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Abstract
A simple drawing D(G) of a graphG is one where each pair of edges share at most one
point: either a common endpoint or a proper crossing. An edge e in the complement of
G can be inserted into D(G) if there exists a simple drawing ofG+e extending D(G).
As a result of Levi’s Enlargement Lemma, if a drawing is rectilinear (pseudolinear),
that is, the edges can be extended into an arrangement of lines (pseudolines), then
any edge in the complement of G can be inserted. In contrast, we show that it is
NP-complete to decide whether one edge can be inserted into a simple drawing. This
remains true even if we assume that the drawing is pseudocircular, that is, the edges can
be extended to an arrangement of pseudocircles. On the positive side, we show that,
given an arrangement of pseudocircles A and a pseudosegment σ , it can be decided
in polynomial time whether there exists a pseudocircle �σ extending σ for which
A ∪ {�σ } is again an arrangement of pseudocircles.

Keywords Simple drawings · Arrangements of pseudocircles · Discrete geometry ·
Graph drawing · Lower bounds · Algorithms

Mathematics Subject Classification 68R10 · 05C10

1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topological
graph in the literature) is a drawing D(G) of G in the plane such that every pair of
edges shares at most one point that is either a proper crossing or a common endpoint.
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In particular, no tangencies between edges are allowed and edges must not contain any
vertices in their relative interior. It is commonly assumed that no three edges intersect
in the same point; the results in this paper are independent of this assumption. Simple
drawings have received a great deal of attention in various areas of graph drawing, for
example in connection with two long-standing open problems: the crossing number
of the complete graph [37] and Conway’s thrackle conjecture [7].

In this work, we study the problem of inserting an edge into a simple drawing of
a graph. Given a simple drawing D(G) of a graph G = (V , E) and an edge e of the
complement G of G we say that e can be inserted into D(G) if there exists a simple
drawing of G ′ = (V , E ∪ {e}) that contains D(G) as a subdrawing.

A pseudoline arrangement is an arrangement of simple biinfinite arcs, called pseu-
dolines, such that every pair of pseudolines intersects in a single point that is a proper
crossing. Similarly, an arrangement of pseudocircles is an arrangement of simple
closed curves, called pseudocircles, such that every pair of pseudocircles intersects in
either zero or two points, where in the latter case, both intersection points are proper
crossings. A simple drawing D(G) is called pseudolinear if the drawing of every edge
can be extended to a pseudoline such that the extended drawing forms a pseudoline
arrangement. Recently, Arroyo et al. showed that one can fully characterize these
drawings by forbidden subdrawings and recognize them in polynomial time [3]. Like-
wise, D(G) is called pseudocircular if the drawing of every edge can be extended to a
pseudocircle such that the extended drawing forms an arrangement of pseudocircles.

Pseudoline arrangements were introduced by Levi [32] in 1926 and have since
been extensively studied; see for example [21]. One of the most fundamental results
on pseudoline arrangements, nowadays well known as Levi’s Enlargement Lemma,
stems from Levi’s original paper.1 It states that, for any given pseudoline arrangement
L and any two points p and q not on the same pseudoline of L, it is always possible
to insert a pseudoline through p and q into L such that the resulting arrangement is
again a valid pseudoline arrangement.

From Levi’s Enlargement Lemma, it immediately follows that given any pseudo-
linear drawing D(G) and any set E∗ of edges from G, it is always possible to insert
all edges from E∗ into D(G) such that the resulting drawing is again pseudolinear. In
contrast, if the input drawing D(G) is simple, Kynčl [30] showed that not every edge of
G can be added to D(G) such that the result is again a simple drawing, not even ifG is
a matching plus two isolated vertices which are the endpoints of the edge to be inserted
[31]. The latter implies that an analogous statement to Levi’s Enlargement Lemma is
not true for arrangements of pseudosegments (simple arcs that pairwise intersect at
most once). Moreover, Arroyo et al. [4] showed that given a simple drawing D(G)

and a set E∗ of edges from G, it is NP-complete to decide whether E∗ can be inserted
into D(G) (such that the resulting drawing is again simple). However, the cardinality
of E∗ required for their hardness proof is linear in the size of the constructed graph.
The main open problem posed in [4] is the complexity of deciding whether one single
given edge e of G can be inserted into D(G).

1 Also known as Levi’s Extension Lemma. Several different proofs of Levi’s Enlargement Lemma have
been published since then [5, 23, 38–40].
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In this work, we show that this decision problem is NP-complete, even if G is
a matching plus two isolated vertices which are the endpoints of e. This implies
that, given an arrangement S of pseudosegments and two points p and q not on the
same pseudosegment, it is NP-complete to decide whether it is possible to insert a
pseudosegment from p to q into S such that the resulting arrangement is again a valid
arrangement of pseudosegments (Sect. 2). On the positive side, we observe that the
decision problem is fixed-parameter tractable (FPT) in the number of crossings of
the original drawing G (Sect. 5). This algorithm cannot be directly adapted to obtain
an FPT-algorithm only with respect to the number of newly created crossings. Very
recently, an overlapping set of authors showed an FPT-algorithm for this problem that
is tight under the Exponential Time Hypothesis [22]. Using a different approach that
requires invoking Courcelle’s theorem [16], the authors present an FPT-algorithm for
inserting a bounded number of edges with a bounded number of new crossings into a
simple drawing G.

Snoeyink andHershberger [39] showed the following analog to Levi’s Enlargement
Lemma for arrangements of pseudocircles: For any arrangement A of pseudocircles
and any three points p, q, and r , not all of them on one pseudocircle ofA, there exists
a pseudocircle � through p, q, and r such that A ∪ {�} is again an arrangement of
pseudocircles. Refining our hardness proof, we show that the edge-insertion decision
problem remains NP-complete when D(G) is a pseudocircular drawing, regardless of
whether the resulting drawing is required to be again pseudocircular or allowed to be
any simple drawing. This holds even if we are in addition given an arrangement of
pseudocircles extending D(G). On the positive side, we show that, given an arrange-
mentA of pseudocircles and a pseudosegment σ , it can be decided in polynomial time
whether there exists an extension�σ of σ to a simple closed curve such thatA∪{�σ }
is again an arrangement of pseudocircles (Sect. 4).

1.1 More RelatedWork

One of the implications of the results presented in this paper concerns so-called sat-
urated drawings [31]. A simple drawing D(G) of a graph G is called saturated if no
edge e from G can be inserted into D(G). Kynčl et al. showed that there are saturated
simple drawings whose number of edges is only linear in the number of vertices [31].
The currently best upper bound on the minimum number of edges in saturated simple
drawings is 7n and has been shown by Hajnal et al. [25]. A natural question is to deter-
mine the complexity of deciding whether a simple drawing is saturated. Our hardness
result implies that the straight-forward idea of testing whether D(G) is saturated by
checking for every edge in G whether it can be inserted into D(G) is not feasible
unless P = NP.

The problem of inserting an edge (or multiple edges or a star) into a planar graph
has been extensively studied in the contexts of determining the crossing number of
the resulting graph [9, 36] and of finding a drawing of the resulting graph in which the
original planar graph is drawn crossing-free and the drawing of the resulting graph has
as few crossings as possible [14, 15, 24, 35]. In relation to our work, a main difference
is that we consider inserting edges into some given non-plane drawing of a graph.
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Furthermore, the question considered in this paper is strongly related to work on
extending partial representations of graphs. Here, we are usually given a representation
of a part of the graph G and are asked to extend it into a full representation of G such
that the partial representation is a sub-representation of the full one. Recent years
have seen a plethora of results in this topic. For plane drawings Angelini et al. [1]
showed that the problem can be solved in linear time, while Patrignani already proved
earlier that the problem is NP-complete for plane straight-line drawings [34]. For level
and upward planar graph drawings the problem was shown to be NP-complete [8,
17]. However, under certain restrictions on the graph and the drawing, the extension
problems become tractable [8, 10, 17, 33]. Very recently, also orthogonal drawings
have been considered [2]. Extension of other graph representations have been studied
for several graph classes defined by intersection or visibility of geometric objects
[11–13, 26–29]. Very recently, the extension problem was also considered for 1-plane
drawings through the lens of parameterized complexity [19, 20].

A similar extension problemwas studied when the graph class considered are trees.
Here, we are also given a point-set P and ask if the given drawing can be extended
using only points in P for vertex positions. Di Giacomo et al. [18] showed that this
problem is polynomial time solvable if bends are allowed. Similarly to the case of
planar graphs, Bagheri and Razzazi [6] showed that the problem is NP-complete when
we require the extended drawings to be straight-line.

1.2 Outline

The remainder of our paper is organized as follows. In Sect. 2 we prove that, given a
simple drawing D(G) of a graph G, it is NP-complete to decide whether a given edge
e of G can be inserted into D(G). Furthermore, we discuss under which conditions
the statement holds. Most notably, in Sect. 3, we show that the problem remains NP-
hard even if the input drawing is pseudocircular. In contrast, we show in Sect. 4 that
for a given arrangement A of pseudocircles and a pseudosegment σ , we can decide
in polynomial time whether σ can be extended to simple closed curve �σ such that
A ∪ {�σ } is again an arrangement of pseudocircles. Finally, in Sect. 5, we observe
that the problem of deciding whether a given edge e of G can be inserted into a simple
drawing D(G) of a graph G is FPT in the number of crossings of D(G).

2 Inserting One Edge into a Simple Drawing is Hard

In this section we prove the following theorem containing our main result:

Theorem 2.1 Given a simple drawing D(G) of a graph G = (V , E) and an edge
uv of G, it is NP-complete to decide whether uv can be inserted into D(G), even if
V \ {u, v} induces a matching in G and u and v are isolated vertices.

It is straightforward to verify that the problem is in NP (see Arroyo et al. [4] for a
combinatorial description of our problem using the dual of the planarization of the
drawing). We show NP-hardness via a reduction from 3SAT. Let φ(x1, . . . , xn) be a
3SAT-formula with variables x1, . . . , xn and set of clauses C = {C1, . . . ,Cm}. An
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occurrence of a variable xi in a clause C j ∈ C is called a literal. For convenience, we
assume that in φ(x1, . . . , xn), each clause has three (not necessarily different) literals.
In a preprocessing step,we eliminate clauseswith only positive or only negative literals
via the transformation from Lemma 2.2.

Lemma 2.2 The following transformation of a clause with only positive or only nega-
tive literals, respectively, preserves the satisfiability of the clause (y is a new variable
and false is the constant value false):

xi ∨ x j ∨ xk ⇒
{
xk∨ y ∨ false (i)

xi ∨x j ∨¬y (ii)

¬xi ∨¬x j ∨¬xk ⇒
{

¬xi ∨¬x j ∨ y (iii)

¬xk∨¬y ∨ false (iv)

Proof We prove the statement for the case in which the original clause has three
positive literals; the other case is analogous. Assume that xi or x j satisfies the original
clause. Then it also satisfies clause (ii) and y can be set to true to satisfy clause (i).
If xk satisfies the original clause, then it also satisfies clause (i) and y can be set to
false to satisfy clause (ii). If none of xi , x j , and xk satisfy the original clause, then
to satisfy clause (ii) we have to set y to false, which implies that clause (i) is not
satisfied. �	
After the preprocessing, we have a transformed 3SAT-formula where each clause
is of one of the following four types. Type (i): two positive literals and one constant
false; type (ii): one negative and two positive literals; type (iii): one positive and two
negative literals; and finally, type (iv): two negative literals and one constant false.

Given a transformed 3SAT-formula φ = φ(x1, . . . , xn) with set of clauses C =
{C1, . . . ,Cm}, satisfiability of φ will correspond to being able to insert a given edge uv

into a simple drawing D of a matching constructed from the formula φ. The main idea
of the reduction is that the variable and clause gadgets in D act as “barriers” inside a
simple closed region R of D, in which we need to insert a simple arc γ from one side
to the other to connect u and v. Crossing a barrier in some way imposes constraints
on how or whether we can cross other barriers afterwards.

To simplify the description, we first focus our attention to the inside of the simple
closed region R. We assume that γ cannot cross the boundary of R. In the following
we use two lines, named λ and μ, to bound the regions in which a variable and clause
gadgetwill be placed. Particularly, these lineswill be identifiedwith opposite segments
on R’s boundary.

2.1 Variable Gadget

A variable gadget W is bounded from the left by a vertical line λ and from right by
a vertical line μ. Additionally, it contains a horizontal segment κ between λ and μ,
a set P of pairwise non-crossing arcs (parts of later-defined edges), each with one
endpoint on κ and the other endpoint on μ, and a set N of pairwise non-crossing arcs,

123



Discrete & Computational Geometry

u

µ

PN

κ

λ

v

Fig. 1 Variable gadget. Orange arcs belong to N , green ones to P
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Fig. 2 Clause gadget

each with one endpoint on κ and the other endpoint on λ. On κ , all the endpoints of
arcs in P lie above all the endpoints of arcs in N , implying that every arc in P crosses
every arc in N . Finally, we choose two points u and v such that u is below all arcs inW
and v is above them; see Fig. 1 for an illustration. The arcs in P and N correspond to
positive and negative appearances of the variable, respectively.

Lemma 2.3 Let W be a variable gadget. Any arc between the vertical lines λ and μ

that connects u and v crosses all arcs in P or all arcs in N.

Proof Assume that there is an arc connecting u and v neither crossing all the arcs in
P nor all the arcs in N . Hence, there are two arcs p ∈ P and n ∈ N such that this arc
neither crosses p nor n. By the construction of the gadget, p and n cross. Thus, their
union together with λ and μ separates u from v. It follows that the arc has to cross p
or n. �	

2.2 Clause Gadget

Similar to a variable gadget, a clause gadget K is bounded from the left and right by
two vertical lines λ and μ, respectively. Additionally, it contains three horizontal arcs
(parts of later-defined edges) γa , γb, and γc, where the former two have one endpoint
on λ and the latter has one endpoint on μ. On λ, the endpoint of γa lies to the right of
the one of γb. The other endpoints of γa , γb, and γc are called a, b, and c, respectively.
None of these three arcs cross. Moreover, K contains two points d and g and an edge
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dg that crosses γa , γc, and γb in that order when traversed from d to g. Notice that
we do not require any specific rotation of the crossings of dg with γa and γb (where
the rotation is the clockwise order of the endpoints of the crossing arcs). However,
to simplify the description, we assume that the rotations of the crossings are as in
Fig. 2. The rotation of the crossing of dg with γc is forced by the order of the crossings
along dg. Finally, we again choose two points u and v such that u is below all arcs in
K and v is above them; see Fig. 2 for an illustration.

Lemma 2.4 Let K be a clause gadget. Any arc uv between the vertical lines λ and μ

that connects u and v crosses either dg twice or at least one of the arcs γa, γb, and γc.

Proof Let × be the crossing point of γc and dg. This point splits the arc dg into two
arcs d× and g×. Assume that the arc uv does not cross the arcs γa , γb, and γc. The
union of γa and γc together with d× and the lines λ and μ separates u from v. Since
the arcs γa and γc are not crossed by uv, uv must cross d× in a point×′. Analogously,
the union of γb, γc, together with g× and the lines λ and μ separates u from v. Thus,
uv has to cross g× in a point ×′′ 
= ×′ to avoid tangencies. This implies that uv

crosses dg twice, a contradiction. �	

2.3 The Reduction

Let φ(x1, . . . , xn) be a transformed 3SAT-formula with clause set C = {C1, . . . ,Cm}
(each clause being of one of the four types identified above). To build our reduction we
need one more gadget. First, we introduce the following simple drawing introduced
by Kynčl et al. [31, Fig. 11] and depicted in Fig. 3. Here, we denote this drawing
by �. Following the notation by Kynčl et al., we denote its six arcs by a1, a2, a3, b1,
b2, and b3; and its eight cells by X , A1, A2, A3, B1, B2, B3, and Y ; see Fig. 3 for
an illustration. The core property P of � is that it is not possible to insert an edge
between a point in cell X and another point in cell Y such that the result is a simple
drawing [31, Lem. 15].

For our reduction, we first choose two arbitrary points u and v in the cells X and
B2 and insert them as vertices into �. Let �′ be the obtained drawing. Further, let b∗

2
be the part of the arc b2 between the crossing point of b2 and a2 and the crossing point
of b2 and b3, see again Fig. 3.

Lemma 2.5 The edge uv cannot be inserted into �′ without crossing b∗
2 .

Proof Assume for contradiction that uv can be inserted not crossing b∗
2 and let γuv be

such an arc. Refer to Fig. 3. If γuv does not cross b2, then we would be able to prolong
it and cross b2 to reach Y , a contradiction of propertyP . Thus, γuv crosses b2. Further,
we may assume without loss of generality that γuv does not cross b2 inside A2 or B1,
as otherwise it would be possible to modify γuv to not cross b2. Thus, γuv intersects
b2 on the boundary of B2. Since γuv cannot intersect Y , this crossing must be on b∗

2. �	
The final piece we need for our reduction is a set F ofmI +mIV +4 arcs that we insert
into �′, where mI is the number of clauses of type (i) and mIV the number of clauses
of type (iv). For an arc f ∈ F we will place one of its endpoints on a vertical line κF
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inside A2 and the other one inside B2; see Fig. 4 for an illustration. The only crossings
of f with �′ are with the arcs a2, a1, b3, and b2, in that order, when traversing f
from its endpoint on κF to its endpoint in B2. Furthermore, when f is traversed in that
direction, it crosses from A2 to A1, from A1 to B3, from B3 to Y , and from Y to B2.

Consider the mI +mIV + 4 endpoints on κF sorted from top to bottom. We denote
by f j the arc in F incident with the j-th such endpoint. When traversing b2 from its
endpoint in A2 to its endpoint in B1, the crossings of arcs in F with b2 appear in the
same order as their endpoints on κF . More precisely, the crossings of b2, when b2 is
traversed in that direction, are with a2, a1, b3, f1, f2, …, f|F |, and b1, in that order.

The arcs fmI+1, fmI+2, fmI+3, and fmI+4 will behave differently than the other arcs
in F . In the following, we denote these four arcs by r2, r1, �1, and �2, respectively.
There are only two crossings between arcs in F , namely, between r1 and r2, and
between �1 and �2, and both these crossings are inside B2. These four crossing arcs
divide B2 into three regions. Let R denote the region with b∗

2 on its boundary; let Rr

denote the (other) region incident with the crossing between r1 and r2; and let R�

denote the (other) region incident with the crossing between �1 and �2. Arcs r1, r2,
�1, and �2 must be drawn such that the vertex v lies in R; see the red arcs in Fig. 4 for
an illustration. The precise endpoints of the edges in F \ {r1, r2, �1, �2} will be fixed
when we insert the clause gadgets.

Lemma 2.6 The edge uv cannot be inserted into �′ without crossing every arc in F
in A1 or B3 (in the interior or common boundary of these cells).

Proof Assume for contradiction that there is an arc f ∈ F such that uv does not
cross f . From Lemma 2.5 we know that uv has to cross b∗

2. Consider the region
bounded by b∗

2, b3, f , and a2. Observe that, since b
∗
2 is fully contained on the boundary

of this region, uv has to cross at least one of the three other arcs as well. By assumption,

X

A 1

A 2

A 3

B 1

B 2

B 3

Y

b2

b3

b1

a2

a3
a1

b∗
2

Fig. 3 The simple drawing � presented in [31]. It is not possible to insert an edge between a point in X and
one in Y
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Fig. 4 A schematic overview of the edges in F (red and orange) and how they are combined with �

uv does not cross f . Crossing b3 is impossible by property P , as the part contained
on this region’s boundary separates B3 from Y . Finally, crossing the arc which is part
of a2 is not possible, since this would imply the existence of a point v′ in A2 such
that uv passes through v′ without having crossed a2. Hence, we could prolong the arc
uv′ that is part of uv by crossing a2 such that it reaches B2 without crossing b∗

2, a
contradiction to Lemma 2.5. Thus, the statement follows. �	

It remains to insert inside R the clause and variable gadgets and precisely define
the endpoints of arcs in F \ {�1, �2, r1, r2}. For simplicity, we first insert the variable
gadgets and then the clause gadgets. The idea is that each clause and variable gadget is
inserted in R separating b∗

2 from v. This is done by identifying the endpoints that were
lying on λ or μ with points on �1, �2, r1, r2, or b2. As a result, Lemmas 2.3 and 2.4
can be applied to the arc that we insert connecting u and v in the final drawing, since
it has to cross b∗

2 by Lemma 2.5.
We now insert the variable gadgets into R. Let W (i) be the variable gadget cor-

responding to variable xi . For a gadget W (i), the arcs in N are drawn such that the
endpoints on λ lie on the part of �1 that bounds R. The arcs in P are drawn simi-
larly, but with the endpoints on μ lying on the part of r1 that bounds R. Moreover,
we identify vertex v in the gadget with vertex v in �′. Gadgets corresponding to dif-
ferent variables are inserted without crossing each other. We now specify how they
are inserted relative to each other. As we traverse �1 from its endpoint on κF to its
endpoint in R, we encounter the endpoints of arcs inW (i) before the endpoints of arcs
inW (i+1). Analogously, as we traverse r1 from its endpoint on κF to its endpoint in R,
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Fig. 5 Illustration of the reduction
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we encounter the endpoints of arcs inW (i) before the endpoints of arcs inW (i+1). See
Fig. 5 for an illustration.

In a similar way we insert the clause gadgets. Let K ( j) be the clause gadget cor-
responding to clause C j . If C j is of type (i), K ( j) is inserted such that the endpoints
on λ lie on the part of �2 that bounds R. If C j is the j ′-th clause of type (i), we
identify c with the endpoint of the arc f j ′ . Similarly, if C j is of type (iv), K ( j) is
inserted such that the endpoints on λ lie on the part of r2 that bounds R. If C j is the
j ′-th clause of type (iv), we identify c with the endpoint of the arc fmI+4+ j ′ . If C j

is of type (ii), K ( j) is inserted such that the endpoints on λ lie on the part of �2 that
bounds R and the endpoint on μ lies on the part of r2 that bounds R. Similarly, if C j

is of type (iii), K ( j) is inserted such that the endpoint on μ lies on the part of �2 that
bounds R and the endpoints on λ lie on the part of r2 that bounds R. The crossings in
R of arcs from different clause gadgets are of arcs with an endpoint in r2 with arcs in
{ f j : 1 ≤ j ≤ mI}.

We now specify how different clause gadgets are inserted relative to each other.
As we traverse �2 from its endpoint on κF to its endpoint in R, we first encounter
the endpoints of arcs corresponding to type (iii) clauses, followed by the ones corre-
sponding to type (ii) clauses, and finally the ones corresponding to type (i) clauses.
Analogously, as we traverse r2 from its endpoint on κF to its endpoint in R, we first
encounter the endpoints of arcs corresponding to type (iv) clauses, followed by the
ones corresponding to type (iii) clauses, and finally the ones corresponding to type (ii)
clauses. Moreover, as we traverse �2 and r2 in the specified directions, the endpoints
of arcs corresponding to the j ′-th clause of a certain type are encountered before the
endpoints of arcs corresponding to the ( j ′ − 1)-st clause of this type. An illustration
can be found in Fig. 5.

Finally, we connect arcs from variable and clause gadgets inside the regions R�

and Rr . This is done such that if a literal in a clause is xk then the corresponding arc
in the clause gadget, that has an endpoint on �2, is connected with an arc in N of
the gadget W (k), that has an endpoint on �1. Thus, these connections can lie in R�.
Analogously, if a literal in a clause is ¬xk then the corresponding arc in the clause
gadget, that has an endpoint on r2, is connected with an arc in P of the gadget W (k),
that has an endpoint on r1. Thus, these connections can lie in Rr . Since, without loss
of generality, we can assume that R� and Rr are convex regions and the endpoints we
want to connect are pairwise distinct points on the boundaries of those regions, the
connections can be drawn as straight-line segments. (For visual clarity in Fig. 5 and
to argue pseudocircularity in Sect. 3, we draw these connections with one bend per
arc.) Therefore, there is at most one crossing between each pair of connecting arcs.

Each connecting arc is concatenated with the arcs in a variable and in a clause
gadget that it joins. These concatenated arcs are edges in our drawing that have one
endpoint in a variable gadget and the other one in a clause gadget. By construction,
each such edge corresponds to a literal in the formula φ and each pair of them crosses
at most once. Similarly, the arcs in F \ {�1, �2, r1, r2} have one endpoint in a clause
gadget and also define edges in our final drawing that we denote by the same names
as the corresponding arcs.
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We now have all the pieces that constitute our final drawing. It consists of (i) the
simple drawing �′; (ii) the edges fi ∈ F drawn as the described arcs (with their
endpoints as vertices); (iii) the edges corresponding to literals (with their endpoints
as vertices); and (iv) the edges dg in each clause gadget (with d and g as vertices).
Observe that the constructed drawing is a simple drawing, as it is the drawing of a
matching (plus the vertices u and v) and, by construction, any two edges cross at most
once.

It remains to show that the presented construction is a valid reduction.

Lemma 2.7 The above construction is a polynomial time reduction from 3SAT to the
problem of deciding whether an edge can be inserted into a simple drawing.

Proof Given a 3SAT formula φ(x1, . . . , xn) with clauses C1, . . . ,Cm we construct a
simple drawing D as described in Sect. 2 and aim to insert the edge uv into it. This
construction can clearly be computed in polynomial time and space, since only the
combinatorial description of the drawing is needed.

Assume uv can be inserted into D and let uv be the resulting arc. By Lemmas 2.5
and 2.6 we know that uv has to cross b∗

2 and every arc in F . Let u∗ be the point
where uv crosses b∗

2. Each clause and variable gadget separates u∗ from v and thus,
Lemmas 2.3 and 2.4 can be applied. This means that in a variable gadgetW (i) all arcs
in P or all arcs in N are crossed. In the former case we assign to variable xi the value
true, and otherwise the value false. Assume that this truth assignment does not
satisfy φ(x1, . . . , xn). Then there exists a clauseC j for which all three literals evaluate
to false. Consider the clause gadget K ( j). By Lemma 2.4 wemust cross in it an edge
corresponding to one of its literals. However, by Lemma 2.6 an edge corresponding to
the constant valuefalse cannot be crossed (again) in a clause gadget. By construction
and the truth assignment of the variables, the edges corresponding to the other literals
of C j cannot be crossed either.

Conversely, assumewe are given a satisfying assignment of φ(x1, . . . , xn).We then
can insert uv into D as follows. Starting from u, edge uv crosses a1 to enter region A1,
then crosses all arcs in F , and crosses b∗

2 to enter R; see also the dotted line in Fig. 5.
In each clause gadget, edge uv crosses one edge corresponding to a literal evaluating
to true, none corresponding to a literal evaluating to false, and the edge dg in the
gadget if necessary. By construction, this leaves in each variable gadget all arcs either
in P or in N free to be crossed by uv. Moreover, this allows us to connect u and v

without crossing any edge twice. �	
As our reduction from 3SAT constructs a simple drawing D(G) of a matching, the
general problem is NP-hard even if G is as sparse as possible. We remark that if we do
not require G to be a matching, our variable gadget can be simplified by identifying
all the vertices on κ and removing the crossings between edges in N and P . Moreover,
from the constructed drawing D(G), one can produce an equivalent instance that is
connected: This is done by inserting an apex vertex into an arbitrary cell of the drawing,
and then subdividing its incident edges so that the resulting drawing D∗ is simple. If
uv can be inserted into D(G) then it can be inserted also into D∗. Finally, in the next
section we show that the problem remains hard even when the input drawing D(G) is a
pseudocircular drawing and we are in addition given an arrangement of pseudocircles
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extending D(G), regardless of whether the resulting drawing is required to be again
pseudocircular or allowed be any simple drawing.

3 Inserting One Edge into a Pseudocircular Drawing is Still Hard

In this section, we show that the simple drawings produced by our reduction are
actually pseudocircular. Hence we obtain the following corollary.

Corollary 3.1 Given a pseudocircular drawing D(G) of a graph G = (V , E) and an
edge uv of G, it is NP-complete to decide whether uv can be inserted into D(G), even
if an arrangement of pseudocircles extending the drawing of the edges in D(G) is
provided.

Proof Let D be a drawing produced by our reduction from 3SAT. We divide the
edges that correspond to literals of the input 3SAT-formula into the blue edges and the
purple edges. The former correspond to positive literals and the latter to negative ones.
Furthermore, we call the edges corresponding to constant false values the orange
edges and the four edges r1, r2, �1, and �2 the red edges. For each clause gadget we
find one edge that is not corresponding to a literal or constant false value; we call
all these edges the black edges. Finally, we call the edges in the subdrawing � in D
the green edges.

To complete D into an arrangement of pseudocircles we have to close every blue,
purple, black, orange, red, and green edge by a corresponding extension. For the
six green edges this can be done as shown in Fig. 6a. The orange and red edges
are partitioned into two groups. The first one contains r1, r2 and the orange edges
corresponding to false values in clauses of type (i). The second one contains �1, �2,
and the orange edges corresponding to false values in clauses of type (iv). Inside
the region R, for both groups the red and the orange extensions are drawn as parallel,
pairwise non-intersecting curves between their endpoints in R and the boundary of
the region A2; see Fig. 6b. Additionally, also inside R, for each group the extensions
of the two red edges cross all the orange edges in the group. Moreover, the clause
gadgets are essentially placed between the red extensions. Inside the region A2, for
each group the extensions of the two red edges cross and the orange extensions cross
the red ones; see again Fig. 6b.

We close the black edges with black extensions by just connecting the endpoints
of a black edge without producing any additional crossings with the edges of D, or
with the extensions defined so far. It remains to extend the purple and the blue edges.
An example of a fully extended drawing D can be seen in Fig. 7. The purple and blue
extensions are essentially horizontally mirrored copies of their corresponding edges.
In particular, two purple or blue extensions cross if and only if the corresponding
purple or blue edges cross. Moreover, inside the region R, the purple and the blue
extensions are drawn without crossings. As we traverse �1 from its endpoint in A2 to
its endpoint in R, we encounter the (crossing points of) purple extensions of arcs in
W (i) after the blue arcs in W (i−1) and before the blue arcs in W (i). Analogously, as
we traverse r1 from its endpoint in A2 to its endpoint in R, we encounter the (crossing
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(a) The drawing ′ extended to an arrange-
ment of pseudocircles.

r1

r2

�1

�2

R rR �

R

A2

(b) Extending the red and orange edges to
pseudocircles.

v

u

Fig. 6 Extending the gadgets that form the frame of our reduction to an arrangement of pseudocircles

points of) blue extensions of arcs in W (i) after the purple arcs in W (i−1) and before
the purple arcs in W (i). Furthermore, as we traverse �2 from its endpoint in A2 to
its endpoint in R, we encounter the (crossing points of) purple extensions before the
blue arcs. Similarly, as we traverse r2 from its endpoint in A2 to its endpoint in R, we
encounter the (crossing points of) blue extensions before the purple arcs.

Let D◦ be the arrangement of closed curves constructed from D. It remains to
prove that D◦ is an arrangement of pseudocircles. We consider the pseudocircles in
D◦ to have the same color as the edges and extensions that define them. We first show
that we can deform the purple, blue, black, red, and orange pseudocircles in D◦ such
that they are all axis-aligned rectangles and the pairwise intersections are preserved.
Then, to show that two of these rectangles cross at most twice we make use of the next
observation:

Observation 3.2 Let �1 and �2 be two axis-aligned rectangles whose vertices lie in
general position (no three are collinear). If the leftmost and rightmost points of the
projection of �1 ∪ �2 into the horizontal (or vertical) axis correspond to different
rectangles, then �1 and �2 cross in at most two points.

Wewill show that all pseudocircles in D◦ except the green ones can be deformed to
axis-aligned rectangles while maintaining their intersections with other pseudocircles.
We refer to Fig. 7.

By construction, the red and orange pseudocircles extending the edges in the group
of red and orange ones that contains r1 and r2 can be drawn directly as axis-aligned
rectangles. See the the red and orange pseudocircles on the right side of Fig. 7. We
deform (the bottom part of) the other orange and red pseudocircles such that the
resulting pseudocircles are axis-aligned rectangles. This can easily be done by also
deforming part of the subdrawing �′ of D◦.
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Fig. 7 The drawing produced by our reduction is pseudocircular

The purple pseudocircles can be drawn directly as axis-aligned rectangles. A black
pseudocircle � extending a black edge e can trivially be drawn as an axis-aligned
rectangle such that � only crosses pseudocircles extending edges that cross e.

We now deform the blue pseudocircles. The blue extensions as described above can
be drawn such that the resulting blue pseudocircles are axis-aligned polygons with one
reflex corner (between �1 and r1). For a blue pseudocircle � drawn in this way, let
the corner point be the reflex vertex of the polygon and let the horizontal and vertical
sides incident with it be the horizontal corner-arc and the vertical corner-arc of �,
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(a) Blue pseudocircles. (b) Blue and purple pseudocircles.

Fig. 8 Interactions between the blue and the purple pseudocircles

respectively. To make a blue pseudocircle an axis-aligned rectangle, we deform it by
moving its corner point; see Fig. 8. Obviously, this does not change the crossings with
any green, black, red, or orange pseudocircle. Furthermore, it does not change the
crossings with other blue pseudocircles as no new crossings are introduced and the
crossings along the horizontal corner-arc are preserved. Finally, in the same way, this
deformation preserves the crossings between the blue pseudocircle and purple ones
along the vertical corner-arc.

Consider the deformed drawing obtained from D◦ maintaining all intersections.We
now argue that each two pseudocircles cross either zero or two times in this deformed
drawing and hence in D◦. To show that no two blue (or no two purple) rectangles cross
more than twice we consider their projection onto the vertical axis. Then, by construc-
tion, two rectangles cross if and only if the topmost and the bottommost points of the
projection correspond to different rectangles; see Fig. 8a. Thus, by Observation 3.2,
in case the two rectangles cross they cross twice. For a blue and a purple pseudocircle
we find that their projection to the horizontal axis is always such that the left-most
point belongs to the purple extension and the right-most point to the blue extension
by construction; see Fig. 8b for an illustration. From Observation 3.2 it follows that
each pair of blue and purple rectangles crosses at most twice.

In the same manner we can argue about the red and orange rectangles. By con-
struction, two orange rectangles do not cross. A red and an orange rectangle are either
disjoint (if they extend edges in different groups of red and orange ones) or the left-
most and rightmost points of their projection onto the horizontal axis correspond to
different rectangles. Thus, from Observation 3.2 it follows that each pair of red and
orange rectangles crosses at most twice. Similarly, given a red or orange rectangle
and a purple or blue one, the leftmost and rightmost points of their projection onto
the horizontal axis correspond to different rectangles. Thus, by Observation 3.2, they
cross at most twice.

Given two rectangles, one of them black, their projection onto the horizontal or
the vertical axis shows that either they do not cross or, by Observation 3.2, they cross
at most twice. Finally, it is easy to verify that no red, orange, or green pseudocircle
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σ

Fig. 9 Obstruction where all pseudocircles intersect σ twice

σ

Fig. 10 Obstruction where one pseudocircle intersects σ only once

crosses a green pseudocircle more than twice. Since by construction no other pseudo-
circle crosses a green pseudocircle, we conclude that D◦ is in fact an arrangement of
pseudocircles. �	

4 Extending an Arrangement of Pseudocircles is Easy

In Sect. 2 we proved that deciding whether an edge can be inserted into a pseudocir-
cular drawing such that the result is a simple (or a pseudocircular) drawing is hard. In
this section we focus on extending arrangements of pseudocircles instead of drawings
of graphs. Recall that in such an arrangement the restriction is that two pseudocircles
can cross at most twice while in a simple drawing the restriction is that two edges share
at most one point. The main difference in extending arrangements of pseudocircles
and simple pseudocircular drawings is that in the latter the crossing possibilities are
more restricted: the edge parts of two pseudocircles cannot cross twice.

Snoeyink and Hershberger [39] showed that given an arrangementA of pseudocir-
cles and three points, not all three on the same pseudocircle, one can find a pseudocircle
� through the three points such thatA∪{�} is again an arrangement of pseudocircles.
Now, given any arrangementA and a pseudosegment σ intersecting each pseudocircle
inA at most twice, it is not always possible to extend σ to a pseudocircle�σ ⊃ σ such
that A ∪ {�σ } is again an arrangement of pseudocircles. Two examples are shown in
Figs. 9 and 10. In both examples any pseudocircle �σ extending σ crosses one red
or blue pseudocircle at least four times. We show in the following that the extension
decision question can be answered in polynomial time:

Theorem 4.1 Given an arrangement A of n pseudocircles and a pseudosegment σ

intersecting each pseudocircle inA at most twice, it can be decided in time polynomial
in n whether there exists an extension of σ to a pseudocircle�σ such that thatA∪{�σ }
is an arrangement of pseudocircles.

An arrangement (of pseudocircles) partitions the plane into vertices (0-dimensional
cells), edges (1-dimensional cells), and faces (2-dimensional cells). Since tangencies
are not allowed, all vertices are proper crossings. Note that an arrangement of n pseu-
docircles has O(n2) complexity. Two arrangements are combinatorially equivalent
(or, isomorphic) if the corresponding cell complexes are isomorphic, that is, if there
is an incidence- and dimension-preserving bijection between their cells. The exten-
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u σ

(a) Initial arrangement of pseudocircles A
and pseudosegment σ.

u σ

R 0

(b) Simply-connected subset R 0 .

u σ

R 1

(c) Simply-connected subset R 1 .

u

σ′
1

σ′
2

σ

Rm

(d) Simply-connected subset R m and two
possible extensions σ′

1 and σ′
2 .

v
v

v v

Fig. 11 Algorithm extending σ to a pseudocircle �σ

tion problem does not depend on the particular geometry of the arrangement, only on
the combinatorial equivalence class. Therefore, we can assume that the input is this
combinatorial description (of polynomial size in n).

Proof of Theorem 4.1 Throughout this proof we write R := R
2 \ R for the complement

of a set R ⊆ R
2. By possibly transforming A into an isomorphic arrangement while

preserving the incidences of σ , we can assume without loss of generality that an
endpoint is incident with the unbounded cell and that the intersection points of σ

with the pseudocircles inA are all proper crossings. Further, by possibly transforming
the arrangement again into an isomorphic one, we can assume that σ is a horizontal
segment with the left endpoint incident with the unbounded cell. Let u and v be the left
and right endpoints of σ , respectively. Our algorithm aims to compute a pseudocircle
�σ = σ ∪ σ ′ such that A ∪ {�σ } is an arrangement of pseudocircles, or determine
that no such σ ′ exists. We call σ ′ an extension of σ .

We partition the set of pseudocircles of A into three sets C0, C1, and C2, where for
each i ∈ {0, 1, 2}, Ci is the set of pseudocircles in A crossing σ exactly i times. Note
that u lies outside all pseudocircles φ ∈ A while v lies outside of all φ ∈ C0 ∪ C2 and
inside all φ ∈ C1, that is, each φ ∈ C1 separates u and v. Further, an extension σ ′ must
not cross any φ ∈ C2, it needs to cross every φ ∈ C1 exactly once, and it can cross
each φ ∈ C0 either twice or not at all.

The idea is to construct a finite sequence R0 ⊂ R1 ⊂ . . . of closed subsets of R2,
each consisting of cells of A ∪ σ that cannot be reached by σ ′. Figure 11 illustrates
this idea as well as various cases throughout the proof. Each set Ri will be a simply
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D
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R 0

φx

φ

v

Fig. 12 Proving that R0 fulfills the invariant

connected closed region of R2 with both u and v on its boundary. Further, we will
maintain the following invariant:

for each Ri and each φ ∈ C0, int(φ) ∩ Ri is either a connected region or empty,

where int(φ) denotes the interior of the bounded area enclosed by φ. The construction
will either end by determining that σ cannot be extended, or with a set Rm such that
routing σ ′ closely along the boundary of Rm gives a valid extension of σ .

Let R′
0 be the union of σ and all the closed disks bounded by the pseudocircles in

C2 and consider the faces induced by R′
0. Since u is incident with the unbounded cell

of R′
0, and since σ ′ must not intersect the interior of R′

0, σ
′ cannot reach any bounded

face of R′
0. Let R0 be the closure of the union of these bounded faces and σ . We may

assume that v ∈ ∂R0, as otherwise no extension σ ′ exists and we are done.
To see that the invariant holds for R0, assume that there exists a pseudocircle φ ∈ C0

such that int(φ)∩ R0 is connected; see Fig. 12 for an illustration. Note that int(φ)∩ R0
is connected if and only if R0 \ int(φ) is connected. As φ does not intersect σ , there
exists a component D of R0 \ int(φ) that is disjoint from σ . Further, as int(φ) is
simply connected, D ∩ ∂R0 
= ∅. Moreover, any point x on ∂D ∩ ∂R0 lies on some
pseudocircle φx ∈ C2. On the other hand, any path in R0 from a point of σ to x must
enter and leave int(φ) and hence intersect φ at least twice. As φx intersects σ twice
and lies in R0, we get that φx intersects φ in at least four points, a contradiction.

For the iterative step, consider the arrangementAφ
i formed by ∂Ri and a pseudocir-

cle φ ∈ C0 ∪ C1, and the cells of it that lie in Ri . If φ ∈ C1 and an extension σ ′ exists,
then the only two such cells that can be intersected by σ ′ are the ones incident to u
and v, respectively. Similarly, if φ ∈ C0, then σ ′ can only intersect the cell(s) incident
to u and v, plus the (by the invariant) unique cell int(φ) ∩ Ri . In both cases, all other
cells of this arrangement should be added to the forbidden area. We denote all cells
Aφ

i ∩ Ri that can possibly be intersected by σ ′ as reachable (by σ ′) and all other cells
as unreachable (by σ ′).

Assume that there exists some pseudocircle φ ∈ C0 ∪ C1 such that the arrangement
Aφ

i of φ and ∂Ri contains unreachable cells. Then we obtain R′
i+1 by adding all those

cells to Ri . If v lies in a bounded region of R′
i+1, then no extension σ ′ exists and we are

done. (Recall that by assumption u always lies in the unbounded region.) Otherwise,
Ri+1 = R′

i+1 is a simply connected region that has both u and v on its boundary. It
remains to show that the invariant is still maintained for Ri+1.
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Lemma 4.2 If Ri fulfills the invariant and u and v both lie in the unbounded region of
R′
i+1 then Ri+1 also fulfills the invariant.

Proof Let φ ∈ C0 ∪ C1 be the pseudocircle that causes the step from Ri to Ri+1 and
consider the arrangement Aφ

i of φ and ∂Ri (which contains unreachable cells). Note

that the boundaries of all cells of Aφ
i alternate between arcs of φ and parts of ∂Ri .

Moreover, all cells of Aφ
i in Ri+1 \ Ri are bounded.

We first consider the case that φ ∈ C0. It is illustrated in Fig. 13a. Suppose that
there exists a pseudocircle φ′ ∈ C0 for which int(φ′) ∩ Ri+1 is disconnected while
int(φ′) ∩ Ri is connected. Observe that φ′ 
= φ because all the cells of Aφ

i that are
added to Ri for obtaining Ri+1 lie outside φ. Since Ri fulfills the invariant, each cell
ofAφ

i in Ri+1 \ Ri is bounded by a single arc of φ and a single arc of ∂Ri and all those
cells are pairwise disjoint. Hence there exists at least one such cell c that disconnects
int(φ′)∩Ri , and the boundary of c along φ intersects φ′ (at least) twice. Recall that c is
bounded and to the exterior of φ. If φ′ was only intersecting φ at those two points, the
boundary of φ′ outside c would be completely contained in int(φ), but then c would
not disconnect int(φ′) ∩ Ri . Thus, φ must intersect φ′ in at least two more points, a
contradiction.

Now consider the case φ ∈ C1. For an illustration consider Fig. 13b. Assume again
that there exists a pseudocircle φ′ ∈ C0 for which int(φ′)∩ Ri+1 is disconnected while
int(φ′) ∩ Ri is connected. Consider again a cell c of Aφ

i that is part of Ri+1 \ Ri and
disconnects int(φ′) ∩ Ri . The cell c must not contain any of u and v as otherwise
it would not be in Ri+1. Further, the cell c cannot separate u and v, as otherwise
v would have been in a bounded region of R′

i+1 and we would have stopped the
process. As c disconnects int(φ′) ∩ Ri , φ intersects φ′ twice along the boundary of c
(and hence outside Ri ). As every pair of pseudocircles have at most two intersection
points, φ does not intersect φ′ in any other points. Especially, φ does not intersect φ′
inside Ri . Furthermore, φ intersects ∂Ri in int(φ′) at least twice along ∂c (causing
the disconnection of int(φ′) ∩ Ri ) and φ also intersects ∂Ri outside of φ′ (as it must
intersect σ and φ′ cannot intersect σ ). This last property implies that each component
of int(φ′)∩Ri+1 induced by c lies in a different reachable cell ofAφ

i that is neighboring
to c via an arc of φ. However, as c does not separate u and v, at most one such cell
can exist, a contradiction to int(φ′) ∩ Ri+1 being disconnected. �	

Now assume that both u and v lie on the boundary of all sets Ri constructed in
this way. Then the iterative process stops with a set Rm where for each φ ∈ C0 ∪ C1,
all cells in the arrangement Aφ

m of φ and ∂Rm that are contained in Rm are reachable
by σ ′. Note that m = O(n2) asA has O(n2) cells, in every iteration i at least one cell
of A has been added to Ri , and each cell of A is added at most once. Consider a path
P from u to v in Rm that is routed closely along the boundary ∂Rm (note that there are
two different such paths). Then for any φ ∈ C1, P intersects exactly two cells of Aφ

m ,
namely, the ones incident to u and v, respectively. Hence P crosses φ exactly once.
Similarly, for any φ ∈ C0, the path P intersects at most three cells ofAφ

m , namely, the
one(s) incident to u and v plus possibly the cell int(φ) ∩ Rm , which is one cell by the
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Fig. 13 Illustration of potentially separating cells in the proof of Lemma 4.2. The red arc and area belong
to φ′ ∈ C0, the blue striped area is the cell c, the blue curve is the pseudocircle φ ∈ C0 ∪ C1

invariant. Hence P crosses φ at most twice. Thus σ ′ = P is a valid extension for σ ,
which completes the correctness argument.

Note that computing R0 and σ ′ (in case that the algorithm didn’t terminate with a
negative answer before) can be done in polynomial time. Also, for each Ri and each
φ ∈ C0 ∪C1, the set of unreachable cells ofAφ

i can be determined in polynomial time.
As we have O(n2) iteration steps, we can hence compute Rm from R0 (or determine
that σ is not extendible) in polynomial time, which concludes the proof. �	

As an immediate consequence of Theorem 4.1 we have the following result:

Corollary 4.3 Given an arrangement A pseudocircles and a pseudosegment σ , it can
be decided in polynomial time whether σ can be extended to a pseudocircle �σ ⊃ σ

such that A ∪ {�σ } is an arrangement of pseudocircles.

5 An FPT-Algorithm for Bounded Number of Crossings

In this section we show that for drawings with a bounded number of crossings it can be
decided in FPT-time whether an edge can be inserted. Given a simple drawing D(G)

with k crossings, one can construct a kernel of size O(k) by exhaustively removing
isolated vertices and uncrossed edges from D(G). For a simple drawing D(G) of a
graph G = (V , E) and e ∈ E , let D(G − e) be the subdrawing of D(G) without the
drawing of e. Similarly, for an isolated vertex u ∈ V , let D(G − u) be the subdrawing
of D(G) without the drawing of u.

Observation 5.1 Given a simple drawing D(G) of a graph G = (V , E) and an iso-
lated vertex w ∈ V , an edge uv of G can be inserted into D(G) if and only if uv can
be inserted into D(G − w).

By Observation 5.1 we get that isolated vertices can be disregarded in an algorithm
that extends a simple drawing D(G) of a graph by one edge. The following lemma
implies that the same is true for uncrossed edges in D(G).

Lemma 5.2 Given a simple drawing D(G) of a graph G = (V , E) and an edge e ∈ E
that is uncrossed in D(G), an edge uv of G can be inserted into D(G) if and only if
uv can be inserted into D(G − e).
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Fig. 14 Rerouting uv when it crosses an otherwise uncrossed edge more than once

Proof Since D(G − e) is a subdrawing of D(G), it is clear that if uv can be inserted
into D(G) then it can be inserted into D(G − e). Suppose that uv can be inserted into
D(G − e) and let γ be a valid drawing of uv in D(G − e), that is, one resulting in a
simple drawing of G \ {e} ∪ {uv}. We orient γ from u to v. If γ is not a valid drawing
of uv in D(G) then it must intersect e more than once in D(G). We can modify γ

such that it is routed close to e between its first and last intersection with e, producing
at most one intersection; see Fig. 14 for an illustration. If e is not incident to u or v we
are done. Else assume without loss of generality that e is incident to u and let γ ′ be the
drawing of uv that was modified such that it has only one intersection with e. Recall
that e is uncrossed in D(G). Hence, the intersection point× of γ ′ with e and the point u
lie on the boundary of one cell in D(G). Consequently, we can modify γ ′ in such a
way that it is routed closely to e from u to × on the side of e on which γ ′ continues
to v without producing a crossing with any other edge in D(G). Either modification
only reduces crossings, but does not introduce new ones, hence we obtained a valid
drawing of uv in D(G) as desired. �	

Equipped with Observation 5.1 and Lemma 5.2 we are ready to prove the main
theorem of this section.

Theorem 5.3 Given a simple drawing D(G) of a graph G = (V , E) and an edge uv

of G, there is an FPT-algorithm in the number k of crossings in D(G) for deciding
whether uv can be inserted into D(G).

Proof Let G ′ be the subgraph of G remaining after exhaustively deleting uncrossed
edges and isolated vertices distinct from u and v. Furthermore, let D′(G ′) be the
corresponding subdrawing of D(G). By assumption, there are at most 2k crossed
edges in G. Hence G ′ has at most 4k + 2 vertices and 2k edges. Furthermore, by
Observation 5.1 and Lemma 5.2 we can insert uv into D(G) if and only if it can be
inserted into D′(G ′).

For solving the kernel instance of inserting uv into D′(G ′), we reformulate the
problem of inserting an edge into a simple drawing as a problem in the dual graph
of its planarization, as in [4]. In the planarization crossings are replaced by vertices
resulting in a plane drawing. Given a simple drawing D(G) of a graph G, the dual
graph G∗(D) is the plane dual of the planarization of D(G). Thus, every vertex in
G∗(D) corresponds to a cell in D(G) and every edge in G∗(D) corresponds to a
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segment of an edge in D(G). We assign to each edge in D(G) a different color (label)
and define a coloring χ of the edges of G∗(D), where every edge in G∗(D) inherits
the color of its primal edge in D(G). Given two vertices u, v ∈ V , let G∗(D, {u, v})
be the subgraph of G∗(D) obtained by removing from it the edges corresponding to
segments of edges incident with u or to v. Let χ ′ denote the coloring of the edges of
G∗(D, {u, v}) that coincides with χ in every edge. The problem of extending D(G)

with one edge uv is then equivalent to the problem of finding a path in G∗(D, {u, v})
between a vertex corresponding to a cell incident with u and a vertex corresponding
to a cell incident with v in which no color given by χ is repeated (that is, the path is
heterochromatic).

The number of segments of crossed edges in D′(G ′) is at most 4k. Thus,
G∗(D′, {u, v}) has at most 4k edges (while the number of vertices might not be
bounded by a function of k). There are O(n) cells in D′(G ′) with u or v on their
boundary. Further, every cell in D′(G ′) has complexity O(k). Checking whether uv

can be inserted into D′(G ′) can be done by (i) checking for each of the O(n) vertices
in G∗(D′, {u, v}) whether both u and v are incident to the according cell in D′(G ′),
and (ii) checking for each of the O(24k) non-empty subsets of edges in G∗(D′, {u, v})
whether they form a valid heterochromatic path with endpoints incident to u and v,
respectively. Altogether, this can be done (brute-force) in O(nk + k224k) time. �	

6 Conclusions

In this paper we showed that given a simple drawing D(G) of a graph G it is NP-hard
to decide if a particular edge from the complement of G can be inserted into D(G)

such that the result is a simple drawing. On the positive side, we showed that for a
given pseudocircular arrangement A of pseudocircles and a pseudosegment σ it can
be decided in polynomial time whether σ can be extended to a simple closed curve
�σ such that A ∪ {�σ } is again an arrangement of pseudocircles. Furthermore, we
proved that the problem is FPT with respect to the number of crossings of D(G).

In the light of our results, checking whether a simple drawing D(G) is saturated
by trying to insert every edge of the complement of G is hopeless (unless P = NP).
Thus, it is an interesting open problem whether there is a polynomial algorithm for
deciding if a simple drawing is saturated.
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