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Abstract
Recently it became possible to study highly excited rotational states of molecules in superfluid
helium through nonadiabatic alignment experiments (Cherepanov et al 2021 Phys. Rev. A 104
L061303). This calls for theoretical approaches that go beyond explaining renormalized values of
molecular spectroscopic constants, which suffices when only the lowest few rotational states are
involved. As the first step in this direction, here we present a basic quantum mechanical model
describing highly excited rotational states of molecules in superfluid helium nanodroplets. We
show that a linear molecule immersed in a superfluid can be seen as an effective symmetric top,
similar to the rotational structure of radicals, such as OH or NO, but with the angular momentum
of the superfluid playing the role of the electronic angular momentum in free molecules. The
simple theory sheds light onto what happens when the rotational angular momentum of the
molecule increases beyond the lowest excited states accessible by infrared spectroscopy. In
addition, the model allows to estimate the effective rotational and centrifugal distortion constants
for a broad range of species and to explain the crossover between light and heavy molecules in
superfluid 4He in terms of the many-body wavefunction structure. Some of the above mentioned
insights can be acquired by analyzing a simple 2 × 2 matrix.

1. Introduction

Interactions of individual molecules with superfluid helium-4 has been extensively studied during the last
decades both experimentally and theoretically [1–3]. According to infrared spectroscopy, the rotational
motion of most molecules is affected by superfluid helium only quantitatively: while no drastic qualitative
changes in rotational spectra is observed, the spectroscopic constants of molecules become ‘renormalized’
due to the molecule–solvent interactions. In particular, the rotational constant, B, and the centrifugal
distortion constant, D, assume different values as compared to gas phase molecules, B∗ < B and D∗ > D.
However, for the lowest J-levels, the rotational energy, EJ, can still be accurately described by the gas-phase
expression [4–6]:

EJ = B∗J(J + 1) − D∗J2(J + 1)2. (1)

Although there is little doubt that equation (1) describes the low-energy rotational structure for most
molecules in superfluid 4He, little is known about the higher excited rotational states. In particular, we are
talking about the states that are not initially thermally populated due to the helium environment (T ≈
0.37 K in helium nanodroplets). Due to the spectroscopic selection rules, ΔJ = ±1, conventional infrared
and microwave spectroscopies are able to reach as far as only one rotational state above the initial
Boltzmann distribution, on the order of J ∼ 5.

Recently it became possible to experimentally probe highly excited rotational states of molecules in
helium nanodroplets using non-adiabatic alignment protocols [7–10]. Namely, analysing the Fourier
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transforms of alignment traces allowed to reveal the energies and lifetimes of rotational levels in superfluid
4He, up to J ∼ 16. Moreover, the technique is applicable to molecules, that are non-responsive to infrared
spectroscopy, such as I2. At the moment, theoretical approaches that would explain the behavior of solvated
molecules at high angular momenta are lacking, be it simple models or ab initio numerical techniques.
Apart from understanding the fundamentals of molecular solvation, such theory is required to control
molecular rotation in solvents, e.g. using an optical centrifuge [11, 12].

The goal of this paper is to present a simple quantum mechanical model that provides insights into
high-J states of molecules in superfluids and to put it in the context of the experimental data gathered
during the years in the low J-regime, i.e. on renormalization of the effective B∗ and D∗ constants of
equation (1). We would like to emphasize that a lot of theoretical work has been previously devoted to
explaining renormalization of rotational and centrifugal distortion constants in superfluid helium. Most
quantum models and ab initio approaches, however, focused on properties of molecules in the ground and
the lowest excited rotational states [4, 13–20]. The extension of first principle treatments to highly excited
states seems quite challenging [21]. Since at the moment even simple-model approaches to such states are
lacking, here we resort to a phenomenological treatment, based on the previously discussed angulon model
[22–24], which we simplify further in order to make it more transparent.

The present study builds upon our recent experimental and theoretical work [10], where we briefly
sketched the model and showed that it provides a good agreement with experimental data for CS2 and I2

molecules up to J ∼ 16. Here, apart from describing the theoretical machinery of our model in more detail,
we gain several novel insights into the highly excited states and connect their behavior to the large amount
of experimental data available for the states with low angular momentum. In particular, we focus on the
following aspects:

(a) The relatively sharp crossover between the spectra of light and heavy molecules in helium. It is
considered common knowledge that rotations of light molecules (usually defined as B � 1 cm−1) are
almost not affected by helium, while the rotational constants of heavy molecules (B � 1 cm−1) are
strongly renormalized [1]. It is, however, clear that the effects of the solvent cannot be reduced to the
magnitude of the rotational constant alone (as in ‘heavy’ vs ‘light’), since the strength of the
molecule–He interactions and the available excitation channels in the superfluid also have to play a
role. This is confirmed e.g. by path integral Monte-Carlo simulations for the LiH molecule in 4He
clusters [25]. Despite being a light rotor (LR) (B ≈ 7.5 cm−1), LiH features strong anisotropic
interactions with helium [26], which results in strong renormalization of its rotational constant,
B∗/B ∼ 0.06 [25].

Using our simple model, we show how the interplay between the value of B and the strength of the
anisotropic molecule–He interactions result in a sharp transition between the heavy and light
molecules, cf figure 3.

(b) We show that the statement that ‘light molecules are not strongly affected by helium’ does not
necessarily hold for highly excited rotational states with J � 5, cf the simulated Raman spectrum in
figure 2.

(c) The scaling of the effective centrifugal distortion constant D∗ with B. In reference [27] the following
empirical relation of was found by fitting to experimental data:

D∗ = 0.031 × B∗1.818. (2)

The microscopic picture behind this empirical law is, however, not clear, let alone the origin and
dimensionality of the prefactor. Furthermore, assuming that light molecules are almost unaffected by
helium, one would expect D∗ → 0 for large B, which contradicts equation (2). We show that a similar
law follows from our model, with a prefactor dependent on molecule–helium interactions, cf
equations (11) and (12) and figure 4.

The points (a)–(c) above allow to integrate the results of our model (which focuses on highly excited
states) into the previously gathered knowledge on low molecular excitations. We start by describing the
model in section 2 and show that a linear molecule in superfluid helium can be seen as an effective
symmetric top. This description is similar to that of open-shell molecules like OH or NO [28, 29], but with
the angular momentum of the superfluid playing the role of the angular momentum of the electronic shell.
Here we are going to omit a detailed discussion of the angular momentum transfer between the molecule
and the superfluid and refer the interested reader to our earlier work [10]. In section 3 we analyze the
energy level structure of such an effective symmetric top and gather insights relevant to experiments on
solvated molecules in excited rotational states. In section 4 we show how the model can be simplified even
further and that important insights can be gathered from solutions of a 2 × 2 matrix. Finally, in section 5
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we connect the model to the data available in the low-J regime and present analytic estimates for effective
spectroscopic constants, B∗ and D∗, and compare them with experiment. Section 6 provides the conclusions
of this study.

2. A solvated linear molecule becomes a symmetric top

2.1. The angulon Hamiltonian
We consider a linear molecule with a rotational constant B revolving in the bath of bosons (collective
excitations in 4He). To obtain the simplest possible model, we take into into account only a single mode of
the bath with energy ω and angular momentum λ. In the case of superfluid helium it might be tempting to
label these excitations as rotons, however we intentionally keep the treatment as general as possible. In
addition, we take into account only the linear molecule–He coupling term. This corresponds to a further
simplification of the previously developed angulon model [22, 23]. In the molecular (body-fixed) frame, the
system is described by the following Hamiltonian [30]:

Ĥ = B(L̂− Λ̂)2 + ω
∑

n

b̂†λnb̂λn + u(b̂†λ0 + b̂λ0), (3)

where b̂†λn (b̂λn), obeying the commutation relation [b̂λn, b̂†λ′n′] = δλλ′δnn′ , create (annihilate) a bosonic
excitation with angular momentum λ and projection onto the molecular (i.e. interatomic) z-axis n. The
parameter u reflects the strength of the anisotropic molecule-bath interaction. L̂ is the total angular
momentum of the system and Λ̂ =

∑
nν b̂†λnσ

λ
nν b̂λν defines the angular momentum acquired by the bath.

Here, σλ
nν denotes the angular momentum matrices fulfilling the SO(3) algebra in the representation of

angular momentum λ.
In this paper we focus on the weak-coupling theory, that is, we start from a non-interacting case,

corresponding to no helium excitations and add excitations one by one. The weak coupling angulon theory
accounting for a single excitation of helium was shown to predict renormalization of rotational constants of
light molecules trapped inside helium nanodroplets in good agreement with experimental data [23]. To
accurately describe heavy rotors (HRs), one has to deal with more sophisticated solutions of the
Hamiltonian, equation (3). They involve perturbations on the top of a microscopic deformation of the
helium bath, i.e. an infinite number of bosonic excitations [30–32]. In the course of the paper, however, we
aim to demonstrate that the solutions including up to triple excitations are able to catch changes in
molecular spectra for broad range of species measured in helium.

The first term of equation (3) represents an effective symmetric-top Hamiltonian, similar to that used to
describe the electronic states of radicals, such as NO or OH [28, 29]. In our case, the boson angular
momentum Λ̂ plays the role of the electronic angular momentum in open-shell molecules. The
corresponding rotational states can be expressed through the symmetric-top states |LNM〉, where N and M
label the projections of the total angular momentum, L, on the molecular and space-fixed axes, respectively.
For a linear molecule, the projection of the molecular rotational angular momentum, J, on the molecular
z-axis is zero, therefore N entirely corresponds to the projection of Λ. In other words, the interaction with
the superfluid, u of equation (3), creates some non-zero angular momentum Λ that can be seen as
analogous to the electronic angular momentum of open-shell molecules. Or, semiclassically speaking, a
‘nonsuperfluid shell’ of He atoms attached to the linear molecule, provides it with an additional ‘thickness’,
hence the symmetric-top description. The classification of different L–Λ coupling schemes in terms of
Hund’s cases (in analogy with gas-phase species) is another interesting problem that is not going to be
discussed here. Furthermore, we omit the detailed discussion of molecule-bath angular momentum
transfer, that has already been presented elsewhere [10].

2.2. Basis states and diagonalization
It is worth noting that in the case of a particle linearly moving in a bosonic environment (the so-called
‘polaron problem’), writing the Hamiltonian in the frame co-moving with the particle (by analogy with
equation (3)) allows to completely decouple the particle and environment degrees of freedom [33]. This is
impossible to do for the case of a rotating molecular impurity, since different components of the angular
momentum L̂ do not commute with each other and it is therefore impossible to replace L̂ in equation (3)
by a classical number L, as one could do for the total linear momentum operator, P̂→ P. Although the
magnitude of the total angular momentum, L, is conserved, a general solution is going to be a superposition
of states corresponding to different projections N, which, in turn, can contain different numbers of bosonic
excitations (the M-quantum number plays no role in the absence of external fields).

3
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We diagonalize the Hamiltonian, equation (3), in the following basis:

ψ(m)
L[n1n2...nm],M = |LNM〉mol

(
b†λn1

b†λn2
. . . b†λnm

|0〉bos

)
. (4)

N =
∑m

i=1ni and M refer to the total projection of L̂ on the molecular and laboratory z-axis, respectively. N
and M take values in the range [−L, L]. An additional condition on the total projection N is imposed by the
following limitation on ni: |ni| � λ. As stated above, we restrict our basis set to m � 3. Note that although
equation (3) is a substantial simplification of the original angulon Hamiltonian, the ansatz of equation (4)
represents a substantially expanded basis set compared to the previous treatments, where only single
excitations (m = 1) were taken into account [22]. Including multiple bath excitations allows to describe a
broader range of molecules using the weak-coupling theory.

The m = 0 case describes a bare (‘gas phase’) molecular state ψ(m=0)
LM = |L, N = 0, M〉mol|0〉bos.

Diagonalization of the Hamiltonian in this basis obviously leads to the (2L + 1)-fold degenerate energy
spectrum of an isolated rigid rotor, BL(L + 1). The projection N equals to zero in the absence of the
excitation since we assume that the molecule is linear. The m > 0 cases introduce multiple excitations of the
bath b†λn1

b†λn2
. . . b†λnm

|0〉bos.
In our model, the molecule can directly induce only deformations of the boson density that preserve

N = 0. Thus, they are strongly aligned along the molecular z-axis. This can be seen from the third term in
equation (3) and from the corresponding density plot for L = 0 in figure 1(a). Nevertheless, the presence of
the spin-orbit-like (or Coriolis-like) interaction, the −2L̂ · Λ̂ term in equation (3), causes precession of Λ̂
about the molecular z-axis, somewhat similar to a spin in a magnetic field. Minimization of the angle
between L̂ and Λ̂ (which, in turn, minimises the energy of the system) leads to increase in N and hence to
the wider distribution of the bosons density with respect to the molecular z-axis as shown in figure 1(a). As
a result, the linear molecule dressed by a cloud of excitations resembles a symmetric top whose non-zero
projection N is exclusively provided by the angular momentum of the He atoms in the solvation shell. In
the following sections we discuss how the spectrum of such an effective symmetric top differs from the
quadratic spectrum of a rigid linear rotor.

3. Highly excited rotational states in a superfluid

We start from exploring the stationary states of the system, previously briefly described in reference [10] In
what follows, we show that through analysing the states of an effective symmetric top (cf section 2.1), one
can understand the distribution of angular momentum due to the molecule–helium interaction and how it
changes in an external laser field.

Figure 1 shows the possible states of the system for the case of one, two and three bath excitations. Each
dot in figures 1(b)–(d) represents a unique configuration, their energies are obtained by diagonalization of
the Hamiltonian, equation (3), assuming u = 0. To facilitate the visualisation of each contribution, we
perform diagonalization in each of three bases, equation (4) with m = 1–3, separately and plot the
calculated energies in figures 1(b)–(d), respectively. The blue dots correspond to m = 0, i.e. to the energies
of an isolated gas phase molecule, BL(L + 1). In this case, the molecular angular momentum equals to the
total angular momentum J = L, no excitations of the bath are present.

The red dots in figures 1(b)–(d) form the band of excited states. For illustrative purposes, figure 1(a)
shows the molecular-frame densities of He corresponding to three of these excited states at L = 0, 14 and
35, also marked in figure 1(b). In these configurations, the total angular momentum L is shared between the
molecule and the helium excitations. For simplicity we begin with the states involving single excitations,
m = 1, carrying energy ω and angular momentum λ with projection n onto the molecular z-axis, as shown
in figure 1(b). Neglecting the off-diagonal L̂±Λ̂∓ terms in equation (3), the energies in the |LnM〉-basis are
given by:

Eλ
L,n = BL(L + 1) − 2Bn2 + Bλ(λ+ 1) + ω, (5)

where we introduced an additional shift by the excitation energy ω. Equation (5) corresponds to the
energies of an oblate (disk-shaped) symmetric top, shifted by Bλ(λ+ 1) + ω from zero. Since the
off-diagonal components of the −2L̂ · Λ̂ term in equation (3) mix n, the resulting state in the most general
case corresponds to a superposition of different n projections. From the shape of the band of excited states
in figure 1(b) one can see that the energetics remains similar to that of an oblate symmetric top even when
the off-diagonal terms are fully taken into account. In particular, the system tends to occupy the states with
non-zero n.

To provide an intuitive understanding of the perturbations caused by molecular rotation, we plot the
distribution of helium density in the molecular frame for selected excited states in figure 1(a). Note that

4
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Figure 1. (a) Boson density distributions in the molecular (body-fixed) frame for selected excited states (marked by the
corresponding symbols in (b)). (b)–(d) Energy diagram of the band of excited states involving single (m = 1), double (m = 2),
and triple (m = 3) excitations of the bosonic bath (red dots), respectively. The gas-phase rotational spectrum (m = 0) is shown
by the blue dots. The green line indicates configurations with projection n ≈ 0 onto molecular z-axis, the black lines denote the
excited states with minimum energy and largest possible total projection, N =

∑
ni, for a given L. The absolute energy units

correspond to the choice of B = 0.04 cm−1.

these densities are obtained at u = 0 and do not correspond to the density deformations induced by the
molecule (as discussed in reference [10]). Instead, these plots are supposed to illustrate how the excited bath
states look like in real space in the absence of molecule–helium interactions.

Let us consider a particular excited state at L = 0 with a well-defined projection, n = 0, marked by the
green square in figures 1(a) and (b). The energy cost to create such an excitation is ω + Bλ(λ+ 1). The
angular density distribution plotted in figure 1(a) shows that the bosons primarily reside at the poles of
the molecule (linear configuration). As L increases, the states with the dominating zero projection
contribution form the upper edge of the band in figure 1(b) coloured in green. Classically, they might be
thought of as rigid rotation of the molecule with its solvation shell.

However, the states with n ≈ 0 are not the ground state of an effective oblate top described by
equation (5). For L > 0, as soon as the excitation is created, the Coriolis coupling −2L̂ · Λ̂ makes the n 	= 0
configurations energetically more favorable. The bosons density shifts to the waist of the molecule (T-shape
configuration) as L increases. The states with the maximum |n| build the lower edge of the band in
figure 1(b) coloured in black. Its parabolic shape is defined by the above mentioned restrictions set on
n: (i) |n| � L and (ii) |n| � λ. The minimum energy equals to ω and it is reached at L = λ. Furthermore,
the lowest excited state at L = λ shows a perfectly uniform distribution over n. This state is marked by the

5
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black square in figures 1(a) and (b). Its angular density distribution is delocalized as plotted in figure 1(a).
In the classical picture, we interpret these observations as manifestation of non-rigidity of the
molecule–bosons coupled rotation.

Further growth of L beyond λ, nevertheless, leads to the bending up of the lower edge of the band since
|n| can no longer increase. In figures 1(a) and (b) we mark one of the states satisfying L 
 λ by the black
triangle. The boson density moves back towards the poles of the molecule. We would like to stress that these
findings are analogous to the resonance behavior of the helium anisotropy found within the semiclassical
toy model [17]. In that model, the solvation shell is modelled as a ring of NHe helium atoms. Identically to λ

in our model, NHe determines the symmetry of the helium solvation shell. The maximum anisotropy
observed at L = NHe draws parallels to the results discussed above.

Qualitatively, similar considerations are valid for double (m = 2) and triple (m = 3) excitations. The
corresponding energy diagrams are shown in figures 1(c) and (d). The only noticeable difference arises
from the possibility to sum up individual projections ni to the total projection N. The constraint |n| � L is
thereby lifted which substantially expands the Hilbert space of the bath excitations. As a consequence, the
lower edge of the band in the range of L < λ becomes flat. It happens due to the fact that the combinations
of several excitations having the largest possible projections |n| = λ of the opposite sign are allowed even
for small L. The minimum energy therefore reduces to mω, the lower edge of the band starts bending
upwards at L = mλ.

4. Even simpler: a two-level model

In the previous section we discussed the possible states of the ‘many-body symmetric top’ without explicitly
taking into account the coupling between these states induced by the molecule–helium interactions. A
non-zero value of u results in coupling of the bare molecular state (m = 0) to the excited states with m > 0
discussed above. The deviations of the final energies with respect to the gas-phase spectrum describe the net
effect of the surrounding environment on molecular rotation. These perturbations can be detected in
experiments as a change of the effective spectroscopic constants and are therefore of particular interest.
While it is possible to evaluate them numerically, we would like to focus on the aspects of the model
available for analytical treatment at first.

In our model, bare rotational states couple in first order only to the single excitations with n = 0 (cf the
third term in equation (3)). For small L, the gas-phase energies and the band of excited states are separated
by the relatively large energy gap, Δ0, as compared to the rotational kinetic energy:

Δ0 = ΔL=0 = ω + Bλ(λ+ 1). (6)

Note that the gap depends on B and never closes for small L. In particular, this means that a few
well-distinguished rotational levels must be present even for very LRs with B exceeding ω, as confirmed by
experiment [1]. Since it is hard to obtain an accurate analytical expression for the gap, ΔL, for an arbitrary
L, we use its numerically calculated values shown in figure 1(b). Nevertheless, one can say that in the linear
approximation its slope is approximately given by Bλ. The ratio u/ΔL and its dependence on L define how
strong the bath perturbs the molecular energies. If the interaction strength is comparable to or exceeds the
kinetic energy of the excitation, u �ΔL, the rotational spectrum is subject to strong renormalization. In the
opposite case of u 
 ΔL, the molecule does not experience a strong influence from the bath.

In figure 2 we calculate the Raman-like (ΔL = ±2) rotational spectrum for a typical light molecule with
B = 4 cm−1 and u/ΔL ≈ 0.05. Although the energy of the first excited state, L = 1, exceeds ω, we see three
well-defined spectral lines attributed to the total angular momentum states up to L = 6. Because of the
small u/ΔL ratio, they exhibit a slight red shift and minor changes in intensity distribution in comparison
to the gas phase. This coincides with a few percent change in the rotational constants observed for light
molecules [1]. A secondary substructure originating from the perturbed band of the excited states is
separated from the main peak by the energy gap of order ΔL. We do not label these spectral features in the
figure because of their negligible spectral weight.

The situation changes radically when L is further increased. As may be seen in figure 1(b), the
L-dependent energy gap ΔL shrinks and finally closes at

L0 ≈
(
ω + Bλ(λ+ 1)

2B

)1/2

. (7)

Referring back to figure 2, we observe that the lines involving the states L � L0 (L0 = 8 in this particular
case) develop a rich substructure consisting of multiple secondary peaks. In principle, all of them might be
ascribed to the transitions between excited states that preserve N but change L according to the selection

6
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Figure 2. Raman-like (ΔL = ±2) rotational spectra for a typical LR molecule (B = 4 cm−1) in helium (u = 10 cm−1, red solid
line) and in the gas phase (blue dashed line). The molecule initially resides in the ground L = 0 state.

rules ΔL = ±2. We expect that these lines will be substantially broadened if one goes beyond the single
mode approximation and includes a full continuous dispersion of bulk helium ω(k) into the model. This
effect has been demonstrated in reference [34] for symmetric top molecules. It quantitatively explains the
anomalous broadening of spectral lines, initially observed in experiments with CH3 [35] and NH3 [36] in
helium droplets.

Next, we derive simple analytical formulas for the renormalized spectroscopic constants. In first order,
the gas-phase rotational states are coupled only to the states with n = N = 0 and m = 1, which are, in turn,
coupled to states with nonzero N and m � 1 in higher orders. To simplify the problem, we can assume that
all higher-order interactions can be incorporated into an effective energy shift, δL, of the single excitations
with N = 0 with respect to the energy given by equation (5), Eλ

L,0 = Δ0 + BL(L + 1).
In such a way, we can qualitatively describe the L-dependent deformations of the gas phase spectrum as

coupling of the bare molecular states to a single ‘dressed’ N = 0, m = 1 state for a given L, which
corresponds to an effective two-level system:

Ĥ′
L =

[
BL(L + 1) u

u BL(L + 1) +Δ0 − δL

]
. (8)

After dropping L-independent contributions, the ground state energy of the Hamiltonian (8) reads:

EL = BL(L + 1) − δL

2
−

√
(Δ0 − δL)2 + 4u2

2
. (9)

Based on equation (5), we set δL = 2BγL(L + 1) with the parameter γ ∈ [0, 1] defining how strong is the
effect of high order interactions on the N = 0, m = 1 states, i.e. how much their energy effectively shifts
from Eλ

L,0 (located close to the green line in figure 1(b)) towards the lower edge of the band (black line in
the same figure). In both limits of light (B →∞) and heavy (B → 0) rotors, EL can be expanded in a series:

EL = B∗L(L + 1) − D∗L2(L + 1)2 + O
(

L3(L + 1)3
)
, (10)

cf equation (1). For LRs, we make use of the condition u 
 Δ0 to show that the zero-order term in u
cancels out leading to weak renormalization of spectroscopic constants:

B∗
LR

B
≈ 1 − 2γu2

Δ2
0

; D∗
LR ≈ 4B2γ2u2

Δ3
0

. (11)

These expressions coincide with the exact analytical results obtained for small L in reference [10]. Both
renormalized spectroscopic constants contain the small parameter u/Δ0 which guarantees that B∗ → B and
D∗ → 0 in the free-rotor limit.

In the opposite limit of HRs, the expansion of energy in powers of a small parameter (Δ0−δL
2u )2 gives

B∗
HR

B
≈ 1 − γ; D∗

HR ≈ B2γ2

2u
. (12)

Since the average value of the parameter is γ ∼ 1/2, the rotational constant shows non-negligible
renormalization in this case. The expression for D∗

HR closely resembles the empirical formula equation (2)
found in reference [27] by fitting to existing experimental data. In our case, however, the prefactor explicitly
depends on the interaction strength and has a clear physical meaning (setting γ = 1/2 and u = 10 gives the
prefactor of ≈0.01, i.e. on the same order as in equation (2)). Moreover, equation (12) predicts the same
dependence on B as the approximate solutions of the strong coupling model reported in reference [23].
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5. Scaling of spectroscopic constants

The model described in section 2 has already been successfully used to describe experimental data on
rotational states of CS2 and I2 molecules up to J ∼ 16 [10]. The experimental data available on highly
excited rotational states is, however, still quite limited and it is important to place the model in the context
of the large amount of measurements for the low-J excitations. Over the past two decades a lot of
experimental and theoretical data were collected for effective spectroscopic constants of a broad range of
molecular species in superfluid helium (see e.g. reference [1]). In this section, we work with the numerical
solutions of the full model developed in section 2, as opposed to the simplified solutions discussed in the
previous section. The values of B∗ and D∗ discussed below were obtained by fitting the energies of the
L = 0–3 states to equation (1). Apart from providing the estimates for spectroscopic constants, we address
the transition between the light and heavy species as well as the scaling of D∗ with B, see sub. (a)–(c) in the
introduction, section 1.

In figure 3(a) we compare the effective rotational constants (B/B∗ as a function of B) estimated using
our model (lines) with the results of experiments (black circles) [1, 4–6, 9, 13, 14, 19, 27, 35–56]. The
energy of the bosonic mode ω was fixed to 6 cm−1, the roton energy of bulk helium [57]. This choice is
motivated by the extremely large density of solvent states near the roton excitation energy. The angular
momentum of excitation λ was set to 14, which has already been used to explain the experimental data in
reference [10]. Although this number seems quite large, it reflects the density profile around the molecule
and corresponds to approximately 2λ He atoms forming the solvation shell in the semiclassical picture.
Furthermore, it is important to emphasize that the Hamiltonian of equation (3) is only an effective one. It is
clear that a microscopic coupling of a molecule with helium is going to involve terms corresponding to
excitations of many bosonic modes, such as b̂†b̂†, b̂†b̂†b̂†, . . . , in addition to single excitations of
equation (3). Therefore, the third term of equation (3) is to be seen as coupling to some effective mode with
angular momentum λ, which at the microscopic level consists of several excitations with much lower
angular momentum.

We would like to emphasize that the results presented here for the spectroscopic constants are merely
estimates: we are trying to see whether some general trends, previously obtained by fitting to experimental
data, can also be derived from the model. For example, the molecule–helium coupling constant, u, depends
on the details of the molecule–He potential energy surface (PES) and is going to be different for each
molecule. Moreover, u does not show any significant correlation with B: according to reference [23], the
interaction parameter extracted from the molecule–He PES and expressed in absolute units varies within
one order of magnitude for the species whose rotational constant cover more than three orders of
magnitude. Since here we focus on the general trend, we present the theoretical curves for three different
values of u and the experimental data on B/B∗, without discussing concrete molecular species.

The overall trend seen in figure 3(a) can be explained semiclassically by the ‘adiabatic following’ model
[14, 58, 59], revealing the crossover between the heavy and light species. In a simple picture, HRs
(B � 1 cm−1) rotate slow enough for the helium solvation shell to follow. Such strong coupling leads to a
significant reduction of B, up to a factor of 6. LRs (B � 1 cm−1), in contrast, rotate so fast that they
decouple from helium and their rotational constant is almost not renormalized.

Note that the ansatz of equation (4) corresponds to the weak-coupling approximation, which breaks
down in the limit of B → 0, i.e. for very heavy molecules. The results furnished by the model in this regime
(dotted lines figure 3(a)) are unphysical. This behavior might also be rationalized within the effective
two-level model of section 4. If B → 0, the shift δL in equation (9) vanishes, thereby eliminating the
L-dependence from the model (or alternatively, the lower edge of the band in figure 1(b) becomes flat).
Although the admixture of bosonic excitations into the total wave function might be dominant, it does not
bring any L-dependent contribution to the energy. The decreasing renormalization in this region is, thus, of
a completely different nature than in the case of LRs. Including the excitations with m > 3 into the basis
may substantially improve solutions of the model Hamiltonian, equation (3), in this regime.

Figures 3(b) and (c) break down the contributions of different numbers of helium excitations into the
total wavefunction for heavy and light molecules, respectively. The coupling parameter is set to the same
value of u = 10 cm−1 in both cases. For heavy molecules, B = 0.04 cm−1, figure 3(b), the contribution of
the bare molecular state, m = 0, is approximately 50% for L = 0 and monotonously decreases with L, while
higher excitations m = 2 and 3 get more populated. For light molecules, on the other hand, there is a sharp
transition point L0, such that for L < L0 only m = 0 states are populated, while for L > L0 also the states
with nonzero m are, see the example for B = 4 cm−1 in figure 3(c).

This shows an important difference between heavy and light molecules, previously broadly discussed in
the literature from other points of view [1]. For heavy molecules, even in the absence of rotation, the
molecule–helium interaction distorts the surrounding superfluid and creates He excitations co-rotating
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Figure 3. (a) The reduction factor of rotational constants, B/B∗ , for molecules in helium as a function of the gas phase rotational
constant, B. The solid lines show the theoretical predictions obtained in the present work for selected values of the interaction
strength, u. The dotted part of the lines indicates the range of B where the weak coupling theory fails. Experimental data points
are shown by the black circles. (b) and (c) The relative contributions of the states involving single (m = 1), double (m = 2),
triple (m = 3) excitations of helium as well as bare molecular states (m = 0) to the total wave function for a HR
(B = 0.04 cm−1) and a LR (B = 4 cm−1), respectively. The interaction parameter u = 10 cm−1 in both cases.

Figure 4. The effective centrifugal distortion constant, D∗ , as a function of the effective rotational constant B∗ (solid lines) for
selected values of the interaction parameter u. The dotted parts of the lines indicate the range of B∗ where the weak-coupling
theory fails. Experimental data points are shown by the black circles. The dashed black line corresponds to the empirical formula
from reference [27].

with the molecule (a ‘non-superfluid solvation shell’). For light molecules at small L the bath excitations are
only virtual (in agreement with the results of reference [23]), resulting in a very small B-renormalization.
After some critical value of L ∼ L0, the bare molecular states cross the excitation threshold and start
coupling to the bath strongly, which results in substantial population of m 	= 0 states.

Figure 4 shows the effective centrifugal constant D∗ as a function of B∗ in comparison with the
experimental data listed in references [4–6, 9, 27, 35, 38, 44, 51, 52, 54, 55]. In agreement with the
established experimental and theoretical result, D∗ measured in helium droplets is found to be 102–104

times larger than the corresponding gas-phase value. The LRs with B � 3 cm−1, whose B/B∗ ratio is barely
distinguishable from 1, show large D∗ of the order of 0.01 cm−1 only if the interaction parameter, u, is large
(orange and blue lines). Otherwise, D∗ does not scale with B∗ (green line) and might be comparable to the
gas-phase centrifugal constant for some of the molecules. In the case of HRs this tendency is not apparent,
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D∗ shows persistent dependence on B∗ in a wide range of u. In particular, one can see that, similarly to
equation (12), the scaling of D∗ closely resembles the already mentioned empirical formula, equation (2),
found in reference [27].

6. Conclusions

Thus we presented a simple quantum mechanical model describing the rotational level structure of
molecules in superfluid helium nanodroplets and, in particular, capturing highly excited states (recent work
[10] compared the model calculations with experiment up to J � 16 for I2 and CS2 molecules). Here we
provided details on the theoretical machinery of the model, benchmarked its results against the data on the
effective spectroscopic constants B∗ and D∗ for a broad range of molecules. Although the model is already
based on a simplified version of the previously reported angulon Hamiltonian [22], we have substantially
simplified it further and have shown that several properties of molecules in superfluids can be understood
by analyzing a simple 2 × 2 matrix, equation (8).

Among other results, we gathered the following insights:

(a) A linear molecule in superfluid He can be described as an effective symmetric top, with an additional
quantum number describing the projection of superfluid angular momentum on the molecular z-axis.
Coupling between the superfluid and molecular rotational angular momenta is reminiscent of that
between the electronic and rotational angular momenta in the gas-phase radicals, such as OH or NO.
This provides a means to work with different angular momentum coupling schemes involving the
solvent angular momentum and to introduce some kind of ‘many-body Hund’s cases’ describing such
coupling in the future.

(b) Analyzing the structure of such a symmetric top, whose states can be mixed by molecule–helium
interactions, furnishes a few qualitative insights. For example, the crossover between the rotational
behavior of light and heavy molecules in a superfluid (approximately at B ∼ 2–3 cm−1) can be
explained in terms of the many-particle wavefunction structure shown in figure 3(c), which, in turn,
follows from the L-dependent energy gap ΔL shown in figure 1(a).

It is important to underline the main differences between the model described here from the simple
models previously discussed in the literature, in particular that of reference [17]. First and foremost, the
model presented here is capable of describing highly excited rotational states of molecules in a superfluid.
Secondly, it considers a rotor immersed in a bosonic bath in three-dimensional space. Thirdly, the bath is
treated as a Bose–Einstein condensate of collective excitations of superfluid 4He. For the sake of simplicity,
we restricted our consideration to a single mode of the bath. However, further generalization of the
treatment is straightforward.

The results presented here and in reference [10] reveal that the structure of the highly excited rotational
states can substantially deviate from the gas-phase-like equation (1), in particular for heavier molecules,
such as I2 and CS2. This deviation needs to be taken into account while creating molecular superrotors
using the optical centrifuge technique [11, 12]. In particular, one might need to redefine the adiabaticity
criterion of molecule-laser interactions and to use non-linear ramp pulses in order to account for the
threshold of the states as shown in figure 1.
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