a
parameter, which is called the sifting level. We define a sifting function

S(A,P, z) = #{n ∈ A : p ∤ n for all p ∈ P, p < z}. (5.1.1)

It is also convenient to define

P (z) =
∏︂
p∈P
p<z

p. (5.1.2)

Then the condition in (5.1.1) can be rewritten as gcd(n, P (z)) = 1. We observe
that

S(A,P,
√
x) = π(x)− π(

√
x) +O(1). (5.1.3)

Finally, we define
V (z) =

∏︂
p<z

(︄
1− 1

p

)︄
. (5.1.4)

We begin with a simple heuristic. The probability that a randomly chosen
integer n in the interval [1, x] is a multiple of a given prime p ⩽ √x is roughly
1 − 1

p
. If we believe that the properties p1 | n and p2 | n are independent

for distinct primes p1 and p2, then we might guess that S(A,P,
√
x), has size

comparable to xV (
√
x). The Legendre–Eratosthenes sieve attempts to make

this heuristic more precise by keeping track of the error terms produced when
comparing S(A,P, z) with xV (z).
When using the sieve of Eratosthenes to count primes, we begin with the number
x = |A|, and subtract the number of even numbers in A, and then the number
of multiples of 3 in A, and the number of multiples of 5 in A and so on. We
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5.1. The Legendre–Eratosthenes sieve

then note that some numbers have been discarded twice, like 6 for example,
so we must add back in the number of multiples of 6 in A and so on. More
generally, let Ad = {n ∈ A : d | n}, where here, and for the remainder of this
chapter, we always assume that d is a squarefree positive integer. The above
process is formalised by the inclusion-exclusion principle, which states that
S(A,P, z) = |A| −

∑︂
p1|P (z)

|Ap1|+
∑︂

p1p2|P (z)
|Ap1p2| −

∑︂
p1p2p3|P (z)

|Ap1p2p3|+ · · · .

(5.1.5)
The inclusion-exclusion process can also be stated in terms of the Möbius
function µ.

Lemma 5.1.1 (Legendre). We have

S(A,P, z) =
∑︂
d|P (z)

µ(d)|Ad|. (5.1.6)

Proof. Fix an integer d|P (z). The term |Ad| appears exactly once in (5.1.5), in
the form |Ap1···pr | where p1 · · · pr is the prime factorisation of d. The coefficient
of |Ad| in (5.1.5) is (−1)r, which is equal to µ(d).

We now apply the estimate |Ad| = x
d

+ O(1). Substituting this into Lemma
5.1.1, we obtain

S(A,P, z) = x
∑︂
d|P (z)

µ(d)
d

+
∑︂
d|P (z)

O(1). (5.1.7)

The number of divisors d | P (z) is 2π(z), and the function µ(d)
d

is multiplicative.
Therefore,

S(A,P, z) = xV (z) +O(2π(z)). (5.1.8)
By Mertens’ theorem [71, Equation (2.16)], the main term in (5.1.8) is

xV (z) = x
∏︂
p<z

(︄
1− 1

p

)︄
= e−γx

log z

(︄
1 +O

(︄
1

log z

)︄)︄
, (5.1.9)

where γ denotes the Euler–Mascheroni constant, so that numerically, we have
e−γ = 0.561459....
Unfortunately, the error term O(2π(z)) has a very bad dependence on the sifting
level z, and in order for this error term to be smaller than our main term, we
must choose z very small, around size log x. Recalling (5.1.3), the resulting
estimate for π(x) is

π(x) = S(A,P,
√
x) + π(

√
x) +O(1)

⩽ S(A,P, log x) +O(
√
x)

= O

(︄
x

log log x

)︄
. (5.1.10)
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Whilst we have obtained a nontrivial estimate for π(x) from this method, the
bound (5.1.10) does not seem very impressive. After all, we actually know from
the Prime number theorem that π(x) ∼ x

log x [71, pp.31]. With more care, the
error term O(2π(z)) can be significantly improved; we discuss some refinements
in Sections 5.3-5.6. However, we observe that if we just ignore the remainder
term in (5.1.7) and plug z =

√
x into (5.1.9), we would obtain π(x) ∼ 2e−γx

log x ,
which has the wrong leading constant. Hence the naive heuristic discussed
above does not capture the correct leading constant, and the remainder term∑︁
d|P (z) µ(d)

(︂
|Ad| − x

d

)︂
must actually have size comparable to the main term.

Despite the above shortcomings, sieve theory has proven to be a powerful tool
in the study of prime numbers. A major advantage of sieve theory lies in its
flexibility–it can be applied in very general settings in which the techniques
from complex analysis underpinning results such as the Prime number theorem
are no longer available. We now proceed to discuss sieves in a more general
framework.

5.2 Sieving in more generality
Let x ⩾ 1 be a parameter. Let P be an arbitrary set of prime numbers.
Let A = (an)n∈Z be a sequence of non-negative real numbers, supported on
[−x, x]. Let P (z) be as defined in (5.1.2). For each p | P (z), let Ep ⊆ Z be
an associated set. We would like to find estimates for the sums

S(A , P, z) :=
∑︂
n∈Z

an1n/∈⋃︁
p|P (z) Ep

. (5.2.1)

For a squarefree integer d, let Ed = ⋂︁
p|dEp, and let E1 = Z. we can adapt

the proof of Lemma 5.1.1 to this more general setting to show that∑︂
n∈Z

1n/∈⋃︁
p|P (z) Ep

=
∑︂
d|P (z)

µ(d)
∑︂
n∈Ed

an, (5.2.2)

which is known as the Legendre sieve identity. We denote by Ad the sequence
(an1Ed

(n)). By an abuse of notation, we let |Ad| = ∑︁
n∈Ed

an, and we let
X = |A | = |A1|.
Whilst Ep may be arbitrary, in applications it is often taken to be the integers
belonging to some set of residue classes modulo p, and this will be the case
for all examples we consider in this work. Let g(d) be a multiplicative function,
supported on squarefree integers. We write

|Ad| = g(d)X + r(d), (5.2.3)

where r(d) is a remainder term. We require that rd is small, at least on average
over d. Such an estimate is known as a level of distribution result, which we

50



5.2. Sieving in more generality

discuss more in Section 5.3. We also generalise the definition of V (z) from
(5.1.4) by setting

V (z) =
∏︂

p|P (z)
(1− g(p)). (5.2.4)

Example 5.2.1. To recover the sifting function S(A,P, z) from (5.1.1) used
to estimate π(x), we take A = [1, x], an = 1n∈A, P = {all primes}, and Ep =
{n ∈ Z : p | n}. Then X = |A1| = x and |Ad| = |Ad| = #{n ⩽ x : d | n}.
We used the estimate |Ad| = x

d
+ O(1) in Section 5.1, which corresponds to

the choice g(d) = 1/d, and the estimate r(d) = O(1).

Example 5.2.2 (Twin primes). A famous open problem in Prime number theory
is the twin prime conjecture, which states that there exist infinitely many primes
p such that p+ 2 is also prime. There are several ways to recast this as a sieve
problem. For example, we can define

A = 1[1,x−2], P = {all primes}, Ep = {n ∈ Z : n ≡ 0 or − 2 (mod p)}.
(5.2.5)

If one of n or n+ 2 is not prime, then it must have a prime factor ⩽ √x, and
so we would have n ∈ ⋃︁p⩽√

xEp. Therefore, the twin prime conjecture would
follow from unboundedness of S(A , P,

√
x) as x→∞.

An alternative formulation, which turns out to provide stronger partial results
towards the twin prime conjecture, is to take

A = {q + 2 : q ∈ P, q ⩽ x}, P = {odd primes}, Ep = {n ∈ Z : p | n},

and an = 1A, z =
√
x.

In a breakthrough result in 2013, Zhang proved that there are infinitely many
pairs of primes with a gap bounded by 70 million by combining the Selberg
sieve with other analytic tools [120]. This bound was subsequently improved by
Maynard to 600 [86], and then further to 246 by the combined efforts of the
Polymath project [97].

Example 5.2.3 (Goldbach conjecture). The Goldbach conjecture states that
every even integer x ⩾ 4 can be expressed as the sum of two primes. For such
an x, we define

A = {x− q : q < x prime , q ∤ x}, an = 1A, Ep = {n ∈ Z : p | n},

and aim to show that (5.2.1) is nonzero for z =
√
x, so that the set A contains

at least one prime.
Whilst the Goldbach conjecture remains wide open, Chen used sieve theory
to prove that every sufficiently large even integer is a sum of a prime and a
number with at most two prime factors [30].
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5.3 Upper and lower bound sieve coefficients
We recall that in the Legendre–Eratosthenes sieve discussed in Section 5.1,
we may only take the sifting level z of order of magnitude log x, due to the
exponential error term O(2π(z)) coming from (5.1.7). In contrast, we would
like to take a sifting level of √x. For larger values of z, the Legendre sieve is
very wasteful, because many of the divisors d | P (z) are much larger than x,
and for each of these, the Legendre sieve produces a O(1) term, whereas we
actually know trivially that |Ad| = 0. Therefore, it is natural to truncate the
sum in (5.1.6) by considering sums of the form∑︂

d|P (z)
d<D

µ(d)|Ad|. (5.3.1)

More generally, we may replace the Möbius function µ by some other function
f : N → R, supported on squarefree integers less than D dividing P (z). Of
course, for this to be useful, we would like to choose f in such a way that∑︁
d|P (z) f(d)|Ad| provides a good approximation to our original sifting function

S(A , P, z) = ∑︁
d|P (z) µ(d)|Ad|.

Definition 5.3.1. We say that the real numbers (µ+(d))d|P (z) are upper bound
sieve coefficients (or an upper bound sieve) for the sifting function S(A , P, z)
from (5.2.1) if µ+(1) ⩾ 1 and ∑︁

d|n µ
+(d) ⩾ 0 for all n | P (z). Similarly,

(µ−(d))d|P (z) are lower bound sieve coefficients for S(A , P, z) if µ−(1) ⩽ 1
and ∑︁d|n µ

−(d) ⩽ 0 for all n | P (z). We say that µ+ or µ− have level D if
they are supported on positive squarefree integers less than D.

Lemma 5.3.2. Suppose that (µ+(d))d|P (z) and (µ−(d))d|P (z) are upper and
lower bound sieve coefficients for S(A , P, z) respectively. Then∑︂

d|P (z)
µ−(d)|Ad| ⩽ S(A , P, z) ⩽

∑︂
d|P (z)

µ+(d)|Ad|. (5.3.2)

Proof. Define functions ν+, ν− : N→ R by

ν+(n) =
∑︂
d|P (z)

µ+(d)1Ed
(n), ν−(n) =

∑︂
d|P (z)

µ−(d)1Ed
(n).

Then for all n | P (z), we have

ν−(n) ⩽ 1n/∈⋃︁
p|P (z) Ep

⩽ ν+(n), (5.3.3)

as we shall now explain. Suppose that n /∈ ⋃︁p|P (z) Ep. Then 1Ed
(n) = 0 for all

d | P (z), except for 1E1(n), which is 1. Therefore ν+(n) = µ+(1) ⩾ 1, and
ν−(n) = µ−(1) ⩽ 1. Now suppose that n ∈ ⋃︁p|P (z) Ep. Let {p1, . . . , pr} be
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the (non-empty) list of primes q | P (z) for which n ∈ Eq, and let m = p1 · · · pr.
Then ν+(n) = ∑︁

d|m µ
+(d) ⩾ 0. Therefore, 1n/∈⋃︁

p|P (z) Ep
⩽ ν+(n). Similarly,

ν−(n) = ∑︁
d|m µ

−(d) ⩽ 0, and so we have established (5.3.3).
Substituting (5.3.3) into the definition of S(A , P, z), we obtain

S(A , P, z) =
∑︂
n∈Z

an1n/∈⋃︁
p|P (z) Ep

⩽
∑︂
n∈Z

anν
+(n) =

∑︂
n∈Z

an
∑︂
d|P (z)

µ+(d)1Ed
(n).

After switching the order of summation, the last expression can be rewritten as∑︁
d|P (z) µ

+(d)|Ad|. We similarly deduce the required lower bound for S(A , P, z).

Suppose that µ+, µ− are upper and lower bound sieve coefficients of level D.
Recalling (5.2.3), we have found from Lemma 5.3.2 that

S(A , P, z) ⩽ XV +(z) +R+(D, z), (5.3.4)

where

V +(z) =
∑︂
d|P (z)

µ+(d)g(d), R+(D, z) =
∑︂
d|P (z)

µ+(d)rd, (5.3.5)

and similarly for the lower bound sieve µ−. We would like to compare V +(z)
and V −(z) with the quantity

V (z) =
∑︂
d|P (z)

µ(d)g(d) =
∏︂

p|P (z)
(1− g(p))

defined in (5.2.4).
Usually, there is a natural choice of g(p) such that we expect S(A , P, z) to have
order of magnitude XV (z). We recall from Example 5.2.1 that when estimating
π(x), the natural choice of multiplicative function is given by g(d) = 1

d
. However,

as we saw in Section 5.1, S(A , P, z) and XV (z) can disagree asymptotically
by a constant factor.
In order to effectively compare XV +(z) and XV (z), we would like µ+ to be
a good approximation for µ, and so in particular for the support D to be as
large as possible. In practice, the quality of the bounds for S(A , P, z) that
many sieve methods produce is directly influenced by the size we can take D
whilst still maintaining control over the remainder term R+(D, z); such a bound
for R+(D, z) is called a level of distribution. The sieves themselves are not
sensitive to the method used to obtain a level of distribution result, and so
a wide variety of analytic techniques can be used here. Common approaches
involve the theory of exponential sums, tools from harmonic analysis, and the
Bombieri–Vinogradov inequality and its variants. A discussion of some of these
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techniques can be found in [52, Chapter 22]. In this work, we shall prove a
level of distribution result using some ideas from the geometry of numbers. We
give more details in Sections 5.7 and 5.9.
Whilst in principle there is scope to exploit cancellation in the sum R+(D, z),
this is often very challenging, so the most common first step is to apply the
trivial bound

R+(D, z) ⩽
∑︂
d|P (z)

|µ+(d)rd|.

The beta sieve, which we apply in Chapter 8, is an example of a combinatorial
sieve, which means that µ+(d) ∈ {−1, 0, 1} for all d and µ+ is supported on
squarefree integers d ⩽ D. We therefore have

R+(D, z) ⩽
∑︂
d⩽D

µ2(d)=1

|rd|. (5.3.6)

5.4 Combinatorial sieves
Combinatorial sieves are based on repeated applications of the Buchstab identity,
which states that

1n/∈⋃︁
p<z

Ep
= 1−

∑︂
p<z

1Ep(n)1n/∈⋃︁
q<p

Eq
. (5.4.1)

This identity comes from the simple observation that for every n ∈ ⋃︁p<z Ep,
there is a unique choice of p for which n ∈ Ep but n /∈ Eq for any q < p. Using
the Buchstab identity, we can obtain a variant of the inclusion-exclusion process
from (5.1.5), which has the advantage of being easier to truncate. Below, we
suppress the set of primes P from the notation for brevity. We have

S(A , z) = |A | −
∑︂
p1<z

S(Ap1 , z)

= |A | −
∑︂
p1<z

|Ap1|+
∑︂

p2<p1<z

S(Ap1p2 , z)

= |A | −
∑︂
p1<z

|Ap1|+
∑︂

p2<p1<z

|Ap1p2| −
∑︂

p3<p2<p1<z

S(Ap1p2p3 , z)

= · · · .
(5.4.2)

We have a great deal of flexibility as to how to terminate this process. If we
require an upper (resp. lower) bound sieve for S(A , z), then at any stage we
may remove any of the terms which appear with a coefficient −1 (resp. 1), and
only continue to apply Buchstab iterations to the remaining terms.

Example 5.4.1. In the Legendre sieve identity from (5.2.2), we have not
performed any truncation, instead keeping all terms S(Ad, z) for any d | P (z).
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Example 5.4.2 (Brun pure sieve). The Brun pure sieve terminates the Buchstab
iterations after r + 1 steps, and replaces all remaining sifting functions with 0.
When r is odd, this produces a lower bound for S(A , z) and when r is even, it
produces an upper bound for S(A , z). Let ω(d) denote the number of prime
factors of d. In the abstract framework of Definition 5.3.1, the Brun pure sieve
is given by the sieve coefficients

λd =

⎧⎨⎩µ(d), if ω(d) ⩽ r,

0, otherwise,

which are upper bound sieve coefficients for S(A , z) if r is even and a lower
bound sieve coefficients if r is odd.

The Brun pure sieve represents the first major improvement of the Legendre–
Eratosthenes sieve. In 1915, Brun pushed this idea further by choosing truncation
parameters that depend not only on the number of prime factors of d, but
also on their size. This lead to a remarkable result known as the Fundamental
lemma of sieve theory, the proof of which was essentially given by Brun in [24].
We give a modern formulation in Section 5.5. Brun’s choice of sieve coefficients
remains to this day a popular choice in a wide variety of applications. This
motivated Rosser and Iwaniec to undertake a delicate optimisation of Brun’s
arguments, resulting in the main theorem of the beta sieve, which we discuss in
Section 5.6.
Let D, β ⩾ 1 be parameters. We define functions µ+, µ− : N → {−1, 0, 1},
supported on integers dividing P (z), as follows. We define

µ±(d) =

⎧⎨⎩µ(d), if d ∈ D±,

0, otherwise,
(5.4.3)

where

D+ = {d = p1 · · · pr : pr < · · · < p1 < z, p1 · · · pkpβk < D for all odd k ⩽ r},
D− = {d = p1 · · · pr : pr < · · · < p1 < z, p1 · · · pkpβk < D for all even k ⩽ r}

(5.4.4)

with the convention that 1 is contained in the sets D±, so that µ±(1) = 1.

Lemma 5.4.3. Suppose that z = D1/s for some s ⩾ 1, and that β ⩾ 1. Then
µ+(d) (resp. µ−(d)) as defined above are upper (resp. lower) bound sieve
coefficients for S(A , z) of level D.

Proof. We begin by showing that µ+ and µ− have level D. Suppose that
d = p1 · · · pr and µ+(d) ̸= 0. If r is odd, then p1 · · · prpβr < D, from which it is
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immediate that p1 · · · pr < D. If r is even, then we know that p1 · · · pr−1p
β
r−1 <

D. However, since β ⩾ 1 and pr−1 > pr this also implies that p1 · · · pr < D.
We conclude that µ+ has level D. When r ⩾ 2, we have a similar argument for
µ−. When r = 1, so d is prime, we use that if µ−(d) ̸= 0, then d | P (z), so
d < z = D1/s. Since s ⩾ 1, this implies that d < D.
We now prove that µ+(d) are upper bound sieve coefficients. (A similar
argument can also be used to treat µ−(d), and so we omit the details.) We
have µ+(1) = 1 by definition, so it remains to show that ∑︁d|n µ

+(d) ⩾ 0 for
all integers n | P (z). We proceed by induction on the number of prime factors
of n. Suppose that ∑︁d|m µ

+(d) ⩾ 0 and ∑︁d|m µ
−(d) ⩽ 0 for any D ⩾ 1 and

any m | P (z) with at most r prime factors. Suppose we are given an integer
n | P (z) with r + 1 prime factors p1 > · · · > pr+1. We have∑︂

d|n
µ+(d) =

∑︂
d|p2···pr+1

µ+(d) +
∑︂

d|p2···pr+1

µ+(p1d)

⩾
∑︂

d|p2···pr+1

µ+(p1d), (5.4.5)

where the last line follows from the inductive hypothesis with m = p2 · · · pr+1.
Let d = q1 · · · qs, for q1 > · · · > qs. We observe that

µ+(p1d) =

⎧⎨⎩−µ(d), if d ∈ D ,

0, otherwise,
(5.4.6)

where D is defined by the conditions

p1q1 · · · qjqβj < D for all even j ⩽ s, and pβ+1
1 < D.

If pβ+1
1 ⩾ D, then we conclude that µ+(p1d) = 0 for all d, and so it trivially

follows that (5.4.5) is at least 0. Otherwise, we have pβ+1
1 < D, and we

recognise D as the set D− from (5.4.4), but with the parameter D replaced by
D/p1. The result now follows by applying the inductive hypothesis to (5.4.5)
with m = p2 · · · pr+1, and with the function µ− as defined in (5.3.1), but with
D replaced by D/p1.

5.5 The Fundamental lemma of sieve theory
With the choice of sieve coefficients µ+ and µ− from (5.4.3), we can actually
obtain good estimates for S(A , z) even when z is a small power of D. This
is a substantial improvement on applying the Legendre sieve identity (5.2.2),
where we can only take z to be logarithmic in D.
We recall from (5.2.4) the notation

V (z) =
∏︂

p|P (z)
(1− g(p)) .
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Suppose that there is some κ > 0 and some K > 0 (depending on κ) such
that g(p) satisfies the bounds

V (w) ⩽ K

(︄
log z
logw

)︄κ
V (z) (5.5.1)

for all 2 ⩽ w ⩽ z. The smallest value of κ such that (5.5.1) holds is called
the sieve dimension, and plays a key role in the analysis of the beta sieve. In
practice, Ep usually consists of the integers n lying in some set of congruence
classes modulo p. If there are κ congruence classes defining each Ep, and if
P = {all primes}, then typically we choose g(p) = κ

p
. In this case, the sieve

dimension is κ. For example, the sieve dimension in the Legendre–Eratosthenes
sieve used in Section 5.1 to estimate π(x) is 1, and the sieve dimension in (5.2.5)
for twin primes is 2. Henceforth, κ will always denote the sieve dimension.

Lemma 5.5.1 (The Fundamental lemma of sieve theory). Let z = D1/s.
Suppose that g satisfies (5.5.1) and that s ⩾ 9κ+ 1. Then

V +(z) =
(︂
1 + e9κ−sK10

)︂
V (z)

V −(z) =
(︂
1− e9κ−sK10

)︂
V (z)

and so

S(A , z) ⩽ XV (z)
(︂
1 + e9κ−sK10

)︂
+R+(D, z)

S(A , z) ⩾ XV (z)
(︂
1− e9κ−sK10

)︂
+R−(D, z),

where R+(D, z) and R−(D, z) are as defined in (5.3.5).

Proof. See [52, Lemma 6.8].

Example 5.5.2. Armed with the Fundamental lemma, we return to the problem
of estimating π(x) discussed in Section 5.1. Recalling Mertens’ theorem (5.1.9),
for the relevant sifting function S(A,P, z) from (5.1.1), we see that κ = 1 and
K = 1, so we may choose s = 10 in Lemma 5.5.1. Applying (5.3.6) and the
bound rd = O(1), we have R+(D, z) ⩽ D. We choose D = x1−o(1), so that
R+(D, z) is negligible. Then for any ϵ > 0, Lemma 5.5.1 yields

S(A,P, z) ⩽ xV (z)(1+e−1+ϵ) ⩽ (1 + e−1 + ϵ)e−γx

log z ⩽ 10e−γ(1+e−1) x

log x.

Therefore, in contrast to (5.1.10), we have now provided an upper bound sieve
which can get within a constant factor of the true asymptotic π(x) ∼ x

log x .

Brun [24] observed that the Fundamental lemma provides a first step towards
the twin prime conjecture. We end this section by proving a weaker form of the
conjecture.
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Corollary 5.5.3. There are infinitely many integers n such that n and n+ 2
both have fewer than 20 prime factors.

Proof. We use the setup from (5.2.5). We choose g(p) = 2/p, so that for
squarefree integers d, we have g(d) = τ(d)

d
, where τ(d) denotes the divisor

function. We claim that (5.5.1) holds with κ = 2 and K = 1. To see this, we
apply a variant of Mertens’ theorem [71, Equation (2.15)], which states that

∑︂
p⩽x

1
p

= log log x+ c+O((log x)−1) (5.5.2)

for some constant c. Below, we allow c, C to denote explicit constants which
may vary from line to line. We obtain

log V (z) = log
⎛⎝∏︂
p<z

(︄
1− 2

p

)︄⎞⎠ =
∑︂
p<z

log
(︄

1− 2
p

)︄
=
∑︂
p<z

(︄
−2
p

+ T (p)
)︄
,

(5.5.3)
where T (p) = log(1 − 2/p) + 2/p. Since T (p) = O(p−2), the sum ∑︁

p T (p)
converges to some constant c, and moreover ∑︁p>z T (p) = O(z−1). Combining
with (5.5.2), we obtain

log V (z) = −2 log log z + c+O

(︄
1

log z

)︄
.

Exponentiating, we conclude that

V (z) ∼ c

(log z)2

(︄ ∞∑︂
k=0

(C log z)−k

k!

)︄
∼ c

(log z)2

(︄
1 +O

(︄
1

log z

)︄)︄
, (5.5.4)

which establishes the claim.

We observe that

|Ad| = #{1 ⩽ n ⩽ x : n ≡ 0 or − 2 (mod p) for all p | d},

so |Ad| counts integers n ⩽ x in τ(d) congruence classes modulo d. Therefore,
we have the estimate |Ad| = g(d) +O(τ(d)), so r(d) = τ(d) = Oϵ(dϵ) by the
trivial bound for the divisor function. We obtain the level of distribution result

|R−(D, z)| ⩽
∑︂
d⩽D

d squarefree

|rd| ≪ D1+ϵ,

and hence R−(D, z) is negligible provided that D ≪ x1−2ϵ. In Lemma 5.5.1,
we may choose s = 9κ+ 1 = 19. Then (1− e9κ−sK10) > 0. For ϵ sufficiently
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small and x sufficiently large, we have z = D1/19 ⩾ x1/20. Applying the lower
bound sieve from Lemma 5.5.1, we conclude that

S(A , x1/20) ⩾ S(A , z)≫ xV (z)≫ x

(log x)2 . (5.5.5)

If n ⩽ x−2 and one of n or n+2 has at least 20 prime factors, then necessarily
one of these factors must be ⩽ x1/20, and so S(A , x1/20) counts integers
n ⩽ x− 2 such that both n and n+ 2 have fewer than 20 prime factors. This
quantity is in particular unbounded as x→∞ by (5.5.5).

5.6 The main theorem of the beta sieve
In this section, we discuss the main theorem of the beta sieve, first introduced
by Rosser and Iwaniec, which is an improvement of the fundamental lemma
(Lemma 5.5.1). A key refinement made in their result is a careful optimisation
of the parameter β used to define the sieve coefficients from (5.4.3). It turns out
that when 0 < κ ⩽ 1

2 , it is best to simply choose β = 1, whilst for κ > 1
2 , larger

values of β produce sharper results. The case κ = 1 has received particular
attention, and is known as the linear sieve. For the linear sieve, the optimal
choice is β = 2. More generally, the precise choice of the parameter β made by
Rosser and Iwaniec is given in [52, Section 11.3], and some numerical values
are given in [52, Section 11.19]. For the remainder of this section, we assume
that β is as defined in [52, Section 11.19].
In place of (5.5.1), we now make a slightly stronger assumption on the regularity
of g, namely that there is a constant L > 0 such that

V (w) ⩽
(︄

log z
logw

)︄κ (︄
1 + L

logw

)︄
V (z) (5.6.1)

for all 2 ⩽ w ⩽ z.
The main theorem of the beta sieve is stated in terms of continuous real-valued
functions f(s), F (s) in the variable s = logD/ log z, satisfying the system of
delay differential equations⎧⎨⎩(sκF (s))′ = κsκ−1f(s− 1), if s > β + 1,

(sκf(s))′ = κsκ−1F (s− 1), if s > β,
(5.6.2)

with initial conditions⎧⎨⎩sκF (s) = A, if β − 1 ⩽ s ⩽ β + 1,
sκf(s) = B, if s = β,

(5.6.3)

for constants A,B determined by κ and β. For 0 < κ ⩽ 1
2 , A and B are given

in [52, Equations (11.61), (11.62)], whilst for κ > 1
2 we have B = 0 and A is

given by [52, Equations (11.44), (11.57)].
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Theorem 5.6.1 (Main theorem of the beta sieve). Let g(d) be a multiplicative
function supported on squarefree integers d such that (5.6.1) holds for some
κ > 0. Let z = D1/s and let R±(D, z) be as defined in (5.3.5). Then for
s ⩾ β − 1, we have

S(A , z) ⩽ XV (z)
{︂
F (s) +O

(︂
(logD)−1/6

)︂}︂
+R+(D, z), (5.6.4)

and for s ⩾ β, we have

S(A , z) ⩾ XV (z)
{︂
f(s) +O

(︂
(logD)−1/6

)︂}︂
+R−(D, z), (5.6.5)

for implied constants depending only on κ and L.

Proof. See [52, Theorem 11.13].

We see that F (s) and f(s) play the role of the functions 1 + e9κ−sK10 and
1 − e9κ−sK10 appearing in the Fundamental lemma (Lemma 5.5.1), which
converge to 1 exponentially as s grows. One improvement of the beta sieve
over Lemma 5.5.1 is that F (s), f(s) converge to 1 even more rapidly than this
[52, Equation (11.134)]. Moreover, the assumptions s ⩾ β − 1 and s ⩾ β
are typically much weaker than the assumption s ⩾ 9κ + 1 in Lemma 5.5.1,
which means that we can often obtain estimates when z is a larger power of
D than allowed by the fundamental lemma. In fact, in Chapter 8, we apply
upper and lower bound beta sieves with z = D, so that s = 1. The sieve
dimensions will be κ < 1/2 for the lower bound sieve and κ ∈ (0, 1) for the
upper bound sieves. Consequently, in our application, we have β ∈ [1, 2) and
F (s) = F (1) = A, f(s) = f(1) = B by the initial conditions given in (5.6.3).
Whilst the beta sieve will be sufficient for our purposes, some of the ideas in
this chapter can be pushed even further. The beta sieve makes use of estimates
for |Ad| by a multiplicative function g, which is known as Type I arithmetic
information. More refined sieves have been developed which additionally exploit
Type II arithmetic information involving the estimation of certain bilinear
sums. This approach was successfully employed in the groundbreaking work of
Friedlander and Iwaniec, which establishes that there are infinitely many primes
of the form x2 + y4 [51], and Maynard, who proved that for any a ∈ {0, . . . , 9},
there are infinitely many primes whose decimal expansion does not feature the
digit a [87].

5.7 Sieving prime factors from binary forms
In this section, we discuss the main auxiliary sieve results we require in order to
prove Theorems A and C. Let P be a set of primes. We assume that P is
disjoint from a finite set of primes S. Suppose that f(x, y) is a binary form
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with nonzero discriminant, and N ⩾ 1 is a parameter, which we are free to take
sufficiently large. Let B ⊆ [−1, 1]2 be a measurable set of volume ≫ 1, whose
boundary is a continuous closed curve with piecewise continuous derivatives,
and with perimeter ≪ 1. We denote by BN the set {(Nx,Ny) : (x, y) ∈ B}.
In the applications in Chapter 8, we shall make the choice

B =
{︄

(x, y) ∈ (0, 1]2 :
⃓⃓⃓⃓
⃓xy − r

⃓⃓⃓⃓
⃓ < ξ

}︄
, (5.7.1)

for a fixed real number r > 0 and a small parameter ξ > 0.
Let ∆ be an integer with only prime factors in S and let a0, b0 ∈ Z/∆Z. We
consider the quantity

S(P,B, N) = #
{︄

(a, b) ∈ BN ∩ Z2 :
a ≡ a0, b ≡ b0 (mod ∆)
p | f(a, b) =⇒ p /∈P

}︄
. (5.7.2)

We explain how this fits into the context of the abstract sieve problem from
(5.2.1). We choose A = (an) to be the number of representations of n as
f(a, b) = n for (a, b) ∈ BN ∩Z2 satisfying a ≡ a0, b ≡ b0 (mod ∆). For each
prime p ∈ P we define the set Ep = {n ∈ Z : p | n}. We note that due to
the assumption (a, b) ∈ BN ∩ Z2, the sequence A has finite support; Namely,
an ̸= 0 implies that n≪ Ndeg f for an implied constant depending only on f .
Let x denote the largest prime factor of f(a, b) for (a, b) ∈ BN ∩ Z2. Then
x ≪ Nmax(deg fi), where the maximum is over the irreducible factors fi of f .
Therefore, in the notation of (5.2.1), the quantity from (5.7.2) is equal to
S(A ,P, x).
We would like to find a lower bound for S(A ,P, x). In practice, this is not
possible directly, so we first apply the Buchstab identity from (5.4.1) to obtain

S(A ,P, x) = S(A ,P, Nγ)−
∑︂

Nγ<p⩽x

S(Ap,P, p),

where γ < 1 is a parameter, and we recall that Ap denotes the sequence
(an1Ep(n)). It turns out to be useful to further subdivide S(Ap,P, p) into
quantities S(A (i)

p ,P, p), which keep track of the particular irreducible factor
fi of f that the prime p divides. To this end, we factorise f as

f(x, y) =
m∏︂
i=0

fi(x, y)
k∏︂

i=m+1
fi(x, y), (5.7.3)

where fi(x, y) are linear forms for 1 ⩽ i ⩽ m, and forms of degree ⩾ 2 for
m+ 1 ⩽ i ⩽ k. If y | f(x, y), then we define f0(x, y) = y, and otherwise we
let f0(x, y) = 1. The assumption that f has nonzero discriminant implies that
it is squarefree, so y ∤ fi(x, y) for all i ⩾ 1.
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In Section 8.2, we apply the beta sieve to obtain a lower bound for the sifting
function S(A ,P, Nγ), and an upper bound for each S(A (i)

p ,P, p). In our
main sieve results, we assume that the (natural) density of P and the average
number of roots of fi modulo p for p ∈ P exist for all i ∈ {1, . . . , k}. In
fact, we need slightly more quantitative assumptions, which we now state more
precisely.

For i ∈ {0, . . . , k}, we define

νi(p) = #{[x : y] ∈ P1(Fp) : fi(x, y) ≡ 0 (mod p)}, (5.7.4)
ν(p) = #{[x : y] ∈ P1(Fp) : f(x, y) ≡ 0 (mod p)}. (5.7.5)

Let P⩽x = {p ∈P : p ⩽ x}. For all i ∈ {0, . . . , k}, we need to assume that
P has the following properties, for some α, θi > 0 and any A ⩾ 1.

∑︂
p∈P⩽x

1 = απ(x)
(︂
1 +OA

(︂
(log x)−A

)︂)︂
, (5.7.6)

∑︂
p∈P⩽x

νi(p) = αθiπ(x)
(︂
1 +OA

(︂
(log x)−A

)︂)︂
. (5.7.7)

The reason we require explicit error terms in (5.7.6) and (5.7.7) is so that
the sieve dimension κ exists and satisfies (5.6.1). We note that θ0 = 1 if
f0(x, y) = y, and θ0 = 0 if f0(x, y) = 1. Additionally, from (5.7.7) and the
assumption that f has nonzero discriminant, we have

∑︂
p∈P⩽x

ν(p) = αθπ(x)
(︂
1 +OA

(︂
(log x)−A

)︂)︂
, (5.7.8)

where θ = θ0 + · · ·+ θk.

We are now ready to state the main sieve results from Chapter 8.

Theorem 5.7.1. Let f(x, y) be a binary form consisting of distinct irreducible
factors, all of degree at most 2. Then there exists a finite set of primes S0,
depending on f , such that the following holds:

Let S be a finite set of primes containing S0. Let ∆ be an integer with only
prime factors in S, and let a0, b0 ∈ Z/∆Z. Let P be a set of primes disjoint
from S and satisfying (5.7.6) and (5.7.7) for some α, θi > 0. Assume that
αθ < 0.39006.... Then S(A ,P, x) > 0 for sufficiently large N .

We also have a similar result when f may contain irreducible factors of degree
up to 3, but with a less general sifting set P.

62



5.8. The Chebotarev density theorem

Theorem 5.7.2. Let f(x, y) be a binary form consisting of distinct irreducible
factors, all of degree at most 3. Then there exists a finite set of primes S0,
depending on f , such that the following holds:

Let S be a finite set of primes containing S0. Let ∆ be an integer with only
prime factors in S, and let a0, b0 ∈ Z/∆Z. Let P be a set of primes satisfying
P ⊆ {p /∈ S : p ≡ 1 (mod q)} for some prime q ⩾ (3.08825...) deg f + 1.
Then S(A ,P, x) > 0 for N sufficiently large.

5.8 The Chebotarev density theorem
In this section, we discuss the Chebotarev density theorem, which can be
viewed as a vast generalisation of Dirichlet’s theorem on primes in arithmetic
progressions. In Chapter 8, we apply the sieve results from Theorems 5.7.1 and
5.7.2 with a choice of P related to the splitting of primes in the extension
K/Q used to define the norm form in (1.1.1). Therefore, the densities of these
splitting types will be important in order to compute the sieve dimensions of
the sifting functions S(A (i)

p ,P, p) introduced in Section 5.7. Our discussion
of the Chebotarev density theorem is based on [73, Sections 3.1, 3.2].
Let K be a number field with degree n over Q. Let p be a prime, unramified
in K/Q. We can factorise the ideal (p) as (p) = p1 · · · pr, where p1, . . . , pr are
distinct prime ideals in OK . The splitting type of p in K/Q is the partition
(a1, . . . , ar) of n, where ai is the inertia degree of pi, i.e., N(pi) = pai .
Equivalently, the splitting type is the list of degrees of the irreducible factors of
the minimum polynomial of K/Q, when factorised modulo p.
Suppose first that K/Q is Galois, with Galois group G. Then G acts transitively
on {p1, . . . , pr}. Fix i ∈ {1, . . . , r}. The Decomposition group Dpi

is the
stabilizer of pi under this action. Note that Dpi

is cyclic, and there is an
isomorphism

ψi : Dpi
→ Gal((OK/pi)/(Z/(p))).

The group Gal((OK/pi)/(Z/(p))) is generated by the Frobenius element de-
fined by x ↦→ xp, which has order ai. Let σi denote the preimage of the
Frobenius element under ψi. We define the Artin symbol[︄

K/Q
p

]︄
= {σ1, . . . , σr}.

The Artin symbol is a conjugacy class of G. Indeed, all the pi’s lie in the same
orbit of G (there is only one orbit as G acts transitively). Stabilisers of points in
the same orbit of an action are conjugate, and so all of the Dpi

are conjugate.
We now come to the statement of the Chebotarev density theorem. For a
conjugacy class C of G, we let πC(x) denote the number of primes p ⩽ x
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whose Artin symbol is equal to C. We define the (natural) density of a set of
primes P to be

lim
x→∞

(︄
#{p ∈P : p ⩽ x}

π(x)

)︄
,

if such a limit exists.

Lemma 5.8.1 (Chebotarev density theorem). Let C be a conjugacy class of G.
The density of primes p for which the Artin symbol is equal to C is #C/#G.

In Chapter 8, we shall also need an effective version of the Chebotarev density
theorem in order to establish the conditions (5.7.6) and (5.7.7) required to
apply Theorem 5.7.1. The following lemma is a straightforward consequence of
a more refined result due to Lagarias and Odlyzko [77, Theorem 1].

Lemma 5.8.2 (Effective Chebotarev density theorem). For any A ⩾ 1, we
have

πC(x) = π(x)
(︄

#C
#G +OA((log x)−A)

)︄
,

where the implied constant may depend on K,C and A.

We now consider the non-Galois case. As above, let (p) = p1 · · · pr be the
factorisation of (p) in OK . Let ˆ︂K denote the Galois closure of K, and let
G = Gal(ˆ︂K/Q). This time, there is no action of G on {p1, . . . , pr}, because
the pi’s could split further in ˆ︂K, and elements of G could permute prime factors
which are above different pi’s.

To get around this, we define H = Gal(ˆ︂K/K), and instead consider the action
of G on the set X of left cosets of H in G. For an element σ ∈ G, the cyclic
group ⟨σ⟩ generated by σ acts by left multiplication on X. The sizes of the
orbits of this action form a partition of [G : H] = [K : Q] = n. Moreover, it
can be checked that conjugate elements of G give the same orbit sizes, so we
can associate a single partition of n with each Artin symbol

[︃ ˆ︁K/Q
p

]︃
.

Example 5.8.3. Keeping the notation from above, we suppose that G = Sn
and K = Q(α). We label the roots of g as (1, . . . , n), where 1 corresponds to α.
Then H consists of all automorphisms of ˆ︂K fixing K, which corresponds to the
permutations of {1, . . . , n} fixing 1. We have X = {H, (12)H, . . . , (1n)H}.
For any σ ∈ G, the action of ⟨σ⟩ on X is equivalent to the action of ⟨σ⟩ on
{1, . . . , n} via the obvious identification of (1j)H with j.

The following fact relating the partition of n given by the Artin symbol
[︃ ˆ︁K/Q

p

]︃
to the splitting type of p can be found in [73, Ch. 3, Proposition 2.8].
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Lemma 5.8.4. Let σ ∈
[︃ ˆ︁K/Q

p

]︃
. Then p has splitting type (a1, . . . , ar) in K/Q

if and only if the action of ⟨σ⟩ on X has orbit sizes (a1, . . . , ar).

Let K = Q(α), and let f be the minimum polynomial of α. We can also view
⟨σ⟩ as acting on the set of n roots of f in ˆ︂K. By definition of H, we have
that σα = σ′α if and only if σH = σ′H. It follows that the orbit sizes of ⟨σ⟩
acting on X are the same as the orbit sizes of ⟨σ⟩ acting on the roots of f ,
which in turn are the cycle lengths of σ viewed as a permutation on the n
roots of f in ˆ︂K. The set of σ ∈ G with cycle lengths (a1, . . . , ar) is a union⋃︁s
i=1 Ci of conjugacy classes Ci. We may now apply Lemma 5.8.2 to each of

these conjugacy classes separately. Putting everything together, we have the
following result on densities of splitting types in non-Galois extensions.

Lemma 5.8.5. Let K be a number field of degree n over Q, and let ˆ︂K denote
its Galois closure. Let G = Gal(ˆ︂K/Q), viewed as a permutation group on the
n roots of the minimum polynomial of K in ˆ︂K. For a partition a = (a1, . . . , ar)
of n, let P(a) denote the set of primes with splitting type a in K/Q, and let
T (a) denote the proportion of elements of G with cycle shape a. Then for any
A ⩾ 1,

#{p ∈P(a) : p ⩽ x} = π(x)
(︂
T (a) +OA((log x)−A)

)︂
,

where the implied constant depends only on K, a and A.

The quantity T (a) is certainly not a property of G as an abstract group, but
depends on the way we represent G as a permutation group. Care must be
taken to ensure G is viewed as acting on the roots of the minimum polynomial
of K, as the following example demonstrates.

Example 5.8.6. Suppose that K is a biquadratic extension Q(
√
a,
√
b). Then

K is the splitting field of f(t) = (t2 − a)(t2 − b), and the Galois group
G = Gal(K/Q) acts naturally on the roots {√a,−√a,

√
b,−
√
b} of f over Q.

To ease notation, we identify this set with {1, 2, 3, 4}. Viewed as a permutation
group on this set, G ∼= G1 := {id, (12), (34), (12)(34)}.
On the other hand, it is easy to check that K = Q(

√
a +
√
b), and that√

a +
√
b has minimum polynomial g(t) = (t2 − a − b)2 − 4ab, which has

the four roots ±√a ±
√
b. Identifying this set with {1, 2, 3, 4}, we have

G ∼= G2 := {id, (12)(34), (13)(24), (14)(23)}.
Whilst G1, G2 are both isomorphic to the Klein four group C2 × C2, clearly
the cycle shapes in G1 and G2 occur with different frequencies. For example,
G1 features two elements (12) and (34) of cycle shape (2, 1, 1), whilst G2
features none. When applying Lemma 5.8.5, we must use G2. (In general, if
K/Q is Galois of degree n, all splitting types take the form (a, . . . , a) for some
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a | n, which demonstrates that our representation of G as a permutation group
should not feature cycle shapes (2, 1, 1).) We conclude that the splitting types
(1, 1, 1, 1) and (2, 2) appear with density 1/4 and 3/4 respectively in K/Q.

Example 5.8.7. When [K : Q] = n and Gal(ˆ︂K/Q) = Sn, any partition a of
n is realised as the splitting type in K/Q for a positive proportion of primes p,
and by Lemma 5.8.5, this proportion is T (a). We write a = (b1)m1 · · · (bk)mk

for pairwise distinct b1, . . . , bk to mean that a has exactly mi cycles of length
bi for every i. By the well-known formula for the number of permutations with
cycle shape a, we have

T (a) = 1
bm1

1 · · · bmk
k m1! · · ·mk!

. (5.8.1)

Example 5.8.8. We end this section with one more example, which we shall
return to in Chapter 8. Let q be a prime and let K = Q(21/q). Then K/Q
has degree q, and the minimum polynomial of 21/q is xq − 2. The extension
K/Q is not Galois, and so we now compute G = Gal(ˆ︂K/Q). The roots of
xq − 2 are {β, βω, . . . , βωq−1}, where ω is a primitive qth root of unity and
β is the real root of xq − 2. We identify these roots with {0, . . . , q − 1} in
the obvious way. An element σ ∈ G is determined by the image of 0 and 1,
since β, βω multiplicatively generate all the other roots. Therefore, σ takes
the form σa,b : x ↦→ ax + b for some a ∈ F×

q , b ∈ Fq. Conversely, the maps
σ1,b correspond to the q different embeddings K ↪→ ˆ︂K, and the maps σa,0
for a ∈ F×

q are elements of Gal(ˆ︂K/K) ⩽ G. Combining these, we see that
σa,b ∈ G for any a ∈ F×

q , b ∈ Fq. We conclude that G ∼= AGL(1, q), the group
of affine linear transformations on Fq.

When a = 1 and b = 0, σa,b is the identity. When a = 1 and b ̸= 0, σa,b
is a q-cycle. In the remaining case a ̸= 1, the equation ax + b = x has a
unique solution x ∈ Fq, and so σa,b has one fixed point, which we denote
by r. The subgroup Gr of G consisting of those σa,b which fix r is a cyclic
group of order q − 1 acting on {0, . . . , q − 1}\{r}. (This can be proven
directly, or alternatively by applying the fundamental theorem of Galois theory,
which tells us that Gr = Gal(ˆ︂K/Q(βωr)).) Let φ denote the Euler totient
function. We recall that a cyclic group of order k has φ(d) elements of order
d for every d | k. Therefore, the number of elements of Gr with cycle shape
(d, . . . , d) = (d)(q−1)/d is φ(d) for every d | (q − 1). Applying Lemma 5.8.5, we
deduce the following densities of splitting types in K/Q.
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Splitting type Density
(1, . . . , 1) 1/q(q − 1)

(q) 1/q
(1, d, . . . , d) for d | (q − 1), d > 1 φ(d)/q

Table 5.2: Distribution of splitting types in Q(21/q)/Q

We remark that the number 2 can be replaced by any positive integer r such
that xq−r is irreducible in the above example, and the Galois group and density
of splitting types remain unchanged. A necessary and sufficient condition for
irreducibility of xq − r is given in [74, Theorem 8.16].

5.9 A level of distribution result
Crucial to the success of the beta sieve in proving Theorems 5.7.1 and 5.7.2
is a good level of distribution result, which provides an approximation of the
quantities

#{(a, b) ∈ BN ∩ Z2 : p | fi(a, b), d | f(a, b)}

by multiplicative functions, at least on average over p and d. (Here, and
throughout this section, we adopt the notation from Section 5.7.) In this
section, we provide such an estimate, following similar arguments to [40, Lemma
3.3], which were developed by Daniel in order to study the divisor function on
binary forms. We slightly generalise the setup as follows:

Let g1, g2 be binary forms with nonzero discriminants. Throughout this section,
we fix S,∆, a0 and b0, and denote the congruence condition a ≡ a0, b ≡
b0 (mod ∆) by C(a, b). We also assume that S contains all primes dividing
the discriminants of g1 and g2. All implied constants are allowed to depend
only on the degrees of g1 and g2 and on ϵ.

Let R be a compact region of R2 whose boundary is a continuous closed curve
with piecewise continuous derivatives. In this section, in all maximums involving
R, it is assumed that R satisfies these properties. For d1, d2 ∈ N, we define

R(d1, d2) = #{(a, b) ∈ R ∩ Z2 : C(a, b), d1 | g1(a, b), d2 | g2(a, b)}, (5.9.1)
ϱ(d1, d2) = #{(a, b) (mod d1d2) : d1 | g1(a, b), d2 | g2(a, b)}. (5.9.2)

We denote by Vol(R) and P (R) the volume and perimeter of R respectively. In
what follows, we let d = d1d2, and we assume that gcd(d1, d2) = gcd(d,∆) = 1.
The main aim of this section is to prove the following proposition.
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Proposition 5.9.1. For any D1, D2 > 0 and any ϵ > 0, we have

∑︂
d1⩽D1,d2⩽D2

gcd(d1,d2)=gcd(d,∆)=1

max
P (R)⩽N

⃓⃓⃓⃓
⃓R(d1, d2)−

ϱ(d1, d2) Vol(R)
d2∆2

⃓⃓⃓⃓
⃓

≪ (D1D2)ϵ(D1D2 +N(D1D2)1/2 +ND2).

We obtain the following level of distribution result.

Corollary 5.9.2. Let B ⊆ [−1, 1]2 be as in Section 5.7, and let R = BN .
Then for any ϵ > 0, there exists δ > 0 such that for any D1, D2 > 0 with
D2 ≪ N1−ϵ and D1D2 ≪ N2−ϵ , we have

∑︂
d1⩽D1,d2⩽D2

gcd(d1,d2)=gcd(d,∆)=1

⃓⃓⃓⃓
⃓R(d1, d2)−

N2ϱ(d1, d2) Vol(B)
d2∆2

⃓⃓⃓⃓
⃓ ≪ N2−δ. (5.9.3)

Proposition 5.9.1 and Corollary 5.9.2 are generalisations of Irving’s results from
[69, Section 3], which can be recovered by taking g1(x, y) = f(x, y) to be
the cubic form Irving considered, and g2(x, y) = yf(x, y). We remark that
Daniel’s argument from [40, Lemma 3.3] on which our method of proof is based
is more delicate, keeping track of powers of logN in place of factors of N ϵ,
and Corollary 5.9.2 could be similarly refined. However, this does not appear to
yield any advantage for our applications in Chapter 8.
We now commence with the proof of Proposition 5.9.1. We introduce the
quantities R∗(d1, d2) and ϱ∗(d1, d2), which are defined similarly to R(d1, d2) and
ϱ(d1, d2) but with the added condition gcd(a, b, d) = 1. We write (a1, b1) ∼
(a2, b2) if there exists an integer λ such that (a1, b1) ≡ λ(a2, b2) (mod d).
This forms an equivalence relation on points (a, b) ∈ Z2 with gcd(a, b, d) = 1.
Moreover, the properties g1(a, b) ≡ 0 (mod d1) and g2(a, b) ≡ 0 (mod d2) are
preserved under this equivalence. We may therefore define

U (d1, d2) =

⎧⎨⎩a, b (mod d) :
gcd(a, b, d) = 1
d1 | g1(a, b), d2 | g2(a, b)

⎫⎬⎭
/︄
∼ .

For C ∈ U (d1, d2), we define

Λ(C ) = {y ∈ Z2 : y ≡ λ(a, b) (mod d) for some (a, b) ∈ C , λ ∈ Z}.

It is easy to check that Λ(C ) is a lattice in Z2, and its set of primitive points is
C . For e ∈ Z, we define

Λ(C , e) = {(a, b) ∈ Λ(C ) : e | gcd(a, b)}.
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By Möbius inversion, we have

R∗(d1, d2) =
∑︂

C ∈U (d1,d2)

∑︂
e|d
µ(e)#{(a, b) ∈ R ∩ Λ(C , e) : C(a, b)}.

Since gcd(d,∆) = 1, the set {(a, b) ∈ Λ(C , e) : C(a, b)} is a coset of the
lattice Λ(C , e∆), which has determinant de∆2. Therefore,

R∗(d1, d2) =
∑︂

C ∈U (d1,d2)

∑︂
e|d
µ(e)

(︄
Vol(R)
de∆2 +O

(︄
1 + P (R)

R1(C )

)︄)︄
, (5.9.4)

where R1(C ) denotes the length of the shortest nonzero vector in Λ(C ). Each
equivalence class C ∈ U (d1, d2) consists of φ(d) elements, and so

∑︂
C ∈U (d1,d2)

∑︂
e|d

µ(e)
e

=
∑︂

C ∈U (d1,d2)

φ(d)
d

= ϱ∗(d1, d2)
d

.

Moreover, we have #U (d1, d2) ≪ dϵ, as we now explain. We observe that
#U (d1, d2) = ϱ∗(d1, d2)/φ(d), and ϱ∗ is multiplicative by the Chinese remain-
der theorem. For primes p /∈ S, we may apply Hensel’s lemma to show that
ϱ∗(pe, 1), ϱ∗(1, pe) = O(pe) for any integer e ⩾ 1. Therefore, by the trivial
bound for the divisor function, we conclude that

#U (d1, d2) = ϱ∗(d1, d2)
φ(d) ≪ d1+ϵ

φ(d) ≪ dϵ. (5.9.5)

Applying (5.9.4), and (5.9.5), we obtain

∑︂
d1⩽D1,d2⩽D2

gcd(d1,d2)=gcd(d,∆)=1

max
P (R)⩽N

⃓⃓⃓⃓
⃓R∗(d1, d2)−

ϱ∗(d1, d2) Vol(R)
d2∆2

⃓⃓⃓⃓
⃓

≪ϵ (D1D2)ϵ

⎛⎜⎜⎜⎝D1D2 +N
∑︂

d1⩽D1,d2⩽D2
gcd(d1,d2)=gcd(d,∆)=1

∑︂
C ∈U (d1,d2)

R1(C )−1

⎞⎟⎟⎟⎠ .
(5.9.6)

Let v1(C ) denote a shortest nonzero vector of Λ(C ), and let ∥ · ∥ be the usual
Euclidean norm. Then ∥v1(C )∥2 ≪ | det Λ(C )| = d ⩽ D1D2. Therefore,

∑︂
d1⩽D1,d2⩽D2

gcd(d1,d2)=gcd(d,∆)=1

∑︂
C ∈U (d1,d2)

R1(C )−1 ≪
∑︂

0<a2+b2≪D1D2

M(a, b)√
a2 + b2

, (5.9.7)

where

M(a, b) = #

⎧⎨⎩ d1 ⩽ D1, d2 ⩽ D2,C ∈ U (d1, d2) :
gcd(d1, d2) = gcd(d,∆) = 1, v1(C ) = (a, b)

⎫⎬⎭ .
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For any d1, d2 enumerated by M(a, b), we have d1 | g1(a, b) and d2 | g2(a, b),
so

M(a, b) ⩽ #{d1 ⩽ D1, d2 ⩽ D2 : d1 | g1(a, b), d2 | g2(a, b)}.

Since g1 contains no linear factors, we know that g1(a, b) ̸= 0 whenever
(a, b) ̸= (0, 0). Suppose in addition that g2(a, b) ̸= 0. Then by the trivial bound
for the divisor function we have M(a, b)≪ (D1D2)ϵ. We deduce that

∑︂
0<a2+b2≪D1D2

g2(a,b)̸=0

M(a, b)√
a2 + b2

≪ (D1D2)ϵ
∑︂

0<a2+b2≪D1D2

1√
a2 + b2

≪ (D1D2)1/2+ϵ.

Now suppose that g2(a, b) = 0. Then as above, we have O(Dϵ
1) choices for d1,

but now D2 choices for d2, so that M(a, b)≪ Dϵ
1D2. We obtain

∑︂
0<a2+b2≪D1D2

g2(a,b)=0

M(a, b)√
a2 + b2

≪ Dϵ
1D2

∑︂
0<a2+b2≪D1D2

g2(a,b)=0

1√
a2 + b2

.

For a fixed b ̸= 0, g2(a, b) is a nonzero polynomial in a, and so has O(1) roots.
Therefore

∑︂
0<a2+b2≪D1D2

g2(a,b)=0

1√
a2 + b2

=
∑︂

0<a2+b2≪D1D2
b ̸=0

g2(a,b)=0

1√
a2 + b2

+
∑︂

0<a2≪D1D2
g2(a,0)=0

1
a

≪
∑︂

b≪
√
D1D2

1
b

+
∑︂

a≪
√
D1D2

1
a

≪ (D1D2)ϵ.

To summarize, we have established the following generalisation of [69, Lemma
3.2].

Lemma 5.9.3. For any D1, D2 > 0 and any ϵ > 0, we have

∑︂
d1⩽D1,d2⩽D2

gcd(d1,d2)=gcd(d,∆)=1

max
P (R)⩽N

⃓⃓⃓⃓
⃓R∗(d1, d2)−

ϱ∗(d1, d2) Vol(R)
d2∆2

⃓⃓⃓⃓
⃓

≪ (D1D2)ϵ(D1D2 +N(D1D2)1/2 +ND2).

Now we remove the restriction gcd(a, b, d) = 1. Below we write R(d1, d2) =
R(R, d1, d2;C(a, b)) in order to make the dependence on R and C(a, b) clear.
Let k1 = deg g1 and k2 = deg g2. We work with multiplicative functions ψk for
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k = k1 and k = k2, which map prime powers pr to p⌈r/k⌉. We follow the same
argument as Irving, but with ψk1 , ψk2 in place of ψ3, ψ4. The motivation for
this definition of ψk comes from the fact that for any integers d, e, k ⩾ 1 with
e | ψk(d), and for any prime p, we have

p | ψk(d)
e

⇐⇒ p | d

gcd(d, ek) . (5.9.8)

Since gcd(d1, d2) = 1, we have

R(R, d1, d2;C(a, b)) =
∑︂

e1|ψk1 (d1)
e2|ψk2 (d2)

N(d1, d2, e1, e2), (5.9.9)

where

N(d1, d2, e1, e2) = #
{︄

(a, b) ∈ R ∩ Z2 :
C(a, b), d1 | g1(a, b), d2 | g2(a, b),
gcd(a, b, ψk1(d1)ψk2(d2)) = e1e2

}︄
.

(5.9.10)
We make a change of variables a′ = a/e1e2, b

′ = b/e1e2 in (5.9.10). Let e1e2
denote the multiplicative inverse of e1e2 modulo ∆, which exists due to the
assumption gcd(d1d2,∆) = 1. The congruence condition C(a, b) is equivalent
to the congruence condition a′ ≡ e1e2a0 (mod ∆) and b′ ≡ e1e2 (mod ∆),
which we denote by C ′(a′, b′). We have

d1 | g1(a, b) ⇐⇒ d1 | (e1e2)k1g1(a′, b′)
⇐⇒ d1 | ek1

1 g1(a′, b′)

⇐⇒ d1

gcd(d1, e
k1
1 )
| g1(a′, b′),

and similarly for d2 | g2(a, b). For convenience, we define

f1 = d1

gcd(d1, e
k1
1 )
, f2 = d2

gcd(d2, e
k2
2 )
.

changing notation from a′, b′ back to a, b, we deduce that N(d1, d2, e1, e2) can
be rewritten as

#

⎧⎨⎩(a, b) ∈ R/(e1e2) ∩ Z2 :
C ′(a, b), f1 | g1(a, b), f2 | g2(a, b),
gcd(a, b, ψk1(d1)ψk2(d2)) = 1

⎫⎬⎭
= #

⎧⎨⎩(a, b) ∈ R/(e1e2) ∩ Z2 :
C ′(a, b), f1 | g1(a, b), f2 | g2(a, b),
gcd(a, b, f1f2) = 1

⎫⎬⎭ .
= R∗ (R/(e1e2), f1, f2;C ′(a, b)) . (5.9.11)
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The above arguments, but with the congruence conditions removed, and with
the specific choice R = [0, d1d2]2 also demonstrate that ϱ(d1, d2) is equal to

∑︂
e1|ψk1 (d1)
e2|ψk2 (d2)

#

⎧⎨⎩(a, b) ∈ R/(e1e2) ∩ Z2 :
f1 | g1(a, b), f2 | g2(a, b),
gcd(a, b, ψk1(d1)ψk2(d2)) = 1

⎫⎬⎭
=

∑︂
e1|ψk1 (d1)
e2|ψk2 (d2)

(︄
d1d2

e1e2f1f2

)︄2

ϱ∗(f1, f2). (5.9.12)

We denote the quantity

R∗(R/(e1e2), f1, f2;C ′(a, b))− Vol(R/(e1e2))ϱ∗(f1, f2)
(f1f2∆)2

by E(e1, e2, f1, f2). Combining (5.9.9), (5.9.11) and (5.9.12), we have

∑︂
d1⩽D1,d2⩽D2

(d1,d2)=(d1d2,∆)=1

max
P (R)⩽N

⃓⃓⃓⃓
⃓R(R, d1, d2)−

ϱ(d1, d2) Vol(R)
(d1d2∆)2

⃓⃓⃓⃓
⃓

=
∑︂

d1⩽D1,d2⩽D2
(d1,d2)=(d1d2,∆)=1

max
P (R)⩽N

∑︂
e1|ψk1 (d1)
e2|ψk2 (d2)

|E(e1, e2, f1, f2)| (5.9.13)

⩽
∑︂

e1⩽D1,e2⩽D2

∑︂
f1⩽D1/e1,f2⩽D2/e2
(f1,f2)=(f1f2,∆)=1

δ(e1, f1)δ(e2, f2) max
P (R)⩽N

|E(e1, e2, f1, f2)| ,

(5.9.14)

where for integers e, f, k,D ⩾ 1, we have defined

δ(e, f) = #
{︄
d ⩽ D : e | ψk(d), f = d

gcd(d, ek)

}︄
.

We claim that δ(e, f) ≪ eϵ. To see this, suppose that p is a prime and let
r = νp(d), s = νp(e) and t = νp(f). There is a unique choice of r for a given
k, s and t provided that t > 0, namely, r = ks+ t. If t = 0, then we deduce
from f = d/ gcd(d, ek) that r ⩽ ks. Taking a product over primes, we conclude
that each d enumerated by δ(e, f) is a divisor of ek multiplied by a quantity
that is uniquely determined by e and f . The claim follows, since the number
of divisors of ek is O(eϵ). In our situation, where e1 ⩽ D1 and e2 ⩽ D2, we
obtain δ(e1, f1)δ(e2, f2)≪ (D1D2)ϵ. Therefore, applying Lemma 5.9.3 for each
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choice of e1, e2 in (5.9.14), we conclude that

∑︂
d1⩽D1,d2⩽D2

(d1,d2)=(d1d2,∆)=1

max
P (R⩽N)

⃓⃓⃓⃓
⃓R(R, d1, d2)−

ϱ(d1, d2) Vol(R)
(d1d2∆)2

⃓⃓⃓⃓
⃓

≪ (D1D2)ϵ
∑︂
e1⩽D1
e2⩽D2

(︄
D1D2

e1e2
+N

(︃
D1D2

e1e2

)︃1/2
+ ND2

e2

)︄

≪ (D1D2)ϵ
(︂
D1D2 +N(D1D2)1/2 +ND2

)︂
,

which completes the proof of Proposition 5.9.1.

Remark 5.9.4. If g2(a, b) ̸= 0 for all (a, b) ̸= (0, 0), then we do not need to
consider the case g2(a, b) = 0 in the analysis of the sum in (5.9.7), and so in our
final level of distribution result, we do not require the assumption D2 ≪ N1−ϵ.

When g1(a, b) does contain linear factors, we can still obtain a basic level of dis-
tribution result from the above argument using the trivial estimate R1(C )−1 ⩽ 1
in (5.9.6). This establishes the following lemma.

Lemma 5.9.5. Let g1, g2 be arbitrary binary forms with nonzero discriminant.
Then for any ϵ > 0, there exists δ > 0 such that for any D1, D2 > 0 with
D1D2 ≪ N1−ϵ , we have

∑︂
d1⩽D1,d2⩽D2

gcd(d1,d2)=gcd(d,∆)=1

max
P (R)⩽N

⃓⃓⃓⃓
⃓R(d1, d2)−

ϱ(d1, d2) Vol(R)
d2∆2

⃓⃓⃓⃓
⃓ ≪ N2−δ.
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CHAPTER 6
Sums of four squareful numbers

6.1 Introduction
This chapter is devoted to the quantitative study of the Campana points
(P2,D)(Z), where D = ∑︁4

i=1
1
2Di with hyperplane divisors

D1 = {z1 = 0}, D2 = {z2 = 0}, D3 = {z3 = 0}, D4 = {z1 + z2 + z3} = 0,

and D is the obvious integral model of D over Z. We shall count points on
this orbifold with respect to the height H : P2(Q)→ R⩾0 given by

H(z) = max{|z1|, |z2|, |z3|, |z1 + z2 + z3|}

for (z1, z2, z3) ∈ Z3
prim representing z. As discussed in the Introduction, this

problem provides the best approximation to a major open question of Poonen
[98] concerning Campana points on the orbifold (P1, 1

2 [0] + 1
2 [1] + 1

2 [∞]).
We recall that a nonzero integer n is squareful if for any prime p | n, we also
have p2 | n. We have

#{P ∈ (P2,D)(Z) : H(P ) ⩽ B} = 1
2#N4(B), (6.1.1)

where

#N4(B) = #
{︄

z ∈ (Z̸=0)4
prim : |zi| ⩽ B, zi squareful for all i,

4∑︂
i=1

zi = 0
}︄

(6.1.2)
is as defined in (1.2.2). To explain the factor 1/2 in (6.1.1), we let z1, z2, z3 be
coordinates on P2, and define an additional variable z4 := z1 + z2 + z3. The
Campana condition requires that z1, z2, z3 and z1 +z2 +z3 = z4 are all squareful
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6. Sums of four squareful numbers

for a representative (z1, z2, z3) ∈ Z3
prim. We note that (z1, z2, z3) ∈ Z3

prim if
and only if (z1, . . . , z4) ∈ Z4

prim. Therefore, there is a 2-1 map

φ : N4(B)→ {z ∈ (P2,D)(Z) : H(z) ⩽ B}
(z1, . . . , z4) ↦→ [z1 : z2 : z3].

(6.1.3)

We recall from (1.2.3) the notation

T = {(z1, . . . , z4) ∈ Z4
prim : z1 · · · z4 = □}, (6.1.4)

where n = □ means that n = m2 for some m ∈ Z. We define

N(B) = #(N4(B)\T ). (6.1.5)

The main aim of this chapter is to prove the Theorem D, which we recall here
for convenience.

Theorem 6.1.1. We have

N(B) = cB +O(B734/735+ϵ), (6.1.6)

where the implied constant depends only on ϵ, and c is a positive constant
given explicitly in (6.5.9) and Lemma 6.6.1.

We shall demonstrate in Section 6.2 that Theorem 6.1.1 is compatible in the
power of B and logB with the PSTV-A conjecture (Conjecture 3.0.8). We
gave a sketch proof of Theorem 6.1.1 in Section 4.5, which involved applying
Lemma 3.3.1 to obtain a decomposition

N(B) = 1
16

∑︂
y∈(Z ̸=0)4

y1,...,y4 squarefree
y1···y4 ̸=□

Ny(B), (6.1.7)

where

Ny(B) = #

⎧⎨⎩x ∈ (Z̸=0)4 :
4∑︂
i=1

y3
i x

2
i = 0,

gcd(x1y1, . . . , x4y4) = 1
max1⩽i⩽4 |y3

i x
2
i | ⩽ B

⎫⎬⎭ .
In Section 6.3, we deal with the large coefficients y via an elementary argument.
The technical heart of this chapter lies in Section 6.4, where we prove Theorem
4.5.1 by applying the delta method to count points on diagonal quadrics in P3

with a good explicit dependence on the coefficients. We recall from (4.5.4) that

Na(B) = #
{︃

x ∈ (Z̸=0)4 : Fa(x) = 0, max
1⩽i⩽4

|aix2
i | ⩽ B

}︃
, (6.1.8)
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6.2. Compatibility with the PSTV-A conjecture

where we have introduced the notation

Fa(x) :=
4∑︂
i=1

aix
2
i

for a vector a = (a1, . . . , a4) ∈ (Z ̸=0)4. In Section 6.5, we complete the proof of
Theorem 6.1.1 by applying Theorem 4.5.1 together with an inclusion-exclusion
argument in order to reinsert the condition gcd(x1y1, . . . , x4y4) = 1. Finally, in
Section 6.6, we discuss the leading constant c obtained in Theorem 6.1.1.

Several authors have previously studied rational points of bounded height on
quadratic forms with an aim to provide estimates in which the dependence on the
coefficients is made explicit. Browning [10, Theorem 2] applies the machinery
from [61] to find such an estimate for the counting problem corresponding to
Na(B), but in n ⩾ 5 variables. Subsequently, Browning and Heath-Brown [17,
Theorem 4.1] carried this out in 4 variables. This latter result is nearly sufficient
for our purposes, but Theorem 4.5.1 represents a refinement in which we drop
the assumptions made in [17, Theorem 4.1] that A is nearly squarefree and
all the coefficients a1, . . . , a4 are roughly the same size. Finally, we mention
that using other techniques from the geometry of numbers, Comtat provides
in [39, Theorem 1.2] a completely uniform estimate for the number of zeros
(x1, . . . , xn) ∈ Znprim of a non-singular quadratic form Q in n ⩾ 3 variables
which lie in an arbitrary box |xi| ⩽ Bi for i ∈ {1, . . . , n}. However, the resulting
bound Na(B) ⩽ B/|A|1/4 does not have a good enough dependence on A to
be useful for our purposes.

Notation
We write e(·) for the function e2πi(·) and eq(·) for the function e2πi(·)/q. We
use boldface letters to denote vectors with four components, for example
z = (z1, . . . , z4). For a vector v, we define |v| = max1⩽i⩽4 |vi|. We write “M
dyadic” under a summation to indicate that the sum is over integers of the
form M = 2k for k ∈ N.

Acknowledgements. The author is grateful to Tim Browning for suggesting
this project and for helpful feedback and guidance during the development of
this work.

6.2 Compatibility with the PSTV-A conjecture
We now discuss the compatibility of Theorem 6.1.1 with the PSTV-A conjecture
(Conjecture 3.0.8). We begin by computing the constants a and b from
Conjecture 3.0.8. We let [L] denote the hyperplane class corresponding to
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6. Sums of four squareful numbers

the line bundle L , and [KP2 ] the canonical divisor class. We recall that
PicP2 ∼= Z, with the isomorphism given by the degree. We have deg([L]) = 1,
deg([KP2 ]) = −3 and deg([D]) = 4 · 1

2 = 2. Therefore,

a = inf{t ∈ R : t[L] + [KP2 ] + [D] ∈ Λeff}
= inf{t ∈ R : t− 3 + 2 ⩾ 0}
= 1.

The minimal supported face of Λeff which contains a[L] + [KP2 ] + [D] = [0]
is {0}, which has codimension 1 in Λeff , so b = 1. Conjecture 3.0.8 therefore
predicts that there is a thin set of Campana points Z ⊆ (P2,D)(Z), such that

#{P ∈ (P2,D)(Z)\Z : H(P ) ⩽ B} ∼ cPSTV-AB

for some constant cPSTV-A > 0. Theorem 6.1.1 is therefore consistent in the
power of B and logB with the PSTV-A conjecture, after removing the thin set
Z = φ(T ) ∩ (P2,D)(Z), where φ and T are defined in (6.1.3) and (6.1.4).
This choice of Z does indeed define a thin set. This is a special case of [96,
Lemma 3.10], but we include a more direct argument here for completeness.

Lemma 6.2.1. Let φ and T be defined as in (6.1.3) and (6.1.4) respectively.
Then φ(T ) ∩ (P2,D)(Z) is a thin set of Campana points in (P2,D)(Z).

Proof. It suffices to show that φ(T ) is a thin set in P2(Q). By abuse of notation,
we view T as a subset of P3(Q) via the map (z1, . . . , z4) ↦→ [z1 : · · · : z4]. We
begin by showing that T is a thin subset of P3(Q). Consider the weighted
projective space PQ(2, 1, 1, 1, 1) with variables t, z1, . . . , z4. (We refer the reader
to [68] for the basic definitions pertaining to weighted projective spaces.) We
have an embedding

ν : P(2, 1, 1, 1, 1) ↪→ P10

[t : z1 : · · · : z4] ↦→ [t : z2
1 : z1z2 : · · · : z2

4 ],

which on the zi-variables is the Veronese embedding of degree 2. The polynomial
f(t, z1, . . . , z4) := t2 − z1z2z3z4 is weighted homogeneous of degree 4, and
defines a subvariety V of P(2, 1, 1, 1, 1). Let Y ⊆ P10 denote the image of ν
and write t, y11, . . . , y44 for variables on P10. Then ν(V ) is a hypersurface of
Y defined by the equation t2 = y12y34. From this we see that V is integral,
projective and of dimension 3.

Consider the morphism π : V → P3 given by [t : z1 : · · · z4] → [z1 : · · · : z4].
This is étale of degree 2 on the open subset V ′ of V defined by z1 · · · z4 ̸= 0.
The set W ⊆ P3(Q) defined by the equation z1 · · · z4 = 0 is a type I thin set,
and T = π(V ′(Q)) ∪W , so we deduce that T is thin in P3(Q).
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We can now show that φ(T ) is thin in P2(Q). To do this, we intersect P3, V ′

and W with the hyperplane H defined by the equation z1 + z2 + z3 = z4. The
map π is ramified along the set W , which is a union of hyperplanes Hi given by
{zi = 0}. Since the intersection of H with the Hi is smooth and transversal,
it follows from [104, Section 9.4] that π([V ′(Q) ∩ H(Q)] ∪ [W ∩ H(Q)]) is
thin in H(Q). The image of this set under the obvious isomorphism H ∼= P2

sending [z1 : · · · : z4] to [z1 : z2 : z3] is precisely φ(T ), so we conclude that
φ(T ) is a thin set in P2(Q).

The leading constant c from Theorem 6.1.1 is discussed in Section 6.5. However,
in the light of Chapter 7, we do not expect the leading constant to agree with
the prediction from the PSTV-A conjecture without the removal of further thin
sets.

6.3 Dealing with the large coefficients
Given a nonzero squareful number zi, we let xi, yi denote the unique integers
such that xi ∈ N, yi ∈ Z is squarefree, and zi = y3

i x
2
i , as obtained from Lemma

3.3.1. We shall also use the notation Y = y1 · · · y4. For B,D ⩾ 1, we define

M(B,D) = #

⎧⎨⎩z ∈ (Z̸=0)4
prim :

∑︁4
i=1 zi = 0, zi squareful for all i,
|z| ⩽ B, |Y | ⩾ D

⎫⎬⎭ .
The aim of this section is to prove the following upper bound.

Proposition 6.3.1. We have M(B,D) = O(B1+ϵD−1/12).

The key result in the proof of Proposition 6.3.1 is the following upper bound
for the quantity

N(X,Y ) = #

⎧⎨⎩x,y ∈ (Z̸=0)4 :
y1, . . . , y4 squarefree,∑︁4

i=1 x
2
i y

3
i = 0,

|xi| ⩽ Xi, |yi| ⩽ Yi for all i

⎫⎬⎭ .
Proposition 6.3.2. We have

N(X,Y ) = O((X1 · · ·X4)1/2+ϵ(Y1 · · ·Y4)2/3+ϵ).

We explain how to deduce Proposition 6.3.1 from Proposition 6.3.2. We define

M1(B; R) = #

⎧⎨⎩z ∈ (Z̸=0)4 :
∑︁4
i=1 zi = 0, zi squareful for all i,
|zi| ⩽ B,Ri ⩽ |yi| < 2Ri for all i

⎫⎬⎭ .
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Then
M(B,D)≪

∑︂
R1,...,R4 dyadic
R1···R4≫D

M1(B; R). (6.3.1)

We observe that the conditions |z| ⩽ B and Ri ⩽ |yi| imply that |xi|2 ⩽ B/R3
i .

Consequently,

M1(B; R) ⩽ N

(︄(︄√︄
B

R3
1
, . . . ,

√︄
B

R3
4

)︄
, (2R1, . . . , 2R4)

)︄
.

Applying Proposition 6.3.2, we obtain

M1(B; R)≪ B1+ϵ(R1 · · ·R4)−1/12.

We conclude from (6.3.1) that

M(B,D)≪ B1+ϵ ∑︂
R1,...,R4 dyadic
R1···R4≫D

(R1 · · ·R4)−1/12 ≪ B1+ϵD−1/12,

as claimed in Proposition 6.3.1.

Proof of Proposition 6.3.2. For k ∈ {1, . . . , 4}, we define

Sk(α) =
∑︂

xk∈Z̸=0
|xk|⩽Xk

∑︂
yk∈Z ̸=0
|yk|⩽Yk

yk squarefree

e(αx2
ky

3
k).

Then
N(X,Y ) =

∫︂ 1

0

4∏︂
k=1

Sk(α)dα.

By Hölder’s inequality, we have

N(X,Y ) ⩽
(︄ 4∏︂
k=1

∫︂ 1

0
|Sk(α)|4dα

)︄1/4

. (6.3.2)

We fix k ∈ {1, . . . , 4}, and to ease notation we write Xk = X, Yk = Y . Then∫︂ 1

0
|Sk(α)|4dα = N(X, Y ), (6.3.3)

where

N(X, Y ) = #

⎧⎪⎪⎪⎨⎪⎪⎪⎩x,y ∈ (Z̸=0)4 :
y1, . . . , y4 squarefree,
x2

1y
3
1 + x2

2y
3
2 = −(x2

3y
3
3 + x2

4y
3
4)

|x| ⩽ X, |y| ⩽ Y

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
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In view of (6.3.2), the task now is to show that

N(X, Y ) = O(X2+ϵY 8/3+ϵ). (6.3.4)

Throughout the remainder of the argument, we make repeated use of the trivial
estimate for the divisor function, namely that the number of divisors of a positive
integer d is O(dϵ) [56, Section 18.1].

We begin by considering the trivial cases xi = ±xj for some i ̸= j. Without
loss of generality, suppose i = 1, j = 2. We obtain

x2
1(y3

1 + y3
2) = −(x2

3y
3
3 + x2

4y
3
4). (6.3.5)

If both sides of (6.3.5) are zero, then y1 = −y2, since we are assuming x1 ≠ 0.
Hence there are O(XY ) choices for x1, y1, y2. On the right hand side, since
y3, y4 are squarefree, it follows that x3 = ±x4 and y3 = −y4, hence there
are O(XY ) choices for x3, x4, y3, y4. This gives a total of O(X2Y 2) solutions.
If both sides of (6.3.5) are nonzero, then there are O(X2Y 2) choices for
x3, x4, y3, y4. Let n = −(x2

3y
3
3 + x2

4y
3
4) and t = y1 + y2. Then we can rewrite

(6.3.5) as x2
1t(y2

1 − y1y2 − y2
2) = n. There are O(nϵ) = O(XϵY ϵ) choices for

x1, t by the trivial estimate for the divisor function, and if n, x1, t are fixed,
then there are O(1) integers y1, y2 satisfying x2

1t(y2
1 − y1y2 − y2

2) = n and
y1 + y2 = t. Overall, in the case xi = ±xj, we conclude that there are
O(X2+ϵY 2+ϵ) solutions, which is satisfactory for establishing (6.3.4). From
now on we assume xi ̸= ±xj for all i ̸= j.

Returning to the integral representation of N(X, Y ) from (6.3.3), we can apply
the Cauchy–Schwarz inequality in two different ways to |Sk(α)|2. We have

|Sk(α)|2 ⩽ 2X
∑︂

|x|⩽X

⃓⃓⃓⃓
⃓ ∑︂

|y|⩽Y
y squarefree

e(αx2y3)
⃓⃓⃓⃓
⃓
2

= 2X
∑︂

|x|⩽X

∑︂
|y1|,|y2|⩽Y

y1,y2 squarefree

e(αx2(y3
1 − y3

2)),

and similarly,

|Sk(α)|2 ⩽ 2Y
∑︂

|y|⩽Y
y squarefree

∑︂
|x1|,|x2|⩽X

e(αy3(x2
1 − x2

2)).

Applying these inequalities once each to |Sk(α)|4, we obtain

N(X, Y ) ⩽ 4XY L(X, Y ), (6.3.6)
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where

L(X, Y ) = #

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(x, x1, x2, y, y1, y2) ∈ (Z ̸=0)6 :
|x|, |x1|, |x2| ⩽ X

|y|, |y1|, |y2| ⩽ Y and y, y1, y2 squarefree
x2(y3

1 − y3
2) = y3(x2

1 − x2
2)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

It will be convenient to work with the quantity L(X, Y, U) defined to be
L(X, Y ) but with the additional assumption U/2 < |x| ⩽ U , which we denote
by |x| ∼ U . we shall then perform a sum over dyadic intervals for U ⩽ 2X at
the end of the argument. We also need to extract from L(X, Y, U) the greatest
common divisor k = gcd(x, y). Note that since y is squarefree, so is k. Hence

L(X, Y, U) =
∑︂

k⩽min(U,Y )
µ2(k)Lk(X, Y, U),

where

Lk(X, Y, U) = #

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, x1, x2, y, y1, y2) ∈ (Z̸=0)6 :
|x| ∼ U/k, |x1|, |x2| ⩽ X,

|y| ⩽ Y/k, |y1|, |y2| ⩽ Y, and y, y1, y2 squarefree,
gcd(x, y) = 1,
x2(y3

1 − y3
2) = ky3(x2

1 − x2
2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We now obtain two different estimates for Lk(X, Y, U), depending on the size
of k. Our first estimate is suitable for large values of k.
We have ky3(x2

1 − x2
2) ̸= 0, since y ̸= 0, and the cases x1 = ±x2 have

already been dealt with above. Consequently, for any fixed x, y1, y2, k, there
are O((XY )ϵ) choices for y, x1, x2 such that x2(y3

1 − y3
2) = ky3(x2

1 − x2
2), by

the trivial estimate for the divisor function. Therefore

Lk(X, Y, U)≪ (XY )ϵA(k), (6.3.7)
where

A(k) = #{|x| ∼ U/k, |y1|, |y2| ⩽ Y : k|x2(y3
1 − y3

2)}.

Now k|x2(y3
1 − y3

2) implies that there exist integers d, r with dr = k, such that
d|x2 and r|(y3

1 − y3
2). Observe that since k is squarefree, d|x2 if and only if d|x.

Defining

N(r) = #{y1, y2 ⩽ Y : r|(y3
1 − y3

2)},
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6.3. Dealing with the large coefficients

we therefore have

A(k) ⩽
∑︂
d,r
dr=k

∑︂
|x|∼U/k
d|x

N(r)≪ U
∑︂
d,r
dr=k

N(r)
dk

. (6.3.8)

Note that r ⩽ k ⩽ Y , so N(r)≪ Y 2ϱ(r)/r2, where we have defined

ϱ(r) = #{η1, η2 (mod r) : η3
1 ≡ η3

2}.

It is easy to see that ϱ(r) ≪ r1+ϵ for any sqaurefree integer r. Indeed, for a
prime p and a fixed η1 (mod p), there are at most 3 choices for η2 (mod p)
such that η3

1 ≡ η3
2 (mod p), and so ϱ(p) ⩽ 3p. Since r is squarefree and ϱ is

multiplicative, it follows from the Chinese Remainder theorem that

ϱ(r) =
∏︂
p|r
ϱ(p) ⩽

∏︂
p|r

3p≪ r1+ϵ.

Applying this bound on ϱ(r), we conclude that N(r) ≪ Y 2/r1−ϵ ≪ Y 2+ϵ/r,
and hence from (6.3.7) and (6.3.8) we obtain

Lk(X, Y, U)≪ (XY )ϵU
k

∑︂
d,r
dr=k

Y 2+ϵ

dr
≪ XϵY 2+ϵU

k2 . (6.3.9)

We now find a different estimate for when k is small. If (x, y) = 1 and
x2(y3

1 − y3
2) = ky3(x2

1 − x2
2), then x2|k(x2

1 − x2
2), so we may define the integer

u = k(x2
1 − x2

2)/x2. Note u ̸= 0 by the assumption x1 ̸= ±x2. We have
|u| ≪ kX2/(U/k)2 = k3X2/U2. Therefore

Lk(X, Y, U)≪
∑︂

|u|≪ k3X2
U2

u̸=0

∑︂
|x|∼U/k

|x1|,|x2|⩽X
k(x2

1−x2
2)=ux2

∑︂
|y|⩽Y/k
y ̸=0

|y1|,|y2|⩽Y
uy3=y3

1−y3
2

1. (6.3.10)

For a fixed n = uy3 ̸= 0, there are O(Y ϵ) solutions y1, y2 to y3
1 − y3

2 = n, using
the trivial estimate for the divisor function, and so the inner sum of (6.3.10)
is O(Y 1+ϵ/k). Similarly, for a given |x| ∼ U/k, there are O(Xϵ) choices for
x1, x2 in the middle sum. Hence

Lk(X, Y, U)≪ (XY )ϵ
∑︂

|u|≪ k3X2
U2

u̸=0

UY

k2 ≪
kX2+ϵY 1+ϵ

U
.
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6. Sums of four squareful numbers

Combining this with the estimate in (6.3.9), we obtain

Lk(X, Y, U)≪ XϵY 1+ϵ min
(︄
UY

k2 ,
kX2

U

)︄

⩽ XϵY 1+ϵ
(︃
UY

k2

)︃2/3 (︄kX2

U

)︄1/3

= X2/3+ϵY 5/3+ϵU1/3

k
.

Finally, we take a sum over k ⩽ Y and dyadic intervals U ⩽ 2X to obtain

L(X, Y )≪ X2/3+ϵY 5/3+ϵ ∑︂
U dyadic
U⩽2X

∑︂
k⩽Y

U1/3

k

≪ X1+ϵY 5/3+ϵ.

Recalling (6.3.6), we have established (6.3.4), which from (6.3.2) gives the
required bound for N(X,Y ).

6.4 Application of the circle method
In this section, we use the circle method from [61] to count zeros of diagonal
quadratic forms in four variables, the main goal being the proof of Theorem 4.5.1.
Before proceeding with the proof, we collect together some of the notation
which we shall use throughout this section. Much of the notation depends on a
vector a = (a1, . . . , a4) ∈ (Z̸=0)4, which remains fixed throughout this section.

• Fa(x) denotes the quadratic form ∑︁4
i=1 aix

2
i .

• P = (P1, . . . , P4), where Pi =
√︂

B
|ai| for i ∈ {1, . . . , 4}.

• Na(B) = # {x ∈ (Z̸=0)4 : Fa(x) = 0, |xi| ⩽ Pi}, as defined in (6.1.8).

• A = a1 · · · a4.

• ∆ = ∆(a) = ∏︁4
i=1 gcd

(︂
ai,
∏︁
j ̸=i aj

)︂
.

• ϵ = (ϵ1, . . . , ϵ4) ∈ {±1}4, where ϵi = ai/|ai| is the sign of ai.

• G(x) is the quadratic form ∑︁4
i=1 ϵix

2
i = Fϵ(x).

• η ∈ (0, 1/4) is a small real parameter depending only on a and B.

• w : R4 → R⩾0 is an infinitely differentiable smooth weight function,
which has compact support and satisfies w(x) = 0 for all |x| ⩽ η.
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6.4. Application of the circle method

• w1, w2 are particular choices of such a smooth weight function, con-
structed explicitly in Lemma 6.4.3.

• Q = B1/2, and for a positive integer q, we write r = q/Q.

• c denotes a vector in Z4.

• v = (v1, . . . , v4) is given by vi = q−1Pici.

• Ci = η−1Bϵ|ai|1/2 for i ∈ {1, . . . , 4}.

Definition 6.4.1. The singular integral σ∞(ϵ)|A|−1/2 and the singular series
Ga associated to Fa are given respectively by the equations

σ∞(ϵ) =
∫︂ ∞

−∞

∫︂
[−1,1]4

e(−θG(x)) dx dθ, (6.4.1)

Ga =
∞∑︂
q=1

q−4 ∑︂
k mod q

gcd(k,q)=1

∑︂
b mod q

eq(kFa(b)). (6.4.2)

For convenience we record again here the statement of Theorem 4.5.1.

Theorem 6.4.2. Let a ∈ (Z̸=0)4 be such that A ̸= □ and |A| ⩽ B4/7. Then

Na(B) = Gaσ∞(ϵ)B
|A|1/2 +O

(︄
B41/42+ϵ∆1/3

|A|11/24

)︄
. (6.4.3)

The circle method from [61] makes use of smooth weight functions w : R4 →
R⩾0, which we shall take to approximate the characteristic function on [−1, 1]4.
We introduce a smoothly weighted version of Na(B) given by

Nw,a(B) =
∑︂

x∈(Z̸=0)4

Fa(x)=0

w(P−1
1 x1, . . . , P

−1
4 x4). (6.4.4)

We also introduce a weighted version of σ∞(ϵ) defined by

σ∞(w) =
∫︂ ∞

−∞

∫︂
R4
w(x)e(−θG(x)) dx dθ. (6.4.5)

Whilst the arguments in this section could be applied to quite a general class
of weight functions w, in order to get the power savings in Theorem 6.1.1, we
shall need to keep track of the dependence of our estimates on w. Therefore,
we now construct two explicit weight functions w1, w2 : R4 → R⩾0 that we
shall use in the remainder of the analysis. Let η ∈ (0, 1/4) be a parameter,
which is allowed to depend on a and B. We would like w1, w2 to satisfy the
following properties:
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6. Sums of four squareful numbers

1. For i ∈ {1, 2}, wi is infinitely differentiable, and for any integer N ⩾ 0,
any integers j1, . . . , j4 ⩾ 0 satisfying j1 + · · ·+ j4 ⩽ N , and any x ∈ R4,
we have

∂j1+···+j4

∂xj11 · · · ∂x
j4
4
wi(x)≪N η−N . (6.4.6)

2. w1, w2 vanish in a neighbourhood of the origin, and approximate the
characteristic function on [−1, 1]4. More precisely, w1 is supported on
[−1, 1]4\[−η, η]4 and takes the value 1 on [−1 + η, 1− η]4\[−2η, 2η]4,
whilst w2 is supported on [−1− η, 1 + η]4\[−η, η]4 and takes the value 1
on [−1, 1]4\[−2η, 2η]4.

Lemma 6.4.3. Let η ∈ (0, 1/4). Then there exist functions w1, w2 : R4 → R⩾0
satisfying properties (1) and (2) above.

Proof. Let ∥ · ∥ denote the Euclidean norm. We build w1, w2 from a higher-
dimensional analogue of the standard bump function defined in (4.4.2). Let
ψ : R4 → R⩾0 be given by

ψ(x) =

⎧⎨⎩c exp
(︂

1
∥x∥2−1

)︂
, if ∥x∥ < 1,

0, otherwise,
(6.4.7)

where c is chosen such that ∫︁R4 ψ(x) dx = 1. Note that all Nth partial
derivatives of ψ are ≪N 1. For δ > 0, we define ψδ(x) = δ−4ψ(x/δ). Then
ψδ also integrates to 1, and its Nth partial derivatives are ≪N δ−N .
For a compact subset R ⊆ R4, consider the convolution

(1R ∗ ψδ)(x) =
∫︂
R
ψδ(x− t) dt. (6.4.8)

Let Bδ(x) denote the Euclidean ball of radius δ around x. We observe that, as
a function of t, we have suppψδ(x− t) = Bδ(x). Consequently,

(1R ∗ ψδ)(x) =

⎧⎪⎪⎨⎪⎪⎩
1, if Bδ(x) ⊆ R,

0, if Bδ(x) ∩R = ∅,
v ∈ [0, 1], otherwise.

(6.4.9)

Moreover, all Nth partial derivatives of 1R ∗ ψδ are ≪N δ−N meas(R), where
meas(R) denotes the Lebesgue measure of R.
To conclude the proof, we define w1 (resp. w2) as in (6.4.8), with δ = η/2 and
R = R1 (resp. R = R2), where

R1 =
[︃
−1 + η

2 , 1−
η

2

]︃4
\
[︃−3η

2 ,
3η
2

]︃4
,

R2 =
[︃
−1− η

2 , 1 + η

2

]︃4
\
[︃−3η

2 ,
3η
2

]︃4
.
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6.4. Application of the circle method

It is now straightforward to deduce that w1, w2 satisfy the required properties
(1) and (2).

We now state a smoothly weighted version of Theorem 6.4.2.

Theorem 6.4.4. Suppose η ∈ (0, 1/4) and a ∈ (Z̸=0)4. Let w be one of the
weights w1 or w2 from Lemma 6.4.3. Suppose that A ̸= □. Then

Nw,a(B) = Gaσ∞(w)B
|A|1/2 +O

(︄
η−6B5/6+ϵ∆1/3

|A|5/24

)︄
+O(η−7B1/2+ϵ). (6.4.10)

We explain how Theorem 6.4.2 can be deduced from Theorem 6.4.4 by applying
the methods from [16, Section 5.3] and [18, Section 2.4], together with the
upper bound Ga ≪ |A|ϵ∆1/4 for the singular series, which we prove in Lemma
6.4.16 at the end of this section.
Let 1[−1,1]4 denote the characteristic function on [−1, 1]4, and for an integer
j ⩾ 0, define w(j)

2 (x) = w2((2η)−jx). Then for any nonzero x ∈ R4, we have

w1(x) ⩽ 1[−1,1]4(x) ⩽
∞∑︂
j=0

w
(j)
2 (x).

The above series converges because a given x ̸= 0 is contained in the support
of only finitely many of the w(j)

2 . Consequently,

Nw1,a(B) ⩽ Na(B) ⩽
∞∑︂
j=0

N
w

(j)
2 ,a(B) =

∞∑︂
j=0

Nw2,a((2η)2jB).

The assumption |A| ⩽ B4/7 in the statement of Theorem 6.4.2 implies that the
error term η−7B1/2+ϵ is dominated by the other error term in (6.4.10), provided
that η ≫ B−3/14+ϵ. For any η ∈ (0, 1/4) satisfying this condition, it follows
from Theorem 6.4.4 that

∞∑︂
j=0

Nw2,a((2η)2jB) = (1 +O(η2))Gaσ∞(w2)B
|A|1/2 +O

(︄
η−6B5/6+ϵ∆1/3

|A|5/24

)︄
.

As explained in [18, Lemma 2.9], for i ∈ {1, 2}, we have

|σ∞(wi)− σ∞(ϵ)| ≪ ησ∞(ϵ)≪ η,

from which we deduce that

Na(B) = (1 +O(η))Gaσ∞(ϵ)B
|A|1/2 +O

(︄
η−6B5/6+ϵ∆1/3

|A|5/24

)︄
.

We choose
η = 1

5B
−1/42|A|1/24.
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6. Sums of four squareful numbers

Clearly η ≫ B−3/14+ϵ. Moreover, using the assumption |A| ⩽ B4/7, we have
that η ∈ (0, 1/4), as was required in order to apply Theorem 6.4.4. Theorem
6.4.2 now follows from the estimate Ga ≪ |A|ϵ∆1/4 found in Lemma 6.4.16.

We commence with the proof of Theorem 6.4.4. It will be convenient to make
the assumptions

η−1, |a| ≪ BR (6.4.11)
for some fixed R ⩾ 0, so that quantities bounded by an arbitrarily small power
of η−1 or |A| are also ≪ Bϵ for any ϵ > 0. If these assumptions do not
hold, then the statement of Theorem 6.4.4 is trivial, because we would have
w(P−1

1 x1, . . . , P
−1
4 x4) = 0 for all x ∈ (Z̸=0)4, and thus Nw,a(B) = 0. Applying

the delta method as stated in Theorem 4.4.1, we have

Nw,a(B) = CQ
Q2

∑︂
c∈Z4

∞∑︂
q=1

q−4Sq,a(c)Iq,a(c), (6.4.12)

where CQ = 1 +ON(Q−N) for any integer N ⩾ 1, and Q = B1/2. We recall
also the definitions of the exponentials sums and integrals

Sq,a(c) =
∑︂

k mod q
gcd(k,q)=1

∑︂
b mod q

eq(kFa(b) + b · c),

Iq,a(c) =
∫︂
R4
w(P−1

1 x1, . . . , P
−1
4 x4)h

(︄
q

Q
,
Fa(x)
Q2

)︄
eq(−c · x) dx,

(6.4.13)

and the construction of the smooth function h : (0,∞)× R→ R from (4.4.4).
As observed in [61, Section 3], it is straightforward to check that h(x, y)≪ x−1

and h(x, y) = 0 whenever x > max(1, 2|y|).
We note that by changing variables P−1

i xi into xi, we can rewrite Iq,a(c) as

Iq,a(c) = P1 · · ·P4

∫︂
R4
w(x)h

(︄
q

Q
,
Fa(P1x1, . . . , P4x4)

Q2

)︄
e(−v · x)dx

= P1 · · ·P4

∫︂
R4
w(x)h(r,G(x))e(−v · x)dx. (6.4.14)

6.4.1 The main term
The main term for Nw,a(B) comes from the case c = 0 in (6.4.12). We define

M(B) = 1
Q2

∞∑︂
q=1

q−4Sq,a(0)Iq,a(0). (6.4.15)

We have
Ga =

∞∑︂
q=1

q−4Sq,a(0). (6.4.16)
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The convergence of this series follows from Lemma 6.4.16. Moreover, from
(6.4.14), we have

Iq,a(0) = P1 · · ·P4

∫︂
R4
w(x)h (r,G(x)) dx.

We let w0 denote a smooth weight function supported on [−17, 17] and taking
the value 1 in [−16, 16]. Since supp(w) ⊆ [−1− η, 1 + η] ⊂ [−2, 2], we have
w0(G(x)) = 1 whenever x ∈ supp(w). We obtain

Iq,a(0) = P1 · · ·P4

∫︂
R4
w(x)w0(G(x))h(r,G(x))dx.

The arguments at the beginning of [17, Section 4.3] can be applied to obtain

Iq,a(0) = P1 · · ·P4

⎛⎝lim
δ→0

∫︂ ∞

−∞

(︄
sin(πδθ)
πδθ

)︄2

J(w; θ)L(θ) dθ
⎞⎠ , (6.4.17)

where

J(w; θ) =
∫︂
R4
w(x)e(−θG(x)) dx, (6.4.18)

L(θ) =
∫︂ ∞

−∞
w0(t)h(r, t)e(θt) dt. (6.4.19)

We would like to compare the bracketed expression in (6.4.17) with σ∞(w)
from (6.4.5), which by definition equals ∫︁∞

−∞ J(w; θ)dθ. We apply [17, Lemma
4.11] to estimate L(θ). In addition to the integer N ⩾ 1, the implied constants
in [17, Lemma 4.11] depend only on supp(w0). However, we note that we have
chosen w0 independently of w, and hence independently of η. Therefore for
any q ⩽ Q and any N ⩾ 1, we have

L(θ) = 1 +ON({1 + |θ|N}rN). (6.4.20)

Our next task is to bound J(w; θ). In order to achieve this, we need to work
with more general smooth weight functions ˜︁w : R4 → R⩾0 which belong to a
class S defined by the following properties.

Definition 6.4.5. We say ˜︁w ∈ S if

1. ˜︁w is smooth,

2. ˜︁w is supported on [−2, 2]4,

3. ˜︁w(x) = 0 for |x| ⩽ η,

4. | ˜︁w(x)| ≪ 1 for all x ∈ R4,
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6. Sums of four squareful numbers

5. The derivatives of ˜︁w(x) are bounded as in (6.4.6).

Since in Theorem 6.4.4, w is equal to w1 or w2, we note in particular that
w ∈ S.

Lemma 6.4.6. For any ˜︁w ∈ S and any M ∈ Z⩾0, we have J( ˜︁w; θ) ≪M

|η2θ|−M .

Proof. The case M = 0 is trivial since the integrand in the definition of J( ˜︁w; θ)
is bounded and has compact support. For M ⩾ 1, we follow a similar argument
to [61, Lemma 10], by applying integration by parts and induction on M . We
have

J( ˜︁w; θ) =
∫︂
R4
˜︁w(x)e(−θG(x))dx≪ max

1⩽j⩽4

⃓⃓⃓⃓
⃓⃓∫︂ x∈R4,

|xj |=maxi |xi|

˜︁w(x)e(−θG(x))dx

⃓⃓⃓⃓
⃓⃓ .

Without loss of generality, we may assume that j = 1. We note that

e(−θG(x)) = 1
−4πiϵ1θx1

∂

∂x1
e(−θG(x)).

We perform integration by parts with respect to x1 to obtain

J( ˜︁w; θ)≪

⃓⃓⃓⃓
⃓⃓∫︂ x∈supp ˜︁w

|x1|=maxi |xi|

∂

∂x1

(︄ ˜︁w(x)
4πiθx1

)︄
e(−θG(x))dx

⃓⃓⃓⃓
⃓⃓ .

Since |x1| = maxi |xi|, we have |x1|−1 = |x|−1 ⩽ η−1 for any x ∈ supp ˜︁w.
Therefore by the assumptions on the size of ˜︁w and its derivatives, we see that

∂

∂x1

(︄ ˜︁w(x)
4πiθx1

)︄
= ˜︁w(1)(4πiθη2)−1

for some ˜︁w(1) ∈ S. Hence

J( ˜︁w; θ)≪ |η2θ|−1|J( ˜︁w(1); θ)|.

Proceeding by induction, we obtain J( ˜︁w(x); θ) ≪M |η2θ|−M |J( ˜︁w(M); θ)| for
some ˜︁w(M) ∈ S, from which we deduce the required result by applying the
trivial bound J( ˜︁w(M); θ)≪ 1.

Lemma 6.4.6 together with the trivial bound J(w; θ)≪ 1 imply that for any
integer M ⩾ 1, we have

J(w; θ)≪M (1 + |η2θ|)−M ⩽ η−2M(1 + |θ|)−M .
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Combining this with (6.4.17), (6.4.20) and the fact that

lim
δ→0

∫︂ ∞

−∞

(︄
sin(πδθ)
πδθ

)︄2

J(θ;w) dθ =
∫︂ ∞

−∞
J(θ;w) dθ = σ∞(w),

we obtain

|(P1 · · ·P4)−1Iq,a(0)− σ∞(w)| ≪M,N

∫︂ ∞

−∞

rN{1 + |θ|}N

η2M{1 + |θ|}M dθ.

In order to ensure that the integral converges, we make the choice M = N + 2,
and we conclude that

Iq,a(0) = P1 · · ·P4{σ∞(w) +ON(η−2N−4rN)}, (6.4.21)

for any integer N ⩾ 1.

Let R = B1/2−ϵη2. We note that if q ⩽ R, then the error term in (6.4.21)
can be made smaller than any negative power of B by appropriate choice of N
(depending on ϵ), due to the assumption in (6.4.11).

We now split the main term up. We have

M(B) = P1 · · ·P4σ∞(w)
B

∑︂
q⩽R

q−4Sq,a(0) +O(T (R) + 1), (6.4.22)

where
T (R) = 1

Q2

∑︂
q>R

q−4Sq,a(0)Iq,a(0). (6.4.23)

we shall estimate T (R) using partial summation. The following lemma is similar
to [17, Lemma 4.3], and gives bounds for Iq,a(c) and its derivative. Only the
case c = 0 is needed in the study of the main term, but the case c ̸= 0 will be
useful later.

Lemma 6.4.7. Let c ∈ Z4 and k ∈ {0, 1}. Then

1. If k = 0 or c = 0 then qk ∂
kIq,a(c)
∂qk ≪ P1 · · ·P4,

2. If k = 1 and c ̸= 0 then qk ∂
kIq,a(c)
∂qk ≪ η−1P1 · · ·P4.

Proof. Suppose that c = 0. Recalling (6.4.14) and the notation r = q/Q, it is
clear that

qk
∂kIq,a(0)
∂qk

= rkP1 · · ·P4

∫︂
R4
w(x)∂

kh(r,G(x))
∂rk

dx. (6.4.24)
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6. Sums of four squareful numbers

From [61, Lemma 5] with m = k, n = 0 and N = 2, we have

∂kh(r,G(x))
∂rk

≪ r−1−k
(︄
r2 + min

{︄
1, r2

|G(x)|2

}︄)︄
, (6.4.25)

and so

(P1 · · ·P4)−1qk
∂kIq,a(0)
∂qk

≪ r + r−1
∫︂

x∈suppw
|G(x)|⩽r

1dx + r
∫︂

x∈suppw
|G(x)|>r

1
|G(x)|2 dx.

(6.4.26)
We need to show that the right hand side of (6.4.26) is O(1). We can assume
that the first term r is O(1), since h(r,G(x)) = 0 when r > max(1, 2|G(x)|),
and G(x)≪ 1 for x ∈ suppw, and so Iq,a(0) = 0 unless r ≪ 1. In order to
estimate the integrals in (6.4.26), we consider for z > 0 the Lebesgue measure
m(z) of the set

S(z) = {x ∈ suppw : |G(x)| ⩽ z}.

We can find distinct indices i, j such that ϵi = ϵj. Without loss of generality
we may assume i = 1, j = 2, and in addition that ϵ1 = ϵ2 = 1. For a
fixed choice of x3, x4, we define c = ϵ3x

2
3 + ϵ4x

2
4, so that if x ∈ S(z) then

x2
1 + x2

2 ∈ [−c− z,−c+ z]. The measure of the set of pairs x1, x2 satisfying
this condition is O(z). For x ∈ suppw, we have |x3|, |x4| ≪ 1, and hence
m(z) = O(z). From this we see that the first integral in (6.4.26) is O(r), and
by breaking into dyadic intervals, the second integral is O(r−1). Therefore the
right hand side of (6.4.26) is O(1), as required.
When c ̸= 0, we first note that for k = 0, we can reduce to the case above by
applying the trivial estimate to the extra exponential factor e(−v·x) appearing in
the integral defining Iq,a(c). It remains only to deal with the case c ̸= 0, k = 1.
We recall the vector v ∈ R4 is given by vi = q−1Pici. Similarly to (6.4.24), we
obtain

(P1 · · ·P4)−1q
∂Iq,a(c)
∂q

≪ r
∫︂
R4
w(x)∂{h(r,G(x))e(−v · x)}

∂r
dx

= r
∫︂
R4
w(x)

(︄
∂h(r,G(x))

∂r
e(−v · x)− h(r,G(x))(2πirv · x)e(−v · x)

)︄
dx.

(6.4.27)

The first term can again be dealt with using the trivial estimate for e(−v · x)
and the argument for the case c = 0 given above. In order to estimate the
second term, as in [61, Lemma 14], we apply the divergence theorem∫︂

R4
∇ · (w(x)h(r,G(x))e(−v · x)x)dx = 0

92



6.4. Application of the circle method

in order to remove the additional factor of 2πiv · x. This yields∫︂
R4
w(x)h(r,G(x))e(−v · x)(2πirv · x)dx

=
∫︂
R4
˜︁w(x)h(r,G(x))e(−v · x)dx

+
∫︂
R4

4w(x)h(r,G(x))e(−v · x)dx

+
∫︂
R4

2w(x)G(x)e(−v · x)∂h(r,G(x))
∂G(x) dx,

(6.4.28)

where ˜︁w(x) = (x · ∇)w(x). The second integral on the right hand side of
(6.4.28) can now be treated in the same way as the easier cases k = 0 or c = 0
using the trivial estimate for e(−v · x). The third integral can be estimated
by noting that G(x)≪ 1 for x ∈ supp(w), and applying [61, Lemma 5] with
n = 1,m = 0, N = 2. From this, we see that ∂h(r,G(x))

∂G(x) also satisfies the bound
in (6.4.25), and so we may proceed as in the case c = 0. For the first integral,
we note that ˜︁w(x) is uniformly bounded by η−1. Hence the above arguments
can be applied to the first integral as well, but with an extra factor of η−1.

We define
Σ(x; c) =

∑︂
q⩽x

q−3Sq,a(c). (6.4.29)

Moreover, we let F ∗
a denote the dual form of Fa, i.e., the quadratic form given

by the equation

F ∗
a (c) = a2a3a4c

2
1 + a1a3a4c

2
2 + a1a2a4c

2
3 + a1a2a3c

2
4.

We also define

∆c(a) =
4∏︂
i=1

gcd
⎛⎝gcd(ai, ci),

∏︂
j ̸=i

gcd(aj, cj)
⎞⎠ . (6.4.30)

In particular we have ∆c(a) = ∆ when c = 0.
The following lemma is a slight modification of [17, Lemma 4.9].

Lemma 6.4.8. Suppose A ̸= □. Let c ∈ Z4 be such that F ∗
a (c) = 0. Then

Σ(x; c)≪ A3/16+ϵ∆c(a)3/8x1/2+ϵ.

Proof. We use the fact that Sq,a(c) is multiplicative in q, as proved by Heath-
Brown in the discussion following [61, Lemma 28]. This allows us to write

Σ(x; c) =
∑︂
q2⩽x

q2|(2A)∞

q−3
2 Sq2,a(c)

∑︂
q1⩽x/q2

gcd(q1,2A)=1

q−3
1 Sq1,a(c), (6.4.31)
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6. Sums of four squareful numbers

where the notation q2|(2A)∞ means that every prime dividing q2 also divides
2A. We recall that cq1(0) = φ(q1), where φ denotes the Euler totient function.
Therefore, by [17, Lemma 4.6], we have

∑︂
q1⩽x/q2

gcd(q1,2A)=1

q−3
1 Sq1,a(c) =

∑︂
q1⩽x/q2

gcd(q1,2A)=1

(︄
A

q1

)︄
φ(q1)
q1

.

Applying the Burgess bound [71, Theorem 12.6] as in the proof of [17, Lemma
4.9], we obtain

∑︂
q1⩽x/q2

gcd(q1,2A)=1

q−3
1 Sq1,a(c)≪ |A|

3/16+ϵx1/2

q
1/2
2

.

Returning to (6.4.31), we have

Σ(x; c)≪ |A|3/16+ϵx1/2 ∑︂
q2⩽x

q2|(2A)∞

|Sq2,a(c)|
q

7/2
2

. (6.4.32)

Now [17, Lemma 4.5] states that Sq,a(c)≪ q3∏︁4
i=1 gcd(q, ai, ci)1/2. Moreover,

there are O(xϵAϵ) choices for q2 ⩽ x with q2|(2A)∞, as explained in the
paragraph after (3.3.8). Therefore

∑︂
q2⩽x

q2|(2A)∞

|Sq2,a(c)|
q

7/2
2

≪ xϵAϵ sup
q|(2A)∞

(︄∏︁4
i=1 gcd(q, ai, ci)1/2

q1/2

)︄
. (6.4.33)

Let p be a prime. We define

Lp = νp

(︄∏︁4
i=1 gcd(q, ai, ci)

q

)︄
, kp = νp(q).

For an index i = 1, . . . , 4, we let mi,p denote the ith smallest element of
νp(gcd(a1, c1)), . . . , νp(gcd(a4, c4)). Then

Lp =
4∑︂
i=1

(min(kp,mi,p)− kp) .

It can be checked that the maximum possible value of Lp is attained by choosing
kp = m3,p, and so Lp ⩽ m1,p +m2,p +m3,p. We have Lp ⩽ 0 unless p|∆c(a).
Hence the supremum in (6.4.33) is bounded by∏︂

p|∆c(a)
p(m1,p+m2,p+m3,p)/2.

94



6.4. Application of the circle method

For any prime p, we have

νp(∆c(a)) = m1,p +m2,p +m3,p + min(m1,p +m2,p +m3,p,m4,p)

⩾
4
3(m1,p +m2,p +m3,p),

and hence the supremum in (6.4.33) is bounded by ∆c(a)3/8. Recalling (6.4.32)
we obtain the desired estimate for Σ(x; c).

Proposition 6.4.9. Suppose A ̸= □, and let M(B) be as defined in (6.4.15).
Then

M(B) = Gaσ∞(w)B
|A|1/2 +O

(︄
η−2B3/4+ϵ∆3/8

|A|5/16

)︄
.

Proof. We recall the estimate for M(B) from (6.4.22) and the definition of
T (R) from (6.4.23). We may restrict the sum to the range R < q ≪ Q, since
h(r,G(x)) = 0 unless q ≪ Q. Using Lemma 6.4.8 with x ≪ Q and c = 0,
together with Lemma 6.4.7, and partial summation, we obtain

T (R) = −IR,a(0)
Q2R

Σ(R; 0)− 1
Q2

∫︂ Q

R
Σ(x; 0) ∂

∂x

(︄
Ix,a(0)
x

)︄
dx

≪ P1 · · ·P4

BR
sup

R⩽t≪Q
|Σ(t; 0)|

≪ P1 · · ·P4

BR
|A|3/16+ϵ∆3/8B1/4+ϵ

≪ η−2B3/4+ϵ∆3/8

|A|5/16 ,

which is the error term claimed in the proposition. (We note that in the last
line, we may absorb the factor |A|ϵ into the factor Bϵ due to the assumption
(6.4.11).) Finally, the same error term is also obtained when we extend the sum∑︁
q⩽R q

−4Sq,a(0) in (6.4.22) to the singular series Ga = ∑︁∞
q=1 q

−4Sq,a(0), as
can be seen by applying Lemma 6.4.8 and partial summation in a very similar
manner to above.

6.4.2 The error term
We now study the error term coming from the case c ̸= 0. We begin with a
lemma which is similar to [17, Lemma 4.2 (i)].

Lemma 6.4.10. For any nonzero c ∈ Z4 and any integer N ⩾ 0, we have

Iq,a(c)≪N
P1 · · ·P4

r

(︄
1 + r

η

)︄N
min
1⩽i⩽4

(︄
|ai|1/2

|ci|

)︄N
.
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6. Sums of four squareful numbers

Proof. We apply integration by parts N times to the integral in (6.4.14), where
we differentiate f(x) := w(x)h(r,G(x)) and integrate g(x) := e(v · x). Each
integral of g(x) with respect to xi introduces a factor of (2πiq−1Pici)−1 .

We recall from (6.4.6) that for any i ∈ {1, . . . , 4} and any N ⩾ 1,⃓⃓⃓⃓
⃓ ∂N∂xNi w(x)

⃓⃓⃓⃓
⃓≪N η−N .

Using the product rule, we have⃓⃓⃓⃓
⃓ ∂N∂xNi f(x)

⃓⃓⃓⃓
⃓≪N max

0⩽j⩽N

⃓⃓⃓⃓
⃓ηj−N ∂j

∂xji
h(r,G(x))

⃓⃓⃓⃓
⃓ .

Clearly ⃓⃓⃓⃓
⃓ ∂j∂xjiG(x)

⃓⃓⃓⃓
⃓≪ 1

for all x ∈ suppw. By [17, Equation (4.10)], we have

∂jh(r, y)
∂yj

≪j r
−1−j. (6.4.34)

Hence by the chain rule, we have⃓⃓⃓⃓
⃓ ∂N∂xNi f(x)

⃓⃓⃓⃓
⃓≪N max

0⩽j⩽N
r−1−jηj−N = r−1 min(r, η)−N ⩽ r−1

(︄
1
r

+ 1
η

)︄N
.

(6.4.35)

After performing integration by partsN times, we apply (6.4.35) to all derivatives
of f(x) that appear, and the trivial estimate |e(−v · x)| ⩽ 1, to obtain for any
i ∈ {1, . . . , 4},

Iq,a(c)≪N
P1 · · ·P4

r(q−1|Pici|)N

(︄
1
r

+ 1
η

)︄N
.

Recalling that Pi = (B/|ai|)1/2, Q = B1/2, r = q/Q, and choosing the index i
such that |Pici|, is maximised, the last expression rearranges to give the desired
estimate.

Remark 6.4.11. Lemma 6.4.10 allows us to assume |ci| ≪ η−1|ai|1/2Bϵ = Ci
for all i ∈ {1, . . . , 4}, since outside this range the estimate in Lemma 6.4.10
can be made smaller than any power of B by an appropriate choice of N .

The following lemma is a variant of the first derivative test and is based on [61,
Lemma 10].
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6.4. Application of the circle method

Lemma 6.4.12. Let f(x) = θG(x)− v · x, where v ∈ R4 and θ ∈ R are such
that |v| ⩾ 5|θ|. Then for any integer N ⩾ 0 and any w in the class of smooth
weight functions S from Definition 6.4.5, we have∫︂

R4
w(x)e(f(x))dx≪N (η|v|)−N .

Proof. The case N = 0 is trivial. We define fj(x) = ∂f(x)/∂xj = 2ϵjθxj − vi.
By the assumption |v| ⩾ 5|θ|, there is some index j ∈ {1, . . . , 4} such that
|fj(x)| ≫ |v| for any x ∈ [−2, 2]4. Without loss of generality, we may assume
j = 1.

We write
w(x)e(f(x)) = w(x)

2πif1(x)
∂

∂x1
e(f(x))

and integrate by parts with respect to x1 to obtain∫︂
R4
w(x)e(f(x))dx = −(2πiη|v|)−1

∫︂
R4
e(f(x)) ˜︁w(x)dx,

where

˜︁w(x) = ∂

∂x1

(︄
η|v|w(x)
f1(x)

)︄
= ∂

∂x1
(ηw(x)) |v|

f1(x) + ηw(x) ∂

∂x1

(︄
|v|
f1(x)

)︄
.

It remains to show that ˜︁w belongs to the class of smooth weight functions S
from Definition 6.4.5, since the result then follows by induction on N . But this
is immediate from the observations that for any x ∈ [−2, 2]4,

|v|
f1(x) ≪ 1, ∂

∂x1

(︄
|v|
f1(x)

)︄
≪ 1, and ∂

∂x1
(ηw) ∈ S.

We require one further estimate for Iq,a(c), which involves the second derivative
test.

Lemma 6.4.13. Let c ̸= 0. Then

Iq,a(c)≪ η−4B3/2+ϵq

|A|1/2 min
1⩽i⩽4

(︄
|ai|1/2

|ci|

)︄
.

Proof. We would like to apply Fourier inversion to w(x)h(r,G(x))e(−v·x), the
integrand appearing in the definition of Iq,a(c). The function x ↦→ h(r,G(x))
does not have compact support. We define the smooth weight w0 : R→ R⩾0
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6. Sums of four squareful numbers

by w0(x) = ψ(x/17), where ψ(x) is the standard bump function in one variable,
as defined in (4.4.2). Then we define the smooth weight w3 : R4 → R⩾0 by

w3(x) =

⎧⎨⎩
w(x)

w0(G(x)) , if w0(G(x)) ̸= 0,
0, otherwise.

Note that w is supported on [−2, 2]4, and in this region G(x) takes values in
[−16, 16]. Therefore w0(G(x)) ≫ 1 for all x ∈ supp(w). We deduce that
supp(w3) = supp(w) and w(x) = w3(x)w0(G(x)) for all x ∈ R4. Moreover,
since all the derivatives of w0(G(x)) are O(1) for any x ∈ supp(w), we have
w3 ∈ S. Applying Fourier inversion, we obtain

Iq,a(c) = P1 · · ·P4

∫︂ ∞

−∞
p(θ)

∫︂
R4
w3(x)e(θG(x)− v · x) dx dθ, (6.4.36)

where
p(θ) =

∫︂ ∞

−∞
w0(k)h(r, k)e(−θk) dk.

We have the estimate p(θ)≪ 1. Indeed, taking m = n = 0 and N = 2 in [61,
lemma 5] we see that

h(r, k)≪ r−1(r2 + min(1, (r/|k|)2),

and so

p(θ)≪ r−1

⎛⎝∫︂
|k|<r

1dk +
∫︂
r⩽|k|⩽17

(︄
r

|k|

)︄2

dk
⎞⎠≪ r−1(r + r2 · r−1)≪ 1.

To deal with the inner integral in (6.4.36), which we denote by I(θ; v), we
divide into the cases 5|θ| ⩽ |v| and 5|θ| ⩾ |v|. In the former case, we apply
Lemma 6.4.12 with N = 2 to obtain I(θ; v)≪ (η|v|)−2. The contribution to
Iq,a(c) is

(η|v|)−2P1 · · ·P4

∫︂
5|θ|⩽|v|

1dθ ≪ η−2|v|−1P1 · · ·P4.

In the case 5|θ| ⩾ |v|, we use the arguments from [64, Lemma 3.2] to obtain

I(θ; v)≪
{︃∫︂

R4
|ˆ︂w3(y)|dy

}︃
sup
y∈R4

⃓⃓⃓⃓
⃓

4∏︂
i=1

∫︂
[−2,2]

e(θϵix2
i + xi(yi − vi))dxi

⃓⃓⃓⃓
⃓ ,

(6.4.37)
where ˆ︂w3 denotes the Fourier transform of w3. The first factor on the right
hand side of (6.4.37) is the L1-norm of ˆ︂w3, which we denote by ∥ˆ︂w3∥L1 . The
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vi’s can be absorbed into the supremum over y via a change of variables, and
so it remains to study ∫︂

[−2,2]
e(ϵiθx2

i − yixi)dxi.

We can write the integrand as e(ϵiθΦ(xi)), where Φ(xi) = x2
i + xiyiθ

−1. Then
|Φ′′(xi)| ⩾ 1 throughout the interval [−2, 2], and so we can apply the second
derivative test as found in [113, Ch. 8, Proposition 2.3] to bound this integral
by |θ|−1/2. Therefore

I(v; θ)≪ ∥ˆ︂w3∥L1|θ|−2.

Returning to (6.4.36), the contribution to Iq,a(c) from the range 5|θ| ⩾ |v| is
bounded by

∥ˆ︂w3∥L1P1 · · ·P4

∫︂
|θ|≫|v|

|θ|−2dθ ≪ ∥ˆ︂w3∥L1P1 · · ·P4|v|−1.

Since
P1 · · ·P4

|v|
= B3/2q

|A|1/2 min
1⩽i⩽4

(︄
|ai|1/2

|ci|

)︄
,

it remains only to show that ∥ ˆ︁w3∥L1 ≪ η−4. We have

∥ ˆ︁w3∥L1 =
∫︂

|x|⩽η−1
|ˆ︂w3(y)| dy +

∫︂
|x|⩾η−1

|ˆ︂w3(y)| dy.

The first integral is trivially O(η−4). For the second integral, we have∫︂
|x|⩾η−1

|ˆ︂w3(y)| dy≪
∫︂

|x|⩾η−1

|y1|=maxi |yi|
|ˆ︂w3(y)| dy.

We can now apply integration by parts five times with respect to x1 to obtain∫︂
|y|⩾η−1

|ˆ︂w3(y)| dy≪
∫︂

|y|⩾η−1

|y1|=maxi |yi|

⃓⃓⃓⃓
⃓
∫︂
R4

∂5w3(x)
∂x5

1

e(−x · y)
(−2πiy1)5 dx

⃓⃓⃓⃓
⃓ dy

≪ η−5
∫︂

|y1|⩾η−1

|y2|,|y3|,|y4|⩽|y1|
y−5

1 dy

≪ η−5
∫︂
y1⩾η−1

y−2
1 dy1

≪ η−4.

We recall the notation Ci = η−1Bϵ|ai|1/2 from Remark 6.4.11. We are now
ready to estimate the quantity

Ea(B) = 1
Q2

∑︂
c∈Z4\{0}
|ci|≪Ci

∞∑︂
q=1

q−4Sq,a(c)Iq,a(c). (6.4.38)
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Note that Iq,a(c) vanishes for q ≫ Q by the properties of the function h, and
so we may restrict the q-sum to a sum over q ≪ Q. We recall the notation
Σ(x; c) = ∑︁

q⩽x q
−3Sq,a(c). We would like to use Lemma 6.4.13 together with

the bound for Σ(x; c) from [17, Lemma 4.7] to estimate the inner sum of
(6.4.38). Unfortunately, [17, Lemma 4.7] requires the dual form F ∗

a (c) not
to vanish. This was always true in [17, Section 4] due to the assumptions
made in the setup, but we must treat this case separately. To this end, we
let Ea(B) = Ea,1(B) + Ea,2(B), where in Ea,1(B) we add the restriction
F ∗

a (c) ̸= 0 to the sum over c in (6.4.38) and in Ea,2(B) we sum over the
remaining values of c where F ∗

a (c) = 0.

6.4.3 Analysis of Ea,1(B)
Using Lemma 6.4.13, we have

Ea,1(B)≪ η−4B1/2+ϵ

|A|1/2

∑︂
c∈Z4\{0}
|ci|≪Ci

F ∗
a (c) ̸=0

min
1⩽i⩽4

(︄
|ai|1/2

|ci|

)︄ ∑︂
q≪Q

q−3|Sq,a(c)|.

For a fixed choice of c, let j(c) ∈ {1, . . . , 4} denote the index where |ai|1/2|ci|−1

is minimized. Note in particular that cj(c) ̸= 0. We have

Ea,1(B)≪ η−4B1/2+ϵ

|A|1/2

4∑︂
j=1
|aj|1/2 ∑︂

c∈Z4\{0}
|ci|≪Ci

F ∗
a (c) ̸=0
j(c)=j

1
|cj|

∑︂
q≪Q

q−3|Sq,a(c)|.

An application of [17, Lemma 4.7] with x = Q yields
∑︂

c∈Z4\{0}
|ci|≪Ci

j(c)=j

1
|cj|

∑︂
q≪Q

q−3Sq,a(c)≪ Bϵ
∑︂

c∈Z4\{0}
|ci|≪Ci

1
|cj|

4∏︂
i=1

gcd(ai, ci)1/2.

For i ̸= j, we have ∑︂
0⩽|ci|≪Ci

gcd(ai, ci)1/2 ≪ CiB
ϵ,

and for i = j, we have
∑︂

0<|cj |≪Cj

gcd(aj, cj)1/2

|cj|
≪ Bϵ.

Hence
Ea,1(B)≪ η−4B1/2+ϵ

|A|1/2

4∑︂
j=1
|aj|1/2 ∏︂

i ̸=j
Ci ≪ η−7B1/2+ϵ.
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6.4. Application of the circle method

6.4.4 Analysis of Ea,2(B)

We write Ea,2(B) = E
(1)
a,2(B) + E

(2)
a,2(B), where

E
(1)
a,2(B) = 1

B

∑︂
c∈Z4\{0}
|ci|≪Ci

F ∗
a (c)=0

∑︂
q⩽M

q−4Sq,a(c)Iq,a(c),

E
(2)
a,2(B) = 1

B

∑︂
c∈Z4\{0}
|ci|≪Ci

F ∗
a (c)=0

∑︂
M⩽q≪Q

q−4Sq,a(c)Iq,a(c),

For a real parameter M to be determined later. We recall the notation j(c)
from Section 6.4.3. To bound E(1)

a,2(B), we apply Lemma 6.4.13 to obtain

E2,a(P )≪ η−4B1/2+ϵ

|A|1/2

4∑︂
j=1

∑︂
c∈Z4\{0}
|ci|≪Ci

j(c)=j

|aj|1/2

|cj|
∑︂
q⩽M

q−3|Sq,a(c)|.

By [17, Lemma 4.5], we have |Sq,a(c)| ≪ q3∏︁4
i=1 gcd(ai, ci)1/2, and hence

summing trivially over q and proceeding as in Section 6.4.3, we obtain

E
(1)
a,2(B)≪ η−7B1/2+ϵM.

To bound E
(2)
a,2(B) we require some cancellation from the sum over q. To

achieve this, we use summation by parts, as in the treatment of the main term
in Proposition 6.4.9, and then apply Lemma 6.4.8 to obtain a better estimate
for the exponential sums. We also perform the q-sum over R ⩽ q ⩽ 2R and
later take a dyadic sum over M ⩽ R≪ Q. Summation by parts yields

∑︂
R⩽q⩽2R

q−4Sq,a(c)Iq,a(c)≪ −Σ(R; c)IR,a(c)
R
−
∫︂ 2R

R
Σ(x; c) ∂

∂x

(︄
Ix,a(c)
x

)︄
dx.

(6.4.39)
Therefore, from Lemma 6.4.7, we obtain

1
B

∑︂
R⩽q⩽2R

q−4Sq,a(c)Iq,a(c)≪ η−1P1 · · ·P4

BR
sup

R⩽x⩽2R
|Σ(x; c)|. (6.4.40)

We recall the definition of ∆c(a) from (6.4.30). Using the estimate for |Σ(x; c)|
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6. Sums of four squareful numbers

from Lemma 6.4.8, we have

E
(2)
a,2(B)≪ η−1P1 · · ·P4|A|3/16

B

∑︂
R dyadic

M/2⩽R≪Q

R−1/2+ϵ ∑︂
c∈Z4\{0}
|ci|≪Ci

F ∗
a (c)=0

∆c(a)3/8

≪ η−1B1+ϵ

M1/2|A|5/16

∑︂
c∈Z4\{0}
|ci|≪Ci

F ∗
a (c)=0

∆c(a)3/8. (6.4.41)

It is possible to obtain the asymptotic formula from Theorem 6.1.1 (albeit
with a smaller power saving) by bounding the sum in (6.4.41) trivially by
C1 · · ·C4∆3/8. However, in order to obtain the error terms claimed in Theorem
6.4.2, we now make use of the constraint F ∗

a (c) = 0 in the c-sum to obtain
a more refined estimate. In the following two lemmas, we adopt the notation
that vw = (v1w1, . . . , v4w4) for vectors v,w ∈ Z4.

Lemma 6.4.14. For any d, e ∈ (Z̸=0)4, we have

∆(de) ⩽ (d1 · · · d4)2∆(e).

Proof. Fix a prime p, and define δi = νp(di), εi = νp(ei) for i ∈ {1, . . . , 4}.
Without loss of generality, we may assume that ε1 ⩽ · · · ⩽ ε4. Then

νp(∆(de)) =
4∑︂
i=1

min
⎛⎝δi + εi,

∑︂
j ̸=i

(δj + εj)
⎞⎠

⩽
3∑︂
i=1

(δi + εi) + min
(︄
δ4 + ε4,

3∑︂
i=1

(δi + εi)
)︄
,

and
νp(∆(e)) =

3∑︂
i=1

εi + min
(︄
ε4,

3∑︂
i=1

εi

)︄
.

Therefore

νp(∆(de))− νp(∆(e)) ⩽

⎧⎨⎩
∑︁3
i=1 2δi, if ε1 + ε2 + ε3 ⩽ ε4,∑︁4
i=1 δi, otherwise.

⩽ νp((d1 · · · d4)2).

Taking a product over all primes p completes the proof of the lemma.

Lemma 6.4.15. We have∑︂
c∈Z4\{0}
|ci|≪Ci

F ∗
a (c)=0

∆c(a)3/8 ≪ η−3Bϵ∆1/2.

102



6.4. Application of the circle method

Proof. For a nonzero integer m, we define sqf(m) to be the smallest positive
integer r such that |m|/r is a square. For i ∈ {1, . . . , 4}, we decompose ai
into a product ai = einik

2
i , where

ei = gcd
⎛⎝ai,∏︂

j ̸=i
aj

⎞⎠ , ni = sqf(ai/ei), k2
i = ai/(eini).

By definition, we have ∏︁4
i=1 ei = ∆. For any i ∈ {1, . . . , 4}, it is clear that

F ∗
a (c) = 0 =⇒ ai|c2

i

∏︂
j ̸=i

aj =⇒ nik
2
i |c2

i =⇒ niki|ci. (6.4.42)

We divide up the sum over c according to how many of the coordinates c1, . . . , c4
are equal to zero. At most two of the coordinates can be zero, due to the
assumptions c ̸= 0 and F ∗

a (c) = 0. Up to reordering the indices, we obtain

∑︂
c∈Z4\{0}
|ci|≪Ci

F ∗
a (c)=0

∆c(a)3/8 ≪ T0 + T1 + T2, (6.4.43)

where

T0 =
∑︂

c∈(Z̸=0)4

|ci|≪Ci

F ∗
a (c)=0

∆c(a)3/8,

T1 =
∑︂

c∈(Z ̸=0)3

|ci|≪Ci

F ∗
a ((c,0))=0

∆(c,0)(a)3/8,

T2 =
∑︂

c∈(Z ̸=0)2

|ci|≪Ci

F ∗
a ((c,0,0))=0

∆(c,0,0)(a)3/8.

We begin by studying T0. Given that F ∗
a (c) = 0, we only need to take the sum

over c1, c2 and c3, because this implicitly determines (up to sign) the value of
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6. Sums of four squareful numbers

c4. Together with (6.4.42), this implies that

T0 ⩽
∑︂

c1,c2,c3∈Z̸=0
|ci|≪Ci

niki|ci

∆c(a)3/8 (6.4.44)

⩽
∑︂

c1,c2,c3∈Z̸=0
|ci|≪Ci/(niki)

4∏︂
i=1

gcd
⎛⎝niki gcd(ai, ci),

∏︂
j ̸=i

njkj gcd(aj, cj)
⎞⎠3/8

⩽
∑︂

d∈(Z ̸=0)4

di≪Ci/(niki),
di|ai

∑︂
c1,c2,c3∈Z ̸=0

|ci|≪Ci/(niki)
di|ci

∆(dnk)3/8

≪
(︄ 3∏︂
i=1

Ci
niki

)︄ ∑︂
d∈(Z̸=0)4

di≪Ci/(niki)
di|ai

∆(nk)3/8
4∏︂
i=1

d
−1/4
i , (6.4.45)

where in the last line we have applied Lemma 6.4.14. However, ∆(nk) = 1
by the definition of e1, . . . , e4. There are O(Aϵ) choices for d in the sum in
(6.4.45), and each summand is bounded by 1. Therefore

T0 ≪
(︄ 3∏︂
i=1

Ci
niki

)︄
Aϵ. (6.4.46)

Returning to (6.4.46) and recalling that Ci = η−1Bϵ|ai|1/2 = η−1Bϵ(eini)1/2ki,
we conclude that

T0 ≪ η−3Bϵ

(︄ 3∏︂
i=1

|ai|1/2

niki

)︄
⩽ η−3Bϵ∆1/2.

The approach for estimating T1 and T2 is very similar, so we focus on the main
differences. It is sufficient to only use the divisibility conditions from (6.4.42)
in these cases. For T1, all the sums in the above argument will be over vectors
indexed by {1, 2, 3}, because we have fixed c4 = 0. We have

T1 ≪
(︄ 3∏︂
i=1

Ci
niki

)︄
Aϵ∆(n1k1, n2k2, n3k3, a4)3/8

=
(︄ 3∏︂
i=1

Ci
niki

)︄
Aϵ

≪ η−3Bϵ∆1/2.
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6.4. Application of the circle method

For T2, we only take sums over vectors indexed by {1, 2}, since we have fixed
c3 = c4 = 0. We have

T2 ≪
(︄ 2∏︂
i=1

Ci
niki

)︄
Aϵ∆(n1k1, n2k2, a3, a4)3/8

=
(︄ 2∏︂
i=1

Ci
niki

)︄
Aϵ(a3, a4)3/4

⩽ η−2Bϵ(e1e2)1/2(e3e4)3/8

≪ η−2Bϵ∆1/2.

Thus each of T0, T1, T2 is bounded by η−3Bϵ∆1/2, as required.

Recalling (6.4.41), we therefore have

E
(2)
2,a(B)≪ η−4B1+ϵ∆1/2

M1/2|A|5/16 .

To combine with the error term E
(1)
2,a(B), we make the choice

M = ηB1/3∆1/3|A|−5/24.

This yields the estimate

Ea(B)≪ η−6B5/6+ϵ∆1/3

|A|5/24 + η−7B1/2+ϵ. (6.4.47)

This estimate is larger than the error term from Proposition 6.4.9. Indeed, it
features a larger power of B and η−1, and ∆1/3|A|−5/24 ⩾ ∆3/8|A|−5/16 by
applying the trivial bound ∆ ⩽ |A|. Combining with Proposition 6.4.9 this
completes the proof of Theorem 6.4.4.

The final ingredient in the proof of Theorem 6.4.2 is an estimate for the singular
series Ga.

Lemma 6.4.16. Let a ∈ (Z̸=0)4 and assume that A ̸= □. Then

|Ga| ≪ |A|ϵ∆1/4.

Proof. Beginning with the definition of the singular series, we have

Ga =
∞∑︂
q=1

q−4Sq,a(0) =
∑︂
q⩽T

q−4Sq,a(0) +
∑︂
q>T

q−4Sq,a(0)
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6. Sums of four squareful numbers

for any T ⩾ 1. For the sum over q > T , we apply partial summation and
Lemma 6.4.8. We have

∑︂
q>T

q−4Sq,a(0) = −Σ(T ; 0)
T

−
∫︂ ∞

T
Σ(x; 0) ∂

∂x
(x−1) dx

≪ T−1/2+ϵ|A|3/16+ϵ∆3/8.

By choosing T = |A|2, we can ensure that the contribution from this region is
negligible.
For the remaining sum over q ⩽ T , we follow a similar argument to the proof
of Lemma 6.4.8. Using the multiplicativity of Sq,a(0) in q and [17, Lemma 4.6],
we have

∑︂
q⩽T

q−4Sq,a(0)≪

⎛⎜⎜⎜⎝ ∑︂
q1⩽T

gcd(q1,2A)=1

(︄
A

q1

)︄
φ(q1)
q2

1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ ∑︂
q2⩽T/q1
q2|(2A)∞

q−4
2 Sq2,a(0)

⎞⎟⎟⎟⎠
≪ T ϵ|A|ϵ max

q|(2A)∞

(︄∏︁4
i=1 gcd(q, ai)1/2

q

)︄
,

where in the second line we have estimated the sum over q1 trivially, and the
sum over q2 by applying [17, Lemma 4.5]. We let mi,p denote the ith smallest
element of νp(a1), . . . , νp(a4). We define

Lp = νp

(︄∏︁4
i=1 gcd(q, ai)

q2

)︄
, kp = νp(q).

Then
Lp =

4∑︂
i=1

min(kp,mi,p)− 2kp.

The maximum possible value of Lp is attained by choosing kp = m2,p, and so
Lp ⩽ m1,p +m2,p. We have

νp(∆) = m1,p+m2,p+m3,p+min(m1,p+m2,p+m3,p,m4,p) ⩾ 2(m1,p+m2,p),

and so Lp ⩽ νp(∆)/2. Taking a product over p|2A completes the proof of the
lemma.

6.5 Proof of Theorem 6.1.1
We recall that the quantity Na(B) studied in Section 6.4 did not involve any
primitivity conditions. In order to insert the condition gcd(z1, . . . , z4) = 1, we
apply an inclusion-exclusion argument which is a special case of [23, Section 3].

106



6.5. Proof of Theorem 6.1.1

We begin by fixing some notation which we shall use throughout this section. Let
z1, . . . , z4 denote nonzero squareful numbers, and x1, . . . , x4 ∈ N, y1, . . . , y4 ∈
Z̸=0 the unique integers such that zi = x2

i y
3
i and yi is squarefree for all

i. Let A = a1 · · · a4, R = r1 · · · r4, S = s1 · · · s4 and Y = y1 · · · y4. For
vectors v,w ∈ N4, we write v|w to mean vi|wi for all i = 1, . . . , 4. For
an integer m, we write v|m for vi|m for all i = 1, . . . , 4, and gcd(m,v) for
(gcd(m, v1), . . . , gcd(m, v4)). We also define v[m] to be the vector in N4 with
ith coordinate v[m]

i = ∏︁
p|m p

νp(vi), where νp denotes the p-adic valuation.

We recall from Proposition 6.3.1 that

N(B) = N(D,B) +O(B1+ϵD−1/12), (6.5.1)

where N(B) is defined in (6.1.5) and N(D,B) is defined in the same way but
with the additional constraint |Y | ⩽ D. For r, s ∈ N4 and s0 ∈ N, we define

N (B; r, s, s0) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩z ∈ (Z ̸=0)4 :
|z| ⩽ B, z1 + · · ·+ z4 = 0,
zi = x2

i y
3
i squareful for all i,

|Y | ⩽ D, Y ̸= □, r|y, s|x, s0|x

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Definition 6.5.1. Given r, s ∈ N4 and s0 ∈ N, we define ω(r, s, s0) as follows:

1. ω(r, s, s0) = µ(s0)
∏︁
p ω(r[p], s[p], 1). In particular, ω(1,1, s0) = µ(s0).

2. If one of r1, . . . , r4, s1, . . . , s4 is not squarefree, then ω(r, s, s0) = 0.

3. If gcd(s1, . . . , s4) > 1 then ω(r, s, s0) = 0.

4. If gcd(s0, s) ̸= 1, then ω(r, s, s0) = 0.

5. If p|RS but p ∤ risi for some i, then ω(r[p], s[p], 1) = 0.

6. If p|risi for every i, gcd(s1, . . . , s4) = 1, gcd(s0, s) = 1, and ri, si are
squarefree for every i, then k := νp(RS) satisfies 4 ⩽ k ⩽ 7. Define
ω(r[p], s[p], 1) = (−1)k+1.

The motivation for this choice of ω comes from the following lemma.

Lemma 6.5.2. We have

N(D,B) =
∑︂

r,s∈N4

s0∈N

ω(r, s, s0)#N (B; r, s, s0). (6.5.2)
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6. Sums of four squareful numbers

Proof. We write the right hand side of (6.5.2) as

∑︂
z∈N (B;1,1,1)

∑︂
r,s,s0

r|y,s|x,s0|x

ω(r, s, s0). (6.5.3)

We would like to show that the inner sum is the indicator function for the
condition gcd(z1, . . . , z4) = 1. If gcd(z1, . . . , z4) = 1, then by property (5)
of Definition 6.5.1, the only nonzero term in the inner sum of (6.5.3) is the
term ω(1,1, 1) = 1. From now on, we suppose that gcd(z1, . . . , z4) > 1. By
properties (1) and (2) from Definition 6.5.1, it suffices to show that for any
prime p dividing gcd(z1, . . . , z4), we have∑︂

r,s∈N4,s0∈N
r| gcd(p,y),s| gcd(p,x),s0| gcd(p,x)

ω(r, s, s0) = 0. (6.5.4)

The condition s0| gcd(p,x) implies that s0 = 1 or s0 = p. Moreover, if s0 = p
and ω(r, s, s0) ̸= 0, then by (4) and (5) of Definition 6.5.1, we have s = 1 and
r = 1 or r = (p, p, p, p). Therefore the left hand side of (6.5.4) becomes

µ(p)(ω(1,1, 1) + ω((p, p, p, p),1, 1)) = −(1− 1) = 0.

Now suppose that s0 = 1. Let k0 denote the number of y1, . . . , y4, x1, . . . , x4
that are a multiple of p, and let k denote the number of r1, . . . , r4, s1, . . . , s4
that are a multiple of p. If ω(r, s, 1) ̸= 0, then we have k ⩽ k0 and k0 = 4, 5 or
6. Indeed, if p divides seven of y1, . . . , y4, x1, . . . , x4 then it must also divide the
eighth, which contradicts condition (3) from Definition 6.5.1, and so k0 = 7, 8
are not possible. We go through the cases k0 = 4, 5, 6 in turn. For convenience
we write ω(r, s, 1) = ω(k) and ω(1,1, 1) = ω(0) = 1.
If k0 = 4, there is one summand of (6.5.4) with k = 0, namely (r, s) = (1,1),
and one with k = 4, and all other terms are zero. Therefore the contribution
to the sum in (6.5.4) from k0 = 4 is ω(0) + ω(4) = 1− 1 = 0. If k0 = 5, then
there is one summand in (6.5.4) with k = 0, two with k = 4 and one with
k = 5, and so we obtain ω(0) + 2ω(4) + ω(5) = 1− 2 + 1 = 0. The relevant
calculation for k = 6 is

ω(0) + 4ω(4) + 4ω(5) + ω(6) = 1− 4 + 4− 1 = 0.

We have therefore established that (6.5.4) holds.

We now use Theorem 4.5.1 to estimate #N (B; r, s, s0) for each choice of
r, s ∈ N4, s0 ∈ N satisfying ω(r, s, s0) ̸= 0. We have

#N (B; r, s, s0) =
∑︂

ϵ∈{±1}4

∑︂
|Y |⩽D,Y ̸=□

sgn yi=ϵi
r|y

µ2(y1) · · ·µ2(y4)Ny(B; s, s0),
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where

Ny(B; s, s0) = #

⎧⎨⎩x ∈ N4 :
∑︁4
i=1 y

3
i x

2
i = 0, s|x, s0|x,

|xi| ⩽
(︂

B
|yi|3

)︂1/2
for all i

⎫⎬⎭ . (6.5.5)

We make use of condition (4) from Definition 6.5.1, which allows us to make
a change of variables from xi to s0sixi. In the notation of (6.1.8), we have
Ny(B; s, s0) = 1

16Ns2y3(B/s2
0), where s2y3 denotes the vector (s2

1y
3
1, . . . , s

2
4y

3
4),

and the factor 1
16 compensates for changing from counting over N4 to counting

over (Z̸=0)4. Assuming Y ̸= □, we have S2Y 3 ̸= □. Moreover, we note that the
conditions ω(r, s, s0) ̸= 0 and r|y imply that S|Y 3. (Indeed, if ω(r, s, s0) ̸= 0,
then by conditions (2) and (3) of Definition 6.5.1, S must be fourth-power
free. Since condition (5) implies that every prime dividing S must also divide
R, we deduce that S|R3, and together with the assumption r|y, this implies
that S|Y 3.) Therefore |Y | ⩽ D implies that |S2Y 3| ⩽ D9. In particular, we
have |S2Y 3| ⩽ B4/7 when D ⩽ B1/16. Hence we may apply Theorem 6.4.2
with a = s2y3 to deduce that for any D ⩽ B1/16,

#N (B;r, s, s0)

= 1
16

∑︂
ϵ∈{±1}4

∑︂
|Y |⩽D

sgn yi=ϵi
r|y,Y ̸=□

yi squarefree

(︄
Gs2y3σ∞(ϵ)B
S|Y |3/2s2

0
+O

(︄
B41/42+ϵ∆1/3

|S2Y 3|11/24

)︄)︄
,

(6.5.6)
where as in Section 6.4, we define

∆ = ∆(s2y3) =
4∏︂
i=1

gcd
⎛⎝s2

i y
3
i ,
∏︂
j ̸=i

s2
jy

3
j

⎞⎠ .
We begin by studying the main term from (6.5.6). We would like to replace
the sum over |Y | ⩽ D with a sum over all y ∈ (Z̸=0)4 satisfying sgn yi = ϵi
for all i. In order to estimate the error term in doing so, we appeal to Lemma
6.4.16. We define

E1(D) = 1
16

∑︂
r,s∈N4

s0∈N

ω(r, s, s0)
∑︂

ϵ∈{±1}4

∑︂
y∈(Z̸=0)4

Y >D,Y ̸=□
sgn yi=ϵi

r|y

µ2(y1) · · ·µ2(y4)Gs2y3σ∞(ϵ)
S|Y |3/2s2

0
.

Lemma 6.5.3. For any D ⩾ 1, we have E1(D) = O(D−1/4+ϵ).

Proof. From the observation S|Y 3 made above, and the fact that σ∞(ϵ)≪ 1,
we have

E1(D)≪
∑︂

ϵ∈{±1}4

∑︂
y∈N4

Y >D,Y ̸=□

Y −3/2 ∑︂
s∈N4

S|Y 3

|Gϵs2y3|
S

∑︂
s0∈N

∑︂
r∈N4

R|Y

|ω(r, s, s0)|
s2

0
.
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6. Sums of four squareful numbers

Since |ω(r, s, s0)| ⩽ 1, the sum over s0 is convergent. The sum over r only
contributes O(Y ϵ) by the trivial bound for the divisor function. Applying the
estimate from Lemma 6.4.16, we have |Gs2y3| ≪ (SY )ϵ∆(s2y3)1/4 whenever
Y ̸= □. Therefore

E1(D)≪
∑︂

y∈N4

Y >D

Y −3/2+ϵ ∑︂
s∈N4

S|Y 3

∆(s2y3)1/4

S1−ϵ . (6.5.7)

From Lemma 6.4.14, we have ∆(s2y3) ⩽ S4∆(y3). Continuing from (6.5.7),
we obtain the estimate

E1(D)≪
∑︂

y∈N4

Y >D

∆(y3)1/4

Y 3/2−ϵ

∑︂
s∈N4

S|Y 3

Sϵ ≪
∑︂

y∈N4

Y >D

∆(y)3/4

Y 3/2−ϵ .

We note that ∆(y) is always squareful. Therefore, for any R ⩾ 1, there are
O(R1/2) possible values for ∆(y) in the range [R, 2R]. We define the quantity
M(y) = Y/∆(y). For a givenM,∆ ⩾ 1, the conditionsM = M(y),∆ = ∆(y)
uniquely determine Y , and so by the trivial bound for the divisor function, there
are O(Y ϵ) = O((M∆)ϵ) choices for y satisfying M = M(y),∆ = ∆(y).
Breaking into dyadic intervals, we obtain

∑︂
y∈N4

Y >D

∆(y)3/4

Y 3/2−ϵ ≪
∑︂

R1,R2 dyadic
R1R2>D/2

R1R
1/2
2 max

y∈N4

R1⩽M(y)⩽2R1
R2⩽∆(y)⩽2R2

M(y)−3/2+ϵ∆(y)−3/4+ϵ

≪
∑︂

R1,R2 dyadic
R1R2>D/2

R
−1/2+ϵ
1 R

−1/4+ϵ
2

≪ D−1/4+ϵ,

as required.

We now study the error term

E2(D) =
∑︂

r,s∈N4

s0∈N

ω(r, s, s0)
∑︂

ϵ∈{±1}4

∑︂
|Y |⩽D,Y ̸=□

sgn yi=ϵi
r|y,

yi squarefree

∆(s2y3)1/3

|S2Y 3|11/24 . (6.5.8)

Lemma 6.5.4. We have E2(D)≪ D11/8+ϵ.

Proof. We proceed in a similar fashion to the proof of Lemma 6.5.3. Let M(y)
be as defined in Lemma 6.5.3. Then
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6.6. The leading constant

E2(D)≪
∑︂

y∈N4

Y ⩽D

∑︂
s∈N4

S|Y 3

∆(s2y3)1/3

(S2Y 3)11/24−ϵ

≪
∑︂

y∈N4

Y ⩽D

∆(y)
Y 11/8−ϵ

∑︂
s∈N4

S|Y 3

S5/12+ϵ

≪
∑︂

R1,R2 dyadic
R1R2⩽2D

R1R
1/2
2 max

y∈N4

R1⩽M(y)⩽2R1
R2⩽∆(y)⩽2R2

M(y)−1/8+ϵ∆(y)7/8+ϵ

≪
∑︂

R1,R2 dyadic
R1R2⩽2D

R
7/8+ϵ
1 R

11/8+ϵ
2

≪ D11/8+ϵ.

We now conclude the proof of Theorem 6.1.1. Combining (6.5.1), Lemma 6.5.2,
(6.5.6), Lemma 6.5.3 and Lemma 6.5.4, for any D ⩽ B1/16, we have

N(B) = cB +O(B1+ϵD−1/12) +O(B41/42+ϵD11/8),

where

c = 1
16

∑︂
ϵ∈{±1}4

σ∞(ϵ)
∑︂

y∈(Z̸=0)4

sgn(yi)=ϵi
Y ̸=□

µ2(y1) · · ·µ2(y4)
|Y |3/2

∑︂
r,s∈N4

s0∈N
r|y

ω(r, s, s0)Gs2y3

Ss2
0

.

(6.5.9)
Making the choice D = B4/245, we obtain N(B) = cB +O(B734/735+ϵ).

6.6 The leading constant
The expression for the leading constant in (6.5.9) is analogous to [23, Equation
(3.14)]. Similarly to [23, Equation (3.15)], we now demonstrate that the inner
sum of (6.5.9) can be expressed as a product of local densities. We define

Mn(y, p) = #
{︄

m (mod pn) :
4∑︂
i=1

y3
im

2
i ≡ 0 (mod pn), p ∤ mjyj for some j

}︄

for any prime p and any n ∈ N.

Lemma 6.6.1. We have∑︂
r,s∈N4

s0∈N
r|y

ω(r, s, s0)Gs2y3

Ss2
0

=
∏︂
p

lim
N→∞

(︄
MN(y, p)
p3N

)︄
.
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6. Sums of four squareful numbers

Proof. We first express the singular series Gs2y3 as a product of local densities.
Since Gs2y3 = ∑︁∞

q=1 q
−4Sq,s2y3(0), and Sq,s2y3(0) is multiplicative in q, we have

Gs2y3 =
∞∑︂
q=1

q−4Sq,s2y3(0) =
∏︂
p

(︄
1 +

∞∑︂
n=1

p−4nSpn,s2y3(0)
)︄
. (6.6.1)

Moreover,

Spn,s2y3(0) =
∑︂

b mod pn

∑︂
0⩽k<pn

gcd(k,p)=1

epn

(︄
k

4∑︂
i=1

s2
i y

3
i b

2
i

)︄
. (6.6.2)

Let α = ∑︁4
i=1 s

2
i y

3
i b

2
i . The inner sum of (6.6.2) is a Ramanujan sum, which we

recall is given by

∑︂
0⩽k<pn

gcd(k,p)=1

epn(kα) =

⎧⎪⎪⎨⎪⎪⎩
pn − pn−1, if pn | α,
−pn−1, if pn−1 | α but pn ∤ α,
0, otherwise.

(6.6.3)

Let
Ns,y(pn) = # {b (mod pn) : α ≡ 0 (mod pn)} .

When applying (6.6.3) to (6.6.2), pn occurs with multiplicity Ns,y(pn) and
−pn−1 with multiplicity

#{b (mod pn) : α ≡ 0 (mod pn−1)} = p4Ns,y(pn−1).

Therefore
Spn,s2y3(0) = pnNs,y(pn)− pn+3Ns,y(pn−1), (6.6.4)

and hence
∞∑︂
n=1

p−4nSpn,s2y3(0) = lim
N→∞

N∑︂
n=1

(︂
p−3nNs,y(pn)− p−3(n−1)Ns,y(pn−1)

)︂
= lim

N→∞

(︂
p−3NNs,y(pN)

)︂
− 1.

Returning to (6.6.1), we conclude that

Gs2y3 =
∏︂
p

(︄
lim
N→∞

Ns,y(pN)
p3N

)︄
. (6.6.5)

For the remainder of the proof, we use a sum over r[p], s[p], s
[p]
0 to denote a sum

over all r, s ∈ N4, s0 ∈ N, with (r, s, s0) = (r[p], s[p], s
[p]
0 ) and r|y. Recalling

that ω(r, s, s0) is also multiplicative, we obtain

∑︂
r,s∈N4

s0∈N
r|y

ω(r, s, s0)Gs2y3

Ss2
0

=
∏︂
p

⎛⎜⎝ ∑︂
r[p],s[p],s

[p]
0

ω(r[p], s[p], s
[p]
0 )

S[p]s
2[p]
0

lim
N→∞

(︄
Ns,y(pN)
p3N

)︄⎞⎟⎠ .
(6.6.6)
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To complete the proof, it suffices to show that for a fixed prime p, the factor on
the right hand side of (6.6.6) is equal to limN→∞(p−3NMN(y, p)). We define

Ns,s0,y(n) = #
{︄

m (mod pn) :
4∑︂
i=1

y3
im

2
i ≡ 0 (mod pn), s|m, s0|m

}︄
.

We claim that

Mn(y, p) =
∑︂

r[p],s[p],s
[p]
0

ω(r, s, s0)Ns,s0,y(n). (6.6.7)

To see this, we fix m (mod pn) such that ∑︁4
i=1 y

3
im

2
i ≡ 0 (mod pn), and

consider the quantity ∑︂
r[p],s[p],s

[p]
0

s|m,s0|m

ω(r, s, s0).

This expression has already been encountered in (6.5.4), and from the proof
of Lemma 6.5.2, we see that it is equal to 1 if p ∤ yimi for some i, and zero
otherwise. This establishes (6.6.7).
Changing variables from mi to s0simi, we have

Ns,s0,y(n) = s
4[p]
0 Ns,y(pn−2νp(s0))

S[p] .

Therefore

lim
N→∞

(︄
Ns,s0,y(N)

p3N

)︄
= lim

N→∞

(︄
Ns,y(pN)
S[p]s

2[p]
0

)︄
.

Combining this with (6.6.7), we deduce that limN→∞(p−3NMN (y, p)) matches
the Euler factor from the right hand side of (6.6.6).

We do not expect the leading constant c from (6.5.9) to agree with the
constant cPSTV-A from Conjecture 3.0.8 without the removal of further thin
sets. In Chapter 7, we study the counting problem #N3(B) from (1.2.2),
which corresponds to Poonen’s question [98] about the orbifold (P1, D), where
D = 1

2 [0] + 1
2 [1] + 1

2 [∞]. The more detailed discussion around the case k = 3
in Chapter 7 is readily adapted to deal with the case k = 4 considered in this
chapter. Therefore, we only give a brief summary here.
We recall that Ny(B) denotes the contribution to N(B) from a fixed choice
of y ∈ (Z̸=0)4 satisfying Y ̸= □ and µ2(y1) = · · · = µ2(y4) = 1. We have
shown that each Ny(B) contributes a positive proportion to N(B), namely
Ny(B) ∼ cyB, where

cy = σ∞(ϵ)
|Y |3/2

∏︂
p

(︄
lim
N→∞

MN(y, p)
p3N

)︄
.
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6. Sums of four squareful numbers

Moreover, Manin’s conjecture can be applied to the quadric Qy cut out by the
equation ∑︁4

i=1 y
3
i x

2
i = 0, and the constant thus predicted is in agreement with

cy (as was expected due to Remark 4.5.3). Hence the expression in (6.5.9) is
naturally interpreted as a sum over y of leading constants arising from Manin’s
conjecture applied to the quadrics Qy. This sum is not multiplicative in y, and
it does not appear to be possible to express (6.5.9) as an Euler product. In
contrast, cPSTV-A is by definition an Euler product. In Chapter 7, we find that
when k = 3, the analogous constant to (6.5.9) does not agree numerically with
the leading constant cPSTV-A from Conjecture 3.0.8, and it seems very likely
that the same will hold true for k = 4.
Since the PSTV-A conjecture allows for the removal of thin sets, a natural
question that arises is whether thin sets could explain the discrepancy between
c and cPSTV-A. We recall from Remark 3.0.9 that for our orbifold, the set of
Campana points is not itself thin. However, in analogy to Theorem 7.1.3, it
can be shown that any constant in (0, c] could be obtained by the removal
of an appropriate thin set. Most of these thin sets have no clear geometric
interpretation in relation to the original orbifold. From this point of view,
c seems to be the most natural choice of leading constant for the orbifold
considered in this chapter.
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CHAPTER 7
On the leading constant for the

Manin-type conjecture for
Campana points

7.1 Introduction
In this chapter, we investigate the leading constant cPSTV-A from the Manin-type
conjecture for Campana points (Conjecture 3.0.8) in some concrete examples.
The first example we study is the Campana orbifold (P1, D) with the divisor
D = 1

2 [0] + 1
2 [1] + 1

2 [∞], which corresponds to the counting problem #N3(B)
from (1.2.2). This problem was posed by Poonen [98] following discussions in the
Spring 2006 MSRI program on rational and integral points on higher-dimensional
varieties, and was one of the motivating examples for the development of the
quantitative theory of Campana points. We use the height H on P1(Q) given
by

H(z) = max(|z1|, |z2|, |z1 + z2|) (7.1.1)

for (z1, z2) ∈ Z2
prim representing z. Let (P1,D) be the obvious integral model

of (P1, D) over Z. Let

N1(B) = #{P ∈ (P1,D)(Z) : H(P ) ⩽ B}. (7.1.2)

Recalling the discussion after (6.1.2), we have N1(B) = 1
2#N3(B). According

to the PSTV-A conjecture, we should expect #N3(B) ∼ cB1/2 for some
constant c > 0. It is easy to show that #N3(B) ≫ B1/2, for example by
replacing the condition that z1, z2 and z1 + z2 are squareful by the stronger
condition that they are squares, and counting the resulting Pythagorean triples.
However, finding upper bounds is much more challenging, and the best result to
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7. The leading constant for the PSTV-A conjecture

date is #N3(B) = O(B3/5+ϵ), obtained by Browning and Van Valckenorgh in
[22, Theorem 1.2] by applying the determinant method and the results of [62].
We recall the approach outlined in Section 4.5 to count Nk(B), based on a
fibration into quadrics. This approach has proven successful in treating the case
k ⩾ 4, by a result of Van Valckenborgh [117, Theorem 1.1] for k ⩾ 5 and by
Chapter 6 of this work for k = 4. Following this approach for k = 3 yields the
decomposition

N1(B) = 1
23

∑︂
y∈(Z ̸=0)3

y1,y2,y3 squarefree

N+
y (B), (7.1.3)

where

N+
y (B) = 1

2#

⎧⎨⎩x ∈ (Z̸=0)3 :
3∑︂
i=1

x2
i y

3
i = 0,

gcd(x1y1, x2y2, x3y3) = 1
max1⩽i⩽3 |y3

i x
2
i | ⩽ B

⎫⎬⎭ .
With this decomposition, the leading constant for N1(B) is naturally expressed
as an infinite sum of constants cy arising from Manin’s conjecture applied to
N+

y (B). This leads to the following prediction of Browning and Van Valcken-
borgh.

Conjecture 7.1.1 ([22, Conjecture 1.1]). We have

N1(B) ∼ 3cBVB
1/2,

where the constant cBV is given explicitly in [22, Equation (2–12)] (and also in
(7.3.11)), and is expressed as a sum over (y0, y1, y2) of constants arising from
Manin’s conjecture applied to the conics x2

0y
3
0 + x2

1y
3
1 = x2

2y
3
2.

The reason for the factor 3 in Conjecture 7.1.1 is explained in Lemma 7.3.1,
and is due to the counting problem considered in [22] being over N3

prim rather
than (Z̸=0)3

prim.
By focusing on the contribution to N+

y (B) from the range |y| ⩽ Bθ, for a
small absolute constant θ > 0, it is possible to prove the lower bound

N1(B) ⩾ 3cBVB
1/2(1 + o(1)), (7.1.4)

where cBV is as defined in Conjecture 7.1.1. This is achieved in [22, Theorem
1.2], where it is also established that cBV takes the numerical value 2.68...
correct to two decimal digits.
For the orbifold (P1, 1

2 [0] + 1
2 [1] + 1

2 [∞]) corresponding to the counting problem
N1(B), there does not appear to be any obvious thin set to remove. Therefore,
we might naturally expect that cPSTV-A is the leading constant for N1(B) itself,
and consequently, in view of the lower bound in (7.1.4), that cPSTV-A ⩾ 3cBV.
In Section 7.2, we shall prove the following result, which shows that in fact,
cPSTV-A < 3cBV.
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Theorem 7.1.2. For the orbifold corresponding to the counting problem N1(B),
the leading constant predicted by the PSTV-A conjecture is

cPSTV-A = 9
2π

∏︂
p

(︄
1 + 3p−3/2

1 + p−1

)︄
. (7.1.5)

Moreover, cPSTV-A/3 = 2.56785632..., accurate up to eight digits.

We define

C =

⎧⎨⎩[z0 : z1] ∈ P1(Q) :
(z0, z1) ∈ Z2

prim,
z0, z1, z0 + z1 squareful and nonzero

⎫⎬⎭ (7.1.6)

to be the set of Campana points under consideration. We recall from Remark
3.0.9 that the set of Campana points C is not itself thin. Hence the PSTV-A
conjecture predicts that there is some thin set T ⊂ C of Campana points such
that the removal of T from the count N1(B) reduces the leading constant
from c to cPSTV-A. In Section 7.4, we prove the following result.

Theorem 7.1.3. Suppose that Conjecture 7.1.1 holds. Let the height function
H be as defined in (7.1.1). Then for any real number λ ∈ (0, 3cBV], there is a
Campana thin subset T ⊆ C , as introduced in Definition 3.0.6, such that

#{z ∈ C \T : H(z) ⩽ B} ∼ λB1/2.

Theorem 7.1.3 demonstrates that if Conjecture 7.1.1 holds, we can obtain any
leading constant in (0, 3cBV], including the constant cPSTV-A, by the removal
of an appropriate thin set. From this point of view, the PSTV-A conjecture
as stated in [96] seems somewhat unsatisfactory, in that all points can lie on
accumulating thin subsets. However, there does not appear to be any thin set
with a clear geometric meaning which we can remove in order to obtain the
constant cPSTV-A, and so currently 3cBV seems the most natural prediction for
the leading constant in this example.

Remark 7.1.4. We have considered N1(B) for simplicity, but it seems likely
that similar statements hold for the orbifold considered in Chapter 6. In this
case, we know the analogue of Conjecture 7.1.1 holds, and so we could obtain
unconditional analogues of Theorem 7.1.3. Similarly, this approach could be
extended to the setting considered by Van Valckenborgh [117], or by Browning
and Yamagishi [23].

Motivated by the above discussion, in Section 7.5 we study cPSTV-A in a second
example, involving squareful values of a binary quadratic form. For fixed positive,
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squarefree and coprime integers a, b satisfying a, b ≡ 1 (mod 4), we consider
the counting problem

N(B) = 1
2#

{︂
(x, y) ∈ Z2

prim : |x|, |y| ⩽ B, ax2 + by2 squareful
}︂
. (7.1.7)

This corresponds to the Campana orbifold (X,D) = (P1, 1
2V (ax2 + by2)) over

Q, together with the obvious Z-model (X ,D), and the height H on P1(Q)
given by H([x : y]) = max(|x|, |y|) for (x, y) ∈ Z2

prim. By Remark 3.0.9, the
set of Campana points in this example is not itself thin. In Theorem 7.5.1, we
compute the constant cPSTV-A for this example. In Section 7.5, we also prove
the following theorem, which can be thought of as an unconditional analogue
of Conjecture 7.1.1 for the counting problem N(B).

Theorem 7.1.5. For any ϵ > 0, we have N(B) = cB +O(B89/90+ϵ), where
the implied constant depends only on a, b and ϵ. The leading constant c is
given explicitly in (7.5.19) as a sum over v of constants arising from Manin’s
conjecture applied to the conics ax2 + by2 = u2v3.

Remark 7.1.6. When a = 1, N(B) counts squareful values of the norm form
x2 + by2, and we have an asymptotic formula for N(B) as a special case of a
result by Streeter [115, Theorem 1.4]. The constant from [115, Theorem 1.4]
and the constant c from Theorem 7.1.5 must therefore agree. However, the
constants are not immediately comparable, since the proof of [115, Theorem
1.4] proceeds via very different methods, using height zeta functions and Fourier
analysis. This yields a leading constant that involves a sum of limits of global
Fourier transforms of 2-torsion toric characters.

For the orbifolds considered in Theorem 7.1.5, the constants c and cPSTV-A
are often not equal. In the norm form case a = 1, we show that cPSTV-A < c
whenever b > 1. Analogously to Theorem 7.1.3, any constant in (0, c] could be
obtained by the removal of an appropriate thin set. When a, b > 1, however,
we shall show that sometimes c < cPSTV-A. The significance of this is that
thin sets cannot explain the discrepancy between the constants. Thus Theorem
7.1.5 provides the basis for the following counterexample to the leading constant
predicted by the PSTV-A conjecture.

Corollary 7.1.7. Let a = 37 and b = 109. Then the PSTV-A conjecture does
not hold for the orbifold (X ,D) and the height H defined above.
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Browning for many useful comments and discussions during the development
of this work. I am also grateful to the anonymous referees for providing many
helpful comments and suggestions that improved the quality of the paper on
which this chapter is based.

7.2 Proof of Theorem 7.1.2
In this section, we prove Theorem 7.1.2. We adopt the notation and definitions
from Chapter 3. The choice of height from (7.1.1) corresponds to the ample
line bundle L = OP1(1), metrized by the generating set {z0, z1, z0 + z1} for
the global sections of L .
The computation of the exponents a and b from the PSTV-A conjecture is
similar to Section 3.3.2. Under the isomorphism Pic(P1) ∼= Z given by the
degree function, the line bundle L maps to 1 and Λeff is identified with R⩾0.
Since degD = 3/2 and deg[KP1 ] = −2, we have

a = inf
{︃
t ∈ R : t− 2 + 3

2 ⩾ 0
}︃

= 1
2 .

The minimal supported face of Λeff which contains a[L] + [KP1 ] + [D] = 0 is
{0}, which has codimension 1 in Λeff , and so b = 1. These values of a and b
are compatible with Conjecture 7.1.1.
It remains to compute the leading constant cPSTV-A, as defined in Section 3.2.
We recall that

cPSTV-A = αβτ

a(b− 1)! , (7.2.1)

and we proceed to discuss each of the factors α, β, τ in turn.
Similarly to the computation in Section 3.3.2, we have

α =
(︃1

2

)︃3 ∫︂ ∞

0
e−xdx = 1

8

and β = 1. Substituting a = 1
2 , b = 1, α = 1

8 and β = 1 into (7.2.1), we deduce
that

cPSTV-A = τ

4 . (7.2.2)

In the notation of [91, Section 2], we have det(1 − p−1 Frobp |Pic(P1Ip)) =
1 − p−1 for all primes p. (In fact, this is true whenever Pic(XQ) = Z [72,
Chapter II, Remark 6.10].) Fixing i ∈ {0, 1, 2} and writing z2 = z0 + z1,
we define sections sDi

= zi. We take the metrization on OP1(Di) obtained
from pulling back the metrization on OP1(1) via the obvious isomorphism
OP1(Di) ∼= OP1(1). We recall that we are using the metrization on OP1(1)
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7. The leading constant for the PSTV-A conjecture

arising from the generating set {z0, z1, z2}. Let | · |v denote the p-adic metric
if v = p and the Euclidean metric if v =∞, and let Val(Q) denote the set of
places of Q. Recalling (2.2.5), on the set (P1\Di)(Q), may express HDi

as a
product of local heights

HDi
(z) =

∏︂
v∈Val(Q)

HDi,v(z) =
∏︂

v∈Val(Q)

max(|z0|v, |z1|v, |z2|v)
|zi|v

,

where [z0 : z1] represents z. Therefore,

HD(z) =
∏︂

v∈Val(Q)
HD,v(z) =

∏︂
v∈Val(Q)

max(|z0|v, |z1|v, |z2|v)3/2

|z0z1z2|1/2
v

(7.2.3)

on the open set (P1\ supp(D))(Q), where supp(D) = D0 ∪D1 ∪D2.
The property that z ∈ (P1\ supp(D))(Q) is a Campana point is a local condition.
More precisely, it is the condition that for all primes p, we have

νp(z0), νp(z1), νp(z0 + z1) ̸= 1

for (z0, z1) ∈ Z2
prim representing z. Let Ωp denote the subset of P1(Qp) cut

out by this local condition, and define Ω∞ = P1(R). The expression (3.2.3)
becomes

τ = σ∞
∏︂
p

(1− p−1)σp, (7.2.4)

where
σv =

∫︂
Ωv

max(|z0|v, |z1|v, |z0 + z1|v)3/2

|z0z1(z0 + z1)|1/2
v

dωv.

To compute σv, we use the chart Uv = {[t : 1] : t ∈ Qv}, equipped with the
natural maps fv : Uv → Qv given by [t : 1] ↦→ t. The only point on Ωv not
in Uv is [1 : 0], which has measure zero, and so we may replace the range of
integration with Ωv ∩ Uv. A point [z0 : z1] on Uv satisfies t = z0/z1. Let dt
denote the usual p-adic measure or the Lebesgue measure as appropriate. We
recall that there is an isomorphism KP1 ∼= OP1(−2), which on the chart Uv is
given by mapping dt to z−2

1 . Therefore, in the notation of [91, Section 2], we
have

∥dt∥KP1 ,v = ∥z−2
1 ∥OP1 (−2),v = |z1|−2

v

max(|z0|v, |z1|v, |z0 + z1|v)−2 .

We obtain

HD,vωv = max(|z0|v, |z1|v, |z0 + z1|v)3/2|z1|2v
|z0z1(z0 + z1)|1/2

v max(|z0|v, |z1|v, |z0 + z1|v)2
dt

= dt
|t(1 + t)|1/2

v max(|t|v, 1, |1 + t|v)1/2
. (7.2.5)
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When v =∞, we have fv(Ωv ∩ Uv) = R. Therefore

σ∞ =
∫︂
R

dt
|t(1 + t)|1/2 max(|t|, 1, |1 + t|)1/2

=
∫︂ −1

−∞

dt
|1 + t|1/2|t|

+
∫︂ 0

−1

dt
|t(1 + t)|1/2 +

∫︂ ∞

0

dt
t1/2(1 + t) .

Each of these integrals is equal to π, and so we conclude that σ∞ = 3π. In the
following lemma, we compute σv when v <∞.

Lemma 7.2.1. We have σp = 1 + p−1 + 3p−3/2.

Proof. We recall that Ωp consists of the points [z0 : z1] ∈ P1(Qp) such that
min(νp(z0), νp(z1)) = 0 and νp(z0), νp(z1), νp(z0 + z1) ̸= 1. From this, we see
that fp(Ωp∩Up) is the set of all t ∈ Qp which satisfy the conditions t, t+ 1 ̸= 0
and νp(t), νp(1 + t) ̸= ±1. Therefore

σp =
∫︂

t∈Qp

νp(t),νp(1+t)̸=±1

dt
|t(1 + t)|1/2

p max(|t|p, 1, |1 + t|p)1/2
. (7.2.6)

By the ultrametric triangle inequality, max(1, |t|p, |1 + t|p) = max(1, |t|p).
We now consider separately the contribution to the integral from the regions
R1, R2, R3 defined respectively by the conditions

1. νp(t) ⩾ 2,

2. νp(t) = 0,

3. νp(t) ⩽ −2.

In the region R1, we have |1 + t|p = 1 and max(|t|p, 1) = 1. We recall also
that for any j ∈ Z, the p-adic measure of the set of t ∈ Qp with νp(t) = j is
(1− p−1)p−j. Hence the contribution to (7.2.6) from R1 is

∫︂
t∈Qp

νp(t)⩾2

dt
|t|1/2
p

=
∞∑︂
j=2

(1− p−1)p−j/2 = p−1 + p−3/2.

In the region R2, we have max(1, |t|p) = 1. We further subdivide this region
according to the value of νp(1 + t), remembering that the case νp(1 + t) = 1
must be excluded. We define

Sj = {t ∈ Z×
p : νp(1 + t) = j}.

When j < 0, we have Sj = ∅. When j = 0, the measure of Sj is 1 − 2p−1,
because t ∈ S0 if and only if the reduction of t modulo p is not 0 or −1. (In
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7. The leading constant for the PSTV-A conjecture

the case p = 2, we have 1− 2p−1 = 0, which is consistent with the fact that it
is not possible for t and 1 + t to both be in Z×

2 ). When j ⩾ 2, elements t ∈ Sj
are precisely elements of the form t = −1 + s for some s ∈ Qp with νp(s) = j,
and so Sj has measure p−j(1 − p−1). We conclude that the contribution to
(7.2.6) from the region R2 is∫︂

t∈Z×
p

νp(1+t)̸=±1

dt
|1 + t|1/2

p

= 1− 2p−1 +
∞∑︂
j=2

(1− p−1)p−j/2 = 1− p−1 + p−3/2.

Finally, in the region R3, we have |1 + t|p = 1 and max(1, |t|p) = |t|p, and so
we obtain a contribution from R3 of∫︂

t∈Qp

νp(t)⩽−2

dt
|t|3/2
p

=
∞∑︂
j=2

(1− p−1)p−j/2 = p−1 + p−3/2.

Combining the three regions, we conclude that

σp = (p−1 + p−3/2) + (1− p−1 + p−3/2) + (p−1 + p−3/2) = 1 + p−1 + 3p−3/2,

as required.

We now complete the proof of Theorem 7.1.2. We recall that cPSTV-A = τ/4,
and σ∞ = 3π. Together with Lemma 7.2.1 and (7.2.4), this implies that

cPSTV-A = 1
4σ∞

∏︂
p

(1− p−1)σp

= 1
4 · 3π

∏︂
p

(1 + 3p−3/2 − p−2 − 3p−5/2) (7.2.7)

= 1
4 · 3π

∏︂
p

(︄
1 + 3p−3/2

1 + p−1

)︄
(1− p−2).

Since ∏︁p(1 − p−2) = 1/ζ(2) = 6/π2, we obtain the expression for cPSTV-A
claimed in (7.1.5).
In order to estimate the numerical value of cPSTV-A, we evaluate the Euler
product ∏︁p(1−p−1)σp by removing convergence factors. Using (7.2.7) we have∏︂

p

(1− p−1)σp =
∏︂
p

(1 + 3p−3/2 − p−2 − 3p−5/2)

= ζ(3/2)3 · ζ(4)
ζ(2) ·

(︄
ζ(5)
ζ(5/2)

)︄3∏︂
p

f(p),

where f(p) = 1 +O(p−3) is an explicit polynomial in p−1. The resulting Euler
product now converges quickly enough to obtain an approximation for cPSTV-A
accurate to eight decimal digits by taking the product over the first 1000 primes.
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7.3 Manin’s conjecture for the family of conics
In this section, we describe the alternative approach of Browning and Van
Valckenborgh [22, Section 2] for predicting the leading constant for the counting
problem N1(B) from (7.1.2). The counting function considered in [22] is given
by

˜︂N1(B) = #

⎧⎨⎩(z0, z1, z2) ∈ N3
prim :

z0 + z1 = z2, z0, z1, z2 ⩽ B,

z0, z1, z2 squareful

⎫⎬⎭ .
This is very similar to N1(B), the only differences being the presence of the
factor 1/2 in (7.1.2), and that in ˜︂N1(B) we require (z0, z1, z2) ∈ N3

prim, whilst in
N1(B) we only require (z0, z1, z2) ∈ (Z̸=0)3

prim. The following lemma compares
N1(B) with ˜︂N1(B).

Lemma 7.3.1. We have N1(B) = 3˜︂N1(B).

Proof. For convenience we use the notation ˜︂S1(B) to mean the set which˜︂N1(B) enumerates. For ϵ ∈ {±1}3, we define

Sϵ(B) =

⎧⎨⎩(z0, z1, z2) ∈ (Z̸=0)3
prim :

z0 + z1 = z2, |zi| ⩽ B for all i
zi squareful, sgn(zi) = ϵi for all i

⎫⎬⎭ ,
and Nϵ(B) = #Sϵ(B). Then

2N1(B) =
∑︂

ϵ∈{±1}3

Nϵ(B). (7.3.1)

For ϵ = (1, 1,−1) or ϵ = (−1,−1, 1), we have Nϵ(B) = 0. For ϵ = (1, 1, 1)
or ϵ = (−1,−1,−1), we have Nϵ(B) = ˜︂N1(B), and so these choices of ϵ
contribute 2˜︂N1(B) to the sum in (7.3.1).

For the remaining four choices of ϵ, it can be checked that there is a permutation
σ ∈ S3 such that the map

Sϵ(B)→ ˜︂S1(B)
(z0, z1, z2) ↦→ σ(|z0|, |z1|, |z2|)

is a bijection. Therefore Nϵ(B) = ˜︂N1(B), and these choices of ϵ contribute
4˜︂N1(B) to the sum in (7.3.1).

In the remainder of this section we record the explicit description of cBV from
[22], and define some notation which will be useful later.

123



7. The leading constant for the PSTV-A conjecture

Recalling the discussion in the introduction, for a fixed y = (y0, y1, y2) in
(Z̸=0)3, we consider the conic Cy defined by the polynomial

Fy(x0, x1, x2) = y3
0x

2
0 + y3

1x
2
1 − y3

2x
2
2.

We define an anticanonical height Hy on Cy given by

Hy(x) = max
(︂
|y3

0x
2
0|, |y3

1x
2
1|, |y3

2x
2
2|
)︂1/2

, (7.3.2)

where (x0, x1, x2) ∈ (Z̸=0)3
prim represents the point x ∈ Cy(Q). We define

NCy,Hy(B1/2) = #{x ∈ Cy(Q) : Hy(x) ⩽ B1/2},

and N+
Cy,Hy(B1/2) in the same way, but with the additional coprimality condition

gcd(x0y0, x1y1, x2y2) = 1. Then

˜︂N1(B) = 1
4
∑︂

y∈N3

µ2(y0y1y2)N+
Cy,Hy(B). (7.3.3)

The presence of the factor 1/4 in (7.3.3) is due to the fact that in N+
Cy,Hy(B1/2)

the points x we count lie in P2(Q), which allows for four choices of sign for the
coordinates of x corresponding to each point (z0, z1, z2) enumerated by ˜︂N1(B).
As mentioned in [22, Section 3], it is easy to show that there is an absolute
constant δ > 0 and an explicit constant cHy(Cy(AQ)+) depending on y such
that

N+
Cy,Hy(B1/2) = cHy(Cy(AQ)+)B1/2(1 +Oy(B−δ)), (7.3.4)

where the error term has at worst polynomial dependence on y. The constant
cHy(Cy(AQ)+) is a special case of the constant conjecturally formulated by
Peyre [91, Définition 2.5]. Here, Cy(AQ)+ denotes the open subset of Cy(AQ)
given by the conditions min0⩽i⩽2(νp(xiyi)) = 0 for all primes p, and is intended
to reflect the coprimality condition gcd(x0y0, x1y1, x2y2) = 1 imposed on
N+
Cy,Hy(B1/2) in (7.3.3). The computation of cHy(Cy(AQ)+) then involves the

Tamagawa measure of Cy(AQ)+ in place of the full adelic space Cy(AQ). In
the light of (7.3.3), it is natural to predict that

˜︂N1(B) ∼ cBVB
1/2, (7.3.5)

with
cBV = 1

4
∑︂

y∈N3

µ2(y0y1y2)cHy(Cy(AQ)+). (7.3.6)

In what follows, we shall use for brevity the notation

γ(d) :=
∏︂
p|d
p>2

(︄
1 + 1

p

)︄−1

. (7.3.7)
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In [22, Section 2], it is established that

cHy(Cy(AQ)+) = 4
π
· µ

2(y0y1y2)γ(y0y1y2)
(y0y1y2)3/2 σ2,yϱ(y), (7.3.8)

where

ϱ(y) =
∏︂
p|y0
p>2

(︄
1 +

(︄
y1y2

p

)︄)︄ ∏︂
p|y1
p>2

(︄
1 +

(︄
y0y2

p

)︄)︄ ∏︂
p|y2
p>2

(︄
1 +

(︄
−y0y1

p

)︄)︄
, (7.3.9)

σ2,y = lim
r→∞

2−2r#

⎧⎨⎩x ∈ (Z/2rZ)3 :
y3

0x
2
0 + y3

1x
2
1 ≡ y3

2x
2
2 (mod 2r),

min0⩽i⩽2(ν2(xiyi)) = 0

⎫⎬⎭ .
(7.3.10)

Combining with (7.3.6), we conclude that

cBV = 1
π

∑︂
y∈N3

µ2(y0y1y2)γ(y0y1y2)
(y0y1y2)3/2 σ2,yϱ(y). (7.3.11)

From [22, Lemma 2.2], we have the calculation

σ2,y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 2 ∤ y0y1y2 and ¬{y0 ≡ y1 ≡ −y2 (mod 4)},
2, if 2 | y0 and y1 ≡ y2 (mod 8),
2, if 2 | y1 and y0 ≡ y2 (mod 8),
2, if 2 | y2 and y0 ≡ −y1 (mod 8),
0, otherwise.

(7.3.12)

As a consequence of quadratic reciprocity, it can be shown that the condition
¬{y0 ≡ y1 ≡ −y2 (mod 4)} is automatically satisfied whenever ϱ(y) ̸= 0.

Remark 7.3.2. The expression for cBV given in (7.3.11) is a sum of products
of local densities arising from Manin’s conjecture, but it is not multiplicative
in y, and it does not appear possible to express cBV as a single Euler product.
This is in contrast to the constant cPSTV-A, which is defined as a product of
local densities.

7.4 Thin sets
In this section, we prove Theorem 7.1.3. We recall the definition of the set of
Campana points C from (7.1.6) and the corresponding counting problem N1(B)
from (7.1.2), with the height H as defined in (7.1.1). From Definition 3.0.6, the
Campana thin subsets of C take the form T = T ∩C , where T is a thin subset
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7. The leading constant for the PSTV-A conjecture

of P1(Q). For a set S ⊆ P1(Q), we define N1(S,B) = #{z ∈ S : H(z) ⩽ B}.
In particular, we have N1(C , B) = N1(B).

For fixed integers y0, y1, y2 satisfying µ2(y0y1y2) = 1, we recall that Cy denotes
the conic y3

0x
2
0 + y3

1x
2
1 = y3

2x
2
2. Consider the morphism

φy : Cy → P1,

[x0 : x1 : x2] ↦→ [y3
0x

2
0 : y3

1x
2
1].

The image Ty := φy(Cy) is a thin subset of P1(Q). Therefore Ty ∩C is a thin
set of Campana points. Explicitly, Ty ∩ C is described by the set⎧⎨⎩[z0 : z1] ∈ P1(Q) :

(z0, z1) ∈ Z2
prim, z0, z1, z0 + z1 ̸= 0,

(z0, z1, z0 + z1) = (y3
0x

2
0, y

3
1x

2
1, y

3
2x

2
2)

⎫⎬⎭ , (7.4.1)

where x0, x1, x2 are assumed to be integers. Since gcd(z0, z1) = 1 if and
only if gcd(z0, z1, z0 + z1) = 1, we may replace the condition gcd(z0, z1) = 1
with gcd(x0y0, x1y1, x2y2) = 1. Hence if y ∈ N3, then N1(Ty ∩ C , B) is just
the quantity 1

4N
+
Cy,Hy(B1/2) considered in Section 7.3. For y ∈ N3 satisfying

µ2(y0y1y2) = 1, we define thin sets

T ′
y =

⋃︂
w∈(Z ̸=0)3

|wi|=yi for all i

Tw.

By the arguments from Lemma 7.3.1, we have N1(T ′
y∩C , B) = 3N1(Ty∩C , B).

To summarise, we have a disjoint union

C =
⋃︂

y∈N3

µ2(y0y1y2)=1

(T ′
y ∩ C ),

where from (7.3.4) and (7.3.8), each set appearing in this union satisfies

N1(T ′
y ∩ C , B) = 3

4N
+
Cy,Hy(B1/2) ∼ 3

π

(︄
γ(y0y1y2)
(y0y1y2)3/2σ2,yϱ(y)

)︄
B1/2.

For a large integer M , we define

TM =
⋃︂

y∈N3

µ2(y0y1y2)=1
y0,y1,y2⩽M

(T ′
y ∩ C ). (7.4.2)

This is a thin set of Campana points, because it is a finite union of the thin
sets T ′

y ∩ C . We now assume Conjecture 7.1.1 holds, namely that N1(B) ∼
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3cBVB
1/2. We deduce that

N1(C \TM , B)
B1/2 = N1(B)−N1(TM , B)

B1/2

∼ 3cBV −
3
π

∑︂
y∈N3

y0,y1,y2⩽M

µ2(y0y1y2)γ(y0y1y2)
(y0y1y2)3/2 σ2,yϱ(y)

= 3
π

∑︂
y∈N3

max(y0,y1,y2)>M

µ2(y0y1y2)γ(y0y1y2)
(y0y1y2)3/2 σ2,yϱ(y).

Since the sum is convergent, this quantity tends to zero as M →∞. Therefore,
we have shown that we can obtain an arbitrarily small positive constant by
removing a thin set. We can now complete the proof of Theorem 7.1.3.

Proof of Theorem 7.1.3. We fix λ ∈ (0, 3cBV]. For a subset S ⊂ C , we define

S(B) = {z ∈ S : H(z) ⩽ B},

so that #S(B) = N1(S,B) in our earlier notation. We require a Campana thin
subset T ⊆ C with #T (B) ∼ (3cBV − λ)B1/2.
For an appropriate choice of M , the thin set TM defined in (7.4.2) satisfies
#TM(B) ∼ (3cBV − λ0)B1/2 for some λ0 ⩽ λ. By definition, any subset of
TM is also thin. Therefore, it suffices to find a subset T ⊆ TM such that

#TM(B)
#T (B) ∼

3cBV − λ0

3cBV − λ
. (7.4.3)

To achieve this, we take any subset A ⊆ N of the desired asymptotic density

A ∩ [1, B]
B

∼ 3cBV − λ0

3cBV − λ
.

We enumerate the elements of TM(B) by writing TM(B) = {t1, t2, . . . , tR},
with H(ti) ⩽ H(tj) whenever i ⩽ j. Then the set

T = {ti ∈ TM : i ∈ A}

is thin and satisfies (7.4.3), as required.

7.5 Squareful values of binary quadratic forms
In this section, we study the constant cPSTV-A for an orbifold corresponding to
squareful values of the binary quadratic form ax2 + by2. We recall the setup
from the introduction to this chapter. Throughout this section, a and b denote
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positive integers satisfying µ2(ab) = 1 and a, b ≡ 1 (mod 4). We consider
the Campana orbifold (X,D) over Q, where X = P1 and D is the divisor
1
2V (ax2 + by2), with the obvious good integral model (X ,D). The set of
Campana points in this example is not itself thin, as can be seen by combining
[90, Theorem 1.1] and [90, Proposition 3.15]. Hence the PSTV-A conjecture
applies to this orbifold. We take the naive height H on P1, which is given by
H([x : y]) = max(|x|, |y|) for (x, y) ∈ Z2

prim. The resulting counting problem,
as given in (7.1.7), is

N(B) = 1
2#

{︂
(x, y) ∈ Z2

prim : |x|, |y| ⩽ B, ax2 + by2 squareful
}︂
.

This section is organized as follows. In Section 7.5.1, we compute cPSTV-A
for the orbifold (X ,D) and the height H. In Section 7.5.2, we prove the
asymptotic formula for N(B) given in Theorem 7.1.5. Finally, in Section 7.5.3,
we prove Corollary 7.1.7 by comparing the constants obtained in Sections 7.5.1
and 7.5.2.

7.5.1 Computation of the constant cPSTV-A

The aim of this section is to prove the following theorem. We recall the notation
γ(n) from (7.3.7).

Theorem 7.5.1. For the orbifold and the height function defined above, the
constant cPSTV-A is equal to

4γ(ab)
π2

⎛⎜⎝sinh−1
(︂√︂

a/b
)︂

√
a

+
sinh−1

(︂√︂
b/a

)︂
√
b

⎞⎟⎠ ∏︂
p∤2ab

⎛⎝1 +
1 +

(︂
−ab
p

)︂
(1 + p−1)p3/2

⎞⎠ .
To prove Theorem 7.5.1, we follow a similar framework to Section 3.3.2 and
Section 7.2. We keep the convention from Section 7.2 that p ranges over all
primes, and v is either a prime or ∞. We have α = 1/2 and β = 1, and so
cPSTV-A = τ/2. The divisor V (ax2+by2) on P1 has degree 2, and corresponds to
the line bundle OP1(2). With the usual metrization, this line bundle determines
the height function max(|x2|, |y2|) for (x, y) ∈ Z2

prim. Choosing the section
ax2 + by2, we obtain

HD =
∏︂
v

HD,v,

where
HD,v = max(|x|v, |y|v)

|ax2 + by2|1/2
v

.

We use the chart y ̸= 0, and take z = x/y. Then for any prime p, we have
νp(az2 + b) = νp(ax2 + by2) − 2νp(y). Consequently, the local Campana
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7.5. Squareful values of binary quadratic forms

condition that νp(ax2 + by2) − 2 min(νp(x), νp(y)) ̸= 1 is equivalent to the
condition that νp(az2 + b) is not equal to 1 or a negative odd integer. Below,
we denote by Ωp the set of elements z ∈ Qp satisfying this local Campana
condition, and we set Ω∞ = R. We let dz denote the usual p-adic measure or
the Lebesgue measure, as appropriate. We obtain

cPSTV-A = 1
2σ∞

∏︂
p

(1− p−1)σp, (7.5.1)

where
σv =

∫︂
Ωv

dz
max(|z|v, 1)|az2 + b|1/2

v

. (7.5.2)

To compute σ∞, we divide into regions |z| ⩽ 1 and |z| > 1. This yields

σ∞ =
∫︂

|z|⩽1

dz
(az2 + b)1/2 +

∫︂
|z|>1

dz
|z|(az2 + b)1/2

= 2

⎛⎜⎝sinh−1
(︂√︂

a/b
)︂

√
a

+
sinh−1

(︂√︂
b/a

)︂
√
b

⎞⎟⎠ . (7.5.3)

Lemma 7.5.2. We have

σp =

⎧⎨⎩1 + p−1 +
(︂
1 +

(︂
−ab
p

)︂)︂
p−3/2, if p ∤ 2ab

1, if p | 2ab.

Proof. We split Ωp into three regions R1, R2, R3, defined respectively by the
conditions

1. νp(z) ⩾ 1,

2. νp(z) < 0,

3. νp(z) = 0.

We also divide into four cases p ∤ 2ab, p|a, p | b, and p = 2. We let µp denote
the usual p-adic measure.

Case 1. p ∤ 2ab: On R1, we have |az2 + b|p = 1 and max(|z|p, 1) = 1, so
∫︂
R1

dz
max(|z|p, 1)|az2 + b|1/2

p

=
∫︂
z∈Qp

νp(z)⩾1
1 dz = p−1.
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7. The leading constant for the PSTV-A conjecture

On R2, we have |az2 + b|p = |z|2p and max(|z|p, 1) = |z|p, so we obtain a
contribution of∫︂

z∈Qp

νp(z)<0

dz
|z|2p

=
−1∑︂

j=−∞
p2jµp({z ∈ Qp : νp(z) = j})

=
∞∑︂
j=1

(1− p−1)p−j

= p−1.

On R3, we have |az2 + b|p ⩽ 1 and max(|z|p, 1) = 1. For j ⩾ 0, we define

f(j) = µp({z ∈ Z×
p : νp(az2 + b) = j}),

g(j) = µp({z ∈ Z×
p : νp(az2 + b) ⩾ j}).

We have∫︂
R3

dz
max(|z|p, 1)|az2 + b|1/2

p

=
∫︂
z∈Z×

p ∩ Ωp

dz
|az2 + b|1/2

p

=
∑︂
j⩾0
j ̸=1

pj/2f(j). (7.5.4)

Clearly f(j) = g(j)− g(j + 1) for any j ⩾ 0. We now compute g(j). We have
g(0) = µp(Z×

p ) = 1− p−1. By Hensel’s Lemma, for j ⩾ 1, we have

g(j) = p−j#{z (mod pj) : az2 ≡ −b (mod pj)}

= p−j
(︄

1 +
(︄
−ab
p

)︄)︄
.

Therefore, the right hand side of (7.5.4) equals

1− p−1 − p−1
(︄

1 +
(︄
−ab
p

)︄)︄
+
∑︂
j⩾2

(1− p−1)p−j/2
(︄

1 +
(︄
−ab
p

)︄)︄

= 1− p−1 +
(︄

1 +
(︄
−ab
p

)︄)︄
p−3/2.

Combining the three regions, we have completed the proof for primes p ∤ 2ab.

Case 2. p | b: This time, the region R1 contributes zero, because if p | b and
νp(z) ⩾ 1 then νp(az2 + b) = 1 (by the assumption that b is squarefree), and so
z /∈ Ωp. The region R2 contributes p−1 to the integral in (7.5.2) by the same
calculation as in Case 1. On the region R3 we have νp(az2 + b) = 0, and so∫︂

R3

dz
max(|z|p, 1)|az2 + b|1/2

p

=
∫︂
z∈Z×

p

1 dz = 1− p−1.
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Hence σp = p−1 + 1− p−1 = 1.

Case 3. p | a: The region R1 contributes p−1 by the same calculation as in
Case 1. On R2, we have νp(az2 + b) = 2νp(z) + 1, which is an odd negative
integer, and so the contribution is zero. On R3, we have νp(az2 + b) = 0 (since
p ∤ b by the assumptions p | a and µ2(ab) = 1), and so we obtain a contribution
of 1− p−1 as in Case 2. Combining, we have σp = p−1 + 1− p−1 = 1.

Case 4. p = 2: Regions R1 and R2 contribute p−1 to the integral in (7.5.2)
as in Case 1. The region R3 contributes zero. To see this, we note that if
z ∈ Z×

2 , then z2 ≡ 1 (mod 4). However, since a, b ≡ 1 (mod 4), we have
az2+b ≡ 2 (mod 4), and hence νp(az2+b) = 1. Hence σ2 = 2−1+2−1 = 1.

Let σ∞ be as given in (7.5.3). We conclude from (7.5.1) and Lemma 7.5.2 that

cPSTV-A = σ∞

2
∏︂
p∤2ab

(1− p−1)
(︄

1 + p−1 +
(︄

1 +
(︄
−ab
p

)︄)︄
p−3/2

)︄ ∏︂
p|2ab

(1− p−1)

= σ∞

2 ·
6
π2

∏︂
p∤2ab

⎛⎝1 +
1 +

(︂
−ab
p

)︂
(1 + p−1)p3/2

⎞⎠ ∏︂
p|2ab

1
1 + p−1

= 2σ∞γ(ab)
π2

∏︂
p∤2ab

⎛⎝1 +
1 +

(︂
−ab
p

)︂
(1 + p−1)p3/2

⎞⎠ . (7.5.5)

This completes the proof of Theorem 7.5.1.

7.5.2 The asymptotic formula for N(B)
In this section, we prove Theorem 7.1.5. We write ax2 +by2 = u2v3 for v ∈ Z̸=0
squarefree and u ∈ N. If gcd(x, y) = 1, then gcd(a, v) = 1 and gcd(b, v) = 1.
This is because if p | gcd(a, v) then p | by2, and since gcd(a, b) = 1, this
implies that p | y. But then p2 | ax2, and since a is squarefree, we have p | x.
This contradicts the assumption gcd(x, y) = 1. The argument to show that
gcd(b, v) = 1 is the same by symmetry. Hence a, b and v are squarefree and
pairwise coprime, in other words µ2(abv) = 1. Moreover, the assumptions
a, b > 0 imply that v > 0. Therefore, we have

N(B) = 1
2

∞∑︂
v=1

µ2(abv)Nv(B),

where

Nv(B) = 1
2#

⎧⎨⎩(x, y, u) ∈ Z3 :
gcd(x, y) = 1, |x|, |y| ⩽ B

ax2 + by2 = u2v3

⎫⎬⎭ .
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7. The leading constant for the PSTV-A conjecture

The factor 1/2 comes from the fact that there are two choices for the sign of u
in [x : y : u] corresponding to each point [x : y] enumerated by N(B).

Throughout this section, all implied constants depend only on a, b and ϵ. We
split the sum over v into ranges v < Bδ and v ⩾ Bδ, for a fixed δ > 0. To deal
with the range v ⩾ Bδ, we note that ax2+by2 = u2v3 and |x|, |y| ⩽ B together
imply that u2v3 ≪ B2, so u≪ Bv−3/2. Therefore, there are O(Bv−3/2) choices
for u. Applying a result of Browning and Gorodnik [13, Theorem 1.11], for any
fixed u, v, we have

#
{︂
(x, y) ∈ Z2

prim : ax2 + by2 = u2v3
}︂

= O(Bϵ).

Hence Nv(B)≪ B1+ϵv−3/2. Taking a sum over v ⩾ Bδ, we obtain∑︂
v⩾Bδ

µ2(abv)Nv(B)≪ B1+ϵ−δ/2, (7.5.6)

and so the contribution from the range v ⩾ Bδ is negligible.

For the range v < Bδ, we view the equation ax2 + by2 = u2v3 as a conic, with
a, b and v fixed. Sofos [111] counts rational points on isotropic conics by using
a birational map from the conic to P1 in order to parameterise the solutions
as lattice points. Unfortunately, we cannot apply [111, Theorem 1.1] directly,
since the coprimality condition gcd(x, y, u) = 1 is used instead of gcd(x, y) = 1.
However, the argument can be adapted to deal with this alternative coprimality
condition. We summarise the main alterations required.

Let Q be a non-singular quadratic form in 3 variables with integer coefficients.
Let ∆Q denote the discriminant of Q, and ⟨Q⟩ the maximum modulus of the
coefficients of Q. Suppose that ∥ · ∥ is a norm isometric to the supremum norm.
For convenience, below we use variables x = (x1, x2, x3) in place of (x, y, u).
We define

N∥·∥(Q,B) = #{x ∈ Z3 : gcd(x1, x2) = 1, Q(x) = 0, ∥x∥ ⩽ B}.

This is the same as the counting function from [111], but with the condition
gcd(x1, x2) = 1 instead of gcd(x1, x2, x3) = 1. We let Qv(x) = ax2

1 + bx2
2 −

v3x2
3, and define a norm ∥ · ∥ by ∥x∥ = max(|x1|, |x2|). There is a constant C,

depending only on a and b, such that ∥x∥ = max(|x1|, |x2|, Cv3/2|x3|), and
so ∥ · ∥ is isometric to the supremum norm. In our earlier notation, we have
Nv(B) = N∥·∥(Qv, B).

As in [111, Section 6], the first stage is to apply a linear change of variables
in order to transform Qv into a quadratic form Q satisfying Q(0, 1, 0) = 0.
We assume that Nv(B) > 0, so that there exists (t12, t22, t32) ∈ Z3 with
Qv(t12, t22, t32) = 0 and gcd(t12, t22) = 1; we shall choose the smallest such
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7.5. Squareful values of binary quadratic forms

solution. Then we can find integers t11, t21 such that t11t22 − t21t12 = 1 and
|t11|, |t21| ⩽ max(|t12|, |t22|). Let

M =

⎛⎜⎜⎜⎝
t11 t12 0
t21 t22 0
0 t32 1

⎞⎟⎟⎟⎠ .

We define Q(x) = Qv(Mx) and ∥x∥′ = ∥Mx∥. Since the first 2 × 2 minor
of M is an element of SL2(Z), the coprimality condition gcd(x1, x2) = 1 is
preserved under this transformation. Therefore N∥·∥(Qv, B) = N∥·∥′(Q,B),
which we shall abbreviate to N(Q,B).
The forms L(s, t) and g(s, t) defined in [111, Equation (2.3)] can be written
explicitly as

L(s, t) = (2at11t12 + 2bt21t22)s− 2v3t32t, (7.5.7)
g(s, t) = (at211 + bt221)s2 − v3t2. (7.5.8)

As in [111, Equation (2.4)], we let q = (q1, q2, q3) = (q1(s, t), q2(s, t), q3(s, t)),
where

q1(s, t) = sL(s, t), q2(s, t) = −g(s, t), q3(s, t) = tL(s, t).

By applying the parameterisation argument from [111, Lemma 3.1], we find
that N(Q,B) = N (Q,B) +O(1), where

N (Q,B) = #
{︃

(s, t) ∈ Z2
prim : t > 0, ∥q∥′ ⩽ λB, gcd

(︃
q1

λ
,
q2

λ

)︃
= 1

}︃
(7.5.9)

and λ = gcd(q1, q2, q3).
We now take a sum over the possible values of λ. Due to our alternative
coprimality condition, in (7.5.9) we have the stronger condition gcd( q1

λ
, q2
λ

) = 1
in place of gcd( q1

λ
, q2
λ
, q3
λ

) = 1, and so when applying Möbius inversion we
take a sum over a variable r with r |

(︂
q1
λ
, q2
λ

)︂
in place of Sofos’ sum over

k |
(︂
q1
λ
, q2
λ
, q3
λ

)︂
. As in [111, Equation (3.2)], we define

M∗
σ,τ (T, n) = #{(s, t) ∈ Z2

prim : (s, t) ≡ (σ, τ) (mod n), t > 0, ∥q∥′ ⩽ T}.

Then similarly to [111, Lemma 3.2], we obtain

N (Q,B) =
∑︂
λ|∆Q

∑︂
r

µ(r)
∑︂+

σ,τ

M∗
σ,τ (Bλ, rλ), (7.5.10)

where ∑︁+ denotes a sum over residues σ, τ modulo rλ such that λ | q(σ, τ),
rλ | (q1(σ, τ), q2(σ, τ)) and gcd(σ, τ, rλ) = 1.
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7. The leading constant for the PSTV-A conjecture

We now explain why with our choice of Q, we may restrict the r-sum in (7.5.10)
to divisors of λ. Since r is squarefree, it suffices to show that for any prime
p | (q1, q2), we also have p | q3. (In general, gcd(q1, q2) can still be larger than
λ since its prime factors can occur with higher multiplicity.) Suppose that
p | (q1, q2). We immediately deduce that p | q3 if p | L(s, t), and so using p | q1
we may assume that p | s. Since gcd(s, t) = 1 and p | q2, we see from (7.5.8)
that p | v. However, then from (7.5.7) we have that p | L(s, t) after all, and so
p | q3, as desired.
An asymptotic formula for N(Q,B) can now be deduced by applying the
lattice counting results from [111, Section 4] to estimate M∗

σ,τ (Bλ, rλ). We
maintain control over the resulting error terms after performing the summations
in (7.5.10) thanks to the restriction on the r-sum. Similarly to [111, Proposition
2.1], we obtain

N(Q,B) = cvB +O((BK)1/2+ϵ(|∆Q|+ ⟨Q⟩)1+ϵ) (7.5.11)

for some constant cv > 0, where

K = sup
x ̸=0

(︄
1 + ∥x∥∞

∥x∥′

)︄

and ∥x∥∞ = max(|x1|, |x2|, |x3|) denotes the supremum norm of x.
We have ∆Q = ∆Qv = abv3 ≪ v3. Let ∥M∥∞ denote the maximum modulus
of the entries of M . Then ⟨Q⟩ ≪ ∥M∥2

∞. Moreover, making a change of
variables from x to M−1x in the definition of K, we have

K = sup
x ̸=0

(︄
1 + ∥M

−1x∥∞

∥x∥

)︄
≪ ∥M−1∥∞ sup

x ̸=0

(︄
1 + ∥x∥∞

∥x∥

)︄
≪ ∥M−1∥∞.

Using the bound ∥M−1∥∞ ≪ ∥M∥2
∞, we conclude that

N(Q,B) = cvB +O((B∥M∥2
∞)1/2+ϵ(v3 + ∥M∥2

∞)1+ϵ). (7.5.12)

We recall that ∥M∥∞ = max(|t12|, |t22|, |t32|) is the size of the least integral
solution to Qv(x) = 0 with gcd(x1, x2) = 1. Cassels [27] establishes an
upper bound for the smallest integral solution to a quadratic form. In the
following lemma, we find a bound for the least solution satisfying our additional
coprimality condition.

Lemma 7.5.3. Suppose that a, b, v are integers with µ2(abv) = 1. Let Qv

denote the quadratic form ax2
1 + bx2

2 − v3x2
3. Then if the system⎧⎨⎩Qv(x) = 0,

x ∈ Z3, gcd(x1, x2) = 1
(7.5.13)

has a nontrivial solution, it has a solution satisfying ∥x∥∞ ≪ |v|7.
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Remark 7.5.4. The bound ∥x∥∞ ≪ |v|7 is much weaker than the corresponding
bound found by Cassels [27], who established that without the coprimality
condition gcd(x1, x2) = 1, the smallest nontrivial solution x to (7.5.13) satisfies
∥x∥∞ ≪ |v|3 (i.e., the maximum modulus of the coefficients of the quadratic
form).

We deduce Lemma 7.5.3 from the following result of Dietmann, which generalises
Cassel’s argument by imposing congruence conditions on the variables.

Lemma 7.5.5. [45, Proposition 1] Let Q be a non-degenerate quadratic form
in 3 variables with integral coefficients. Let ξ ∈ Z3 and η ∈ N. Suppose that
there exists an integral solution to the system⎧⎨⎩Q(x) = 0,

x ≡ ξ (mod η).
(7.5.14)

Then there exists an integral solution to this system satisfying

∥x∥∞ ≪ max{η3|∆Q|2⟨Q⟩2, η3|∆Q|3}.

Proof of Lemma 7.5.3. Suppose that y = (y1, y2, y3) is a solution to (7.5.13).
LetQ0 denote the quadratic form ax2

1+bx2
2−vx2

3. Then clearlyQ0(y1, y2, vy3) =
0. Let η = |v| and let ξ = (ξ1, ξ2, 0) denote the residues of (y1, y2, vy3) modulo
η. We have gcd(y1, v) = 1, because if p | (y1, v) then p | by2

2, but since
µ2(abv) = 1 this implies p | y2, contradicting the assumption gcd(y1, y2) = 1.
Consequently, ξ1 is invertible modulo η.

Since ∆Q0 ≪ |v| and ⟨Q0⟩ ≪ |v|, we find from Lemma 7.5.5 an integral
solution z = (z1, z2, z3) to (7.5.14) with the above choice of Q0, η, ξ, and with
∥z∥∞ ≪ |v|7. Choose x = (z1, z2, z3/v)/λ, where λ = gcd(z1, z2, z3/v). This
is an integral solution to Qv = 0 because z3 ≡ 0 (mod v). Additionally, the
bound ∥z∥∞ ≪ |v|7 implies that ∥x∥∞ ≪ |v|7. To complete the proof, it
suffices to show that gcd(x1, x2) = 1, or equivalently that gcd(z1, z2) = λ.
Clearly λ | gcd(z1, z2). Conversely, suppose that h | (z1, z2). From Q0(z) = 0,
we see that h | vz3. However, since z1 ≡ ξ1 (mod η) and ξ1 is invertible modulo
η, we have gcd(h, v) = 1. Therefore, h | z3/v, and so h | λ, as required.

Substituting the bound ∥M∥∞ ≪ v7 from Lemma 7.5.3 into (7.5.12) we
conclude that

Nv(B) = cvB +O(B1/2+ϵv21).

The leading constant cv could be computed explicitly from the above method.
However, we note that by [94, Example 3.2], equidistribution holds for smooth
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isotropic conics, and so cv is known to be the constant predicted in Manin’s
conjecture. More precisely, we have

cv = 1
2σ∞,v

∏︂
p

σp,v,

where σ∞,v is the real density from Manin’s conjecture applied to Nv(B), and

σp,v = lim
n→∞

Mv(pn)
p2n ,

Mv(pn) = #
{︂
(x, y) (mod pn) : p ∤ gcd(x, y), ax2 + by2 ≡ u2v3

}︂
.

Combining with (7.5.6) and choosing δ = 1/45, we obtain

N(B) = 1
2
∑︂
v⩽Bδ

µ2(abv)cvB +O(B89/90+ϵ). (7.5.15)

We are now in a very similar situation to the one encountered in Section 7.3,
but with coefficients (a, b, v3) in place of (y3

0, y
3
1, y

3
2). Analogously to (7.3.8),

we define

cH(a,b,v)(C(a,b,v)(AQ)+) = 4
π
· µ

2(abv)γ(abv)
(abv3)1/2 σ2,(a,b,v)ϱ(a, b, v).

The only difference between cv and cH(a,b,v)(C(a,b,v)(AQ)+) lies in the computa-
tion of the density at the infinite place. This difference stems from the height
H in the definition of N(B) being used in place of the height H(a,b,v) from
(7.3.2). Replacing the real density π/(abv3)1/2 appearing in [22, Section 2.3]
with the appropriate real density σ∞,v for our setup, we have

cv = (abv3)1/2

π
σ∞,vcH(a,b,v)(C(a,b,v)(AQ)+). (7.5.16)

To compute σ∞,v, we use the Leray form as in [22, Section 2.3] to obtain

σ∞,v = 1
2v3/2

∫︂
[−1,1]2

dx dy√
ax2 + by2

= 1
2v3/2

∫︂ 1

−1

2√
a

sinh−1
(︄

1
y

√︃
a

b

)︄
dy

= 2
v3/2a1/2

⎛⎜⎝sinh−1
(︃√︃

a

b

)︃
+

sinh−1
(︂√︂

b
a

)︂
√︂
b/a

⎞⎟⎠
= 2
v3/2

⎛⎜⎝sinh−1
(︂√︂

a/b
)︂

√
a

+
sinh−1

(︂√︂
b/a

)︂
√
b

⎞⎟⎠ . (7.5.17)
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Hence σ∞,v = σ∞v
−3/2, where σ∞ is the real density from the PSTV-A

conjecture, as computed in (7.5.3). Due to the assumptions a ≡ b ≡ 1 (mod 4),
the density at the prime 2 from (7.3.12) simplifies to

σ2,(a,b,v) =

⎧⎨⎩1, if v ≡ 1 (mod 4),
0, otherwise.

Combining this with (7.5.16) and (7.3.8), we conclude that

cv =

⎧⎨⎩
4σ∞γ(abv)ϱ(a,b,v)

π2v3/2 , if v ≡ 1 (mod 4),
0, otherwise.

(7.5.18)

In particular, cv ≪ v−3/2+ϵ. This allows us to extend the sum in (7.5.15) to
an infinite sum over v, with the same error term O(B1+ϵ−δ/2) that is already
present in (7.5.15). We conclude that N(B) = cB +O(B89/90+ϵ), where

c = 2σ∞

π2

∑︂
v≡1 (mod 4)

µ2(abv)γ(abv)ϱ(a, b, v)
v3/2 . (7.5.19)

This completes the proof of Theorem 7.1.5.

7.5.3 Comparison of c and cPSTV-A

Continuing from (7.5.19), we pull out a factor γ(ab), and replace µ2(abv) with
µ2(v) and the condition gcd(v, ab) = 1. This allows us to rewrite c as

c = R
∑︂

v≡1 (mod 4)
gcd(v,ab)=1

µ2(v)γ(v)ϱ(a, b, v)
v3/2 , (7.5.20)

where R := 2σ∞γ(ab)/π2 is the same factor that appears in (7.5.5). It remains
to compare the sum in (7.5.20) with the Euler product from (7.5.5).
If ϱ(a, b, v) ̸= 0 and v is odd, then using (7.3.12) and the assumption a, b ≡
1 (mod 4), we have v ≡ 1 (mod 4). Hence we may relax the condition in the
v-sum of (7.5.20) to gcd(v, 2ab) = 1. We define

f(v) = µ2(v)γ(v)
v3/2

∏︂
p|v

(︄
1 +

(︄
−ab
v

)︄)︄
.

The function f is multiplicative in v. Therefore, from (7.5.20), we have

c

R
=

∑︂
gcd(v,2ab)=1

f(v)
∏︂
p|a

(︄
1 +

(︄
bv

p

)︄)︄∏︂
p|b

(︄
1 +

(︄
av

p

)︄)︄

=
∑︂
k|a

∑︂
l|b

∑︂
gcd(v,2ab)=1

f(v)
(︄
bv

k

)︄(︃
av

l

)︃
,
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where the summand is multiplicative in v. We conclude that

c

R
=
∑︂
k|a

∑︂
l|b

∏︂
p∤2ab

⎛⎝(︄ b
k

)︄(︃
a

l

)︃
+

(︂
bp
k

)︂ (︂
ap
l

)︂ (︂
1 +

(︂
−ab
p

)︂)︂
(1 + p−1)p3/2

⎞⎠ . (7.5.21)

We recognise the contribution to (7.5.21) from k = l = 1 as precisely the Euler
product cPSTV-A/R from (7.5.5). If a = 1, which is a special case of the norm
forms considered in [115], then (7.5.21) simplifies to

c

R
=
∑︂
l|b

∏︂
p∤2b

⎛⎝1 +

(︂
p
l

)︂ (︂
1 +

(︂
−b
p

)︂)︂
(1 + p−1)p3/2

⎞⎠ .
The contribution from each divisor l is positive. We summarize as follows.

Lemma 7.5.6. Suppose that a = 1, µ2(b) = 1 and b ≡ 1 (mod 4). Then

i) cPSTV-A = c if b = 1,

ii) cPSTV-A < c if b > 1.

Similarly to the situation from Section 7.4, we can obtain any constant in (0, c],
including cPSTV-A itself, by the removal of an appropriate thin set.

Finally, we show that when a, b > 1, it is possible that c < cPSTV-A. Since the re-
moval of thin sets can only reduce the constant c, this provides a counterexample
to the leading constant predicted by the PSTV-A conjecture.

Proof of Corollary 7.1.7. We take a, b > 7 to be distinct primes satisfying the
following conditions.

1. a, b ≡ 1 (mod 4).

2.
(︂
a
b

)︂
= −1.

3.
(︂
a
p

)︂
=
(︂
b
p

)︂
= 1 for p ∈ {3, 7}.

4.
(︂
a
5

)︂
= −1 and

(︂
b
5

)︂
= 1.

The pair a = 37, b = 109 satisfies conditions (1)–(4). In fact, (1)–(4) are
equivalent to a, b lying in certain congruence classes, and so by Dirichlet’s
theorem on primes in arithmetic progressions, these conditions are satisfied by
infinitely many pairs of distinct primes a, b.

138



7.5. Squareful values of binary quadratic forms

Using conditions (1) and (2), the right hand side of (7.5.21) simplifies to
c

R
= S(χ0)− S(χ1)− S(χ2) + S(χ3), (7.5.22)

where

S(χ0) = ∏︁
p∤2ab

(︃
1 + 1+(−ab

p )
(1+p−1)p3/2

)︃
, S(χ1) = ∏︁

p∤2ab

(︃
1 + (a

p )(1+(−ab
p ))

(1+p−1)p3/2

)︃
,

S(χ2) = ∏︁
p∤2ab

(︃
1 + ( b

p)(1+(−ab
p ))

(1+p−1)p3/2

)︃
, S(χ3) = ∏︁

p∤2ab

(︃
1 + (ab

p )(1+(−ab
p ))

(1+p−1)p3/2

)︃
.

Since S(χ0) = cPSTV-A/R, it suffices to show that S(χ3)−S(χ1)−S(χ2) < 0.
From conditions (3) and (4), we have that all the Euler factors for S(χ1), S(χ2)
and S(χ3) are equal to 1 for p ⩽ 7. For p > 7, we estimate the Euler factors
trivially to obtain

S(χ3)−S(χ1)− S(χ2)

⩽
∏︂
p>7

(︄
1 + 2

(1 + p−1)p3/2

)︄
− 2

∏︂
p>7

(︄
1− 2

(1 + p−1)p3/2

)︄
.

Similarly to the end of Section 7.2, we can use convergence factors to compute
numerically that

∏︂
p

(︄
1 + 2

(1 + p−1)p3/2

)︄(︄
1− 2

(1 + p−1)p3/2

)︄−1

= 15.206698... < 16.

On the other hand, it can be computed that

∏︂
p⩽7

(︄
1 + 2

(1 + p−1)p3/2

)︄(︄
1− 2

(1 + p−1)p3/2

)︄−1

= 8.231089... > 16
2 .

It follows that S(χ3)− S(χ1)− S(χ2) < 0, as required.

Remark 7.5.7. In the examples considered above, the divisor D does not have
strict normal crossings at the primes dividing ab. From this point of view, it
seems natural to ask whether counting Campana Z[1/ab]-points instead of
Campana Z-points reconciles the two leading constants c and cPSTV-A. However,
it can be checked that in this setup, by a similar argument to the proof of
Corollary 7.1.7, there are still values of a, b which provide a counterexample to
the PSTV-A conjecture.
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CHAPTER 8
Polynomials represented by norm

forms via the beta sieve

8.1 Introduction
Let K be a number field of degree n, and let f ∈ Z[t] be a polynomial. A
central problem in Diophantine geometry is to determine under what conditions
f can take values equal to a norm of an element of K. In order to address this
question, we take an integral basis ω1, . . . , ωn for K, viewed as a vector space
over Q, and define the norm form as N(x) = NK/Q(ω1x1 + · · ·+ωnxn), where
NK/Q(·) is the field norm. We then seek to understand when the equation

f(t) = N(x) ̸= 0 (8.1.1)

has a solution with (t, x1, . . . , xn) ∈ Qn+1. We recall from the Introduction
that the Hasse principle holds for (8.1.1) if having solutions over R and over
Qp for every prime p is enough to guarantee existence of a solution to (8.1.1)
over Q.

Local to global questions for (8.1.1) have received much attention over the
years. The first case to consider is when f is a nonzero constant polynomial.
Here, the Hasse principle for (8.1.1) is known as the Hasse norm principle. More
precisely, we say that the Hasse norm principle holds for the extension K/Q
if Q× ∩ NK/Q(IK) = NK/Q(K×), where IK = A×

K is the group of ideles of
K. The Hasse norm principle has been extensively studied, beginning with the
work of Hasse himself, who established that it holds for cyclic extensions K/Q
(a result known as the Hasse norm theorem), but does not hold for certain
biquadratic extensions, such as K = Q(

√
13,
√
−3). The Hasse norm principle

is also known to hold if the degree of K is prime (Bartels [2]), or if the normal
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8. Polynomials represented by norm forms via the beta sieve

closure of K has Galois group Sn (Kunyavskĭı and Voskresenskĭı [76]) or An
(Macedo [83]).
When [K : Q] = 2 and f is irreducible of degree 3 or 4, (8.1.1) defines a
Châtelet surface. There are now many known counterexamples to the Hasse
principle for Châtelet surfaces, including one by Iskovskikh [70], which we
discuss in more detail in Example 8.3.4. However, Colliot-Thélène, Sansuc and
Swinnerton-Dyer [37] prove that the Brauer–Manin obstruction accounts for all
failures of the Hasse principle. A similar result holds when f is an irreducible
polynomial of degree at most 3 and [K : Q] = 3, as proved by Colliot-Thélène
and Salberger in [32]. Both of these results make use of fibration and descent
methods.
In the case when f is an irreducible quadratic and K is a quartic extension
containing a root of f , the Hasse principle and weak approximation are known
to hold for (8.1.1) thanks to the work of Browning and Heath-Brown [14]. This
result was generalised by Derenthal, Smeets and Wei in [44, Theorem 2], to
prove that the Brauer–Manin obstruction is the only obstruction to the Hasse
principle and weak approximation for irreducible quadratics f and arbitrary
number fields K. Moreover, in [44, Theorem 4] they give an explicit description
of the Brauer groups that can be obtained in this family.
Results when f is not irreducible have so far been limited to products of linear
polynomials. Suppose that f takes the form

f(t) = c
r∏︂
i=1

(t− ei)mi , (8.1.2)

for some c ∈ Q∗, e1, . . . , er ∈ Q and m1, . . . ,mr ∈ N. When r = 1, the
Brauer–Manin obstruction is the only obstruction to the Hasse principle and
weak approximation for any smooth projective model of (8.1.1). This is a special
case of the work of Colliot-Thélène and Sansuc [33] on principal homogeneous
spaces under algebraic tori. Heath-Brown and Skorobogatov [65] treat the case
r = 2 by combining descent methods with the Hardy–Littlewood circle method,
under the assumption that gcd(m1,m2, degK) = 1. This assumption was
later removed by Colliot-Thélène, Harari and Skorobogatov [36]. Thanks to the
work of Browning and Matthiesen [19], it is now settled that for any number
field K and and polynomial f of the form (8.1.2) (for arbitrary r ⩾ 1), the
Brauer–Manin obstruction is the only obstruction to the Hasse principle and
weak approximation for any smooth projective model of (8.1.1). Their result is
inspired by additive combinatorics results of Green, Tao and Ziegler [54], [55],
combined with “vertical" torsors introduced by Schindler and Skorobogatov
[102].
In general, it has been conjectured by Colliot-Thélène [31] that all failures of
the Hasse principle for any smooth projective model of (8.1.1) are explained by
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the Brauer–Manin obstruction. Assuming Schinzel’s hypothesis, this holds true
for f an arbitrary polynomial and K/Q a cyclic extension, as demonstrated
by work of Colliot-Thélène and Swinnerton-Dyer on pencils of Severi–Brauer
varieties [38]. Recently, Skorobogatov and Sofos also establish unconditionally
that when K/Q is cyclic, (8.1.1) satisfies the Hasse principle for a positive
proportion of polynomials f of degree d, when their coefficients are ordered by
height [110, Theorem 1.3].
In [69], Irving introduces an entirely new approach to studying the Hasse
principle for (8.1.1), which rests on sieve methods. Irving’s main result [69,
Theorem 1.1] states that if f ∈ Z[t] is an irreducible cubic, then the Hasse
principle holds for (8.1.1) under the following assumptions:

1. K satisfies the Hasse norm principle.

2. There exists a prime q ⩾ 7, and a finite set of primes S, such that for
all p /∈ S, either p ≡ 1 (mod q) or the inertia degrees of p in K/Q are
coprime.

3. The number field generated by f is not contained in the cyclotomic field
Q(ζq).

An example provided by Irving in [69] is the number field Q(α), where α is a
root of xq−2 and q ⩾ 7 is prime. We shall comment on this further in Example
8.3.5.
In this chapter, we generalize Irving’s arguments to establish the Hasse principle
for a wide new family of polynomials and number fields. Our results cover for
the first time polynomials of arbitrarily large degree which are not a product
of linear factors. In fact, under suitable assumptions on K, we can deal with
polynomials that are products of arbitrarily many linear, quadratic and cubic
factors.
Throughout this chapter, we let ˆ︂K denote the Galois closure of K, and we let
G = Gal(ˆ︂K/Q), viewed as a permutation group on n letters. We define

T (G) = 1
#G#{σ ∈ G : the cycle lengths of σ are not coprime}. (8.1.3)

We now state our main results. The following theorems are slight generalisations
of Theorems A and C from the Introduction.

Theorem 8.1.1. Let K be a number field satisfying the Hasse norm principle.
Let f ∈ Z[t] be a polynomial, all of whose irreducible factors have degree at
most 2. Let k denote the number of distinct irreducible factors of f , and let j
denote the number of distinct irreducible quadratic factors of f which generate
a quadratic field contained in ˆ︂K. Suppose that T (G) < 0.39006...

k+j+1 . Then the
Hasse principle holds for (8.1.1).
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8. Polynomials represented by norm forms via the beta sieve

In practice, the constant 0.39006... can be improved slightly, particularly when
the majority of the factors of f are linear, although it will always be less than
1/2. The precise optimal constant is obtained by finding the maximal value of
κ such that (8.2.51) holds.
Our second main result allows f to contain irreducible cubic factors, but requires
more restrictive assumptions on the number field K, more similar to Irving’s
setup in [69].

Theorem 8.1.2. Let f ∈ Z[t] be a polynomial, all of whose irreducible factors
have degree at most 3. Then the Hasse principle holds for (8.1.1) under the
following assumptions for K.

1. K satisfies the Hasse norm principle.

2. There exists a prime q ⩾ (4.08825...) deg f + 1, such that for all but
finitely many primes p ̸≡ 1 (mod q), the inertia degrees of p in K/Q are
coprime.

The constant 4.08825... could likely be improved with more work, and in specific
examples, the required bound on q could be computed more precisely using
(8.2.55). We remark that we have also dropped the assumption made in [69]
that the number field generated by f is not contained in Q(ζq). This assumption
is not essential to Irving’s argument, but allows for the treatment of smaller
values of q. Reinserting this assumption and optimising (8.2.55), we could
recover Irving’s result from our work.
We recall from the Introduction that Theorem A has the following corollary,
which is a restatement of Corollary B, included for convenience.

Corollary 8.1.3. Let f ∈ Z[t] be a product of two non-proportional irreducible
quadratic polynomials. Let K be a number field of degree n with G = Sn. Let
L be the biquadratic number field generated by f . Suppose that L ∩ ˆ︂K = Q.
Then the Hasse principle holds for (8.1.1), provided that

n ̸∈ {2, 3, . . . , 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36, 42, 48}.

We remark that without the assumption L∩ˆ︂K = Q, a similar result to Corollary
8.1.3 still holds, although a larger list of degrees n would need to be excluded.
For example, if L ∩ ˆ︂K is quadratic, then the Hasse principle holds for (8.1.1)
for all primes n ⩾ 11 and all integers n > 90, whilst if L ∩ ˆ︂K = L, then the
Hasse prinicple holds for all primes n ⩾ 13 and all integers n > 150.
We cannot hope to deal with all small values of n in Corollary 8.1.3. For
example, the work of Iskovskikh [70] shows that the Hasse principle can fail
when n = 2 (see Example 8.3.4). However, as we shall discuss in the Appendix,
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in the case n ⩾ 3, there is no Brauer–Manin obstruction to the Hasse principle,
and so according to the conjecture of Colliot-Thélène mentioned above we
should expect the Hasse principle to hold.

In Section 8.4, we find a second application of Theorem 5.7.1 to a conjecture
of Harpaz and Wittenberg [57, Conjecture 9.1], which we restate in Conjecture
8.4.1 and henceforth refer to as the Harpaz–Wittenberg conjecture. The conjec-
ture concerns a collection of number field extensions Li/ki/k, i ∈ {1, . . . , n},
where ki ∼= k[t]/(Pi(t)) for monic irreducible polynomials Pi ∈ k[t]. Roughly
speaking, the conjecture predicts, under certain hypotheses, the existence of an
element t0 ∈ k such that P1(t0), . . . , Pn(t0) are locally split, i.e., each place in
ki dividing Pi(t0), has a degree 1 place of Li above it.

A major motivation for the conjecture is the development of the theory of
rational points in fibrations. Given a fibration π : X → P1

k, a natural question is
to what extent we can deduce arithmetic information about X from arithmetic
information about the fibres of π. A famous conjecture of Colliot-Thélène
[31, p.174] predicts that for any smooth, proper, geometrically irreducible,
rationally connected variety X over a number field k, the rational points X(k)
are dense in the Brauer–Manin set X(Ak)Br. (In other words, the Brauer–Manin
obstruction is the only obstruction to weak approximation.) Applied to this
conjecture, the above question becomes whether density of X(k) in X(Ak)Br

follows from density of Xc(k) in Xc(Ak)Br for a general fibre Xc := π−1(c) of
π (see [58, Question 1.2]). Applications of the Harpaz–Wittenberg conjecture
to this question are studied in [57] and [58].

Harpaz and Wittenberg [57, Section 9.2] demonstrate that their conjecture
follows from the homogeneous version of Schinzel’s hypothesis (commonly
reffered to as (HH1)) in the case of abelian extensions Li/ki, or more generally,
almost abelian extensions (see [57, Definition 9.4]). Examples of almost abelian
extensions include cubic extensions, and extensions of the form k(c1/p)/k for
c ∈ k and p prime. The work of Heath-Brown and Moroz [63] establishes (HH1)
for primes represented by binary cubic forms, from which the Harpaz–Wittenberg
conjecture can be deduced in the case k = Q, n = 1 and degP1 = 3. Using
a geometric reformulation of [57, Conjecture 9.1], the authors establish their
conjecture in low degree cases, namely when ∑︁n

i=1[ki : k] ⩽ 2 or ∑︁n
i=1[ki : k] =

3 and [Li : ki] = 2 for all i.

The Harpaz–Wittenberg conjecture is related to the study of polynomials
represented by norm forms. As a consequence of the work of Matthiesen [85]
on norms as products of linear polynomials, the Harpaz–Wittenberg conjecture
holds in the case k1 = · · · = kn = k = Q [57, Theorem 9.14]. Similarly, we can
deduce from [69, Theorem 1.1] that the Harpaz–Wittenberg conjecture holds
in the case n = 2, k = Q, k1 = K, k2 = Q, L1 = K(21/q) and L2 = Q(21/q),
where q ⩾ 7 is a prime such that K ̸⊆ Q(ζq) [57, Theorem 9.15].
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Besides the work of Matthiesen [85] for k1 = · · · = kn = k = Q, the
aforementioned results apply only to the case n ⩽ 2. In Section 8.4, we prove
the following theorem, which establishes the Harpaz–Wittenberg conjecture in
a new family of extensions k1/Q, . . . , kn/Q, where n may be arbitrarily large,
and each extension ki/Q may have degree up to 3.

Theorem 8.1.4. Let n ⩾ 1. Let k = Q, and for i ∈ {1, . . . , n}, let ki,Mi be
number fields with ki ∩Mi = Q. Let Li = Miki be the compositum of ki and
Mi. Define

Ti = 1
#Gal(ˆ︃Mi/Q)

#{σ ∈ Gal(ˆ︂Mi/Q) : σ has no fixed point}. (8.1.4)

Let d = ∑︁n
i=1[ki : Q]. Then the Harpaz–Wittenberg conjecture holds in the

following cases.

1. [ki : Q] ⩽ 2 for all i ∈ {1, . . . , n} and ∑︁n
i=1 Ti < 0.39006.../d.

2. [ki : Q] ⩽ 3 for all i ∈ {1, . . . , n}, and there exist primes qi satisfying∑︁n
i=1 1/(qi − 1) < 0.28371.../d, and such that for all but finitely many

primes p ̸≡ 1 (mod qi), there is a place of degree 1 in Mi above p.

Corollary 8.1.5. Let q1, . . . , qn be distinct primes, and let r1, . . . , rn ∈ N be
such that gi(x) = xqi − ri is irreducible for all i. Let Mi = Q[x]/(gi) and let
ki, Li and d be as in Theorem 8.1.4. Suppose that one of the following holds:

1. [ki : Q] ⩽ 2 for all i ∈ {1, . . . , n} and ∑︁n
i=1 1/qi < 0.39006.../d,

2. [ki : Q] ⩽ 3 for all i ∈ {1, . . . , n} and ∑︁n
i=1 1/(qi − 1) < 0.28371.../d.

Then the Harpaz–Wittenberg conjecture holds for k = Q and for such choices
of ki and Li.

We remark that when applied to the setting of [57, Theorem 9.15], the above
result requires a stronger bound on q. However, with a more careful optimisation
of (8.2.54), it should be possible to recover [57, Theorem 9.15] from our
approach.
By combining Theorem 8.1.4 with [57, Theorem 9.17] (with the choice B =
0,M ′′ = ∅ and M ′ = P1

k\U), we obtain the following result about rational
points in fibrations.

Theorem 8.1.6. Let X be a smooth, proper, geometrically irreducible variety
over Q. Let π : X → P1

Q be a dominant morphism whose general fibre is
rationally connected. Let k1, . . . , kn denote the residue fields of the closed
points of P1

Q above which π has nonsplit fibres, and let Li/ki be finite extensions
which split these nonsplit fibres. Assume that
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1. The smooth fibres of π satisfy the Hasse principle and weak approximation.

2. The hypotheses of Theorem 8.1.4 hold.

Then X(Q) is dense in X(AQ)Br(X).

It would be interesting to investigate whether Condition (1) in Theorem 8.1.6
could be relaxed to the assumption that the smooth fibres Xc(Q) are dense
in Xc(AQ)Br(Xc), as in the setting of [58, Question 1.2] discussed above. This
would require an extension of Theorem 8.1.4 to cover a stronger version of the
Harpaz–Wittenberg conjecture, involving strong approximation of an auxiliary
variety W off a finite set of places [58, Proposition 6.1]. Strong approximation
of W was studied by Browning and Schindler [21] for example, who established
[58, Question 1.2] in the case when the rank of π is at most 3, and at least
one of its nonsplit fibres lies above a rational of P1

Q.
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8.2 Application of the beta sieve
In this section, we prove Theorem 5.7.1 and Theorem 5.7.2 by combining the
level of distribution results from Section 5.9 with the beta sieve of Rosser and
Iwaniec, as stated in Theorem 5.6.1.
We recall some of the notation from Section 5.7. We fix a region R = BN for
some B ⊆ [−1, 1]2 of volume ≫ 1 and with a piecewise smooth boundary of
perimeter ≪ 1. Then R has volume ≫ N2 and perimeter ≪ N . Let d denote
the largest degree among the irreducible factors of f . (We specialise to the
cases d = 2 and d = 3 later. The reason our methods are unable to deal with
larger values of d is explained in Remark 8.2.3.) Then there exists x ≪ Nd

such that the largest prime factor of f(a, b) for (a, b) ∈ R ∩ Z2 is bounded by
x. Let S be a finite set of primes, including all primes dividing the discriminant
of f(x, y). In Section 8.2.5, we also append to S all primes bounded by some
constant P1. We assume throughout this section that P is a set of primes
disjoint from S and satisfying (5.7.6) and (5.7.7). We also define P ′ to be the
set of primes not in P ∪ S. Let P (x) denote the product of primes in P<x,
and similarly for P ′(x).
Let A = (an) be the sequence given by

an = #{(a, b) ∈ R ∩ Z2 : C(a, b), f(a, b) = n}.
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We define a sifting function

S(A ,P, x) =
∑︂

gcd(n,P (x))=1
an

= #{(a, b) ∈ R ∩ Z2 : C(a, b), gcd(f(a, b), P (x)) = 1}.
(8.2.1)

Our aim is to prove that S(A ,P, x) > 0 for sufficiently large N . We recall
from (5.7.3) that we have a decomposition

f(x, y) =
m∏︂
i=0

fi(x, y)
k∏︂

i=m+1
fi(x, y) (8.2.2)

of f into a product of irreducible binary forms, where fi are linear for i ⩽ m and
degree at least two for i > m. For a prime p ∈P and for any i ∈ {0, . . . , k},
we additionally define

S(Ap,P, p) = #

⎧⎨⎩(a, b) ∈ R ∩ Z2 :
C(a, b), p | f(a, b)
gcd(f(a, b), P (p)) = 1

⎫⎬⎭ ,

S(A (i)
p ,P, p) = #

⎧⎨⎩(a, b) ∈ R ∩ Z2 :
C(a, b), p | fi(a, b)
gcd(f(a, b), P (p)) = 1

⎫⎬⎭ .
Using the Buchstab identity, we have

S(A ,P, x) = S(A ,P, Nγ)−
∑︂

Nγ<p⩽x
p∈P

S(Ap,P, p),

for a parameter γ ∈ (0, 1) to be chosen later. We denote the quantity
S(A ,P, Nγ) by S1. If p | f(a, b) then p | fi(a, b) for some i. Therefore, we
have the decomposition

S(A ,P, x) ⩽ S1 −
m∑︂
i=0

S
(i)
2 −

k∑︂
i=m+1

(︂
S

(i)
3 + S

(i)
4

)︂
,

where

S
(i)
2 =

∑︂
Nγ<p⩽N
p∈P

S(A (i)
p ,P, p),

S
(i)
3 =

∑︂
Nγ<p⩽Nβi

p∈P

S(A (i)
p ,P, p),

S
(i)
4 =

∑︂
Nβi<p⩽x
p∈P

S(A (i)
p ,P, p),

(8.2.3)
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for parameters βi ⩾ γ to be chosen later.
For i ∈ {0, . . . , k}, we define multiplicative functions

ϱi(d1, d2) = #{a, b (mod d1d2) : d1 | fi(a, b), d2 | f(a, b)},
ϱi(d) = #{a, b (mod d) : fi(a, b) ≡ 0 (mod d)},
ϱ(d) = #{a, b (mod d) : f(a, b) ≡ 0 (mod d)}.

We note that the function ϱi(d1, d2) is the same as the function ϱ(d1, d2) from
(5.9.2) with g1(x, y) = fi(x, y) and g2(x, y) = f(x, y), but in this section, we
add a subscript to keep track of the dependence on i.
When gcd(d1, d2) = 1, we have ϱi(d1, d2) = ϱi(d1)ϱ(d2). Moreover, for any
i ∈ {1, . . . , k} and any prime p /∈ S, we have

ϱi(p) = νi(p)(p− 1) + 1, (8.2.4)
ϱ(p) = ν(p)(p− 1) + 1, (8.2.5)

where νi(p) and ν(p) are as defined in (5.7.4) and (5.7.5).

8.2.1 Sieve dimensions
The sieve dimension, as introduced in Section 5.5, plays a crucial role in the
analysis of the beta sieve. The sieve dimensions which we shall use are governed
by Lemma 8.2.1 below, and are

κ := αθ, κi := 1− αθi,

for α, θi and θ as defined in (5.7.6), (5.7.7) and (5.7.8). For convenience, we
recall that (5.7.6), (5.7.7) and (5.7.8) are the estimates

∑︂
p∈P⩽x

1 = απ(x)
(︂
1 +OA

(︂
(log x)−A

)︂)︂
, (8.2.6)

∑︂
p∈P⩽x

νi(p) = αθiπ(x)
(︂
1 +OA

(︂
(log x)−A

)︂)︂
. (8.2.7)

∑︂
p∈P⩽x

ν(p) = αθπ(x)
(︂
1 +OA

(︂
(log x)−A

)︂)︂
, (8.2.8)

We assume throughout this section that κ < 1/2, and so κi > 1/2. We
denote the upper and lower bound sieve constants of dimension κ by A,B
respectively, and the upper bound sieve constant for dimension κi by Ai. We
recall from Section 5.6 that in all applications of the main theorem of the beta
sieve (Theorem 5.6.1), we shall have f(s) = B and F (s) = A or F (s) = Ai.
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8. Polynomials represented by norm forms via the beta sieve

Moreover, A and B are defined in [52, Equations (11.62), (11.63)], and Ai
is defined in [52, Equations (11.44), (11.57)]. A table of numerical values of
these constants can be found in [52, Section 11.19].

When applying the beta sieve, we use the multiplicative functions

g(p) =

⎧⎨⎩
ϱ(p)
p2 , if p ∈P,

0, otherwise,
gi(p) =

⎧⎨⎩
ϱi(p)
p2 , if p ∈P ′,

0, otherwise,
(8.2.9)

and the functions

V (x) =
∏︂

p∈P⩽z

(︄
1− ϱ(p)

p2

)︄
, Vi(x) =

∏︂
p∈P′

⩽z

(︄
1− ϱi(p)

p2

)︄
(8.2.10)

for i ∈ {1, . . . , k}.

Lemma 8.2.1. Let x ⩾ 1. For i ∈ {1, . . . , k}, and V, Vi as in (8.2.10), there
exist constants c, ci > 0 such that

V (x) = c

(log x)κ
(︂
1 +O((log x)−1)

)︂
, (8.2.11)

Vi(x) = ci
(log x)κi

(︂
1 +O((log x)−1)

)︂
. (8.2.12)

The asymptotic in (8.2.12) also holds for i = 0 when f0 ̸≡ 1. In particular, the
hypothesis (5.6.1) of the main theorem of the beta sieve holds for g and gi.

Proof. We follow a similar approach to the proof of Corollary 5.5.5 (see also
[69, Lemma 4.2]). Below, we denote by C a constant which is allowed to vary
from line to line. We have

log V (x) = −
∑︂

p∈P⩽x

(︄ ∞∑︂
m=1

ϱ(p)m

mp2m

)︄
(8.2.13)

= −
∑︂

p∈P⩽x

ν(p)(p− 1) + 1
p2 + C +O((log x)−1). (8.2.14)

= −
∑︂

p∈P⩽x

ν(p)
p

+ C +O((log x)−1), (8.2.15)

where in (8.2.15) we have used that ν(p) ⩽ deg f for all but finitely many
primes p. To estimate the sum in (8.2.15), we apply partial summation, together
with our assumption (5.7.8). For t ⩾ 2, we define

At =
∑︂

p∈P⩽t

ν(p). (8.2.16)
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8.2. Application of the beta sieve

Then
∑︂

p∈P⩽x

ν(p)
p

= Ax
x

+
∫︂ x

2

At
t2

dt

= κ
∫︂ x

2

π(t) (1 +O ((log x)−1))
t2

dt+O((log x)−1)

= κ
∫︂ x

2

dt
t log t + C +O((log x)−1)

= κ log log x+ C +O((log x)−1). (8.2.17)

We deduce (8.2.11) by taking the exponential of (8.2.17).
We can prove (8.2.12) in a similar way. When i = 0 and f0 ̸≡ 1, we have
ϱ0(p) = p, and so the result is a consequence of Mertens’ theorem. For any
i ∈ {1, . . . , k}, we have

log Vi(x) =
∑︂

p∈P′
⩽x

νi(p)
p

+ C +O((log x)−1)

=
∑︂

p⩽x prime

νi(p)
p
−

∑︂
p∈P⩽x

νi(p)
p

+ C +O((log x)−1). (8.2.18)

Similarly to above, using partial summation and (5.7.7), we have
∑︂

p∈P⩽x

νi(p)
p

= αθi log log x+ C +O((log x)−1). (8.2.19)

To treat the first sum in (8.2.18), we define L to be the number field generated
by fi. For all but finitely many primes p, the quantity ν(p) is equal to the
number of prime ideals p in L above p, and so∑︂

p⩽x prime
ν(p) = πL(x) + C,

where πL(x) denotes the number of prime ideals in L of norm at most x. Using
partial summation, as above, together with the Prime ideal theorem [88], we
deduce that

∑︂
p⩽x prime

νi(p)
p

= log log x+ C +O((log x)−1). (8.2.20)

Combining this with (8.2.19) and taking exponentials, we deduce the asymptotic
in (8.2.12).

In the following lemma, we record three more useful estimates following similar
arguments to Lemma 8.2.1.
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8. Polynomials represented by norm forms via the beta sieve

Lemma 8.2.2. There exists constants C,Ci > 0 such that
∑︂

p∈P⩽x

ϱi(p)
p2 = (1− κi) log log x+ C +O((log x)−1), (8.2.21)

∑︂
p∈P′

⩽x

ϱi(p)
p2 = κi log log x+ Ci +O((log x)−1), (8.2.22)

∑︂
p∈P′

⩽x

ϱi(p)
p2 log p = κi log x+O(1). (8.2.23)

Proof. The estimates (8.2.21) and (8.2.22) are immediate consequences of
(8.2.17), (8.2.19) and (8.2.20), together with fact that

ϱi(p)
p2 = (p− 1)νi(p) + 1

p2 = νi(p)
p

+O(p−2).

To prove (8.2.23), we proceed via partial summation in a very similar manner
to (8.2.17). We recall from the prime number theorem that

π(t) = t

log t + t

(log t)2 +O

(︄
t

(log t)3

)︄
. (8.2.24)

For At as defined in (8.2.16), we have
∑︂

p∈P′
⩽x

ϱi(p)
p2 log p =

∑︂
p∈P′

⩽x

νi(p)
p

log p+O(1)

= Ax log x
x

−
∫︂ x

2
At

(︄
log t
t

)︄′

dt+O(1)

= κi

∫︂ x

2

(log t− 1)π(t)(1 +O((log t)−A)
t2

dt+O(1)

= κi

∫︂ x

2

1
t

+O

(︄
1

t(log t)2

)︄
dt+O(1) (from (8.2.24))

= κi log x+O(1),

as required.

8.2.2 The sum S1

We apply the lower bound sieve of level Nγ, and the level of distribution
result from Corollary 5.9.2 with g1(x, y) = 1, g2(x, y) = f(x, y), D1 = 1 and
D2 = Nγ . The hypotheses of Corollary 5.9.2 require that γ < 1. Recalling the
notation V (z) from (8.2.10), we obtain

S1 ⩾
(B + o(1)) Vol(R)V (Nγ)

∆2 . (8.2.25)
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8.2. Application of the beta sieve

By Lemma 8.2.1, we have

V (Nγ) ∼ c

(logNγ)κ .

For any ϵ > 0, taking γ sufficiently close to 1, we obtain

S1 ⩾
(cB − ϵ+ o(1)) Vol(R)

∆2(logN)κ . (8.2.26)

8.2.3 The sums S(i)
2

We write fi(a, b) = pr, for p ∈P and Nγ < p ⩽ N . We apply the switching
principle, which transforms the sum over p defining S(i)

2 into a much shorter
sum over the variable r.
Let R = N1−γ. The sums S(i)

2 only involve linear factors fi(x, y), since we
assume i ∈ {0, . . . ,m}. Therefore, for (a, b) ∈ R ∩ Z2 we have fi(a, b)≪ N ,
and so |r| ⩽ R. Let z = N1/3. We shall take γ arbitrarily close to 1; for
now, we assume that γ > 2/3. Then by definition of S(A (i)

p ,P, p), we know
that gcd(r, P (R)) = 1 and gcd(f(a, b), P (z)) = 1. We replace the condition
p ∈P by the weaker condition gcd(p,P ′(z)) = 1.
Let r′ = |r|/ gcd(r,∆). Then

S
(i)
2 ⩽

∑︂
r′⩽R

gcd(r′,P (R)∆)=1

S
(i)
2 (r′),

where

S
(i)
2 (r′) = #

⎧⎪⎪⎪⎨⎪⎪⎪⎩(a, b) ∈ R ∩ Z2 :
C(a, b), r′ | fi(a, b),
gcd(fi(a, b)/r, P ′(z)) = 1
gcd(f(a, b), P (z)) = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
The prime factors of ∆ are contained in S, which is disjoint from P, so
gcd(fi(a, b)/r,P ′(z)) = gcd(fi(a, b)/r′,P ′(z)). Below, for convenience, we
change notation from r′ back to r.
Let µ+

1 , µ
+
2 be upper bound beta sieves of level D = N1/3. Then

S
(i)
2 (r) ⩽

∑︂
d|P ′(z)

gcd(d,r)=1

∑︂
e|P (z)

µ+
1 (d)µ+

2 (e)R(dr, e),

where R(dr, e) is as in Section 5.9 with g1(x, y) = fi(x, y) and g2(x, y) =
f(x, y). Define a multiplicative function hi(r) which is zero unless all the prime
factors of r are in P ′, and

hi(r) = ϱi(r)
r2

∏︂
p|r

(︄
1− ϱi(p)

p2

)︄−1

(8.2.27)
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8. Polynomials represented by norm forms via the beta sieve

otherwise. Since γ > 2/3, Lemma 5.9.5 applies, with D1 = DR = N4/3−γ and
D2 = D = N1/3. From Lemma 8.2.1, we obtain

S
(i)
2 ⩽

∑︂
r⩽R

(AAi + o(1)) Vol(R)
∆2 hi(r)V (N1/3)Vi(N1/3) (8.2.28)

⩽
(cciAAi + o(1)) Vol(R)

∆2(logN1/3)κ+κi

∑︂
r⩽R

hi(r).

To deal with the sum over hi(r), we note that

∑︂
r⩽R

hi(r) ⩽
∏︂
p∈P′

p⩽R

(︄
1 +

∞∑︂
m=1

hi(pm)
)︄

=
∏︂
p∈P′

p⩽R

(︄
1− ϱi(p)

p2

)︄−1

(1 +O(p−2)).

(8.2.29)
Applying Lemma 8.2.1 to the product, we obtain∑︂

r⩽R

hi(r)≪ (logR)κi .

Since R = N1−γ, we deduce that

S
(i)
2 ≪

cciAAi Vol(R)
∆2(logN)κ

(︄
(1− γ)κi

(1/3)κi+κ

)︄
.

Therefore, S(i)
2 can be made negligible compared to S1 by taking γ arbitrarily

close to 1.

8.2.4 The sums S(i)
3

We first deal with the primes p in the interval I := (Nγ, N2−γ−ϵ]. For any
p ∈ I, the upper bound beta sieve of level D2 yields

S(A (i)
p ,P, p) ⩽ S(A (i)

p ,P, Nγ)

⩽
(A+ o(1)) Vol(R)V (D2)

∆2

(︄
ϱi(p)
p2

)︄
+R+(p,D2), (8.2.30)

where

R+(p,D2) =
∑︂
d⩽D2

gcd(d,p∆)=1

⃓⃓⃓⃓
⃓R(p, d)− ϱi(p, d) Vol(R)

p2d2∆2

⃓⃓⃓⃓
⃓ . (8.2.31)

We apply Corollary 5.9.2 with g1(x, y) = fi(x, y), g2(x, y) = f(x, y), D1 =
N2−γ−ϵ and D2 = Nγ. These choices of D1, D2 satisfy the hypotheses of
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8.2. Application of the beta sieve

Corollary 5.9.2. Taking a sum over p ∈ I, the contribution from the term
R+(p,D2) in (8.2.30) is negligible. We obtain

∑︂
p∈I
p∈P

S(A (i)
p ,P, p) ⩽ (A+ o(1)) Vol(R)V (Nγ)

∆2

∑︂
p∈I
p∈P

ϱi(p)
p2 . (8.2.32)

It follows from Lemma 8.2.2 that
∑︂

Nγ<p≪N2−γ−ϵ

ϱi(p)
p2 = log logN2−γ−ϵ − log logNγ + o(1)

= log(2− γ − ϵ)− log γ + o(1).

Therefore, the contribution to S(i)
3 from this range is negligible if we take γ

arbitrarily close to 1.
In the remaining range N2−γ−ϵ < p ⩽ Nβi , we split into dyadic intervals
(R, 2R]. For each dyadic interval, we apply a similar argument to above, but
with D1 = 2R and D2 = N2−ϵ/R. At this point we need to assume that βi < 2
for all i, so that D2 ⩾ 1. We obtain∑︂

N2−γ−ϵ<p⩽Nβi

p∈P

S(A (i)
p ,P, p) (8.2.33)

⩽
∑︂

R dyadic
N2−γ−ϵ<R⩽Nβi

∑︂
p∈(R,2R]
p∈P

S(A (i)
p ,P, R)

⩽
(A+ o(1)) Vol(R)

∆2

∑︂
R dyadic

N2−γ−ϵ<R⩽Nβi

V (N2−ϵ/R)
∑︂

p∈(R,2R]
p∈P

ϱi(p)
p2

⩽
(cA+ o(1)) Vol(R)

∆2(logN)κ
∑︂

N2−γ−ϵ⩽p<Nβi

p∈P

ϱi(p)
p2(2− ϵ− log p

logN )κ
, (8.2.34)

where the last line follows from Lemma 8.2.1 and the fact that V (N2−ϵ/R) <
V (N2−ϵ−log p/ logN) for all p ∈ (R, 2R].
We denote the sum in (8.2.34) by T (βi, κ). Since γ < 1, we have 2−γ− ϵ > 1
for sufficiently small ϵ, and so we may upper bound T (βi, κ) by enlarging its
range of summation to N < p ⩽ Nβi . Define

A(t) =
∑︂

p∈P⩽t

ϱi(p)
p2 , h(t) =

(︄
2− ϵ− log t

logN

)︄−κ

.

From Lemma 8.2.2, we haveA(t) = (1−κi) log log t+C+o(1) for some constant
C. In particular, for any r > 0, we have A(N r)−A(N) = (1−κi) log r+ o(1).
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8. Polynomials represented by norm forms via the beta sieve

Applying summation by parts, followed by the substitution t = N s, we obtain

T (βi, κ)

⩽ (A(Nβi)− A(N))h(Nβi)−
∫︂ Nβi

N
(A(t)− A(N))h′(t)dt+ o(1)

= (A(Nβi)− A(N))h(Nβi)−
∫︂ βi

1
(A(N s)− A(N))∂h(N s)

∂s
ds+ o(1)

= (1− κi) log βih(Nβi)− (1− κi)
∫︂ βi

1
(log s)∂h(N s)

∂s
ds+ o(1)

= (1− κi)
∫︂ βi

1

h(N s)
s

ds+ o(1).

Finally, combining with (8.2.34), we conclude that for any ϵ > 0,

S
(i)
3 ⩽

(cA− ϵ+ o(1)) Vol(R)
∆2(logN)κ · (1− κi)

∫︂ βi

1
(2− s)−κds

s
. (8.2.35)

Due to the factor 1− κi = αθi appearing in the above estimate, S(i)
3 becomes

negligible compared to S1 as α→ 0. We perform a more precise quantitative
comparison in Section 8.2.6.

8.2.5 The sums S(i)
4

We begin in a similar manner to the sums S(i)
2 , by writing fi(a, b) = pr, for

p ∈ P, where now Nβi < p ⩽ x and R = x/Nβi . Let D1 = Nη1 and
D2 = Nη2 for parameters η1, η2 (which may depend on r and i) to be chosen
later. We recall the definition of hi(r) from (8.2.27). Similarly to (8.2.28), we
obtain

S
(i)
4 (r) ⩽ (AAi + o(1)) Vol(R)hi(r)Vi(Nη1)V (Nη2)

∆2 , (8.2.36)

provided that D2 ≪ N1−δ and D1D2 ≪ N2−δ for some δ > 0. In order
to ensure the error terms from applying the level of distribution result from
Corollary 5.9.2 are negligible after summing over r, we need η1, η2 to satisfy

η1, η2 > 0, η2 ⩽ 1− δ (for all r ⩽ R), (8.2.37)∑︂
r⩽R

Nη1+η2 ⩽ N2−δ. (8.2.38)

Remark 8.2.3. There are no η1, η2 satisfying the inequalities in (8.2.37) unless
R ⩽ N2−δ, i.e., x ⩽ N2−δ+βi . Since we had to assume βi < 2 in the treatment
of the sums S(i)

3 in Section 8.2.4, this means our approach cannot handle the
case d ⩾ 4, in which f(x, y) has an irreducible factor of degree ⩾ 4. Therefore,
we proceed with the additional assumption that d ⩽ 3.
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Using Lemma 8.2.1 to estimate the products in (8.2.36), and taking a sum over
r, we obtain

S
(i)
4 ⩽

(cciAAi + o(1)) Vol(R)
∆2(logN)κi+κ

∑︂
r⩽R

hi(r)
ηκi

1 η
κ
2
. (8.2.39)

We divide the sum over r into dyadic intervals r ∈ (R1, 2R1], and take η1, η2
depending only on R1 and i. To obtain a good estimate for (8.2.39), we
maximise ηκi

1 η
κ
2 subject to the constraints

η1, η2 > 0, η2 ⩽ 1− δ, η1 + η2 ⩽ 2− δ − logR1

logN .

By a similar computation to [69, Section 6.5], the optimal solution is

η1 = κi
κ+ κi

(︄
2− δ − logR1

logN

)︄
,

η2 = κ

κ+ κi

(︄
2− δ − logR1

logN

)︄
.

We note that this solution satisfies η2 ⩽ 1− δ due to the assumption κ < 1/2.
Substituting this choice of η1, η2 into (8.2.39), we obtain

∑︂
r⩽R

hi(r)
ηκi

1 η
κ
2
⩽
∑︂
r⩽R

w(r, δ)hi(r), (8.2.40)

where

w(r, δ) =
(︃

κ

κ+ κi

)︃−κ (︃ κi
κ+ κi

)︃−κi
(︄

2− δ − log r
logN

)︄−(κ+κi)

. (8.2.41)

We treat the sum in (8.2.40) using partial summation, for which we require
estimates for ∑︁r⩽t hi(r). For the case d = 2, the estimate already found in
(8.2.29) is sufficient. Below, we find a more refined estimate which we use in
the case d = 3.
We first consider the contribution to (8.2.40) from squarefree values of r.
We would like to apply [52, Theorem A.5], which states that under certain
hypothesis on the function hi(r), we have∑︂

m⩽x
µ2(m)=1

hi(m) = chi
(log x)κi +O((log x)κi−1), (8.2.42)

where
chi

= 1
Γ(κi + 1)

∏︂
p

(︄
1− 1

p

)︄κi

(1 + hi(p)).

In the following lemma, we verify that the function hi(r) satisfies the required
hypotheses for [52, Theorem A.5].
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8. Polynomials represented by norm forms via the beta sieve

Lemma 8.2.4. For any x ⩾ 1 and any 2 ⩽ w < z, the function hi(r) satisfies
the following estimates.

∏︂
w⩽p<z

(1 + hi(p))≪
(︄

log z
logw

)︄
, (8.2.43)

∑︂
p

hi(p)2 log p <∞, (8.2.44)∑︂
p⩽x

hi(p) log p = κi log x+O(1). (8.2.45)

Proof. To prove (8.2.43), we note that 1+hi(p) =
(︂
1− ϱi(p)

p2

)︂−1
for all p ∈P ′.

The result is then immediate from Lemma 8.2.1. To prove (8.2.44), we recall
that ϱi(p)≪ p, and so hi(p)≪ p−1. Therefore

∑︂
p

hi(p)2 log p≪
∑︂
p

log p
p2 <∞.

Finally, we note that
∑︂
p⩽x

hi(p) log p =
∑︂
p⩽x
p∈P′

ϱi(p)
p2 log p+O(1),

so that (8.2.45) follows by applying Lemma 8.2.2.

We can now evaluate the sum in (8.2.40) using partial summation. We obtain∑︂
r⩽R

µ2(r)=1

w(r, δ)gi(r)

= w(R, δ)
∑︂
r⩽R

µ2(r)=1

gi(r)−
∫︂ R

1

⎛⎜⎜⎜⎝ ∑︂
r⩽t

µ2(r)=1

gi(r)

⎞⎟⎟⎟⎠w′(t, δ)dt

= cgi

[︄
(logR)κiw(R, δ)−

∫︂ R

1
w′(t, δ)(log t)κidt

]︄

+ o(1)
[︄
(logR)κiw(R, δ) +

∫︂ R

1
w′(t, δ)(log t)κidt

]︄

= cgi
κi

∫︂ R

1
w(t, δ)(log t)κi−1t−1dt+ o ((logR)κi)

= cgi
κi(logN)κi

∫︂ logR/ logN

0
w(N s, δ)sκi−1ds+ o ((logR)κi)

⩽ (cgi
κi + o(1))(logN)κi

∫︂ d−βi

0
W (s)ds,

where W (s) = w(N s, 0)sκi−1.
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We now consider the contribution to (8.2.27) from those r which are not
squarefree. Let di denote the degree of fi. From [40, Lemma 3.1], we have
ϱi(pα) ≪ p2α(1−1/di) for all primes p /∈ S and any positive integer α. By the
multiplicativity of hi(r), it follows that hi(r)≪ r−2/di+ϵ.
We recall that a positive integer n is squareful if for any prime p | n, we also
have p2 | n. Since di ⩽ 3, we have∑︂

r squareful
hi(r)≪

∑︂
r squareful

r−2/di+ϵ ⩽
∑︂

r squareful
r−2/3+ϵ <∞,

where the last inequality follows from partial summation together with the fact
that there are O(M1/2) squareful positive integers less than M . Since hi(r) is
supported on integers with no prime factors in S, for any ϵ > 0, by adding into
S sufficiently many primes, we obtain∑︂

r squareful
r>1

hi(r) < ϵ.

Proceeding as in [69, Lemma 6.2], we use that w(r, δ)≪ 1, and decompose
each non-squarefree r into r = r1r2, where r1 is squarefree and r2 > 1 is
squareful. We have∑︂

r⩽R
µ2(r)=0

w(r, δ)hi(r)≪
∑︂
r1⩽R

µ2(r1)=1

hi(r1)
∑︂

r2 squareful
r2>1

hi(r2).

Combining with (8.2.42), we deduce that for any ϵ > 0, there is a choice of S
such that ∑︂

r⩽R
µ2(r)=0

w(r, δ)hi(r) ⩽ (ϵ+ o(1))(logN)κi .

In conclusion, we have the upper bound

S
(i)
4 ⩽

(cciAAichi
κi + ϵ+ o(1)) Vol(R)
∆2(logN)κ

∫︂ d−βi

0
W (s)ds, (8.2.46)

where

W (s) =
(︃

κ

κ+ κi

)︃−κ (︃ κi
κ+ κi

)︃−κi

(2− s)−(κ+κi)sκi−1. (8.2.47)

8.2.6 Proof of Theorem 5.7.1
We now suppose that d = 2, i.e., f(x, y) consists of irreducible factors of degree
at most 2. We first obtain a qualitative result by considering the limit as α→ 0.
As α → 0, we have κ → 0 and κi → 1. Therefore, we have Ai → A(1),

159



8. Polynomials represented by norm forms via the beta sieve

which is equal to 2eγ, where γ = 0.57721... is the Euler–Mascheroni constant.
Moreover, by [52, Equation (11.62)], we have A(κ), B(κ)→ 1 as κ→ 0. By a
very similar computation to [69, p. 248], we have

cichi
= e−γκi

Γ(1 + κi)
. (8.2.48)

Consequently, κicicchi
AAi ≪ B as α → 0, where the implied constant is

absolute. Also,
lim
α→0

W (s) = (2− s)−1.

Therefore,

lim
α→0

S
(i)
4 ≪

(B + o(1)) Vol(R)
∆2(logN)κ (log 2− log βi) . (8.2.49)

For all ϵ > 0, by choosing βi sufficiently close to 2, we have the bound

lim
α→0

S
(i)
4 ⩽

(ϵB + o(1)) Vol(R)
∆2(logN)κ ≪ ϵS1. (8.2.50)

We recall from Sections 8.2.3 and 8.2.4 that S(i)
2 and S(i)

3 are also negligible
compared to S1 as α → 0. Therefore, we see that S(A ,P, x) > 0 for
sufficiently small α and sufficiently large N .

To obtain the best quantitative bounds, the choices of βi ∈ (1, 2) should
be optimised so as to minimise S(i)

3 + S
(i)
4 . However, in practice, numerical

computations suggest that the optimal choices for βi are extremely close to 2,
and little is lost in taking them arbitrarily close to 2, as above. In this case,
the contributions from the sums S(i)

4 are negligible. Taking a sum over i of the
estimates from (8.2.35) and combining with (8.2.26), we have

S(A ,P, x) ⩾
(︄

(c− ϵ+ o(1)) Vol(R)
∆2(logN)κ

)︄⎛⎝B − Aα k∑︂
i=m+1

θi

∫︂ 2

1
(2− s)−κds

s

⎞⎠
for any ϵ > 0. Let r(κ) = B/A. Then we have established that S(A ,P, x) > 0
provided that

α
k∑︂

i=m+1
θi

∫︂ 2

1
(2− s)−κds

s
< r(κ). (8.2.51)

We recall that θ = θ0 + · · · + θk and κ = αθ. Therefore, we may replace
α
∑︁k
i=m+1 θi with the trivial upper bound κ, after which we find by numerical

computations that the largest value of κ we can take in (8.2.51) is κ = 0.39006....
Thus the condition αθ < 0.39006... is enough to ensure that S(A ,P, x) > 0
for sufficiently large N . This completes the proof of Theorem 5.7.1.
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8.2.7 Proof of Theorem 5.7.2
We conclude this section by discussing the case d = 3, where f(x, y) may
contain irreducible factors of degree up to 3. We recall in the case d = 2, the
sums S(i)

4 could be made negligible compared to S1 by choosing βi arbitrarily
close to 2, due to the factor log 2− log βi appearing in (8.2.49). When d = 3,
we obtain the same bound as in (8.2.49), but with log 2− log βi replaced with
log 2− log(βi−1). Consequently, S(i)

4 is no longer negligible, even when α→ 0
and βi is arbitrarily close to 2. In fact, it can be checked that its limit as α→ 0
and βi → 2 is larger than S1, and so the above methods break down in this
case.

However, we recall the additional hypothesis in Theorem 5.7.2 that P ⊆
{p /∈ S : p ≡ 1 (mod q)}. By enlarging P if necessary, we may assume that
P = {p /∈ S : p ≡ 1 (mod q)}. Then (5.7.6) holds with α = 1/(q − 1), by
Dirichlet’s theorem on primes in arithmetic progressions. Moreover, it follows
from Lemma 5.8.5 (a version of the Chebotarev density theorem) that (5.7.7)
holds for some θi ⩽ 3. We now explain why this choice of P is easier to handle
than arbitrary choices of P of the same density 1/(q − 1).

When applying the switching principle for S(i)
4 , we wrote fi(a, b) = pr for

p ∈P. Since we may assume q ∈ S, the congruence condition C(a, b) forces
fi(a, b) to lie in a particular congruence class modulo q. Combined with the fact
that p ≡ 1 (mod q), we deduce that r ≡ r0 (mod q) for some r0 depending
only on C(a, b) and fi. Adding this congruence condition into (8.2.39) and
(8.2.40), we obtain

S
(i)
4 ⩽

(cciAAi + o(1)) Vol(R)
∆2(logN)κi+κ

∑︂
r⩽R

r≡r0 (mod q)

w(r, δ)hi(r). (8.2.52)

As demonstrated by Irving in [69, Lemma 6.1], the argument based on [52,
Theorem A.5] we used to obtain (8.2.42) can be generalised to give

∑︂
r⩽x

µ2(r)=1
r≡r0 (mod q)

hi(r) = chi

q − 1(log x)κi +O((log x)κi−1). (8.2.53)

Proceeding as before, we then deduce the same estimate for S(i)
4 as in (8.2.46),

but with an additional factor α = 1/(q − 1). It is now clear qualitatively that
for sufficiently large q (i.e., as α→ 0), the sums S(i)

4 are once again negligible
compared to S1.

We now make the above discussion more quantitative in order to complete the
proof of Theorem 5.7.2. Combining everything, we see that S(A ,P, x) > 0

161



8. Polynomials represented by norm forms via the beta sieve

for sufficiently large N provided that

r(κ)−
∑︂

i : deg fi=2
αθi

∫︂ 2

1
(2− s)−κds

s
−

∑︂
i : deg fi=3

αAiκicichi

∫︂ 1

0
W (s)ds > 0.

(8.2.54)
We denote the left hand side of (8.2.54) by F (θ). Recalling (8.2.47) and
(8.2.48), we have

Aiκicichi

∫︂ 1

0
W (s)ds

= Aiκie
−γκiκ−κκ−κi

i (κ+ κi)κ+κi

Γ(1 + κi)

∫︂ 1

0
(2− s)−(κ+κi)sκi−1ds.

(8.2.55)

For a fixed choice of κ < 1/2, the integrand is a decreasing function of κi,
because 0 ⩽ s

(2−s) ⩽ 1 for any s ∈ [0, 1]. The functions Γ(1 + κi)−1, κ−κi
i

and e−γκi are also decreasing in κi in the range κi ∈ (1/2, 1). Let t = α deg f .
Since κi ⩾ 1− κ ⩾ 1− t, we therefore obtain an upper bound by replacing κi
with 1−t in all these terms. The remaining terms in (8.2.55) are all increasing in
κi, and we apply the trivial bound κi ⩽ 1. Finally, we note that κ−κ(κ+κi)κ+κi

is an increasing function in κ for κ < 1/2, and so we may replace κ by t in this
expression. Therefore, (8.2.55) can be bounded by

A(1)eγ(t−1)t−t(t+ 1)t+1

Γ(2− t)

∫︂ 1

0
(2− s)−1s−κds. (8.2.56)

We denote the factor outside the integral in (8.2.56) by H(t). The integral in
(8.2.56) is equal to the first integral in (8.2.54), as can be seen by making the
substitution u = 2− s. Therefore,

F (θ) ⩾ r(κ)−
⎛⎝ ∑︂
i : deg fi=2

αθi +
∑︂

i : deg fi=3
αH(t)

⎞⎠∫︂ 1

0
(2− s)−1s−κds.

Recalling that A(1) = 2eγ , it can be checked that H(t) > 4 for all t > 0.2, and
so in particular H(t) > 2θi whenever deg fi = 2. Moreover, r is a decreasing
function of κ, so r(κ) ⩾ r(t). We obtain

F (θ) ⩾ r(t)−H(t)
∫︂ 1

0
(2− s)−1s−tds

⎛⎝ ∑︂
i : deg fi=2

α/2 +
∑︂

i:deg fi=3
α

⎞⎠
⩾ r(t)− tH(t)

3

∫︂ 1

0
(2− s)−1s−tds

for any t > 0.2. We find by numerical computations that the above expression
is positive provided that t < 0.32380.... Since t = α deg f and α = 1/(q − 1),
this gives the condition q ⩾ (3.08825...) deg f + 1 claimed in Theorem 5.7.2.
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8.3. Application to the Hasse principle

8.3 Application to the Hasse principle
In this section, we apply the main sieve results (Theorem 5.7.1 and Theorem
5.7.2) obtained in Section 8.2 in order to prove Theorem 8.1.1 and Theorem
8.1.2.

8.3.1 Algebraic reduction of the problem
Let K be a number field of degree n satisfying the Hasse norm principle. In [69,
Lemma 2.6], Irving turns the problem of establishing the Hasse principle for

f(t) = N(x1, . . . , xn) ̸= 0 (8.3.1)

into a sieve problem. Irving assumes that f(t) ∈ Z[t] is an irreducible cubic
polynomial. However, in the following result, we demonstrate that Irving’s
strategy can be applied to establish a similar result for an arbitrary polynomial
f ∈ Z[t]. We recall that f(x, y) denotes the homogenisation of f . Throughout
this section, we make the choice

P = {p /∈ S : the inertia degrees of p in K/Q are not coprime} (8.3.2)

for a finite set of primes S containing all ramified primes in K/Q.

Proposition 8.3.1. Suppose that (8.3.1) has solutions over Qp for every p
and over R. Let P and S be as in (8.3.2). Then there exists ∆ ∈ N, divisible
only by primes in S, integers a0, b0, and real numbers r, ξ > 0 such that the
following implication holds:

Suppose that a, b are integers for which

1. a ≡ a0 (mod ∆) and b ≡ b0 (mod ∆),

2. |a/b− r| < ξ,

3. bf(a, b) has no prime factors in P.

Then (8.3.1) has a solution over Q.

By multiplicativity of norms, it suffices to find integers a, b such that b and
f(a, b) are in NK/Q(K∗). Since K satisfies the Hasse norm principle, we have
Q∗ ∩NK/Q(K∗) = NK/Q(IK), where IK denote the ideles of K. Consequently,
to show that c ∈ Q∗ is a norm from K, it suffices to find elements xv ∈ K∗

v

for each place v of K, such that

1. For all but finitely many places v of K, we have xv ∈ O∗
v (this ensures

that (xv) ∈ IK).
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8. Polynomials represented by norm forms via the beta sieve

2. For all places w of Q, we have∏︂
v|w
NKv/Qw(xv) = c. (8.3.3)

The arguments in [69, Lemma 2.2, Lemma 2.3, Lemma 2.4] go through without
changes. We summarise them below.

Lemma 8.3.2. Suppose c ̸= 0 is an integer. Then

1. If p ∤ c and K/Q is unramified at p, then there exist xv ∈ O∗
v for each

place v of K above p, such that ∏︁v|pNKv/Qp(xv) = c.

2. Suppose that K/Q is unramified at p, and that the inertia degrees above
p in K are coprime. Then there exist xv ∈ K∗

v for each place v of K
above p, such that ∏︁v|pNKv/Qp(xv) = c.

3. Let p be a place of Q. Suppose that there exists x1, . . . , xn ∈ Qp such
that c = N(x1, . . . , xn). Then there exists xv ∈ K∗

v for each place v of
K above p, such that ∏︁v|pNKv/Qp(xv) = c.

We now give a slight generalisation of [69, Lemma 2.5] to the case of an
arbitrary polynomial f .

Lemma 8.3.3. Let p be a prime for which f(t) = N(x1, . . . , xn) ̸= 0 has a
solution over Qp. Then there exists a0, b0 ∈ Z and l ∈ N (all depending on
p) such that for any a, b ∈ Z satisfying a ≡ a0 (mod pl), b ≡ b0 (mod pl), we
have b, f(a, b) ∈ N(Qn

p )\{0}.

Proof. We define N = N(Qn
p)\{0}. Let t1 ∈ Qp be such that f(t1) =

N(x1, . . . , xn) ̸= 0 has a solution over Qp. Choose a1, b1 ∈ Zp such that νp(b1)
is a multiple of n, and a1/b1 = t1. Then b1 ∈ N and f(a1, b1) ∈ N .
The set N ⊆ Qp is open, and so N × N ⊆ Q2

p is open. Moreover, the map
φ : Q2

p → Q2
p sending (a, b) to (f(a, b), b) is continuous in the p-adic topology.

Therefore, the set φ−1(N × N) is open, and contains the element (a1, b1).
Hence there is a small p-adic ball with center (a1, b1), all of whose elements
(a, b) satisfy b, f(a, b) ∈ N . This ball can be described by congruence conditions
a ≡ a0 (mod pl), b ≡ b0 (mod pl) for a sufficiently large integer l, as claimed
in the lemma.

Proof of Proposition 8.3.1. The proof closely follows the argument in [69,
Lemma 2.6]. By the Hasse norm principle, to find solutions to (8.3.1) it
suffices to find integers a, b such that properties (1) and (2) stated before
Lemma 8.3.2 hold with c = b and c = f(a, b). We divide the places of Q into
four sets:
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1. p ∈ S. Here, Lemma 8.3.3 gives congruence conditions a ≡ a0,p (mod pl),
b ≡ b0,p (mod pl) which ensure that b, f(a, b) ∈ N(Qn

p)\{0}. By part
(3) of Lemma 8.3.2, we deduce that property (2) stated before Lemma
8.3.2 holds with c = b and c = f(a, b). The congruence conditions
at each prime p ∈ S can be merged into one congruence condition
a ≡ a0 (mod ∆), b ≡ b0 (mod ∆) using the Chinese remainder theorem.

2. p /∈ S and p /∈P . If p ∤ b, we apply part (1) of Lemma 8.3.2 with c = b.
If p | b we apply part (2) of Lemma 8.3.2 with c = b. The same argument
works for f(a, b) by choosing c = f(a, b).

3. p ∈P. Since we are assuming that bf(a, b) has no prime factors in P,
for these primes, part (1) of Lemma 8.3.2 applies with c = bf(a, b).

4. p =∞. We follow a similar argument to Lemma 8.3.3. We may assume
that (8.3.1) is everywhere locally soluble, so in particular there exists r ∈ R
such that f(r) ∈ N(Rn)\{0}. Since f is continuous and N(Rn)\{0}
is open in the Euclidean topology, we can find ξ > 0 such that f(t) ∈
N(Rn)\{0} whenever |t− r| < ξ. Clearly solubility of f(t) = N(x) ̸= 0
and f(−t) = N(x) ̸= 0 over Q are equivalent; consequently, we may
assume r > 0. Suppose in addition that t ∈ Q, and write t = a/b
for a, b ∈ N. Since b is positive, it is automatically in N(Rn)\{0}. By
multiplicativity of norms, we conclude that b, f(a, b) ∈ N(Rn)\{0}. The
condition (8.3.3) now follows from part (3) of Lemma 8.3.2.

Example 8.3.4. Let f(t) = (t2 − 2)(−t2 + 3) and K = Q(i), so that

f(x, y) = (x2 − 2y2)(−x2 + 3y2)
NK/Q(u, v) = u2 + v2.

It is known that there is a Brauer–Manin obstruction to the Hasse principle for
the equation (t2 − 2)(−t2 + 3) = u2 + v2 ≠ 0 by the work of Iskovskikh [70].
However, Proposition 8.3.1 still applies.
When p ≡ 1 (mod 4), the prime p splits in K/Q, and so the inertia degrees of
p in K/Q are coprime. On the other hand, when p ≡ 3 (mod 4), the prime
p is inert in K/Q and has degree 2, so the inertia degrees are not coprime.
Therefore, we have P = {p : p ≡ 3 (mod 4)}. We choose S = {2}. In this
example, it can be checked that the congruence conditions a ≡ 8 (mod 16)
and b ≡ 1 (mod 16) are sufficient. Finally, for the infinite place, we just have
the condition f(a, b) > 0. The sieve problem we obtain is to find integers a, b
such that

1. a ≡ 8 (mod 16), b ≡ 1 (mod 16),

2. f(a, b) > 0,
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3. f(a, b) has no prime factors p ≡ 3 (mod 4).

We remark that f(a/b) = b−4f(a, b), and since 2 = [K : Q] divides 4, b−4 is
automatically a norm from K. This explains why in (3) above, we can consider
prime factors of f(a, b) rather than bf(a, b).
An integer is the sum of two squares if and only if it is non-negative and all prime
factors p ≡ 3 (mod 4) occur with an even exponent. The above conditions are
stronger than this, so the algebraic reduction performed in Proposition 8.3.1 is
consistent with what we already knew for this example.
Since the Hasse principle fails for this example, we know that the above sieve
problem cannot have a solution. This is indeed the case, since condition (1)
implies that −a2 +3b2 ≡ 3 (mod 4), and so f(a, b) must contain a prime factor
p ≡ 3 (mod 4).
The fact that the above sieve problem has no solutions also does not contradict
Theorem 5.7.1. For a prime p > 3, we have that ν1(p) is 2 if p ≡ ±1 (mod 8)
and zero otherwise, and ν2(p) is 2 if p ≡ ±1 (mod 12) and zero otherwise.
Consequently, by Dirichlet’s theorem on primes in arithmetic progressions, for
i ∈ {1, 2}, asymptotically one half of the primes p ∈P have νi(p) = 2 and half
have νi(p) = 0. We conclude that θ1 = θ2 = 1, so that θ = 2. Theorem 5.7.1
therefore requires the density of P to be less than 0.39006.../θ = 0.19503....
However, the density of P here is 1/2, and so Theorem 5.7.1 does not apply
to this example.

8.3.2 Proof of Theorem 8.1.1 and Theorem 8.1.2

Proof of Theorem 8.1.1. Since K satisfies the Hasse norm principle, we may
apply the algebraic reduction from Proposition 8.3.1. We take the sifting set P
as defined in (8.3.2). We recall that we may exclude from P any finite set of
primes, and so we may assume that P does not include the set of primes S in
the statement of Theorem 5.7.1, or any primes which are ramified in K/Q. We
make the choice R = BN , where B takes the form (5.7.1) for the parameters
r, ξ > 0 coming from the application of Proposition 8.3.1. Let F (x, y) be the
binary form obtained from yf(x, y) after removing any repeated factors. Clearly
to prove bf(a, b) is free from prime factors in P, it suffices to prove F (a, b)
is, and so we may replace bf(a, b) with F (a, b) in condition (2) of Proposition
8.3.1. We apply Theorem 5.7.1 to the binary form F (x, y), which has nonzero
discriminant.
It remains only to check that (5.7.6) and (5.7.7) hold with αθ < 0.39006....
By Lemma 5.8.5, (5.7.6) holds with α = T (G). We now compute the quantity
θ. We claim that θ ⩽ k + j + 1. Let L denote the quadratic number field
generated by f . We recall that θ is a sum over the quantities θi associated to
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each irreducible factor of f , plus an additional term θ0 = 1 coming from the
homogenising factor f0(x, y) = y. We may therefore reduce to the case where
f is itself irreducible of degree at most 2, with the goal of proving that

θ ⩽

⎧⎨⎩3, if f is quadratic and L ⊆ ˆ︂K,
2, if f otherwise.

If f is linear, then νf (p) = 1 for all p /∈ S, and so θ = θ0 + 1 = 2, as required.
We now consider the case where f is an irreducible quadratic. Let

νf (p) = #{t (mod p) : f(t) ≡ 0 (mod p)}.

If L ⊆ ˆ︂K, then Lemma 5.8.5 could be applied to compute θ, with the desired
error terms from (5.7.8). However, we apply the trivial bound νf(p) ⩽ 2 for
p /∈ S, since it is not possible to improve on this in general. We therefore
obtain θ ⩽ θ0 + 2 = 1 + 2 = 3, which is satisfactory.
We now assume that L ̸⊆ ˆ︂K. We want to show that θ = 2, or equivalently
that νf(p) = 1 on average over p ∈ P. Let M = ˆ︂KL be the compositum
of ˆ︂K and L. Since ˆ︂K ∩ L = Q, we have by [78, Ch. VI, Theorem 1.14] that
M/Q is Galois, and

Gal(M/Q) ∼= Gal(L/Q)×Gal(ˆ︂K/Q) ∼= Z/2Z×Gal(ˆ︂K/Q).

We have νf (p) = 2 if p is split in L, and νf (p) = 0 if p is inert in L, and so

θ = 1 + 2 lim
x→∞

(︄
#{p ⩽ x : p ∈P, p split in L}

#{p ⩽ x : p ∈P}

)︄
. (8.3.4)

Let σ′ = (τ, σ) be an element of Gal(M/Q), where τ ∈ Gal(L/Q) and
σ ∈ Gal(ˆ︂K/Q). Applying Lemma 5.8.4, the primes p ∈P correspond to the
σ′ for which σ has non-coprime cycle lengths (so these primes have density
T (G) as mentioned above). If in addition, the prime p is split in L, then we
require that τ = id. Therefore, by Lemma 5.8.5, asymptotically as x → ∞,
one half of the primes in P are also split in L. We conclude from (8.3.4) that
(5.7.8) holds with θ = 1 + 2(1/2) = 2.

Proof of Theorem 8.1.2. We begin in the same manner as in the proof of
Theorem 8.1.1, by appealing to Proposition 8.3.1 to reduce to a sieve problem.
The binary form F (x, y) has degree at most one higher than the degree of f .
Therefore, we deduce from Theorem 5.7.2 that the Hasse principle holds for
(8.1.1) provided that q ⩾ (1 + 3.08825...) deg f + 1.

Remark 8.3.5. Let K = Q(21/q), where q is prime. We recall from Example
5.8.8 that G := Gal(ˆ︂K/Q) is isomorphic to the group AGL(1, q) of affine linear
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transformations on Fq, and from Table 5.2 we have T (G) = 1/q. From this, we
see that Irving’s choice of P = {p /∈ S : p ≡ 1 (mod q)} is not quite optimal,
because it has density α = 1/(q − 1), whereas the set of primes we actually
need to sift out has density T (G) = 1/q. In fact, we can see directly that even
when p ≡ 1 (mod q), there is sometimes a solution to xq − 2 ≡ 0 (mod p)
(e.g. q = 3, p = 31, x = 4). However, it can be checked that even with this
smaller sieve dimension, we are still not able to handle the cases q = 5 or q = 3
when f is an irreducible cubic.

8.3.3 Proof of Corollary 8.1.3

We now consider the case when [K : Q] = n and G = Sn, with a view to
proving Corollary 8.1.3. Such number fields automatically satisfy the Hasse
principle by the work of Kunyavskĭı and Voskresenskĭı [76]. To ease notation,
we shall write T (n) in place of T (Sn). In the following lemma, we find an
estimate for T (n).

Lemma 8.3.6. For all n ⩾ 1, we have

T (n) = 1−
∑︂
k|n

µ(k)Γ((n+ 1)/k)
Γ(1/k)Γ(n/k + 1) , (8.3.5)

T (n) < 2√
π
n1/r−1ω(n), (8.3.6)

where r is the smallest prime factor of n and ω(n) is the number of prime
factors of n.

Proof. Define

Tk(n) = 1
n!#{σ ∈ G : the cycle lengths of σ are all divisible by k}.

By Möbius inversion, we have T (n) = 1 −∑︁k|n µ(k)Tk(n). We now find an
explicit formula for Tk(n). For j ⩾ 1, let ajk denote the number of cycles
of length jk in σ. The cycle lengths of σ are all a multiple of k if and only
if ∑︁n/k

j=1 jkajk = n. We apply the well-known formula for the number of
permutations of Sn with a given cycle shape from (5.8.1) to obtain
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Tk(n) = 1
n!

∑︂
ak,a2k,...,an∑︁n/k

j=1 jkajk=n

n!∏︁n/k
j=1(jk)ajkajk!

=
∑︂

b1,...,bn/k∑︁n/k

j=1 jbj=n/k

1∏︁n/k
j=1(jk)bjbj!

=
n/k∑︂
i=1

k−i ∑︂
b1,...,bn/k∑︁n/k

j=1 jbj=n/k∑︁n/k

j=1 bj=i

1∏︁n/k
j=1 j

bjbj!

= 1
m!

m∑︂
i=1

k−ic(m, i), (8.3.7)

where m = n/k and c(m, i) is the number of σ′ ∈ Sm with exactly i cycles.
The quantity c(m, i) is called the Stirling number of the first kind. In order to
evaluate (8.3.7), we follow the argument from [49, Example II.12]. We define a
bivariate generating function

P (w, z) :=
∞∑︂
i=0

wi
∞∑︂
m=0

zm

m!c(m, i). (8.3.8)

By [49, Proposition II.4], we have
∞∑︂
m=0

zm

m!c(m, i) = 1
i!

(︃
log

(︃ 1
1− z

)︃)︃i
.

Therefore,

P (w, z) =
∞∑︂
i=0

wi

i!

(︃
log

(︃ 1
1− z

)︃)︃i
= exp

(︃
w log

(︃ 1
1− z

)︃)︃
= (1− z)−w.

Applying the Binomial theorem, we find that the zm coefficient of P (w, z) is
equal to w(w + 1) · · · (w + m − 1)/m!. On the other hand, if we substitute
w = 1/k, the zm coefficient of (8.3.8) is precisely (8.3.7). We conclude that

1
m!

m∑︂
i=1

k−ic(m, i) = (1/k)(1 + 1/k) · · · (m− 1 + 1/k)/m!

= Γ(m+ 1/k)
Γ(1/k)Γ(m+ 1) ,

which completes the proof of (8.3.5).
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We now establish the upper bound in (8.3.6). A basic bound on the gamma
function is that for any real s ∈ (0, 1) and any positive real number x, we have

x1−s <
Γ(x+ 1)
Γ(x+ s) < (1 + x)1−s.

Applying this with x = m and s = 1/k, we have

Γ(m+ 1/k)
Γ(m+ 1) < m1/k−1.

Moreover, we have

1
Γ(1/k) = 1

Γ(1 + 1/k)
Γ(1 + 1/k)

Γ(1/k) ⩽
2√
πk
,

since Γ(1 + 1/k) for integers k ⩾ 2 achieves its minimum at k = 2, where we
have Γ(1 + 1/k) = Γ(3/2) =

√
π/2. We conclude that

Tk(n) < 2√
πk

(n/k)1/k−1 = 2√
π
n1/k−1k−1/k <

2√
π
n1/k−1.

Taking a sum over k = p prime, we obtain

T (n) <
∑︂
p|n
Tp(n) ⩽ 2√

π
n1/r−1ω(n),

as required.

Proof of Corollary 8.1.3. We recall the setting of Corollary 8.1.3. We assume
that G = Sn, and f is a product of two distinct irreducible quadratics. We
apply Theorem 5.7.1 to the binary form ∏︁2

i=0 fi(x, y), where f0(x, y) = y
and f1(x, y), f2(x, y) are the homogenisations of the two quadratic factors of
f . We also assume that the biquadratic extension L generated by f satisfies
L ∩ ˆ︂K = Q, and so by the proof of Theorem 8.1.1, we have θ0 = θ1 = θ2 = 1,
and θ = 3. By maximising the value of κ in (8.2.51) directly, we find by
numerical computations that the largest value of κ we can take here is 0.42221....
(The slight improvement over κ < 0.39006... for the general case comes from
computing α∑︁k

i=m+1 θi = 2α in our example, whilst in the proof of Theorem
8.1.1, we applied the trivial bound α∑︁k

i=m+1 θi ⩽ κ = 3α.) Hence the Hasse
principle holds for f(t) = N(x) ̸= 0 provided that T (n) < 0.42221.../3 =
0.14073....
We use the upper bound (8.3.6) from Lemma 8.3.6 to reduce the n for which
T (n) ⩾ 0.14073... to finitely many cases, and then the exact formula (8.3.5) to
find precisely which n satisfy T (n) ⩾ 0.14073.... We find that T (n) < 0.14073...
unless n ∈ {2, 3, . . . , 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36, 42, 48}.
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8.4. Application to the Harpaz–Wittenberg conjecture

8.4 Application to the Harpaz–Wittenberg
conjecture

In this section, we apply the sieve result from Theorem 5.7.1 to prove Theorem
8.1.4. We recall the statement of [57, Conjecture 9.1] (we shall only work with
the ground field Q).

Conjecture 8.4.1 (Harpaz, Wittenberg). Let P1, . . . , Pn ∈ Q[t] be pairwise
distinct irreducible monic polynomials. Let ki = Q[t]/(Pi(t)) be the correspond-
ing number fields. Let ai ∈ ki denote the class of t. For each i ∈ {1, . . . , n},
let Li/ki be a finite extension, and let bi ∈ k∗

i . Let S0 be a finite set of places
of Q including the archimedean place, and all finite places above which, for
some i, either bi is not a unit or Li/ki is ramified. For each v ∈ S0, fix an
element tv ∈ Qv. Suppose that for every i ∈ {1, . . . , n} and every v ∈ S0,
there exists xi,v ∈ (Li⊗Q Qv)∗ such that bi(tv − ai) = NLi⊗QQv/ki⊗QQv(xi,v) in
ki ⊗Q Qv. Then there exists t0 ∈ Q satisfying the following conditions.

1. t0 is arbitrarily close to tv for all v ∈ S0.

2. For every i ∈ {1, . . . , n} and every place p of ki with ordp(t0 − ai) > 0,
either p lies above a place of S0 or the field Li possesses a place of degree
1 over p.

We remark that below, the bi and xi,v appearing in Conjecture 8.4.1 do not
play a role, and so in the cases that Theorem 8.1.4 applies, it establishes a
stronger version of Conjecture 8.4.1, where the assumption on the existence of
the elements xi,v is removed.

We can reduce Conjecture 8.4.1 to a sieve problem as follows. Let fi(x, y) =
ciNki/Q(x− aiy), where ci ∈ Q is chosen such that the coefficients of fi(x, y)
are coprime integers. Then fi(x, y) is an irreducible polynomial in Z[x, y].

Below, we suppose that S is a finite set of primes containing all primes in S0
and all primes dividing any of the denominators c1, . . . , cn. For i ∈ {1, . . . , n},
we define Pi to be the set of primes p /∈ S, such that for some place p of ki
above p, Li does not possess a place of degree 1 above p.

Lemma 8.4.2. Let k1, . . . , kn and L1, . . . , Ln and S0 be as in Conjecture 8.4.1,
and let Pi and fi(x, y) be as defined above. Suppose that there exists a finite
set of primes S as above, such that for any congruence condition C(x, y) on
x, y modulo an integer ∆ with only prime factors in S, and any real numbers
r, ξ > 0, there exists x0, y0 ∈ N such that

(i) C(x0, y0) holds,
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8. Polynomials represented by norm forms via the beta sieve

(ii) |x0/y0 − r| < ξ,

(iii) fi(x0, y0) has no prime factors in Pi for all i ∈ {1, . . . , n}.

Then Conjecture 8.4.1 holds for this choice of k1, . . . , kn, L1, . . . , Ln and S0.

Proof. From [57, Remark 9.3 (iii)], we are free to adjoin to S0 a finite number
of places, and so we may assume that S0 = S ∪ {∞}. We choose t0 = x0/y0.
Then property (1) of Conjecture 8.4.1 immediately follows from (i) and (ii) by
appropriate choices of C(x, y), r and ξ. Let p be a place of ki above a prime
p /∈ S, satisfying ordp(t0 − ai) > 0. Then

fi(x0, y0) = ydeg fi
0 fi(x0/y0, 1) = ydeg fi

0 ciNki/Q(t0 − ai).

Now ordp(t0 − ai) > 0 implies that ordp(Nki/Q(t0 − ai)) > 0. Since p /∈ S, we
have ordp(y0ci) ⩾ 0, and so p | fi(x0, y0). By (iii), we have p /∈Pi, and so by
construction of Pi, we deduce that property (2) of Conjecture 8.4.1 holds.

In view of Lemma 8.4.2, we let

P = (P1, . . . ,Pn),
R = {(x0, y0) ∈ [0, N ]2 : |x0/y0 − r| ⩽ ξ},

and we aim to show that the sifting function

S(A ,P , x) = #{(x0, y0) ∈ R ∩Z2 : C(x0, y0), gcd(fi(x0, y0), Pi(x)) = 1∀i}

is positive for sufficiently large N . We do not attempt here to generalise
Theorem 5.7.1 to deal with different sifting sets Pi for each i, but instead define
P = ⋃︁n

i=1 Pi and replace each of the conditions gcd(fi(x0, y0), Pi(x)) = 1
with gcd(fi(x0, y0), P (x)) = 1. The resulting sifting function is precisely the
function S(A ,P, x) from (8.2.1) with f(x, y) = ∏︁n

i=1 fi(x, y), which we can
treat using Theorem 5.7.1 and Theorem 5.7.2. Below, we let αi denote the
density of Pi, so that P has density α ⩽

∑︁n
i=1 αi.

Proof of Theorem 8.1.4. We recall that Li is the compositum kiMi, for a
number field Mi satisfying ki ∩Mi = Q. Consequently, [Li : ki] = [Mi : Q].
Writing Mi = Q(βi) using the primitive element theorem, we therefore have
that the minimum polynomial of βi over Q and over ki coincide. We denote
this minimum polynomial by gi.

Let p be a place of ki. The inertia degrees of the places of Li above p are the
degrees of gi when factored modulo p. If gi has a root modulo p, then it has a
root modulo every p | p, and so p /∈Pi. Therefore, applying the Chebotarev
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density theorem (Lemma 5.8.5), we have in the notation from (8.1.4) that
αi ⩽ Ti.

We now bound the value of θ defined in (5.7.8). Here, we have already defined fi
to be a binary form, and so no additional term θ0 coming from homogenisation
is required. We apply the trivial estimate νi(p) ⩽ deg fi = [ki : Q] for all
p /∈ S. We conclude that θ ⩽ ∑︁n

i=1[ki : Q] = d. Combining Lemma 8.4.2 and
Theorem 5.7.1 completes the proof of part (1) of Theorem 8.1.4.

We now turn to the cubic case. We recall from the discussion in Section
8.2.7 that in order to obtain good enough bounds on the sums S(i)

4 , we need
P ⊆ {p /∈ S : p ≡ 1 (mod q)} for a sufficiently large prime q. However, this
does not hold for our current choice of P; instead, we have the assumption
in part (2) of Theorem 8.1.4 that Pi ⊆ {p /∈ S : p ≡ 1 (mod qi)} for
each individual sifting set Pi. In order to circumvent this, we observe that in
the sieve decomposition in (8.2.3), we may replace the sum over P defining
S

(i)
4 with a sum over Pi. This reinserts the required congruence conditions
r ≡ r0 (mod qi) in the sums S(i)

4 . As in Section 8.2.7, we conclude that
S(A ,P , x) > 0 for sufficiently large N , provided that t < 0.28371..., where
t = deg f ∑︁n

i=1 1/(qi − 1). Rearranging, and recalling deg f = d, we complete
the proof of part (2) of Theorem 8.1.4.

Remark 8.4.3. In contrast to Section 8.3, now Gal(ˆ︃Mi/Q) = Sn is not a
case we can handle, because there the proportion of fixed point free elements
is 1− 1/e as n→∞ (where e = 2.718... is Euler’s constant), which is much
too large.

For a permutation group G acting on X = {1, . . . , k}, we define h(G) to be the
proportion of elements of G with no fixed point. The family of of groups G for
which h(G) is smallest are the Frobenius groups. These are the groups where
G has a nontrivial element fixing one point of X, but no nontrivial elements
fixing more than one point of X. We state two known results about Frobenius
groups.

Lemma 8.4.4 ([112, Theorem 1]). Any Frobenius group can be realised as a
Galois group over Q.

Lemma 8.4.5 ([8, Theorem 3.1]). Let G be a transitive permutation group
on k letters.

1. We have h(G) ⩾ 1/k, with equality if and only if G is a Frobenius group
of order k(k − 1) and k is a prime power.

2. In all other cases, h(G) ⩾ 2/k.
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Proof of Corollary 8.1.5. As computed in Example 8.3.5, we have that Gi :=
Gal(ˆ︃Mi/Q) is isomorphic to the group AGL(1, qi) of affine linear transforma-
tions on Fqi

. This is a Frobenius group of order qi(qi− 1). By Lemma 8.4.5, we
have Ti = h(Gi) = 1/qi. (This also agrees with our computation in Example
8.3.5.) If [ki : Q] ⩽ 2 for all i, we can therefore apply part (1) of Theorem 8.1.4
provided that ∑︁n

i=1 1/qi < 0.39006.../d. Moreover, for all i ∈ {1, . . . , n}, the
sifting sets Pi are contained in {p /∈ S : p ≡ 1 (mod qi)}. Indeed, it can be
checked that the minimum polynomial xqi − ri has a root modulo p for all but
finitely many p ̸≡ 1 (mod qi), and these finitely many exceptional primes can
be included in S. Therefore, we can apply part (2) of Theorem 8.1.4 provided
that ∑︁n

i=1 1/(qi − 1) < 0.28371.../d.
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APPENDIX A
The Brauer group for the
equation f (t) = N(x) ̸= 0

This appendix will be concerned with the Brauer group of a smooth projective
model X of the equation f(t) = N(x) ̸= 0. In particular, we prove that in
the setting of Corollary 8.1.3, we have BrX = BrQ whenever n ⩾ 3. We
are grateful to Colliot-Thélène for providing the arguments presented in this
appendix.

A.1 Main results

Theorem A.1.1. Let k be a field of characteristic zero. LetK/k be an extension
of degree n, and let L/k be the Galois closure. Suppose that Gal(L/k) ∼= Sn.
Let f(t) ∈ k[t] be a squarefree polynomial. Let Y/k be the affine variety given
by the equation N(x1, . . . , xn) = f(t) ̸= 0, and Y → A1

k its projection onto t.
Let π : X → P1

k be a smooth projective birational model of Y → A1
k. Suppose

that k[t]/(f(t)) and L are linearly disjoint over k. Then Br k = BrX.

Theorem A.1.2. Let k be a field of characteristic zero. Let K/k be a
finite extension of degree n ⩾ 3, such that the Galois closure L/k satisfies
Gal(L/k) = Sn. Let c ∈ k×, and let Z be a smooth projective model of
NK/k(x1, . . . , xn) = c. Then Br k → BrZ is surjective.

A.2 Proof of Theorem A.1.2

Proof. The key ideas of the proof are discussed in detail by Bayer-Fluckiger
and Parimala [6], and so here we just give a sketch. We would like to show that
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Br(Z)/ Im(Br(k)) = 0. We begin by reducing to the case c = 1. Suppose that
T is the norm one torus given by NK/k(x1, . . . , xn) = 1, and let T c denote a
smooth compactification of T . Let ks denote the separable closure of k, and let
Z = Z ×k ks, and T = T ×k ks. By [36, Lemme 2.1], we have an isomorphism
H1(k,PicZ) ∼= H1(k,PicT c). Combining this with [6, Theorem 2.4], we have

Br(Z)/ Im(Br(k)) ↪→ H1(k,PicZ) ∼= H1(k,PicT c) ∼= Br(T c)/Br(k),
(A.2.1)

and hence it suffices to show that Br(T c)/Br(k) = 0.
Let G = Gal(L/k). The character group ˆ︁T = Hom(T,Gm) can be viewed as
a G-lattice. By [34, Proposition 9.5 (ii)], we have an isomorphism

Br(T c)/Br(k) ∼= X2
cycl(G, ˆ︁T ),

where

X2
cycl(G, ˆ︁T ) = ker

⎡⎣H2(G, ˆ︁T )→
∏︂
g∈G

H2(⟨g⟩, ˆ︁T )
⎤⎦ .

Let M/k be a finite extension with M linearly disjoint from L, and let L′ =
LM,K ′ = KM, k′ = kM . Then the extension K ′/k′ has degree n and Galois
closure L′, with Gal(L′/k′) = G. Moreover, by a construction of Frölich [53],
we may choose M in such a way that L′/k′ is unramified.
Using [6, Proposition 4.1], we have X2

cycl(G, ˆ︁T ) ∼= X2(k′, ˆ︁T ), where ˆ︁T is
regarded as a Gal(k′

s/k
′)-module via the surjection Gal(k′

s/k
′)→ G. In turn,

this is isomorphic to X1(k′, T )∨ by Poitou–Tate duality. To summarise, we
have isomorphisms

Br(T c)/Br(k) ∼= X2
cycl(G, ˆ︁T ) ∼= X2(k′, ˆ︁T ) ∼= X1(k′, T )∨, (A.2.2)

and so it suffices to show that X1(k′, T ) = 0. However, X1(k′, T ) is iso-
morhpic to the knot group κ(K ′/k′) = k′×∩NK′/k′ (A×

K′ )
NK′/k′ (k′×) . Due to the assumption

Gal(L′/k′) = G = Sn, we may apply the result of Kunyavskĭı and Voskresenskĭı
[76] to deduce that the Hasse norm principle holds for the extension K ′/k′, and
hence κ(K ′/k′) = 0.

A.3 Proof of Theorem A.1.1

Lemma A.3.1. The base change XK = X ×k K is a K-rational variety.

Proof. Since X is a smooth projective model of Y , it suffices to show that YK
is K-rational. Let K = k[x]/(p(x)), where p(x) is an irreducible polynomial
over k. Let a denote the class of x. Over K, the polynomial p(x) factorises as
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p(x) = ∏︁r
i=0 qi(x), where q0(x), . . . , qr(x) ∈ K[x] are distinct and irreducible,

and q0(x) = x − a. Let Ki = K[x]/(qi(x)). We shall construct a birational
map of the form

φ : YK → A1
K ×

r∏︂
i=1

RKi/KA
1

(t, x0, . . . , xn−1) ↦→ (t, z1, . . . , zr),
(A.3.1)

where RKi/K denotes the Weil restriction. Since RKi/KA1 ∼= Adeg qi
K , the right

hand side of (A.3.1) is isomorphic to An
K , which is a Zariski open subset of PnK .

Therefore, φ induces a birational map YK ‧‧➡ PnK , as desired.
Let k denote an algebraic closure of k. We denote by Embk(K, k) the embed-
dings K ↪→ K fixing k, or in other words, the conjugates of K/k in k. Over k,
the polynomials p(t), q0(t), . . . , qr(t) split as

p(t) =
∏︂

σ∈Embk(K,k)

(x− σ(a)), qi(x) =
∏︂

σ∈Embk(K,k)
qi(σ(a))=0

(x− σ(a)). (A.3.2)

For each i, we fix an isomorphism Ki
∼= K(σi(a)) for some σi ∈ Embk(K, k)

satisfying qi(σi(a)) = 0, and view σi(a) as the class of x in Ki/K. (The
particular choice of representative σi does not matter.) Since qi(x) is the
minimum polynomial of σi(a) over K, it splits over k as the product of the
conjugates of σi(a), and so

qi(t) =
∏︂

σ′∈EmbK(Ki,k)

(x− σ′σi(a)).

For i ∈ {0, . . . , r}, we define zi ∈ RKi/KA1 as

zi = x0 + σi(a)x1 + · · ·+ σi(a)n−1xn−1. (A.3.3)

the polynomial ∑︁deg qi−1
j=0 z

(j)
i xj representing zi is the reduction of x0 + x1x+

· · · + xn−1x
n−1 modulo qi. By the Chinese remainder theorem, we have an

isomorphism of K-algebras

K ⊗k K ∼= K[t]/(p(t)) ∼=
r∏︂
i=0

K[t]/(qi(t)) =
r∏︂
i=0

Ki,

and so z0, . . . , zr ∈
∏︁r
i=0 RKi/KA1 uniquely determine x0, . . . , xn−1 ∈ A1

K .
For any number field extension E/M , and any y ∈ E, we have

NE/M(y) =
∏︂

σ∈EmbM (E,M)

σ(y).
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Therefore,

NK/k(y) =
∏︂

σ∈Embk(K,k)

σ(y) =
r∏︂
i=0

∏︂
σ′∈EmbK(Ki,k)

σ′σi(y) =
r∏︂
i=0

NKi/K(σi(y)),

and so
NK/k(x0, . . . , xn−1) =

r∏︂
i=0

NKi/K(zi). (A.3.4)

We deduce that the equations (A.3.3) define an isomorphism from YK to the
variety V ⊆ A1

K ×
∏︁r
i=0 RKi/KA1 given by z0

∏︁r
i=1 NKi/K(zi) = f(t) ̸= 0.

For t, z1, . . . , zr satisfying the Zariski open condition ∏︁r
i=1 NKi/K(zi) ̸= 0,

we have z0 = f(t)/∏︁n
i=1 NKi/K(zi). Therefore, the projection of V onto

A1
K ×

∏︁r
i=1 RKi/KA1 is birational. We conclude that the map φ from (A.3.1)

is birational.

We now commence with the proof of Theorem A.1.1. Let k be a field of
characteristic zero. For a smooth irreducible variety X/k with function field κ(x),
we recall that BrX consists of all elements of Brκ(X) which are unramified
everywhere on X. Constant classes are unramified, and so we have Br k ⊆
BrX ⊆ Brκ(X). By the purity theorem [35, Theorem 3.7.1], the ramification
locus of A ∈ Brκ(X) is pure of codimension one. Consequently, to check
A ∈ BrX, it suffices to check it is unramified at all codimension one points of
X.

Let C be a codimension one point. We recall from [35, Section 1.4.3] the
residue map

∂C : Brκ(X)→ H1(κ(C),Q/Z)

is such that A is unramified at C if and only if ∂C(A ) is trivial.

In our setting, codimension one points of X come in two types:

1. Irreducible components of fibres Xc = π−1(c) above codimension one
points c of P1

k,

2. Codimension one points on the generic fibre Xη of π : X → P1
k.

We recall that κ(X) = κ(Xη). The codimension one points of Xη are a subset
of the codimension one points of X, and so we have an inclusion BrX ↪→ BrXη.
Since Xη is a smooth projective model of NK(t)/k(t)(x1, . . . , xn) = f(t) over
k(t), it follows from Theorem A.1.2, applied to the extension K(t)/k(t) and
with Z = Xη, that Br k(t)→ BrXη is surjective. Putting everything together,
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A.3. Proof of Theorem A.1.1

we obtain a commutative diagram

BrX BrXη Brκ(Xη) = Brκ(X)

Br k Br k(t)

Let α ∈ BrX. By the above diagram, we can find β ∈ Br k(t) whose image
in BrXη is equal to the image of α in BrXη. We want to show that β is the
image of an element of Br k, because then it follows from commutativity of
the diagram that α is the image of an element of Br k.
For any n ⩾ 1 and any field k, we have BrPnk = Br k [35, Theorem 6.1.3]. In
particular, we have Br k = BrP1

k. Also, k(t) = κ(P1
k), so Br k(t) = Brκ(P1

k).
Therefore, as discussed above, to prove that β is in the image of Br k, it
suffices to show β is unramified at every codimension one point of P1

k. This is
formalised by the Faddeev exact sequence [35, Theorem 1.5.2], which is the
exact sequence

0→ Br(k) ↪→ Br k(t)→
⨁︂

Q∈(P1
k

)(1)

H1(kQ,Q/Z) ↠ H1(k,Q/Z)→ 0,

(A.3.5)
where (P1

k)(1) denotes the codimension one points of P1
k and the third map is

the direct sum of the residue maps ∂Q. In other words, to show that β ∈ Br k(t)
is actually in Br k, it suffices to show that ∂Q(β) = 0 for all Q ∈ (P1

k)(1). We
have ∂Q(β) = 0 unless Q is an irreducible factor of f(t) by [35, Proposition
11.1.5], so we suppose from now on that Q is an irreducible factor of f(t).
The base change XK = X×kK is a K-rational variety, i.e., it is birational to PnK .
Since the Brauer group is a birational invariant on smooth projective varieties
[35, Corollary 6.2.11], it follows that BrXK = BrPnK = BrK. Therefore, we
obtain the following commutative diagram:
BrXK BrXK,η

BrX BrXη

BrK BrK(t) ⨁︁
Q∈(P1

k
)(1)
H1(KkQ,Q/Z)

Br k Br k(t) ⨁︁
Q∈(P1

k
)(1)
H1(kQ,Q/Z)

ψK
∼=

ι

ιX

φ

Lemma A.3.2. We have ∂Q(β) ∈ kerφ, where φ is as given in the above
commutative diagram.
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Proof. Let βK denote the image of β in BrK(t), and ∂K,Q the residue map
at Q on BrK(t). We want to show that ∂K,Q(βK) = 0. By exactness of
the Faddeev exact sequence over K, for this it suffices to show βK is in the
image BrK → BrK(t). We know that ψ(β) = ι(α). Applying a base change
to K, we see that ψK(βK) = ιK(αK), where αK , βK are the images of α, β
under base change. Since BrK ∼= BrXK , we have that αK is in the image
of BrK → BrXK , and hence by commutativity of the diagram, βK is in the
image of BrK → BrK(t), as required.

Let M be a number field, and let GM = Gal(M/M). For a finite Galois
extension M ′/M , we consider Gal(M ′/M) as a topological space with the
discrete toplology. We can then put the profinite topology on GM , which is
defined as the inverse limit

GM = lim←−
M ′/M Galois

Gal(M ′/M).

We recall that H1(M,Q/Z) = Homcont(GM ,Q/Z), the continuous group ho-
momorphisms GM → Q/Z [35, pp.16]. Suppose that θ ∈ Homcont(GM ,Q/Z).
Then ker θ is an open subgroup of GM . Since GM is a profinite group, this
implies that ker θ has finite index in GM . By the fundamental theorem of Galois
theory, im θ ∼= GM/ ker θ ∼= Gal(M ′/M), for some finite Galois extension
M ′/M . Moreover, im θ is a finite subgroup of Q/Z. All finite subgroups of
Q/Z are cyclic groups of the form 1

n
Z/Z for some positive integer n. Conse-

quently, ker θ = Gal(M ′/M) for a cyclic extension M ′/M . To summarise, we
have the identification

H1(M,Q/Z) = {M ′/M cyclic, with a given map ψ : Gal(M ′/M) ↪→ Q/Z}.

Returning to our setup, we now define φ : H1(kQ,Q/Z) → H1(KkQ,Q/Z)
explicitly. Using the above identification, we view an element θ ∈ H1(kQ,Q/Z)
as a pair (M ′/kQ, ψ). The map φ is given by taking the compositum with
K. More precisely, it sends the above pair to (KM ′/KkQ, ψ), where now ψ
is viewed as a map Gal(KM ′/KKQ) ↪→ Q/Z via the natural identification
of Gal(KM ′/KkQ) as a subgroup of Gal(M ′/kQ). Therefore, (M ′/kQ, ψ) ∈
kerφ if and only if M ′/kQ is a cyclic subextension of KkQ/kQ.
Due to the assumption that kQ and L are linearly disjoint over k, we have
Gal(KkQ/kQ) ∼= Gal(K/k) ∼= Sn. We now complete the proof of Theorem
A.1.1 with the following elementary group theory fact.

Lemma A.3.3. Suppose that K/k is a finite extension of degree n ⩾ 3, and
the Galois group of the Galois closure Gal(L/k) is isomorphic to Sn. Then
there are no nontrivial cyclic extensions M/k with M ⊆ K.
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Proof. By the fundamental theorem of Galois theory, if M/k is a subexten-
sion of K/k, then Gal(L/K) ⩽ Gal(L/M) ⩽ Gal(L/k) = Sn. However,
Gal(L/K) ∼= Sn−1. (More explicitly, if K = k(α1) and α1, . . . , αn are the
roots of the minimum polynomial of α1 over k, then Gal(L/K) consists of
all permutations of {α1, . . . , αn} which fix α1.) However, Sn−1 is a maximal
subgroup of Sn, and so M = k or M = K. Since n ⩾ 3, the extension K/k is
not cyclic. Therefore, M = k.

In conclusion, the map φ : H1(kQ,Q/Z) → H1(KkQ,Q/Z) is injective by
Lemma A.3.3, and ∂Q(β) ∈ kerφ by Lemma A.3.2, and hence ∂Q(β) = 0.
This means that all the residue maps of β are trivial, so β is in the image of
Br k → Br k(t). Hence α is in the image of Br k → BrX, and so BrX = Br k.
This completes the proof of Theorem A.1.1.
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