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Abstract

The ability to form and retrieve memories is central to survival. In mammals, the hippocampus
is a brain region essential to the acquisition and consolidation of new memories. It is also
involved in keeping track of one’s position in space and aids navigation. Although this
space-memory has been a source of contradiction, evidence supports the view that the role of
the hippocampus in navigation is memory, thanks to the formation of cognitive maps. First
introduced by Tolman in 1948, cognitive maps are generally used to organize experiences in
memory; however, the detailed mechanisms by which these maps are formed and stored are not
yet agreed upon. Some influential theories describe this process as involving three fundamental
steps: initial encoding by the hippocampus, interactions between the hippocampus and other
cortical areas, and long-term extra-hippocampal consolidation. In this thesis, I will show how
the investigation of cognitive maps of space helped to shed light on each of these three memory
processes.
The first study included in this thesis deals with the initial encoding of spatial memories in
the hippocampus. Much is known about encoding at the level of single cells, but less about
their co-activity or joint contribution to the encoding of novel spatial information. I will
describe the structure of an interaction network that allows for efficient encoding of noisy
spatial information during the first exploration of a novel environment.
The second study describes the interactions between the hippocampus and the prefrontal
cortex (PFC), two areas directly and indirectly connected. It is known that the PFC, in concert
with the hippocampus, is involved in various processes, including memory storage and spatial
navigation. Nonetheless, the detailed mechanisms by which PFC receives information from the
hippocampus are not clear. I will show how a transient improvement in theta phase locking of
PFC cells enables interactions of cell pairs across the two regions.
The third study describes the learning of behaviorally-relevant spatial locations in the hip-
pocampus and the medial entorhinal cortex. I will show how the accumulation of firing around
goal locations, a correlate of learning, can shed light on the transition from short- to long-term
spatial memories and the speed of consolidation in different brain areas.
The studies included in this thesis represent the main scientific contributions of my Ph.D. They
involve statistical analyses and models of neural responses of cells in different brain areas of
rats executing spatial tasks. I will conclude the thesis by discussing the impact of the findings
on principles of memory formation and retention, including the mechanisms, the speed, and
the duration of these processes.
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Introduction

1.1 Memory
Evolution favored the survival of animals endowed with a flexible and powerful solution: a
“computational machine”, integrated into living beings, in the form of a nervous system (Erwin
et al., 2011; Suryanarayana et al., 2020). One of the main advantages of possessing a nervous
system lies in the fact that certain aspects of previous experiences can be stored, so as to be
better prepared for the next encounter with a similar situation. This ability is generally called
memory.
The term “memory” is an elusive one: there have been many attempts to formally define it,
but every definition has flaws and no consensus has been reached (Roediger et al., 2007). In
this thesis, I will use the pragmatic approach of stating the purported function of memory,
rather than a definition per se. Inspired by (Dudai et al., 2007), I will state that the function
of memory is “to retain over time neurally encoded representations of the world, created or
modified through experience”. Although many theories of memory are based on mammalian
studies, every animal species with a nervous system actively uses memory every day to survive:
this is clear already for the organism with the smallest nervous system ever studied, the
302 neurons of C. elegans (de Bono and Maricq, 2005). Honeybees were among the first
invertebrates that received formal behavioral scrutiny (Frisch et al., 1926), and the neural
underpinning of their ability to quickly learn and remember the color and smell of nectar-yielding
flowers was described roughly 50 years later (Menzel and Erber, 1978). Together with animal
behavioral and electrophysiological studies, a long tradition of human psychological studies
laid the foundations for the study of memory (Jenkins and Dallenbach, 1924). I will introduce
here the different approaches and various concepts used to study memory, and then focus on
studies in humans, non-human primates, and rodents, which gave rise to many theories of
memory consolidation focusing on the hippocampal system.

How to study memory
Memory is usually formed through experience or learning. The main challenge is to link the
behavioral indication of learning with the underlying cellular/network mechanisms. This can
be studied on different levels, broadly related to the different molecular and cellular scales
commonly studied.
The synaptic level. Also called “synaptic consolidation”, it refers to the long-term strengthening
or weakening of synaptic efficacy (Hebb, 1949; Bliss and Lømo, 1973). There exist different
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1. Introduction

forms of synaptic potentiation/depression (Magee and Grienberger, 2020): this process is
generally fast-paced and finishes within minutes to hours from its initiation (Kandel, 2013).
Although well accepted and with ample experimental support (Glanzman, 2010), there are still
outstanding criticisms of the relevance of synaptic plasticity to learning (Gallistel and Matzel,
2013). Moreover, a number of non-synaptic mechanisms have been discovered that can be
used as memory substrates (Lisman et al., 2018), which can be hard to reconcile with a pure
synaptic-centered view(Abraham et al., 2019).
The engram level. An influential theory about memory discusses the concept of “engrams”.
In a nutshell, an engram represents the physical instantiation of memory, i.e., the group of
neurons and synapses within which a memory resides (Lashley, 1950). The “search for the
engram” has so far proven difficult (Bruce, 2001), although some recent successes have been
reported, mostly due to novel techniques (Ryan et al., 2015; Kitamura et al., 2017; Tonegawa
et al., 2018). One of the reasons why it is so difficult to locate physical engrams is the fact that
memories are largely distributed across brain regions (Josselyn et al., 2015). This observation
was made already at the beginning of the last century through lesions (Lashley, 1950) and has
been recently observed also by groups ardently pursuing the engram theory (Roy et al., 2022).
The systems level. Systems consolidation generally refers to the reorganization of long-term
memories, after initial encoding, over distributed brain circuits (Dudai et al., 2015). Many ideas
of systems consolidation derive from cognitive studies on humans, which have helped shape the
fields’ understanding of memory consolidation (Squire, 2004). A major advantage of working
with humans is that memories can be expressed verbally, and then tested using non-invasive
recording techniques (Rasch and Born, 2013). On the other side, studying memory in animals
is enticing, as one can record the electrical activity of single neurons during behavior. This
has the obvious disadvantage that animals cannot talk, so there is a need for testing memory
in different ways (Tolman, 1948). Animal studies initially contributed to the understanding
of memory by studying the effects of different brain lesions in non-human primate models
of amnesia (Zola-Morgan et al., 1983). Electrophysiological studies focused on responses
of particular types of cells, e.g. hippocampal place cells (O’Keefe and Dostrovsky, 1971),
but the advance in recording techniques allowed scientists to shed light on general memory
consolidation mechanisms (Girardeau and Lopes-dos Santos, 2021). An outstanding example is
a recent study that selectively inhibited the consolidation of specific experiences while leaving
the others intact (Gridchyn et al., 2020).

Encoding vs. consolidation
Neural encoding refers to the ability of the brain to represent external sensory inputs, or internal
physiological states, in a form amenable to further computation and later retrieval (Roediger
et al., 2007). The ability to encode information is a prerequisite to forming a memory, but
not every piece of information encoded will be stored and available forever. Most of it will be
short-lived (i.e., short-term memory), and will be forgotten after minutes to hours, while some
will be transferred to a more stable, long-term memory storage (Hebb, 1949). Some theories
exist as to how memories are “tagged” for long-term storage (Benchenane et al., 2010), but
there is no agreement so far (Inostroza and Born, 2013). More generally, it is not clear why
certain memories should be forgotten while some others should consolidate. One could imagine
a situation where every piece of information encoded is immediately stored long-term, and
the problem is then shifted to retrieval (Miller and Matzel, 2000). This possibility seems
to be generically disadvantageous because it would lead to a fast depletion of memory and
computational capabilities. Moreover, this explanation does not agree with the literature

2



1.1. Memory

detailing molecular and cellular processes that, if blocked, prevent the formation of long-term
memories (Martin et al., 2000). Another explanation, supported by early computational work,
is that information is bound together and integrated within existing knowledge in the neocortex
so as to form more useful and informative records (McClelland et al., 1995). By now, various
forms of the consolidation hypothesis are widely accepted and used to explain a large body
of experimental evidence on memory acquisition, loss, and recovery (Kandel, 2013; Klinzing
et al., 2019; Cowan et al., 2021), although some skepticism remains (Miller, 2021).

Initial memory encoding in the hippocampus
Memory is conventionally subdivided into declarative memory, which requires awareness for
retrieval, and non-declarative memory, which does not require such awareness (Squire, 2004)1.
The distinction between the two memory systems was experimentally probed on amnesic
patients in the 50s and 60s. The classical example is patient H.M., who suffered from
anterograde amnesia after most of his medial temporal lobe (MTL) was surgically removed in
an attempt to cure his intractable epilepsy. Scoville and Milner (1957) showed that patient
H.M. could acquire new motor skills while having no memory of ever doing it. Their studies
showed that the MTL is necessary to acquire episodic memories and different brain areas
can act independently on different types of memory. These works inspired research for the
following half-century on how MTL areas support memory. Specifically, the hippocampus has
since been regarded as essential for the rapid formation of new memories and for consolidating
newly acquired memories into the neocortex (Squire and Alvarez, 1995). Some mechanisms by
which the hippocampus could quickly store new memories are known. The CA3 hippocampal
subnetwork, thanks to its recurrent connectivity, can support attractor dynamics (Hopfield,
1982; Amit, 1989) to potentially store arbitrary input patterns (McNaughton and Morris, 1987;
Treves and Rolls, 1992). In such a network, appropriately trained connections allow recalling of
memories starting from noisy/corrupted versions (pattern completion). At the same time, the
hippocampus needs to avoid confusion among similar memories (pattern separation). Pattern
separation can be facilitated by orthogonalization, or decorrelation, of incoming cortical inputs
in the dentate gyrus (Leutgeb et al., 2007). There is evidence that both pattern separation
and completion are stronger in CA3 than in CA1 (Leutgeb et al., 2004; Vazdarjanova and
Guzowski, 2004): this could be explained by the lower degree of recurrent connectivity in CA1,
which could make it more sensitive to changes in entorhinal inputs.

Theories of systems memory consolidation
The findings on amnesic patients with hippocampal lesions gave rise to the “Standard model
of systems consolidation” (McClelland et al., 1995; Squire, 2004). This theory proposes that
novel memories are quickly encoded in the hippocampal and surrounding structures. The
solidification of these memories is believed to rely on synaptic consolidation to bring about
fast-paced (minutes to hours) changes in synaptic efficacy (Glanzman, 2010). Afterward, a
process of systems consolidation kicks in, with a timescale that can vary from days to months,
which shifts the responsibility of memory retention onto neocortical areas (Dudai et al., 2015).
As a result, the neocortex can maintain its own accounts of the memory, and over time it
becomes independent of the hippocampus. It is not known what process or condition triggers

1Important examples of declarative memory are “episodic” memory, i.e. the ability of recording and
recollecting entire scenes from the past, and “semantic”, i.e. related to general facts and acquired knowledge,
not necessarily experienced (Tulving, 2002). In this thesis, I will always implicitly refer to declarative memory.
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1. Introduction

systems consolidation, but current hypotheses and recent evidence point to a central role of
sleep and hippocampal reactivation (Klinzing et al., 2019).

The standard model of systems consolidation has been criticized for several reasons. The
main reason is that the theory assumes that consolidation begins and ends just once for
each memory. This disagrees with observations on memories that can become liable, and be
modified, upon recalling them (Sara, 2000). 2 Another criticism of the standard model is
the fact that the amnesia following hippocampal damage is not always temporally graded,
or it is temporally graded only on certain tasks, and in most cases extends over decades
(Nadel and Moscovitch, 1997). These observations support the idea that the hippocampus is
necessary for retrieval, and gave rise to the “multiple trace theory” (Rosenbaum et al., 2001).
This theory posits that the hippocampus is responsible for initial quick storage, acts as an
“index” for distributed neocortical representations and is responsible for retrieval for as long
as these memories exist (i.e., potentially up to a lifetime). This theory was later elaborated
into the trace transformation theory (Winocur and Moscovitch, 2011) and is based on an
additional critique of the standard model: memories initially stored in the hippocampus are
not carbon-copied to the neocortex, but undergo a process of generalization. This hypothesis
was supported by the finding that rats did not generalize fear conditioning across contexts
the day after receiving a foot shock, but they did so after four weeks (Winocur et al., 2007).
The trace transformation theory holds that the consolidation of memories in the neocortex
involves a loss of time and place, and becomes more and more schematic, or fact-like semantic
memory. This implies that details about past autobiographical events are not encoded in the
neocortex, leading to generalization.

Another hypothesis, which is not mutually exclusive with the previous ones, is the “schema
assimilation model” (Tse et al., 2007). This theory assumes that novel information is quickly
consolidated into a previously established body of knowledge, i.e., a mental schema (Bartlett
and Bartlett, 1932). In particular, a novel memory could be consolidated in less than 48
hours when animals were pre-trained on similar tasks (Tse et al., 2007). This theory is in
agreement with human and animal lesion and psychology studies (Van Kesteren et al., 2012),
and is reminiscent of transfer learning techniques in machine learning (Torrey and Shavlik,
2010). Nonetheless, this theory is in disagreement with the assumption that the neocortex is
a slow learner (Takashima et al., 2009), and more research is needed to understand speed and
mechanisms.

Throughout this thesis, I will discuss my PhD results in light of the existing systems consolidation
hypotheses. I will describe my efforts to shed light on different aspects of systems memory
consolidation by analyzing and modeling electrophysiological recordings from freely behaving
rats. I will focus on the systems level of research by statistically characterizing the activity of
populations of neurons and their underlying correlation network topologies. In particular, I
will start by describing a network mechanism that allows the hippocampus to quickly provide
informative outputs starting from novel, noisy inputs. I will then continue by describing a
novel mechanism by which the hippocampus can interact with neocortical areas, which can be
used for memory transfer. Finally, I will discuss results obtained from the analysis of a clear
correlate of learning in the MTL. These results support the consolidation hypothesis and help
to shed light on the neocortical memory dependence on the hippocampus, the different speeds
of consolidation, and the existence of a schema. All these results derive from the study of
spatial cognitive maps, which I introduce in the following section.

2This observation gave rise to the “reconsolidation” hypothesis (Dudai, 2012).
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1.2. Spatial coding and cognitive maps

1.2 Spatial coding and cognitive maps
Moving towards an appetitive stimulus, or away from a threat, represent basic navigational
behaviors that are fundamental to survival. Simpler forms of such behaviors are even hard-
wired into organisms without a nervous system, such as bacteria or eukaryotes (Wadhwa
and Berg, 2022; Reversat et al., 2020). Considering living beings with a nervous system,
even the smallest nematodes can exhibit complex behaviors (de Bono and Maricq, 2005). In
insects, simple approximations to complex computations allow for spectacular navigational
behaviors. For example, foraging desert ants keep track of their own positions and manage to
integrate their irregular outbound routes to then return home along straight inbound routes
over distances that are thousands of times their body size (Müller and Wehner, 1988). In
ants, as well as in bees, the predominant mechanism of navigation is path integration based
on a skylight compass (Wehner et al., 1996). In the fruit fly Drosophila, researchers have
discovered brain areas dedicated to the computation of allocentric heading, and the underlying
network computations have been studied in depth (Seelig and Jayaraman, 2015; Kim et al.,
2017). Such structures have been shown to actively guide Drosophila moment-to-moment
behavior towards goals (Green et al., 2019). Mammals also have brain structures that keep
track of their head direction (Taube et al., 1990). Although these structures are important
for spatial awareness, the main area that guides navigation in mammals is the hippocampus,
which is the focus of the following paragraphs.

Hippocampal role in spatial coding and navigation
Research has revealed that the hippocampus provides an extraordinarily detailed representation
of an animal’s location within an environment (Muller, 1996; Hartley et al., 2013). The first
report of hippocampal cells which reliably fire only in specific portions of the environment
appeared more than 50 years ago (O’Keefe and Dostrovsky, 1971) . Neighboring place cells fire
at different locations within the environment; this ensures that, throughout the hippocampus,
the entire environment is represented in the activity of the local cell population (O’Keefe
and Nadel, 1978; Wilson and McNaughton, 1993). This led to the idea that within the
hippocampus resides a “cognitive map” of space (O’Keefe and Nadel, 1978), a re-elaboration
of a concept that was first described by Tolman (1948). Corroborating this idea, it was
shown that by simultaneously recording many hippocampal cells it is possible to accurately
decode the location of the animal (Wilson and McNaughton, 1993). Spatial information in
the hippocampus is not only encoded but actively used for navigation: in fact, early studies
on hippocampal lesioned rats showed poorer navigational performance (Morris et al., 1982;
Eichenbaum et al., 1990). By now, there is enough evidence from a number of mammalian
species that the hippocampus plays an important role in spatial representation, spatial memory,
and navigation (Nadel, 1991; Rolls, 1999; Ekstrom et al., 2003; Sarel et al., 2017).

Beyond the hippocampus
Over the last few decades, cells in many brain areas outside the hippocampus have been
described as bearing some levels of spatial information (Sauer et al., 2022). Examples include
the entorhinal cortex (Fyhn et al., 2004), retrosplenial (Mao et al., 2017), parietal (Harvey
et al., 2013), prefrontal (Fujisawa et al., 2008; Ito et al., 2015), and visual (Fiser et al., 2016).
I will focus here on prefrontal and entorhinal cortices, which will be discussed in chapters 2
and 3.
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1. Introduction

After the hippocampus, the medial entorhinal cortex (MEC) is the most famous brain area
that contains spatially tuned neurons (Hafting et al., 2005). These cells relay the spatial
location of the animal within an environment with the same precision as hippocampal place
cells, but rather than having one single place field, they present multiple fields. These fields are
arranged on a regular triangular regular pattern that covers the entire environment explored by
the animal; such cells were therefore named “grid cells” (Hafting et al., 2005). The spacing
between grid fields varies along the dorsoventral axis of the MEC, and grid cells cluster into
discrete functional modules (Stensola et al., 2012). Although first reported in superficial layers,
grid cells were later reported also in deeper layers (Sargolini et al., 2006). Grid cells have
been described as rigid and unchanging, providing a possible metric for spatial navigation
(Moser and Moser, 2008). This claim was challenged by reports of distortion of the grid after
geometric manipulations of the environment (Barry et al., 2007; Stensola et al., 2015) and
the response of grid cells to non-spatial signals (Lipton et al., 2007; Aronov et al., 2017).
Moreover, irregularity in peak-to-peak variability (Diehl et al., 2017; Dunn et al., 2017; Ismakov
et al., 2017; Stemmler and Herz, 2017) and occasional failure of grid cells to discharge in a
firing field (Low et al., 2014; Nagele et al., 2020) suggest that grid cells might code for more
than only distances. It is also possible that simple environments gave us a simplified view of
the functioning of grid cells: it has been suggested that hippocampal spatial maps will be
much more complex in real-world navigation (Derdikman et al., 2009). Partial answers to these
questions come from freely flying bats: it was recently reported that grid cells are less regular
and only locally organized in 3D enclosures (Ginosar et al., 2021). Important to mention is the
fact that most cells in MEC, even though not grid, carry spatial information (Diehl et al., 2017;
Hardcastle et al., 2017), reminiscent of non-place cells in the hippocampus (Meshulam et al.,
2017; Stefanini et al., 2020). Anatomically, the MEC neighbors the hippocampus and the two
areas are heavily interconnected (Boccara et al., 2015). The deep layers of the entorhinal
cortex receive inputs from the CA1 hippocampal area, whereas superficial layers of MEC project
to the hippocampus (Witter, 2011). Based on this connectivity, it is plausible that some of the
spatial properties of hippocampal place cells are determined by the activity of neurons in the
entorhinal cortex (Latuske et al., 2017). In fact, suppressing entorhinal direct inputs to CA1
partially impaired place cell coding (Brun et al., 2008). This finding is in line with other studies
that found effects on hippocampal spatial coding after alterations to MEC normal functioning
(Rueckemann et al., 2016; Kanter et al., 2017). Some computational studies proposed that
place cells derive from grid cells and other entorhinal inputs (Rolls et al., 2006; Solstad et al.,
2006). Nonetheless, these ideas go against the finding that place fields are present several
days before the emergence of grid firing patterns during development (Langston et al., 2010;
Wills et al., 2010) and the hippocampus does not require grid cells input to form place fields
(Koenig et al., 2011; Hales et al., 2014). Moreover, the regularity of grid cells disappears
if inputs from place cells are removed (Bonnevie et al., 2013), and contextual information
is exchanged among the two populations (Marozzi et al., 2015). Altogether, these studies
suggest that entorhinal and hippocampal spatial codes are complementary (Bush et al., 2015).

The second area discussed here is the medial prefrontal cortex, which has been described as
essential for spatial navigation in a recent review (Patai and Spiers, 2021). The fact that the
prefrontal cortex houses neurons that encode aspects of space was first reported more than two
decades ago (Jung et al., 1998). A clear report of spatially and trajectory modulated cells came
from Fujisawa et al. (2008). A recent study found that spatial representations in mPFC form
rapidly also in absence of task rules, and reappears when reexposed to the same environment
(Sauer et al., 2022). Although spatially modulated, this area encodes space differently from
the hippocampus: on a plus maze, many mPFC cells fired similarly on opposite arms, and

6



1.2. Spatial coding and cognitive maps

the distance to the goal was easier to decode than the actual 2D information (Kaefer et al.,
2020). This is in line with reports on mPFC generalization (Xu and Südhof, 2013; Bernardi
et al., 2020), and could be due to the mixed selectivity of mPFC cells (Rigotti et al., 2013),
whose sparseness has been shown to determine generalization (Barak et al., 2013). Until now,
however, it is not clear how spatial representations in prefrontal cortical areas are established.
It is possible that spatial information in the mPFC is derived from that of the hippocampus
(Zielinski et al., 2019). Anatomically, this could happen through the direct projections from
the ventral CA1 to mPFC (Hoover and Vertes, 2007). Inactivating this direct projection leads
to deficits in the spatial coding of medial prefrontal neurons and in the performance of a
spatial working memory task (Spellman et al., 2015). Moreover, the propensity of mPFC cells
to code for space was found to be a function of their position along the dorsoventral axis of
mPFC, which runs opposite to the density of hippocampal inputs (Sauer et al., 2022). This is
in line with a report showing that encoding spatial information in several neocortical regions
depends on an intact hippocampus (Esteves et al., 2021). Nonetheless, interactions among
the two areas are not unidirectional, as it is known that mPFC has indirect projections to the
hippocampus via the thalamic nucleus reuniens (Vertes, 2006) and the perirhinal and lateral
entorhinal cortices (Delatour and Witter, 2002). This pathway influences hippocampal spatial
coding in several ways: inactivating the medial prefrontal cortex or the indirect nucleus reuniens
projections leads to a decrease in hippocampal place cell firing variability (Hok et al., 2013),
rule-based object selectivity (Navawongse and Eichenbaum, 2013), and trajectory-dependent
firing (Ito et al., 2015).

Spatial coding is part of a larger role in memory
Many findings throughout the years have claimed that the hippocampus is a brain area
dedicated to spatial navigation via path integration (McNaughton et al., 2006; Moser and
Moser, 2008; Hartley et al., 2013). This view contrasts with Tolman’s idea of cognitive maps,
which were envisioned as extending to general cognition (Tolman, 1948). Moreover, the
purely spatial view is difficult to reconcile with the evidence that damage to the hippocampus
results in global amnesia including both spatial and nonspatial domains (Eichenbaum et al.,
1999; Squire, 2004). Additionally, place cells have been shown to encode much more than
spatial coordinates; for example, stimulus events and behavioral actions (Wood et al., 2000),
time (Kraus et al., 2013), sound frequency (Sakurai, 2002; Aronov et al., 2017), and other
abstract relationships (Bellmund et al., 2018). Moreover, path integration seems to be a
bad navigational strategy (Huth, 2013) and there is no clear evidence that the hippocampus
supports path-integration computations (Navratilova and Mcnaughton, 2014). Finally, it has
been reported that the hippocampus is mostly active during the initial planning of a route
and not during its execution (Spiers and Maguire, 2006). The two views can be reconciled
by accepting that the main contribution of the hippocampus towards navigation comes from
memory (Eichenbaum et al., 1999; Eichenbaum and Cohen, 2014; Eichenbaum, 2017b). In
fact, studies on navigational strategies recognized that the ability to find one’s way relies on a
combination of memories for the spatial layout of the environment, routes taken, and the origin
and destination of a journey (Dudchenko, 2010; Wolbers and Hegarty, 2010). According to
one line of research, the hippocampus supports declarative memory by binding experiences and
linking them via their common elements, thereby creating a ”memory space” (Eichenbaum and
Cohen, 2014). This idea, first strongly advocated by Cohen and Eichenbaum (1993), has been
expanded into computational models (Hasselmo, 2011) and theoretical frameworks (Buzsáki
and Moser, 2013; Whittington et al., 2020). In particular, Buzsáki and Moser (2013) compared
integrating multiple routes into cognitive maps to the integration of episodic memories into
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memory networks. In other words, the creation of a cognitive map of space would be the same
as, or at the very least a prerequisite to, creating a cognitive map of episodic memories.
Some of the arguments raised for the hippocampus could be extrapolated to the MEC, given
the fact that this area can also encode non-spatial dimensions (Aronov et al., 2017; Behrens
et al., 2018). Nonetheless, MEC code could more easily support path integration (Hardcastle
et al., 2015). The hard fact remains that the entorhinal cortex is the main gateway between
the hippocampus and most of the neocortical areas (Witter, 2011), so it is reasonable to
assume that other types of memory (not only spatial) are processed in the MEC. Recent
lines of research claim that the MEC supports structural abstraction, and in concert with the
hippocampus allows for the storage of declarative, non-spatial information (Garvert et al.,
2017; Behrens et al., 2018; Whittington et al., 2020).
The neocortex has only recently been studied from the spatial coding perspective. Different
neocortical areas are thought to be responsible for other types of information and computations
(Kandel, 2013). For example, prefrontal areas have been attributed to the most disparate
roles, the major ones being working memory, decision making, and abstraction/generalization
(Funahashi and Kubota, 1994; Miller, 2000; Xu and Südhof, 2013). Nonetheless, recent
experimental evidence suggests that spatial coding is a general principle of cortical computation
(Esteves et al., 2021), including prefrontal cortex (Sauer et al., 2022). The natural question
arises as to whether distributed neocortical spatial coding underlines general principles of
memory.
In the following chapters, I will present my PhD results and argue that the study of spatial
representations and computations within and across cortical areas can shed light on general
principles of memory storage.
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Hippocampal encoding of novel memories

2.1 Aims
Theories and studies of memory consolidation agree on the fact that the hippocampus quickly
encodes novel memories (Squire, 2004). As described in the introduction, this process relies
on the formation of cognitive maps, which organize episodic memories in space and time
(Buzsáki and Moser, 2013). Spatial cognitive maps are the most widely studied, and how
quickly a cognitive map is established when an animal enters a novel environment is of primary
relevance to the theory of memory. From a single-cell perspective, hippocampal cells can form
stable spatial fields within minutes during a novel exploration (Wilson and McNaughton, 1993;
Leutgeb et al., 2004; Frank et al., 2004). These newly acquired place fields are less informative
and less reliable than the ones measured during a familiar exploration (Brun et al., 2008). This
fact has been reported for hippocampal areas CA1 and CA3 (Frank et al., 2004; Leutgeb et al.,
2004), and also in MEC (Barry et al., 2007). The hippocampal subarea CA1 is of particular
interest for two reasons. On the one hand, it represents the main output of the hippocampal
CA areas, so it is reasonable to assume that CA1 outputs ought to be as informative and easy
to read as possible. On the other end, the main afferents to CA1 (i.e., CA3 and superficial
MEC) have very different spatial properties (Moser et al., 2008). Given the fact that these
inputs are noisier in novel than familiar explorations, there might be mechanisms in place for
combating this noise and providing an output that is easily readable from downstream areas.
The aim of this chapter is to characterize the first stages of the formation of a spatial
cognitive map beyond the single-cell level. In particular, the initial aim is to infer and
characterize interaction patterns among CA1 cell pairs during the exploration of familiar and
novel environments. Afterward, the aim is to study in a theoretical model the impact of
the structure of these interaction networks on the encoding of spatial information from a
population perspective, and the potential availability of information to downstream areas.
This is a study in collaboration with Jozsef Csicsvari, Gasper Tkacik, and Cristina Savin.
A previous version of this paper was posted on biorxiv on Septermber 29th, 2021, and can be
retrieved here: https://doi.org/10.1101/2021.09.28.460602
The paper has been submitted to a journal for evaluation and has undergone revision; the
version presented here includes modifications and additions suggested by the reviewers.
Author contributions: C.S. and G.T. designed research; M.N., J.C., G.T. and C.S. performed
research; M.N. and C.S. analyzed data; M.N., G.T. and C.S. performed theoretical analyses;
M.N., G.T., and C.S. wrote the paper.
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The structure of hippocampal CA1 interactions
optimizes spatial coding across experience
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Although much is known about how single neurons in the hippocampus represent
an animal’s position, how cell-cell interactions contribute to spatial coding is less
well understood. Using a novel statistical estimator and theoretical modeling,
both developed in the framework of maximum entropy models, we reveal highly
structured CA1 cell-to-cell interactions whose statistics depend on whether the
animal is in a familiar or novel environment. In both conditions the circuit
interactions optimize the encoding of spatial information, but for regimes that
differ in the signal-to-noise ratio of their spatial inputs. Moreover, the topol-
ogy of the interactions facilitates linear decodability, making the information
easy to read out by downstream circuits. These findings suggest that the ef-
ficient coding hypothesis is not only applicable to individual neuron properties
in the sensory periphery, but also to neural interactions in the central brain.

2.2 Introduction
The dual role of the hippocampal formation in memory (Scoville and Milner, 1957; Eichenbaum,
2000) and spatial navigation (O’Keefe and Dostrovsky, 1971; Morris et al., 1982) is reflected
in two distinct views on hippocampal coding: the place field view (Moser and Paulsen, 2001;
McNaughton et al., 2006) that reduces the encoding of spatial information to tuning properties
of individual neurons, and the ensemble view (Harris et al., 2003; Harris, 2005) that focuses
on subsets of units that are co-activated together as the substrate for memory (Hopfield,
1982). Recent results blur the line between the single cell and the population perspective
(Stefanini et al., 2020), revealing that properties of individual neurons only partially explain
the circuit’s contribution to spatial coding. Interactions between neurons shape collective
hippocampal activity (Meshulam et al., 2017). Moreover, disrupting correlations between
neurons leads to decreased decoding accuracy, in particular in CA1 (Stefanini et al., 2020). It
remains unclear how experience shapes the organization of cell-to-cell interactions and what
effects such changes may have on the encoding of spatial information at the level of CA1
population activity.
Experience affects the properties of single cells in many ways. While reliable position-dependent
spiking is detectable after a few minutes during the very first exposure to a novel environment
(Wilson and McNaughton, 1993; Leutgeb et al., 2004), the responses to a familiar environment
show several systematic differences, including a reduction in overall firing, sharpening of
tuning functions and sparsification of responses (Karlsson and Frank, 2008). In parallel, CA1
inhibition is weak in novel environments, transiently opening the gate for circuit reorganization
via plasticity (Arriaga and Han, 2019), but it subsequently increases with experience (Nitz
and McNaughton, 2004; Arriaga and Han, 2019; Geiller et al., 2020). From the perspective
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of the local circuit, the main afferents to CA1 (MEC and CA3) are initially noisier (Cohen
et al., 2017; Pedrosa and Clopath, 2020) and have weaker spatial tuning, which improves
with familiarity (Leutgeb et al., 2004; Hafting et al., 2005; Barry et al., 2012). Since CA1
needs both inputs for detailed spatial representation (Brun et al., 2002, 2008), these results
suggest that the CA1 circuit is potentially in a different dynamic regime in novel versus familiar
environments, with distinct local circuit interactions and population coding properties.
Correlations among pairs of hippocampal neurons arise as a result of two effects: mechanisms
that give rise to spatial tuning (i.e. signal correlations), and tuning-independent internal circuit
dynamics (which shape noise correlations). Since they reflect local circuit interactions, noise
correlations should depend on changes in input statistics, and be reorganized by experience.
From a neural coding perspective, the structure of neural correlations can radically affect the
amount of information that a population carries about stimuli (here, the animal’s position)
and the complexity of the readout (Cohen and Kohn, 2011; Averbeck et al., 2006). While
noise correlations are generally considered to be an obstacle to optimal information coding and
transfer, especially in sensory areas (Kanitscheider et al., 2015; Rumyantsev et al., 2020), there
are scenarios where they can improve the quality of the overall population output (Panzeri
et al., 1999; Tkačik et al., 2010; da Silveira and Berry, 2014; Brinkman et al., 2016), which
might be relevant for the hippocampus.
Unlike sensory areas, where stimulus repeats make the estimation of noise correlations relatively
straightforward, measuring circuit interactions and their contribution to spatial coding in the
hippocampus is fraught with technical difficulties. In a two dimensional environment, the lack
of stimulus repeats renders traditional approaches for estimating noise correlations inapplicable.
Moreover, well documented circuit level oscillations (Colgin, 2013; Fries, 2009) act as global
sources of co-modulation that obscure the fine structure of pairwise neural co-variability. The
key challenge is to partition total neural covariability into an explainable component, driven by
position, oscillations and other global signals, and unexplained, or ‘excess’ correlations, which
capture local interactions.
Here we take advantage of the maximum entropy framework to develop a new statistical
test for detecting excess correlations in the absence of stimulus repeats and explore their
significance for the encoding of spatial information in CA1. Our method allows us to robustly
detect network interactions by comparing hippocampal responses against a maximum entropy
null model (Savin and Tkačik, 2017) that optimally captures the cells’ place preference and
population synchrony (Engel et al., 2001). When applied to CA1 tetrode recordings from
rats during open field exploration in familiar and novel environments, our analysis detected
structured excess correlations preferentially between principal cells with similar place selectivity
and arranged into networks with high clustering coefficients (Watts and Strogatz, 1998). These
highly structured excess correlations optimize the encoding of spatial information and facilitate
its downstream readout in both the familiar and novel environment, with differences reflecting
the different signal-to-noise ratio of spatial inputs in both environments. Taken together, our
results suggest that CA1 local circuitry readjusts to changes in its inputs so as to improve
population-level stimulus representation, in line with efficient coding predictions (Tkačik et al.,
2010).

2.3 Results
Detecting interacting cells To investigate functional connectivity between CA1 neurons
and its role in spatial information coding, we devised a procedure to infer cell-cell interactions
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from simultaneous tetrode recordings of hundreds of isolated units in dorsal hippocampus of
behaving rats.

Our approach starts by constructing a null model for population responses that exactly
accounts for the measured spatial selectivity of each recorded neuron as well as for the
moment-to-moment measured global neural synchrony, but is otherwise maximally unstruc-
tured (Fig. 2.1A, S2.1A−D). This null model is formally a maximum entropy model, which
includes a rigorous propagation of uncertainty about the inferred single-cell place tuning (see
Methods). Surrogate neural rasters can be sampled from the null model (Fig. 2.1A Left) and
its statistics directly compared to that of real data (Savin and Tkačik, 2017)( Fig. S2.1E). For
every cell pair, the model predicts the expected distribution of pairwise correlations against
which the measured total correlation for that pair can be tested for significance (Fig. 2.1A
Right); we report as “excess correlation” w the (normalized) amount of total correlation that
is not explained by the null model. We declare cell pairs with significant excess correlations
to be “interacting,” likely due to underlying recurrent neural circuitry. Since our approach
explicitly discounts for correlations arising from overlapping place fields and sources of global
modulation (e.g, due to locking to the underlying brain oscillations or influence of behavioral
covariates such as running velocity), it differs from previous attempts to use total correlations
to probe the intrinsic network mechanisms (Gava et al., 2021).

We validated our detection method by constructing a synthetic dataset of spiking CA1 neurons
whose responses were modulated by the position of an artificial agent and by an assumed
network of interactions (Fig. 2.1B Left, see Methods). We ensured that the synthetic data
matched overall firing rates, the synchrony, and the highly irregular occupancy observed in a
real 20-minute exploration session(Fig. 2.1B middle). Interactions identified by our method
strongly overlap with the ground truth, as measured by the area under the receiver operating
characteristic (Fig. 2.1B right). The inferred excess correlations were also well aligned with the
ground truth interaction strengths (Fig. S2.2A). We did not find any tendency of cells that are
more (or less) similarly tuned to show higher (or lower) inferred wijs (Fig. S2.2B). Inference
quality did not change when using weaker or stronger inputs (Fig. S2.2D). Introducing instability
and additional noise in the tuning of single cells (Fig. S2.2F) or high-firing inhibitory-like
cells (Fig. S2.2G) did not alter our ability to detect interacting pairs. In all of the cases we
tested, our method outperformed a standard noise correlation detection method (Fig. S2.2E).

We next analyzed CA1 tetrode recordings of six rats exploring familiar and novel 2D environ-
ments separated by a short period of rest (Fig. 2.2A,D) (Kaefer et al., 2019; Stella et al.,
2019). The two environments were of similar size (Fig. S2.3A,B) and differed in color and
geometry. As expected, spatial firing fields were not related across the two environments
(Fig. S2.3C). Our null model did not differ in terms of marginal log-likelihood or pseudo-R2
across environments (Fig. S2.3D,E). Putative units were filtered by using several clustering
quality measures, based on the Mahalonobis distance or the inter-spike interval, (Harris et al.,
2000; Schmitzer-Torbert et al., 2005; Hill et al., 2011) to ensure that they were well isolated
(Fig. S2.3F, see Methods). We retained only cells active in both environments (> 0.25
spike/sec, Fig. S2.3G) (Karlsson and Frank, 2008). Considering only pairs of cells that
were simultaneously recorded on different tetrodes, our final dataset includes a total of 9511
excitatory-excitatory (EE), 7848 excitatory-inhibitory (EI), and 1612 inhibitory-inhibitory (II)
pairs (see Methods for animal-by-animal details). We detected both positive and negative
excess correlations among cell pairs (Fig. 2.2B,C). Interestingly, cell pairs with negative excess
correlations can have positive total correlations (Fig. 2.2C), illustrating the idea that total
correlations are not necessarily a good predictor of local circuit interactions. Are excess
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Fig.2.1. Detecting network interactions among hippocampal CA1 cells during naturalistic
behavior. (A) Method schematic. A null model for population responses takes into account the
inferred place field tuning of each cell and the moment-to-moment global synchrony but is otherwise
maximally unstructured. For each cell pair, this model predicts a null distribution for (total) pairwise
correlation (gray distribution), which is compared to the correlation estimate from data (dashed red line).
The normalized discrepancy between the data correlation cij and the null model expectation µij for a
pair of neurons (i, j) is referred to as “excess correlation”, wij , and serves as a proxy for direct cell-cell
interaction. (B) Method validation on synthetic data. Detection accuracy is assessed using simulated
data with known positive (green) or negative (red) interactions (C) Synthetic data matches a real
20-minute exploration session with respect to spatial occupancy (top) and observed synchrony indices
(bottom – in this plot represented as proportion of cells active in a ∼500ms example)). (D)
Receiver-operator characteristic (ROC) shows the probability of correctly detecting positive (green) and
negative (red) interactions for different detection thresholds.

correlations explained by common locking to underlying theta oscillations? We measured
the similarity of cell pairs theta-locking histograms and scatter plotted against inferred wijs,
and found no significant relation in the EE subnetwork (Fig. S2.4A-B, Left). The correlation
was small but significant for EI cell pairs (Fig. S2.4, middle), and was strongest within the
II subnetwork (Fig. S2.4, right). We checked whether pairwise excess correlations could be
explained by tuning to variables not explicitly accounted for by our null model. We found a
small (r ∼ 0.1) significant correlation between wij and heading-tuning similarity (Fig. S2.4C-D,
left), and no significant relation with speed-tuning similarity (Fig. S2.4C-D, right).

Interaction networks in familiar and novel environments What is the structure of
the inferred excess correlations? We set the threshold to declare a cell pair as interacting at
|w| > 4.5 (corresponding to a strict Bonferroni-correction - see Methods.).We first report
a generally sparse interaction network in the excitatory-excitatory (EE) subnetwork, with
∼ 5% in familiar and ∼ 8% in novel environment of analyzed pairs showing significant
interaction (Fig. 2.2E, Left).The fraction of interactions is larger among excitatory-inhibitory
(EI) cell pairs (Fig. 2.2E, Middle), where, as expected, negative interactions dominate; the
fraction is highest at ∼ 30% among positive interactions in the inhibitory-inhibitory (II)
subnetwork (Fig. 2.2E, Right).
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We next focused on interaction changes induced by a switch from the familiar to a novel
environment (Fig. 2.2D). We observed a significant increase in EE interactions, possibly
arising due to decreased inhibition during novelty (Arriaga and Han, 2019; Geiller et al.,
2020), which is thought to enhance learning and promote plasticity (Li et al., 2003; Whitlock
et al., 2006; Cacucci et al., 2007). We indeed found putative inhibitory cells to be less
synchronous and slightly less active in novel environments (Fig. S2.3H,J), in line with previous
findings (Nitz and McNaughton, 2004), while excitatory neurons were more synchronous but
did not differ in terms of their average firing rates (Fig. S2.3G,I). Total correlations were
generally stronger in novel environments (Fig. S2.3K). Circuit modifications during spatial
learning are believed to originate in altered spike transmission among connected excitatory
and inhibitory neurons (Dupret et al., 2013; McKenzie et al., 2021). Consistent with this view,
we found an increase in positive EI interactions, while their negative counterpart remained
unchanged. This increase could not be attributed to increased reliability of monosynaptic EI
connections (Fig. S2.4E), especially since cell pairs on the same tetrode were excluded from
this analysis (Csicsvari et al., 1998). We did not observe significant changes in the number of
II interactions.
How conserved are individual network interactions across consecutive environments? The largest
overlap in detected interactions was found in the II subnetwork, where 77.5% of interactions
were preserved.EI interactions showed less overlap (31.1%);the overlap was weakest (16.8%)
in the EE subnetwork.All reported overlaps were statistically significant under a permutation
test (1000 random shuffles of cell labels; p < 10−3 for all subnetworks). Significance was
confirmed by comparing the Jaccard similarity of the adjacency matrices of familiar and novel
subnetworks against the null distributions constructed from random graphs with the same
numbers of vertices and edges (1000 Erdos-Renyi graphs; p < 10−3 for II and EI subnetworks,
p = 0.009 for EE).
The similarity of interaction networks across the two environments extends beyond the binary
presence / absence of significant interactions. Figure 2.2B compares the strength of excess
correlations, w, in the familiar vs. novel environment for EE, EI, and II cell pairs. For all
subnetworks, w are significantly correlated across the two environments, with the reported
correlation strength related to the network overlap (Fig. 2.2A). Taken together, these findings
corroborate the idea that hippocampal remapping across environments is not random at the
level of cell-cell interactions.
Because spatial information is encoded predominantly by pyramidal cells (Skaggs et al., 1993;
Frank et al., 2001), we analyzed the EE subnetwork in further detail (Fig. 2.2C). Our key
statistical observation is shown in Fig. 2.2D: interaction probability increases nonlinearly with
place field overlap for positive interactions, and is roughly constant for negative interactions.
In the novel environment, the excitatory interaction probability increases ∼ 3-fold over the
observed range of place field overlap. In the familiar environment, the modulation with
place field overlap is less pronounced, possibly indicating a shift towards a more decorrelated
representation of space (Karlsson and Frank, 2008). Excluding the first few minutes of
exploration, known for presenting unstable place fields, did not change our findings (Fig.
S 2.5A,B). Our observation in Fig. 2.2D, which was averaged across the entire dataset, is
consistent on a animal-by-animal basis (Fig. S 2.5C). Finally, we report that inference is not
affected by theta phase precession (Fig. S 2.5D).
We further characterized the topology of familiar and novel excitatory networks. The number of
interactions that a neuron engages in (its node degree) appears to be log-normally distributed in
both environments, with clustering coefficients that are significantly higher than expected from
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Fig.2.2. Network interactions in familiar and novel environments. (A) Neural activity was
recorded using tetrodes implanted in the dorsal CA1 area of the hippocampus. (B,C) Example pairs of
pyramidal cells simultaneously recorded during free exploration of a familiar environment with significant
positive (B) and negative (C) excess correlation w (gray histogram – distribution of correlation
coefficients derived from the null model; red dashed line – measured raw pairwise correlation). (D)
Experimental paradigm. 6 Animals explored a familiar environment, then rested in a sleep box (rest data
not used), after which they explored a novel environment (20–40 minutes for each condition). Each
animal contributed to one experimental session. (E) Summary of cell-cell interaction results for different
cell types (triangle – pyramidal cell, circle – putative interneuron), positive (green) and negative (red)
excess correlations, for both the familiar (top row, blue) and the novel (bottom row, orange) environment
(stars – significant difference under binomial test at p < 0.001; absence of stars means p > 0.05).
Shaded regions mark the fraction of interactions detected in the familiar environment that remain in the
novel environment. Error bars indicate the standard error of the mean across N=6 animals. (F) Paired
comparison (colormap – binned pair count) between excess correlations wij detected in familiar vs. novel
environment for each cell-pair within EE (left), EI (middle) and II (right) sub-networks. Continues on
next page.
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Fig.2.2. (G) Example of an estimated excitatory subnetwork. Circles show the place field selectivity of
each neuron, with edges showing significant cell-cell interactions (green – positive; red – negative excess
correlations); line thickness corresponds to interaction strength. (H) Left: interaction probability in the
excitatory subnetwork increases with place field overlap (“place field overlap”, measured as the Pearson
correlation of 2D firing rate maps) for positive interactions (blue – familiar environment; orange – novel
environment; shaded area – 99th percentile confidence interval for the mean). Right: analogous plot for
negative interactions. (I,J) Left: distribution of log node-degree of E cells normalized by the total
number of E cells in each session, for the novel (I) and familiar (J) environment. Inset: quantile-quantile
plot comparing this distribution to the normal expectation. Right: excitatory subnetwork has a
significantly higher clustering coefficient (orange/blue line – data) compared to the expected distribution
for an Erdos-Renyi (ER) network with a matched connection density.

matched independently randomly connected (Erdos-Renyi) graphs (Fig. 2.2E,F). This effect
was more pronounced during novelty (Fig. S2.6A). Accordingly, interacting excitatory triplets
were over-represented, more strongly so in the novel environment (Fig. S2.6C). Finally, we
found a linear relationship between the log-number of nodes and the shortest path length (i.e.
the minimal distance between randomly chosen node pairs, Fig. S2.6B), which is a defining
feature of small-world networks (Watts and Strogatz, 1998). Taken together, these analyses
point to a highly non-random interaction structure, especially in novel environments. We
described a clear cell-to-cell interaction rule (Fig. 2.2D) and topological fingerprints of the
entire network. In the next sections we will explore the advantages offered by such connectivity
and the underlying principles that explain both pairwise and network observations.

Effects of network interactions on spatial coding To explore how the network structure
affects spatial information encoding at the population level, we constructed a statistical model
of interacting excitatory cells responding to spatial inputs (Fig. 2.3A). Our model, a version
of pairwise-coupled, stimulus-driven maximum entropy distribution over binary spiking units
(see Methods, (Granot-Atedgi et al., 2013)) allows us to vary cell-cell excess correlations (to
study the effect of network topology and interaction strength) as well as the strength of the
spatial inputs (to study the effect of novel vs. familiar environment), while maintaining a fixed
average firing rate for the population. For tractability, we simulated populations of 50 place
cells (Fig. 2.3), and extended some of the analyses to larger networks (Fig. S2.11). We used
this model to assess spatial coding at the population level as a function of the structure of
network interactions.
We contrasted spatial coding in two networks that had the same spatial inputs and fixed average
firing rates, but different excess correlation patterns. Interactions in the “structured” network
followed the relationship between place field overlap and excess correlation w observed in real
data; interactions in the “random” network were drawn from the same data-derived distribution
for w, but independently of the overlap in (input) tuning (Fig. 2.3A). For each of the two
choices, we further simulated the effects of familiar vs. novel environment by adjusting the
strength of the feed-forward spatial input, in analogy to previous experimental results (Cohen
et al., 2017; Leutgeb et al., 2004; Hafting et al., 2005; Barry et al., 2012; Brun et al., 2002,
2008). In our model, higher input strength corresponds to higher signal-to-noise ratio for the
spatial drive, which is why we refer to this parameter as “input quality.” We adjusted the input
quality to best resemble the data in terms of various marginal statistics (spatial information,
place field sparsity, peak-over-mean firing values; see Methods and Figs. S2.7,S2.8) in familiar
and novel environments.
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Fig.2.3. Effects of network interactions on spatial encoding. (A) A schematic of the circuit
model with variable excess correlations and fixed population firing rate (see Methods). Two connectivity
patterns are compared: “structured” (mimicking the inferred excess correlation vs. tuning similarity
relationship) vs. “random”. (B) Estimated spatial information (MI; error bar – 99-th percentile CI for
the mean) using structured and random interactions, in the novel-like and familiar-like scenario (see text).
Structured interactions significantly increase the spatial information (p < 0.001 (***) or p < 0.01 (**)
under a non-parametric Mann–Whitney U-test). (C) Effective single cell tuning for random vs.
structured models in the novel-like (orange; left) and familiar-like (blue; right) scenarios. (D) Average
single place cells spatial information (Ispike) for random vs. structured interactions (dashed bars) and
data (solid bar) in the novel-like (orange; left) and familiar-like (blue; right) scenarios (E) The
performance of a simple population vector (“PV”) decoder is compared with the performance of a
decoder which takes into account the co-variability of neurons (“COV”). (F) Improvement in decoding
performance, measured as error of PV decoder minus error of COV decoder, evaluated on 4 · 104 samples
for random (left), data-like structure (center) and data (right). Random 50% of data was used for
train/test. Decoding error measured in spatial bins. Error bars and significance tests as in B. Continues
on next page.
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2.3. Results

Fig.2.3. (G) Fraction of variance explained by the first principal component for responses to random
pairs of stimuli, used to measure the effect of structured interactions on population responses to different
stimuli. (H) Fraction of variance explained by the first principal component of population vectors for
103 random pairs of locations in the maze for random (left) vs. data-like structure (center) vs. data
(right). The fraction is unchanged between the novel and familiar environments on structured network
and on real data, but differs significantly on the random network (error bars and significance tests as in
B). (I) Linear separability of responses to pairs of stimuli. The schematic depicts the 2-dim PCA
projection of the responses to a random pair of stimuli light grey vs dark grey when using random (left)
and structured (right) excess-correlations. (J) Linear SVM classification accuracy of the responses to
random pairs of stimuli trained on 1000 pairs of same vs. different positions for random (left) vs.
data-like structure (center) vs. data (right).

We quantified the coding performance of our networks by estimating the mutual information
between population activity and spatial position and by estimating the average decoding
error. As expected, higher input quality in the familiar environment leads to overall higher
information values (Fig. 2.3B) and lower decoder error (Fig. S2.9B). Less trivial are the effects
of network connectivity: in both environments, structured (data-like) interactions significantly
outperform random ones, with larger improvements seen in the novel environment. This
suggests that network interactions among hippocampal cells adjust to maintain a high-fidelity
spatial representation even when they receive lower quality, noisy inputs. Improved decodability
offered by structured interactions, probed with different decoders, persists in larger networks
with 100, 200, and 500 cells (Fig. S2.11). These population benefits are also reflected in
a general improvement of single-cell spatial tuning (Fig. 2.3C), and single neuron spatial
information (Fig. 2.3D)(Souza et al., 2018).
Do the structured interactions better predict other population-level aspects of the real hip-
pocampal code? We assessed the importance of pairwise (co-firing) statistics for the decoding
performance, highlighted by previous work (Stefanini et al., 2020) (Fig. 2.3E). For the random
network, the decoding performance improvement with co-firing statistics relative to population-
vector decoding is small and comparable in the novel vs. familiar environment. In contrast,
for the structured network and data, the improvement is significantly larger in the novel
environment (Fig. 2.3F); the improvement reaches three-fold in novel relative to the familiar
environment on real data, perhaps due to the larger population size. We then contrasted
the population responses to different stimuli. For each pair of locations, we measured the
fraction of variance explained by the first principal component of the corresponding population
activity patterns (Fig. 2.3G,H). For the random network in the novel environment, this fraction
is two-fold lower than in the familiar environment. In contrast, for the structured network
and data, the fraction is about 0.1, regardless of the environment. Structured interactions
appear to organize neural responses in the novel environment so that the code maintains
a collective correlated response even when the input quality is weak. This effect might aid
downstream areas to better differentiate responses to different stimuli. Therefore, we assessed
the linear separability of spatial positions based on neural population responses, as a measure
of whether information is readily available to downstream brain areas (Fig. 2.3I,J). For the
random network, the performance of a linear classifier trained to discriminate random positions
is significantly worse in the novel environment. In contrast, the performance is restored to a
high value (∼ 0.9) irrespective of the environment by data-like interactions in the structured
model, matching observations on real data (see Fig. S2.10 for separability of positions as a
function of their mutual distance).
Taken together, our results suggest an important coding role for the interaction patterns inferred
in Fig. 2.2D and the corresponding “structured” networks explored in Fig. 2.3. In comparison
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2. Hippocampal encoding of novel memories

to the random network, the data-like, structured network (i) encodes more information about
position even when the input is of low quality; (ii) this information can be retrieved by utilizing
co-firing statistics of multiple cells; (iii) selected collective statistics of place cell activity remain
are preserved under change of environment. Consistent conclusions hold for the comparison
between the data-like, structured network and an uncoupled population (Fig. S2.9).

CA1 interactions match predictions of an optimal coding model While Figure 2.3
suggests that interactions between cells self-organize to improve spatial information coding
relative to a random or an unconnected (Fig. S2.9) network, it is not clear whether the
observed organization is in any sense optimal. To address this question, we numerically
optimized cell-cell interactions among a population of place cells, so as to maximize the mutual
information between the population activity and spatial position (Fig. 2.4A). In essence, this
amounts to finding “efficient coding” solutions for network structure given inputs to individual
cells that are correlated due to place field overlaps (Tkačik et al., 2010). As before, an
important control parameter is the overall magnitude (quality) of the input drive, h, which we
now vary parametrically. Resource constraints were simulated by constraining the optimization
to keep the average population firing rate constant and the possible couplings bounded,
|Wij| ≤ wmax = 1 (see Methods).

As the input quality increases, the information gain due to optimal interactions decreases,
indicating that optimization benefits novel environments (with noisy spatial inputs) more than
familiar environments (with reliable spatial inputs) (Fig. 2.4B). We quantified performance
of data-like interaction (Fig. 2.3) against optimized ones in these small networks. We found
a sizable improvement (avg. ∼ 50% of predicted optimal, with peaks of > 90%) over null
interactions both in familiar and novel environments (Fig. 2.4B). Optimal interactions improve
the spatial code by reducing the entropy of the stimulus-dependent population responses
(“noise entropy”) while largely preserving the total output entropy (Fig. S2.12). We further
find that an overlap in tuning similarity between two cells correlates with optimal pairwise
interaction between them when input quality is low, but this correlation grows weaker with
increasing input quality (Fig. 2.4C), consistent with theoretical expectations (Tkačik et al.,
2010).

Does optimization predict a clear relationship between the tuning similarity and interaction
strength for pairs of cells? Figure 2.4D shows two such relationships, for high and low input
quality, predicted ab initio by maximizing spatial information. The optimal relationships closely
resemble two analogous curves, for the familiar and novel environment, inferred from data
(Fig. 2.4E). A similar resemblance is not observed if one maximizes spatial information carried
by individual cells (Fig. S2.13), highlighting the importance of information coding at the
population, not individual-cell, level.

As an alternative comparison to experiments, we studied the proportion of optimized couplings
that reached maximal allowable strength (positive: Fig. 2.4F; negative: Fig. S2.14A). In the
data, cells are deemed to be interacting when their excess correlation exceeds a threshold, and
so Fig. 2.2D represents a direct counterpart to our theoretical prediction. We find a clear
qualitative match that includes the decrease in proportion of strong interactions for familiar
environments (Fig. S2.14B). We further observe that the proportion of optimal couplings
reaching the constraint wmax scales nonlinearly with the tuning similarity, as in the data;
the shape of the nonlinearity depends on the imposed wmax (Fig. S2.15). This shows how
constraints shape the optimal solution, and suggests that CA1 has to prioritize interactions
among similarly tuned cells to counterbalance the limit on biological resources.
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Fig. 2.4. Predicted optimal network interactions. (A) A schematic of the circuit model. Individual
neurons, which receive spatially tuned inputs (with overall strength controlled by parameter h), are
pairwise connected with interactions W; interactions are numerically optimized to maximize the mutual
information between spatial position and population responses while constraining population mean firing
rates and |Wij | ≤ wmax (here, wmax = 1). (B) Average ratio between mutual information (MI) in
optimized vs non-interacting (W = 0) networks. Dashed vertical lines denote two chosen input quality
levels, together with firing rate map of an example cell (“low quality” h = 2, orange, resembling novel
environment; “high quality” h = 4, blue, resembling familiar environment). In all simulation plots we
show averages over 1000 replicate optimizations with random initial assignments of place fields (see
Methods); shaded area – 95th percentile CI for the mean. Vertical bars represent mean ± STD of MI
ratio for networks using data-like interactions. (C) Average alignment (Spearman’s correlation) between
pairwise input similarity and optimal Wij as a function of input quality. (D) Average magnitude of
optimal Wij as a function of tuning similarity for the two environments. (E) Same as E, computed
using the excitatory-excitatory excess correlations wij estimated from data. Note the vertical scale
difference between (D) and (E): excess correlations wij are a statistical proxy for the true interactions W ;
the two are expected to be correlated but not identical (cf. Fig. S2.2A). (F) Proportion of optimal
Wij = wmax = 1 as a function of tuning similarity.

Even though our simulations use a coarse-grained and downscaled model of a real neural
population (precluding exact comparisons), we observe an excellent qualitative match between
theoretical predictions and the data. Taken together, these results suggest that network
interactions in the hippocampus dynamically adapt to new environments so as to maximize
the fidelity of the population-level spatial representation.

Central role for the nonlinear dependence of connectivity on tuning So far, our
analysis of data as well as of optimized networks has identified a consistent pattern: the
nonlinear dependence of interaction probability on tuning similarity (Fig. 2.2D; 2.4F). Figure 2.3
further showed that the pattern is necessary, since coding benefits were absent in randomized
networks. The key remaining question is whether the observed connectivity pattern is not only
necessary, but also sufficient, to convey spatial coding benefits and generate networks with
data-like topology.

To address this question, we generated model networks of 50 place cells, as before, but limited
their connection strengths to three possible values, {−J, 0, +J}, where J ∈ [0, 1] could be
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Fig.2.5. Data-like interaction pattern is sufficient to generate small-world networks with
improved spatial coding. (A) Connectivity rules for positive connections in a simulated place cell
network with 50 units. (B) Mutual information (MI) increase for data-like (solid) and linear (dashed)
connectivity rule relative to the random connectivity, for familiar-like (blue) and novel-like (orange)
quality input. Shaded areas show the 95-th percentile confidence interval for the mean. (C) Average
decoding error increase for data-like (solid) and linear (dashed) connectivity rule relative to random
connectivity. Error measured as distance between real and decoded spatial bin. (D) Example network
topologies obtained by using different connectivity rules from (A). Nearby nodes have high tuning
similarity. (E) Average clustering coefficient for the three connectivity rules from A (error bars –
standard error; significance – 1-way ANOVA test, p < 0.001 for ***, or n.s. for p > 0.05). (F) Average
shortest path length for the three connectivity rules from A.

varied parametrically. We now used the interaction pattern of Fig. 2.2D as a direct connectivity
rule: we selected 6% of pairs (as in data) to have a positive connection +J and connected
them according to their tuning similarity as in data (Fig. 2.5A, “data-like”). To assess the role
of the nonlinearity, we compared this with networks where the connection probability was linear
in tuning similarity (“linear”) or where it was constant (“random”). In each of the three cases,
a randomly chosen 3% of the place cell pairs (as in data) were connected with a negative
strength, −J . As before, we fixed the average firing rate, and considered two levels of input
quality, mimicking the familiar and novel environments (see Methods). This setup removed all
structure (specifically, by making all connections have the same magnitude) except for that
generated by the connectivity rule, allowing us to test for sufficiency.

First, we find that the data-like connectivity rule consistently improves mutual information
between the population responses and position for increasing J , especially for novel-like input
quality (Fig. 2.5B). This improvement is larger for the nonlinear, data-like connectivity than
for the linear one. Figure S2.17 further suggests that connectivity alone accounts for a large
fraction of mutual information gain, without the need for the fine-tuning of the interaction
strengths. The data-like connectivity rule also improves the performance of a simple population
vector decoder relative to random connectivity, in stark contrast to the linear dependence,
which performs worse than the random one (Fig. 2.5C).

Finally, we asked whether different connectivity rules leave a strong signature on the network
topology (Fig. 2.5D). To this end, we randomly generated 1000 networks according to the three
different rules (Fig. 2.5A). The average clustering coefficient was substantially higher in networks
created using the data-like rule (Fig. 2.5E) compared to both the random and linear connectivity
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rules, without significantly affecting the distribution of incident edges (Fig. S2.16A) or the
average shortest path length (Fig. 2.5F). Additional analysis on the clique-complexes of the
connectivity graphs revealed that the 1D Betti numbers are significantly smaller for the synthetic
networks generated using the data-like rule, and comparable with the data (Fig. S2.16C). These
analyses are consistent with the overexpression of triangles (Fig. S2.6) and high clustering
coefficients (Fig. 2.2E) observed in the data-derived network. Taken together, the nonlinear,
data-like connectivity rule appears sufficient to generate small-world topologies matching data
across a broad panel of network metrics.

2.4 Discussion
Statistical challenges limit our understanding of how experience shapes interactions and,
consequently, information coding in a local neural circuit during animal-driven behavior. While
the idea of analyzing pairwise correlations as a window into network interactions is not
new (O’Neill et al., 2008; Humphries, 2017; Bassett and Sporns, 2017), the statistical problem
of separating local network interactions from other factors that drive neural correlations has
remained unsolved. Previous approaches based on stimulus-averaged correlations (Mathis
et al., 2013), shuffles (Tocker et al., 2015), stimulus-independent Ising (Posani et al., 2017)
or GLM model fits (Dunn et al., 2015) each suffer from statistical limitations (in terms of
sample efficiency, strong stationarity or other model assumptions) which limit their general
applicability. For this reason, most analyses of hippocampal collective behavior still rely on total
correlations (Harris et al., 2003; O’Neill et al., 2008; Lopes-dos Santos et al., 2013; El-Gaby
et al., 2021; Gava et al., 2021). Unfortunately, total correlations potentially conflate changes
in coding with changes in nuisance variables, for instance changes in behavior: even if the
representation does not change at all, a change in the animal’s behavior (e.g. with experience)
would be sufficient to change collective interactions defined based on total correlations.
Furthermore, well documented theta oscillations, which arise from an interplay between medial
septum inputs and hippocampal subcircuits (Colgin, 2013), as well as the animal’s speed, which
is known to substantially influence global hippocampal activity (McNaughton et al., 1983;
Fuhrmann et al., 2015), can increase global synchrony and introduce spurious correlations. It
is only by factoring out all these known sources of covariability, compactly captured by spike
synchrony (Engel et al., 2001), that the fine structure of pairwise cell interactions can be
revealed.
To reliably detect such interactions, we developed a novel statistical test rooted in the maximum
entropy framework (Savin and Tkačik, 2017). When applying our detection method to tetrode
recordings of hundreds of isolated units in dorsal hippocampus of freely behaving rats (Kaefer
et al., 2019; Stella et al., 2019), we found stark differences between familiar and novel
environments, especially in the EE subnetwork. In particular, we found increased interactions
among putative pyramidal neurons in novel environments. Furthermore, we detected increased
interactions between excitatory and inhibitory cells in novel environments. This effect was
not explained by higher reliability of direct excitatory-inhibitory connections (Csicsvari et al.,
1998). It has long been known that inhibition is generally weaker in a novel vs. a familiar
environment (Nitz and McNaughton, 2004; Arriaga and Han, 2019; Geiller et al., 2020),
which has been interpreted as a potential mechanism for enhancing learning by promoting
synaptic plasticity in excitatory neurons (Whitlock et al., 2006; Arriaga and Han, 2019). This
in turn is linked to previous reports on the sparsification of CA1 excitatory responses with
increasing familiarity (Karlsson and Frank, 2008); in our data this effect was not visible as we
selected excitatory cells that were active in both familiar and novel environments. Furthermore,

23



2. Hippocampal encoding of novel memories

given that the null models capture both single cell average activity and population synchrony
for each environment separately, it is unlikely that this observation can directly account for
our results. Instead, our observations in the novel environment are likely to derive from an
increased excitability at the dendritic level of pyramidal cells, an effect that has been observed
experimentally (Sheffield et al., 2017) and has theoretically been shown as necessary for place
field formation and stabilization (Pedrosa and Clopath, 2020).
Our key statistical observation could be distilled into one simple principle: a monotonic nonlinear
dependence of the interaction probability on place field overlap for positive interactions among
excitatory cells. This effect was observed across experience, but was more prominent during
novelty. We analysed the neural coding implications of the inferred interaction structure using
stimulus-dependent pairwise maximum entropy models (Granot-Atedgi et al., 2013). We found
that data-like interactions offered improvements in spatial information content and decoding.
These improvements are visible at different levels: at the single cell level, with a sharpening
of place-fields and improved single cells’ spatial information; and at the population level, by
reducing the conditional entropy of stimulus-driven responses while largely preserving the total
output entropy (Tkačik et al., 2010).
Coding advantages were higher during novelty: this observation argues for a mechanism
employed by CA1 networks to cope with worse quality input from CA3 (Leutgeb et al., 2004)
and MEC (Hafting et al., 2005; Barry et al., 2012) during novelty. The same mechanism
could be used to improve spatial information in other situations where the spatial input is
noisy (e.g., darkness). We also found that data-like interactions improved stimulus discrim-
inability, corroborating previous findings (da Silveira and Berry, 2014). Moreover, our results
explain why disrupting correlations between hippocampal neurons leads to decreased decoding
accuracy (Stefanini et al., 2020).
Efficient coding in the place cell network yields optimal solutions in which similarly tuned
neurons have a higher probability of interacting positively. This is especially prominent for
lower-quality inputs in the novel environment, where the predicted relation between interaction
probability and tuning similarity is clearly nonlinear, as observed in the data. Simulated networks
where this observed relationship is elevated to an actual connectivity rule show that, (i), the
observed relationship is sufficient to improve population spatial coding, and (ii), the resulting
network topology shows clear small-world fingerprints (Watts and Strogatz, 1998; Bullmore
and Sporns, 2009). While our results point towards small-worldness as one consequence of the
particular connectivity rule that may be employed in the hippocampus (Perin et al., 2011),
they do not provide any evidence that small-world networks have intrinsic coding benefits
per se (Latora and Marchiori, 2001; Gallos et al., 2012). Further work is needed to clarify
the relationship between coding and small-worldness and to experimentally probe whether
small-world architecture is common in networks that need to process noisy inputs.
Even though inferred pairwise interactions do not necessarily reflect underlying synaptic
connectivity directly (Das and Fiete, 2020), together with the neuron tuning function they
offer an accurate statistical description of a neural population output (Schneidman et al.,
2006; Tkačik et al., 2014; Meshulam et al., 2017). Moreover, pairwise interactions can
be studied using well established tools from information theory, which critically rely on the
differentiation between stimulus selectivity overlap and network interactions to assess the
amount of information that a population carries about a stimulus (Tkačik et al., 2010). We
derived and tested the efficient coding hypothesis for a network of interacting place cells,
by maximizing the mutual information between the animal’s location (the stimulus) and
the population response, while holding individual cell tuning and overall firing rate fixed.
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We found that network interactions adapt to different levels of input quality by employing
different interaction vs. tuning similarity strategies. In particular, for low input quality (i.e.,
at low signal-to-noise ratio mimicking the novel environment) optimal network interactions
are strongly aligned with the tuning similarity of the interacting cells. When input quality is
higher (i.e., at higher signal-to-noise ratio mimicking the familiar environment), this relation
weakens yet remains detectable. These optimality predictions closely resemble the data,
suggesting that the CA1 circuit is close to an optimal operating regime across experience.
Interestingly, the optimality predictions are borne out even though they are based solely on the
information-theoretic efficiency of the observed neural representation, ignoring its goal-directed
or decision-making value; these aspects could be relevant in other behavioral setups and could
be included using existing theoretical frameworks (Chalk et al., 2016). As far as we know,
this study is the first empirical test of the efficient coding hypothesis applied to network
interactions, as proposed by previous theoretical work (Tkačik et al., 2010).

Theory predicts the inversion of the relative contribution of optimal interaction and tuning at
very high signal-to-noise ratios (Tkačik et al., 2010). This causes the neural population to
decorrelate its inputs, a regime that is characteristic for coding in the sensory periphery (Si-
moncelli and Olshausen, 2001). While our numerical simulations reproduce this decorrelation
regime of efficient coding at very high signal-to-noise ratio inputs, our inferences and data
analyses suggest that it is not relevant for the hippocampal place code. This is likely because
the overall noise levels are higher in the spatial navigation circuits compared to the sensory
periphery, and partially because of the intrinsic differences in the statistics of the signal to
be encoded (position vs. natural images). Further work is needed to quantitatively relate the
experimentally measured noise in CA1 inputs and responses to the effective “input quality”
parameter that enters our predictions.

Are there previous reports where efficient coding predictions do not lead to decorrelation?
A classic analysis in the retina correctly predicted that the receptive fields should lose their
surrounds and switch to spatial averaging at low light (Atick and Redlich, 1990). A detailed
study of retinal mosaics suggested that even during day vision receptive field centers of
ganglion cells should (and do) overlap, increasingly so as the noise increases, leading to a
residual redundancy in the population code (Doi and Lewicki, 2007; Borghuis et al., 2008),
as reported (Puchalla et al., 2005). These findings support a more nuanced view of retinal
coding (Barlow, 2001) than the initial redundancy reduction hypothesis (Barlow et al., 1961),
precisely because they take into account the consequences of noise in the input and circuit
processing (Linsker, 1989; Van Hateren, 1992; Karklin and Simoncelli, 2011). A recent study in
fly vision focused on an interaction between two identified neurons, to find that its magnitude
increased as the visual input became more and more noisy, as theoretically predicted by
information maximization (Weber et al., 2012). Psychophysics of texture sensitivity that arises
downstream of the primary visual cortex further suggested that the relevant neural mechanisms
operate according to the efficient coding hypothesis, yet in the input-noise-dominated regime
where decorrelation is not optimal (Hermundstad et al., 2014). In light of these examples and
our results, efficient coding—understood more broadly as information maximization (Chalk
et al., 2018) rather than solely in its noiseless decorrelating limit—should be revisited as a
viable candidate theory for representations in the central brain. More generally, our approach
enables a synergistic interplay between statistical analysis, information theory, graph theory
and traditional neural coding, and opens new ways for investigating neural coding during
complex/naturalistic behavior in other systems.

25



2. Hippocampal encoding of novel memories

2.5 Materials and Methods

Experimental procedures
Datasets and Subjects We analyzed data from two
previously published datasets (Stella et al., 2019; Kae-
fer et al., 2019). All procedures involving experimental
animals were carried out in accordance with Austrian
animal law (Austrian federal law for experiments with
live animals) under a project license approved by the
Austrian Federal Science Ministry. Four adult male
Long-Evans rats (Janvier, St-Isle, France) were used
for the experiments in (Stella et al., 2019). We further
analyzed two wildtype littermate control animals from
(Kaefer et al., 2019), generated by breeding two DISC1
heterozygous Sprague Dawley rats. Rats were housed
individually in standard rodent cages(56X40X26 cm)
in a temperature and humidity controlled animal room.
All rats were maintained on a 12 hr light/dark cycle
and all testing performed during the light phase. Food
and water were available ad libitum prior to the record-
ing procedures and bodyweight at the time of surgery
was 300-375 g.

Surgery The first 4 animals (Stella et al., 2019) were
implanted with microdrives housing 32 (2x16) inde-
pendently movable tetrodes targeting the dorsal CA1
region of the hippocampus bilaterally. Each tetrode
was fabricated out of four 10 um tungsten wires (H-
Formvar insulation with Butyral bond coat California
Fine Wire Company, Grover Beach, CA) that were
twisted and then heated to bind them into a single bun-
dle. The tips of the tetrodes were then gold-plated to
reduce the impedance to 200-400 kU. During surgery,
the animal was under deep anesthesia using isoflurane
(0.5%–3% MAC), oxygen (1-2l/min), and an initial
injection of buprenorphine (0.1mg/kg). Two rectan-
gular craniotomies were drilled at relative to bregma
(centered at AP =-3.2; ML = ±1.6), the dura mater
removed and the electrode bundles implanted into the
superficial layers of the neocortex, after which both the
exposed cortex and the electrode shanks were sealed
with paraffin wax. Five to six anchoring screws were
fixed on to the skull and two ground screws (M1.4)
were positioned above the cerebellum. After removal
of the dura, the tetrodes were initially implanted at a
depth of 1-1.5 mm relative to the brain surface. Fi-
nally, the micro-drive was anchored to the skull and
screws with dental cement (Refobacin Bone Cement
R, Biomet, IN, USA). Two hours before the end of the
surgery the animal was given the analgesic Metacam
(5mg/kg). After a one-week recovery period, tetrodes
were gradually moved into the dorsal CA1 cell layer
(stratum pyramidale).

The last two animals (Kaefer et al., 2019) were im-
planted with microdrives housing 16 independently
movable tetrodes targeting the right dorsal CA1 re-
gion of the hippocampus. Each tetrode was fabricated

out of four 12 um tungsten wires (California Fine Wire
Company, Grover Beach, CA) that were twisted and
then heated to bind into a single bundle. The tips of
the tetrodes were gold-plated to reduce the impedance
to 300-450 kΩ. During surgery, the animal was un-
der deep anesthesia using isoflurane (0.5-3%), oxygen
(1-2 L/min), and an initial injection of buprenorphine
(0.1 mg/kg). A rectangular craniotomy was drilled
at -3.4 to -5 mm AP and -1.6 to -3.6 mm ML rel-
ative to bregma. Five to six anchoring screws were
fixed onto the skull and two ground screws were po-
sitioned above the cerebellum. After removal of the
dura, the tetrodes were initially implanted at a depth
of 1-1.5 mm relative to the brain surface. Finally, the
microdrive was anchored to the skull and screws with
dental cement. Two hours before the end of surgery
the analgesic Metacam (5 mg/kg) was given. After
a one-week recovery period, tetrodes were gradually
moved into the dorsal CA1 cell layer.

After completion of the experiments, the rats were
deeply anesthetized and perfused through the heart
with 0.9% saline solution followed by a 4% buffered
formalin phosphate solution for the histological verifi-
cation of the electrode tracks.

Behavioral procedures Each animal was handled
and familiarized with the recording room and with the
general procedures of data acquisition. For the first 4
animals (Stella et al., 2019), four to five days before
the start of recording, animals were familiarized at
least 30 min with a circular open-field environment
(diameter = 120 cm). On the recording day, the ani-
mal underwent a behavioral protocol in the following
order: exploration of the familiar circular open-field
environment (40 mins), sleep/rest in rest box (diame-
ter =26cm, 50 mins). Directly after this rest session
the animals also explored a novel environment for an
additional 40 min and rested after for 50 mins. The
novel environment recordings were performed in the
same recording room but in an enclosure of a differ-
ent geometric shape but similar size (e.g., a square
environment of 100cm width). The wall of both the
familiar and novel environment enclosures was 30cm
in height, which limited the ability of the animal to
access distal room cues. In addition, in two animals a
50 mins sleep/rest session was performed before the
familiar exploration.

For the last 2 animals (Kaefer et al., 2019), two to
three days before the start of recording, animals were
familiarized with a circular open-field environment (di-
ameter = 80 cm). On the recording day, the animal
underwent a behavioral protocol in the following order:
10 min resting in a bin located next to the open-field
environment, exploration of the familiar open-field
environment (20 min), sleep/rest in the familiar open-
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field environment (20 min), exploration of a novel
open-field environment (20 min), sleep/rest in the
novel open-field environment (20 min). Whilst the
familiar environment was kept constant, the novel en-
vironment differed on every recording day. The novel
open-field arenas differed in their floor and wall linings,
and shapes. The recordings for the familiar and novel
conditions were performed in the same recording room.

During open-field exploration sessions, food pellets
(MLab rodent tablet 12mg, TestDiet) were scattered
on the floor to encourage foraging and therefore good
coverage of the environment.

Data Acquisition A headstage with 64 or 128 chan-
nels (4 X 32 or 2 X 32 channels, Axona Ltd, St. Albans,
UK) was used to preamplify the extracellular electric
signals from the tetrodes.

Wide-band (0.4 Hz–5 kHz) recordings were taken and
the amplified local field potential and multiple-unit
activity were continuously digitized at 24 kHz using
a 128-channel (resp. 64-channels) data acquisition
system (Axona Ltd St. Albans, UK). A small array
of three light-emitting diode clusters mounted on the
preamplifier headstage was used to track the location
of the animal via an overhead video camera. The ani-
mal’s location was constantly monitored throughout
the daily experiment. The data were analyzed offline.

Data Processing
Spike sorting The spike detection and sorting proce-
dures were performed as previously described (O’Neill
et al., 2006). Action potentials were extracted by first
computing power in the 800-9000 Hz range within a
sliding window (12.8 ms). Action potentials with a
power >5 SD from the baseline mean were selected and
spike features were then extracted by using principal
components analyses. The detected action potentials
were segregated into putative multiple single units by
using automatic clustering software (http://klustakwik.
sourceforge.net/). These clusters were manually re-
fined by a graphical cluster cutting program. Only
units with clear refractory periods in their autocorrela-
tion and well-defined cluster boundaries were used for
further analysis. We further confirmed the quality of
cluster separation by calculating the Mahalanobis dis-
tance between each pair of clusters (Harris et al., 2000).
Afterwards, we also applied several other clustering
quality measures and selected only cells which passed
stringent measures. In particular we implemented: iso-
lation distance and l-ratio (Schmitzer-Torbert et al.,
2005), ISI violations (Hill et al., 2011) and contamina-
tion rate. We employed the code available on Github:
https://github.com/cortex-lab/sortingQuality. The
criteria for the cells to be considered for analysis were
the following:

• Isolation distance > 10−th percentile

• ISI violations < 0.5

• contamination rate < 90−th percentile

Periods of waking spatial exploration, immobility, and
sleep were clustered together and the stability of the
isolated clusters was examined by visual inspection
of the extracted features of the clusters over time.
Putative pyramidal cells and putative interneurons in
the CA1 region were discriminated by their autocor-
relations, firing rate, and waveforms, as previously
described (Csicsvari et al., 1999a).

Data inclusion criteria We set a minimum firing
rate of > 0.25 Hz for each cell on average, across
both familiar and novel environments. Tetrodes in the
above mentioned experiments were 0.4mm apart, guar-
anteeing that no two tetrodes would pick up the same
cell (Henze et al., 2000). Nonetheless, we monitored
for that possibility by measuring the cross-correlogram
of cells on different tetrodes, and found no suspi-
cious pairs of cells that could be duplicates. The final
dataset consisted of 294 putative excitatory and 128
putative inhibitory cells across 6 animals. Considering
only pairs of units recorded on different tetrodes, the
dataset includes a total of 9511 excitatory-excitatory
(EE) pairs, 7848 excitatory-inhibitory (EI) and 1612
inhibitory-inhibitory (II) pairs.

Spiking data was binned in 25.6 ms time windows,
reflecting the sampling rate for positional information.
We excluded bins where:

• the animal was static (speed < 3cm/s)
• sharp-wave ripple oscillatory activity was high,

i.e. periods with power in the band 150 ∼ 250
Hz in the top 5th percentile (Csicsvari et al.,
2000; O’Neill et al., 2006)

• theta oscillatory activity was particularly low,
with power in the band 5 ∼ 15 Hz in the lowest
5th percentile; it is known that hippocampal
theta oscillations support encoding of an ani-
mal’s position during spatial navigation and re-
duces overall synchrony of population (Buzsáki
and Moser, 2013; Mizuseki and Buzsaki, 2014).

Detailed dataset information For each animal,
only one experimental session was recorded and an-
alyzed, giving us a total of 6 familiar and 6 novel
explorations. In detail, each animal/session provided
us with the following numbers of cells and cell pairs:

animal #excitatory #inhibitory
mjc161 29 19
mjc163 111 42
mjc169 48 20
mjc186 58 28
mjd12 10 10
mjd34 38 9
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animal #EE #EI #II
mjc161 385 526 169
mjc163 5833 4472 825
mjc169 1085 917 185
mjc186 1556 1531 357
mjd12 29 96 42
mjd34 623 306 34

Null model of population responses and
detection of excess correlations
Maximum entropy null model We construct a
null model for population responses (y1, . . . , yN ) that
takes into account the position of the animal, s and the
population synchrony, k =

∑︁N
i yi, but is otherwise

maximally variable. We use this model to generate
a large ensemble of surrogate datasets, that match
the data with respect to tuning but without additional
noise correlations. Using these surrogates allow us
to estimate an empirical distribution of (total) pair-
wise correlations under the null model, which we then
compare to data.

Under the assumption that spike counts have mean
λ(s, k) with Poisson noise, the distribution of the joint
neural responses under the null model factorizes as:

pind(y
⃓⃓
s, K) =

∏︂
Poisson(yi|λi(s, k)). (2.1)

One important caveat is that the population synchrony
depends on the neural responses themselves, which
introduces the additional constraint that k =

∑︁
i yi

for each of these surrogate draws, something that we
enforce by rejection sampling (Press et al., 1992). The
only remaining step is to estimate the tuning func-
tion of each cell, λi(s, k), which we achieve using a
nonparametric approach based on Gaussian Process
(Rasmussen, 2003) priors.

Tuning function estimation Here we briefly de-
scribe the key steps of the approach, and refer the
reader to (Savin and Tkacik, 2016) for further de-
tails. The data is given as T input pairs, D =
{xt, yt}t=1,2,...,T , where xt denotes the input vari-
ables, defined on a 3−dimensional lattice for the
2d−position of the animal in the environment and
population synchrony, defined as k =

∑︁N
n=1 y

(n)
t ; yt

denotes spike counts of N neurons in the t−th time
bin (dt = 25.6ms).

Neural activity of each single neuron is modeled as
an inhomogeneous Poisson process with firing rate
dependent on input variables, λ(xt). We use a Gaus-
sian Process (GP) prior to specify the assumption that
the neuron’s tuning is a smooth function of the in-
puts, with an exponential link function, f = log λ,
f ∼ GP(µ, k), with mean function µ(·) and covari-
ance function k(·, ·). In particular, we use a product
of squared exponential (SE) kernels for the covariance

function:

k(x, x′) =
3∏︂

d=1
kd(xd, x′

d) =
3∏︂

d=1
ρd exp(xd−x′

d)/2σ2
d,

(2.2)
This allows the prior covariance matrix to be decom-
posed as a Kronecker product K = K1 ⊗ K2 ⊗ K3,
dramatically increasing the efficiency of the fitting
procedure (Flaxman et al., 2015).

The parameters θ = {µ, ρ, σ} are fitted for each cell by
maximizing the marginal likelihood of the data given
parameters. Given estimated parameters, θ̂, we infer
the predictive distribution p(f∗|D, x∗, θ̂) for a set of
input values x∗ (defined below). This distribution can
be computed by marginalizing over f :

p(f∗|D, x∗, θ̂) =
∫︂

p(f∗|D, x∗, θ̂, f)p(f |D, θ̂)df
(2.3)

This distribution is intractable, but can be approxi-
mated by using a Laplace approximation for p(f |D, θ̂)
so that ultimately p(f∗|D, x∗, θ̂) ≈ N (µf∗ , σf∗). Fi-
nally, thanks to the exponential link function, the in-
ferred firing rate of an individual input point λ(x∗) =
exp(f∗) is log-normally distributed, whose mean and
variance can be computed as:

E(λ(x∗)) = exp(µf∗ + σ2
f∗

/2) (2.4)

and

Var(λ(x∗)) = exp(σ2
f∗

− 1) exp(2µf∗ + σ2
f∗

) (2.5)

We chose input points x∗ = (s, k) that corresponded
to the binned 2D location s of the animal (5cm
bins) and binned population synchrony k (10 equally
weighted bins, each containing 10% of the data, i.e.
the bin edges correspond to the (0th, 10th . . . , 100th)
percentiles).

Generating surrogate data At each moment in
time, given the position s and population synchrony
k, the GP tuning estimate provides a distribution over
possible firing rates for cell i, λi(s, k), as a log nor-
mal distribution, log λi ∼ N (µf∗ , σf∗). This captures
uncertainty about the tuning of the cell, given the
data. Our method allows us to propagate this un-
certainty throughout all the subsequent analyses by
sampling firing rates from this distribution (formally,
by treating neural responses as arising from a doubly
stochastic point model). We generate surrogate spike
counts in two steps. First, we sample the mean firing
from this p(λi|s, K) distribution. Second, for each λi

sample, we draw the corresponding spike count from
Poisson(λi). Applying this procedure for all cells and
all time points generates a surrogate dataset from the
unconstrained null model. We enforce the constraint∑︁

i yi = k by discarding and redrawing samples that
do not satisfy it. In rare cases (less than 2% of data),
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it was not possible to replicate the desired k statis-
tic, i.e. achieving the desires k required more than
500 re-samplings. Such time bins were excluded from
subsequent analysis (both for for real data and all
surrogates). We generate a total of 1000 surrogate
datasets.

Inference of excess correlations We use the pair-
wise correlations between neural responses as the test
statistic and compare it to the distribution of pairwise
correlations expected under the null model that as-
sumes that the firing rate of cells is only driven by the
stimulus and the synchrony of the population, without
further pairwise interactions.

Given the Pearson correlation coefficient between the
activities of cells i and j computed on real data, cij ,
and cγ

ij the same quantity computed on a surrogate
dataset {yγ

1:t} for γ = 1, 2, . . . 1000. We define the
quantity we refer to as “excess correlations” as:

wij =
cij− < cγ

ij >

σ(cγ
ij) (2.6)

where < · > denotes the sample average and σ the
sample standard deviation of cγ

ij . Assuming that the
cγ

ij distribution is normal, this quantity is closely re-
lated to confidence bounds, and p-values (via the error
function). An excess correlation is deemed significant
if |wij | > 4.5, which corresponds to a p-value thresh-
old of p = 0.05 with a Bonferroni correction for the
7500 multiple comparisons.

Validation To validate our method, we construct an
artificial dataset with know interactions, by sampling
from a coupled stimulus dependent MaxEnt model.
We consider N = 50 neurons and binary activations
y = (y1, . . . yN )T for any given time window. The
distribution of responses y given a location-stimulus s
and synchrony level k is

p(y|s, k) ∝ exp
(︂∑︂

i

fi(s)yi +
∑︂
i>j

Wijyiyj

−
∑︂

i

(yi − k/N)
)︂ (2.7)

where s ∈ {s1, . . . , sK} is a spatial position chosen
from a set of discrete locations uniformly spaced in
the environment, and the feedforward input to each
cell, fi = fi(s), is as described in methods subsection
(2.5). We try to match the general statistics of the
data as closely as possible. In particular, we match
the true time-dependent occupancy, st, observed in a
20 minutes exploration session, and the correspond-
ing time-dependent synchrony observed in the same
session, kt, by sampling one population activity vec-
tor (after adequate burn-in time) at each time point
y(t) ∼ P (y|st, kt) using Gibbs sampling (Geman and
Geman, 1984).

Given this artificial dataset, we analyze it with the
same processing pipeline that we use for the neural

recordings and compare the estimated interactions
wij with the ground truth couplings Wij , which are
randomly and independently drawn from N (0, 1). Fur-
thermore, we generate data with the same constraints
but without any interactions. We asses the ability of
our statistical test to detect true interactions using the
receiver operating characteristic (ROC), and estimate
false positive rates for our statistical test.

Hippocampal population responses with
adjustable network structure
Stimulus dependent MaxEnt model In order to
explore the effects of the noise correlation structure
on the coding properties of the hippocampal system,
we employed a statistical model of the collective be-
havior of a population of place cells that allowed us
to vary the couplings among cells while keeping fixed
the output firing rate. A similar, stimulus depen-
dent maxent model was introduced in (Granot-Atedgi
et al., 2013), and more recently was used in (Meshu-
lam et al., 2017) to prove that correlation patterns
in CA1 hippocampus are not due to place encoding
only, but also to internal structure and pairwise inter-
actions. Our model includes spatially-selective inputs
with adjustable strength, h ∈ R, and noise correlations
modelled as a matrix W describing the strength of
interaction between cell pairs. Additionally, we con-
strained average population firing rates to be the same
for each possible choice of h and W, as a way of
implementing metabolic resource constraints.

More specifically, consider N neurons with binary ac-
tivations y = (y1, . . . yN )T. The distribution of re-
sponses y given a location-stimulus s we considered
is

p(y|s) ∝ exp
(︂

h
∑︂

i

fi(s)yi +
∑︂
i>j

Wijyiyj

− h0
∑︂

i

yi

)︂ (2.8)

where s ∈ {s1, . . . , sK} is a spatial position chosen
from a set of discrete locations uniformly spaced in
the environment (the unit square, [0, 1] × [0, 1]). The
feedforward input to each cell, fi = fi(s), is modelled
as a 2−D Gaussian bump with continuous boundary
conditions, mean randomly drawn from a uniform on
[0, 1]× [0, 1] and fixed covariance 0.1I. The parameter
h0 allows us to fix the average population firing rate
to 20% of the population size, and is found by grid
optimization. Once the input tuning fi is fixed for
each cell, we select the connections Wij for each cell
pair by sampling from the data-inferred excess correla-
tions of cell pairs with similar input tuning, and then
scaling according to the results found during method
validation (Fig S 2.2). We did so separately for familiar
and for novel environments.
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Inference of input quality from data We fixed
the appropriate parameter h, separately for familiar-
like and novel-like connections, by matching average
marginal statistics of firing rate maps obtained from
the model to the data. We utilized three measures:
single cell spatial information, sparsity and gain, which
are described in detail in Methods subsection (2.5).
Separately for familiar and novel environments, we ran-
domly chose 50 tuning functions and selected pairwise
connections (rescaled from data, see previous subsec-
tion) depending on tuning similarity. We then simu-
lated population activity according to real occupancy
(as in validation) for h ∈ {0.1, 0.2, . . . , 5}, computed
firing rate maps and their statistics. We selected the
h value that best matched the data (Fig. S2.9).

Optimization of connections for fixed input and
fixed firing rate Given h,{fi(·)}, we optimize the
connections W so as to maximize the mutual informa-
tion between population activity and spatial position,
MI(y; s) =

∑︁
y,s p(y|s)p(s) log p(y|s)

p(y) , via Sequential
Least SQuares Programming (SLSQP) (Virtanen et al.,
2020). We further constrain the population average
firing to 20% of the neural population, and each Wij

is restricted to lay in [−1, 1]. Both reflect biological
resource constraints on the optimal solution.

Most simulations use N = 10 neurons, which allows
the mutual information to be computed in closed form
(by enumerating all possible patterns). Reported esti-
mates are obtained by averaging across 1000 randomly
initialized networks (different fi(·) centers, and initial
conditions for the optimization). To ensure that our
results generalize to large networks, we also performed
limited numerical simulations for N = 20 (only for
h = 2 and h = 4, averaging over 10 networks.

Comparison of data-like interactions with opti-
mization results We compared the performance (in
terms of MI) of optimized networks vs networks with
data-like interactions (Fig. 2.4B). To do so, we ran-
domly initialized a small network with 10 neurons,
as explained in the previous subsection, and for each
pair assigned an interaction strength according to the
relation found in data (as in Fig. 2.3). Finally, we op-
timized the interactions so as to maximize the mutual
information between population spiking and stimuli.

Optimal coding for large networks The exact com-
putation of the mutual information MI(y; s) is very
resource intensive and only applicable to small net-
works (N ≤ 20). To investigate the effects of noise
correlations at larger scales we need to rely on efficient
approximations. The mutual information between pop-
ulation binary responses y and location-stimulus s can

be written as
MI(y; s) =

∑︂
y,s

p(s|y)p(y) log p(s|y)

−
∑︂
y,s

p(s|y)p(y) log p(s)

= H(s) − H(s|y),

(2.9)

where H denotes (conditional) entropy. Assuming
that p(s) is a uniform distribution over stimuli, we
have H(s) = 2 log B, where B is the number of bins
used to discretize each dimension of the 2−dim envi-
ronment. We generally use B = 16. The challenge
is to compute H(s|y). For a given y, denote with
ĥ(y) := −

∑︁
s p(s|y) log p(s|y). Then we have:

H(s|y) = −
∑︂
y,s

p(s|y)p(y) log p(s|y)

=
∑︂

y
p(y)ĥ(y)

=
∑︂

s

p(s)
∑︂

y
p(y|s)ĥ(y)

(2.10)

We used the last expression and estimated H(s|y)
by drawing 106 samples from p(y|s) for each stim-
ulus s using Gibbs sampling (Geman and Geman,
1984). We reported the estimated average across
stimuli and confidence intervals in the figures. The
quantity ĥ(y) = −

∑︁
s p(s|y) log p(s|y) is the entropy

of the posterior distribution on stimuli given a certain
binary vector. The main obstacle to computing ĥ is
that, for each stimulus s, we need to know the propor-
tionality constant Zs =

∑︁
y p(y|s) (i.e. the partition

function), that makes the probability (2.8) sum up to
1. We computed Zs exhaustively for N ≤ 20 by enu-
merating all the possible binary vectors. For N ≥ 20
we estimated it using a simple Monte Carlo method
by randomly drawing 109 independent N−dim binary
samples for each stimulus, and then regularizing by
applying a mild 2D gaussian smoothing (σ = 0.5 bins)
on the log-transformed Zs among neighboring stimuli.
“Topology” model simulations We aimed at char-
acterizing the influence of higher order structure on
the coding of the network. We used the same model
as in eq. [2.8] with 50 place cells, but allowed connec-
tions to be either −J , 0 or +J , where J ∈ [0, 1] is
the connection strength. We employed three different
strategies to select the units to connect, as described
in the main text, based on their tuning similarity. We
kept fixed the number of positive (+J) and negative
(−J) couplings to 6% and 3% respectively. For each
choice of tuning, connectivity rule and strength J
we used the parameter h0 to enforce the population
average firing to be 20% of the population size.

Analysis of experimental data
Single cell tuning characterization To describe the
tuning properties of single cells we employed several

30



2.5. Materials and Methods

measures:

• gain: peak firing rate over mean, estimated
from the tuning function of a cell,

• sparsity: < λx >2
x / < λ2

x >x, where λx

denotes the average firing at location x, is a
measure of how compact the firing field is rel-
ative to the recording apparatus (Jung et al.,
1994),

• spatial information: < λx

λ log λx

λ >x, where
λ =< λx >x, is the leading term of the MI
between average spiking and discretized occu-
pancy for small time windows (Skaggs et al.,
1993; Souza et al., 2018).

Decoding of spatial position from data We
subdivided the environment in equally spaced
2−dimensional bins with bin side length of 20 cm.
This choice was due to the fact that, to properly es-
timate the average co-activation of cells one needs
many samples and a finer subdivision of the environ-
ment made this task extremely difficult. We randomly
subdivided the data in two parts, 75% for training and
25% for decoding. With the training data we esti-
mated, for each bin separately, the average activation
and the covariance of the neurons activity. With the
remaining 25% of the data, we computed for each
non-overlapping 10 consecutive 25.6 ms time bins the
activation (denoted by population vector or PV) and
the covariance (COV). We then simply compared them
to all the expected PV and COV measured over the
training set in different bins and picked the most simi-
lar one in terms of Pearson correlation. For Fig. S 2.11
we also used a bayesian maximum a posteriori (MAP)
decoder. We inferred the conditional probability of
spiking of cell i given location s, P (yi|s), on 4 · 105

samples. We then tested the decoder on additional
105 samples. Cells were assumed to be conditionally in-
dependent of each other, hence P (y|s) =

∏︁
i P (yi|s).

We used a flat prior, so for a population vector y the
decoded position is:

ŝMAP = arg max
s

P (s|y) = arg max
s

P (y|s) (2.11)

PCA, linear separability of pairs of stimuli We
wanted to investigate the linear separability of popu-
lation responses to different locations. We randomly
selected 500 times two distinct locations in the environ-
ment and selected all the 250ms population responses
in a 10 cm surrounding of the two positions. We then
found the best hyperplane that separated the two sets
of responses by using a soft-margin linear SVM with
hinge loss, and reported the training error. We also
computed the principal components of the population
responses to both locations together, and reported the
variance explained by the first PC.

Network analysis
Graph theoretical measures All the measures were
carried out using the library NetworkX (release 2.4)
in Python 3.7. We considered unweighted and non
directed graphs where each cell was a vertex and an
edge connected each cell pair that had a significant
interaction (|wij | > 4.5). A graph G = (V, E) for-
mally consists of a set of vertices V and a set of edges
E between them. An edge eij connects vertex vi

with vertex vj . The neighbourhood for a vertex vi

is defined as its immediately connected neighbours:
Ni = {vj : eij ∈ E ∨ eji ∈ E} and its size will be
denoted by ki = |Ni|.

We measured:

1. Clustering coefficient: this measure repre-
sents the average clustering coefficient of each
node, which is defined as the fraction of ex-
isting over possible triangles that include that
node as a vertex. Formally, the local clustering
coefficient ci for a vertex vi is given by the
proportion of links between the vertices within
its neighbourhood divided by the number of
links that could possibly exist between them,
hence measuring how close its neighbourhood
is to forming a clique. If a vertex vi has ki

neighbours, ki(ki−1)
2 edges could exist among

the vertices within the neighbourhood. Thus,
the local clustering coefficient for vertex vi can
be defined as

ci = 2|{ejk : vj , vk ∈ Ni, ejk ∈ E}|
ki(ki − 1)

and the average clustering coefficient as

cG = 1
n

∑︂
vi∈V

ci

2. Average shortest path length: this measure
can be computed only if the graph is connected.
If not, we computed this measure on the largest
connected subgraph.

aG =
∑︂

u,v∈V

d(u, v)
n(n − 1)

where u, v are distinct vertices, d(u, v) is the
shortest path length between u, v and n is the
size of the graph G.

Triangles analyses We tested for the over-
expression of particular interaction patterns by count-
ing the number of triangles (i.e 3 all-to-all interacting
cells) composed by 3 inhibitory cells, 2 inhibitory and 1
excitatory, 1 inhibitory and 2 excitatory or 3 excitatory
cells. We tested these counts against the counts from
the same networks with shuffled edges. We employed
an edge-shuffling procedure that preserved both the
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2. Hippocampal encoding of novel memories

total number of edges and the number of incident
edges per node, separately for the EE, EI and II sub-
networks (i.e. an edge connecting two excitatory cells
could be exchanged only with another edge connecting
two excitatory edges etc). To do this, we randomly
selected two edges of each subnetwork, say AB and
CD. If A ̸= C ̸= D and B ̸= C ≠ D we removed
the two edges and inserted the “swapped” ones, AC
and BD. We repeated this procedure 100 times for
each subnetwork to yield one shuffled network. We
repeated this procedure 1000 times, which gave us a
null distribution to test the original counts against. In
Supp. Fig. 2.6 we reported the counts of each pat-
tern, separately for familiar and novel environments,
normalized against our null distribution.

Betti numbers We computed the Betti numbers of
the clique-complex induced by the graphs. These are
distinct from the graphs Betti numbers (Giusti et al.,
2015). A clique in a graph is an all-to-all connected

set of vertices. The clique complex X(G) of an undi-
rected graph G is an abstract simplicial complex (that
is, a family of finite sets closed under the operation
of taking subsets), formed by the sets of vertices in
the cliques of G. Intuitively, the clique-topology can
be characterized by counting arrangements of cliques
which bound holes. Formally, the dimensions of the
homology groups Hm(X(G),Z2) yield the Betti num-
bers bm (Giusti et al., 2015). Given our low connec-
tivity ( 9%), bm was almost always zero for m ≥ 2.
On the other side, b0 simply counts the number of
connected components, so in our analysis we focused
on b1. This is the number of cycles, or holes, that
are bounded by 1-dim cliques. Graphically, these are
4 edges that form a square, or 5 edges that form a
pentagon etc. Notice that 3 edges that form a triangle
don’t count towards b1, because they represent a 2-
dim clique (i.e. 3 vertices that are all-to-all connected).
This is why a higher clustering coefficient (i.e. more
triangles) implies a lower b1.

Supplementary figures
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Fig. S.2.1. Null model. Our null model accounts for the measured 2D spatial selectivity of each
recorded neuron as well as the extra dimension given by the moment-to-moment global neural synchrony
of both excitatory and inhibitory cells. We have chosen this constraint because it captures both
underlying theta oscillations (A) and animal speed (B). (A) Pearson cross-correlation of theta oscillation
amplitude (LFP filtered using Butterworth 2nd order in 6 − 12 Hz and then downsampled) vs summed
activity of all neurons (i.e. synchrony) K in 25.6 ms time windows. One panel for each of the 6 animals
during free exploration of a familiar environment. (B) Average synchrony K as a function of speed.
Speed was binned in 5cm/s bins. Error bars represent 99th CI. (C) Example 3D model inferred for one
place cell during exploration of a familiar environment. Notice how the firing rate map depends on both
2D spatial location and synchrony K. (D,E) Null model marginal statistics of an example session. (D)
The null model captures average firing rate of both putative excitatory (left) and inhibitory (right) cells.
Error bars represent 99th CI. (E) Distribution of synchrony. (F) We measured the coincident firing of all
the triplets of cells < xixjxk > from data (same example session as (D), (E)) in 25.6 ms time windows,
and compared with the expected coincident firing of triplets from a model that accounts for 2D spatial
selectivity and without dependence on K (left) or with K (right). Notice how the 3D model captures the
majority of true triplet cofiring, which are generally underestimated by a simple 2D null model.
Regression analyses, both ps < 0.0001.
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Fig. S.2.2. Further data on validation and null model. (A) Scatter plot of ground truth Wij

values used in the model for validation vs wij inferred from artificial data. Black line: linear regression
(slope=0.066, intercept=-0.009, r=0.918, p=0.0). (B) Scatter of inferred wij vs tuning similarity.
Tuning similarity is computed as Pearson correlation of the tuning functions corr(fi(s), fj(s)) for each
pair i, j of cells in the model (see Methods). Notice the absence of bias towards detection for cells with
higher or lower tuning similarity. Linear regression: r = 0.023, p = 0.24. (C) Wij detection error
inferred as the difference between wij (scaled by the appropriate slope) and the true Wij . Notice the
absence of bias towards highly similarly tuned pairs. Linear regression: r = 0.009, p = 0.61. (D) ROC
for lower (h=2, left) and higher (h=4, middle) input strengths. Right: scatter plot of inferred wij for the
two input strengths. Linear regression r=0.913, p<0.0001. (E) Standard noise correlation detection.
For each spatial bin where the synthetic agent spent more than 10 seconds the Pearson correlation was
computed among cells and then averaged. (F) Novel-like scenario: unstable and noisy multi-component
tuning. Input strength was drawn random from N (2, 1). Number of components chosen as Poisson with
average=2. At each time point, component weights were re-drawn from a Dirichlet distribution with
parameter alpha=2. The average population firing was always kept to 10% of the population. Left:
example inferred tuning functions. Right: ROC. (G) Inhibitory-like scenario: high-firing and weak spatial
tuning, noisy multi-component tuning. Number of components chosen as Poisson with average=5. At
each time point, component weights were re-drawn from Dirichlet distribution with parameter alpha=2.
The average population firing was kept to 50% of the population. Left: example inferred tuning
functions. Right: ROC.
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Fig. S.2.3. Animal behavior and CA1 neurons marginal statistics.
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2. Hippocampal encoding of novel memories

Fig. S.2.3. Animal behavior and CA1 neurons marginal statistics. (A) Comparison of familiar
(blue) vs novel (orange) occupancy and enclosure sizes (x and y axes, measured in cm), animal by animal.
Each animal contributed to one familiar and one novel recording only. (B) Distribution of running speed
during familiar (blue) vs novel (orange) explorations. KS test, all ps<0.01. Mann-Withney U-test, all ps
< 0.01. (C) Distribution of spatial firing field similarity of familiar vs novel environments, measured as
Pearson r of 2D firing rate maps. (D) Distribution of marginal log-likelihood (left) and pseudo R2 (right)
of excitatory single cells null models in familiar (blue) vs novel (orange). KS tests, both ps > 0.1. (E)
Same as (D), for putative inhibitory neurons. KS tests, both ps > 0.01. (F) Top: distribution of ISI
violation scores after spike sorting for the data included in the analyses. Bottom: same for the Isolation
Distance measure. (G) Left: distribution of average firing rates of putative CA1 excitatory neurons in
familiar (blue) and novel (orange) environment (KS test: p=0.505, N = 294). Right: paired difference
across environments (familiar − novel), paired t-test: p=0.091. Error bars represent 95th CI for the mean.
(H) Same as (G) for putative inhibitory neurons (N=128). KS test: p=0.209, paired t-test: p=6e − 05.
(I) Distribution of synchrony measured as cells active over population size (k/N) in 25.6 ms time
windows of excitatory neurons for different behavioral speed: [3, 10), [10, 15), [15, 20), [20, 25), [25, 100)
cm/sec for familiar (blue) and novel (orange).Data was pooled across the 6 animals. All KS test
p < 0.0001. (J) Same as (I) for putative inhibitory neurons.All KS test p < 0.0001. (K) Distribution
of (raw) pairwise correlations among EE (left), EI (middle) and II (right) pairs. All KS tests had p<0.001.
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Fig. S.2.4. Excess correlations vs theta locking/speed/heading similarity. Efficacy of
excitatory-inhibitory monosynaptic connections. (A) For each cell we computed a theta-phase
histogram, which measures the tendency of a cell to fire at a particular theta phase. We then compared
the dissimilarity of theta-phase histograms among each pair of cells by means of an earth mover distance
(EMD). We then scatter plotted the inferred wij vs dissimilarity of theta selectivity (t-test for Spearman
rank correlations: EE p > 0.05, EI p < 0.001, EE p < 0.001). (B) Same as (A), for EE, EI and II pairs in
novel environemnts. (t-test for Spearman rank correlations: EE p > 0.05, EI p < 0.001, EE p < 0.001).
(C) Left: For each cell we measured the average firing rate for each possible heading angle in 30deg bins.
We then measured the similarity in heading tuning for each pair of EE cells, and scatter plotted against
inferred wij (t-test for Spearman rank correlations: p < 0.01). Right: we measured the average firing as
a function of speed in 5cm/s speed bins. We then measured the similarity of speed tuning for each pair
of EE cells, and scatter plotted against inferred wij (t-test for Spearman rank correlations: p = 0.028).
Reported in the figure r-values for Spearman rank correlations. (D) Same as (C), for EE pairs in novel
environments. Left: t-test for Spearman rank correlations: p < 0.01. Right: t-test for Spearman rank
correlations: p = 0.032. (E) Firing of cells was binned into 0.5ms time windows, and cross-correlogram
was normalized by subtracting the mean and dividing by the STD of cross-correlograms computed on
randomly shifted data 100 times. The pairs that had peak (normalized) cross-correlogram > thr STDs,
for thr ∈ [7, 8, 9, 10], were labelled as monosynaptically connected. Thresholds were selected according
to literature (Csicsvari et al., 1998). From left to right, each panel shows results for increasing thresholds
and also reports the number of monosynaptic connected pairs in each environment. Shaded areas
represent 95th CI for the mean. Mann-Withney U test for the peaks, each panel p>0.05.
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Fig. S.2.5. Stability of main results. The spatial tuning of single cells emerges during the first few
minutes of exploration of a novel environment (Wilson and McNaughton, 1993). To ensure that this
instability does not affect our results, we detected excess correlations removing the first 5 minutes of
exploration (panels A - C). Moreover, effects such as theta phase precession are not equal in familiar and
novel environments and could induce fine grained synchrony among cells that our model cannot
detect (O’Keefe and Recce, 1993). To test whether phase precession influences our ability to infer excess
correlations, we introduced a small amount of random jitter on each spike (panels D - E) (A) Scatter
plot of inferred wij on the entire dataset vs reduced dataset (excluding initial 5 minutes of exploration).
(B) Average wij on full dataset (colored solid line) vs no first 5 minutes (black solid line). Shaded area
corresponds to 99th CI. (C) Analysis as in Fig. 2.2H for each animal individually on full dataset and
excluding first 5 minutes. (D) Individually for each spike of each excitatory cell we added a random
jitter∼ U(−X, X)ms, for X ∈ [10, 20, 30]. The figure shows scatter of inferred wij on original dataset vs
jittered for familiar (top) and novel (bottom). Dotted lines represent significance (i.e., z < −4.5 and
z > 4.5). (F) Proportion of excitatory pairs that pass significancy thresholds for different levels of jitter.
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Fig. S.2.6. Small worldness of EE subnetwork. (A) Average clustering coefficient of excitatory
subnetworks normalized against the same values computed on ER random graphs with matching edges
density (Fig 2). Z-test against µ = 0, fam: p<0.05, nov: p<0.001. Paired t-test: p<0.01 (N=6
animals). Error bars represent 99th CI.. (B) Left: log-nodes number vs shortest path length in the
largest connected component of excitatory subnetworks with standard significancy threshold at |w| > 4.5
(two dots per animal: familiar (blue) and novel (orange)). Linear regression: r = 0.66, p=0.014. Right:
same as left for excitatory subnetworks with higher significancy threshold at |w| > 6. Linear regression: r
= 0.97, p<0.0001. (C) Overexpression of triangles in real networks against random shuffling of the
edges that preserved the number of incident edges onto each single node (see Methods). Z-test, fam:
p<0.001, nov: p<0.001. Error bars represent 99th CI.
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Fig. S. 2.7. Average marginal statistics of place cells in hippocampus match circuit model. The
interactions in the model were drawn from the inferred couplings observed in data and rescaled according
to Supp. Fig. 2.2A. Afterwards, we fixed the input strength by picking the parameters that allowed the
model to best match the marginal statistics observed in data h =∼ 2 for novel, h =∼ 4 for familiar. All
the measures were computed on traditional 2D firing rate maps (see Methods). (left) single cell spatial
information, (center) firing rate map gain, measured as peak over mean (right) firing rate sparsity. Error
bars represent 99th confidence interval of the mean. Data: N=294, model: N=50.
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Fig. S.2.8. Marginal statistics of larger place cell populations can be matched in distribution,
and decoding benefits persist. We considered a population of 200 synthetic place cells and introduced
heterogeneity in the distribution of input strengths (∼ N (2, 1)), number of components (∼ Pois(3)) and
components weights (∼ Dirichlet(2)). The interactions in the model were drawn from the inferred
couplings observed in data and rescaled according to Supp. Fig. 2.2A. (A) Example firing rate maps
computed on 4 · 104 samples. Color bars indicate average number of spikes per sample. (B) Distribution
of marginal statistics for data (black) and model (grey). All the measures were computed on traditional
2D firing rate maps. Left: single cell spatial information (KS test, p=0.410), middle: firing rate map
gain, measured as peak over mean (KS test, p=0.0126), right: firing rate sparsity (KS test, p=0.348).
Data: N=294, model: N=200. (C) PV decoding error computed on 4 · 104 samples (cross-validated
50/50) for data-like interactions vs randomized ones.
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Fig. S.2.9. Comparison with null couplings. (A) Estimated spatial information (MI; error bar –
99th percentile CI for the mean) using structured, random and null interactions, in the novel-like and
familiar-like scenario (see text). Structured interactions significantly increase the spatial information
(p < 0.001 (***) or p < 0.01 (**) under a non-parametric Mann–Whitney U-test). (B) Decoding error
using a simple population vector approach (PV; error bar – 99th percentile CI for the mean) using
structured, random and null interactions, in the novel-like and familiar-like scenario. Structured
interactions significantly decrease the average decoding error in novel environments (p < 0.01 (**) under
a non-parametric Mann–Whitney U-test). (C) Improvement in decoding performance by taking into
account co-variability of cells (“COV” decoder) relative to a simple population vector (“PV”) decoder,
evaluated on 4 · 104 samples). (error bars and significance tests as in B). (D) Fraction of variance
explained by the first principal component of population vectors for 103 random pairs of locations in the
maze. The fraction is unchanged between the novel and familiar environments on structured network and
on real data, but differs significantly on the random and null networks (error bars and significance tests
as in B). (E) Linear separability measured as SVM classification accuracy of random pairs of stimuli
(trained on 1000 pairs of same vs. different positions). The separability is unchanged between the novel
and familiar environments on structured network and on real data, but differs significantly on the random
and null networks.
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Fig. S. 2.11. Decoding advantages for larger networks. We re-scaled the interaction strengths according
to their network size (1/N). We trained a PV decoder and a MAP bayes decoder on 4 ∗ 105 random
samples, and then tested the decoding accuracy on 105 samples. Decoding accuracy measured in bins
(synthetic environments were unit squares and binned in 20 X 20). We run all these experiments with a
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3

Hippocampus-neocortex interactions

3.1 Aims
The hippocampus and different neocortical areas interact during the encoding, consolidation,
and retrieval of memories (Wang and Morris, 2010). A neocortical area that received much
scrutiny is the prefrontal cortex (PFC), especially in the context of encoding (Takehara-
Nishiuchi and McNaughton, 2008; Barker and Warburton, 2008) and retrieving (Farovik et al.,
2008) memories, and its interactions with the hippocampus (Eichenbaum, 2017a). These
two areas are directly and indirectly connected (Hoover and Vertes, 2007) and engage in
coordinated activity both during awake and sleep periods (Jadhav et al., 2016; Tang and
Jadhav, 2019; Zielinski et al., 2019). The importance of PFC and medial temporal interaction
has long been established for memory processes such as encoding and retrieval (Simons and
Spiers, 2003). Moreover, it has been suggested that PFC may be important for reducing
interference during hippocampal-dependent tasks (Guise and Shapiro, 2017), while on the
other side inactivating direct hippocampus to PFC projections hinders the encoding of spatial
cues and the execution of a spatial working memory task (Spellman et al., 2015). An outflow
of spatial and contextual information from the hippocampus to the PFC (Esteves et al., 2021)
might also act as a cueing signal required to retrieve the associated cortical trace (Winocur
et al., 2007) or to update existing knowledge in a pre-existing schema (Tse et al., 2007; Alonso
et al., 2020).
The aim of this chapter is to study the mechanisms that allow the transfer of spatial and
contextual information from the hippocampus to the PFC. This will begin by ascertaining
whether the flow of spatial information among the two areas is unidirectional or bidirectional.
Afterward, using GLM null models as statistical tests, I will detect functional couplings among
units across areas, and study the spiking activity of the cells involved in the two areas during
synchronized and independent activity. This will allow us to propose a mechanism by which
this functional coupling might be implemented, and how assemblies across brain areas are
recruited during behavior.
This is a study in collaboration with Karola Kaefer, Federico Stella, and Jozsef Csicsvari.
This study has been submitted for consideration and peer revision to a journal on May 25th,
2022. A previous version of this manuscript, containing some of the results presented here, was
previously posted on Biorxiv and can be retrieved here: https://doi.org/10.1101/2021.09.30.462269
Author contributions: M.N., K.K., J.C. conceptualized the study, K.K. conducted the exper-
iments, M.N., K.K., F.S. analyzed the data, M.N. and J.C. wrote the initial version of the
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paper, and all authors contributed to manuscript preparation
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3.2. Introduction

Theta oscillations as a substrate for medial
prefrontal-hippocampal assembly interactions
Michele Nardin1,@, Karola Kaefer1,∗, Federico Stella1,∗, Jozsef Csicsvari1,@

1 Institute of Science and Technology Austria (ISTA), Klosterneuburg, 3400, Austria
@ corresponding authors: michele.nardin@ist.ac.at, jozsef.csicsvari@ist.ac.at

∗current address: Donders Institute, Radboud University, Nijmegen 10 6500GL, Netherlands

The execution of cognitive functions requires coordinated circuit activity across
different brain areas that involves the associated firing of neuronal assemblies.
Here, we tested the circuit mechanism behind assembly interactions between the
hippocampus and medial prefrontal cortex (mPFC) of adult rats by recording
neuronal populations during a rule switching task. We identified functionally
coupled CA1-mPFC cells that synchronized their activity beyond that expected
from common spatial coding or oscillatory influence. During coincident firing,
mPFC cells strongly phase locked to CA1 theta oscillations and maintained
consistent theta firing phases, independent of the theta timing of their CA1
counterpart. Our results suggest that upregulated theta oscillatory firing of
mPFC cells can signal transient interactions with specific CA1 assemblies with-
out mirroring CA1 sequences, thus enabling distributed spatial computations.

3.2 Introduction
Hebb’s postulate (Hebb, 1949) that coordinated activity enables neurons to associate with
each other and ultimately establish cell assemblies influenced neuroscience from the cellular to
system levels for decades. Recent developments in multi-neuronal recordings have provided the
means to test the cell assembly hypothesis over larger neuronal populations (Buzsáki, 2010).
While neurons can exhibit highly correlated activity, similar firing responses can also arise from
common sensory inputs. Reactivation of population firing patterns during sleep provided a
potential testing ground for assemblies, considering the diminished sensory input to cortical
areas in sleep (Buzsaki et al., 1988). It is also possible to investigate assemblies outside sleep
by applying statistical methods that take into account the common sensory inputs (Newsome
et al., 1989), or even other factors including common oscillatory drive (Harris et al., 2003).

To understand the contribution of cell assemblies to cognitive functions at the systems level,
one needs to determine how assemblies in different brain areas work together and how the
activity of assemblies propagates across regions. Synfire chain theory provided a potential
mechanism in which the synchronized activity of associated assemblies is part of a synfire chain
that propagates across multiple brain regions (Abeles, 1982). Indeed, synchronized network
patterns such as hippocampal sharp-wave ripples induce large-scale, brain-wide synchronization
(Buzsáki, 2015). Assembly activity in one region can also recruit assemblies with similar coding
properties in another region; e.g., during reactivation (Ólafsdóttir et al., 2016; Shin et al.,
2019; Ji and Wilson, 2007). However, it is less clear whether information encoded in the
form of temporal firing patterns can be efficiently transferred. Hippocampal reactivated firing
sequences often do not align with reactivated sequences generated in the medial entorhinal
cortex (MEC) or medial prefrontal cortex (mPFC), indicating that temporal coding can show
independence across brain areas(O’Neill et al., 2017; Kaefer et al., 2020). In addition, as it
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is the case within a region, common inputs can lead to coherent activity without one area
influencing the other (Fig. S3.1). Here we simultaneously recorded neuronal population activity
in the dorsal hippocampal CA1 area and the prelimbic mPFC during a task requiring switch
between spatial or cue-guided rules on a plus maze (Kaefer et al., 2020)(Fig. 3.1A-B). We
identified CA1-mPFC assemblies that coordinated their activity independently from common
sensory or oscillatory inputs and examined the circuit mechanism behind these assembly
interactions.

3.3 Results
Inactivation studies suggest that CA1-mPFC spatial representations mutually influence each
other (Patai and Spiers, 2021), even though they code for spatial information in different
forms (Kaefer et al., 2020). A large proportion of mPFC cells had symmetric firing fields
(Fig 1D), and, unlike CA1, mPFC populations encode relative maze distance more accurately
than actual 2D positions (Kaefer et al., 2020). However, spatial representations showed only
marginal differences across the two rules (Fig. 3.1C). To quantify the expression dynamics
of spatial representations, we tested whether spatial coding in one region lags behind the
other. Moreover, to infer whether spatial information in one region is used by the other, we
assessed the correlation of decoding errors (Zielinski et al., 2019). The best alignment of
decoded positions was seen when mPFC lagged behind CA1 by ≈114ms (Fig. 3.1E, Fig. S3.2),
and decoding errors also correlated the strongest at ≈125 ms mPFC delay (Fig. 3.1F). A
transfer entropy measure (Bossomaier et al., 2016) that assesses information exchange without
assuming spatial coding also indicated a preference for CA1-to-PFC interactions (Binomial
test, p<0.0001) (Fig. 3.1G). These findings all point to CA1-to-PFC network interactions.

Next, we focused on identifying the individual components of the interregional assembly
interactions. Neurons in both regions code for place while also engaging in coherent oscillations.
Therefore, we calculated functional cross-correlations of CA1-mPFC cell pairs that measured
the strength of correlated firing that occurred independently of spatial firing, oscillations, or
other possible common drivers. For each cell, we fitted a generalized linear model (GLM)
(Hardcastle et al., 2017) that included spatial position, trajectory, speed, theta oscillatory firing,
spiking history, and the within-area spiking of other cells (see Methods). The cross-correlogram
calculated from the data was compared (z-scored) to distribution of correlograms generated
from simulated spiking (10000 times) using the GML model (Fig. 3.2A,B). In testing different
temporal offsets, we found that the maximal percentage of cell pairs with strong functional
correlation (>4.5 z) occurred with a ≈50ms mPFC delay relative to CA1, and strong functional
correlations occurred mostly within a 125 ms time window (Fig. 3.2C). We, therefore, selected
functionally-coupled (FC) cell pairs that had >4.5 z peak functional cross-correlation within
[0,125] ms. Although FC cells synchronized their firing independently of common spatial
drive, CA1 FC cells exhibited a tendency for symmetrical place fields (Fig. 3.2D) or fired in a
complementary fashion to the symmetrical firing field of their mPFC counterpart (Fig. 3.2E).
Moreover, the CA1 place fields predicted the firing field of the FC mPFC cell (Fig. 3.2F).
A computational model of spatial information transfer that maximizes mutual information
predicted these connectivity rules (Fig. S3.3).

FC mPFC cells exhibited stronger phase locking to CA1 theta oscillations than non-FC cells
(Fig. S3.4A). It has been previously reported that mPFC cells show the best phase locking to
CA1 theta when a fixed time delay is used (Siapas et al., 2005) and that mPFC theta oscillatory
coupling to CA1 changes in strength depending on the cognitive demand (Benchenane et al.,
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Fig.3.1. Delayed spatial coding in the mPFC relative to the hippocampus.
(A) Behavioral rules applied during the task. (B) Experimental paradigm: three sessions separated by
rest periods and the rule is switched in the middle session. (C) Similarity of average firing rate
population vectors (PV) across rules (AR) vs. within rules (WR) for CA1 and mPFC putative principal
cells. (D) Proportion of cells exhibiting significant symmetric place fields. Binomial test, CA1: p<0.001,
mPFC: p<0.0001. (E, F) Correlation of predicted locations and decoding errors as a function of mPFC
time shift. Shaded area: 95% CI, n=13 sessions. (G) A larger proportion of pyramidal cell pairs
exhibiting significant (i.e., higher than 99th percentile of 200 random time shifts) transfer entropy (TE)
in the CA1→mPFC direction. Binomial test, p<0.0001.

2010; Jones and Wilson, 2005). Thus, for each mPFC cell, we established the optimal delay
for CA1 theta phase locking separately at different task phases in the start and goal arms.
The median delay was 23 ms in the start arm and 47ms in the goal arm (Fig. S3.4B). The
histogram of significant interactions showed similar delays of 25 ms (start arm) vs. 75 ms
(goal arm) (Fig. S3.4C).

Individual functional cross-correlations also exhibited theta-modulated peaks (Fig. 3.3A, Fig.
S3.5). Although theta-modulated cross-correlations can be seen when both cells phase lock to
theta oscillations but otherwise fire independently, in our analyses this common modulation
is accounted for by the GLM (Fig. 3.2A, 3.3A). This indicates a transient increase in phase
locking when FC cells fire together. Furthermore, the activity of CA1 cell may signal the
enhanced phase locking of their mPFC counterparts during synchronized firing. To directly
test this, we examined whether mPFC cells exhibited better phase locking to theta oscillations
when they fired together with their FC CA1 counterparts (Fig 3B-C). Indeed, when FC cell
pairs fired in the same theta cycle, mPFC theta phase locking was stronger than for randomly
sampled spikes from the same mPFC cell (Fig. 3.3D, top row). Moreover, such a difference
was not significant when non-FC pairs were tested (Fig. 3.3D, bottom row). Although we
observed enhanced phase locking of mPFC cells with their FC CA1 counterpart, this does not
imply that it is required to detect a functional correlation. To verify that the strengthened
mPFC theta phase locking was a critical factor, we randomized the theta spike timing of the
mPFC cells during synchronized firing with the FC CA1 counterparts. The cross-correlation
peak was reduced by ≈50%, and the number of significant cells dropped to a quarter of the
original number (Fig. S3.6). These results demonstrate that the strengthening of mPFC phase
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Fig.3.2. CA1-mPFC functional correlations.
(A) Functional correlations (FC) calculations: real data cross-correlations were compared to a null
distribution from 10000 GLM simulated cross-correlations (B) Example cross-correlations with significant
interaction (z>4.5 relative to GLM). Left and right: CA1 and mPFC firing rate map. Center: cell-pair
cross correlograms, real data (solid black line); null model mean (dotted back) ± 4.5 STD (shaded area)
(C) Proportion of significant FC pairs (z>4.5) as a function of mPFC delay. Shaded area: 95% CI N=13
sessions. (D) Left: example place fields of non-FC and FC cells. Right: proportion of symmetric place
fields. (E) Complementarity (i.e., firing at opposite arms, see Methods) of rate maps of the two CA1
units with the strongest functional correlation to the same mPFC unit (left) vs. random (right). (F)
Prediction of mPFC firing map by FC CA1 firing maps weighted (left) vs. random (right).(D,E,F)
Mann–Whitney U test: ** = p<0.01, *** = p<0.001. Error bars: ± 95% CI.

locking to hippocampal theta is a critical mechanism for CA1-mPFC functional coupling.

Although CA1 cells exhibit, on average, a phase preference for theta oscillations, they can also
systematically change their theta phases during theta phase precession (O’Keefe and Recce,
1993). However, mPFC cells strongly phase lock to theta during synchronized firing with
FC CA1 counterparts. Thus, mPFC cells may either maintain a consistent theta phase or
mirror theta phase changes of their CA1 counterparts. We calculated functional CA1-mPFC
cross-correlations separately for cases when the CA1 cell fired at different theta phases (Fig.
3.3E). The plot of significant interactions now exhibited theta modulated peaks, and the
peaks shifted in the opposite direction relative to the CA1 cells’ theta phase (Fig. 3.3F). This
indicates that the correlation delay compensated for the phase shift of the CA1 cell. To verify
this, we calculated the average phase difference of FC mPFC-CA1 pairs when CA1 cells fired
at different theta phases; the phase difference opposed the CA1 phase changes (Fig. 3.3G).
Furthermore, the mPFC theta phase at the goal-arm lagged behind with ≈60° relative to
that on the start-arm (Fig. 3.3G), which explains the different time delays for functional
correlations (Fig. S3.4C). These findings show that during periods of synchronized firing, each
mPFC cell maintained a consistent theta phase and do not follow the theta phase change of
their CA1 counterpart.

Next, we tested whether gamma (or other) oscillations contributed to the functional coupling.
Gamma oscillations can synchronize distributed sensory representations (Fries et al., 2007)
or spatial representations during memory encoding (Colgin et al., 2009). We compared the
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Fig.3.3. mPFC cells strengthen their phase locking to theta oscillations when cofiring with their
FC CA1 counterpart.
(A) Examples of FC cell pairs. Left and right: CA1 and mPFC firing rate map. Center: real
cross-correlogram (solid black line) vs. GLM simulation (solid red: average, shaded area: ± 4.5 STD) for
start and goal arms. (B) Example theta phase histograms when mPFC cells fired together at the same
theta cycle with FC CA1 counterparts (left) vs. fired independently (right). Trough of oscillation: 0° (C)
Example theta cycles with paired CA1 / mPFC spikes vs. independent mPFC firing. (D) Top: theta
phase locking strength of mPFC cells during paired firing with FC CA1 counterparts. Mean vector length
(MVL) during paired activity was z-scored against 200 bootstrapped measurements during independent
activity Binomial tests: p<0.001. Bottom: same as Top, for randomly selected non-FC pairs. Binomial
tests: p>0.01. (E) Left: schema of theta-dependent functional correlation calculation. Right: example
theta-dependent functional correlation. (F) Proportion of z>3 FC pairs as a function of CA1 theta phase
and mPFC time shift. (G) Average mPFC - CA1 theta phase difference at different CA1 firing phases.
Shaded area: 95% CI
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Fig.3.4. Graph-assembly activity is signaled by mPFC theta sequences.
(A) Graph-assembly examples. Solid lines: functional correlations, dotted lines: assembly boundaries.
(B) Example graph-assembly firing rate maps. (C) Graph-assembly rate map similarity between first vs.
second half of recordings (W/in), across different assemblies (Acr.). Mann–Whitney U test: p<0.001.
(D) Example of FC mPFC pair within the same assembly. (E) Proportion of significant (z>4,5) FC
mPFC pairs within vs. across assemblies. Shaded area: 95% CI N=13 sessions. Mann–Whitney U test:
p<0.01 for shifts = -25, 0, +25 ms. (F,G) Histogram of average theta phase (left) and z-scored phase
locking strength (right) of mPFC cells during assembly activity. Phase locking strength was z-scored
relative to bootstrapped non-assembly activity. Binomial tests: all p<0.001. (H) Bootstrapped iterations
count where mPFC average theta selectivity was higher than the one of its mPFC peers within the same
assembly during graph-assembly activation. Dotted lines mark the boundary for the pairs in which the
preferred theta phases of the pair were significantly different: 45% start arm and 42% goal arm (Binomial
test p<0.05). (I) Example mPFC sequences during graph-assembly activation. (J) The preferred theta
phase difference of mPFC cells during graph-assembly activation vs. long-time scale cross-correlation
(CCG) delay. Left: start arm (Spearman r=0.01, p=0.9), Right: goal arm (r=0.19, p=0.058).
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power spectrum and coherence of the CA1 and mPFC local field potential at times when FC
CA1-mPFC cells fired together or independently (Fig. S3.7). No differences were seen in
any of the frequency bands, suggesting that selective mPFC cell theta phase locking is the
primary mechanism behind the CA1-mPFC functional coupling, and these coupling events do
not influence the global oscillatory state of the circuits per se.

So far, we have identified functional correlations between individual CA1-mPFC pairs. Can this
pairwise connectivity reveal organized interregional assemblies? When we plotted the graph of
FC cells, a grouping tendency emerged (Fig. 3.4A). We applied a bipartite spectral graph-
clustering algorithm (Pothen et al., 1990; Newman, 2006) that divided cells into sub-graphs
and examined whether these subgraphs met the criteria of functional assemblies. First, we
confirmed that mPFC cells within a graph-assembly exhibited stronger functional connections
with each other than with mPFC cells of different assemblies (Fig. 3.4D,E). We then identified
times when graph-assemblies were active by selecting theta cycles in which at least two mPFC
and two CA1 cells from the same graph-assembly fired together. When such a graph-assembly
was active, we found that mPFC theta phase locking was stronger as compared to out of
assembly activity (Fig. 3.4 F-G). Finally, we showed that assembly activity encoded spatial
locations consistently over time and the firing fields of different graph-assemblies were different
(Fig. 3.4B,C).

FC mPFC cells tend to fire at their preferred theta phases during graph-assembly activation.
In doing so, they may all fire at similar theta phases or in a sequential pattern through firing
at different theta phases. First, we calculated the preferred theta phase of mPFC cells during
assembly activation. Preferred theta phases spanned the entire theta cycle (Fig. 3.4F-G).
During graph-assembly activation, mPFC cell members may therefore exhibit a consistent
temporal bias in their spike timing to theta oscillations. For each mPFC cell pair from the
same graph-assembly we tested whether they exhibited a significant theta temporal bias during
assembly activation, i.e., one cell consistently fired at an earlier theta phase (i.e., <180°) than
the other. Indeed, in total, 45% (start arm) and 42% (goal arm) of FC mPFC pairs exhibited
a significant bias (Fig. 3.4H, binomial tests: all p<0.001), confirming that at the population
level, a significant proportion of cells showed a theta phase bias. Therefore, during assembly
activation, a significant portion of mPFC cell pairs show a preferred temporal order in their
activity, leading to leading to sequentially-biased firing patterns (Fig. 3.4I). We expect such
sequences to be independent of CA1 firing patterns considering that mPFC cells decouple from
the theta spike timing of CA1 cells (Fig. 3.3E-G). Theta sequences in the hippocampus reflect
the compressed time order at which place cells fire on a linear maze (Dragoi and Buzsáki,
2006). If mPFC cells of a graph-assembly exhibit similar maze-related activation sequences,
the temporal activation order of mPFC cells (seen on their long-range cross-correlograms)
should predict their theta phase bias during graph-assembly activation (Fig. 3.4J). However,
this was not the case, suggesting that during assembly activation, mPFC cells can exhibit
unique sequences which are independent of their longer-time scale activation patterns driven
by maze trajectories. Hence these sequences could represent unique non-spatial information
and signal functional interactions with specific CA1 assemblies.

3.4 Discussion
Here we identified a subgroup of mPFC and CA1 cells that synchronized their activity beyond
that expected from similar spatial coding, oscillations, and background network activity. When
such CA1-mPFC pairs fired together, mPFC cells enhanced their phase locking to hippocampal
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theta oscillations and maintained a consistent theta phase, even when the phase of their
CA1 counterpart varied. These findings suggest a novel mechanism for interregional assembly
interactions that goes beyond coherent oscillatory coupling or temporal synchronization(21).
While theta oscillations provided a reference frame for synchronization, the enhanced phase
locking of mPFC cells alone signaled interaction with their CA1 counterparts. The critical role
of this enhanced phase locking was demonstrated by the observation that randomizing mPFC
theta spike timing during synchronization abolished about 75% of the detected functional
correlations and halved the correlation peaks. Furthermore, the relative spike timing of CA1-
mPFC pairs could vary within a theta cycle; therefore, coherent theta oscillatory firing of the
pair was not required. Hence, interactions here were not signaled by changes in the firing rate
or coherent oscillatory coupling across the regions. Rather transient increase of mPFC phase
locking to theta oscillations alone was the primary driver that marked the functional coupling.
This assembly interaction scheme also allows different temporal coding formulas to operate
independently in the two cortical regions. While the theta spike timing of CA1 cells can code
for place because of theta phase precession (O’Keefe and Recce, 1993), mPFC theta phases
can represent other information. The theta phase at which an mPFC cell fired signaled the
activity of its FC CA1 counterparts, thus, indicating times when a specific CA1 assembly
was active. Different mPFC cells fired at different theta phases enabling them to jointly fire
in theta sequences when their CA1 assembly counterparts were active. This suggests that
specific theta sequences in the mPFC can signal interactions with specific CA1 assemblies. The
importance of single theta oscillatory cycles as units of assembly coding has been demonstrated
before, primarily in the hippocampus and MEC, where theta sequences can encode trajectories
and even entire spatial maps can flicker across theta cycles (Jezek et al., 2011; Boccara
et al., 2019). Similar coding may apply to other brain areas as well, considering that theta
oscillations are seen in widespread brain regions beyond the hippocampal formation (Buzsáki,
2002). Theta-related assembly synchronization can enable multiple regions to function and
interact with each other in a parallel manner in the limbic system and beyond. Our data also
indicate that assembly interactions through theta synchronization can allow each region to use
its own unique temporal coding scheme during the time of interactions. Temporal coding may
not be simply transferred but often transformed across different cortical processing stages,
necessitating further experimental and theoretical work to understand how temporal codes in
one region are decoded and transformed downstream.

3.5 Materials and Methods

Experimental methods
The data used in this study is the same as used in (Kae-
fer et al., 2020). We will report the experimental
methods here for completeness.

Subjects and Surgery Four male Long-Evans rats
(300-350 g, 2-4 months of age; Janvier, France) were
used in this study. The animals were housed in a
separate room on a 12 hour light/dark cycle and were
taken to the recording room each day prior to the
experiments. Animals shared a cage with littermates
before surgery. All procedures involving experimental
animals were carried out in accordance with Austrian
animal law (Austrian federal law for experiments with

live animals) under a project license approved by the
Austrian Federal Science Ministry (License number:
BMWFW-66.018/0015-WF/V3b/2014). Rats were
implanted with microdrives housing 32 individually-
movable tetrodes, arranged into three bundles target-
ing the right dorsal hippocampus (specifically dorsal
CA1, HPC) and left and right medial prefrontal cortex
(specifically prelimbic area, mPFC). The HPC bundle
consisted of 16 tetrodes and the two mPFC bundles of
8 tetrodes each. Tetrodes were fabricated out of four
12 mm tungsten wires (California Fine Wire Company,
Grover Beach, CA) that were twisted and then heated
to bind into a single bundle. Tetrode bundle lengths
were cut so that the two mPFC bundles were 1-1.5 mm
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longer than the HPC bundle. The tips of the tetrodes
were gold-plated to reduce the impedance to around
300 kU. Before surgery, the animal was put under deep
anesthesia using isoflurane (0.5%–3%), oxygen (1–2
L/min), and an initial injection of buprenorphine (0.1
mg/kg) and ketamine/xylazine (7:3 ketamine (10%)
and xylazine (2%), 0.05ml/100 g). Craniotomies were
drilled above the HPC (AP: 2.50 to 4.50, ML: 1.2 to
3.6) and above the mPFC across the sinus (AP: 4.60
to 2.50, ML: 0 to ± 0.8). Six anchoring screws were
fixed onto the skull and two ground screws were posi-
tioned above the cerebellum. After dura removal, the
tetrode bundles were centered above their respective
craniotomies and lowered into the brain at a depth
of 2 mm for the mPFC and 1 mm for the HPC. The
exact depth of mPFC tetrode implantation was noted
to ensure later lowering into the target area. Tetrodes
and craniotomies were coated in paraffin wax and the
microdrive was anchored to the skull and screws with
dental cement. The analgesic meloxicam (5 mg/kg)
was given up to three days after surgery and the an-
imal was allowed one week of recovery. Thereafter,
tetrodes were gradually moved in 50-200 mm steps
into the HPC pyramidal cell layer and mPFC.

Plus maze apparatus and task (Fig. 3.1A,B)
Following the recovery period, animals were food-
restricted with ad libitum access to water and ac-
customed to the plus maze and rest box. The plus
maze was elevated (80 cm) and consisted of four arms
(85 cm long and 12 cm wide), referred to as north,
east, south, and west, and a connecting center. The
animal was placed in one of the two start arms (north
or south) and had to collect a food reward (MLab
rodent tablet 20mg, TestDiet, Richmod, USA) in one
of the two goal arms (east or west), depending on
the rule employed. Access to the arm not chosen as
the start was restricted, so that the maze became
T-shaped. A small light at the end of one of the two
goal arms was switched on. Which arm was chosen as
the start and light-on arm was chosen pseudorandomly
for every trial, ensuring that an arm was not chosen
more than three consecutive times. Once the animal
reached a goal arm and 5s passed, the animal was
manually picked up and placed in the rest box before
commencing to the next trial after a delay of 10s. The
animal had to retrieve the reward based on a spatial
or response (light) rule. During the spatial rule the
reward was always placed in either the east or west
arm, while during the response rule the reward was
placed in the light-on arm. Importantly, also during
the spatial rule one of the two arms was lit, but did
not necessarily indicate the location of reward. To
prevent an odor-guided strategy pellet dust was scat-
tered along the maze and pellet-filled cups invisible
to the animal placed under both goal arms. On each
recording day, the animal underwent behavioral blocks
as follows: rest, rule 1 (previous day’s old rule), rest,
pre-switch, rule switching, post-switch, rest, rule 2

(new rule), rest. After the first rest, the animal started
by performing trials based on the previous day’s old
rule. After reaching performance criterion (see be-
low), the animal rested again and afterwards the rule
switching phase began. During the pre-switch block
the animal had to collect reward based on the last
rule of the previous day until reaching the performance
criterion (see below). Then the rule was changed and
reward had to be collected based on the new rule. The
change in rule was not announced to the animal, which
had to switch to the new rule through trial-and-error
until performing to criterion. Trials performed after
the rule change, but before the animal reached good
performance comprised the rule switching block, while
the post-switch block comprised all trials from the
beginning of good performance ( defined in the next
sub-subsection). The animal had to perform cross-
modal switches, i.e., switches from spatial to light or
light to spatial rule, never between the two spatial
rules. While correct performance of a spatial rule in-
volves two trajectories (e.g., go-east rule: north to east
and south to east), correct performance of the light
rule can involve any of the four trajectories. Therefore,
the performance criterion for the spatial rule was set
to 12/15 and for the light rule to 24/30 correct trials,
ensuring a similar number of light rule trials where the
animal performed trajectories that matched those of
the spatial rule. After another rest session, the animal
performed a final 20 trials of the newly acquired rule.

Beginning of good performance All trials before
the rule change comprised the pre-switch block. Trials
performed after the rule change, but before the animal
reached good performance comprised the switching
block. The beginning of good performance (bgp) was
defined as the center index after rule change where
the error rate over five consecutive trials dropped to
zero.

Histology and reconstruction of recording posi-
tions After the final recording day tetrodes were not
moved. Animals were administered ketamine/xylazine
(7:3 ketamine (10%) and xylazine (2%), 0.1ml/100 g)
and overdosed with pentobarbital (300mg/ml) before
being transcardially perfused with 0.9% saline followed
by 4% formaldehyde. Brains were extracted and stored
in 4% formaldehyde. On the same day brains were
transferred into 30% sucrose solution until sinking for
cryoprotection. Finally, brains were quickly frozen, cut
into coronal subsections with a cryostat (50-60 mm),
mounted on glass slides and stained with cresyl violet.
The positions of tetrode tips were determined from
stained subsections and cells recorded from tetrodes
outside mPFC were excluded from analysis. For cells
recorded from HPC tetrodes the presence of SWRs in
the field recordings served as inclusion criteria.

Data Acquisition The extracellular electric signals
from tetrodes were pre-amplified using a headstage (4
x 32 channels, Axona Ltd, St. Albans, Hertfordshire,
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UK). The amplified local field potential and multiple-
unit activity were continuously digitized at 24 kHz
using a 128- channel data acquisition system (Axona
Ltd). Two red LED bundles mounted on the preampli-
fier head-stage were used to track the x, y location of
the animal. Every day before recording, HPC tetrodes
were moved optimizing the yield of recorded cells. Ad-
ditionally, mPFC tetrodes were lowered every day by
30-50 mm to ensure recording of a new population of
cells.

Spike sorting and unit classification Clustering
of spikes and unit isolation procedures were described
previously (Csicsvari et al., 1998). Briefly, the raw
data was resampled to 20 kHz and the power in the
800-9000 Hz range was computed for sliding windows
(12.8 ms). Action potentials with a power of > 5
standard deviations (SD) from the baseline mean were
selected and their spike features extracted with prin-
cipal components analysis. Action potentials were
then grouped into multiple putative units based on
their spike features using an automatic clustering soft-
ware (http://klustakwik.sourceforge.net; (Harris et al.,
2000)). The generated clusters were then manually
refined using a graphical cluster-cutting program and
only units with clear refractory periods in their autocor-
relation, well-defined cluster boundaries and stability
over time were used for further analysis. An isola-
tion distance (based on Mahalanobis distance) was
calculated to ensure that spike clusters did not over-
lap (Harris et al., 2000). Putative excitatory principal
cells and inhibitory interneurons were discriminated
using their auto-correlograms, firing rates and wave-
forms (Csicsvari et al., 1999).

Dataset details Across the 4 animals, we recorded,
processed, and analyzed data from a total of 13 ex-
perimental recording days (4,4,3,2 respectively). In
all our analysis we included only cells with an average
firing rate > 0.25spikes per second in each of the
three experimental phases. This comprised a total of
530 hippocampal (putative) principal cells and 160
interneurons, and 477 prefrontal (putative) principal
cells and 105 interneurons.

Statistical analysis
Linearized Position To linearize the behavior of the
animal, we calculated the distance to the center from
the 2D spatial position of the animal (Kaefer et al.,
2020). This way a “V-shaped” positive function for
each trial was obtained. For each position before the
center (i.e., before the global minimum) we subtracted
the minimum and then changed the sign. Then, 100
was added to every position to obtain a positive mea-
sure of the relative position of the animal between start
(0 cm) and goal (200 cm). The center corresponded
to 100 cm.

Firing rate maps We inferred the average firing of
each cell at each given location of the environment
separately for three cases: 2D maps, 1D trajectory de-
pendent, and 1D trajectory independent. In every case,
we utilized data from periods when the animal was
moving faster than 7cm/s to avoid potential nonlocal
population activity (Kaefer et al., 2020).

- 2D maps We binned the x, y locations of the
animal in 5cm square bins. As explained in the ex-
perimental setup, spatial coordinates were acquired
every dt = 25.6ms. We counted how much time (in
seconds) the animal spent in each location, which
corresponded to the occupancy map. Denoting with
x̂(t), ŷ(t) the coordinates of the animal at time t, we
have

occ(x, y) =
∑︂

t

(x̂(t) == x) · (ŷ(t) == y)/dt

where a == b is 1 if and only if a = b and is 0 oth-
erwise. Afterwards, for each cell i, we counted the
number of spikes emitted in each location, and divided
by the time spent there. In formulas, denoting by
ti
1, . . . , ti

K the times at which K spikes were emitted,
we define the rate

λ̂(x, y) =
∑︂

t=ti
1,...,ti

K

(x̂(t) == x)·(ŷ(t) == y)/occ(x, y)

Finally, we regularized λ̂(x, y) by convolving with a
symmetric 2D Gaussian kernel κ(h, k) with σ = 2bins
and truncated at a maximum width w = 10 bins:

λ(x, y) =
∑︂

(h=−w,...,w,k=−w,...,w)

λ̂(x+h, y+k)κ(h, k)

Locations x, y with zero occupancy were excluded from
the convolution. Locations near the border used only
the portion of the kernel that would not exceed the
edges (portion appropriately rescaled so as to sum up
to 1).

- Trajectory-dependent 1D maps Since the arms
of the maze are relatively narrow, we computed a
linearized version of the firing rate maps, effectively
yielding an average firing as a function of the distance
to the goal, separately for the 4 trajectories: North
to East(NE), North to West (NW), South to East
(SE), South to West (SW) (Fig. 3.1A). In words,
we selected the trials where the animal followed one
trajectory, and with that data binned the linearized
position in 10 cm bins and counted the time spent
at each discrete location. Afterward, for each cell
and each trajectory, we counted the number of spikes
emitted in each binned location and divided it by the
time spent there. Finally, we convolved the rate maps
of each cell for each trajectory with a 1D Gaussian
kernel with σ = 1bin.

- Trajectory independent 1D maps We computed
the same quantity as above, without separating the
trials into 4 trajectory groups.
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Population vector similarity (Fig. 3.1C) Popula-
tion vector (PV) similarity is a measure that allows us
to quantify the change in average population activity
at any given location across contexts. The PV at a
particular location x represents the vector of the aver-
age activities of all the cells in the population under
study:

PV (x) = {λ1(x), . . . , λN (x)}.

We constructed them starting from the previously
computed firing rate maps, separately for the two pop-
ulations and the two rules. We employed a Pearson
correlation to quantify the similarity of the PV for each
location across rules.

Symmetry of firing rate maps (Fig. 3.1D, Fig.
3.2D) We measured the “mirrordness” of firing rates
to check whether single cells fire similarly at opposite
sides of the track. To do that, we measured the Pear-
son correlation of the linearized firing rate maps of
opposite arms (S vs N and E vs W) and computed the
average of the two measures. Afterward, we computed
a null-distribution of symmetry measures obtained
from 200 random wrapping of the linearized rate maps
(for each cell individually). We deemed a rate map
symmetric if its symmetry score was higher than the
95th percentile of the corresponding null-distribution.
The random wrapping of rate maps worked as follows.
Consider a rate map λ = {λ(0), . . . , λ(M)}, ordered
as usual from location 0 to M . We randomly selected
an integer k ∈ {1, . . . , M − 1}, and considered the
shuffled rate map

λshuf = {λ(k), . . . λ(M), λ(0), . . . , λ(M − k)}

Decoding of distance to the goal (Fig. 3.1E,
Fig. S3.2) For each decoding scheme, we randomly
selected 75% of the trials for computing the firing rate
maps, and used the remaining 25% for decoding and
assessing decoding quality. We employed a maximum
a posteriori (MAP) Bayesian decoding under the as-
sumption that cells are independent and fire according
to a Poisson distribution (Zhang et al., 1998). De-
noting the firing rate (measured in spikes per second)
of cell i at location x with λi(x), and the same cell
emitted ni spikes in a period dt of time (measured in
seconds), the probability that the animal is at location
x given the spiking activity is:

P (x|ni) ∝ P (x)P (ni | x)

where

P (x)P (ni | x) = P (x) exp(−dtλi(x))(dtλi(x))ni/ni!

Combining the information from multiple cells i =
1, . . . , N , and assuming independence, we obtain:

P (x | {n1, . . . , nN }) ∝
N∏︂

i=1
P (x|ni)

Assuming that P (l) is uniform, we defined our decoded
location xMAP as

xMAP = arg max
x

P (x | {n1, . . . , nN })

Correlation of decoding errors (Fig. 3.1F) To
check whether the errors of one area agree with the er-
rors of the other area and whether this effect increases
at a delay, we employed a delayed version of an anal-
ysis proposed by Zielinski and colleagues (Zielinski
et al., 2019). If the spatial encoding of PFC is delayed
compared to CA1, in that either PFC receives infor-
mation from CA1, or that information takes longer
to reach PFC, then spikes in PFC should represent
spatial information that is older than CA1’s. Hence,
we took all mPFC spiking times and added a time lag
τ ∈ [−500, 500]ms, and for each lag we computed 1D
firing rate maps on a fraction of data (random 75%)
and decoded the position from the remaining part of
the data. Afterward, for each delay, we computed
the Spearman correlation between 1D decoding errors
from CA1 (without lag) and the lagged PFC activity.

Transfer Entropy (Fig. 3.1G) Transfer en-
tropy is a non-parametric measure of directed (time-
asymmetric) transfer of information between two ran-
dom processes (Wibral et al., 2014). Transfer entropy
from a process X to another process Y is the amount
of uncertainty reduced in future values of Y by know-
ing the past values of X, conditioned on past values of
Y . More specifically, if Xt and Yt denote two random
processes, transfer entropy from Xt to Yt is defined
as the conditional mutual information between Yt and
the history of Xt, denoted by Xt−1,t−2,..., conditioned
on the history of the influenced variable Yt−1,t−2,...:

TX→Y = I(Yt; Xt−1,t−2,... | Yt−1,t−2,...).

We used the JIDT package (Lizier, 2014) to esti-
mate this quantity, which was measured across binned
(25.6ms) and binarized spike trains of each pair of
CA1-PFC cells. Significance was measured by com-
paring the actual value against 1000 values obtained
by randomly shifting the spike trains (uniform random
from 1 to 100 seconds)(Boccara et al., 2019).

Detection of cross-area couplings (Fig. 3.2
A,B,C) We employed a statistical modeling approach
to detect pairs of CA1-PFC cells that are significantly
functionally correlated. With “functionally correlated”
we denote cell pairs across brain areas whose noise
correlation (Cohen and Kohn, 2011) is much higher
than expected from our null-models. For each cell,
we fitted a generalized linear model (GLM) (Agresti,
2015) that included all possible covariates measured
which could influence and explain the cross-area cor-
relations. These covariates were: linearized spatial
position, trajectory, theta selectivity, speed selectivity,
spiking history, and within-area spiking of other cells
(i.e. PFC cells were fitted with the spiking of other
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PFC cells only and, separately, CA1 cells with the
spiking of the other CA1 cells only; for further details
see subsection “Modelling” below).
These models were used to compute a statistical test,
the null hypothesis being that the cross-correlogram
among cell pairs is completely explained by external
covariates. The alternative hypothesis is that external
covariates cannot explain the amount of co-variability;
in this case, we considered the correlation as being
“functional”. This approach is similar to the one intro-
duced in (Nardin et al., 2021a).
With these GLM null-models, we simulated the activ-
ity of each cell 10000 times and, for each CA1-PFC
cell pair, a cross-correlogram of the responses was
computed. Those surrogate cross-correlograms were
used to measure how much the actual pairwise cross-
correlation measured on real data differed from the
simulated ones. We did this for each possible PFC
delay in the range of ±1sec.
We considered a cell pair significantly coupled if the
peak within −125, . . . , +125 ms of the actual cross-
correlogram exceeded the mean plus 4.5 standard de-
viations of the peaks of the 10000 surrogate cross-
correlograms for that pair. This threshold is very
conservative and was chosen to compensate for mul-
tiple comparisons, and hence represents a Bonferroni
correction. Cells in one area that showed significant
functional correlation to at least one cell in the other
area were termed functionally coupled, often abbrevi-
ated to “F.C.” or “FC” in our figures.
Complementarity measure (Fig. 3.2E, Fig. S3.3)

To measure if two cells are “complementary”, i.e., if
their joint activity could help to form a symmetric
pattern, we computed the Pearson correlation of the
linearized firing rate maps for opposite trajectories (for
example, SW for cell 1 vs NE for cell 2) and then
reported the average across the possible comparisons
(SW vs NE and SE vs NW).
mPFC rate map prediction (Fig. 3.2F) We pre-

dicted the firing rate maps of mPFC cells starting from
the firing rate maps of (simultaneously recorded) CA1
cells. To do so we utilized only functionally coupled
cell pairs (see definition above). We summed CA1
maps and weighted them by using the strength of their
peak functional correlation (i.e. peak cross-correlation
z-scored against GLM simulation). In formulas, denot-
ing with i the mPFC cell for which the prediction has
to be made, and with {λ1, . . . , λN } the firing rate of
N functionally coupled CA1 rate maps, and wij their
functional correlation strength, then we defined the
predicted mPFC map as

λī =
N∑︂

j=1
wij λj

We then reported the Pearson correlation between real
λi and predicted firing rate map λ̂i.

Spatial information measure (Fig. S3.3) We
computed the spatial information per spike (Skaggs
et al., 1993; Souza et al., 2018). In a nuthshell, this
corresponds to the first order approximation of the
mutual information between position-dependent spik-
ing probability and location, divided by the average
firing rate. Denoting with x the location, and λ(x)
the average firing of a cell at location x, and with
λ =< λ(x) >x its average firing rate across locations,
the spatial information is defined as

<
λ(x)

λ
log λ(x)

λ
>x

where < · >x denotes an average over positions.

CA1 theta oscillation (Fig. 3.3, Fig. S3.4) We
averaged the downsampled (5KHz) LFP signal for each
tetrode that was implanted in CA1. We then extracted
the theta signal (5 − 15 Hz) by means of a 3rd−order
Butterworth filter. We detected the local minima of
the theta oscillation, and linearly interpolated between
each consecutive pair of local minima from 0 to 360
degrees.

Theta locking strength (Fig. 3.3B, Fig. S3.4)
We computed the θ−phase of each spike by detecting
the angle (0 − 360) of the underlying theta oscillation
at the time of activity. We computed phase histograms
by binning angles into 30 degree bins. We quantified
theta locking strength by means of the mean vector
length (MVL): this is defined as the absolute value of
the average angle (appropriately converted in radians)
in the complex plane:

MV L = abs
(︄

1
N

K∑︂
x=1

exp(iθx)
)︄

Theta locking and optimal delay (Fig. S3.4)
We employed a measure introduced by Siapas and
colleagues in (Siapas et al., 2005) to obtain the op-
timal delay of mPFC cells theta-locking relative to
hippocampal theta. We employed a Rayleigh test for
circular uniformity and selected all mPFC cells that
yielded a p < 0.05. For each one of those cells, we in-
troduced a delay τ ∈ {−125, −124, . . . , 124, 125}ms
to all spikes, again computed the phase as described
above and computed the MVL of these angles. We
then selected the delay that yielded the highest MVL
for each cell.

Z-scored theta locking strength (Fig. 3.3D)
Consider a mPFC-CA1 functionally correlated cell pair.
We defined a mPFC spike as being “paired” if it hap-
pened in a theta cycle when also the functionally
correlated CA1 emitted at least one spike. We tested
whether paired spikes had better theta phase lock-
ing than independent spikes. To do so, we measured
the MVL of the theta-phases of paired spikes, and
z-scored it against 200 MVLs measured on randomly
subsampled independent spikes. In the (rare) case
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where paired spikes were more than independent ones,
we randomly subsampled paired spikes instead, and
reported the z-score with sign flipped. Excluding these
rare cases did not alter the results.

Theta-dependent functional correlation (Fig.
3.3E,F) We employed the same method described
above, with the difference that we considered across
area cross-correlations only for CA1 spikes that hap-
pened at a particular theta phase. In detail, we binned
angles into 12 equally sized bins (36 degrees). For
each bin [θm, θM ], we set to zero all the CA1 activity
that happened outside [θm, θM ]. We then proceeded
with the quantification of functional correlations as
described above.

Average theta distance between pairs of cells
(Fig. 3.3G) For each pair of functionally correlated
CA1-mPFC cells, we measured the difference in theta
phase among each pair of spikes that happened within
the same theta cycles. We then measured the average
angular difference as a function of CA1 phase, and
reported angular standard error of the mean in the
figure. The difference between radian angles θ1 and
θ2 is defined as:

θ1 − θ2 = arg
(︁

exp(i θ1 − i θ2)
)︁

The average of a set of k radian angles θ1, . . . , θk

θ̄ = arg

⎛⎝ k∑︂
j=1

exp(i θj)

⎞⎠
The circular variance (for radian angles) is defined as
V ar(θ1, . . . , θN ) = 1 − MV L(θ1, . . . , θN ), and the
standard deviation of the circular mean as

√︁
V ar/N .

In the figures, we reported all these values transformed
into angles (0, . . . , 360) by using:

(θ + π)/π ∗ 360

Randomization of theta phase and drop of corre-
lations (Fig. S3.6) To test whether precise theta
timing was required for mPFC cells to be functionally
correlated with CA1 cells, we randomized the theta
locking. To do so, for each mPFC cell independently
we considered different levels of random spike jitter-
ing. In detail, to each spike we added a random time
uniformly distributed within [−M, M ], where M is
the maximum jitter allowed. Afterwards, we com-
puted CA1-mPFC functional correlations using mPFC-
jittered spike trains, while leaving CA1 untouched.
We then measured the reduction of functional correla-
tion strength by considering the relative decrease in
magnitude of the peak:

peakorig − peakjittered

peakorig

Power spectral density (Fig. S3.7) We employed
Welch’s method to compute averaged power spectral

density (Welch, 1967). In a nutshell, this method
works by dividing the signal into overlapping segments
and averaging the periodograms obtained in each. In
detail, we performed short-time Fourier transform cen-
tered at each theta cycle, with a Hann window of
400ms, separately for all CA1 and PFC tetrodes. For
each CA1-mPFC cell pair, we computed the power
spectrum for theta cycles where both cells are active
(paired) vs theta cycles where either or both cells are
silent (independent). Finally, we averaged the peri-
odograms across cells, separately for CA1 and mPFC.

Bipartite spectral clustering (Fig. S3.4A) We
considered a graph were each node represents a cell,
and edges are present only among CA1-mPFC cell
pairs that were functionally correlated. We then asked
if it was possible to subdivide this (bipartite) graph
into smaller clusters, containing both CA1 and mPFC
cells, so as to maximize the across-area connections
within each cluster and minimize the ones outside.
We employed the spectral optimization of modularity
(SOM) algorithm, first proposed in (Newman, 2006).
The algorithm iteratively finds the best split by consid-
ering the eigenspectrum of the modularity matrix M of
the bipartite graph. We refer the reader to (Newman,
2006) for details.

Assembly firing rate map (Fig. 3.4B, C) We
deemed an assembly active whenever at least 2 CA1
and 2 mPFC cells were active in the same theta cy-
cle. Afterwards, we followed the same prescription
described above for computing firing rate maps, with
the difference that instead of using spike numbers we
considered only 1 (active) or 0 (not active) during a
given theta time window.

Within area functional correlations (Fig. 3.4D, E)
We employed the same statistical procedure presented
above for within area functional correlations.

Bootstrapped theta locking difference (Fig.
3.4H) For each pair of mPFC cells belonging to
the same assembly, we randomly selected 50 spikes
from each cell and measured their average phase. We
did so 200 times for each cell pair. Afterwards, we
counted how many times the average phase of the first
cell was larger than the average phase of the second
cell. If the two cells had no phase relationship among
each other, the probability of one phase being larger
than the other would be p = 0.5. If that were the case,
99% of the cases one would have a count between
∼ 75 and ∼ 125. We quantified the percentage of cell
pairs that were outside this confidence interval, and
reported the Binomial test with p = 0.01 baseline.

Modelling
GLM model of cells response We utilized a GLM

model to describe each cell’s response propensity as
a function of all measured covariates during foraging
activity. These detailed models served as null models

59



3. Hippocampus-neocortex interactions

for the statistical test we employed to detect func-
tional correlations among cells (see section “Detection
of across-area couplings”). We will describe in detail
here the covariates used to fit the model and the pa-
rameters used in fitting and simulation routines, and
refer the reader to other references for the details re-
garding the theoretical background of GLMs (Agresti,
2015).
The model described the inhomogeneus Poisson ac-
tivation rate λt of cells in 25.6ms time windows,
τ = 0.0256s,

P (xt = n|λt) = e−λt
λn

t

n!

The expected firing rate λt takes form

λt = exp (β · θt)

where β represents the model coefficients, found by
maximum likelihood (below) and θt represent the co-
variates, which are:

• trajectory-dependent spatial position: we
binned the linearized position in 10cm bins,
as described above, in 25.6ms time bins. We
allowed each cell to have a different encod-
ing for each trajectory separately to allow for
maximum flexibility: this resulted in a 80−dim
vector, i.e., 20 location bins for each possible
trajectory. At each time point, only the entry
of this 80−dim vector that represented the lo-
cation of the animal, and the trajectory taken,
was set to 1, and all the others to 0 (one-hot
encoding variable)

• speed: we binned the speed, which was mea-
sured from the behavioral recording in 25.6ms
time bins, in 7 non-overlapping and equally pop-
ulated speed bins, starting from 7cm/s (one
hot variable)

• theta phase: we computed the theta phase
at the center of each 25.6ms time bin. The
computation of the theta phase is detailed in a
previous section. We binned the angles in 10
non-overlapping angular bins, and encoded it
as a one-hot variable.

• spiking history: the spiking of the last three
time bins was used

• whithin-area spiking activity: the spiking ac-
tivity of all the other cells in the same area,
together with the spiking history of each of
those cells in the previous time bins were used
as additional covariates

The number of parameters of such models ranged
from 100 to 400, depending on the number of
cells recorded simultaneously in the same area. We
utilized the routine GLM offered by the package

statsmodels v0.12.2 in Python 3.7 (Seabold and Perk-
told, 2010). We fitted the models by using an L2
regularization, whose parameter was found by grid
search on (10−10, 10−9, . . . , 100) and cross-validation
(train=75%, test=25% of data) independently for
each cell.

Normative model of (spatial) information trans-
fer and generalization (Fig. S3.3) Consider two
populations of neurons, exemplifying N PFC cells
and M hippocampal cells. We will denote with
x⃗ = (x1, . . . , xN ) the stochastic (binary) activation of
PFC cells, and with y⃗ = (y1, . . . , yM ) the stochastic
(binary) activity of CA1 cells. Let us denote with s the
distance to the goal, and with k the trajectory. We
consider s to be a random variable that take values
in {0, 1, . . . , 10}, each with equal probability, and k a
Bernoulli(p = 0.5) ∈ {0, 1}, independent of s.
We assume that x⃗ is driven by hippocampal input and
internal connectivity, but has no initial selectivity for
location. We formalize this request with a stochas-
tic model, which is similar in its formalization to a
restricted Boltzmann machine (Smolensky, 1986):

P (x⃗|y⃗) ∝ exp

⎛⎝ N∑︂
i=1

M∑︂
h=1

Cihxiyh +
N∑︂

i,j=1
Wijxixj

⎞⎠
(3.1)

where C ∈ RN×M and W ∈ RN×N .

We assume that the activity of CA1 cells is both tra-
jectory and position dependent. We have that

P (y⃗|s) =
∑︂

k

P (y⃗|s, k)P (k) (3.2)

We also have that PFC population activity is position
dependent through CA1, i.e. :

P (x⃗|s) =
∑︂

y⃗

P (x⃗|y⃗)P (y⃗|s) (3.3)

For fixed W and P (y⃗|s, k), we want to find the best
C that maximizes the mutual information between x⃗
and s.

I(x⃗, s) =
∑︂
x⃗,s

P (x⃗, s) log P (x⃗, s)
P (x⃗)P (s) (3.4)

∝
∑︂
x⃗,s

P (x⃗|s) log P (x⃗|s)
P (x⃗) (3.5)

We maximize this quantity via Sequential Least
SQuares Programming (SLSQP) routine in SciPy. We
constrain each Cij to lay in [−1, 1].

Our simulations use N, M = 10 neurons, which al-
lows the mutual information to be computed without
the need for approximations (by enumerating all pos-
sible patterns). Reported estimates are obtained by
averaging across 100 randomly initialized networks;
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for each simulation, W is a symmetric matrix with
entries randomly samples from a N(0, 1) distribution,
and P (y⃗|s, k) was initialized by considering each cell
independent of each other, with a gaussian place fields
per trajectory and simulated in such a way so as to
resemble CA1 single cell statistics measured in the
data.

Programming languages and packages
used

All scripts were written in Python 3.7 (Van Rossum and
Drake Jr, 1995). We used the packages NumPy (Harris
et al., 2020), SciPy (Virtanen et al., 2020), StatsMod-
els (Seabold and Perktold, 2010), AstroPy (Robitaille
et al., 2013).

Supplementary Figures
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Fig. S3.1. Schematic multi-area assembly synchronization.
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Fig. S3.2. mPFC decoding lags behind HPC.
Decoded position from CA1 (blue) or mPFC (red) population activity in 500ms time windows vs real
position of the animal (dotted line).
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3. Hippocampus-neocortex interactions

Fig. S3.3. Cross-area couplings enable generalization. (A) Schematics of information transfer and
generalization stochastic model. The input layer is composed of selective units (i.e., CA1-like) exhibiting
trajectory dependent spatial firing. The second layer is composed of abstract (i.e., mPFC-like) units,
whose activity is influenced by the first layer and internal connectivity. We found the matrix C by
maximizing the mutual information between the abstract population firing and distance to the goal. (B)
Selective units with strong cross-couplings had higher symmetry (i.e., similar firing across trajectories).
Here and in the following, error bars represent the 95th confidence interval for the mean. Mann–Whitney
U test, p < 0.001. (C) Abstract units with strong cross-couplings exhibited higher spatial information.
Mann–Whitney U test, p < 0.001. (D) Prediction of abstract units firing map by using selective units
firing maps weighted by optimized coupling matrix (left) or random couplings (right). Mann–Whitney U
test, p < 0.001. (E) Complementarity of the two selective units with strongest coupling to the same
abstract unit (left) vs random (right). Mann–Whitney U test, p < 0.001. (F) Complementarity of all
selective pair vs coupling similarity to abstract units. Pearson correlation test, p<0.001, r=0.47. (G)
Same as D), for real data mPFC place fields. Mann–Whitney U test, p < 0.001. (H) Same ad E), for
real data cross-couplings. Mann–Whitney U test, p < 0.01. (I) Same as F), for real data CA1 cell pairs.
Pearson correlation test, p < 0.001, r=0.17. (J) Generalization mechanism 1. CA1 cells with symmetric
firing fields (top row, two example firing rate maps, peak firing rate in top-right corner) show significant
cross-couplings with mPFC cells (bottom row, two examples). Middle row shows the cross correlograms
between top and bottom cells. (black line = real cross-correlation, black-dotted = average
cross-correlation from null-model simulations, shaded ares = ±3STD of the mean from null-model
simulations). (K) Generalization mechanism 2. CA1 cells with complementary firing rate maps (top row)
both significantly cross-coupled to the same mPFC cell (bottom row). Cross-correlograms as in J).
Throughout the figure, **= p < 0.01, *** = p < 0.001.
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Fig. S3.4. Start vs Goal arms delayed couplings.
(A) average theta phase locking strength of CA1 (blue) or mPFC (red) cells, comparing FC vs non-FC.
Left: start arm (Mann–Whitney U test, CA1: p > 0.05, mPFC: p < 0.001). Right: goal arm
(Mann–Whitney U test, CA1: p > 0.05, mPFC: p < 0.01). (B) Proportion of significant cell pairs
(z > 4.5) in start arm (left) vs goal arm (right) as a function of mPFC delay. Shaded area represents the
99% CI for the mean. N=13 sessions. (C) Optimal delay that produced the best theta locking of each
mPFC cell, found by computing a phase histogram for each delay and measuring the mean vector length
(Siapas et al., 2005). Mann–Whitney U test for start vs goal arm optimal theta delay, p<0.001. KS test
for the distributions, p < 0.001.
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Fig. S3.5. Start vs Goal Functional Cross-correlations.
Additional examples of cross-correlations for cell pairs with significant interaction (z > 4.5 relative to
GLM). Left and right: CA1 and mPFC firing rate map. Center: cell-pair cross correlograms, real data
(solid black line); null model mean (dotted back) ± 3STD (shaded area). TODO: decrease space,
increase legibility
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Fig. S3.6. CA1-mPFC FC firing depends on precise theta-timing.
(A) Proportion of significant FC pairs (z > 4.5 within theta-cycle delays) for start (brown) vs goal
(purple) as a function of mPFC spike jittering (uniform +- 0, 20, 40, 60, 180 ms). (B) Relative
reduction of strongest FC peak of measured as (peak_orig – peak_jitt)/peak_orig for different levels of
mPFC spike jittering. (C) Example functional cross-correlations showing the effect of jittering (black: no
jittering, blue: 60ms, orange: 180ms).
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Fig. S3.7. Paired firing of mPFC-CA1 FC pairs is not accompanied by significant changes in
underlying oscillations.
Average PSD for paired (orange) vs independent (blue) activity of CA1 (top) and mPFC (bottom) FC
cell pairs. PSD computed using Welch’s method on 400ms time segments centered on mid-theta cycles
using a Hanning window and constant detrending.
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Extra-hippocampal memory consolidation

4.1 Aims
Most theories agree on the fact that the responsibility for long-term memory storage resides
outside the hippocampus (Squire et al., 2015). In particular, it is believed that, over time,
there are repeated interactions between the hippocampus and the neocortex which lead to a
gradual transfer of memories (Frankland et al., 2004). This process is mediated mostly through
the entorhinal cortex, which is, anatomically speaking, an interface between the hippocampus
and most of the neocortex (Witter, 2011). Therefore, it makes sense to study how spatially
tuned entorhinal cells (Fyhn et al., 2004; Hafting et al., 2005; Diehl et al., 2017) encode
spatial locations during and after learning, and how these representations change over time.
Here, I will study neural activity that correlates with the learning of novel spatial memories.
One of the clearest correlates of learning in hippocampal CA1 cells is the accumulation of
firing around salient locations (Hollup et al., 2001; Dupret et al., 2010; Gauthier and Tank,
2018; Lee et al., 2020). This accumulation has been shown to emerge during learning and to
be predictive of future memory retention (Dupret et al., 2010). Interestingly, while the CA1
area accumulates firing around goal locations, CA3 hippocampal subregion does not (Dupret
et al., 2010). It is unknown how the MEC would encode goal learning, if at all, nor how
quickly and for how long.
The aim of this chapter is to study the responses of simultaneously recorded single cells in
CA1 and MEC during and after goal learning. The study will focus on the accumulation of
firing of different subsets of spatially-tuned cells, the speed of such accumulation, and the fine
details of the movement of firing fields towards goal locations.
This is a study in collaboration with Charlotte Boccara, Federico Stella, Joseph O’Neill, and
Jozsef Csicsvari.
This is the author’s version of the work. It is included in this dissertation by permission of
the AAAS. The definitive version was published in the journal Science on March 29th, 2019,
volume 363, pages 1443–1447. DOI: https://doi.org/10.1126/science.aav4837
Author contribution: C.N.B and J.C. designed and implemented the study and wrote the
manuscript. C.N.B performed the experiments. J.O’N helped with the implementation of the
study, C.N.B and M.N. performed cluster cutting, C.N.B., M.N. and F.S. planned the analyses,
M.N. and F.S. analyzed the data, M.N. wrote the methods, all authors discussed the results
and contributed to the manuscript.
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4.2. Introduction

The Entorhinal Cognitive Map is Attracted to
Goals
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Grid cells with their rigid hexagonal firing fields are thought to provide an invari-
ant metric to the hippocampal cognitive map. Yet, environmental geometrical
features have recently been shown to distort the grid structure. Given that
the hippocampal role goes beyond space, we tested the influence of non-spatial
information on the grid organization. We trained rats to daily learn three new
reward locations on the cheeseboard maze, while recording from the medial
entorhinal cortex and the hippocampal CA1 region. Many grid fields moved
towards goal location, leading to long-lasting deformations of the entorhinal
map. Therefore, distortions in the grid structure contributes to goal repre-
sentation during both learning and recall, which demonstrates that grid cells
participate in mnemonic coding, beyond providing a simple metric of space.

4.2 Introduction

To decide upon relevant behavior, individuals rely on dynamic neural representations of their
world, computed from current and past experiences. The cognitive map formed by an extended
network of specialized cell types coding for defined spatial features is essential for accurate
navigation (O’Keefe and Nadel, 1978; Moser et al., 2017). While hippocampal place cell activity
is restricted to discrete, sparse place fields in specific environments, parahippocampal grid cells
present multiple firing fields, arranged in regular hexagonal arrays that densely tessellate all
environments (Hafting et al., 2005; O’Keefe and Dostrovsky, 1971). This led to the hypothesis
that grid cells provide a universal invariant metric for spatial cognition (Moser and Moser,
2008). As such, they were originally considered to have a narrower role than hippocampal
place cells, which code for multimodal information beyond simple spatial representations
(Moser et al., 2017; Eichenbaum et al., 1999). New data, however, suggest a more complex
grid code (Marozzi et al., 2015; Lipton et al., 2007; Diehl et al., 2017). Non-spatial factors
modulate local field firing rates without affecting the grid structure (Ismakov et al., 2017)
while topographically organized auditory stimulus can drive grid-like structure(Aronov et al.,
2017). Furthermore, geometrical environmental features can influence the rigid grid structure,
thus challenging the role of grid cells to provide invariant metrics(Stensola et al., 2012; Krupic
et al., 2018; Barry et al., 2007). However, grid distortions could also encode more complex
behavioral information. We therefore tested the influence of behaviorally-relevant information
on the entorhinal cognitive map.
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Fig. 4.1. MEC and CA1 spatial cells move towards newly-learnt goals. (A) Dual-recordings in CA1
(left-half) and MEC (right-half). Nissl-stained sections (red arrows: electrode tracks), rate maps of
simultaneously-recorded place and grid cells and LFP traces. (B) Behavioral sequence: pre-probe,
pre-rest, learning, post-rest and post-probe. Bottom: animal’s path (grey) with goals (dots). (C)
Average normalized learning-curve (orange). (D) Memory retention test. Average time at goals: pre-
learning (blue) and post-learning (red). T-test, P=0.0053. Black error-bars: SEM across sessions. (E)
Example grid cell showing spikes (colored dots) and field (circles) movement towards goals (black dots).
(F) Example maps of grid (up), spatial MEC (middle) and CA1 place (bottom) cells across paradigm.
(G) Left-half: Proportions of spatial cells with fields moving significantly closer to goals. Significance
calculated against LNP data [purple] or downsampled [dashed purple, binomial test, all Ps<0.0001, grids
(up): 89%; MEC (middle): 84%; CA1 (bottom): 79%]. Right-half: Proportion of cells with their
strongest fields at goals in pre-learning (blue) and post-learning (red). Fisher’s exact test, grids (up):
P=0.027, N=56; MEC (middle): P=0.0047, N=157; CA1 (bottom): P=0.00018, N=245). Empty bars:
control post-probe LNP data (all Ps<0.018 against post-probe). Dashed bars: control down-sampled
data (all Ps<0.00001). See supplementary figures for detailed legends.

72



4.3. Results

4.3 Results
We trained rats to learn daily three new hidden reward locations on a cheeseboard maze,
while recording simultaneously from the medial entorhinal cortex (MEC) and the hippocampal
CA1 region (Fig. 4.1A, Fig. S4.1). This hippocampus-dependent task (Dupret et al., 2010)
consisted of three phases: pre-probe, learning and post-probe, where the probes verified
memory retention in the absence of food rewards (methods and Fig. 4.1B–D). This paradigm
changed daily the cognitive valence of local points in an otherwise familiar environment, leading
to the accumulation of CA1 place fields around reward locations (i.e. goal remapping, (Dupret
et al., 2010)). This allowed us to test how rewards can be dynamically encoded in MEC neural
representation during goal learning.
The majority of grid cells (80–90%) had at least one of their firing fields significantly moving
towards a goal (Fig. 4.1E–G, binomial test, P<0.00001, see methods and Fig. S4.2–3).
MEC non-periodic spatial and CA1 place cells showed a similar behavior (Fig. 4.1F–G and
S4.3, binomial test, P<0.0001). This led to the accumulation of entorhinal and hippocampal
strongest firing fields at goal locations (Fig. 4.1G). Because successful learning led to a higher
number of visits of reward locations (Fig. 4.1D), we used a Linear-Nonlinear-Poisson (LNP)
spiking model to verify that the reorganization of firing fields was independent of variations in
trajectories, speed or heading between pre- and post-probe by comparing real data to maps
generated with this method (Hardcastle et al., 2017). We also performed an additional control
by downsampling the pre- and post-probe map to match occupancy in each spatial bin (see
methods and Fig. 4.1G). Conjunctive head-direction coding did not influence field movement
to goal (Fig. S4.4).
The proportion of cells with their strongest fields within goal locations increased progressively
during learning in both entorhinal and CA1 spatial cells (Fig. S4.5A–C). To test whether these
changes were long-lasting, we performed the same analyses on pre-probe, this time using the
previous day’s goal locations. MEC cells retained the accumulation of firing fields around
previous goal locations (Fig. S4.6A–B). Unexpectedly, CA1 changes were more transient (Fig.
S4.6C), suggesting differences in memory trace lability between those two regions, in line
with models arguing for faster plasticity in CA1 than in MEC (Rennó-Costa and Tort, 2017).
We also observed faster CA1 plasticity during learning by scoring the development of goal
representation as a function of firing related to goal vicinity (see methods and Fig. S4.5D–G).
Given that pre-probe grid map maintained an accumulation of firing fields at the previous day’s
goals, we examined the effect of the local change in cognitive valence on the grid structure
itself. For three animals we added the exploration of a familiar open field, which acted as a
control environment without valence bias (see methods). Grid scores were significantly higher
in the open field compared to both probes (Fig. 4.2A–B; 1-way analysis of variance (ANOVA),
P<0.00001), independently of differences in spatial sampling, trajectories, speed or heading
(Fig. 4.2B and methods; 1-way ANOVA, P<0.00001).
To test whether the grid score drop resulted from local map distortions around goals, we used
a Laplacian of Gaussian (LoG) filter to detect individual fields independently of their peak
firing rate (see methods and Fig. S4.7; (9, 10)). While there were no significant differences in
the number of fields, their size, spacing or ellipticity after learning (Fig. S4.8), we found a
significant decrease in the mean distance between field center and closest reward (Fig. 4.3A–B;
Kolmogorov-Smirnov (KS) test, P=0.01472) and an increase in the number of grid fields near
goals (Fig. 4.3C; Fisher’s exact test, P=0.0145).
To determine which parameters contributed to grid field movement, we calculated the “strength
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Fig.4.2. Grid score degradation on the cheeseboard. (A) Example of MEC grid cell, which exhibits
its highest grid score on the open field and a degraded score on pre- and post-probes. Top: rate maps
with maximum firing rate in red and lowest in blue with peak firing rate (Hz) on the upper right corner.
Bottom: corresponding spatial autocorrelogram maps, range from +1 (red) to -1 (blue), with the grid
score noted on the upper right corner. (B) Average grid score (±SEM) across MEC cells in open field
(OF: solid cyan), pre-probe (Pre: solid blue) and post-probe (Post: solid red) (1- way ANOVA,
P<0.00001). Dashed bars: downsampled control data (1-way ANOVA, P<0.00001). Light cyan and
empty bar: control data obtained with LNP spiking model in open field (LNP-OF) (1-way ANOVA,
P<0.00001).

of attraction” of each field towards a goal and correlated it against spatial parameters and
behavioral performance (Fig. 4.3D–E, S4.9). The strongest correlation was found with the
pre-probe distance to goal location: the closest fields being generally subjected to a strong
attraction while fields over a distance of ca. 30 cm showing little detectable attraction
(Fig. 4.3D–E). Most attracted fields moved towards the closest goals and the most visited
post-probe goal was pulling the strongest attraction (Fig. S4.9). Different fields of a given
cell could be attracted to different goals, depending on their relative position to the goals
(Fig. S4.7H–K). We observed a weak increase in the peak grid field firing rate in post-probe,
however this increase was not associated with goal locations and there was no correlation with
strength of attraction (Fig. S4.10). Finally, the increase of activity at goals correlated with
memory retention (correlation analysis, r=0.77, P=0.002, Fig. 4.3F). There was no significant
difference of in the strength of attraction between CA1 and MEC fields, however pre-probe
field distance influenced only MEC fields (Fig. S4.11).

To test whether the local movement of firing fields towards the closest goals could explain the
grid score drop in probe sessions, we applied a movement towards imaginary goals on grid
fields recorded in the open field, following the distribution of movements determined after
learning. This resulted in a grid score drop was analogous to that observed between open
fields and cheeseboard environments (Fig. 4.3G; 1-way ANOVA, P=0.0003).

We subsequently examined the reorganization of place-related assemblies at the population
level (Fig. 4.4 and S4.12–13). Both MEC and CA1 cell assemblies showed a significant
reduction in vector similarity between pre- and post-probe as compared to the intrinsic
variability in comparing the two halves of the pre-probe (Fig. S4.12B; t-test, all Ps<0.0001).
This was independent of changes in spatial sampling (Fig. S4.12B; t-test, all Ps<0.0001).
MEC population vector similarity across pre/post probe sessions were weaker around goal
locations than away from them (Fig. S4.12C; t-test, P=0.0003) and positively correlated
with distance from the goal locations (Fig. 4.4E; P<0.0001). In contrast, the reorganization
of CA1 population vectors between pre- and post-probes did not exhibit significant positive
correlation with goal distance (Fig. 4.4E; P=1). Given that goal remapping of individual MEC
and CA1 spatial cells occurred incrementally during learning (Fig. S4.5), we next examined
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Fig.4.3. Stronger attraction of MEC fields closest to goal locations. (A) Example of grid fields
movement from pre-learning (blue) to post-learning (red); overlay (right). Top: animal path (grey),
spikes (colored dots), goals (black dots). Bottom: field detected (colored circles) detected by LoG filter;
grey-scale rate maps. (B) Density of fields as a function of distance to closest goal in pre- and
post-probe; KS test, P=0.01472. (C) Proportion of fields at goals in pre- and post-probes; Fisher’s exact
test, P=0.0145. (D) Scatter plot of attraction strength against pre-probe goal distance. Running
average (purple line, shaded SEM). Significance threshold: dashed line (t-test on each 10 cm window
below 29 cm: P<0.05). (E) Running average of mean inferred attraction as a function of distance to
closest goal. Spearman correlation analysis, r=-0.192, P=0.01225; standard-deviation (shadow). (F)
Memory retention (time at goals) against normalized mean firing rate increase at goals. One dot per
session. Line: regression analysis, r=0.7, P=0.011. (G) Grid score in open field (left) and distorted open
field (right, generated following real-data field movement distribution); 1-way ANOVA, P=0.0003.

how the expression of assemblies dynamically shifted toward post-probe goal representation.
We computed the Fisher’s z-scored correlation coefficients of the population activity in 125
millisecond time bins, with the population vectors representing the current location of the
animal in the pre- and post-probes (see example session on Fig. 4.4B and S4.13). As
learning progressed, similarity to post-probe representation increased both in MEC and CA1
cell assemblies. Yet, when examining the fine temporal structure of assembly expression during
learning, we observed a fast-paced flickering between pre- and post-probe representations. The
distribution of z-scores were then compared with a control distribution obtained by a cell-id
shuffling procedure (Fig. 4.4C). Significant differences were detected for both CA1 and MEC
(KS test, P<0.00001 for all combinations). Moreover, we observed a significantly heavier-tailed
distribution of real z-scores compared to the control shuffled ones (binomial test, P<0.0001).
Real data, therefore, showed a stronger tendency to have extreme values, suggesting that
there were no intermediate representations but rather flicker between the two competitive
representations of pre- and post-probes. The MEC flickering we observed was reminiscent
of previously reported CA1 flickering (Dupret et al., 2013; Jezek et al., 2011). Given that
MEC vector correlation increased with goal distance (Fig. 4.4D), we restricted flickering
analyses to goal locations. The distribution of flickering scores was significantly different and
generally shifted towards more positive values (Fig. S4.12–13, KS and Mann-Withney U tests,
P<0.0001). We also observed inter-regional differences in goal flickering dynamics with CA1
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reaching a plateau faster than MEC during learning (Fig. S4.12–14).

Fig.4.4. Flickering in MEC and CA1 between co-existing representations. (A) Schemas
illustrating population-vector computation. (B) Example of progression of z-scored correlation
coefficients of ensemble activity across paradigm with pre-probe (negative, blue) and post-probe (positive,
red) population vectors in MEC (up) and CA1 (down). Yellow line: smoothed score progression; black
dashed line: regression analysis. (C) Distribution of z-scores in MEC (green), CA1 (brown) and cell- ID
shuffling (black); KS-test: MEC vs. shuffling: P<0.00001, CA1 vs. shuffling: P<0.00001. The shuffling
distributions did not differ: KS-test, P>0.1. (D) Running average of population vector similarity as a
function of distance to goal. MEC: green; CA1: brown. 1-sided-t-test regression analysis: MEC:
r=0.1181, P<0.00001; CA1: r=-0.00227, P=1. Spearman correlation analysis: MEC: r=0.10415,
P<0.00001, CA1: r=- 0.02331, P=0.02369. Shadows: standard-deviation.

4.4 Discussion
Goal learning can lead to the local and long-lasting distortion of the entorhinal spatial maps.
This demonstrates the influence of non-geometrical cognitive factors onto the grid structure
itself. These findings support emerging theories proposing that the grid pattern carries a
broader organizational role for both spatial and non-spatial information in more complex and
naturalistic behaviors (Bush et al., 2015; Garvert et al., 2017). Grid structure distortions have
been recently linked to the geometrical features of the recording environment (Stensola et al.,
2015; Krupic et al., 2018; Barry et al., 2007), which may reflect distorted perception of space.
Here, we found evidence for a grid code at the structural level that goes beyond simple metrics:
individual grid fields moved towards newly-learned goal locations, leading to the deformation of
the grid map, independently from variations of spatial sampling, trajectories, speed or heading
inherent to our behavioral paradigm. Field attraction strength to a goal was proportional to
the original goal-field distance, locally constraining the deformation of the entorhinal spatial
representation. While local remapping took place in MEC, CA1 reorganized through global
remapping. Moreover, field reorganization towards goal location was maintained overnight
for MEC but not for CA1 although both maintained reorganized fields after learning (up to
2h). This argues for a higher lability of CA1 spatial memory traces compared to MEC cells
(Hainmueller and Bartos, 2018). The role of the hippocampus in goal encoding was recently
highlighted by reports of a subpopulation of CA1 neurons with an angular tuning for goal
direction (Sarel et al., 2017; Gauthier and Tank, 2018). While our results are consistent with
the role assigned to CA1 in computational models of goal directed navigation (Bush et al.,
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2015; Hinman et al., 2018), differences in goal coding between CA1 and MEC require updates
in the current models. Finally, we showed that assembly expression of different goal-related
context rapidly alternated – flickered – in the MEC during learning, similar to CA1 flickering
(Dupret et al., 2013; Jezek et al., 2011). The simultaneous expression of the old and new
MEC representations in the same trial periods, suggests that multiple maps can be stored in
the MEC. The apparent absence of intermediate representations in MEC has implications as
to how new/modified maps could be dynamically encoded and (re)organized in the CA1-MEC
circuits during learning. This may open new avenues of computational research as to its role
in inferential reasoning associative memory.

4.5 Materials and methods

Subjects and Surgery Four male long-Evans rats
(3–5 months old, 300–400 g at implantation, housed
and food deprived as described previously (O’Neill
et al., 2017) were implanted with 16 independently
movable tetrodes under deep anesthesia using isoflu-
rane (0.5%–3%), oxygen (1–2 l/min), and an initial
dose of buprenorphine (0.1 mg/kg). Our tetrodes were
arranged in a drive with two bundles: one targeting
the CA1 region of the hippocampus and the other
the medial entorhinal cortex (MEC). All procedures
involving experimental animals were carried out in ac-
cordance with Austrian animal law (Austrian federal
Law for experiments with live animals) under a project
license approved by the Austrian Federal Science Min-
istry. Each tetrode consisted of four 12 µm tungsten
wires twisted together with their tip gold plated to
reduce electrode impedance to 200–600 kΩ. Surgical
implantations of electrodes were conducted following
procedures previously described (26). In brief, MEC
and CA1 bundles consisted of 8 tetrodes each. MEC
bundles were positioned on the medio-lateral (ML)
axis at [4.0 mm to 5.7 mm] lateral to the midline and,
on the antero-posterior (AP) axis, [-7.4 mm to -8.8
mm] posterior to bregma. CA1 coordinates were ML
[2.7 mm to 3.7 mm] and AP [-2.7 mm to -3.7 mm].
Electrodes were implanted 0.9 mm below dura at a
10-degree angle, relative to the skull.

Data acquisition General data acquisition proce-
dures have been described previously (O’Neill et al.,
2017). In brief, after a recovery period of 1 week,
tetrodes were progressively lower in maximum steps of
200 µm per day until reaching CA1 pyramidal layer and
MEC superficial layers while the animals were trained
on the cheeseboard maze (see behavioral training pro-
cedures below).

Apparatus The cheeseboard maze is similar to what
has been described previously (Dupret et al., 2010).
It consisted of a PVC circular board (120 cm in diam-
eter, 2 cm in thickness) with a total of 177 food wells
(2.5 cm in diameter, 1.5 cm in depth) drilled into the
surface of the maze in evenly spaced parallel rows and

columns (8 cm between the centers of each well). A
PVC grey start-box (27 cm long, 19 cm wide and 59
cm high) was equipped with a door (35 cm high and
placed along the edge of the board perpendicular to
the rows of food wells. The top of the box was open
to allow tracking the animal inside. A small glass-
made cup (2.5 cm in diameter) was placed inside the
start-box. Three out of four animals were also trained
on a familiar open field (OF) arena very similar to the
cheeseboard maze and, in most sessions, consisting of
a plain circular environment of the same diameter and
the same material, without food wells drilled in it. In
two sessions, we used a rectangular environment. The
same start box was used for both environments. All
environments were surrounded by black curtains and
polarized by a 30 cm wide white cue card attached to
the curtain.

Training procedures Training procedures were simi-
lar to what has been described previously (Dupret et al.,
2010). In brief, rats were pre-handled before surgical
procedures. Following the postoperative recovery pe-
riod, they were food-deprived so that their weight was
reduced and maintained at 85% of their age-matched
preoperative weight. They were first habituated to
retrieve pellets in the open field while electrodes were
lowered to the region of interest. Once coverage of
the open field was satisfactory, animals were trained
to retrieve hidden pellets on the cheeseboard. First,
the rat was allowed to freely explore the whole cheese-
board for at least 30 min for 3 days. Then, the rat
was trained to chase for food-rewards and come back
to the start-box. Three groups of visible food pellets
(MLab rodent tablet 45 mg, TestDiet) were spread
out on the surface of the cheeseboard maze while the
rat was inside the start box. For each trial, the door
was temporarily opened, the animal was allowed to
exit the box and retrieve all the rewards while another
additional reward was placed in the glass-made cup
situated within the start- box. Once all the rewards
had been collected, the door was re-opened, and the
rat was gently conducted back to the start box to find
and consume the additional food reward within the
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start box. That procedure was repeated until the rat
started to return back consistently on its own after
having collected all the rewards within the board ( 3–4
days). A similar procedure was applied over the follow-
ing days, this time with three hidden rewards (i.e., one
food pellet per baited location) within the cheeseboard
maze ( 2–3 days). The same baited locations were
used from one day to the other. To prevent the use
of an odor-guided search strategy during these experi-
ments, food pellet dust was scattered across the maze
before each experiment, the board was periodically
wiped (using the towel used to handle the rat daily)
and the board was rotated relative to the start- box
between learning trials and between rest and probe
sessions. This initial phase of the experiment ended
when the rat was familiar with the whole procedure.
Behavioral paradigm: cheeseboard spatial mem-

ory test The animals were housed in a separate
holding room and were taken to the recording room
each day prior to the experiments. Each daily experi-
ment consisted of a sequence of five recording sessions
in the following order: a probe test (“pre-probe”), an
immobility/sleep rest session (“pre-rest”), a learning
session, an immobility/sleep rest session (“post-rest”)
and a probe test (“post-probe”). The two probe tests
(15-20 min) were never rewarded. After both the pre-
probe and the learning sessions, rats were allowed to
settle down within the start box for the rest sessions
(∼25 min). During the learning session, rats were
given successive trials (∼40 trials) to find the three
hidden rewards placed in randomly selected food wells.
Three out of four animals were also exposed daily to
a familiar open field (OF) arena. In that case the rat
was let free to explore (15-20 min) the familiar open
field environment before the beginning or after the end
of the above described experimental procedure. Pellet
dust and pellet crumbs were scattered on the disk. In
all, 13 sequences of probe–rest–learning–rest–probe in
four animals were analyzed, with a total of 490 CA1
pyramidal cells and 262 MEC principal cells. 9 out of
13 sessions (3 rats) also had the OF exploration be-
fore the pre-probe or after the post-probe exploration,
with a total of 370 CA1 pyramidal cells and 209 MEC
principal cells.
Spike sorting The spike detection in the local field

potential and sorting was performed as previously de-
scribed (Csicsvari et al., 1999). Action potentials were
extracted by first computing power in the 800–9000 Hz
range within a in a sliding window (12.8 ms). Action
potentials with a power of >5 SD from the baseline
mean were selected and spike features were then ex-
tracted by using principal components analyses. The
detected action potentials were then segregated into
putative multiple single units by using the Klustak-
wik automatic clustering software (Harris et al., 2000)
(http://klustakwik.sourceforge.net/). These clusters
were then manually refined by a graphical cluster cut-
ting program (Csicsvari et al., 1999). Only units with

clear refractory periods in their autocorrelation and
well-defined cluster boundaries were used for further
analysis. We further confirmed the quality of cluster
separation by calculating the Mahalanobis distance
(Harris et al., 2000) between each pair of clusters.
Periods of waking spatial exploration, immobility, and
sleep were clustered together and the stability of the
isolated clusters was examined by visual inspection
of the extracted features of the clusters over time.
Pyramidal cells and interneurons in the CA1 region
were discriminated by their autocorrelations, firing rate
(average 0.1 5 Hz) and waveforms, as previously de-
scribed. Putative MEC principal cells were identified
by their firing rate: they had to keep a stable average
firing over the entire recording day between 0.1 and 7
Hz. In this way we were able to identify the activity of
262 putative excitatory MEC neurons (209 with OF),
as well as 490 CA1 pyramidal units (370 with OF).

Histology and reconstruction of recording po-
sitions Electrodes were not moved after the final
recording session. The rats were killed with an over-
dose of pentobarbital and were transcardially perfused
with 0.9% saline (wt/vol) followed by 4% formalde-
hyde (wt/vol). The brains were extracted and stored
in 4% formaldehyde. At least 24 h later, the brains
were quickly frozen, cut in sagittal sections (30 µm) us-
ing a cryostat, mounted and stained with cresyl violet
(Nissl). Every section in the area of the tetrode trace
was retained. The positions of the tips of the recording
electrodes were determined from digital pictures of the
brain sections. The laminar locations of the recording
electrodes in MEC and CA1 were determined on the
basis of cytoarchitectonic criteria (29), as well local
field potential sharp-wave response during rest (30).

Behavioral performance Behavioral performance
was calculated offline using the animal’s position
records from the tracking data. Learning performance
was assessed by constructing learning curves based
on the time and the distance travelled to retrieve all
three rewards for each trial. Since the baseline time
and distance changed daily, we normalized the learn-
ing curves by each day’s baseline performance (last
20 trials) and then averaged them pointwise in order
to compute an overall mean learning curve. Memory
retention performance was assessed during the first 5
min of each probe by scoring the time spent in the
goal areas, defined as 15 cm in diameter centered
on the learned bait locations. In subsequent analysis,
the learning was subdivided in learning blocks, each
consisting of seven trials and an overlap of two with
the neighboring one (Fig. S4.5H).

Occupancy maps Position estimates were based
on tracking the middle positions between LEDs on the
head stage. The x–y plane of the cheeseboard was
divided into bins of 3 cm × 3 cm and occupancy- maps
were calculated during exploratory epochs (speed >3
cm/s) measuring the amount of time spent in each
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spatial bin by the animal, based on the tracking data.
The number of periods (τ = 25.6ms) spent in each
bin were counted using a Triweight Kernel (Dunn et al.,
2017) with a bandwidth of σ = 3cms and centered at
the center of each spatial bin xb :

occ(xb) =
∑︂

x

τK(xb, x)

where

K(xb, x) = 4
9πσ2

[︃
1 − ||xb − x||2

9σ2

]︃
Spatial firing rate maps The x–y plane of the

cheeseboard was divided into bins of 3 cm × 3 cm and
rate-maps were calculated during exploratory epochs
(speed >3 cm/s) by dividing the number of spikes
recorded in each bin by the occupancy and then
smoothed with a Gaussian filter with a standard devi-
ation (SD) of two bins. Bins with less than 250 ms
occupancy time were not considered. The number
of spikes in each bin were counted using a Triweight
Kernel with a bandwidth of 3 cm. The peak rate was
defined as the rate in the bin with the highest rate in
the firing rate map. Normalized firing rate maps were
the original firing rate maps divided by the peak firing
rate (unless otherwise specified). Z-score normalized
maps were the original firing rate maps to which the
mean firing rate was subtracted and divided by the
map SD.

Sparsity measure and spatially selective cells la-
belling Sparsity measure represents the proportion
of the environment in which a cell fires, corrected for
occupancy time. It is formally defined as

(
∑︁

i PiRi)2∑︁
i PiR2

i

where Pi is the probability of the rat occupying bin i
and Ri is the firing rate in bin i. Hippocampal place
cells were screened for their spatial tuning using a
sparsity value of no more than 0.3, whereas entorhinal
spatially modulated cells were selected using a sparsity
threshold of 0.6. This discrepancy is due to the fact
that entorhinal cells usually present multi- field firing
patterns, giving rise to a higher sparsity score even
when spatially modulated.

Shuffling procedure for cell labelling To keep the
firing structure of each cell while disrupting the link
between firing and spatial position we used a spike list
wrapping shuffling procedure (32). In brief, consider-
ing a spike train with time span [0, END], a random
time between 20 sec and END -20 sec was picked
and added to all the spiking times. The spiking times
which resulted above END were brought to the begin-
ning by subtracting END, and the new ‘wrapped’ spike
train was used to compute a new rate map. This was
repeated 200 times for each cell in each environment
independently.

Spatial autocorrelograms The autocorrelogram
represents the map of shifted self-coherence and was
calculated as in (Boccara et al., 2010). For any reg-
ularly spaced grid of gaussian bumps one expects to
obtain again the same regular grid as autocorrelogram,
because the coherence will be high when the shift lets
the peaks overlap again.
Grid score The grid score represents the amount

of rotational coherence of a certain map. It was calcu-
lated similarly to (Stensola et al., 2015): From a spatial
rate autocorrelogram whose center was excluded, we
considered the Pearson correlation of the autocorrelo-
gram rotated by 30, 60, 90, 120 and 150 degrees (±3
degrees offsets). Only bins closer to the center than a
radius s were considered. The grid score using this par-
ticular radius s, was defined as the difference between
the average of the maximum correlations around 60
and 120 degrees (±3 degrees offsets) and the average
of the minimum correlations around 30, 90 and 150
degrees (±3 degrees offsets). Eventually, the final
grid score of the cell was defined as the maximum
grid score over values of s ranging from twenty to
forty bins, computed at intervals of one bin width. A
small amount of ellipticity (among the axes ratios 1,
1.1 and 1.2) was also allowed in order to correct for
possible deformations in the grid structure (Stensola
et al., 2015).
Grid cells labelling A cell was labelled as grid cell

only when its grid score was higher than the 95 th
percentile of the distribution of scores coming from
a spike list wrapping-shuffling procedure (see above).
The threshold was calculated separately for each cell
in each single environment. The cells were classified
as grid cells based on their score in the open field
familiar and stable environment (3 out of 4 animals).
The scores in pre-probe were used only when the open
field data was not present (1 out of 4 animals). With
this procedure a total of 56 cells were identified.
Head-direction modulation To determine whether

cells had their activity modulated by head-direction,
we computed the mean vector length of the angular
spiking distribution (Boccara et al., 2010). A cell was
labelled as directional only when its mean vector length
was higher than the 95 th percentile of the distribution
of scores coming from a spike list wrapping-shuffling
procedure (see above). The threshold was calculated
separately for each cell in each single environment.
Accumulation of firing at goal locations This

analysis tested for high spiking activity close to the
goal locations. The bins with high firing rate were
detected as bins with an intensity above 80% of the
peak. The cells with high firing within 15 cm from any
goal location were counted in pre-probe rate maps and
post- probe rate maps. Maps were computed using
the activity of the first 10 minutes of each probe, in
order to standardize the time considered across ani-
mals and sessions. The increase between pre-probe
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and post-probe was tested using a Fisher’s exact test
on contingency tables. The same procedure was used
during learning on rate maps computed during trial
blocks (as described above, 7 trials with an overlap of
2) and averaged across cells.

Downsampling procedure To verify that the ob-
served effects were not due to the fact that the rat
spent more time close to goal locations in post-probe,
we used a random downsampling procedure. Each cell
was associated with a list (positiont, spiket), where
positiont represents the (x,y) coordinate of the animal
at a particular time point and spiket the number of
spikes the cell emitted in that particular time bin. Each
point was then associated to its own spatial bin in a
map with 10 x 10 spatial bins (15 cm size). To correct
for uneven sampling between pre and post-probe, we
randomly sampled while allowing repetitions, for each
map, a number of events corresponding to the mini-
mum occupancy of the two. Using the downsampled
data, we calculated new rate maps using the same
procedures as described above. This was repeated 200
times for each cell.

Linear–nonlinear model and Poisson simulations
To assure that the change observed in the rate maps
were not due to behavioral differences, we used a lin-
ear–nonlinear (LN) model for the entorhinal cells that
takes into consideration position, heading and speed
of the animal. The model has been used for entorhi-
nal cells by (Hardcastle et al., 2017) and is described
there in detail. In brief, this model has been used to
quantify the dependence of spiking on a combination
of variables (position, heading and speed): it allows to
estimate the firing rate of a cell during a time bin as an
exponential function of the sum of the relevant value
of each variable projected onto a corresponding set of
parameters. Once the LN model was fitted to the data
observed in pre-probe, the expected firing rate were
computed based on the behavior of post-probe. Using
the instantaneous expected firing rate, we simulated
the firing of a cell in post-probe as a non-homogeneous
Poisson process (31). This procedure was repeated
200 times for each cell and is referred through the text
as linear- nonlinear Poisson spiking (LNP) model.

Firing-by-vicinity score The firing-by-vicinity score
correspond to the sum of the firing field rates of cells
near goals during learning. To obtain this score we
first constructed a two-dimensional kernel function by
summing three 2D Gaussian kernels with a SD of 30
cm and centered at each goal. We then multiplied
the normalized firing rate map of each cell with the
two-dimensional kernel function. Finally, we summed
up the kernel-multiplied spatial firing rates. Thus, we
calculated, for each cell, their firing rates near the
goals, taking into consideration those rates in the im-
mediate vicinity and less those further away. During
learning, we computed the score for each cell on a
sliding window of seven trials in order to have a better

temporal resolution and compared it across cell types.

Firing field detection It has been recently shown
that firing fields of grid cells present different firing
intensities, so a thresholding procedure is not suitable
to detect grid fields (Dunn et al., 2017). To detect
grid fields independently of their firing intensities, we
employed a Laplacian-of-Gaussian (LoG) filter blob
detection algorithm (31). This algorithm consists of
convolving the image with a LoG kernel. The Laplacian
filter measures the local curvature of a surface and is
defined as the sum of the unmixed second derivatives
of a (possibly multidimensional) real function and can
be thought in 2D as a measure of local curvature of
a surface. The convolved image emphasizes areas of
high curvature of a gaussian-smoothed version of the
image and will have negative peaks where the peaks
of the fields are (Fig. S4.7). The gaussian kernel,
used before the Laplacian filter, had the standard devi-
ation of a gaussian bell fit on the central peak of the
autocorrelogram. This measure was also used as the
average dimension of the fields of a map. The detected
peaks were then filtered using the following criteria: -)
Intensity: the intensity had to be higher than the 75 th
percentile of the distribution of intensities of the map.
-) Overlap: if two fields overlapped, only the one with
the strongest intensity was considered. -) Distance to
the border: in order to avoid “half fields” or distorted
fields close to the borders, all the fields detected less
than 10 cm from the border were discarded.

Firing fields matching To study the movement of
individual grid fields between pre and post-probe, we
paired them based on their spatial overlap and distance
between centers. Once the fields were detected in pre-
and post-probe, the pairing worked as follows: -) We
calculated the distance of each field in pre-probe to
each field in prost-probe. -) Fields were matched start-
ing from the pair with the biggest overlap (smallest
distance). Once matched they were then excluded. -)
The fields were paired up until reaching a maximum
distance of 20 cm. The threshold of 20 cm is given
by the fact that the average spacing between fields in
our dataset was 35 cm and the average field size was
about 15 cm.

Significant movement towards a goal We used
two methods to determine the significance of move-
ment towards a goal of each field against LNP data
with method 1 or downsampled data with method 2
(Fig. 4.1G). Method 1: We first simulated 100 times
the pre-probe firing fields with the LNP spiking model
using the real post-probe behavior. We then evaluated
the number of times a firing field moved more in the
LNP-generated maps than in the real maps. Next, we
compared each field movement against chance on a
cell-by-cell basis using a 95% significance level. Finally,
we compensated for multiple comparison with a Holm-
Bonferroni correction. Method 2: This method is very
similar to method 1. We randomly downsampled 100
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times the pre- and post-probe rate maps in order for
them to reach the same occupancy. We then evalu-
ated the number of times a firing field moved more
in the downsampled maps than in the original maps.
Finally, we compared each field movement against
chance on a cell-by- cell basis using a 95% significance
level with a Holm-Bonferroni correction. After we
assessed whether a field moved significantly or not,
we checked whether it moved towards or further away
from goals.

Attraction strength In order to quantify the move-
ment of the fields towards the goal locations, we mea-
sured the relative movement of each field and weighted
it by a directionality score. If we denote with dpre
the distance of the field from a goal in pre-probe and
dpost the same in post probe, the attraction strength
was defined as:

att = (dpre − dpost)/(dpre + dpost) ∗ |cos(theta)|

where theta is the angle between the vector of move-
ment and the vector pointing from the field to the
goal location.

Inferred attraction strength To verify the hypoth-
esis that attraction is stronger on fields located close
to goals, we used an algorithm that tests for the best
fit between pre- and post-probe when moving the fir-
ing fields towards a goal location. For each pre-probe
map, we detected the firing fields and then moved
them towards one (or more) goal location(s). Each
field was free to move towards any goal (or combina-
tion of goals) by any percentage of the distance that
separated it from the goal it was moving towards. We
then measured the correlation between the post probe
map and the modified pre-probe maps, using any com-
bination of movements towards any of the wells, and
selected the one that correlated best. The inferred
attraction for each field was the percentage of move-
ment of the map that fitted best the post-probe map,
and we scatter- plotted it against the distance of the
fields in pre-probe in order to carry out a correlation
test.

Field deformation, size and spacing To check
whether the fields were more deformed on the cheese-
board, we fitted a (diagonal) 2D gaussian bell on each
field detected in the open field, in pre- and post-probe;
and computed a deformation score. The score was
computed as the absolute value of the difference of
the two standard deviations divided by the sum of the
two. As such we had a score ranging from 0 to 1,
where 0 means perfectly round and 1 means perfectly
flat. The mean size of the fields was computed as
the standard deviation of a perfectly symmetric 2D
gaussian bell fitted on the central blob of the auto-
correlogram, whereas the mean spacing between fields
(i.e. grid scale) as the distance between the central
blob and the one outside the center with the highest
intensity of the autocorrelogram.

Grid score degradation To test whether the move-
ment of fields observed in probes could explain the
drop of grid score, we took the firing rate maps of
the grid cells recorded in the open field and applied a
movement on each field following the real distribution
of movements from pre- to post- probe. We repeated
this procedure 100 times for each cell and then com-
pared the grid scores of the distorted maps with the
original ones.

Rate remapping To compare the extent of rate
remapping between pre- and post-probes, we employed
a rate remapping score computed as:

remapscore = (ratepost−ratepre)/(ratepost+ratepre)

We compared both the peak firing rate of each cell and
also the firing rate of each detected firing field. We
then compared the distribution of scores with down-
sampled data, as well as with the maps generated
using the LNP spiking model in order to simulate the
spiking using the rate modulation fitted on pre-probe
and the real behavior of post-probe.

Correlation with behavioral performance We
computed the average increase of firing at goals be-
tween pre- and post-probe using the firing-by-vicinity
method described above. We then correlated it with
the time the animal spent around the most visited
reward area in post-probe during the first 5 or 10
minutes.

Population vector The population vector repre-
sents the simultaneous average activity of all the se-
lected cells in a particular spatial bin, computed in a
certain experimental session. In brief, all the spatial
rate maps of the cells considered (here: CA1 place
cells or MEC spatially selective cells) in a given session
were stacked along the z-axis. Thus, the population
vector in a given spatial bin is the ‘vertical’ z vector for
that particular (x,y) set of coordinates (Dupret et al.,
2013).

Population vector similarity against distance from
goals To analyze the dependence of population vec-
tor similarity on the distance from the goals, the spatial
rate maps were z-scored and then stacked along the
z-axis for pre and post-probe as described above. For
each spatial bin (with an occupancy of at least 250 ms
in both pre- and post-probe), the Pearson correlation
between the two firing rate vectors was calculated
and then scatter plotted against the distance from the
goal location. We then tested whether the firing rate
similarity was positively correlated with the distance
from the closest goal using both a one-sided (posi-
tive) correlation analysis, as well as with a Spearman
correlation analysis.

Flickering To test the effectiveness of learning from
a population point of view, we compared the instanta-
neous firing during learning with the average activity
that we observed in pre- and post-probe. The activity
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of each cell of the selected ensemble (CA1 pyrami-
dal or MEC principal cells) was binned into 125 ms
windows and smoothed with a 1D gaussian filter with
250 ms SD. Each time-window overlapped 100 ms
with the previous. We then measured the correla-
tion between the instantaneous population activity in
each time-window during learning with the population
vector activity of pre- and post-probes. In this way,
we obtained two time series expressing the similar-
ity of the instantaneous population activity with the
representation observed during pre- and post-probes.
We employed a Fisher’s z-transform of the correlation
coefficients and took their difference. We next com-
pared the distribution of the z-scores against the scores

coming from a cell-ID shuffling procedure, and then
verified whether the two distributions were significantly
different using a Kolmogorov-Smirnov test. Finally, we
used a binomial test to check whether the number of
scores outside the 95 th percentile threshold (1.645)
was higher than chance. This procedure was executed
only on sessions that had at least 10 CA1 and 10 MEC
units (10 out of 13 sessions).

Average flickering during learning trials To study
the temporal behavior of flickering during learning, we
averaged the difference of Fisher z-scored correlation
coefficients during each learning trial, pooling together
all the sessions.

Supplementary figures
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Fig. S4.1. Histological verification of electrode positioning. Nissl-stained sagittal sections showing
the medial entorhinal cortex and the CA1 region of the hippocampus with electrode tracks (red arrows)
terminating respectively in the superficial layers (II/III) and in the pyramidal cell layer. Inserts show the
entire region and the location of the delineation of the magnified regions (red boxes). (A) animal 1, (B)
animal 2, (C) animal 3, (D) animal 4. The vast majority of the entorhinal cells were recorded in the
superficial layers (II/III). A minority of cells were recorded in LV (animal 3, one tetrode).
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Fig. S4.2. (Part 1/2) Additional examples of grid cell spatial maps during pre-probe, learning
and post-probe.
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Fig. S4.2. (Part 2/2)Additional examples of grid cell spatial maps during pre-probe, learning
and post-probe. Spatial maps of five example MEC cells showing the accumulation of activity around
goal location after learning. For each cell there are three panels of maps from top to bottom. Top panels
show the firing rate maps, scale on the left of the raw and peak firing rate (Hz) in the upper right corner
of each map. Middle panels represent the path of the animal (grey) with colored dots (blue: pre-probe;
orange; learning; red: post-probe) representing the spikes of the cells. Bottom panels show the spatial
autocorrelograms, scale is on the left of the raw going from -1 to +1. Purple areas on the right are
divided in two panels: the upper panels show the differential heat rate maps with scale bar on the right
and pre-(blue); the lower panels show the spike overlays of pre-probe (blue) and post-probe (red). The
red circles highlight goals pulling strong attraction.
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Fig. S4.3. Distribution of movement relative to goal among all spatial cells recorded. (A)
Distribution of grid cells according to the significant movement of their grid fields relative to goals.
Significance calculated against downsampled data (see methods). Left “only closer”: all detected moving
fields significantly moved closer to goals (69%). Middle left “mixed”: detected fields presented a mixed
behavior with some moving towards the goal and some not (20%), thus 89% grid cell show
goal-attraction of at least one field (Fig. 4.1). Middle right “only away”: all detected fields significantly
moved away from goals (7%). Right “no mov”: none of the detected fields moved significantly (4%).
(B) Same as (A) but for entorhinal spatial cells. In the same order as above: 60%, 24%, 6%, 10%. (C)
Same as (A) but for hippocampal place cells. In the same order as above: 64%, 15%, 10%, 11%. (D)
Same as (A) but with significance calculated against LNP data. In the same order as above: 66%, 20%,
5%, 5%. (E) Same as (B) but with significance calculated against LNP data. In the same order as
above: 68%, 18%, 3%, 11%. (F) Same as (C) but with significance calculated against LNP data. In the
same order as above: 63%, 15%, 10%, 12%.

Fig. S4.4. Influence of head-direction (HD) modulation on field movement. (A) Conjunctive
grid-by-head-direction cell proportions at goals pre-learning (blue) and postlearning (red). Fisher’s exact
test: P=0.3, N=10. Binomial test: P=0.0127, N=10. As in Fig. 4.1. Note that the non-significance for
the Fisher’s exact test is due to the very small number of conjunctive cells. (B) As in (A) for
non-directional ‘pure’ grid cells. Fisher’s exact test: P<0.001, N=46. Binomial test: P < 0.0001. (C)
Proportions of conjunctive grid-by-headdirection cells (as in Fig. S4.3). Left “only closer”: all detected
fields significantly move closer to goals (70%). Middle left “mixed”: detected fields present a mixed
behavior with some moving towards the goal and some not (10%). Middle right “only away”: all
detected fields significantly move away from goals (20%). Right “no mov”: none of the detected fields
move significantly (10%). Significance calculated against downsampled data. (D) As in (C) for
non-directional ‘pure’ grid cells. In the same order: 67%, 17%, 4%, 2%.

86



4.5. Materials and methods

Fig. S4.5. Comparative dynamics of goal-encoding emergence during learning. (A) Proportions
of grid cells with strongest firing at goals across learning-blocks. Spearman correlation, r=0.928,
P=0.0025. (B) Same as (A) for entorhinal spatial cells, r=0.835, P=0.0193. (C) Same as (A) for
hippocampal place cells, r=0.53, P=0.2193, first 4 blocks: r=0.99, P<0.00001. Orange shadows:
standard-errors. The analyses used in Fig. 4.1G (right) and S4.5A–C are based on the selection of the
strongest firing fields (top 20% strongest firing bins) moving from outside to inside goal locations. Yet, it
did not include the firing fields with low firing rate or movement occurring outside or within goal
locations. Thus, we computed a firing-by-vicinity score where we summed the firing field rates of cells
near goals by multiplying the firing rate with three 2D kernel functions centered at the goal locations, see
fig 4.1G (left) and S4.5D-G. (D) Evolution of firing-by-vicinity score in grid cells across behavioral
paradigm. Left: average in pre-probe (blue bar +/– SEM). Middle: scores per sliding windows of seven
trials (orange). Right: average in post-probe (red bar +/– SEM). Dashed line: level measured at the end
of learning. Mann-Withney U test, pre- vs. post-probe: P< 0.001. Regression test, trials 1–15: P >
0.98, trials 16–30: P < 0.0001. (E) Same as (D) for entorhinal spatial cells. Mann-Withney U test, pre-
vs. post-probe: P< 0.001. Regression test, trials 1–15: P > 0.9, trials 16–30: P < 0.001. (F) Same as
(D) for hippocampal place cells. Mann-Withney U test, pre- vs. post-probe: P< 0.001. Regression test,
trials 1–15: P < 0.0001, trials 16–30: P > 0.81. (G) Comparison of firing-by-vicinity score (after
baseline subtraction) across learning (seven trials sliding windows): CA1 place cells (brown), MEC spatial
cells (dark green), MEC grid cells (light green). (H) Average distribution of time (top) and area
(bottom) per learning block (as presented in Fig. S4.5A–C).
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Fig. S4.6. Longer-lasting map deformation in the MEC compared to CA1. (A) Proportion of
grid cells around goal locations from previous day before learning (“yesterday’s goal”, light blue). To
allow easy comparison, proportion of grid cells around today’s goal are shown in bright blue (before
learning) and red (after learning). Fisher’s exact tests: pre-probe, old vs. new wells: P=0.01756, N=43.
Dashed bars show control data obtained with downsampled data following the same color code: light
blue (before learning, old goal locations); bright blue (before learning, new goal locations); bright red
(after learning, new goal locations). Fisher’s exact tests: pre-probe, old vs. new wells: P<0.00001,
N=4300. (B) Same as (A) but for entorhinal spatial cells. Fisher’s exact tests: pre-probe, old vs. new
wells: P=0.0047, N=122; pre-probe, old vs. new wells downsampled: P<0.00001, N=12200. (C) Same
as (A) but for hippocampal place cells. Fisher’s exact tests: pre-probe, old vs. new wells: P=0.432,
N=183; pre-probe, old vs. new wells downsampled: P=0.07823, N=18300.
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Fig. S4.7. Laplacian of Gaussian (LoG) based field detection and field-to-goal movement. A–D:
Schematic of the field detection algorithm. (A) Example grid cell with uneven field rate. Up: rate map
with peak rate in black. Bottom: spatial autocorrelogram with peak correlation in red. (B) LoG kernel
to convolve the image. (C) Up: same rate map as in (A) convolved with the LoG kernel, where has been
estimated as the standard deviation of a symmetric Gaussian bell fitted on the central peak of the
autocorrelogram. Red dots: detected local minima (minimum distance of 5 bins). Bottom:
Corresponding autocorrelogram of the convolved rate map. (D) Up: convolved rate map with the filtered
field centers (fields too close to each other, with too low intensity or too close to the border were
excluded). Bottom: original rate map with circles on top of the detected fields. E–G: Proportions of
spatial fields moving towards goals (left), not moving (middle) or away from goals (right) for grid cells
(E), spatial MEC cells (F) and place cells (G). Left bars stratification represents proportions moving
towards closest (1st), second closest (2nd) or furthest (3rd) goal. H–J: Proportion of cells with fields
presenting none (0 goal, left) or significant movement towards one (middle left), two (middle right) or
three goals (right) between pre- and post-learning for grid (H), spatial MEC (I) and place cells (J). Note
that for this analysis, one field may be attracted to several goals. K–M: Proportion of cells whose
individual fields showed strongest attraction towards one, two or three goals for grid cells (K) and spatial
MEC cells (L). Note that for this analysis, each individual field could only be attracted to one goal. Given
that the vast majority of place cells presented only one field, this analysis was not performed for them.
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Fig. S4.8. Comparison grid properties across open field, pre- and post-probe. (A) Mean field
radius across environments; one-way ANOVA, P=0.38638. (B) Mean grid spacing across environments;
one-way ANOVA, P=0.12. (C) Mean field distortion-score across environments; one-way ANOVA,
P=0.31242429. (D) Mean number of fields per grid across environments; one-way ANOVA, P=0.59.

Fig. S4.9. Attraction score and influence of various factors on attraction pulled by each reward
well. (A) Schematic illustrating attraction score computation (see methods for details). Grid fields mean
attraction strength to wells ordered by: (B) attraction strength, (C) time spent at the well during
post-probe, (D) distance of the well to the start box, (E) time to reach a well during learning, (F) place
in the sequence of learning and (G) time spent at the well during learning. First ordered well is dark
purple (right bar), second well medium purple (middle bar) and third well light purple (left bar).
Significance given by one-way ANOVA, B: P<0.00001 (***), P=0.0363. C: P=0.036 (*), D: P=0.225
(NS: Non-significant), E: P=0.301 (NS), F: P=0.124 (NS), G: P=0.119 (NS).
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Fig. S4.10. Rate remapping absence of influence on goal remapping. Rate remapping scores were
computed for each firing field independently as the difference of firing rate in post- and pre-probe divided
by the sum. (A) Rate remapping scores between pre- and post-probe in real data (purple bars) or in LNP
post-probe maps (blank bars) generated using post-probe behavior and LNP spiking model based on
pre-probe activity. Note a significant positive tail showing rate remapping for real data through an
increase of rates in post-probe. Rank-sum test: P<0.0001, Levene test for Variance: P<0.0001. (B)
Same as in (A) for [pre- vs. postprobe] real data (purple bars) compared to control [pre- vs. post-probe]
downsampled data (blank bars). Note the absence of significant differences between the two distributions
showing the independence of rate remapping from spatial sampling. Rank-sum test: P=0.87, Levene test:
P=0.39, KS test: P=0.76. (C) Same as in (A) for [pre- vs. post-probe] real data (purple bars) compared
to intrinsic variability in first vs. second half of pre-probe (blank bars). Note a significant positive tail
showing positive rate remapping from pre- to postprobes, larger than the intrinsic rate variability within a
session. Rank-sum test: P<0.023, Levene test: P=0.0021. (D-H) Regression analyses showing the
absence of correlation between rate remapping and various movement measures on a field-by-field basis.
Regression analysis, all Ps>0.1. (D) Mean attraction score as a function of rate remapping score. (E)
Maximum attraction score as a function of rate remapping score. (F) Field movement as a function of
rate remapping score over bins of 3 cm each. (G) Distance from well with strongest attraction as a
function of rate remapping score. (H) Distance from well with strongest attraction as a function of
difference in peak firing rate. (I) Average coefficient of variation of firing field intensities across cells.
one-way ANOVA, P>0.2.
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4. Extra-hippocampal memory consolidation

Fig. S4.11. CA1 goal attraction strength compared to MEC: absence of influence of goal
distance and weaker correlation with memory retention. (A) Average strength of attraction
calculated for fields within a diameter of 30 cm around goals for grid (light green), MEC spatial (dark
green) and CA1 place (brown) fields. one-way ANOVA, P=0.3873. (B) Same as (A) but for average
strongest attraction. one-way ANOVA, P=0.4357. (C) Scatter plot of CA1 attraction strength against
pre-probe’s distance to goal. Running average (purple line, shaded SEM). No significant difference found
from zero (t-test on each 10 cm window: all Ps>0.05). (D) Running average of mean CA1 inferred
attraction as a function of distance to closest goal was not significantly different. Spearman correlation
analysis, r=0.0207, P=0.748; shadow: standard deviation. (E) Memory retention (time at goals) against
normalized mean CA1 firing rate increase at goals during the first 5 mins in post-probe. One dot per
session. Red line: regression analysis: r=0.66, P=0.015. (F) Same as (D) except that the mean firing
rate increase was calculated over 10 mins. Regression analysis: r=0.38, P=0.201. Note that the
correlation presented on figure 3F for MEC showed the normalized mean firing rate increase at goals
during the first 10 minutes in post-probe. Entorhinal increase of activity at goals also significantly
correlated with the 5 minutes memory retention test (data not shown).
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Fig. S4.12. Population vector and flickering analyses: focus on goal areas. (A–B) Schemas
illustrating population-vector computation for grid cells (A) and place cells (B). (C) Population vector
similarity in MEC. Left: first vs. second half of pre-probe (light green bar). Middle: pre-probe vs.
post-probe (green bar). Right: downsampled pre-probe vs. post-probe (blank bar); t-tests: P<0.00001
for all. (D) Population vector similarity in CA1. Left: first vs. second half of pre-probe (light brown bar).
Middle: pre-probe vs. post-probe (brown bar). Right: downsampled pre-probe vs. post-probe (blank bar);
t-tests: P<0.00001 for all. (E) Local population vector similarity in MEC restricted around or outside
goal locations. Preprobe vs. post-probe for grid cells inside (left yellow-green bars) and outside (right
dark green bars) goal area; t-tests: P=0.00033. (F) Same as (E) for CA1 populations. Pre-probe vs.
postprobe for place cells inside (left yellow bars) and outside (right dark brown bars) goal area; t-tests:
P=0.2001. (G) Comparison of distributions of MEC flickering z-scores in the entire environment and
restricted to goal areas. KS test: P<0.0001. Rank-sum test: P<0.0001. (H) Same as (G) for CA1
populations. KS test: P<0.0001. Rank-sum test: P<0.0001. Note an increase flickering in goal areas.
(I) Average of the z-scores values during learning per trial across sessions in MEC (green) and CA1
(brown). Shades represent SEM. Note scales are different for MEC and CA1. Regression test, trials 1-16:
MEC: r=0.91, P<0.0001, CA1: r=0.98, P < 0.00001; trials 15-30: MEC: r=0.93, P<0.00001, CA1:
r=0.19, P=0.46. (J) Same as in (I) but restricted around goal locations. Regression test, trials 1-16:
MEC: r=0.79, P=0.002, CA1: r=0.95, P<0.00001; trials 15-30: MEC: r=0.97, P<0.00001, CA1:
r=0.09, P=0.76. (K) Same data as in (I) and (J) but scaled to allow different comparison between CA1
and MEC. Note that: though the passage from positive to negative flickering may be informative, we
believe one should focus on the latency to reach a plateau.
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4. Extra-hippocampal memory consolidation

Fig. S4.13. Additional examples of z-scores regression slopes. Examples of progression of z-score
difference of MEC (up) and CA1 (down) populations activity similarity to pre- and post-probe
representations during two example days spanning (from left to right): pre-probe, learning and
post-probe. Z-score difference more similar to pre-probe are represented by blue bars and to post-probe
by red bars. Yellow line: smoothed score progression; black dashed line: regression analysis.
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Fig. S4.14. Example of z-scores regression slopes at goal location during learning. Example from
Fig. 4.4. Top: analyses performed on whole cheeseboard. Bottom: analyses restricted to goal locations
only
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Conclusion

In this thesis, I have presented 3 projects to which I have substantially contributed. These
projects describe different aspects of spatial coding; they involve the statistical analysis and
modeling of single cell activity in different brain areas of freely behaving rats. Here, I will
briefly summarize the findings in order to discuss the implications they might have on the
existing theories of memory consolidation and the potential underlying mechanisms. Finally, I
will conclude by describing future quests and research directions.

In chapter 1 I have introduced concepts related to memory, described the hippocampal
role in the processing of memories and concurrent coding of spatiotemporal coordinates,
and summarized several memory theories. These theories, although substantially different,
have similar fundamental building blocks: hippocampal-dependent quick acquisition of novel
memories, hippocampal-neocortical interactions, and extra-hippocampal long-term memory
assimilation (or transformation) and storage.

In chapter 2, I have described a mechanism that allows the hippocampal area CA1 to
precisely encode novel cognitive maps in the presence of input noise. My collaborators and
I developed a method to detect CA1 cell-cell interactions while rats freely explored familiar
and novel environments. Through data analysis and theoretical modeling of population spatial
representations, one principle emerged: a nonlinear dependence of the pairwise interaction
probability with place field similarity. This relation improved spatial coding and decodability,
especially during the exploration of a novel environment. In the following section, I will argue
that the same mechanism could be employed to quickly and efficiently encode other types of
novel information.

In chapter 3, I presented a project where my collaborators and I described a mechanism
for hippocampal and the medial prefrontal cortex (mPFC) cell assemblies interactions. The
underlying mechanism involved a transient increase in the phase locking of mPFC cells to
hippocampal theta, selectively during synchronization periods. This gave rise to functional
connections among cell pairs across regions: these connectivity patterns were similar to those
observed in a model of information transfer and generalization. In the following section, I will
argue that this mechanism might be used by the hippocampus to cue neocortical memories or
allow for the transfer of information.

In chapter 4, I showed results from the analyses of hippocampal CA1 and MEC cells activity
during and after the learning of behaviorally-relevant locations. Among the other findings, my
collaborators and I observed that, similarly to CA1, albeit at different speeds, MEC spatially
tuned cells increased their spiking activity at goal locations. Moreover, firing reorganization at
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goal locations was maintained overnight in the MEC, but not in CA1. In the following section,
I will argue that the MEC might have a larger-than-thought role in memory processing during
complex behaviors.

5.1 Impact of results on existing theories of memory
During the learning of salient reward locations, we observed that both CA1 hippocampal
and medial entorhinal cells increase their firing around novel goal locations (Fig. 4.1, S4.5).
Another research group found a similar effect in entorhinal cells (Butler et al., 2019), and
they suggested that increasing firing at goals is used to improve spatial precision around
salient locations. This could reconcile the findings with a purely spatial view of the MTL
(McNaughton et al., 2006), although not with a rigid metric view of grid cells (Moser and
Moser, 2008). Nonetheless, the amount of firing accumulation around goals is predictive of
future memory retention (Fig. 4.3), suggesting that spatial precision is only a co-objective
rather than the main objective of MEC; this is in line with reports of field-by-field variability in
grid cells (Stemmler and Herz, 2017). These results suggest that not only the hippocampus
but also the MEC play a broader role in mnemonic processing by encoding both spatial and
non-spatial information.
The dynamics of CA1 hippocampal learning-related activity argue against a recall-centered
view of the hippocampus (Miller and Matzel, 2000): it is not clear why CA1 would rapidly
(Fig. S4.5) and transiently (Fig. S4.6) accumulate firing around goals if its role was limited to
memory recall. These findings seem to also contradict the multiple trace theory (Rosenbaum
et al., 2001; Nadel and Moscovitch, 1997), which states that the hippocampus maintains
its own long-term accounts of each episodic memory. Nonetheless, it is possible that it is
not the hippocampus, but other MTL areas that maintain their own account of the episodic
memory: the overnight maintenance of goal-firing in MEC cells argues for a longer-lasting
trace in non-hippocampal MTL areas. This also corroborates the idea that the MEC, to a
first approximation, acts as a memory buffer (Buzsáki, 1989), and would agree with studies
showing that MTL lesions that extend beyond the hippocampus cause larger amnesia (Squire,
2004).
The reason why the hippocampus is so good at storing novel information has been studied
from cellular and synaptic perspectives (Silva et al., 2009). Here, we studied the statistical
relations between CA1 hippocampus pairs of neurons (Fig. 2.1). We found that an increase of
positive interactions among similarly tuned cells, especially during the exploration of a novel
environment, improves spatial information, decodability, and linear separability of population
responses to different stimuli. There is no reason to believe that this mechanism is used
only for encoding spatial information. It is possible that the hippocampus employs the same
method to combat noise when encoding any sort of variables or relations among elements of
a cognitive map (Buzsáki and Moser, 2013; Garvert et al., 2017); this could be a high-level
mechanism that helps the hippocampus to quickly store novel information, aiding learning.
Considering that the MEC is the main gateway between the hippocampus and the neocortex,
its slower emergence of goal-related firing suggests that information is not accumulated at
the same time in all neocortical areas (Takashima et al., 2009). Nonetheless, the presence of
previous knowledge, or a mental schema, has been reported to speed up neocortical learning
(Tse et al., 2007). This is especially true for the task studied in this thesis since animals are
heavily pre-trained and then repeat the task over several days (Dupret et al., 2010; Boccara
et al., 2019; Kaefer et al., 2020). It is possible that a quick formation of a new memory in the
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hippocampus happens concurrently in the relevant neocortical areas (Wang and Morris, 2010),
e.g. the prefrontal cortex. We proposed here a mechanism that could be used to transfer
spatial and/or contextual memories, together with a generalization method (Fig. S3.3)(Nardin
et al., 2021b). It is possible that the same mechanism also acts as a cueing system, i.e., the
hippocampus cues or tags the prefrontal cortex with spatiotemporal and contextual information
for consolidation or later retrieval.

To conclude, the findings presented here shed light on aspects of various consolidation theories,
clarifying details and providing clues as to how memories are stored throughout the brain.

5.2 Possible underlying mechanisms
Connections among neurons can be studied from a synaptic point of view (Perin et al.,
2011) or, as discussed in chapters 2 and 4, as high-level statistical second-order descriptions
(Averbeck et al., 2006; Cohen and Kohn, 2011). These statistical relations, across brain areas,
allowed us to describe a novel mechanism that binds hippocampal and prefrontal assemblies
during behavior (Fig. 3.2). This mechanism relies on a transient increase in theta locking
of mPFC cells when co-active with CA1 functionally coupled counterparts (Fig. 3.3). It has
been reported that mPFC cells are phase-locked to hippocampal theta oscillations (Jones
and Wilson, 2005), although at a delay (Siapas et al., 2005). A mechanism based on theta
oscillations would resonate with human studies, where it has been observed that recall rate
of previously learned words increased as a function of prestimulus medial temporal theta
amplitude (Guderian et al., 2009). Transient theta synchrony between the hippocampus and
prefrontal cortex has been previously described as a potential mechanism to form prefrontal
assemblies and tag memories for long-term storage (Benchenane et al., 2010). Here we further
showed how this mechanism can bind pairs of CA1-mPFC cells, transiently synchronize them,
and give rise to excess correlations that we picked up with statistical methods (Cohen and
Kohn, 2011; Savin and Tkačik, 2017).

Within the hippocampus, we studied statistical pairwise interactions on a time scale of 25ms,
which has been shown to organize the coactivity of hippocampal assemblies (Harris et al.,
2003). This time window allows for a multitude of synaptic patterns within local circuits,
including direct dendritic excitation, lateral inhibition, multisynaptic patterns, and global
inhibitory signals. This approach disregards fine synaptic details but allows one to approach the
hippocampus from an information-theory perspective, unlocking different methods employed
in studies of optimal coding (Tkačik et al., 2010). We found that CA1 hippocampal cells
increased positive interactions among similarly tuned cells during the exploration of a novel
environment. A possible explanation for a novelty-induced increase in interactions is a reduction
in overall inhibition (Fig. S2.3H) (Frank et al., 2004; Nitz and McNaughton, 2004; Wilson
and McNaughton, 1993) and inhibitory synchrony (Fig. S2.3J), likely controlled by extra-
hippocampal signals (Arriaga and Han, 2019). This novelty-induced effect could potentially
allow stronger cell-cell excitatory interactions that receive similar inputs by decreasing lateral
inhibition (Klausberger and Somogyi, 2008) or allowing polysynaptic activity of pyramidal
neurons (Crepel et al., 1997) while promoting place field formation (Sheffield et al., 2017;
Cohen et al., 2017). Moreover, it is known that the hippocampus contains a variety of inhibitory
cells (Klausberger and Somogyi, 2008; Dudok et al., 2021) that respond differently to novelty
(Arriaga and Han, 2019). A recent computational approach showed how the interplay between
different types of inhibition, and their varying activity levels during familiarization, can lead
to the emergence and stabilization of novel place fields (Pedrosa and Clopath, 2020). It is
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possible that the same mechanism is responsible for the varying degrees of positive interactions
in the hippocampus (Fig. 2.2).
Inhibitory cells also play a big role in the learning of novel goal locations: in fact, learning
dynamically changes interneurons’ activity during learning (43% decreasing vs 25% increasing)
(Dupret et al., 2013). Moreover, changes in monosynaptic excitatory-inhibitory cells lead to
the dynamic emergence of novel assemblies (Dupret et al., 2013). It has been suggested that
these effects are due to dopaminergic terminals in the hippocampus and that these can improve
learning and memory retention (McNamara et al., 2014; Kempadoo et al., 2016). It is not
clear whether an external reward signal to the hippocampus (Schultz et al., 1997; Takeuchi
et al., 2016) could cause such a localized increase in firing, although it has been suggested
that dopamine could be a mechanism to induce novelty-dependent decreases in hippocampal
inhibition(Li et al., 2003; Arriaga and Han, 2019). It is possible that exposure to a novel
environment shares mechanisms that allow the hippocampus to quickly learn goal-related
information.

5.3 Different modeling approaches: MaxEnt vs.
Likelihood based

The study of the statistical properties of single-cell neural responses to external stimuli,
generally called “receptive fields”, has a long history (Sherrington, 1906; Hartline, 1938; Hubel
and Wiesel, 1962). One class of models that is widely used to describe the receptive fields of
many types of stimulus-responsive neurons is the generalized linear model (GLM) (Agresti,
2015). This type of model includes a linear regression part (that captures the linear dependence
on external stimuli), a nonlinearity (that is thought of as a transfer function) and a noise class
(generally assumed to be Binomial or Poisson) (Dayan and Abbott, 2005; Pillow, 2007). This
class of models has been used to capture properties of both sensory and non-sensory areas,
e.g. retinal neurons (Pillow et al., 2008) and entorhinal cells (Hardcastle et al., 2017). GLMs
are very flexible, easily allow for the inclusion of many covariates (both external, e.g. visual
stimuli, or internal, e.g. oscillations or spiking history), and can accomodate different types of
regularization. Moreover, convergence to a single global maximum is guaranteed if one is to
fit the model by maximizing the likelihood while using an exponential link function Agresti
(2015); Pillow (2007).
On the other side, in the context of statistical hypothesis testing, one is interested in comparing
data measurements against a null model that captures certain aspects of the data (Savin
and Tkačik, 2017). Among the possible choices of mathematical models that can reproduce
measured data moments (e.g., mean, variance, ...), one is interested in the one that does
not incorporate additional structure or assumptions. This is formalized by requesting the
model to have maximal entropy (MaxEnt) while reproducing certain single-cell or population
moments (Jaynes, 1982). This guarantees that statistical hypothesis testing is not biased by
(potentially unreasonable) assumptions hard-wired into the null model. This is the case of the
study presented in chapter 2, where we analyzed hippocampal neurons during free exploration.
There, a null model that reproduced exactly the firing of each cell given 2D position and global
synchrony was ideal to rigorously measure the extent of within-area interactions.Although
close to a MaxEnt in spirit, this model is inferred by maximizing the marginal likelihood of the
data given parameters and is technically based on the assumptions of neural Poisson noise,
GP priors, and exponential link function, making the claim of maximum entropy only partially
correct. Nonetheless, our procedure to propagate uncertainty in the estimation of parameters
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throughout the analyses allows for a viable way to increase entropy while keeping the chosen
moments fixed.
Although theoretically elegant, it is not always possible to use maximum entropy models. For
example, in chapters 3 and 4, GLM models were used to regress neural firing against many
covariates (i.e. 2D position, head direction, speed, theta oscillations, firing history, and cofiring
of other neurons). This would have been very hard to do in a MaxEnt setting without adding
additional assumptions. Although a maximum-likelihood GLM model does not guarantee the
perfect reproduction of statistical moments or maximal entropy, it was used to make sure
that the results were not influenced by the lack of one or more covariates. This represents a
compromise between rigor and viability, and allows to carry out statistical tests that require to
take into account many different covariates.

5.4 Open questions and future directions
It is not clear how hippocampal interactions would adapt during learning. It is possible
that efficient coding hypotheses could explain the change in interaction structure under the
assumption that there is a need for a non-uniform representation of space. On the other hand,
it is also possible that mnemonic requirements would lead to higher-dimensional representation,
making spatial information alone not sufficient to explain remapping and changes in interaction
structures. It would be interesting to study the evolution of pairwise interactions during/after
learning and compare data results with the predictions of different efficient coding hypotheses.
Furthermore, statistical interactions between CA1 and MEC cells could shed light on the initial
steps of memory consolidation in MEC. More generally, the interplay between hippocampal
and entorhinal cells might play a big role during sleep after learning. It is possible that the
accumulation of firing around goals in MEC is driven by the hippocampus, potentially through
transient synchronization periods driven by sharp wave ripples. The fact that MEC accumulates
firing slower than the hippocampus does not exclude the possibility that PFC learns aspects of
rewards at the same pace as the hippocampus. It would be interesting to study PFC neural
responses and hippocampal-prefrontal interactions during goal learning and, more generally, if
prefrontal - hippocampal interactions are important to establish novel spatial representations
in PFC. One could think of studying them during initial exposures to novel environments, and
also see what they would do during initial learning (without a schema) or during learning after
being skilled (schema).
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