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A few years ago, the famous computer scientist William H. Press was interested in finding all

stable strategies for the iterated prisoner’s dilemma, a highly influential model for the evolution

of cooperation among self-interested individuals [1]. He decided to devise an algorithm for this

task (which is more difficult than it may sound – after all, the iterated prisoner’s dilemma allows

for infinitely many strategies). However, for particular points in the strategy space, his computer

program always crashed. There is a simple cure for such problems – by making the natural

additional assumption that players sometimes commit errors when implementing their strategies,

one can often avoid such crashes, as many other authors did before [2]. But Press got curious.

He noted that the strategies that caused the problem all lay on a plane in the respective strategy

space. Press presented his results to his friend, the mathematician and physicist Freeman Dyson,

who soon discovered that for those strategies a certain determinant vanishes (which explains why

these strategies are now called “zero-determinant strategies”, or “ZD strategies”). While others

would have been just satisfied that the cause of the program crashes had been resolved, Press and

Dyson went one step further. They realized that ZD strategies are interesting on their own right.

Some of the ZD strategies could be used to enforce a particular payoff upon the opponent (so-called

“equalizer strategies” [3]). Others could be used to systematically outperform the opponent (so-

called “extortionate strategies”). In a remarkable article [4], Press and Dyson showed how simple

arguments borrowed from linear algebra can open the door to a beautiful and largely unexplored

world, the world of ZD strategies [5–7]. For those who use agent-based simulations only, this entire

world would have remained invisible – the space of ZD strategies has measure zero within the space

of all possible strategies for the iterated prisoner’s dilemma. The discovery of ZD strategies thus

illustrates that mathematics may lead to insights that are inaccessible to computer simulations

alone.
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In their review [8], Adami, Schossau & Hintze highlight several examples which illustrate the

converse observation: “agent-based methods can predict evolutionary outcomes where purely math-

ematical treatments cannot tread”. Mathematical models, they argue, are often limited as they

rest on many simplifying assumptions. For example, the replicator equation, which is arguably

the most commonly applied dynamics to model the evolution of strategies, presumes an infinite

well-mixed population, no mutations, and a finite set of feasible strategies. However, the classi-

cal replicator equation has been formulated almost 40 years ago [9]. Since then, much research

has been devoted to derive mathematical models that build upon the replicator dynamics, but do

not face the above restrictions. For example, to capture the effects of finite population size and

population structure, one can use replicator equations with a slightly transformed payoff matrix

[10, 11]. In addition, there is also an extensive literature on stochastic dynamics in finite pop-

ulations [12, 13]. Some of the corresponding methods require weak selection or rare mutations.

But analytical results are also available when selection is strong [14], mutation rates are arbitrary

[15, 16], or when more than two players are involved in any particular interaction [17, 18]. Even

the evolution in continuous strategy spaces can be captured with simple differential equations,

using the framework of adaptive dynamics in infinite [19] or finite populations [20]. These models

and others [21] have exactly been developed to explore situations in which mutations can lead to

completely novel phenotypes that have not been present in the original population – an aspect

that Adami et al. have apparently been missing in evolutionary game theory (the ‘E’ in EGT).

As a field maturates, more sophisticated methods are developed or transferred from other

areas. This also applies to the field of evolutionary game theory: stochastic models have been

addressed in terms of coalescence theory from population genetics [22, 23], or have been analyzed

using methods from quantum mechanics [24, 25]. Thus, one should not decide to focus entirely on

computer simulations prematurely - mathematics may take us much further than we think now.

With these arguments, we do not wish to suggest that mathematical models are superior

to agent-based simulations. On the contrary, we routinely make use of agent-based simulations

ourselves, and we believe that both approaches have their own advantages. Agent-based simulations

are easier to implement, they are more flexible, and they can cope with more complexity. However,

in the absence of clear-cut baseline results as a reference, they can appear to become somewhat

arbitrary. We thus agree with Adami et al. that “mathematical solutions [...] must be explored in

order to validate the simulations.” - but simulations can only be validated if they are coded in a

way that allows this kind of connection.

Mathematical approaches, on the other hand, make the underlying assumptions more explicit,

and their results are often more transparent. If closed-form solutions exist, the effect of parameter

changes follows immediately. But even if closed-form solutions do not exist, one may gain important

qualitative results. Already simple mathematical models can often yield valuable and unexpected

insights [26].

In our humble opinion, the best papers in evolutionary game theory are those in which analytical

approaches and simulations complement each other. Press and Dyson have presented a beautiful

example [4].
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