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Abstract: The eigenvalue distribution of the sum of two largeHermitianmatrices, when
one of them is conjugated by a Haar distributed unitary matrix, is asymptotically given
by the free convolution of their spectral distributions. We prove that this convergence
also holds locally in the bulk of the spectrum, down to the optimal scales larger than
the eigenvalue spacing. The corresponding eigenvectors are fully delocalized. Similar
results hold for the sum of two real symmetric matrices, when one is conjugated by Haar
orthogonal matrix.

1. Introduction

The pioneering work [31] of Voiculescu connected free probability with random ma-
trices, as one of the most prominent examples for a noncommutative probability space
is the space of Hermitian N × N matrices. On one hand, the law of the sum of two
free random variables with laws μα and μβ is given by the free additive convolution
μα �μβ . On the other hand, in the case of Hermitian matrices, the law can be identified
with the distribution of the eigenvalues. Thus the free additive convolution computes
the eigenvalue distribution of the sum of two free Hermitian matrices. However, free-
ness is characterized by an infinite collection of moment identities and cannot easily be
verified in general. A fundamental direct mechanism to generate freeness is conjuga-
tion by random unitary matrices. More precisely, two large Hermitian random matrices
are asymptotically free if the unitary transfer matrix between their eigenbases is Haar
distributed. The most important example is when the spectra of the two matrices are
deterministic and the unitary conjugation is the sole source of randomness. In other
words, if A = A(N ) and B = B(N ) are two sequences of deterministic N ×N Hermitian
matrices and U is a Haar distributed unitary, then A and UBU∗ are asymptotically free
in the large N limit and the asymptotic eigenvalue distribution of A + UBU∗ is given
by the free additive convolution μA � μB of the eigenvalue distributions of A and B.
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Since Voiculescu’s first proof, several alternative approaches have been developed,
see e.g. [11,16,29,30], but all of them were global in the sense that they describe the
eigenvalue distribution in the weak limit, i.e. on the macroscopic scale, tested against
N -independent test functions (to fix the scaling, we assume that A(N ) and B(N ) are
uniformly bounded).

The study of a local law, i.e. identification of the eigenvalue distribution of A+UBU∗
with the free additive convolution below the macroscopic scale, was initiated by Kargin.
First, he reached the scale (log N )−1/2 in [25] by using the Gromov–Milman concentra-
tion inequality for the Haar measure (a weaker concentration result was obtained earlier
by Chatterjee [14]). Kargin later improved his result down to scale N−1/7 in the bulk
of the spectrum [26] by analyzing the stability of the subordination equations more effi-
ciently. This result was valid only away from finitely many points in the bulk spectrum
and no effective control was given on this exceptional set. Recently in [1], we reduced
the minimal scale to N−2/3 by establishing the optimal stability and by using a boot-
strap procedure to successively localize the Gromov–Milman inequality from larger to
smaller scales. Moreover, our result holds in the entire bulk spectrum. In fact, the key
novelty in [1] was a new stability analysis in the entire bulk spectrum.

The main result of the current paper is the local law for H = A +UBU∗ down to the
scale N−1+γ , for any γ > 0. Note that the typical eigenvalue spacing is of order N−1,
a scale where the eigenvalue density fluctuates and no local law holds. Thus our result
holds down to the optimal scale.

There are several motivations to establish such refinements of the macroscopic limit
laws. First, such bounds are used as a priori estimates in the proofs of Wigner–Dyson–
Mehta type universality results on local spectral statistics; see e.g. [12,20,21,27] and
references therein. Second, control on the diagonal resolvent matrix elements for some
η = Im z implies that the eigenvectors are delocalized on scale η−1; the optimal scale for
η yields complete delocalization of the eigenvectors. Third, the local law is ultimately
related to an effective speed of convergence in Voiculescu’s theorem on the global
scale [1,26].

The basic idea of the proof is a continuity argument in the imaginary part η = Im z of
the spectral parameter z ∈ C

+ in the resolvent G(z) = (H − z)−1. This method for the
matrix elements ofG(z)was first introduced in [19] in the context ofWigner matrices. It
requires an initial step, an a priori control on G(z) for large η, say η = 1. In the context
of the current paper, the a priori bound is provided by Kargin’s result [26]. Since G(z)
is continuous in z, this also provides a control on G(z) for slightly smaller η. This weak
control shows that the normalized trace ofG(z) (and in fact all diagonal elementsGii ) is
in the stability regime of a self-consistent equation which identifies the limiting object.
The main work is to estimate the error between the equations for G(z) and its limit. Our
analysis has three major ingredients.

First, we use a partial randomness decomposition of the Haar measure that enables
us to take partial expectation of Gii with respect to the i th column of U . Second, to
compute this partial expectation, we establish a new system of self-consistent equations
involving only two auxiliary quantities. Keeping inmind, as a close analogy, that freeness
involves checking infinitely many moment conditions for monomials of A, B and U ,
one may fear that an equation for G involves BG, whose equation involves BGB etc.,
i.e. one would end up with an infinite system of equations. Surprisingly this is not the
case and monitoring two appropriately chosen quantities in tandem is sufficient to close
the system. Third, to connect the partial expectation of Gii with the subordination func-
tions from free probability, we rely on the optimal stability result for the subordination
equations obtained in [1].
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We stress that exploiting concentration only for the partial randomness surpasses
the more general but less flexible Gromov–Milman technique. The main point is that
we use concentration for each Gii separately, exploiting the randomness of a single
column (namely the i th one) of the Haar unitary U . Since Gii depends much stronger
on this column than on the other ones, the partial expectation of Gii with respect to the
i th column is already essentially deterministic. The concentration around this partial
expectation is more efficient since it uses only O(N ) random variables instead of all the
O(N 2) variables used in Gromov-Milman method.

One prominent application of our work concerns the single ring theorem of Guion-
net, Krishnapur and Zeitouni [22] on the eigenvalue distribution of matrices of the form
UTV , where T is a fixed positive definite matrix andU , V are independent Haar distrib-
uted. Via the hermitization technique, local laws for the addition of randommatrices can
be used to prove local versions of the single ring theorem. This approach was demon-
strated recently by Benaych-Georges [8], who proved a local single ring theorem on
scale (log N )−1/4 using Kargin’s local law on scale (log N )−1/2. The local law on the
optimal scale N−1 is one of the key ingredients to prove the local single ring theorem on
the optimal scale. The local single ring theorem will be proved in our separate work [2].

1.1. Notation. The following definition for high-probability estimates is suited for our
purposes, which was first used in [18].

Definition 1.1. Let

X = (X (N )(v) : N ∈ N , v ∈ V(N )) , Y = (Y (N )(v) : N ∈ N , v ∈ V(N )) (1.1)

be two families of nonnegative random variables where V(N ) is a possibly N -dependent
parameter set.We say that Y stochastically dominates X , uniformly in v, if for all (small)
ε > 0 and (large) D > 0,

sup
v∈V(N )

P

(
X (N )(v) > N εY (N )(v)

)
≤ N−D , (1.2)

for sufficiently large N ≥ N0(ε, D). If Y stochastically dominates X , uniformly in v,
we write X ≺ Y .

We further rely on the following notation. We use the symbols O( · ) and o( · ) for the
standard big-O and little-o notation. We use c and C to denote strictly positive constants
that do not depend on N . Their values may change from line to line. For a, b ≥ 0, we
write a � b, a � b if there is C ≥ 1 such that a ≤ Cb, a ≥ C−1b respectively.

We use bold font for vectors inCN and denote the components as v = (v1, . . . , vN ) ∈
C

N . The canonical basis of CN is denoted by (ei )Ni=1. For v,w ∈ C
N , we write v∗w for

the scalar product
∑N

i=1 viwi . We denote by ‖v‖2 the Euclidean norm and by ‖v‖∞ =
maxi |vi | the uniform norm of v ∈ C

N .
We denote by MN (C) the set of N × N matrices over C. For A ∈ MN (C), we

denote by ‖A‖ its operator norm and by ‖A‖2 its Hilbert-Schmidt norm. The matrix
entries of A are denoted by Ai j = e∗

i Ae j . We denote by trA the normalized trace of

A, i.e. trA = 1
N

∑N
i=1 Aii . For v,w ∈ C

N , the rank-one matrix vw∗ has elements
(vw∗)i j = (viw j ).



Z. Bao, L. Erdős, K. Schnelli

Let g=(g1, . . . , gN )be a real or complexGaussianvector.Wewrite g∼NR(0, σ 2 IN )

if g1, . . . , gN are independent and identically distributed (i.i.d.) N (0, σ 2) normal vari-
ables; and we write g ∼ NC(0, σ 2 IN ) if g1, . . . , gN are i.i.d. NC(0, σ 2) variables,
where gi ∼ NC(0, σ 2) means that Re gi and Im gi are independent N (0, σ 2

2 ) normal
variables.

Finally, we use double brackets to denote index sets, i.e. ,

�n1, n2� := [n1, n2] ∩ Z ,

for n1, n2 ∈ R.

2. Main Results

2.1. Free additive convolution. In this subsection, we recall the definition of the free
additive convolution. This is a shortened version of Sect. 2.1 of [1] added for complete-
ness.

Given a probability measure1 μ on R its Stieltjes transform, mμ, on the complex
upper half-plane C+ := {z ∈ C : Im z > 0} is defined by

mμ(z) :=
∫

R

dμ(x)

x − z
, z ∈ C

+. (2.1)

Note that mμ : C
+ → C

+ is an analytic function such that

lim
η↗∞ iηmμ(iη) = −1. (2.2)

Conversely, if m : C
+ → C

+ is an analytic function such that limη↗∞ iηm(iη) = 1,
then m is the Stieltjes transform of a probability measure μ, i.e. m(z) = mμ(z), for all
z ∈ C

+.
We denote by Fμ the negative reciprocal Stieltjes transform of μ, i.e.

Fμ(z) := − 1

mμ(z)
, z ∈ C

+. (2.3)

Observe that

lim
η↗∞

Fμ(iη)

iη
= 1 , (2.4)

as follows from (2.2), and note that Fμ is analytic on C
+ with nonnegative imaginary

part.
The free additive convolution is the symmetric binary operation on probability mea-

sures on R characterized by the following result.

Proposition 2.1 (Theorem 4.1 in [6], Theorem 2.1 in [15]). Given two probability mea-
sures, μ1 and μ2, onR, there exist unique analytic functions, ω1 , ω2 : C

+ → C
+, such

that,

1 All probability measures considered will be assumed to be Borel.



Local Law of Addition of Random Matrices on Optimal Scale

(i) for all z ∈ C
+, Imω1(z), Imω2(z) ≥ Im z, and

lim
η↗∞

ω1(iη)

iη
= lim

η↗∞
ω2(iη)

iη
= 1 ; (2.5)

(ii) for all z ∈ C
+,

Fμ1(ω2(z)) = Fμ2(ω1(z)) , ω1(z) + ω2(z) − z = Fμ1(ω2(z)). (2.6)

It follows from (2.5) that the analytic function F : C
+ → C

+ defined by

F(z) := Fμ1(ω2(z)) = Fμ2(ω1(z)), (2.7)

satisfies the analogue of (2.4). Thus F is the negative reciprocal Stieltjes transform of a
probabilitymeasureμ, called the free additive convolution ofμ1 andμ2, usually denoted
by μ ≡ μ1 � μ2. The functions ω1 and ω2 of Proposition 2.1 are called subordination
functions andm is said to be subordinated tomμ1 , respectively tomμ2 .Moreover, observe
that ω1 and ω2 are analytic functions on C

+ with nonnegative imaginary parts. Hence
they admit the Nevanlinna representations

ω j (z) = aω j + z +
∫

R

1 + zx

x − z
d	ω j (x) , j = 1, 2 , z ∈ C

+ , (2.8)

where aω j ∈ R and 	ω j are finite Borel measures onR. For further details and historical
remarks on the free additive convolution we refer to, e.g. [23,32].

Choosing μ1 as a single point mass at b ∈ R and μ2 arbitrary, it is straightforward to
check that μ1 � μ2 is μ2 shifted by b. We exclude this uninteresting case by assuming
hereafter that μ1 and μ2 are both supported at more than one point. For general μ1 and
μ2, the atoms of μ1 �μ2 are identified as follows. A point c ∈ R is an atom of μ1 �μ2,
if and only if there exist a, b ∈ R such that c = a + b and μ1({a}) + μ2({b}) > 1; see
[Theorem 7.4, [10]]. Properties of the continuous part of μ1 � μ2 may be inferred from
the boundary behavior of the functions Fμ1�μ2 , ω1 and ω2. For simplicity, we restrict
the discussion to compactly supported probability measures in the following.

Proposition 2.2 (Theorem 2.3 in [3], Theorem 3.3 in [4]). Let μ1 and μ2 be compactly
supported probability measures on R none of them being a single point mass. Then the
functions Fμ1�μ2 , ω1, ω2 : C

+ → C
+ extend continuously to R.

Belinschi further showed in Theorem 4.1 in [4] that the singular continuous part of
μ1 �μ2 is always zero and that the absolutely continuous part, (μ1 �μ2)

ac, of μ1 �μ2
is always nonzero. We denote the density function of (μ1 � μ2)

ac by fμ1�μ2 .
We are now all set to introduce our notion of regular bulk, Bμ1�μ2 , of μ1 � μ2.

Informally, we let Bμ1�μ2 be the open set on which μ1 � μ2 has a continuous density
that is strictly positive and bounded from above. For a formal definitionwe first introduce
the set

Uμ1�μ2
:= int

{
supp (μ1 � μ2)

ac ∖ {x ∈ R : lim
η↘0

Fμ1�μ2(x + iη) = 0}
}
. (2.9)

Note thatUμ1�μ2 does not contain any atoms ofμ1�μ2. By the Luzin–Privalov theorem
the set {x ∈ R : limη↘0 Fμ1�μ2(x + iη) = 0} has Lebesgue measure zero. In fact, a
stronger statement applies for the case at hand. Belinschi [5] showed that if x ∈ R is
such that limη↘0 Fμ1�μ2(x + iη) = 0, then it must be of the form x = a + b with
μ1({a}) + μ2({b}) ≥ 1, a, b ∈ R. Since there could only be finitely many such point x ,
the set Uμ1�μ2 must contain an open non-empty interval.
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Proposition 2.3 (Theorem 3.3 in [4]). Let μ1 and μ2 be as above and fix any x ∈
Uμ1�μ2 . Then Fμ1�μ2 , ω1, ω2 : C

+ → C
+ extend analytically around x. Thus the

density function fμ1�μ2 is real analytic in Uμ1�μ2 wherever positive.

The regular bulk is obtained from Uμ1�μ2 by removing the zeros of fμ1�μ2 insideUμ1�μ2 .

Definition 2.4. The regular bulk of the measure μ1 � μ2 is the set

Bμ1�μ2
:= Uμ1�μ2 \ {x ∈ Uμ1�μ2 : fμ1�μ2(x) = 0

}
. (2.10)

Note that Bμ1�μ2 is an open nonempty set on which μ1 � μ2 admits the density
fμ1�μ2 . The density is strictly positive and thus by Proposition 2.3 real analytic on
Bμ1�μ2 .

2.2. Definition of the model and assumptions. Let A ≡ A(N ) and B ≡ B(N ) be two
sequences of deterministic real diagonal matrices in MN (C), whose empirical spectral
distributions are denoted by μA and μB , respectively. More precisely,

μA := 1

N

N∑
i=1

δai , μB := 1

N

N∑
i=1

δbi , (2.11)

with A = diag(ai ), B = diag(bi ). For simplicity we omit the N -dependence of the
matrices A and B from our notation. Throughout the paper, we assume

‖A‖, ‖B‖ ≤ C , (2.12)

for some positive constant C uniform in N .
Proposition 2.1 asserts the existence of unique analytic functions ωA and ωB satis-

fying the analogue of (2.5) such that, for all z ∈ C
+,

FμA(ωB(z)) = FμB (ωA(z)) , ωA(z) + ωB(z) − z = FμA (ωB(z)). (2.13)

We will assume that there are deterministic probability measures μα and μβ on R,
neither of them being a single point mass, such that the empirical spectral distributions
μA and μB converge weakly to μα and μβ , as N → ∞. More precisely, we assume that

dL(μA, μα) + dL(μB, μβ) → 0 , (2.14)

as N → ∞, where dL denotes the Lévy distance. Proposition 2.1 asserts that there
are unique analytic functions ωα , ωβ satisfying the analogue of (2.5) such that, for all
z ∈ C

+,

Fμα (ωβ(z)) = Fμβ (ωα(z)) , ωα(z) + ωβ(z) − z = Fμα (ωβ(z)). (2.15)

Proposition 4.13 of [9] states that dL(μA �μB, μα �μβ) ≤ dL(μA, μα)+dL(μB, μβ),
i.e. the free additive convolution is continuous with respect to weak convergence of
measures.

Denote by U (N ) the unitary group of degree N . Let U ∈ U (N ) be distributed
according to the Haar measure (in short U is a Haar unitary), and consider the random
matrix

H ≡ H (N ) := A +UBU∗. (2.16)
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Our results also hold for the real case when U is Haar distributed on the orthogonal
group, O(N ), of degree N . Throughout the main part of the paper the discussion will
focus on the unitary case while the orthogonal case is addressed in Appendix A.

We introduce the Green function, GH , of H and its normalized trace, mH , by

GH (z) := 1

H − z
, mH (z) := tr GH (z) , z ∈ C

+. (2.17)

For simplicity, we frequently use the notation G(z) instead of GH (z) and we write
Gi j (z) ≡ (GH )i j (z) for the (i, j)th matrix element of G(z).

2.3. Main results. For a, b ≥ 0, b ≥ a, and I ⊂ R, let

SI(a, b) := {z = E + iη ∈ C
+ : E ∈ I , a ≤ η ≤ b} , (2.18)

In addition, for brevity, we set, for any given γ > 0,

ηm ≡ ηm(γ ) := N−1+γ . (2.19)

The main results of this paper are as follows.

Theorem 2.5. Let μα and μβ be two compactly supported probability measures on R,
and assume that neither is supported at a single point and that at least one of them
is supported at more than two points. Assume that the sequences of matrices A and B
in (2.16) are such that their empirical eigenvalue distributionsμA andμB satisfy (2.14).
Let I ⊂ Bμα�μβ

be a nonempty compact interval.
Then, for any fixed γ > 0, the estimates

max
1≤i≤N

∣∣∣Gii (z) − 1

ai − ωB(z)

∣∣∣ ≺ 1√
Nη

, (2.20)

max
i �= j

∣∣∣Gi j (z)
∣∣∣ ≺ 1√

Nη
(2.21)

and
∣∣∣mH (z) − mμA�μB (z)

∣∣∣ ≺ 1√
Nη

(2.22)

hold uniformly on SI(ηm, 1) (see (2.18)), where η ≡ Im z and ηm ≡ ηm(γ ) is given
in (2.19).

Remark 2.1. The assumption that neither of μα and μβ is a point mass, ensures that the
free additive convolution is not a simple translate. The additional assumption that at least
one of them is supported at more than two points is made for brevity of the exposition
here. In Appendix B, we present the corresponding result for the special case when μα

and μβ are both convex combinations of two point masses.

Remark 2.2. We recall fromLemma5.1 andTheorem2.7 of [1] that, under the conditions
of Theorem 2.5, there is a finite constant C such that

max
z∈SI (0,1)

max
{∣∣ωA(z) − ωα(z)

∣∣, ∣∣ωB(z) − ωβ(z)
∣∣, ∣∣mμA�μB (z) − mμα�μβ

(z)
∣∣}

≤ C
(
dL(μA, μα) + dL(μB, μβ)

)
, (2.23)

i.e. theLévy distances of the empirical eigenvalue distributions of A and B from their lim-
iting distributions control uniformly the deviations of the corresponding subordination
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functions and Stieltjes transforms. Note moreover that maxz∈SI (0,1) |mμα�μβ
(z)| < ∞

by compactness of I and analyticity of mμ1�μ2 . Thus the Stieltjes-Perron inversion
formula directly implies that (μA � μB)ac has a density, fμA�μB , inside I and that

max
x∈I

| fμA�μB (x) − fμα�μβ
(x)| ≤ C

(
dL(μA, μα) + dL(μB, μβ)

)
, (2.24)

for N sufficiently large. In particular, since I ⊂ Bμα�μβ
, we have I ⊂ BμA�μB , for N

sufficiently large, i.e. we use, for large N , μα � μβ to locate (an interval of) the regular
bulk of μA � μB . Combining (2.23) and (2.20), we get

max
1≤i≤N

∣∣∣Gii (z) − 1

ai − ωβ(z)

∣∣∣ ≺ 1√
Nη

+ dL(μA, μα) + dL(μB, μβ) , (2.25)

uniformly on SI(ηm, 1), where η = Im z. Hereafter, we use the abbreviation mA,mB,

mα,mβ for mμA ,mμB ,mμα ,mμβ respectively. Averaging over the index i , we get the
corresponding statement for |mH (z)−mA(ωβ(z))|with the same error bound. Further, a
lower bound on Imωβ(z) (c.f. (3.15)) implies |mA(ωβ(z))−mα(ωβ(z))| � dL(μA, μα).
Hence, using mα(ωβ(z)) = mμα�μβ

(z), we observe that |mH (z) − mμA�μB (z)| is
bounded by the right side of (2.25), too.

Remark 2.3. Note that assumption (2.14) does not exclude that the matrix H has outliers
in the large N limit. In fact, the model H = A + UBU∗ shows a rich phenomenology
when, say, A has a finite number of large spikes; we refer to the recentworks in [7,13,26].

Let λ1, . . . , λN be the eigenvalues of H , and u1, . . . , uN be the corresponding �2-
normalized eigenvectors. The following result shows complete delocalization of the bulk
eigenvectors.

Theorem 2.6 (Delocalization of eigenvectors). Under the assumptions of Theorem 2.5
the following holds. Let I ⊂ Bμα�μβ

be a compact nonempty interval. Then

max
i : λi∈I

‖ui‖∞ ≺ 1√
N

. (2.26)

2.4. Strategy of proof. In this subsection, we informally outline the strategy of our
proofs. Throughout the paper, without loss of generality, we assume

tr A = tr B = 0. (2.27)

For brevity, we use the shorthandm� ≡ mμA�μB for the Stieltjes transform ofμA�μB .
We consider first the unitary setting. Let

H := A +UBU∗ , H := U∗AU + B, (2.28)

and denote their Green functions by

G(z) = (H − z)−1 , G(z) = (H − z)−1, z ∈ C
+. (2.29)

We write z = E + iη ∈ C
+, E ∈ R and η > 0, for the spectral parameter. In the sequel

we often omit z ∈ C
+ from the notation when no confusion can arise. Recalling (2.17),

we have

mH (z) = tr G(z) = tr G(z), z ∈ C
+.
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For brevity, we set

Ã := U∗AU , B̃ := UBU∗.

The following functions will play a key role in our proof.

Definition 2.7 (Approximate subordination functions).

ωc
A(z) := z − tr ÃG(z)

mH (z)
, ωc

B(z) := z − tr B̃G(z)

mH (z)
, z ∈ C

+. (2.30)

Notice that the role of A and B are not symmetric in these notations. By cyclicity of
the trace, we may write

ωc
A(z) = z − tr AG(z)

mH (z)
, z ∈ C

+. (2.31)

We remark that the approximate subordination functions defined above are slightly
different from the candidate subordination functions used in [26,29] which were later
used in [1].

The functions ωc
A(z) and ωc

B(z) turn out to be good approximations to the subor-
dination functions ωA(z) and ωB(z) of (2.13). A direct consequence of the definition
in (2.30) is that

1

mH (z)
= z − ωc

A(z) − ωc
B(z) , z ∈ C

+. (2.32)

Having set the notation, our main task is to show that

Gii (z) = 1

ai − ωc
B(z)

+ O≺
( 1√

Nη

)
, z ∈ SI(ηm, 1) , (2.33)

where we focus, for simplicity, on the diagonal Green function entries only.
We first heuristically explain how (2.33) leads to our main result in (2.20). A key

input is the local stability of the system (2.13) established in [1]; see Subsection 3.3 for
a summary. Averaging over the index i in (2.33), we get

mH (z) = mA(ωc
B(z)) + O≺

( 1√
Nη

)
, (2.34)

with the shorthand notation mA( · ) ≡ mμA( · ). Replacing H byH, we analogously get

mH (z) = mB(ωc
A(z)) + O≺

( 1√
Nη

)
, (2.35)

according to (2.31). Substituting (2.32) into (2.34) and (2.35) we obtain the system

FμA(ω
c
B(z)) = ωc

A(z) + ωc
B(z) − z + O≺

( 1√
Nη

)
,

FμB (ωc
A(z)) = ωc

A(z) + ωc
B(z) − z + O≺

( 1√
Nη

)
,
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which is a perturbation of (2.13). Using the local stability of the system (2.13), we obtain

∣∣ωc
A(z) − ωA(z)

∣∣ ≺ 1√
Nη

,
∣∣ωc

B(z) − ωB(z)
∣∣ ≺ 1√

Nη
. (2.36)

Plugging the first estimate back into (2.33) we get (2.20). The full proof of this step is
accomplished in Sect. 7.

We next return to (2.33). Its proof relies on the following decomposition of the Haar
measure on the unitary group given, e.g. in [17,28]. For any fixed i ∈ �1, N�, any Haar
unitary U can be written as

U = −eiθi Ri U
〈i〉. (2.37)

Here Ri is the Householder reflection (up to a sign) sending the vector ei to vi , where
vi ∈ C

N is a random vector distributed uniformly on the complex unit (N − 1)-sphere,
and θi ∈ [0, 2π) is the argument of the i th coordinate of vi . The unitary matrixU 〈i〉 has
ei as its i th column and its (i, i)-matrix minor (obtained by removing the i th column
and i th row) is Haar distributed on U (N − 1); see Sect. 4 for more detail.

The gist of the decomposition in (2.37) is that the Householder reflection Ri and
the unitary U 〈i〉 are independent, for each fixed i ∈ �1, N�. Hence, the decomposition
in (2.37) allows one to split off the partial randomness of the vector vi from U .

The proof of (2.33) is divided into two parts:

(i) Concentration of Gii around the partial expectation Evi [Gii ], i.e.
∣∣Gii (z) − Evi [Gii (z)]

∣∣ ≺ 1√
Nη

.

(ii) Computation of the partial expectation Evi [Gii ], i.e.
∣∣Evi

[
Gii (z)

]− (ai − ωc
B(z)

)−1∣∣ ≺ 1√
Nη

.

To prove part (i), we resolve dependences by expansion and use concentration esti-
mates for the vector vi . This part is accomplished in Sect. 5.

Part (ii) is carried out in Sect. 6. We start from the Green function identity

(ai − z)Gii (z) = −(B̃G(z))i i + 1. (2.38)

Taking the Evi expectation of (2.38) and recalling the definition of the approximate
subordination function ωc

B(z) in (2.30), it suffices to show that

Evi

[
(B̃G)i i

] = tr B̃G

tr G
Gii + O≺

( 1√
Nη

)
,

to prove (2.33). Denoting B̃〈i〉 := U 〈i〉B(U 〈i〉)∗ and setting, for z ∈ C
+,

S�
i (z) := eiθi v∗

i B̃
〈i〉G(z)ei , T �

i (z) := eiθi v∗
i G(z)ei ,

we will prove that

Evi

[
(B̃G(z))i i

] = −Evi

[
S�
i (z)
]
+ O≺

( 1√
N

)
. (2.39)
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Hence, it suffices to determine Evi

[
S�
i ] instead. Approximating e−iθi vi by a Gaussian

vector and using integration by parts for Gaussian random variables, we get the pair of
equations

Evi

[
S�
i

] = tr
(
B̃G
) (
Evi

[
S�
i

]− bi Evi

[
T �
i

])

+ tr
(
B̃G B̃

) (
Gii + Evi

[
T �
i

])
+ O≺

( 1√
Nη

)
,

Evi

[
T �
i

] = tr
(
G
) (
Evi

[
S�
i

]− bi Evi

[
T �
i

])
+ tr
(
B̃G
) (
Gii + Evi

[
T �
i

])
+ O≺

( 1√
Nη

)
,

where we dropped the z-argument for the sake of brevity; see (6.23) and (6.24) for
precise statements with, for technical reasons, slightly modified S�

i and T �
i . Solving the

two equations above for Evi

[
S�
i

]
we find

Evi

[
S�
i

] = − tr
(
B̃G
)

tr G
Gii +

[
tr
(
B̃G
)− (tr (B̃G))2
tr G

+ tr
(
B̃G B̃

)](
Gii + Evi

[
T �
i

])

+ O≺
( 1√

Nη

)
. (2.40)

Returning to (2.39), we also obtain, using concentration estimates for (B̃G)i i (which
follow from the concentration estimates of Gii established in part (i) and (2.38)), that

∣∣∣ 1
N

N∑
i=1

Evi

[
S�
i

]
+ tr B̃G

∣∣∣ ≺ 1√
Nη

. (2.41)

Thus, averaging (2.40) over the index i and comparing with (2.41), we conclude that

∣∣∣ tr
(
B̃G
)− (tr (B̃G))2
tr G

+ tr
(
B̃G B̃

)∣∣∣ ≺ 1√
Nη

.

Plugging this last estimate back into (2.40), we eventually find that

Evi

[
S�
i

] = − tr
(
B̃G
)

tr G
Gii + O≺

( 1√
Nη

)
,

which together with (2.39) and (2.38) gives us part (ii). This completes the sketch of the
proof for the unitary case. The proof of the orthogonal case is similar. The necessary
modifications are given in Appendix A.

3. Preliminaries

In this section, we first collect some basic tools used later on and then summarize results
of [1]. In particular, we discuss, under the assumptions of Theorem 2.5, stability proper-
ties of the system (2.13) and state essential properties of the subordination functions ωA
and ωB .
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3.1. Stochastic domination and large deviation properties. Recall the definition of sto-
chastic domination in Definition 1.1. The relation ≺ is a partial ordering: it is transitive
and it satisfies the arithmetic rules of an order relation, e.g., if X1 ≺ Y1 and X2 ≺ Y2 then
X1+X2 ≺ Y1+Y2 and X1X2 ≺ Y1Y2. Further assume that�(v) ≥ N−C is deterministic
and that Y (v) is a nonnegative random variable satisfying E[Y (v)]2 ≤ NC ′

for all v.
Then Y (v) ≺ �(v), uniformly in v, implies E[Y (v)] ≺ �(v), uniformly in v.

Gaussian vectors have well-known large deviation properties. We will use them in
the following form whose proof is standard.

Lemma 3.1. Let X = (xi j ) ∈ MN (C) be a deterministic matrix and let y = (yi ) ∈ C
N

be a deterministic complex vector. For a Gaussian random vector g = (g1, . . . , gN ) ∈
NR(0, σ 2 IN ) or NC(0, σ 2 IN ), we have

| y∗g| ≺ σ‖ y‖2 , |g∗X g − σ 2N tr X | ≺ σ 2‖X‖2. (3.1)

3.2. Rank-one perturbation formula. At various places, we use the following funda-
mental perturbation formula: for α,β ∈ C

N and an invertible D ∈ MN (C), we have

(
D + αβ∗)−1 = D−1 − D−1αβ∗D−1

1 + β∗D−1α
, (3.2)

as can be checked readily. A standard application of (3.2) is recorded in the following
lemma.

Lemma 3.2. Let D ∈ MN (C) be Hermitian and let Q ∈ MN (C) be arbitrary. Then, for
any finite-rank Hermitian matrix R ∈ MN (C), we have

∣∣∣tr
(
Q
(
D + R − z

)−1
)

− tr
(
Q(D − z)−1

)∣∣∣ ≤ rank(R)‖Q‖
Nη

, z = E + iη ∈ C
+.

(3.3)

Proof. Let z ∈ C
+ and α ∈ C

N . Then from (3.2) we have

tr
(
Q
(
D ± αα∗ − z

)−1
)

− tr
(
Q(D − z)−1

)
= ∓ 1

N

α∗(D − z)−1Q(D − z)−1α

1 ± α∗(D − z)−1α
.

(3.4)

We can thus estimate

∣∣∣tr
(
Q
(
D ± αα∗ − z

)−1
)

− tr
(
Q(D − z)−1

)∣∣∣ ≤ ‖Q‖
N

‖(D − z)−1α‖22∣∣1 ± α∗(D − z)−1α
∣∣

= ‖Q‖
Nη

α∗Im (D − z)−1α∣∣1 ± α∗(D − z)−1α
∣∣

≤ ‖Q‖
Nη

. (3.5)

Since R = R∗ ∈ MN (C) has finite rank, we can write R as a finite sum of rank-one
Hermitian matrices of the form ±αα∗. Thus iterating (3.5) we get (3.3). ��
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3.3. Local stability of the system (2.13). We first consider (2.6) in a general setting: For
generic probability measures μ1, μ2, let �μ1,μ2 : (C+)3 → C

2 be given by

�μ1,μ2(ω1, ω2, z) :=
(
Fμ1(ω2) − ω1 − ω2 + z
Fμ2(ω1) − ω1 − ω2 + z

)
, (3.6)

where Fμ1 , Fμ2 are the negative reciprocal Stieltjes transforms of μ1, μ2; see (2.3).
Considering μ1, μ2 as fixed, the equation

�μ1,μ2(ω1, ω2, z) = 0 , (3.7)

is equivalent to (2.6) and, by Proposition 2.1, there are unique analytic functionsω1, ω2 :
C
+ → C

+, z �→ ω1(z), ω2(z) satisfying (2.5) that solve (3.7) in terms of z. Choosing
μ1 = μα , μ2 = μβ equation (3.7) is equivalent to (2.15); choosing μ1 = μA, μ2 =
μB it is equivalent to (2.13). When no confusion can arise, we simply write � for
�μ1,μ2(ω1, ω2, z).

We call the system (3.7) linearly S-stable at (ω1, ω2) if

�μ1,μ2(ω1, ω2) :=
∥∥∥∥∥
( −1 F ′

μ1
(ω2) − 1

F ′
μ2

(ω1) − 1 −1

)−1
∥∥∥∥∥ ≤ S , (3.8)

for some positive constant S. In particular, the partial Jacobian matrix of (3.6) given by

D�(ω1, ω2) :=
(

∂�

∂ω1
(ω1, ω2, z) ,

∂�

∂ω2
(ω1, ω2, z)

)
=
( −1 F ′

μ1
(ω2) − 1

F ′
μ2

(ω1) − 1 −1

)
,

has a bounded inverse at (ω1, ω2). Note thatD�(ω1, ω2) is independent of z. The implicit
function theorem reveals that, if (3.7) is linearly S-stable at (ω1, ω2), then

max
z∈SI(0,1)

|ω′
1(z)| ≤ 2S , max

z∈SI (0,1)
|ω′

2(z)| ≤ 2S. (3.9)

In particular, ω1 and ω2 are Lipschitz continuous with constant 2S. A more detailed
analysis yields the following local stability result of the system �μ1,μ2(ω1, ω2, z) = 0.

Lemma 3.3 (Proposition 4.1, [1]). Fix z0 ∈ C
+. Assume that the functions ω̃1, ω̃2, r̃1,

r̃2 : C
+ → C satisfy Im ω̃1(z0) > 0, Im ω̃2(z0) > 0 and

�μ1,μ2(ω̃1(z0), ω̃2(z0), z0) = r̃(z0) , (3.10)

where r̃(z) := (̃r1(z), r̃2(z))�. Assume moreover that there is δ ∈ [0, 1] such that

|ω̃1(z0) − ω1(z0)| ≤ δ , |ω̃2(z0) − ω2(z0)| ≤ δ , (3.11)

whereω1(z),ω2(z) solve theunperturbed system�μ1,μ2(ω1, ω2, z) = 0with Imω1(z) ≥
Im z and Imω2(z) ≥ z, z ∈ C

+. Assume that there is a constant S such that � is lin-
early S-stable at (ω1(z0), ω2(z0)), and assume in addition that there are strictly positive
constants K and k with k > δ and with k2 > δK S such that

k ≤ Imω1(z0) ≤ K , k ≤ Imω2(z0) ≤ K . (3.12)

Then

|ω̃1(z0) − ω1(z0)| ≤ 2S‖̃r(z0)‖2 , |ω̃2(z0) − ω2(z0)| ≤ 2S‖̃r(z0)‖2. (3.13)
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In Sect. 7, we will apply Lemma 3.3 with the choices μ1 = μA and μ2 = μB . We
thus next show that the system �μA,μB (ωA, ωB, z) = 0 is S-stable, for all z ∈ SI(0, 1),
and that (3.12) holds uniformly on SI(0, 1); see (2.18) for the definition.

Lemma 3.4 (Lemma 5.1 and Corollary 5.2 of [1]). Let μA, μB be the probability mea-
sures from (2.11) satisfying the assumptions of Theorem 2.5. Let ωA, ωB denote the
associated subordination functions of (2.13). Let I be the interval in Theorem 2.5.
Then for N sufficiently large, the system �μA,μB (ωA, ωB , z) = 0 is S-stable with some
positive constant S, uniformly on SI(0, 1). Moreover, there exist two strictly positive
constants K and k, such that for N sufficiently large, we have

max
z∈SI (0,1)

|ωA(z)| ≤ K , max
z∈SI (0,1)

|ωB(z)| ≤ K , (3.14)

min
z∈SI (0,1)

ImωA(z) ≥ k , min
z∈SI (0,1)

ImωB(z) ≥ k. (3.15)

Remark 3.1. Under the assumptions of Lemma 3.4, the estimates in (3.15) can be ex-
tended as follows. There is k̃ > 0 such that

min
z∈SI (0,1)

(ImωA(z) − Im z) ≥ k̃ , min
z∈SI (0,1)

(ImωB(z) − Im z) ≥ k̃. (3.16)

This follows by combining (3.15) with the Nevanlinna representations in (2.8).

We conclude this section by mentioning that the general perturbation result in
Lemma 3.3 combined with Lemma 3.4, can be used to prove (2.23). We refer to [1]
for details.

4. Partial Randomness Decomposition

We use a decomposition of Haar measure on the unitary groups obtained in [17] (see
also [28]): For a Haar distributed unitary matrix U ≡ UN , there exist a random vector
v1 = (v11, . . . , v1N ), uniformly distributed on the complex unit (N−1)-sphereSN−1

C
:=

{x ∈ C
N : x∗x = 1}, and a Haar distributed unitary matrix U 1 ≡ U 1

N−1 ∈ U (N − 1),
which is independent of v1, such that one has the decomposition

U = −eiθ1(I − r1r∗
1)

(
1
U 1

)
=: −eiθ1R1U

〈1〉 ,

where

r1 := √
2

e1 + e−iθ1v1

‖e1 + e−iθ1v1‖2 , R1 := I − r1r∗
1 , (4.1)

and where θ1 is the argument of the first coordinate of the vector v1. More generally,
for any i ∈ �1, N�, there exists an independent pair (vi ,Ui ), with vi a uniformly
distributed unit vector vi and withUi ∈ U (N − 1) a Haar unitary, such that one has the
decomposition

U = −eiθi RiU
〈i〉 , r i := √

2
ei + e−iθi vi

‖ei + e−iθi vi‖2 , Ri := I − r i r∗
i , (4.2)

where U 〈i〉 is the unitary matrix with ei as its i th column and Ui as its (i, i)-matrix
minor, and θi is the argument of the i th coordinate of vi . In addition, using the definition
of Ri and U 〈i〉, we note that U ei = −eiθi RiU 〈i〉ei = vi , i.e. vi is the i th column of U .
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With the above notation, we can write

H = A + Ri B̃
〈i〉R∗

i ,

for any i ∈ �1, N�, where we introduced the shorthand notation

B̃〈i〉 := U 〈i〉B
(
U 〈i〉)∗. (4.3)

We further define

H 〈i〉 := A + B̃〈i〉 , G〈i〉(z) := (H 〈i〉 − z)−1 , z ∈ C
+. (4.4)

Note that B〈i〉, H 〈i〉 and G〈i〉 are independent of vi .
It is well known that for a uniformly distributed unit vector vi ∈ C

N , there exists a
Gaussian vector g̃i = (g̃i1, . . . , g̃i N ) ∼ NC(0, N−1 I ) such that

vi = g̃i
‖ g̃i‖2

. (4.5)

By definition, θi is also the argument of g̃i i . Set

gik := e−iθi g̃ik , k �= i , (4.6)

and introduce an NC(0, N−1) variable gii which is independent of the unitary matrix
U and of g̃i . Then, we denote gi := (gi1, . . . , giN ) and note gi ∼ NC(0, N−1 I ). In
addition, by definition, we have

e−iθi vi − gi = |̃gii | − gii
‖ g̃i‖2

ei +
( 1

‖ g̃i‖2
− 1
)
gi .

In subsequent estimates for Gi j , it is convenient to approximate r i by

wi := ei + gi (4.7)

in the decomposition U = −eiθi RiU 〈i〉, without changing the randomness of U 〈i〉. To
estimate the precision of this approximation, we require more notation: Let

Wi = W ∗
i := I − wiw

∗
i , B̃(i) = Wi B̃

〈i〉Wi . (4.8)

Correspondingly, we denote

H (i) := A + B̃(i) , G(i)(z) := (H (i) − z)−1 , z ∈ C
+. (4.9)

The following lemma shows that r i can be replaced by wi in Green function entries
at the expense of an error that is below the precision we are interested in.

Lemma 4.1. Fix z = E + iη ∈ C
+ and choose indices i, j, k ∈ �1, N�. Suppose that

max
{
|Gkk(z)|, |G(i)

i j (z)|
}

≺ 1 ,

max
{
|g∗

i G
(i)(z)e j |, |g∗

i B̃
〈i〉G(i)(z)e j |

}
≺ 1 , (4.10)

hold. Then
∣∣Gkj (z) − G(i)

k j (z)
∣∣ ≺ 1√

Nη
(4.11)

holds, too.
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Proof of Lemma 4.1. Fix i, j, k ∈ �1, N�. We first note that

r i = wi + δ1i ei + δ2i gi ,

where

δ1i :=
( √

2

‖ei + e−iθi vi‖2 − 1

)
+

√
2

‖ei + e−iθi vi‖2
|̃gii | − gii

‖ g̃i‖2
,

δ2i :=
√
2

‖ei + e−iθi vi‖2
1

‖ g̃i‖2
− 1. (4.12)

By the concentration inequalities in Lemma 3.1, and gii , g̃i i ∼ NC(0, N−1), we see that

‖ g̃i‖2 = 1 + O≺(
1√
N

),

‖ei + e−iθi vi‖2 =
(
2 + 2

|̃gii |
‖ g̃i‖2

) 1
2 = √

2 + O≺(
1

N
),

(4.13)

where we have used (4.5). Plugging the estimates in (4.13) into (4.12) and using the fact
gii , g̃i i ∼ NC(0, N−1) again, we can get the bounds

|δ1i | ≺ 1√
N

, |δ2i | ≺ 1√
N

. (4.14)

Denote

�i := wiw
∗
i − r i r∗

i .

Fix now z ∈ C
+. Dropping z from the notation, a first order Neumann expansion of the

resolvent yields

Gkj = G(i)
k j − (G(�i B̃

〈i〉Wi +Wi B̃
〈i〉�i + �i B̃

〈i〉�i )G
(i))

k j . (4.15)

Observe that the second term on the right side of (4.15) is a polynomial in the terms

G(i)
i j , g∗

i G
(i)e j g∗

i B̃
〈i〉G(i)e j , e∗

i B̃
〈i〉G(i)e j ,

Gki , e∗
kGgi , e∗

kG B̃〈i〉gi , e∗
kG B̃〈i〉ei ,

g∗
i B̃

〈i〉ei , e∗
i B̃

〈i〉gi , g∗
i B̃

〈i〉gi , e∗
i B̃

〈i〉ei ,

(4.16)

with coefficients of the form δ
k1
1i δ

k2
2i , for some nonnegative integers k1, k2 such that

k1 + k2 ≥ 1. By assumption (4.10), the fact B̃〈i〉ei = bi ei , and assumption (2.12), we
further observe that the first four terms in (4.16) are stochastically dominated by one. The
last four terms are also stochastically dominated by one as follows from the trivial fact
e∗
i B̃

〈i〉ei = bi and Lemma 3.1. The terms in the second line of (4.16) are stochastically
dominated by

|e∗
kGQ〈i〉xi | ≺ ‖Q〈i〉‖‖G∗ek‖2 �

√
(GG∗)kk =

√
ImGkk

η
≺ 1√

η
, (4.17)

with Q〈i〉 = I or B̃〈i〉, and with xi = ei or gi , where the last step follows from (4.10).
Note that the terms in the second line of (4.16) appear only linearly in (4.15). Hence,
(4.14), (4.17) and the order one bound for the first and last four terms in (4.16) lead to
(4.11). ��
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5. Concentration with Respect to the Vector gi

In this section, we show that G(i)
i i concentrates around the partial expectation Egi [G(i)

i i ],
where Egi [ · ] is the expectation with respect to the collection (Re gi j , Im gi j )Nj=1. Be-

sides the diagonal Green function entries G(i)
i i = e∗

i G
(i)ei the following combinations

are of importance

Ti (z) := g∗
i G

(i)(z)ei , Si (z) := g∗
i B̃

〈i〉G(i)ei , z ∈ C
+. (5.1)

The estimation of Egi [G(i)
i i ], carried out in the Sects. 6 and 7, involves the quantities Ti

and Si . From a technical point of view, it is convenient to be able to go back and
forth between Ti , Si and their expectations Egi [Ti ], Egi [Si ]. Thus after establishing

concentration estimates for G(i)
i i in Lemma 5.1 below, we establish in Corollary 5.2

concentration estimates for Ti and Si where we also give a rough bounds on Ti , Si and
related quantities. We need some more notation: for a general random variable X we
define

IEgi X := X − Egi X. (5.2)

The main task in this section is to prove the following lemma.

Lemma 5.1. Suppose that the assumptions of Theorem 2.5 are satisfied and let γ > 0.
Fix z = E + iη ∈ SI(ηm, 1) and assume that

∣∣Gii (z) − (ai − ωB(z))−1
∣∣ ≺ N− γ

4 ,
∣∣G(i)

i i (z) − (ai − ωB(z))−1
∣∣ ≺ N− γ

4 , (5.3)

uniformly in i ∈ �1, N�. Then

max
i∈�1,N�

∣∣IEgi [G(i)
i i (z)]∣∣ ≺ 1√

Nη
. (5.4)

Proof of Lemma 5.1. In this proof we fix z ∈ SI(ηm, 1). Recall the definition of G〈i〉(z)
in (4.4) and note thatG〈i〉(z) is independent of vi (or gi ). It is therefore natural to expand
G(i)(z) around G〈i〉(z) and to use the independence between G〈i〉(z) and gi in order to
verify the concentration estimates. However, by construction, we have

G〈i〉
i i (z) = 1

ai + bi − z
, (5.5)

whichmay be as large as 1/η, depending on ai , bi and z. To circumvent problems coming
from instabilities in G〈i〉

i i (z), we may use a “regularization” trick to enhance stability in
the ei -direction: instead of considering the Green function of H (i) = A + B̃(i) directly,
we first consider the (z-dependent) matrix

H {i}(z) := A + B̃(i) − (bi + ωB(z) − z)ei e∗
i , (5.6)

and define G{i}(z) := (H {i}(z) − z)−1. Note that H {i}(z) is not symmetric, yet since
ImωB(z) ≥ Im z by Proposition 2.1, G{i}(z) is in fact well-defined on the whole
upper-half plane. Fix any j ∈ �1, N�. Using the rank-one perturbation formula (3.2),
we get
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G(i)
i j (z) = G{i}

i j (z) − (bi + ωB(z) − z)G{i}
i i (z)G{i}

i j (z)

1 + (bi + ωB(z) − z)G{i}
i i (z)

= G{i}
i j (z)

1 + (bi + ωB(z) − z)G{i}
i i (z)

.

(5.7)

Some algebra then reveals that

G(i)
i j (z) = G{i}

i j (z) − (bi + ωB(z) − z)IEgi [G{i}
i i (z)]G(i)

i j (z)

1 + (bi + ωB(z) − z)Egi [G{i}
i i (z)]

. (5.8)

By assumption (5.3) and identity (5.7), we have
∣∣∣G(i)

i i (z) − 1

ai − ωB(z)

∣∣∣ ≺ N− γ
4 ,

∣∣∣G{i}
i i (z) − 1

ai − bi − 2ωB(z) + z

∣∣∣ ≺ N− γ
4 .

(5.9)

Note that |Im (ai −bi −2ωB(z)+ z)| ≥ ImωB(z) > 0, thus both denominators are well
separated away from 0 by Lemma 3.4, in particular G(i)

i i (z) and G{i}
i i (z) are uniformly

bounded. We will prove below that

∣∣IEgi [G{i}
i i (z)]∣∣ ≺ 1√

Nη
. (5.10)

Setting j = i in (5.8) and expressing the denominator on the right side by using (5.9)–
(5.10), we get

∣∣∣1 + (bi + ωB(z) − z)Egi [G{i}
i i (z)] − ai − ωB(z)

ai − bi − 2ωB(z) + z

∣∣∣ ≺ N− γ
4 . (5.11)

In particular, together with Lemma 3.4 and ImωB(z) ≥ Im z, this implies that the
absolute value of the denominator on the right side of (5.8) is bounded from below by
some strictly positive constant. Thus, applying IEgi on both sides of (5.10), we obtain
the concentration estimate in (5.4).

In the rest of the proof, we verify (5.10). Consider next the matrix

H [i](z) := A + B̃〈i〉 − (bi + ωB(z) − z)ei e∗
i , (5.12)

and let G[i](z) := (H [i](z) − z)−1. Note that H [i](z) depends on z and ωB(z) and is
thus not symmetric, yet since ImωB(z) ≥ Im z, G[i](z) is, similar to G{i}, well-defined
on the whole upper-half plane. Note that

|G[i]
i i (z)| =

∣∣∣∣
1

ai − ωB(z)

∣∣∣∣ � 1 (5.13)

since ImωB is uniformly bounded from below on SI(ηm, 1) by Lemma 3.4.
We now expand G{i}(z) around G[i](z) and use the independence among G[i](z) and

gi . For simplicity, we hereafter drop the z-dependence from the notation. We start with
noticing that

H {i} − H [i] = −wiw
∗
i B̃

〈i〉 − B̃〈i〉wiw
∗
i + wiw

∗
i B̃

〈i〉wiw
∗
i

= −wiw
∗
i B̃

〈i〉 − (B̃〈i〉 − w∗
i B̃

〈i〉wi I
)
wiw

∗
i

= wi s∗i + t iw∗
i , (5.14)
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where we introduced

si := −B̃〈i〉wi , t i := −(B̃〈i〉 − w∗
i B̃

〈i〉wi I
)
wi . (5.15)

Iterating the rank-one perturbation formula (3.2) once, we obtain

G{i} = X [i] − X [i] t iw∗
i X

[i]

1 + w∗
i X

[i] t i
, X [i] := G[i] − G[i]wi s∗i G[i]

1 + s∗i G[i]wi
. (5.16)

Substituting the second identity in (5.16) to the first one, we obtain

G{i} = G[i] +
s∗i G[i] t i
1 + �i

G[i]wiw
∗
i G

[i] +
w∗
i G

[i]wi

1 + �i
G[i] t i s∗i G[i]

− 1 + s∗i G[i]wi

1 + �i
G[i] t iw∗

i G
[i] − 1 + w∗

i G
[i] t i

1 + �i
G[i]wi s∗i G[i], (5.17)

where

�i := (s∗i G[i]wi ) + (w∗
i G

[i] t i ) + (s∗i G[i]wi )(w
∗
i G

[i] t i ) − (w∗
i G

[i]wi )(s∗i G[i] t i ).
(5.18)

Taking the (i, j)th matrix entry in (5.17), we get

G{i}
i j = G[i]

i j +
�i, j

1 + �i
, (5.19)

where

�i, j := −(e∗
i G

[i] t i )
(
(w∗

i G
[i]e j ) + (s∗i G[i]wi )(w

∗
i G

[i]e j ) − (w∗
i G

[i]wi )(s∗i G[i]e j )
)

− (e∗
i G

[i]wi )
(
(s∗i G[i]e j ) + (w∗

i G
[i] t i )(s∗i G[i]e j ) − (s∗i G[i] t i )(w∗

i G
[i]e j )

)
.

(5.20)

We now rewrite (5.19) as

G{i}
i j = G[i]

i j +
�i, j − IEgi [�i ] (G{i}

i i − G[i]
i j )

1 + Egi [�i ] . (5.21)

Since |G{i}
i i | ≺ 1 (c.f. (5.9)) and |G[i]

i i | ≺ 1 (c.f. (5.13)), it suffices to verify the following
statements to show (5.10):

(i)
∣∣IEgi [�i ]

∣∣ ≺ 1√
Nη

, (ii)
1

1 + Egi [�i ] ≺ 1 , (iii)
∣∣IEgi [�i, j ]

∣∣ ≺ 1√
Nη

.

(5.22)

We first show claim (i). Substituting the definitions in (5.15) into (5.18), we have

�i = −w∗
i B̃

〈i〉G[i]wi − w∗
i G

[i] B̃〈i〉wi + w∗
i B̃

〈i〉G[i]wi w
∗
i G

[i] B̃〈i〉wi

− w∗
i G

[i]wi w
∗
i B̃

〈i〉G[i] B̃〈i〉wi + w∗
i B̃

〈i〉wi w
∗
i G

[i]wi . (5.23)
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Let Q〈i〉
1 and Q〈i〉

2 each stand for either I or B̃〈i〉. Recalling that wi = ei + gi and that
gi ∼ NC(0, N−1 I ) is a complex Gaussian vector, we compute

Egi w
∗
i Q

〈i〉
1 G[i]Q〈i〉

2 wi = (Q〈i〉
1 G[i]Q〈i〉

2 )i i + tr Q〈i〉
1 G[i]Q〈i〉

2 . (5.24)

To bound the right side of (5.24) we observe that |(Q1G[i]Q2)i i | ≺ |G[i]
i i | ≺ 1, where

we used that ei is an eigenvector of B̃〈i〉 and (5.13). (Notice that, for simplicity, here
and at several other places we consistently use the notation ≺ even when the stronger ≤
or � relations would also hold, i.e. we use the concept stochastic domination even for
estimating almost surely bounded or deterministic quantities.)

To control the second term on the right side of (5.24), we note that a first order
Neumann expansion of the resolvents yields

|tr Q〈i〉
2 Q〈i〉

1 G[i] − tr Q〈i〉
2 Q〈i〉

1 G〈i〉| = |tr Q〈i〉
2 Q〈i〉

1 G[i](bi + ωB(z) − z)ei e∗
i G

〈i〉|
≺ 1

N
‖Q〈i〉

2 Q〈i〉
1 G[i]ei e∗

i ‖2‖ei e∗
i G

〈i〉‖2

≺ 1

N
‖G[i]ei e∗

i ‖2‖ei e∗
i G

〈i〉‖2

≺ 1

N
|(e∗

i |G[i]|2ei )|1/2 |(e∗
i |G〈i〉|2ei )|1/2 , (5.25)

where we used the boundedness of bi , ωB(z), ‖Q〈i〉
1 ‖ and ‖Q〈i〉

2 ‖. Notice next the iden-
tities

(|G[i](z)|2) j j = ImG[i]
j j (z)

(1 − δi j )η + δi j ImωB(z)
, (|G〈i〉(z)|2) j j = ImG〈i〉

j j (z)

η
, (5.26)

for j ∈ �1, N�, with z = E + iη and |G|2 = G∗G. The second identity in (5.26) is the
Ward identity that is valid for the Green function of any self-adjoint operator and it can
be checked by spectral calculus. For the first identity in (5.26), recalling the definition
in (5.12) and that e∗

j (A + B̃〈i〉)ei = (ai + bi )δi j , one sees that for any fixed i ,

G[i]
i i (z) = 1

ai − ωB(z)
, G[i]

i j (z) = 0 ∀ j �= i.

This implies |G[i]|2i i = ∑
j G

[i]
i j (G

[i])∗j i = |G[i]
i i |2 thus the first identity in (5.26) with

j = i follows. For j �= i , one can see the first identity of (5.26) by applying the Ward
identity to the minor of G[i], with i th row and i th column removed. Since |G〈i〉

i i | ≺ 1
η

(c.f. (5.5)), we obtain combining (5.25) and (5.26) with (5.3) that

|tr Q〈i〉
2 Q〈i〉

1 G[i] − tr Q〈i〉
2 Q〈i〉

1 G〈i〉| ≺ 1

Nη
. (5.27)

Since H 〈i〉 is a Hermitian finite-rank perturbation of H , we can apply (3.3) to conclude
that

|tr Q〈i〉
2 Q〈i〉

1 G − tr Q〈i〉
2 Q〈i〉

1 G〈i〉| ≺ 1

Nη
. (5.28)
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We will now show that tr Q〈i〉
1 G〈i〉Q〈i〉

2 is bounded. Using the resolvent identities and
tr B〈i〉 = tr B = 0, we get

tr B〈i〉G〈i〉 = 1 − tr (A − z)G〈i〉, tr B〈i〉G〈i〉B〈i〉 = z + tr (A − z)G〈i〉(A − z) ,

thus to control tr Q〈i〉
2 Q〈i〉

1 G〈i〉 we need to bound tr (A − z)kG〈i〉 for k = 0, 1, 2. Since
H 〈i〉 is a Hermitian finite-rank perturbation of H , we can apply (3.3) to conclude that

|tr (A − z)kG〈i〉 − tr (A − z)kG| ≺ 1

Nη
, k = 0, 1, 2. (5.29)

Since A is diagonalwith boundedmatrix elements,wehave tr (A−z)kG � max j |G j j | ≺
1, where the last bound comes from (5.3). This directly controls tr Q〈i〉

2 Q〈i〉
1 G〈i〉 and then,

using (5.27) and (5.28), we have

|tr Q〈i〉
2 Q〈i〉

1 G〈i〉| + |tr Q〈i〉
2 Q〈i〉

1 G| + |tr Q〈i〉
2 Q〈i〉

1 G[i]| ≺ 1. (5.30)

Thus, returning to (5.24), we showed

Egi w
∗
i Q

〈i〉
1 G[i]Q〈i〉

2 wi ≺ 1. (5.31)

Using the Gaussian concentration estimates in (3.1) and wi = ei + gi , we obtain

|IEgi w
∗
i Q

〈i〉
1 G[i](z)Q〈i〉

2 wi | ≺
(

(|Q〈i〉
1 G[i](z)Q〈i〉

2 |2)i i
N

) 1
2

+

(
‖Q〈i〉

1 G[i](z)Q〈i〉
2 ‖22

N 2

) 1
2

≺
(

ImG[i]
i i (z)

N ImωB(z)

) 1
2

+

(
Im tr G[i](z)

Nη

) 1
2

≺ 1√
Nη

,

(5.32)

where we also used that ei is an eigenvector of B̃〈i〉, that B̃〈i〉 is bounded and (5.26). In
the last step (5.13) and (5.30) were used. Combined with (5.31) we thus proved

w∗
i Q

〈i〉
1 G[i](z)Q〈i〉

2 wi ≺ 1. (5.33)

For a later use we remark that, combining (5.28) and (5.32), we also proved

w∗
i Q

〈i〉
1 G[i](z)Q〈i〉

2 wi = (Q〈i〉
1 G[i]Q〈i〉

2 )i i + tr Q〈i〉
1 GQ〈i〉

2 + O≺
( 1√

Nη

)
. (5.34)

In a very similar way we get, recalling that tr B = 0 and ‖B‖ ≺ 1, that

w∗
i B̃

〈i〉wi = bi + IEgi w
∗
i B̃

〈i〉wi = bi + O≺
( 1√

N

)
. (5.35)

To deal with terms containing four or six factors of wi in IEgi [�i ] (see (5.23)),
we use the following rough bound. For general random variables X and Y satisfying
|X |, |Y | ≺ 1, we have

IEgi [XY ] = IEgi [IEgi [X ]IEgi [Y ]] + IEgi [IEgi [X ]Egi [Y ]] + IEgi [Egi [X ]IEgi [Y ]].
(5.36)



Z. Bao, L. Erdős, K. Schnelli

In particular we have |IEgi [XY ]| ≺ |IEgi X | + |IEgi Y |, where we used basic properties
of stochastic domination outlined in Subsect. 3.1.

Then, recalling the explicit form of �i in (5.23) and using (5.32), (5.33), (5.35)
and (5.36), a straightforward estimate shows that |IEgi �i | ≺ 1√

Nη
, and claim (i) in (5.22)

is thus proved.
We next show statement (ii) of (5.22). To compute the expectation Egi [�i ], we are

going to use the identities

tr B̃G = 1 − tr (A − z)G , tr B̃G B̃ = z + tr (A − z)G(A − z) , (5.37)

that follow from (H − z)G(z) = 1 and tr A = tr B = 0. Invoking assumption (5.3) we
have

tr
(
(A − z)kG

) = 1

N

N∑
i=1

(ai − z)k

ai − ωB
+ O≺(N− γ

4 ) ,

with k ∈ N. Recalling further the shorthand notation m� ≡ mμA�μB and from (2.13)
that

m� = 1

N

N∑
i=1

1

ai − ωB
, (5.38)

we get from the above that

tr G = m� + O≺(N− γ
4 ) ,

tr
(
(A − z)G

) = 1 + (ωB − z)m� + O≺(N− γ
4 ) ,

tr
(
(A − z)2G

) = ωB − 2z + (ωB − z)2m� + O≺(N− γ
4 ). (5.39)

Thus from (5.34) we obtain

w∗
i G

[i]wi = m� +
1

ai − ωB
+ O≺(N− γ

4 ) ,

w∗
i B̃

〈i〉G[i]wi = −(ωB − z)m� +
bi

ai − ωB
+ O≺(N− γ

4 ) ,

w∗
i G

[i] B̃〈i〉wi = −(ωB − z)m� +
bi

ai − ωB
+ (N− γ

4 ) ,

w∗
i B̃

〈i〉G[i] B̃〈i〉wi = (ωB − z) + (ωB − z)2m� +
b2i

ai − ωB
+ O≺(N− γ

4 ). (5.40)

Plugging (5.40) into (5.23), using the identity ωA + ωB = z − 1/m� and taking the
expectation, a straightforward computation shows that

1 + Egi [�i ] = (ωA − bi )(2ωB − ai + bi − z)m�
ai − ωB

+ O≺(N− γ
4 ). (5.41)

Then from Lemma 3.4 one observes that statement (ii) of (5.22) holds. In fact, the first
term on the right side of (5.41) is bounded away from zero uniformly on z ∈ SI(ηm, 1).

Wemove on to statement (iii) of (5.22). Let Q〈i〉
1 and Q〈i〉

2 each stand again for either I
or B̃〈i〉. Then we note that
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e∗
i Q

〈i〉
1 G[i]Q〈i〉

2 wi = (Q〈i〉
1 G[i]Q〈i〉

2 )i i + O≺
( 1√

N

)
, (5.42)

as follows from the Gaussian large deviation estimates in (3.1), assumption (5.3) and the
fact that ei is an eigenvector of Q

〈i〉
1 , Q〈i〉

2 and G[i]. Having established (5.42), it suffices
to recall (5.34) and (5.35) to conclude that |IEgi [�i,i ]| ≺ 1√

Nη
. This proves claim (iii)

in (5.22) and thus completes the proof of Lemma 5.1. ��
Corollary 5.2. Suppose that the assumptions of Theorem 2.5 are satisfied and let γ > 0.
Fix z = E + iη ∈ SI(ηm, 1) and assume that

∣∣G(i)
i i (z) − (ai − ωB(z))−1

∣∣ ≺ N− γ
4 ,

∣∣Gii (z) − (ai − ωB(z))−1
∣∣ ≺ N− γ

4 , (5.43)

hold for all i ∈ �1, N�. Letting Q〈i〉
1 , Q〈i〉

2 stand for I or B̃〈i〉, and letting xi , yi stand
for gi or ei , we have the bound

max
i∈�1,N�

∣∣x∗
i Q

〈i〉
1 G(i)(z)Q〈i〉

2 yi | ≺ 1. (5.44)

In particular, |Si (z)|, |Ti (z)| ≺ 1, for all i ∈ �1, N�. Moreover, we have

max
i∈�1,N�

∣∣IEgi [Ti (z)]
∣∣ ≺ 1√

Nη
, max

i∈�1,N�

∣∣IEgi [Si (z)]
∣∣ ≺ 1√

Nη
. (5.45)

Proof. Using once more (3.2), we can write

x∗
i Q

〈i〉
1 G(i)Q〈i〉

2 yi = x∗
i Q

〈i〉
1 G{i}Q〈i〉

2 yi − (bi + ωB − z) x∗
i Q

〈i〉
1 G{i}ei e∗

i G
{i}Q〈i〉

2 yi

1 + (bi + ωB − z)G{i}
i i

.

Hence toprove thebound in (5.44) it suffices to bound x∗
i Q

〈i〉
1 G{i}Q〈i〉

2 yi and x
∗
i Q

〈i〉
1 G{i}ei

with the choices Q〈i〉
1 , Q〈i〉

2 = I or B̃〈i〉 and xi , yi = gi or ei . To do so, we expand G{i}

around G[i]. It turns out that x∗
i Q

〈i〉
1 G{i}Q〈i〉

2 yi and x∗
i Q

〈i〉
1 G{i}ei both are of the form

�̃i/(1+�i ), where�i is given in (5.18) and �̃i is a polynomial of the quantities appear-
ing in (5.34), (5.35) and (5.42). Then (i) and (ii) of (5.22) imply that (1 + �i )

−1 ≺ 1,
which together with the bounds in (5.34) and (5.42) leads to the conclusion (5.44).

To prove (5.45), we follow, mutatis mutandis, the proof of (5.4) by replacing G(i)
i i by

Ti = g∗
i G

(i)ei or Si = g∗
i B̃

〈i〉G(i)ei . For instance, for Ti the counterpart of (5.8) is

g∗
i G

(i)ei = g∗
i G

{i}ei − (bi + ωB − z)IEgi

[
G{i}

i i

]
g∗
i G

(i)ei

1 + (bi + ωB − z)Egi

[
G{i}

i i

] .

Now, according to (5.11), (5.10) and the bound |Ti | ≺ 1 (c.f. (5.44)), it suffices to show

∣∣IEgi

[
g∗
i G

{i}ei
]∣∣ ≺ 1√

Nη
. (5.46)

The proof of (5.46) is nearly the same as the one of (5.10). One can also use a similar
argument for Si by using the bound |Si | ≺ 1 from (5.44). We omit the details. ��



Z. Bao, L. Erdős, K. Schnelli

6. Identification of the Partial Expectation Egi

[
G(i)

i i

]

In this section, we estimate the partial expectation Egi

[
G(i)

i i

]
, which together with the

concentration inequalities in Lemma 5.1 lead to the following lemma. Recall the defin-
ition of Si and Ti in (5.1).

Proposition 6.1. Suppose that the assumptions of Theorem 2.5 are satisfied and let
γ > 0. Fix z = E + iη ∈ SI(ηm, 1). Assume that
∣∣∣G(i)

i i (z) − (ai − ωB(z)
)−1
∣∣∣ ≺ N− γ

4 ,

∣∣∣Gii (z) − (ai − ωB(z)
)−1
∣∣∣ ≺ N− γ

4 , (6.1)

hold uniformly in i ∈ �1, N�. Then,

max
i∈�1,N�

∣∣∣G(i)
i i (z) − (ai − ωc

B(z)
)−1
∣∣∣ ≺ 1√

Nη
, (6.2)

and

max
i∈�1,N�

∣∣∣∣Si (z) +
z − ωc

B(z)

ai − ωc
B(z)

∣∣∣∣ ≺
1√
Nη

, max
i∈�1,N�

∣∣Ti (z)| ≺ 1√
Nη

. (6.3)

In the proof of Proposition 6.1 we will need the following auxiliary lemma whose
proof is postponed to the very end of this section.

Lemma 6.2. Under the assumption of Proposition 6.1, the estimates

∣∣tr (B̃〈i〉G(i)(z) − B̃G(z)
)∣∣ ≤ C

Nη
,

∣∣tr (B̃〈i〉G(i)(z)B̃〈i〉 − B̃G(z)B̃
)∣∣ ≤ C

Nη
,

(6.4)

and the bounds
∣∣tr (B̃〈i〉G(i)(z)

)∣∣ ≺ 1 ,
∣∣tr (B̃〈i〉G(i)(z)B̃〈i〉)∣∣ ≺ 1 , (6.5)

hold uniformly in i ∈ �1, N�. Furthermore the estimates

∣∣IEgi

[
tr
(
B̃〈i〉G(i)(z)

)]∣∣ ≤ C

Nη
,

∣∣IEgi

[
tr
(
B̃〈i〉G(i)(z)B̃〈i〉)]∣∣ ≤ C

Nη
, (6.6)

hold uniformly in i ∈ �1, N�.

Proof of Proposition 6.1. Fix i ∈ �1, N�. By the concentration results of Lemma 5.1
and Corollary 5.2, it suffices to estimate Egi [G(i)

i i (z)], Egi

[
Si (z)

]
and Egi [Ti (z)] to

establish (6.2) and (6.3). Recall the definition of H (i) and G(i) from (4.9). We start with
the identity

(A − z)G(i)(z) = −B̃(i)G(i)(z) + I , z ∈ C
+. (6.7)

Since A is diagonal, we have

(ai − z)G(i)
i i (z) = −(B̃(i)G(i)(z)

)
i i + 1 , z ∈ C

+. (6.8)

Therefore, to estimate Egi [G(i)
i i (z)], it suffices to estimate Egi [(B̃(i)G(i)(z))i i ] instead.

Recalling the definitions in (4.7) and (4.8), we have
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(
B̃(i)G(i))

i i = e∗
i

(
I − ei e∗

i − ei g∗
i − gi e

∗
i − gi g

∗
i

)
B̃〈i〉

× (I − ei e∗
i − ei g∗

i − gi e
∗
i − gi g

∗
i

)
G(i)ei

= −e∗
i

(
ei g∗

i + gi e
∗
i + gi g

∗
i

)
B̃〈i〉(I − ei e∗

i − ei g∗
i − gi e

∗
i − gi g

∗
i

)
G(i)ei .
(6.9)

Since ei is an eigenvector of B̃〈i〉 (c.f. (4.3)), we have (B̃〈i〉G(i)
)
i i = biG

(i)
i i . Since

moreover B is traceless by assumption (2.27), we have tr B̃〈i〉 = tr B = 0. Thus the a
priori estimates in (6.1), the bound in (5.44), and the following concentration estimates
(c.f. Lemma 3.1)

|e∗
j gi | ≺ 1√

N
, |e∗

j B̃
〈i〉gi | ≺ 1√

N
,

∣∣g∗
i B̃

〈i〉gi
∣∣ ≺ 1√

N
, (6.10)

for all j ∈ �1, N�, imply that g∗
i B̃

〈i〉G(i)ei is the only relevant term in (6.9). Thus
recalling from definition (5.1) that Si = g∗

i B̃
〈i〉G(i)ei we arrive at

∣∣(B̃(i)G(i))i i + Si
∣∣ ≺ 1√

N
. (6.11)

Using integrationbyparts for complexGaussian randomvariables,we computeEgi [Si ]
next. Regarding g and g as independent variables for computing ∂g f (g, g), we have

∫

C

g f (g, g) e− |g|2
σ2 dg ∧ dg = σ 2

∫

C

∂g f (g, g) e
− |g|2

σ2 dg ∧ dg , (6.12)

for differentiable functions f : C
2 → C. Using (6.12) with σ 2 = 1/N for each

component of gi = (gi1, . . . , giN ), we have

Egi [Si ] =
N∑

k=1

Egi

[
gik(B̃

〈i〉G(i))ki
] = 1

N

N∑
k=1

Egi

[
∂(B̃〈i〉G(i))ki

∂gik

]
. (6.13)

Using the definitions in (4.7), (4.8) and regarding gik , gik as independent variables, we
have

∂Wi

∂gik
= −eke∗

i − ek g∗
i , (6.14)

so that

∂
(
B̃〈i〉G(i)

)
ki

∂gik
= e∗

k B̃
〈i〉G(i)(eke∗

i + ek g∗
i

)
B̃〈i〉(I − ei e∗

i − ei g∗
i − gi e

∗
i − gi g

∗
i

)
G(i)ei

+ e∗
k B̃

〈i〉G(i)(I − ei e∗
i − ei g∗

i − gi e
∗
i − gi g

∗
i

)
B̃〈i〉(eke∗

i + ek g∗
i

)
G(i)ei . (6.15)

Since ei is an eigenvector of B̃〈i〉 with eigenvalue bi , we further get from (6.15) that

∂
(
B̃〈i〉G(i)

)
ki

∂gik
= (B̃〈i〉G(i))

kk

(
g∗
i B̃

〈i〉G(i)ei − bi g∗
i G

(i)ei
)

+
(
B̃〈i〉G(i) B̃〈i〉)

kk

(
G(i)

i i + g∗
i G

(i)ei
)
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− (B̃〈i〉G(i))
kk

(
G(i)

i i + g∗
i G

(i)ei
) (
e∗
i B̃

〈i〉gi + g∗
i B̃

〈i〉ei + g∗
i B̃

〈i〉gi
)

− (G(i)
i i + g∗

i G
(i)ei

)(
e∗
i B̃

〈i〉ek
)(
e∗
k B̃

〈i〉G(i)ei
)

− (G(i)
i i + g∗

i G
(i)ei

)(
g∗
i B̃

〈i〉ek
)(
e∗
k B̃

〈i〉G(i)ei
)

− (G(i)
i i + g∗

i G
(i)ei

)(
e∗
i B̃

〈i〉ek
)(
e∗
k B̃

〈i〉G(i)gi
)

− (G(i)
i i + g∗

i G
(i)ei

)(
g∗
i B̃

〈i〉ek
)(
e∗
k B̃

〈i〉G(i)gi
)
. (6.16)

Plugging (6.16) into (6.13) and rearranging, we get

Egi [Si ] = Egi

[
tr
(
B̃〈i〉G(i))(g∗

i B̃
〈i〉G(i)ei − bi g∗

i G
(i)ei

)]

+ Egi

[
tr
(
B̃〈i〉G(i) B̃〈i〉)(G(i)

i i + g∗
i G

(i)ei
)]

− Egi

[
tr
(
B̃〈i〉G(i)) (e∗

i B̃
〈i〉gi + g∗

i B̃
〈i〉ei + g∗

i B̃
〈i〉gi

)(
G(i)

i i + g∗
i G

(i)ei
)]

− 1

N
Egi

[(
b2i G

(i)
i i + g∗

i

(
B̃〈i〉)2G(i)ei + e∗

i (B̃
〈i〉)2G(i)gi + g∗

i

(
B̃〈i〉)2G(i)gi

)

× (G(i)
i i + g∗

i G
(i)ei

)]
. (6.17)

We next claim that the last two terms on the right of (6.17) are small. Using the
boundedness of G(i)

i i (following from the a priori estimate (6.1)), the bound (5.44), the
concentration estimates in (6.10), and estimate (6.5) of the auxiliary Lemma 6.2, and
the trivial bounds

∣∣x∗
i (B̃

〈i〉)2G(i) yi
∣∣ ≺ 1

η
, xi , yi = ei or gi , (6.18)

we see that the last two terms on the right side of (6.17) are indeed negligible, i.e.

Egi [Si ] = Egi

[
tr
(
B̃〈i〉G(i))(Si − bi Ti

)]

+ Egi

[
tr
(
B̃〈i〉G(i) B̃〈i〉)(G(i)

i i + Ti
)]

+ O≺
( 1√

N

)
+ O≺

( 1

Nη

)
, (6.19)

where we also used the definitions of Ti and Si in (5.1). From assumption (6.1) and
Corollary 5.2, we have the bounds

max
j∈�1,N�

|G( j)
j j | ≺ 1 , max

j∈�1,N�
|Tj | ≺ 1 , max

j∈�1,N�
|S j | ≺ 1. (6.20)

We hence obtain from (6.19), (6.5), and the concentration estimates in (6.6), (5.4) that

Egi

[
Si
] = tr

(
B̃〈i〉G(i)) (

Egi

[
Si
]− bi Egi

[
Ti
])

+ tr
(
B̃〈i〉G(i) B̃〈i〉) (G(i)

i i + Egi

[
Ti
])

+ O≺
( 1√

Nη

)
. (6.21)

Repeating the above computations for Egi [g∗
i G

(i)ei ] = Egi [Ti ], we similarly obtain

Egi

[
Ti
] = tr G(i) (

Egi

[
Si
]− bi Egi

[
Ti
])

+ tr
(
B̃〈i〉G(i)) (G(i)

i i + Egi

[
Ti
])

+ O≺
( 1√

Nη

)
. (6.22)
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Now, using the bounds in (6.20), the estimates (6.4) and |tr G(i) − tr G| ≺ 1
Nη

(following
from (3.3)), we obtain from (6.21) and (6.22) the equations

Egi

[
Si
]− tr

(
B̃G B̃

)(
G(i)

i i + Egi

[
Ti
])= tr

(
B̃G
) (
Egi

[
Si
]− biEgi

[
Ti
])

+ O≺
( 1√

Nη

)
,

(6.23)

and

Egi

[
Ti
]− tr

(
B̃G
) (
G(i)

i i + Egi

[
Ti
]) = tr

(
G
) (
Egi

[
Si
]− biEgi

[
Ti
])

+ O≺
( 1√

Nη

)
.

(6.24)

We first approximately solve (6.24) for Egi [Ti ] to show, under the assumptions of

Proposition 6.1, that |Egi Ti | ≺ N− γ
4 . To see this, we recall (6.8) and (6.11) which

together with assumption (6.1) imply that

Si = (ai − z)G(i)
i i − 1 + O≺

( 1√
N

)
= − z − ωB

ai − ωB
+ O≺

(
N− γ

4
)
. (6.25)

By the concentration estimate (5.45), we also have

Egi

[
Si
] = − z − ωB

ai − ωB
+ O≺

(
N− γ

4
)
. (6.26)

In addition, by the identity B̃G = I − (A − z)G, assumption (6.1) and equality (5.38),
we have, using the shorthand notation m� ≡ mμA�μB ,

tr G = m� + O≺
(
N− γ

4
)
, tr

(
B̃G
) = (z − ωB)m� + O≺

(
N− γ

4
)
. (6.27)

Substituting (6.26) and assumption (6.1) into (6.24), and using |Ti |, |Si | ≺ 1, we obtain

∣∣(1 − tr
(
B̃G
)
+ bi tr G

)
Egi

[
Ti
]∣∣ ≺ N− γ

4 . (6.28)

Using (6.27) and the second equation of (2.13), we have

∣∣(1 − tr
(
B̃G
)
+ bi tr G

)∣∣ = ∣∣1 + (ωB − z + bi )m�
∣∣ + O≺

(
N− γ

4
)

= |(−ωA + bi )m�| + O≺
(
N− γ

4
)
. (6.29)

Since |(−ωA + bi )m�| � 1 by (3.15), we have from (6.28) that Egi [Ti ] ≺ N− γ
4 . Hence

from (5.45), |Ti | ≺ N− γ
4 . Then solving (6.23) and (6.24) for Egi

[
Si
]
, we obtain

Egi

[
Si
] = − tr

(
B̃G
)

tr G
G(i)

i i +
[ tr (B̃G)− (tr (B̃G))2

tr G
+ tr
(
B̃G B̃

)](
G(i)

i i + Egi

[
Ti
])

+ O≺
( 1√

Nη

)
. (6.30)
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Averaging over the index i and reorganizing, we get

∣∣∣ tr
(
B̃G
)− (tr (B̃G))2
tr G

+ tr
(
B̃G B̃

)∣∣∣ =
∣∣∣∣
1
N

∑N
i=1

( tr (B̃G)
tr G G(i)

i i + Egi

[
Si
])

+ O≺( 1√
Nη

)

1
N

∑N
i=1(G

(i)
i i + Egi

[
Ti
]
)

∣∣∣∣.
(6.31)

Now, recalling the concentration of Si in (5.45) and estimate (6.11), we have

∣∣Egi

[
Si
]
+ (B̃(i)G(i))i i

∣∣ ≺ 1√
Nη

. (6.32)

Note that under assumption (6.1), we can use Corollary 5.2 to get (5.44), which together
with (6.1) implies that the assumptions in Lemma 4.1 in the case of i = j = k are
satisfied. Then, by (4.11) with i = j = k and (6.8), we get

G(i)
i i = Gii + O≺

( 1√
Nη

)
, (B̃(i)G(i))i i = (B̃G)i i + O≺

( 1√
Nη

)
, (6.33)

for all i ∈ �1, N�. Using (6.32) and (6.33) we obtain

∣∣∣ 1
N

N∑
i=1

G(i)
i i − tr G

∣∣∣ ≺ 1√
Nη

,

∣∣∣ 1
N

N∑
i=1

Egi

[
Si
]
+ tr
(
B̃G
)∣∣∣ ≺ 1√

Nη
. (6.34)

Substituting (6.34) and assumption (6.1) into the right side of (6.31), and using |tr G| � 1
(following from (6.27)) and |Ti | ≺ N− γ

4 , we obtain

∣∣∣ tr
(
B̃G
)− (tr (B̃G))2
tr G

+ tr
(
B̃G B̃

)∣∣∣ ≺ 1√
Nη

. (6.35)

Now, plugging (6.35) back into (6.30) gives

Egi

[
Si
] = − tr

(
B̃G
)

tr G
G(i)

i i + O≺
( 1√

Nη

)
, (6.36)

which together with (6.8) and (6.32) implies that

(
ai − ωc

B

)
G(i)

i i = 1 + O≺
( 1√

Nη

)
, (6.37)

in light of the definition of ωc
B(z) in (2.30). By assumption (6.1) we see that ωc

B(z) =
ωB(z) + O≺(N− γ

4 ). Hence by (3.15), we also have Imωc
B(z) ≥ c for some positive

constant c. Therefore, we get (6.2) from (6.37).
Then (6.36) and (6.2), together with the definition of ωc

B(z) in (2.30) and the con-
centration of Si in (5.2), imply the estimate of Si in (6.3).

Substituting (6.36) into (6.24), we strengthen (6.28) to

∣∣(1 − tr
(
B̃G
)
+ bi tr G

)
Egi

[
Ti
]∣∣ ≺ 1√

Nη
. (6.38)
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Using (6.29) again, we obtain from (6.38) that

∣∣Egi

[
Ti
]∣∣ ≺ 1√

Nη
,

which together with the concentration inequality in (5.45) implies (6.3). Therefore, we
complete the proof of Proposition 6.1. ��

We conclude this section with the proof of Lemma 6.2.

Proof of Lemma 6.2. We start by invoking the finite-rank perturbation formula (3.3) to
get

∣∣tr Q〈i〉
1 G(i)Q〈i〉

2 − tr Q〈i〉
1 GQ〈i〉

2

∣∣ ≤ 2‖Q〈i〉
1 Q〈i〉

2 ‖
Nη

, Q〈i〉
1 , Q〈i〉

2 = I or B̃〈i〉.

Hence, it suffices to verify (6.4) and (6.5) with G(i) replaced by G. Recalling from
Sect. 4 that Ri = I − r i r∗

i and using the fact that Ri is a Householder reflection (in fact
‖r i‖22 = 2 by construction), we have B̃〈i〉 = Ri B̃Ri . Then we write

tr
(
B̃〈i〉G

) = tr
(
Ri B̃RiG

) = tr
(
B̃G
)
+ di , (6.39)

with

di := − 1

N
r∗
i B̃Gr i − 1

N
r∗
i G B̃r i +

1

N
(r∗

i B̃r i )(r i Gr i ).

Using that ‖G‖ ≤ 1/η, we immediately get the deterministic bound |di | ≤ C/Nη, for
some numerical constant C . Together with (6.39) this implies the first estimate in (6.4).
The second estimate in (6.4) is obtained in the similar way.

Thebounds in (6.5) followby combining the sharp formulas for tr (B̃G) and tr (B̃G B̃)

from (6.27), (6.35) with the estimates in (6.4).
To prove (6.6), we set Q〈i〉 = B̃〈i〉 or (B̃〈i〉)2 and note that

∣∣IEgi [tr
(
Q〈i〉G(i))]∣∣ = ∣∣IEgi [tr

(
Q〈i〉(G(i) − G〈i〉)

)]∣∣ ≤ 2‖Q〈i〉‖
Nη

,

where we used that gi and G〈i〉 are independent, and once more (3.3). ��

7. Proof of Theorem 2.5: Inequalities (2.20) and (2.22)

In this section, we prove the estimates (2.20) and (2.22) of Theorem 2.5 via a continuity
argument. We also prove Theorem 2.6.

First, let us recall the matrixH and its Green function G defined in (2.28) and (2.29),
these are the natural counterparts of H andG with the roles of A and B aswell as the roles
of U and U∗interchanged. We can apply a similar partial randomness decomposition
to the unitary U∗ in H as we did for U in H in Sect. 4. This means that, for any
i ∈ �1, N�, there exists an independent pair (̂vi ,U i ), uniformly distributed on SN−1

C

and U (N − 1), respectively, such that with r̂ i := √
2(ei + e−iθ̂i v̂i )/‖ei + e−iθ̂i v̂i‖2,

we have the decomposition U∗ = −eiθ̂iRi U 〈i〉, where θ̂i is the argument of the i th
coordinate of v̂i ; whereRi := (I − r̂ i r̂∗

i ) and U 〈i〉 is the unitary matrix with ei as its i th
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column and U i as its (i, i)-matrix minor. Analogously to gi defined in (4.6), we define a
Gaussian vector ĝi = (ĝi1, . . . , ĝi N ) ∼ NC(0, N−1 I ), to approximate e−iθ̂i v̂i . Setting
ŵi := ei + ĝi and Wi := I − ŵi ŵ

∗
i , we define

H(i) := B +Wi U 〈i〉A (U 〈i〉)∗Wi ,

for all i ∈ �1, N�. Calligraphic letters are used to distinguish the decompositions of H
from the decompositions of H .

Next, we introduce the z-dependent random variable

�d(z) := max
i∈�1,N�

|G(i)
i i (z) − (ai − ωB(z)

)−1| + max
i∈�1,N�

|Gii (z) − (ai − ωB(z)
)−1|

+ max
i∈�1,N�

|G(i)
i i (z) − (bi − ωA(z)

)−1| + max
i∈�1,N�

|Gi i (z) − (bi − ωA(z)
)−1|.
(7.1)

Moreover, for any δ ∈ [0, 1] and z ∈ SI(ηm, 1), we define the following event

�d(z, δ) := {�d(z) ≤ δ}. (7.2)

The subscript d refers to “diagonal” matrix elements. With the above notation, we have
the following lemma.

Lemma 7.1. Suppose that the assumptions of Theorem 2.5 are satisfied and fix γ > 0.
For any ε with 0 < ε ≤ γ

8 and for any D > 0 there exists a positive integer N2(D, ε)

such that the following holds: For any fixed z = E + iη ∈ SI(ηm, 1) there exists an
event �d(z) ≡ �d(z, D, ε) with

P
(
�d(z)

) ≥ 1 − N−D, ∀N ≥ N2(D, ε) ,

such that if the estimate

P
(
�d(z, N

− γ
4 )
) ≥ 1 − N−D(1 + N 5(1 − η)

)
(7.3)

holds for all D > 0 and N ≥ N1(D, γ, ε), for some threshold N1(D, γ, ε), then we
also have

�d(z, N
− γ

4 ) ∩ �d(z) ⊂ �d

(
z,

N ε

√
Nη

)
(7.4)

for all N ≥ N3(D, γ, ε) := max{N1(D, γ, ε), N2(D, ε)}.
Proof. In this proof we fix z ∈ SI(ηm, 1). By the definition of ≺ in Definition 1.1, we
see that assumption (7.3) implies
∣∣G(i)

i i (z) − (ai − ωB(z))−1
∣∣ ≺ N− γ

4 ,
∣∣Gii (z) − (ai − ωB(z))−1

∣∣ ≺ N− γ
4 , (7.5)

and
∣∣G(i)

i i (z) − (bi − ωA(z))−1
∣∣ ≺ N− γ

4 ,
∣∣Gi i (z) − (bi − ωA(z))−1

∣∣ ≺ N− γ
4 . (7.6)

Hence, we can use Corollary 5.2 to get (5.44). Together with the boundedness of G(i)
i i

and Gii (c.f. (7.5) and (3.15)) this implies that the assumptions in (4.10) of Lemma 4.1
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are satisfied when i = j = k. Thus (4.11) holds when i = j = k. Hence, invoking,
(7.5) and Proposition 6.1, we get

∣∣G(i)
i i (z) − (ai − ωc

B(z))−1
∣∣ ≺ 1√

Nη
,

∣∣Gii (z) − (ai − ωc
B(z))−1

∣∣ ≺ 1√
Nη

.

(7.7)

Switching the roles of A and B as well as U and U∗, and further using (2.31), we also
get

∣∣G(i)
i i (z) − (bi − ωc

A(z))−1
∣∣ ≺ 1√

Nη
,

∣∣Gi i (z) − (bi − ωc
A(z))−1

∣∣ ≺ 1√
Nη

, (7.8)

under (7.6).
Now, we state the conclusions (7.7) and (7.8) in a more explicit quantitative form

assuming (7.3) which is a quantitative form of (7.5)–(7.6). Namely, we show that the
inequalities

∣∣G(i)
i i (z) − (ai − ωc

B(z))−1
∣∣ ≤ N

ε
2√
Nη

,
∣∣Gii (z) − (ai − ωc

B(z))−1
∣∣ ≤ N

ε
2√
Nη

,

∣∣G(i)
i i (z) − (bi − ωc

A(z))−1
∣∣ ≤ N

ε
2√
Nη

,
∣∣Gi i (z) − (bi − ωc

A(z))−1
∣∣ ≤ N

ε
2√
Nη

. (7.9)

hold on the event �d(z, N− γ
4 )∩�d(z), when N ≥ N3(D, γ, ε). Here �d(z) is an event

determined as the intersection of the “typical” events in all the concentration estimates
in Sects. 4–6.

To see this more precisely, we go back to the proofs in these sections. The concentra-
tion estimates always involved quantities of the form IEgi [g∗

i Qx] with x = gi , ei and
some explicit matrix Q that is independent of gi but often z-dependent. The total number
of such estimates was linear in N . Thus, according to Lemma 3.1, for any (small) ε > 0
and (large) D > 0, there exists an event �d(z, D, ε) with

P
(
�d(z, D, ε)

) ≥ 1 − N−D (7.10)

such that all estimates of the form

|IEgi [g∗
i Qei ]| ≤ N

ε
4√
N

‖Qei‖2 , |IEgi [g∗
i Qgi ]| ≤ N

ε
4

N
‖Q‖2 (7.11)

in Sects. 4–6 hold on �d(z, D, ε) for all N ≥ N2(D, ε). In addition, the threshold
N2(D, ε) is independent of the spectral parameter z.

We now follow the proofs in Sects. 4–6 to the letter but we use (7.10), (7.11) and (7.3)
instead of the ≺ relation. Instead of (7.7) and (7.8), we find that the analogous but
more quantitative bounds (7.9) hold on the intersection of the events �d(z, N− γ

4 ) and
�d(z, D, ε).

It remains to show that on the event �d(z, N− γ
4 ) ∩ �d(z),

|ωc
A(z) − ωA(z)| ≤ CN

ε
2√

Nη
, |ωc

B(z) − ωB(z)| ≤ CN
ε
2√

Nη
(7.12)

hold when N ≥ N3(D, γ, ε).
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To this end, we use the stability of the system �μA,μB (ωA, ωB, z) = 0 as formulated
in Lemma 3.3. By the definition of the approximate subordination functions ωc

A(z)
and ωc

B(z) in (2.30), by the identity (2.32) and by taking the average over the index i in
the estimates in (7.9), we get the system of equations

mH (z) = mA(ωc
B(z)) + rA(z),

mH (z) = mB(ωc
A(z)) + rB(z),

ωc
A(z) + ωc

B(z) = z − 1

mH (z)
,

(7.13)

where the error terms rA and rB satisfy

|rA(z)| ≤ CN
ε
2√

Nη
, |rB(z)| ≤ CN

ε
2√

Nη
,

on the event �d(z, N− γ
4 ) ∩ �d(z) when N ≥ N3(D, γ, ε). Using the definition of

�d(z, δ) in (7.2), (7.9) and the fact that z ∈ SI(ηm, 1), so ωA(z) and ωB(z) are well
separated from the real axis, we have

|ωc
A(z) − ωA(z)| ≤ CN− γ

4 , |ωc
B(z) − ωB(z)| ≤ CN− γ

4 . (7.14)

on the event �d(z, N− γ
4 ) ∩ �d(z) when N ≥ N3(D, γ, ε). Hence, plugging the third

equation of (7.13) into the first two and using (3.15) together with (7.14), we get

�μA,μB (ωc
A(z), ωc

B(z), z) = r̃(z) ,

where r̃(z) = (̃rA(z), r̃B(z)) with

|̃rA(z)| ≤ CN
ε
2√

Nη
, |̃rB(z)| ≤ CN

ε
2√

Nη
(7.15)

on the event �d(z, N− γ
4 ) ∩ �d(z) when N ≥ N3(D, γ, ε). Therefore, by Lemma 3.3,

we get (7.12). Hence, we completed the proof of Lemma 7.1. ��
Given Lemma 7.1, we next prove Theorem 2.5 via a continuity argument similarly

to [19].

Proof of (2.20) of Theorem 2.5. Using Theorem 1.2 (i) of [26] together with Lemma
C.1 of [26], we see that for η = 1, we have

max
i∈�1,N�

∣∣Gii (z) − (ai − ωB(z))−1
∣∣ ≺ N− γ

2 ,

max
i∈�1,N�

∣∣Gi i (z) − (bi − ωA(z))−1
∣∣ ≺ N− γ

2 (7.16)

if 0 < γ ≤ 1/7 (say). In addition, owing to the estimate ‖G‖ ≤ 1/η, assumption (4.10)
obviously holds for η = 1. Hence, by Lemma 4.1 in the case of i = j = k and its
analogue for G(i)

i i , we have

max
i∈�1,N�

∣∣G(i)
i i (z) − (ai − ωB(z))−1

∣∣ ≺ N− γ
2 ,

max
i∈�1,N�

∣∣G(i)
i i (z) − (bi − ωA(z))−1

∣∣ ≺ N− γ
2 . (7.17)
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Hence, for any E ∈ I and D > 0,

P
(
�d(E + i, N− 3γ

8 )
) ≥ 1 − N−D, (7.18)

holds for all N ≥ N0(D, γ ) with some N0(D, γ ) > 0. In the sequel we will apply
Lemma 7.1 with the choice

N1(D, γ, ε) := max
{
N0(D, γ ), N2(D, ε)

} ;
in particular we have N3(D, γ, ε) = N1(D, γ, ε).

Next, we define the lattice

ŜI(ηm, 1) := SI(ηm, 1) ∩ N−5{Z × iZ}. (7.19)

Thanks to theLipschitz continuity of theGreen function, i.e.‖G(z)−G(z′)‖ ≤ N 2|z−z′|
for any z, z′ ∈ SI(ηm, 1), and of the subordination functions (see (3.9)), it suffices to
show (2.20) on the lattice ŜI(ηm, 1). We now fix E ∈ I ∩ N−5

Z and decrease η from
η = 1 down to N−1+γ in steps of size N−5. Recall the events �d(z, δ) and �d(z) in
Lemma 7.1, and choose the same ε <

γ
8 in �d(z, D, ε) for all z. For simplicity, we omit

the real part E from the notation and rewrite

�d(η, δ) := �d(E + iη, δ), �d(η) := �d(E + iη).

Our aim is to show that for any η ∈ [ηm, 1],
�d
(
η, N− 3γ

8
) ∩ �d(η − N−5) ⊂ �d

(
η − N−5, N− 3γ

8
)
. (7.20)

To see (7.20), we first notice that by the Lipschitz continuity of the Green function and
of the subordination functions ωA(z) and ωB(z) (see (3.9)), we have

�d
(
η, N− 3γ

8
) ⊂ �d

(
η − N−5, N− 3γ

8 + CN−3) ⊂ �d
(
η − N−5, N− γ

4
)
, (7.21)

where the last step is obtained by choosing γ > 0 sufficiently small. Now, we start from
(7.18). By (7.21), we get

P
(
�d
(
1 − N−5, N− γ

4
)) ≥ P

(
�d
(
1, N− 3γ

8
)) ≥ 1 − N−D .

Hence, we can use Lemma 7.1 to get

�d
(
1 − N−5, N− γ

4
) ∩ �d(1 − N−5) ⊂ �d

(
1 − N−5,

N ε

√
N (1 − N−5)

)

⊂ �d

(
1 − N−5, N− 3γ

8

)
, (7.22)

which together with (7.21) implies (7.20) with η = 1. Now, replacing 1 by 1− N−5, we
get from (7.22), (7.18) and the fact P(�d(1 − N−5)) ≥ 1 − N−D for N ≥ N2(D, ε)

that

P
(
�d
(
1 − N−5, N− 3γ

8
)) ≥ 1 − 2N−D (7.23)

holds for all N ≥ N3(D, γ, ε). Now, using (7.23) instead of (7.18), we get (7.20) for
η = 1 − N−5. Iterating this argument, we obtain for any η ∈ [ηm, 1] ∩ N−5

Z that

�d
(
1, N− 3γ

8
) ∩ �d(1 − N−5) ∩ · · · ∩ �d(η) ⊂ �d

(
η, N− 3γ

8
)
.
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Hence, we have

P
(
�d
(
η, N− 3γ

8
)) ≥ 1 − N−D(1 + N 5(1 − η)

)

for all N ≥ N3(D, γ, ε), which further implies

P
(
�d
(
η − N−5, N− γ

4
)) ≥ 1 − N−D(1 + N 5(1 − η)

)

for all N ≥ N3(D, γ, ε), by using (7.21). Then, using Lemma 7.1 again, we obtain

P

(
�d

(
η,

N ε

√
Nη

))
≥ 1 − N−D(2 + N 5(1 − η)

)
(7.24)

uniformly for all η ∈ [ηm, 1] ∩ N−5
Z, when N ≥ N3(D, γ, ε). Finally, by continuity,

we can extend the bounds from z in the discrete lattice to the entire domain SI(ηm, 1).
We then get

max
i∈�1,N�

∣∣∣Gii (z) − 1

ai − ωB(z)

∣∣∣ ≺ 1√
Nη

, max
i∈�1,N�

∣∣∣G(i)
i i (z) − 1

ai − ωB(z)

∣∣∣ ≺ 1√
Nη

,

(7.25)

uniformly on SI(ηm, 1), where we used the definitions of �d(z, δ) in (7.2) and of ≺ in
Definition 1.1. This concludes the proof of (2.20). ��

Having established (2.20), (2.22) of Theorem 2.5 and Theorem 2.6 are direct conse-
quences.

Proof of (2.22) of Theorem 2.5. It suffices to note that (2.22) is a direct consequence
of (2.20) and the facts mH (z) = N−1∑N

i=1 Gii (z) and mA�B(z) = N−1∑N
i=1(ai −

ωB)−1. ��
Proof of Theorem 2.6. Using the spectral decomposition of the Green function G, we
have

max
j∈�1,N�

ImG j j (z) = max
j∈�1,N�

N∑
i=1

|ui j |2η
|λi − E |2 + η2

=
N∑
i=1

||ui ||2∞η

|λi − E |2 + η2
, z ∈ C

+.

(7.26)

Fix a small γ > 0. For any λi ∈ I, we set E = λi on the right side of (7.26) and
use (2.20) to bound the left side of it with z = λi + iη, η = N−1+γ . Then we obtain

||ui ||2∞ ≺ η = N−1+γ .

Since γ > 0 is arbitrarily small, we get (2.26). This completes the proof of Theorem 2.6.
��
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8. Proof of Theorem 2.5: Inequalities (2.21)

In this section, we prove (2.21) of Theorem 2.5. Note that, from (7.25) in the proof
of (2.20) in Theorem 2.5, we know that the following estimates hold uniformly on
SI(ηm, 1),
∣∣∣G(i)

i i (z) − (ai − ωB(z)
)−1
∣∣∣ ≺ 1√

Nη
,

∣∣∣Gii (z) − (ai − ωB(z)
)−1
∣∣∣ ≺ 1√

Nη
. (8.1)

Taking (8.1) as an input, we follow the discussion in Sects. 5–7 to prove the esti-
mate (2.21) with the following modifications. We introduce the quantities

Ti, j (z) := g∗
i G

(i)(z)e j , Si, j (z) := g∗
i B̃

〈i〉G(i)(z)e j , z ∈ C
+. (8.2)

that generalize Ti (z) and Si (z) defined in (5.1). In particular, Ti (z) ≡ Ti,i (z) and Si (z) ≡
Si,i (z), butwehenceforth implicitly assume that i �= j . (Weuse a comma in the subscripts
of Ti, j , Si, j since they are not the entries of some matrix.) We often abbreviate Ti, j ≡
Ti, j (z) and Si, j ≡ Si, j (z).

We first establish the concentration estimates for G(i)
i j (see Lemma 8.1), and Ti, j

and Si, j ; see Lemma 8.2. In Proposition 8.3 we then derive self-consistent equations
for Egi

[
Ti, j
]
and Egi

[
Si, j
]
that will show, together with concentration estimates, that

|G(i)
i j |, |Ti, j |, |Si, j | ≺ 1√

Nη
, provided that |G(i)

i j | ≺ 1. We then close the argument via
continuity.

We start with the analogue of Lemma 5.1 for the off-diagonal entries of G(i).

Lemma 8.1. Suppose that the assumptions of Theorem 2.5 are satisfied and let γ > 0.
Fix z = E + iη ∈ SI(ηm, 1) and assume that

|G(i)
i j (z)| ≺ 1 , (8.3)

for all i, j ∈ �1, N�, i �= j . Then

∣∣IEgi [G(i)
i j (z)]∣∣ ≺ 1√

Nη
, (8.4)

for all i, j ∈ �1, N�, i �= j .

Proof of Lemma 8.1. Recall H [i] and H {i} defined in (5.12) and (5.6), as well as their
Green functions G[i] and G{i}. In the proof of Lemma 5.1 we derived the identity

G(i)
i j (z) = G{i}

i j (z) − (bi + ωB(z) − z)IEgi [G{i}
i i (z)]G(i)

i j (z)

1 + (bi + ωB(z) − z)Egi [G{i}
i i (z)]

; (8.5)

see (5.8). With (8.1), we see that assumption (5.3) is satisfied. Hence, we can use all
the conclusions in the proof of Lemma 5.1. Therefore, according to (5.11), (5.10) and
assumption (8.3), it suffices to show the concentration estimate |IEgi [G{i}

i j (z)]| ≺ 1√
Nη

.

To this end we expand G{i} around G[i]. Recall from (5.19) that

G{i}
i j = G[i]

i, j +
�i, j

1 + �i
,
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where �i is defined in (5.18) and �i, j is defined in (5.20). Recalling statements (i) and
(ii) in (5.22), it suffices to establish that |IEgi [�i, j ]| ≺ 1√

Nη
. Note that �i, j contains

the terms listed in (5.34), (5.35) and (5.42), as well as the terms

e∗
i B̃

〈i〉G[i]e j , g∗
i G

[i]e j , g∗
i B̃

〈i〉G[i]e j . (8.6)

Since ei is an eigenvector of B̃〈i〉 and of H [i], we have e∗
i B̃

〈i〉G[i]e j = δi j biG
[i]
i i .

Moreover, using Lemma 3.1 with Q〈i〉 = I or B̃〈i〉, we have

∣∣g∗
i Q

〈i〉G[i]e j
∣∣ ≺ 1√

N
‖Q〈i〉G[i]e j‖2 ≺ 1√

N
‖G[i]e j‖2 =

( ImG[i]
j j

Nη

) 1
2

. (8.7)

To control G[i]
j j , we recall from (5.12) that the matrix H [i] is block-diagonal and we thus

have, for j �= i

G[i]
j j = (Ai +Ui Bi (Ui )∗ − z IN−1)

−1
�� , � := j1( j < i) + ( j − 1)1( j > i) ,

where Ai and Bi the are (i, i)-matrix minors of A and B respectively (obtained by
removing the i th column and i th row) and Ui ∈ U (N − 1) is the (i, i)-matrix minor of
U 〈i〉 which is Haar distributed as seen at the beginning of Sect. 4. Note that the matrix
Ai +Ui Bi (Ui )∗ satisfies the assumptions of Theorem 2.5. We thus have the estimate

max
i �= j

∣∣G[i]
j j (z)

∣∣ ≺ 1 , z ∈ SI(ηm, 1). (8.8)

Plugging this bound into (8.7) we get |g∗
i Q

〈i〉G[i]e j
∣∣ ≺ 1√

Nη
. The remaining part of the

proof is nearly the same as the one of Lemma 5.1. We omit the details. ��
We have the following analogue of Corollary 5.2.

Lemma 8.2. Suppose that the assumptions of Theorem 2.5 are satisfied and let γ > 0.
For all z = E + iη ∈ SI(ηm, 1), we have the bounds

max
i �= j

|Ti, j (z)| ≺ 1 , max
i �= j

|Si, j (z)| ≺ 1 (8.9)

and the concentration estimates

max
i �= j

∣∣IEgi [Ti, j (z)]
∣∣ ≺ 1√

Nη
, max

i �= j

∣∣IEgi [Si, j (z)]
∣∣ ≺ 1√

Nη
. (8.10)

Proof. With the estimates in (8.1) and (8.8), the proof is analogous to that of Corol-
lary 5.2. Here we get the conclusions for all z = E + iη ∈ SI(ηm, 1) at once, since we
use the uniform estimate (8.1) instead of assumption (5.43) for one fixed z. We omit the
details.

Finally, we have the following counterpart to Proposition 6.1.

Proposition 8.3. Fix z = E + iη ∈ SI(ηm, 1). Under the assumptions of Lemma 8.1,
we have

max
i �= j

|G(i)
i j (z)| ≺ 1√

Nη
(8.11)

and

max
i �= j

|Ti, j (z)| ≺ 1√
Nη

, max
i �= j

|Si, j (z)| ≺ 1√
Nη

. (8.12)
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Proof. The proof is similar to that of Proposition 6.1. Having established the concentra-
tion inequalities in (8.4), it suffices to estimate Egi

[
G(i)

i j

]
to prove (8.11). We then start

with

(ai − z)G(i)
i j = −(B̃(i)G(i))i j + δi j . (8.13)

Choosing henceforth i �= j , mimicking the reasoning from (6.9) to (6.11) and using
(8.9), we arrive at

(B̃(i)G(i))i j = −g∗
i B̃

〈i〉G(i)e j + O≺
( 1√

N

)
= −Si, j + O≺

( 1√
N

)
. (8.14)

Then, instead of (6.17), we obtain

Egi [Si, j ] = Egi

[
tr
(
B̃〈i〉G(i))(Si, j − bi Ti, j

)]

+ Egi

[
tr
(
B̃〈i〉G(i) B̃〈i〉)(G(i)

i j + Ti, j
)]

− Egi

[
tr
(
B̃〈i〉G(i)) (e∗

i B̃
〈i〉gi + g∗

i B̃
〈i〉ei + g∗

i B̃
〈i〉gi

)(
G(i)

i j + Ti, j
)]

− 1

N
Egi

[(
b2i G

(i)
i i + g∗

i

(
B̃〈i〉)2G(i)ei + e∗

i (B̃
〈i〉)2G(i)gi + g∗

i

(
B̃〈i〉)2G(i)gi

)

× (G(i)
i j + Ti, j

)]
, (8.15)

where we directly used the definitions in (8.2). Then, similarly to (6.23), using the
concentration estimates in Lemma 8.1 and in Lemma 8.2, as well as the Gaussian con-
centration estimates in (6.10), the bound (6.18) and Lemma 6.2 for tracial quantities,
we obtain

Egi

[
Si, j
]− tr

(
B̃G B̃

)(
G(i)

i j + Egi

[
Ti, j
])

= tr
(
B̃G
) (
Egi

[
Si, j − biEgi

[
Ti, j
]])

+ O≺
( 1√

Nη

)
. (8.16)

Analogously, we also have

Egi

[
Ti, j
]− tr

(
B̃G
) (
G(i)

i j + Egi

[
Ti, j
])

= tr
(
G
) (
Egi

[
Si, j
]− biEgi

[
Ti, j
])

+ O≺
( 1√

Nη

)
. (8.17)

Solving Egi

[
Si, j
]
from (8.16) and (8.17), we have

Egi

[
Si, j
] = − tr

(
B̃G
)

tr G
G(i)

i j +

[
tr
(
B̃G
)− (tr (B̃G))2
tr G

+ tr
(
B̃G B̃

)](
G(i)

i j + Egi

[
Ti, j
])

+ O≺
( 1√

Nη

)
.

Using (6.35), the assumption |G(i)
i j | ≺ 1 and the bound |Ti, j | ≺ 1 of (8.9), we have

Egi

[
Si, j
] = − tr

(
B̃G
)

tr G
G(i)

i j + O≺
( 1√

Nη

)
, (8.18)
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which together with (8.13), (8.14), the concentration estimate (8.10) implies that

(ai − ωc
B)G(i)

i j = O≺
( 1√

Nη

)
. (8.19)

This proves the estimate in (8.11).
Next, we bound Si, j . Starting from (8.18) we directly get the second estimates

in (8.12) from the Green function bound (8.11) and the concentration estimate (8.10).
It remains to estimate Ti, j . Plugging the bound on Gi j in (8.11) and the bound on

Si, j in (8.12) into the equation (8.17), we obtain

∣∣(1 − tr
(
B̃G
)
+ bi tr G

)
Egi

[
Ti, j
]∣∣ ≺ 1√

Nη
. (8.20)

Invoking the estimate (6.29) we get
∣∣Egi

[
Ti, j
]∣∣ ≺ 1√

Nη
. Then the first estimate in (8.12)

follows from the concentration estimate for Ti, j in (8.10). This completes the proof. ��
Having established Lemma 8.1 and Proposition 8.3, we next prove (2.21) of Theo-

rem 2.5 via a continuity argument similar to the proof of (2.20).

Proof of (2.21) of Theorem 2.5. Fixing any z ∈ SI(ηm, 1) and using Proposition 8.3,
under the assumption

max
i �= j

|G(i)
i j (z)| ≺ 1 , (8.21)

we have

max
i �= j

|G(i)
i j (z)| ≺ 1√

Nη
, max

i �= j
|Ti, j (z)| ≺ 1√

Nη
, max

i �= j
|Si, j (z)| ≺ 1√

Nη
.

(8.22)

Then, by (8.22) and (8.1), we can use Lemma 4.1 to get

|Gi j (z)| ≺ 1√
Nη

. (8.23)

Hence, in principle, it suffices to conduct a continuity argument from η = 1 to η = ηm
(similar to the proof of (2.20) of Theorem 2.5) to show that the bound (8.21) holds
uniformly for z ∈ SI(ηm, 1). However, in order to show that (8.23) also holds uniformly
for z ∈ SI(ηm, 1) quantitatively, we monitor Gi j in the continuity argument as well. To
this end, we introduce the z-dependent random variable

�o ≡ �o(z) := max
i �= j

|G(i)
i j (z)| + max

i �= j
|Gi j (z)| ,

and, for any δ ∈ [0, 1] and z ∈ SI(ηm, 1), we define the event

�o(z, δ) := {�o(z) ≤ δ} ;
c.f. (7.1) and (7.2). The subscript o refers to “off-diagonal”.

We will mimic the proof of (2.20). Analogously, using Lemma 4.1 and Proposi-
tion 8.3, one shows that there exists an event �o(z) ≡ �o(z, D, ε) such that the conclu-
sions in Lemma 7.1 still hold when we replace �d(z, δ) by �o(z, δ), �d(z) by �o(z)
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and N− γ
4 by 1. We also set δ = 1 in this proof. This is a quantitative description of

the derivation of the first bound in (8.22) and (8.23) from (8.21). The main difference is
that here �o(z) is the event defined as the intersection of the “typical” events in all the
concentration estimates in Sects. 4–6, in the proofs of Lemma 8.1 and Proposition 8.3,
and the event on which the following bounds hold

∣∣∣G(i)
i i (z) − (ai − ωB(z)

)−1
∣∣∣ ≤ N ε

√
Nη

,

∣∣∣Gii (z) − (ai − ωB(z)
)−1
∣∣∣ ≤ N ε

√
Nη

, max
i �= j

∣∣G[i]
j j (z)

∣∣ ≤ N ε. (8.24)

Note that, by (8.1) and (8.8), we know that (8.24) holds with high probability uniformly
on SI(ηm, 1).

With the analogue of Lemma 7.1 for�o(z, δ = 1) and�o(z), we conduct a continuity
argument similar to the one in the proof of (2.20). Again, by Lipschitz continuity of
the Green function it suffices to show estimate (2.21) on the lattice ŜI(ηm, 1) defined
in (7.19). We fix E ∈ I ∩ N−5

Z, write z = E + iη and decrease η from η = 1 down to
N−1+γ in steps of size N−5. The initial estimate for η = 1, i.e. �o(E + i) ≤ 1 follows
directly from the trivial fact ‖G(i)(z)‖, ‖G(z)‖ ≤ 1/η. Then one can show step by step
that for any η ∈ [ηm, 1], say,

�o
(
η, 1
) ∩ �o(η − N−5) ⊂ �o

(
η − N−5, 1

)
, (8.25)

which is the analogue of (7.20). The remaining proof is nearly the same as the counterpart
in the proof of (2.20). We thus omit the details. ��
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Appendix A. Orthogonal Case
In this appendix, we show that Theorem 2.5 and Theorem 2.6 also hold in the orthogonal setup where U is
Haar distributed on the orthogonal group O(N ). From the proof of Theorem 2.6, we see that it is implied by
Theorem 2.5. Hence, it suffices to discuss the latter. We outline the necessary changes in the discussion of
Sects. 4–8 to adapt our proof to the orthogonal case. We mainly show the modification for the proof of (2.20)
in detail, and (2.21) will be discussed briefly at the end.
First, wemodify some notation.We start with the decomposition for the Haar measure on the orthogonal group
analogous to (2.37). For all i ∈ �1, N�, according to [28], there exist a random vector vi = (vi1, . . . , vi N ),
uniformly distributed on the real unit (N − 1)-sphere SN−1

R
:= {x ∈ R

N : x∗x = 1}, and a Haar distributed
orthogonal matrix Ui ∈ O(N − 1), which is independent of vi , such that one has the decomposition

U = − sgn(vi i )(I − r i r
∗
i )U

〈i〉 := − sgn(vi i )Ri U
〈i〉 ,

where

r i := √
2

ei + sgn(vi i )vi
‖ei + sgn(vi i )vi‖2 , Ri := I − r i r

∗
i , (A.1)

and U 〈i〉 is the orthogonal matrix with ei as its i th column and Ui as its (i, i)-matrix minor. Moreover, there
is a real Gaussian vector gi ∼ NR(0, N−1 I ) such that

vi = g̃i
‖ g̃i‖2

,

http://creativecommons.org/licenses/by/4.0/


Z. Bao, L. Erdős, K. Schnelli

Similarly to (4.6), we define

gik := sgn(vi i ) g̃ik , k �= i ,

and introduce an N (0, N−1) variable gii , which is independent of the orthogonal matrix U and of g̃i . Let
gi := (gi1, . . . , giN ) and note that gi ∼ NR(0, N−1 I ). Then we set wi := ei + gi and Wi := I − wiw

∗
i

as before. With these modifications, we follow the proofs in Sects. 4–7 verbatim. The only difference is the
derivation of (6.19). Instead of (6.12), we use the following integration by parts formula for real Gaussian
random variables

∫

R

g f (g) e
− g2

2σ2 dg = σ 2
∫

R

f ′(g) e−
g2

2σ2 dg , (A.2)

for differentiable functions f : R → R. Correspondingly, instead of (6.14), we have

∂Wi

∂gik
= −ei e

∗
k − ek e

∗
i − ek g

∗
i − gi e

∗
k .

Hence, we get

∂
(
B̃〈i〉G(i))

k j

∂gik
= e∗k B̃〈i〉G(i)(ei e∗k + ek e

∗
i + ek g

∗
i + gi e

∗
k
)

× B̃〈i〉(I − ei e
∗
i − ei g

∗
i − gi e

∗
i − gi g

∗
i
)
G(i)e j

+ e∗k B̃〈i〉G(i)(I − ei e
∗
i − ei g

∗
i − gi e

∗
i − gi g

∗
i
)

× B̃〈i〉(ei e∗k + ek e
∗
i + ek g

∗
i + gi e

∗
k
)
G(i)e j

instead of (6.15). Substitution into the identity

Egi [g∗
i B̃

〈i〉G(i)e j ] =
N∑

k=1

Egi
[
gik (B̃

〈i〉G(i))k j
] = 1

N

N∑
k=1

Egi

[
∂(B̃〈i〉G(i))k j

∂gik

]
,

yields

Egi [g∗
i B̃

〈i〉G(i)e j ] = (r.h.s. of (8.15)) +
1

N
Egi

[(
G(i)(B̃〈i〉)2G(i))

j i

]

+
1

N
Egi

[
e∗j G(i)(B̃〈i〉)2G(i)gi

]
+

1

N
Egi

[(
G(i) B̃〈i〉G(i) B̃〈i〉)

j i

]

+
1

N
Egi

[
e∗j G(i) B̃〈i〉G(i) B̃〈i〉gi

]
− 1

N
Egi

[
b̂i
(
G(i) B̃〈i〉G(i))

j i

]

− 1

N
Egi

[
b̂ j e

∗
j G

(i) B̃〈i〉G(i)gi
]

− 1

N
Egi

[
(G(i)

i j + g∗
i G

(i)e j )
(
e∗i (B̃〈i〉)2G(i)gi + g∗

i (B̃
〈i〉)2G(i)gi

)]

− 1

N
Egi

[
(G(i)

i j + g∗
i G

(i)e j )
(
b2i G

(i)
i i + g∗

i (B̃
〈i〉)2G(i)ei

)]
, (A.3)

where we introduced b̂i := wi B̃
〈i〉wi . Note that the last two terms were discussed in the unitary setup, and

they were shown to be negligible. Therefore, to get (8.16) also in the orthogonal case, we rely on the following
lemma to discard the supplementary small terms in (A.3). At first, let us discuss the case of i = j , which
suffices for the proof of (2.20).

Lemma A.1. Under the assumption of Proposition 6.1, we have the following bounds

∣∣(G(i)(z)B̃〈i〉G(i)(z)
)
i i

∣∣ ≺ 1
η ,

∣∣(G(i)(z)(B̃〈i〉)2G(i)(z)
)
i i

∣∣ ≺ 1
η ,∣∣e∗i G(i)(z)B̃〈i〉G(i)(z)gi

∣∣ ≺ 1
η ,

∣∣e∗i G(i)(z)(B̃〈i〉)2G(i)(z)gi
∣∣ ≺ 1

η ,∣∣(G(i)(z)B̃〈i〉G(i)(z)B̃〈i〉)
i i

∣∣ ≺ 1
η ,

∣∣e∗i G(i)(z)B̃〈i〉G(i)(z)B̃〈i〉gi
∣∣ ≺ 1

η ,

(A.4)

for all i ∈ �1, . . . , N�.
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Proof. We drop z from the notation. For the first two terms, we have

∣∣(G(i)(B̃〈i〉)kG(i))
i i

∣∣ ≤ ‖B̃〈i〉‖k‖G(i)ei‖22 � ((G(i))∗G(i))
i i = ImG(i)

i i
η

≺ 1

η
, (A.5)

for k = 1, 2, where in the last step we used assumption (6.1). For the third and fourth terms, we have, for
k = 1, 2,

∣∣e∗i G(i)(B̃〈i〉)kG(i)gi
∣∣ ≤ ‖B̃〈i〉‖k‖G(i)ei‖2‖G(i)gi‖2
� (((G(i))∗G(i))

i i

) 1
2
(
g∗
i (G

(i))∗G(i)gi
) 1
2

= 1

η

(
ImG(i)

i i

) 1
2
(
Im g∗

i G
(i)gi

) 1
2 ≺ 1

η
,

where in the last stepweused assumption (6.1) and estimate (5.44). For thefifth termwenote that (G(i) B̃〈i〉G(i) B̃〈i〉)i i =
bi
(
G(i) B̃〈i〉G(i))i i and the bound follows from (A.5). For the last term, we have

∣∣e∗i G(i) B̃〈i〉G(i) B̃〈i〉gi
∣∣ ≤ ‖B̃〈i〉‖‖e∗i G(i)‖2‖G(i) B̃〈i〉gi‖2 ≺ 1

η
, (A.6)

where we used assumption (6.1) and estimate (5.44). This completes the proof.

All the other arguments in Sects. 4–7 work for the orthogonal case as well without modifications. This
proves (2.20) of Theorem 2.5 for the Haar orthogonal case.
For (2.21), analogously to (A.4), we shall estimate the second to the seventh terms on the right side of (A.3),
under the assumption of Proposition 8.3. To bound these terms, we can pursue the discussion from (A.5)–

(A.6) with ImG(i)
i i replaced by ImG(i)

j j in the bounding procedure. Hence, it suffices to show for all j �= i

that |G(i)
j j | ≺ 1. To see this, we use the fact |G j j | ≺ 1 from Theorem 2.5 and |G j j − G(i)

j j | ≺ 1√
Nη

from

Lemma 4.1 with k = j . Note that the assumptions of Lemma 4.1 are guaranteed by Theorem 2.5, (8.9) and
assumption (8.3). Hence, (2.21) also holds in the orthogonal case.

Appendix B. Two Point Mass Case

In this section, we present our result when both, μα and μβ , are convex combinations of two point masses.
Without loss of generality (up to shifting and scaling), we may assume that μα and μβ are of the following
form,

μα = ξδ1 + (1 − ξ)δ0 , μβ = ζ δθ + (1 − ζ )δ0 , (B.1)

with real parameters ξ, ζ and θ satisfying

θ �= 0 , ξ, ζ ∈
(
0,

1

2

]
, ξ ≤ ζ , (θ, ξ, ζ ) �=

(
− 1,

1

2
,
1

2

)
.

Here we excluded the case (θ, ξ, ζ ) = (−1, 1
2 , 1

2 ) since it is equivalent to (θ, ξ, ζ ) = (1, 1
2 , 1

2 ) under a
shifting, where the latter is a special case of μα = μβ . In Section 7 of [1], we explained why the setting
of (B.1) is special, and we thus excluded it from Theorem 2.5.
Following [24], we argued in Lemma 7.1 of [1] that in the setting of (B.1) we have

Bμα�μβ
= (�1, �2) ∪ (�3, �4) , (B.2)

in case μα �= μβ , while we have

Bμα�μα
= (�1, �4) , (B.3)

in case μα = μβ , where

�1 := min
{ 1
2

(
1 + θ −

√
(1 − θ)2 + 4θr+

)
,
1

2

(
1 + θ −

√
(1 − θ)2 + 4θr−

)}
,
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�2 := max
{ 1
2

(
1 + θ −

√
(1 − θ)2 + 4θr+

)
,
1

2

(
1 + θ −

√
(1 − θ)2 + 4θr−

)}
,

�3 := min
{ 1
2

(
1 + θ +

√
(1 − θ)2 + 4θr+

)
,
1

2

(
1 + θ +

√
(1 − θ)2 + 4θr−

)}
,

�4 := max
{ 1
2

(
1 + θ +

√
(1 − θ)2 + 4θr+

)
,
1

2

(
1 + θ +

√
(1 − θ)2 + 4θr−

)}
,

with r± := ξ + ζ − 2ξζ ± √
4ξζ(1 − ξ)(1 − ζ ).

In Remark 7.2 of [1] we argued that, in the case μα = μβ , the point E = 1 ∈ Bμα�μα
is special in the

sense that mμα�μα
(1 + i0) is unstable under small perturbations. We thus expect a modified local law in

neighborhoods of this special point. To proceed we need some more notation. Recall the domains SI (a, b)
in (2.18). For given (small) ς, γ > 0, we set

Sς
I (a, b) :=

{
z ∈ SI (a, b) : ς |z − 1| ≥ max

{√
dL(μA, μα),

√
dL(μB , μβ)

}}

and

S̃ς
I (a, b) := Sς

I (a, b) ∩
{
z ∈ C : |z − 1| ≥ Nγ

(Nη)
1
4

}
. (B.4)

The following proposition presents the local law under the setting (B.1).

Proposition B.1. Let μα, μβ be as in (B.1), with fixed ξ , ζ and θ . Assume that the empirical eigenvalue
distributions μA, μB of the sequences of matrices A, B satisfy (2.14). Fix any compact nonempty interval
I ⊂ Bμα�μβ

. With the notations and assumptions of Theorem 2.5, we have the following conclusions:

(i) If μα �= μβ , then, for any fixed γ > 0,

max
1≤i≤N

∣∣Gii (z) − (ai − ωB (z))−1∣∣ ≺ 1√
Nη

,

|ωc
A(z) − ωA(z)| ≺ 1√

Nη
, |ωc

B (z) − ωB (z)| ≺ 1√
Nη

,

hold uniformly for all z ∈ SI (ηm, 1).
(ii) If μα = μβ , then, for sufficiently small ς > 0 and any fixed γ > 0,

max
1≤i≤N

∣∣Gii (z) − (ai − ωB (z))−1∣∣ ≺ 1

|z − 1|
1√
Nη

|ωc
A(z) − ωA(z)| ≺ 1

|z − 1|
1√
Nη

, |ωc
B (z) − ωB (z)| ≺ 1

|z − 1|
1√
Nη

, (B.5)

hold uniformly for all z ∈ S̃ς
I (ηm, 1).

Proof. Recall the notation�μ1,μ2 (ω1, ω2) in (3.8). In [1] (see the proof of Proposition 7.4 therein), we proved
that under the setting (B.1) and assumption (2.14), one has the following results on the stability of the system
�μA,μB (ωA, ωB , z) = 0: There exists a positive constant S such that the following two estimates hold.

(i) If μα �= μβ , we have

�μA,μB (ωA, ωB ) ≤ S , z ∈ SI (0, 1) ,

and (3.9), (3.14) and (3.15) hold on SI (0, 1).
(ii) If μα = μβ , we have

�μA,μB (ωA, ωB ) ≤ S

|z − 1| , z ∈ Sς
I (0, 1) , (B.6)

and (3.14) and (3.15) hold on Sς
I (0, 1), while (3.9) holds on Sς

I (0, 1) with S replaced by S
|z−1| .
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Note that, the proofs ofLemma5.1, Lemma6.1 andLemma7.1 stillwork sincewehave the bounds (3.9), (3.14),
and (3.15) as well. Although the bound in (3.9) should be replaced by 2S

|z−1| in the case μα = μβ , it is
harmless for our proof. Hence, analogously to the proof of Theorem 2.5, one can use Lemma 3.3, Lemma 7.1
and estimates (3.9), (3.14) and (3.15), to complete the proof of Proposition B.1. Especially, the proof in the
case μα �= μβ exactly agrees with the proof of Theorem 2.5.

For the case μα = μβ , we need to replace S by S
|z−1| in Lemma 3.3 due to (B.6). In the sequel, we simply

illustrate the continuity argument in this case. Let z, z′ ∈ S̃ς
I (a, b), where z = E + iη and z′ = E + iη′,

with η′ = η + N−5. In addition, we set z0 = z, ω1 = ωA , ω2 = ωB , ω̃1 = ωc
A and ω̃2 = ωc

B in
Lemma 3.3. Suppose now that (B.5) holds for z′. Using the Lipschitz continuity of the Green function (i.e.
‖G(z)−G(z′)‖ ≤ N2|z− z′|) and of the subordination functions ωA(z) and ωB (z) (c.f. (3.9) with S replaced
by S

|z−1| ), we can choose δ in (3.11) to be

δ = Nγ

|z − 1|
1√
Nη

+ O(N−3) , (B.7)

In light of the condition k2 > δK S
|z−1| (c.f. sentence above (3.12), with S replaced by S

|z−1| ), one needs
to guarantee that δS ≤ |z − 1|ε, for sufficiently small constant ε > 0, which is a direct consequence of the
assumption that z ∈ S̃ς

I (a, b) and (B.7). Note that ‖̃r(z)‖2 ≺ 1√
Nη

remains valid since estimate (7.15) does

not depend on the stability of the system �μA,μB (ωA, ωB , z) = 0, as long as (3.14), (3.15) and (3.9) hold.
The remaining parts of the proof are analogous to those of Theorem 2.5 and we thus omit the details.
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12. Bourgade, P., Erdős, L., Yau, H.-T., Yin, J.: Fixed energy universality for generalized Wigner matri-

ces. Commun. Pure Appl. Math. 69(10), 1815–1881 (2016)
13. Capitaine, M.: Additive/multiplicative free subordination property and limiting eigenvectors of

spiked additive deformations of Wigner matrices and spiked sample covariance matrices. J. Theor.
Probab. 26(3), 595–648 (2013)

14. Chatterjee, S.: Concentration of Haar measures, with an application to random matrices. J. Funct.
Anal. 245(2), 379–389 (2007)

15. Chistyakov, G.P., Götze, F.: The arithmetic of distributions in free probability theory. Central Eur. J.
Math. 9, 997–1050 (2011)

16. Collins, B.: Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-
Zuber integral, and free probability. Int. Math. Res. Notices 2003(17), 953–982 (2003)

17. Diaconis, P., Shahshahani, M.: The subgroup algorithm for generating uniform random variables. Probab.
Eng. Inform. Sci. 1(01), 15–32 (1987)
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