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Abstract
We study the many-body dynamics of an initially factorized bosonic wave function in
the mean-field regime. We prove large deviation estimates for the fluctuations around the
condensate. We derive an upper bound extending a recent result to more general interactions.
Furthermore, we derive a new lower bound which agrees with the upper bound in leading
order.

Keywords Large deviation principle · Bose–Einstein condensates · Mean-field regime ·
Many-body quantum dynamics

1 Introduction andMain Results

1.1 Introduction

We consider the dynamics of N bosons in the mean-field regime described through the
bosonic wave function ψN ,t ∈ L2

s (R
3N ), the symmetric subspace of L2(R3N ). The bosons

evolve according to the Schrödinger equation

i∂tψN ,t = HNψN ,t (1.1)

where HN denotes the Hamiltonian

HN =
N∑

j=1

−�x j + 1

N

N∑

i< j

v(xi − x j ) . (1.2)

The coupling constant 1/N in front of the interaction term corresponds to weak and long-
range interactions of mean-field type. In the following we assume the two-particle interaction
potential v to satisfy

v2 ≤ C (1 − �) (1.3)
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for a positive constant C > 0. We consider factorized initial data ψN ,0 = ϕ⊗N exhibit-
ing complete Bose–Einstein condensation (BEC), i.e. their reduced one-particle density γN
satisfies

γN = |ϕ〉〈ϕ| for every N , (1.4)

for a one-particle orbital ϕ ∈ H4(R3). Although the factorization is not preserved along the
time evolution, the property of BEC is known to be preserved, i.e. the reduced one-particle
density γN ,t associated to the solution ψN ,t of the Schrödinger equation (1.1) satisfies

γN ,t → |ϕt 〉〈ϕt | as N → ∞ (1.5)

where the time evolution of the condensate wave function ϕt is governed by the Hartree
equation

i∂tϕt = hH(t) ϕt , with hH(t) = −� + v ∗ |ϕt |2 (1.6)

with initial data ϕ0 = ϕ. (For more details see e.g. [1–3, 10–15, 19, 25, 26].)

1.2 Main Results

From a probabilistic point of view, BEC implies a law of large numbers for bounded one-
particle observables. To be more precise, for a bounded, self-adjoint one-particle operator O
on L2(R3) we define the N -particle operator

O( j) = 1 ⊗ · · · ⊗ 1 ⊗ O ⊗ 1 ⊗ · · · ⊗ 1 (1.7)

as the operator acting as O on the j-th particle and as identity elsewhere. We consider O( j)

as a random variable with probability distribution determined by ψN and given through

PψN

[
O( j) ∈ A

]
= 〈ψN , χA

(
O( j)

)
ψN 〉 (1.8)

where χA denotes the characteristic function of the set A ⊂ R. Since the expectation value
with respect to factorized states ψN = ϕ⊗N is

Eϕ⊗N

[
O( j)

]
= 〈ϕ, Oϕ〉 for all j = 1, . . . , N , (1.9)

the random variables are i.i.d. and thus, in this case, they satisfy a law of large numbers, i.e.
for the averaged sum ON = N−1 ∑N

j=1

(
O( j) − 〈ϕ, Oϕ〉), we have for any δ > 0

Pϕ⊗N [ |ON | > δ] → 0 as N → ∞ . (1.10)

The large deviation principle goes one step further and investigates the rate of convergence
through the rate function given by

	∗
ψN

(x) := − lim
N→∞ N−1 logPψN [ON > x] , (1.11)

assuming the limit exists. For i.i.d. random variables, i.e.ψN = ϕ⊗N , Cramér’s Theorem [9]
shows that the rate function is given by

	∗
ϕ⊗N (x) = inf

λ∈R
[−λx + 	ϕ⊗N (λ)

]
(1.12)
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where the rate function’s Legendre–Fenchel transform 	ϕ⊗N is the logarithmic moment
generating function

	ϕ⊗N (λ) = log〈ϕ, eλ
(
O(1)−〈ϕ,Oϕ〉)ϕ〉. (1.13)

Recall that we consider the time evolution of factorized initial data with respect to (1.1).
Thus, initially the random variables are i.i.d. and therefore a law of large numbers and a large
deviation principle with rate function (1.13) hold true. Although for times t > 0 the random
variables are not i.i.d. anymore (as the factorization is not preserved), the condensation
property (1.5) ensures the validity of a law of large numbers [4], i.e. for any δ > 0

PψN ,t [|ON | > δ] → 0 as N → ∞ . (1.14)

In the following theorem, we show that for t > 0 large deviation estimates hold true as well.
Before stating our main theorem, let us introduce some notation. For O a bounded self-

adjoint operator on L2(R3), we define the norm

|||O||| = ‖ (−� + 1) O (−� + 1)−1 ‖ (1.15)

where ‖ · ‖ denotes the usual operator norm. Moreover, for 0 ≤ s ≤ t , let fs;t ∈ L2(R3)

denote the solution to

i∂s fs;t = (
hH(s) + K̃1,s − K̃2,s J

)
fs;t (1.16)

with initial datum ft;t = qt Oϕt = Oϕt − 〈ϕt , Oϕt 〉ϕt , where qs = 1− |ϕs〉〈ϕs |, J denotes
the anti-linear operator J f = f , the Hartree Hamiltonian hH(s) is defined in (1.6), and

K̃1,s = qsK1,s qs, K̃2,s = qsK2,s qs (1.17)

with K j,s the operators defined by the integral kernels

K1,s(x, y) = v(x − y)ϕs(x)ϕs(y), K2,s(x, y) = v(x − y)ϕs(x)ϕs(y) . (1.18)

Theorem 1.1 Assume that the interaction potential v satisfies (1.3) and ϕ ∈ H4(R3) with
‖ϕ‖2 = 1. For t > 0, let ψN ,t denote the solution of the Schrödinger equation (1.1) with
initial datum ψN ,0 = ϕ⊗N and ϕt the solution to the Hartree equation (1.6) with ϕ0 = ϕ.

Let O be a self-adjoint operator on L2
(
R
3
)
such that |||O||| < ∞, and let fs;t be as defined

above. With O( j) from (1.7), we define ON ,t = N−1 ∑N
j=1

(
O( j) − 〈ϕt , Oϕt 〉

)
. There exist

C1,C2 > 0 (independent of O) such that

(i) for all t ≥ 0 and 0 ≤ x ≤ e−eC1 t ‖ f0;t‖22/|||O|||

lim sup
N→∞

N−1 logPψN ,t

[
ON ,t > x

] ≤ − x2

2‖ f0;t‖22
+ x3

C1ee
C1 t |||O|||3

‖ f0;t‖62
. (1.19)

(ii) for all t ≥ 0 and 0 ≤ x ≤ e−eC2 t ‖ f0;t‖42/(C2|||O|||3)

lim inf
N→∞ N−1 logPψN

[
ON ,t > x

] ≥ − x2

2‖ f0;t‖22
− x5/2

C2ee
C2 t |||O|||3/2
‖ f0;t‖42

. (1.20)

We remark that the function fs;t is determined through Bogoliubov’s quasi-free approx-
imation of the fluctuations around the condensate (see (3.27) below). For a detailed
explanation see [4,Theorem 2.2 and subsequent Remark]. In fact, with the notation of [4],
fs;t = qs(U (t; s) + JV (t; s))Oϕt .
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The bounds (1.19) and (1.20) show that the rate function of the system is, if it exists, for
sufficiently small x > 0 given by

	∗
ψN ,t

(x) = − x2

2‖ f0;t‖22
+ O(x5/2). (1.21)

In particular, Theorem 1.1 determines the rate function	∗
ψN ,t

up to quadratic order. Note that
for time t = 0 the quadratic term in (1.21) agrees with the one of Cramér’s theorem (1.13)
as

‖ f0;0‖22 = ‖q0Oϕ‖22 = 〈ϕ, O2ϕ〉 − |〈ϕ, Oϕ〉|2. (1.22)

In the regime x = O(1/
√
N ), our findings agree with the central limit theorems previously

obtained in [4, 7] proving that

lim
N→∞PψN ,t

[√
NON ,t < x

]
= 1√

2π‖ f0;t‖2

∫ x

−∞
e
− r2

2‖ f0;t ‖22 dr . (1.23)

We remark that a central limit theorem still holds true when replacing the weak mean field
potential (given by N 3βv(Nβx) forβ = 0)withmore singular interactions in the intermediate
regime (corresponding to 0 < β < 1) [23]. In the physically most relevant Gross–Pitaevski
regime (β = 1), a central limit theorem holds for the ground state [24] showing, in particular,
that the fluctuations around the condensate are approximately quasi-free. The validity of large
deviation estimates for fluctuations around the condensate for Bose–Einstein condensates in
the ground state is still an open question, however.

The proof of Theorem 1.1 (given in Sect. 2) is based on a lower and an upper bound on
the logarithmic moment generating function stated in the following (and proven in Sect. 3).

Theorem 1.2 Under the same assumptions as in Theorem 1.1,

(i’) there exists a constant C1 > 0 such that for all 0 ≤ λ ≤ e−eC1 t /|||O||| we have

lim sup
N→∞

N−1 logEψN ,t e
λNON ,t ≤ λ2

2
‖ f0;t‖22 + C1e

eC1 t λ3|||O|||3. (1.24)

(ii’) there exists a constant C2 > 0 such that for all 0 ≤ λ ≤ e−eC2 t /|||O||| we have

lim inf
N→∞ N−1 logEψN ,t e

λNON ,t ≥ λ2

2
‖ f0;t‖22 − C2e

eC2 t λ3|||O|||3. (1.25)

The upper bound (i’) on the logarithmic moment generating function (as well as the result-
ing upper bound on the rate function in Theorem 1.1(i)) is an extension of the large deviation
estimate obtained in [18] tomore general interaction potentials. In particular, the assumptions
on the potential in Theorem 1.1 involve the physical interesting Coulomb potential which
was excluded by the assumptions v ∈ L1(R3) ∩ L∞(R3) in [18]. Note that the term cubic in
λ in (1.24) depends on time through a double exponential, compared to a term exponential
in time in [18], which is a consequence of allowing less regular interaction potentials here
(entering the proof through Lemmas 3.1 and 3.2). The quadratic term of (1.24) agrees with
the findings from [18,Theorem 1.1]. In particular, the definition of f0;t in (1.16) here is the
same as in [18, Eq. (1.1)].1

1 There are minor mistakes in [18,Eq. (1.1)], where (1.18) instead of the projected kernels (1.17) is used. This
does not change the rest of the proof, which is based on estimates of quadratic forms in the truncated Fock
space where the projections qs act as identities (see (3.78)). Also there are two typos in [18,Eq. (1.1)], the
operators J and K2,s are switched and the sign in front of the operator K2,s is false.
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In contrast to [18], we prove here also a matching lower bound (ii’) on the logarithmic
moment generating function (resulting, together with the upper bound, in the lower bound
on the rate function in Theorem 1.1(ii)). This allows to determine the rate function 	∗

ψN ,t

up to quadratic order. In particular, we show that 	∗
ψN ,t

coincides up to quadratic order with
the rate function of Bogoliubov’s quasi-free approximation of the fluctuations around the
condensate. Whether this holds true for higher order terms remains an open question. In
fact, we don’t expect that the rate function of Bogoliubov’s approximation of the fluctuations
agrees with 	∗

ψN ,t
to all orders.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 uses ideas of the proof of Cramer’s theorem involving estimates
on the logarithmic moment generating function in Theorem 1.2. The upper bound (i) follows
by Chebychev’s inequality from (i’), while the proof of the lower bound is more involved
and uses both (i’) and (ii’).

Proof Upper bound (i): For λ > 0, we have

PψN ,t

[
ON ,t > x

] = PψN ,t

[
e−λNxeλNON ,t > 1

]
. (2.1)

Chebychev’s inequality implies that

PψN ,t

[
ON ,t > x

] ≤ e−λNx
EψN ,t

[
eλNON ,t

]
, (2.2)

and we find with Theorem 1.1 for λ < e−eC1 t /|||O|||

lim sup
N→∞

N−1 logPψN ,t

[
ON ,t > x

] ≤ −λx + λ2

2
‖ f0;t‖22 + C1e

eC1 t λ3|||O|||3 . (2.3)

For

x < e−eC1 t ‖ f0;t‖22/|||O||| (2.4)

let λ = x/‖ f0;t‖22. Then

lim sup
N→∞

N−1 logPψN ,t

[
ON ,t > x

] ≤ − x2

2‖ f0;t‖22
+ x3C1ee

C1 t |||O|||3
‖ f0;t‖62

. (2.5)

Lower Bound (ii): For arbitrary ε > 0, we have

N−1 logPψN ,t

[
ON ,t > x

] ≥ N−1 logPψN ,t

[
ON ,t ∈ (x, x + ε)

]
(2.6)

and it suffices to consider in the following

PψN ,t

[
ON ,t ∈ (x, x + ε)

] = 〈ψN ,t , χ(x,x+ε)

(
ON ,t

)
ψN ,t 〉

= 〈ψN ,t , χ(x,x+ε)

(
ON ,t

)
e−λNON ,t eλNON ,t ψN ,t 〉. (2.7)

On the support of χ(x,x+ε)(ON ,t ) we have e−λNON ,t ≥ e−(x+ε)λN for λ > 0 and we find

PψN ,t

[
ON ,t ∈ (x, x + ε)

] ≥ e−(x+ε)λN 〈ψN ,t , χ(x,x+ε)

(
ON ,t

)
eλNON ,t ψN ,t 〉. (2.8)

It is easy to check that

P̃ψN ,t

[
ON ,t ∈ A

] = e−N	N ,t (λ)〈ψN ,t , χA
(
ON ,t

)
eλNON ,t ψN ,t 〉 (2.9)
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9 Page 6 of 21 S. Rademacher, R. Seiringer

for A ⊂ R and

	N ,t (λ) = N−1 log〈ψN ,t , e
λNON ,t ψN ,t 〉 (2.10)

defines a probability distribution. We use (2.9) to rewrite the expression (2.8) as

PψN ,t

[
ON ,t ∈ (x, x + ε)

] ≥ eλN (−x−ε)+N	N ,t (λ)
P̃ψN ,t

[
ON ,t ∈ (x, x + ε)

]

= eλN (−x−ε)+N	N ,t (λ)
(
1 − P̃ψN ,t

[
ON ,t ≤ x

]

−P̃ψN ,t

[
ON ,t ≥ x + ε

])
. (2.11)

Similarly to the upper bound’s proof, we use Chebychev’s inequality for the last two terms
on the r.h.s. and obtain for arbitrary λ,μ, μ̃ ≥ 0

PψN ,t

[
ON ,t ∈ ((x, x + ε)

]

≥ eλN (−x−ε)+N	N ,t (λ)

×
(
1 − eN(−	N ,t (λ)+μ̃x+	N ,t (λ−μ̃)) − eN(−	N ,t (λ)−μ(x+ε)+	N ,t (λ+μ))

)
. (2.12)

For given x ∈ R, we need to choose λ,μ, μ̃ and ε such that both

lim sup
N→∞

(−	N ,t (λ) + μ̃x + 	N ,t (λ − μ̃)
)

< 0 (2.13)

and

lim sup
N→∞

(−	N ,t (λ) − μ(x + ε) + 	N ,t (λ + μ)
)

< 0 . (2.14)

In fact, for 0 < δ < δ̃, let λ = x(1 + δ)/‖ f0;t‖22, ε = x δ̃, μ̃ = δx/‖ f0;t‖22 and μ =
(̃δ − δ)x/‖ f0;t‖22. Then, as long as,

0 ≤ x ≤ min{e−eC1 t , e−eC2 t /(1 + δ)}‖ f0;t‖22
|||O||| (2.15)

we have with Theorem 1.2

lim sup
N→∞

(−	N ,t (λ) + μ̃x + 	N ,t (λ − μ̃)
)

≤ −λ2

2
‖ f0;t‖22 + C2e

eC2 t λ3|||O|||3 + μ̃x + (λ − μ̃)2

2
‖ f0;t‖22 + C1e

eC1 t (λ − μ̃)3|||O|||3

= − x2δ2

2‖ f0;t‖22
+ x3|||O|||3

‖ f0;t‖6
(
C2e

eC2 t (1 + δ)3 + C1e
eC1 t

)
< 0 (2.16)

if

x |||O|||3
(
C2e

eC2 t (1 + δ)3 + C1e
eC1 t

)
<

δ2

2
‖ f0;t‖42 . (2.17)

Similarly, as long as

0 ≤ x ≤ min{e−eC1 t /(1 + δ̃), e−eC2 t /(1 + δ)}‖ f0;t‖22
|||O||| (2.18)
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we have from Theorem 1.2

lim sup
N→∞

(−	N ,t (λ) − μ(x + ε) + 	N ,t (λ + μ)
)

≤ −λ2

2
‖ f0;t‖22 + C2e

eC2 t λ3|||O|||3 − μ(x + ε) + (λ + μ)2

2
‖ f0;t‖22

+ C1e
eC1 t (λ + μ)3|||O|||3 = − x2 (̃δ − δ)2

2‖ f0;t‖22
+ x3|||O|||3

‖ f0;t‖62

(
C2e

eC2 t (1 + δ)3 + C1e
eC1 t (1 + δ̃)3

)
< 0

(2.19)

if

x |||O|||3
(
C2e

eC2 t (1 + δ)3 + C1e
eC1 t (1 + δ̃)3

)
<

(̃δ − δ)2

2
‖ f0;t‖42 . (2.20)

In particular, under conditions (2.15), (2.17), (2.18) and (2.20), we have from (2.12)

lim inf
N→∞ N−1 logP

[
ON ,t > x

] ≥ lim infN→∞ 	N ,t (λ) − λ(x + ε)

≥ − x2

2‖ f0;t‖22
(1 + 2̃δ(1 + δ)) − C2ee

C2 t x3(1 + δ)3
|||O|||3
‖ f0;t‖62

.

(2.21)

With C3 = max{C1,C2} we can take

δ2 =
(

δ̃

2

)2

= 70C3e
eC3 t x |||O|||3

‖ f0;t‖42
(2.22)

and (2.17) as well as (2.20) are satisfied as long as δ < 1. For

x ≤ min
{
1
3e

−eC3 t ‖ f0;t‖22/|||O|||, 1
70C3

e−eC3 t ‖ f0;t‖42/|||O|||3
}

(2.23)

we can thus conclude that

lim inf
N→∞ N−1 logP

[
ON ,t > x

] ≥ − x2

2‖ f0;t‖22
− C4e

eC4 t x5/2
|||O|||3/2
‖ f0;t‖42

(2.24)

for C4 > 0 large enough. We shall show in Lemma 3.2 below that ‖ f0;t‖2 ≤ |||O|||eC |t | for
suitable C > 0, which allows for the simpler condition on x as stated in Theorem 1.1(ii). ��

3 Proof of Theorem 1.2

3.1 Properties of Kj,s and fs;t

In this section, we show in Lemma 3.2 useful estimates on the function fs;t defined in (1.16).
To this end, we first collect in Lemma 3.1 properties of the kernels K j,s defined in (1.18).
These Lemmas are the crucial ingredient to generalize the result of [18] to more singular
interaction potentials. The main difference is that in [18] estimates of the form (3.6) rely on
the propagation of the H1-norm of ϕs using, in particular, that by conservation of energy and
(1.3) we have

‖ϕs‖H1(R3) ≤ C‖ϕ‖H1(R3) (3.1)
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9 Page 8 of 21 S. Rademacher, R. Seiringer

for a constant C > 0. In contrast, here, we need the propagation of higher Sobolev norms of
ϕs in (3.11), i.e. bounds of the form

‖ϕs‖Hk (R3) ≤ CeCs‖ϕ0‖Hk (R3) (3.2)

for k ≥ 2 which are well-known (see e.g. [8]). These lead to bounds exponential in time
in (3.6) and, thus, to bounds double exponential in time in (3.13) because of the use of a
Gronwall type estimate. These bounds effect Lemma 3.4 and, consequently, the error terms
in Theorems 1.1 and 1.2.

Lemma 3.1 For s ∈ R and v satisfying (1.3), letϕs denote the solution to theHartree equation
(1.6) with initial data ϕ ∈ H4(R3). There exists a constant C > 0 such that

‖v ∗ |ϕs |2‖∞ ≤ C , (3.3)

‖∇v ∗ |ϕs |2‖∞ ≤ C eC |s| , ‖�v ∗ |ϕs |2‖∞ ≤ CeC |s| , (3.4)

and, furthermore for j = 1, 2 and f ∈ H2(R3)

‖K j,s‖L2(R3×R3) ≤ C (3.5)

‖∇K j,s f ‖2 ≤ CeC |s|‖ f ‖H1(R3), ‖�K j,s f ‖2 ≤ CeC |s|‖ f ‖H2(R3). (3.6)

Proof From (1.3), we have

| (v ∗ |ϕs |2
)
(x)| ≤

∫
|v(x − y)|2 |ϕs(y)|2dy + C‖ϕs‖22 ≤ C‖ϕs‖2H1(R3)

(3.7)

and (3.3) follows from (3.1). Similarly, since

∇v ∗ |ϕs |2 = 2v ∗ Re ϕs∇ϕs (3.8)

we have with (3.2)

‖∇v ∗ |ϕs |2‖∞ ≤ C‖ϕs‖2H2(R3)
≤ CeC |s| . (3.9)

The second bound in (3.4) follows in the same way.
Moreover, with (1.18), we have for j = 1, 2

‖K j,s‖2L2(R3×R3)
=

∫
|ϕs(x)|2v2(x − y)|ϕs(y)|2 dxdy = 〈ϕs,

(
v2 ∗ |ϕs |2

)
ϕs〉 (3.10)

and thus (3.5) follows by arguing as in (3.7) above. In order to show (3.6), we integrate by
parts

∫ (∇x K1,s
)
(x, y) f (y)dy =

∫
v(x − y) (∇ϕs) (x)ϕs(y) f (y)dy

+
∫

v(x − y)ϕs(x)
(∇ϕs

)
(y) f (y)dy

+
∫

v(x − y)ϕs(x)ϕs(y)∇ f (y)dy (3.11)

and estimate with (1.3) similarly as above

‖∇K1,s f ‖2 ≤ C‖ϕs‖2H3(R3)
‖ f ‖2 + C‖ϕs‖2H2(R3)

‖ f ‖H1(R3) ≤ CeC |s|‖ f ‖H1(R3) . (3.12)

The second estimate in (3.6) follows in the same way. ��
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Because of (3.2), one readily checks that the same bounds hold with K̃ j,s in place of K j,s .
Those bounds are in fact the ones we need below.

Lemma 3.2 Under the same assumptions as in Theorem 1.2, let fs;t be defined as in (1.16).
Then, there exists a constant C > 0 such that for all 0 ≤ s ≤ t we have

‖ fs;t‖2 ≤ ‖O‖eC |t−s|, ‖ fs;t‖H2(R3) ≤ Cee
C |t | |||O||| (3.13)

where |||O||| is defined in (1.15).

Proof Since

‖ fs;t‖22 =‖ ft;t‖22 −
∫ t

s
∂τ‖ fτ ;t‖22 dτ = ‖ ft;t‖22 − 2

∫ t

s
Im〈 fτ ;t , K̃2,τ J fτ ;t 〉 dτ (3.14)

we have with (3.5)

‖ fs;t‖22 ≤ ‖ ft;t‖22 + C
∫ t

s
‖ fτ ;t‖22 dτ . (3.15)

Since ‖ ft;t‖2 = ‖qt Oϕt‖2 ≤ ‖O‖, the first bound in (3.13) is a consequence of Gronwall’s
inequality.

In order to show the second, we compute

∂s‖ fs;t‖2H2(R3)
= 2 Im 〈(�2 − 2�

)
fs;t ,

(
v ∗ |ϕs |2 + K̃1,s

)
fs;t 〉

− 2 Im 〈(−� + 1)2 fs;t , K̃2,s J fs;t 〉
= 4 Im 〈� fs;t ,

(∇v ∗ |ϕs |2
) ∇ fs,t 〉 + 2 Im 〈� fs;t ,

(
�v ∗ |ϕs |2

)
fs,t 〉

+ 2 Im 〈� fs;t , �K̃1,s fs,t 〉 − 4 Im 〈� fs;t ,
(
v ∗ |ϕs |2 + K̃1,s

)
fs,t 〉

− 2 Im 〈(−� + 1) fs;t , (−� + 1) K̃2,s J fs,t 〉 . (3.16)

It follows fromLemma3.1 that all the terms on the r.h.s. can be bounded byC‖ fs;t‖2H2(R3)
eCs .

The second bound in (3.13) thus also follows from Gronwall’s inequality, together with

‖ ft;t‖H2(R3) = ‖qt Oϕt‖H2(R3) ≤ ‖ϕt‖H2(R3)‖O‖ + ‖Oϕt‖H2(R3)

≤ (‖O‖ + |||O|||) ‖ϕt‖H2(R3) (3.17)

and (3.2). ��

Note that the generalization of the interaction potential comes into play when using the
estimates (3.55) and (3.72) from Lemma 3.1 and Lemma 3.2. These estimates lead to the
bounds double exponential in time.

3.2 Fluctuations Around the Condensate

For the proof of Theorem 1.2, we need to study the fluctuations around the condensate in the
truncated Fock space of excitations. This description is based on the observation of [21] that
any N -particle bosonic wave function ψN ∈ L2

s (R
3N ) can be decomposed as

ψN = η0 ϕ⊗N
t + η1 ⊗s ϕ

⊗(N−1)
t + · · · + ηN (3.18)
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with η j ∈ L2⊥ϕt

(
R
3
)⊗s j , where L2⊥ϕt

(R3) denotes the orthogonal complement in L2(R3)

of the condensate wave function ϕt and ⊗s the symmetric tensor product. In particular, this
observation allows to define the unitary operator

Ut : L2
s

(
R
3N

)
→ F≤N

ϕt
=

N⊕

j=0

L2⊥ϕt

(
R
3)⊗s j (3.19)

mapping an N -particle bosonic wave function ψN onto an element of the truncated Fock
space, with UtψN = {η0, . . . , ηN } describing the excitations orthogonal to the condensate.
On the full bosonic Fock space (built over L2(R3))we have the usual creation and annihilation
operators, given for f ∈ L2(R3) by

a∗( f ) =
∫

f (x) a∗
x dx, a( f ) =

∫
f (x) ax dx (3.20)

and the number of particles operator N = ∫
a∗
x axdx . Moreover, we have the modified

creation and annihilation operators b∗( f ), b( f ) which (in contrast to a∗( f ), a( f )) leave the
truncated Fock space F≤N

ϕt
invariant and are given for f ∈ L2⊥ϕt

(R3) by

b∗( f ) = Ut a
∗( f ) a(ϕt )√

N
U∗
t = a∗( f )

√
1 − N+(t)

N

b( f ) = Ut
a∗(ϕt )√

N
a( f ) U∗

t =
√
1 − N+(t)

N a( f ) (3.21)

where N+(t) = N − a∗(ϕt )a(ϕt ) is the number of excitations. Note that the operators
b∗( f ), b( f ) are time dependent, yet we omit the time dependence in their notation for
simplicity. Their commutators given for f1, f2 ∈ L2⊥ϕt

(R3) by

[
b( f1), b

∗( f2)
] =

(
1 − N+(t)

N

)
〈 f1, f2〉 − 1

N
a∗( f2)a( f1),

[b( f1), b( f2)] = [
b∗( f1), b∗( f2)

] = 0 (3.22)

behave in the limit N → ∞ similarly as the standard commutation relations of a∗( f1), a( f2);
however, the correction terms of order N−1 lead to technical difficulties in the proofs below.
With (3.21) and the following further properties of Ut

Ut a
∗(ϕt )a(ϕt )U∗

t = N − N+(t)

Ut a
∗( f )a(g)U∗

t = a∗( f )a(g) (3.23)

for f , g ∈ L2⊥ϕt
(R3), we can compute the generator LN (t) of the fluctuation dynamics

WN (t2; t1) = Ut2e
−i HN (t2−t1)U∗

t1 : F≤N
ϕt1

→ F≤N
ϕt2

(3.24)

defined by

i∂t2WN (t2; t1) = LN (t2)WN (t2; t1) . (3.25)
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For ξ1, ξ2 ∈ F≤N
⊥ϕt

it is given by

〈ξ1,LN (t)ξ2〉 = 〈ξ1, [i∂tUt ]U∗
t + Ut HNU∗

t ξ2〉
= 〈ξ1, d�(hH(t) + K1,t )ξ2〉 + Re

∫
K2,t (x, y) 〈ξ1, b∗

xb
∗
yξ2〉 dxdy

− 1

2N
〈ξ1, d�(v ∗ |ϕt |2 + K1,t − μt )(N+(t) − 1)ξ2〉

+ 2√
N
Re 〈ξ1,N+(t)b((v ∗ |ϕt |2)ϕt )ξ2〉

+ 2√
N

∫
v(x − y)Re ϕt (x)〈ξ1, a∗

yaxbyξ2〉 dxdy

+ 1

2N

∫
v(x − y)〈ξ1, a∗

x a
∗
yaxayξ2〉 dxdy (3.26)

where we used the notation introduced in (1.6), (1.18) and 2μt = ∫
dxdy v(x −

y)|ϕt (x)|2|ϕt (y)|2.
In the limit of large N , the fluctuation dynamics WN (t2; t1) can be approximated by a

limiting dynamics W∞(t2; t1) : F⊥ϕt1
→ F⊥ϕt2

which is obtained by taking a formal limit
N → ∞ in (3.26). It satisfies the equation

i∂tW∞(t2; t1) = L∞(t2)W∞(t2; t1) (3.27)

with the generator L∞(t) whose matrix elements are given for ξ1, ξ2 ∈ F⊥ϕt by

〈ξ1,L∞(t)ξ2〉 = 〈ξ1, d�(hH(t) + K1,t )ξ2〉 + Re
∫

K2,t (x; y)〈ξ1, a∗
x a

∗
yξ2〉 dxdy (3.28)

For more details see [20] resp. [11, 16, 17, 22]. The generator L∞(t) of the limiting fluc-
tuation dynamics is quadratic in creation and annihilation operators and thus gives rise to
a Bogoliubov transformation [4, 5, 23] related to the function f0;t defined in (1.16) (see
[4,Theorem 1.2 et seq.]).

3.3 Proof of Theorem 1.2

The proof follows closely the ideas of [18] and is based on Baker–Campbell–Hausdorff
formulas proved therein (see [18,Propositions 2.2–2.5]. The main difference compared to
[18] is, on the one hand, our weaker assumptions on the interaction potential (entering in the
estimates (3.55) and (3.72) through Lemmas 3.1 and 3.2). On the other hand, we prove lower
bounds in Lemmas 3.3–3.5 as well, based on similar ideas as for the upper bounds (see also
[18,subsequent discussion of Theorem 1.1]).

With the map U0 defined in (3.19), we observe that ϕ⊗N = U∗
0� and thus by definition

of the fluctuation dynamics in (3.24), we have

ψN ,t = e−i HN tϕ⊗N = e−i HN tU∗
0� = U∗

t WN (t; 0)�. (3.29)

Hence we can write the moment generating function as

EψN ,t

[
eλNON ,t

]
=

〈
ψN ,t , eλNON ,t ψN ,t

〉

=
〈
�, W∗

N (t; 0)Ut e
λd�(Õt )U∗

t WN (t; 0)�
〉

(3.30)
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with Õt = O − 〈ϕt , Oϕt 〉. The properties (3.21), (3.23) of Ut allow to compute

Ut d�(Õt )U∗
t = d�(qt Õtqt ) + √

Nφ+(qt Oϕt ) (3.31)

where we used that 〈ϕt , Õtϕt 〉 = 0 and we introduced the notation
φ+(h) = b(h) + b∗(h) for h ∈ L2⊥ϕt

(R3). Thus, we arrive at

EψN ,t

[
eλNON ,t

]
=

〈
�, W∗

N (t; 0)eλd�(qt Õt qt )+λ
√
Nφ+(qt Oϕt )WN (t; 0)�

〉
. (3.32)

As in [18], we split the proof into three steps. The first step, Lemma 3.3, can be proved as
[18, Lemma 3.1].

Lemma 3.3 There exists a constant C > 0 such that for all t ∈ R and λ ≤ ‖O‖−1

e−CN‖O‖3λ3 〈
�, W∗

N (t; 0)eλ
√
Nφ+(qt Oϕt )/2e−2λ‖O‖N+(t)eλ

√
Nφ+(qt Oϕt )/2WN (t; 0)�

〉

≤
〈
W∗

N (t; 0)�, eλd�(qt Õt qt )+λ
√
Nφ+(qt Oϕt )WN (t; 0)�

〉

≤ eCN‖O‖3λ3 〈
�, W∗

N (t; 0)eλ
√
Nφ+(qt Oϕt )/2e2λ‖O‖N+(t)eλ

√
Nφ+(qt Oϕt )/2WN (t; 0)�

〉
.

(3.33)

Proof The proof of the upper bound in (3.33) is the same as in [18, Lemma 3.1]. The lower
bound can be proved in essentially the same way. For completeness we carry it out in the
following. As in [18] (but replacing κ with−κ), we define for s ∈ [0, 1] and κ > 0 the vector

ξs = e−(1−s)λκN+(t)/2e(1−s)λ
√
Nφ+(qt Oϕt )/2e

sλ
[
d�(qt Õt qt )+

√
Nφ+(qt Oϕt )

]
/2WN (t; 0)�.

(3.34)

We have

‖ξ0‖2 =
〈
�, W∗

N (t; 0)eλ
√
Nφ+(qt Oϕt )/2e−κλN+(t)eλ

√
Nφ+(qt Oϕt )/2WN (t; 0)�

〉
(3.35)

and

‖ξ1‖2 =
〈
�, W∗

N (t; 0)eλd�(qt Õt qt )+λ
√
Nφ+(qt Oϕt )WN (t; 0)�

〉
. (3.36)

To control the difference of (3.35) and (3.36), we compute the derivative

∂s‖ξs‖2 = 2Re〈ξs, ∂sξs〉 = 2Re〈ξs, Msξs〉 (3.37)

where the operator Ms is given by

Ms =λ

2
e−(1−s)λκN+(t)/2e(1−s)λ

√
Nφ+(qt Oϕt )/2d�(qt Õt qt )e

−(1−s)λ
√
Nφ+(qt Oϕt )/2e(1−s)λκN+(t)/2

+ λκ

2
N+(t). (3.38)

With [18, Propositions 2.2–2.4], we can computeMs explicitly. Note that only the hermitian
part of Ms enters in (3.37). Using the notation ht = (1 − s)λqt Oϕt and γs = cosh s, σs =
sinh s, we find
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Ms + M∗
s

λ
= d�(qt Õtqt ) − σ 2‖ht‖

‖ht‖2 〈ht , Õt ht 〉 (N − N+(t))

+
(

γ‖ht‖ − 1

‖ht‖2
)2

〈ht , Õt ht 〉a∗(ht )a(ht )

+ γ‖ht‖ − 1

‖ht‖2 (a∗(ht )a(qt Õt ht ) + a∗(qt Õt ht )a(ht )) + κN+(t)

+ √
N

σ‖ht‖
‖ht‖ sinh((s − 1)λκ/2)

[
γ‖ht‖ − 1

‖ht‖2 〈ht , Õt ht 〉φ+(ht ) + φ+(qt Õt ht )

]
.

(3.39)

For any h ∈ L2⊥ϕ(R3) and any bounded operator H on L2⊥ϕ(R3), we have the bounds

‖b(h)ξ‖ ≤ ‖h‖2‖N+(t)1/2ξ‖, ‖b∗(h)ξ‖ ≤ ‖h‖2‖ (N+(t) + 1)1/2 ξ‖,±d�(H) ≤ ‖H‖N+(t) .

(3.40)

Consequently, all terms on the r.h.s. of (3.39) can be bounded by a constant of order N .
Furthermore, since

‖Õt‖ ≤ ‖O‖(1 + ‖ϕt‖22) = 2‖O‖ (3.41)

we can bound d�(qt Õtqt ) ≥ −2‖O‖N+(t) and hence the choice κ = 2‖O‖ gives
d�(qt Õtqt ) + κN+(t) ≥ 0. Moreover, since

‖ht‖2 ≤ λ‖qt Oϕt‖2 ≤ λ‖O‖ ‖ϕt‖2 ≤ 1 (3.42)

for all λ ≤ ‖O‖−1, all the other terms on the r.h.s. of (3.39) are at least of order λ2. Thus,
using (3.40) and κ = 2‖O‖ we obtain the lower bound

2

λ
Re 〈ξs,Msξs〉 ≥ −Cλ2N‖O‖3‖ξs‖2 . (3.43)

In combinationwith (3.37) the lower bound in (3.33) now follows fromGronwall’s inequality.
The proof of the upper bound in [18] works in the same way, simply replacing κ by −κ

and estimating the terms in (3.39) from above instead of from below. ��
The second step, Lemma 3.4, is a generalization of Lemma [18, Lemma 3.2] to more

singular interaction potentials. The proof involves Lemmas 3.1 and 3.2 (see in particular
(3.55) and (3.72)) for the estimates yielding to an double exponential in time of the term
cubic in λ and in the definition of κs(compared to an exponential in time in [18]). We remark
that for Lemma 3.4 it is a crucial observation that fs;t ∈ L2⊥ϕs

(R3) for all 0 ≤ s ≤ t . This
follows from the fact that 〈ϕt , ft;t 〉 = 〈ϕt , qt Oϕt 〉 = 0 by construction, as well as

∂s〈ϕs, fs;t 〉 = −i Im 〈ϕs,
[
K̃1,s − K̃2,s J

]
fs;t 〉 = 0 (3.44)

using the definitions (1.16) and (1.17).

Lemma 3.4 For 0 ≤ s ≤ t , let fs;t ∈ L2⊥ϕs

(
R
3
)
be defined by (1.16). Let O be a self-adjoint

operator on L2
(
R
3
)
such that |||O||| < ∞ as defined in (1.15). There exists a constant C > 0

such that for κ defined as

κ = C |||O|||eeCt
(3.45)
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we have for all 0 ≤ λκ ≤ 1
〈
�,WN (t; 0)eλ

√
Nφ+(qt Oϕt )/2e2λ‖O‖N+(t)eλ

√
Nφ+(qt Oϕt )/2WN (t; 0)�

〉

≤ eκ
(
Nλ3|||O|||2+λ

) 〈
�, eλ

√
Nφ+( f0;t )/2eλκN+(0)eλ

√
Nφ+( f0;t )/2�

〉
(3.46)

and
〈
�,WN (t; 0)eλ

√
Nφ+(qt Oϕt )/2e−2λ‖O‖N+(t)eλ

√
Nφ+(qt Oϕt )/2WN (t; 0)�

〉

≥ e−κ
(
Nλ3|||O|||2+λ

) 〈
�, eλ

√
Nφ+( f0;t )/2e−λκN+(0)eλ

√
Nφ+( f0;t )/2�

〉
. (3.47)

Proof The lower bound (3.47) followswith ideas from [18, Lemma3.2] and fromLemmas 3.1
and 3.2. For 0 ≤ s ≤ t and some (differentiable) κs ≥ 0 with κt = 2‖O‖, define the vector

ξt (s) = e−λκsN+(s)/2eλ
√
Nφ+( fs;t )/2WN (s; 0)� ∈ F≤N

⊥ϕs
. (3.48)

It satisfies

‖ξt (0)‖2 = 〈�, eλ
√
Nφ+( f0;t )/2e−λκ0N+(0)eλ

√
Nφ+( f0;t )/2�〉 (3.49)

and

‖ξt (t)‖2 =
〈
�,WN (t; 0)∗eλ

√
Nφ+(qt Oϕt )/2e−2λ‖O‖N+(t)eλ

√
Nφ+(qt Oϕt )/2WN (t; 0)�

〉
.

(3.50)

Note that the definition (3.48) is similar to the vector defined at the beginning of the proof
of [18, Lemma 3.2]. The crucial difference is that, here, in (3.48), for the lower bound, the
exponential of the number of particles operator comes with a negative constant in front (in
contrast to a positive one in [18] for the upper bound).

As in the proof of Lemma 3.3, we want to control the difference of (3.49) and (3.50)
through the derivative

∂s‖ξt (s)‖2 = −2i Im
〈
ξt (s),JN ,t (s)ξt (s)

〉
(3.51)

where JN (s) is (in the sense of a quadratic form on F≤N
⊥ϕs

as in (3.26)) given by

JN ,t (s) = e−λκsN+(s)/2eλ
√
Nφ+( fs;t )/2LN (s)e−λ

√
Nφ+( fs;t )/2eλκsN+(s)/2

+ e−λκs N+(s)/2
[
i∂se

λ
√
Nφ+( fs;t )/2

]
e−λ

√
Nφ+( fs;t )/2eλκs N+(s)/2 − iλ

2
κ̇s N+(s) ,

(3.52)

where we denote κ̇s = dκs/ds. For this computation it is convenient to embed F≤N
⊥ϕs

into
the full Fock space F in which case N+(s) can be replaced by the s-independent N (for
more details see the discussion before [18,Eq. (3.3)]). We proceed as in [18] and compute
the anti-symmetric part of JN ,t (s) explicitly with the help of [18,Propositions 2.2–2.4], and
show that its norm is bounded by terms of order Nλ3 and λ.

To this end, recalling the definition of LN (s) in (3.26) and analogous calculations as in
[18,(3.4)–(3.5)], we have

e−λκsN+(s)/2eλ
√
Nφ+( fs;t )/2d�(hH(s) + K1,s)e

−λ
√
Nφ+( fs;t )/2eλκsN+(s)/2

= iλ
√
N

2
φ−((hH(s) + K1,s) fs;t ) + T1 + S1 (3.53)
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where we introduced the notation φ−( f ) = −i(b( f ) − b∗( f )), S1 = S∗
1 is symmetric and

T1 = i
√
N

(
σ‖hs;t‖
‖hs;t‖ cosh(λκs/2) − 1

)
φ−((hH(s) + K1,s)hs;t )

+ i
√
N

σ‖hs;t‖
‖hs;t‖

γ‖hs;t‖ − 1

‖hs;t‖2 〈hs;t , (hH(s) + K1,s)hs;t 〉 cosh(λκs/2)φ−(hs;t ) (3.54)

with hs;t = λ fs;t/2, as well as γs = cosh s and σs = sinh s as in the proof of Lemma 3.3.
We use the bounds (3.40) and

‖hH(s)hs;t‖2 ≤ C‖hs;t‖H2(R3) ≤ Cλ|||O|||eeCt
, ‖K1,shs;t‖2 ≤ Cλ‖O‖eCt (3.55)

for all 0 ≤ s ≤ t by Lemmas 3.1 and 3.2, and conclude that for all 0 ≤ λκs ≤ 1 and s ∈ [0, t],
we have ‖T1‖ ≤ Cee

Ct
N |||O|||3λ3.

We proceed similarly with the remaining terms of (3.52). For the second term of LN ,t (s)
in (3.26), we find with analogous calculations as the ones leading to [18,Eq. (3.6)], using that

‖K2,s‖ ≤ ‖K2,s‖L2(R3×R3) ≤ C, ‖ fs;t‖2 ≤ eCt‖O‖ (3.56)

for 0 ≤ s ≤ t by Lemmas 3.1 and 3.2,

e−λκsN+(s)/2e
√
Nφ+(hs;t )

(
1

2

∫ [
K2,s(x, y)bxby + K2,s(x, y)b

∗
x b

∗
y

]
dxdy

)
e−√

Nφ+(hs;t )eλκsN+(s)/2

= − iλ
√
N

2
φ−(K2,s fs;t ) + S2 + T2 + i R2 (3.57)

where S2 = S∗
2 is symmetric, T2 is bounded as T1 above by ‖T2‖ ≤ Cee

Ct
N |||O|||3λ3, and

R2 contains all the remaining terms of order λ, which are given by

R2 = −i
λκs

2

∫ [
K2,s(x, y)bxby − K2,s(x, y)b

∗
xb

∗
y

]
dxdy

+ i
λ
√
N

2

[(
1 − N+(s) + 1/2

N

)
b(K2,s fs;t ) − b∗(K2,s fs;t )

(
1 − N+(s) + 1/2

N

)]

− i
λ

4
√
N

∫ [
K2,s(x, y)b

∗( fs;t )axay − K2,s(x, y)a
∗
ya

∗
x b( fs;t )

]
dxdy

− i
λ

4
√
N

∫ [
K2,s(x, y)a

∗( fs;t )axby − K2,s(x, y)b
∗
ya

∗
x a( fs;t )

]
dxdy . (3.58)

The bounds in Lemmas 3.1 and 3.2 imply that2

R2 ≥ −Cλ
(
κs + ‖O‖eCt

)
(N+(s) + 1) (3.59)

for 0 ≤ s ≤ t .
For the third term of (3.26), we proceed as in [18,Eq. (3.7)] and use

‖K1,s‖ ≤ C, ‖v ∗ |ϕs |2‖∞ ≤ C, ‖ fs;t‖2 ≤ eCt‖O‖ (3.60)

2 The corresponding bound in [18] is incorrectly claimed with N+(s) instead of N+(s) + 1 on the r.h.s.,
resulting in a missing error term of order λ which is independent of N , however, and hence irrelevant for
N → ∞. The same applies to the corresponding bounds on R3, R4 and R5 below.
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from Lemmas 3.1 and 3.2 to conclude that

e−λκsN+(s)/2e
√
Nφ+(hs;t )d�(v ∗ |ϕs |2 + K1,s − μs)

N+(s) − 1

2N
e−√

Nφ+(hs;t )eλκsN+(s)/2

= S3 + T3 + i R3 (3.61)

where S3 = S∗
3 is symmetric, ‖T3‖ ≤ Cee

Ct
N |||O|||3λ3 and

R3 ≥ −CeCt‖O‖λ(N+(s) + 1) . (3.62)

For the forth term on the r.h.s. of (3.26), we have with ds = (
v ∗ |ϕs |2

)
ϕs

1√
N
e−λκsN+(s)/2e

√
Nφ+(hs;t ) (N+(s) b(ds) + b∗(ds)N+(s)

)
e−√

Nφ+(hs;t )eλκsN+(s)/2

= S4 + T4 + i R4 (3.63)

where S4 and R4 are symmetric and ‖T4‖ ≤ CN (eCt‖O‖ + κs)
3λ3 for all 0 ≤ s ≤ t and

λκs ≤ 1. The term R4 equals

R4 = λκs

2i
√
N

(N+(s)b(ds) − b∗(ds)N+(s)
) + iN+(s)(Im〈ds, hs;t 〉 (1 − N+(s)/N )

− i
N+(s)

N

(
a∗(hs;t )a(ds) − a∗(ds)a(hs;t )

) + φ−(hs;t )b(ds) + b∗(ds)φ−(hs;t ).
(3.64)

Since

‖ds‖2 ≤ ‖v ∗ |ϕs |2‖∞‖ϕs‖2 ≤ C, ‖ fs;t‖2 ≤ eCt‖O‖ (3.65)

by Lemmas 3.1 and 3.2, we have

R4 ≥ −Cλ
(
κs + ‖O‖eCt

)
(N+(s) + 1) (3.66)

for all 0 ≤ s ≤ t .
Next, we consider the fifth term on the r.h.s. of (3.26) and follow the same strategy as the

one leading to [18, Eq. (3.8)]. With

‖v ∗ (
fs;tϕs

) ‖∞ ≤ C‖ fs;t‖2‖ϕs‖H1(R3) ≤ CeCt‖O‖ (3.67)

for 0 ≤ s ≤ t from (3.1) and (3.13) we find that

e−λκsN+(s)/2e
√
Nφ+(hs;t )

∫
v(x − y)

[
ϕs(x)a

∗
yaxby + ϕs(x)b

∗
ya

∗
x ay

]
dxdye−√

Nφ+(hs;t )eλκsN+(s)/2

= S5 + T5 + i R5 (3.68)
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where S∗
5 = S5 is symmetric, ‖T5‖ ≤ CeCt N‖O‖3λ3 and

i R5 = − λκs

2
√
N

∫
v(x − y)

[
ϕs(y)b

∗
xa

∗
yax − ϕs(y)a

∗
x aybx

]
dxdy

−
∫

v(x − y)
[
hs;t (y)ϕs(y)b

∗
xbx − hs;t (y)ϕs(y)b

∗
xbx

]
dxdy

−
∫

v(x − y)
[
hs;t (x)ϕs(y)b

∗
xb

∗
y − hs;t (x)ϕs(y)bybx

]
dxdy

+
∫

v(x − y)
[
hs;t (x)ϕs(y)(1 − N+(s)/N )a∗

yax

−hs;t (x)ϕs(y)a
∗
x ay(1 − N+(s)/N )

]
dxdy

− 1

N

∫
v(x − y)

[
ϕs(y)a

∗
x a(hs;t )a∗

yax − ϕs(y)a
∗
x aya

∗(hs;t )ax
]
dxdy . (3.69)

Using again (3.40) and (3.67) as well as

‖v2 ∗ |ϕs |2‖∞ ≤ C‖ϕs‖2H1(R3)
≤ C (3.70)

by (1.3), we find that

R5 ≥ −Cλ
(
κs + ‖O‖eCt

)
(N+(s) + 1) (3.71)

for all 0 ≤ s ≤ t .
Finally, we consider the last term on the r.h.s. of (3.26), proceeding as in [18,Eq. (3.9)].

With (3.40) and

‖v2 ∗ f 2s;t‖∞ ≤ C‖ fs;t‖2H1(R3)
≤ Cee

Ct |||O||| (3.72)

we find that
1

2N
e−λκsN+(s)/2e

√
Nφ+(hs;t )

∫
dxdy v(x − y)a∗

x a
∗
yayaxe

−√
Nφ+(hs;t )eλκsN+(s)/2

= S6 + T6 + i R6 (3.73)

with

i R6 = λ

2
√
N

∫
v(x − y)

[
fs;t (y)a∗

x axby − fs;t (y)b∗
ya

∗
x ax

]
dxdy . (3.74)

Again S6 = S∗
6 is symmetric and ‖T6‖ ≤ Cee

Ct
N |||O|||3λ3. Furthermore, with (3.72) a

Cauchy–Schwarz inequality yields

R6 ≥ −Cee
Ct |||O|||λN+(s) . (3.75)

If we combine (3.53), (3.57), (3.61), (3.63), (3.68) and (3.73), we conclude that the first
term on the r.h.s. of (3.52) is given by

e−λκsN+(s)/2e
√
Nφ+(hs;t )LN (s)e−√

Nφ+(hs;t )eλκsN+(s)/2

= iλ
√
N

2
φ−((hH(s) + K1,s + K2,s J ) fs;t ) + S + T + i R (3.76)

where S∗ = S is symmetric, ‖T ‖ ≤ Cee
Ct
N |||O|||3λ3 and

R ≥ −Cλ(|||O|||eeCt + κs) (N+(s) + 1) (3.77)
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for all 0 ≤ s ≤ t and 0 ≤ λκs ≤ 1. For the second term of the r.h.s. of (3.52) we find as in
[18,p. 2613] using the definition of fs;t in (1.16) that

e−λκt−sN+(s)/2
[
i∂se

√
Nφ+(hs;t )

]
e−√

Nφ+(hs;t )eλκt−sN+(s)/2

= − iλ
√
N

2
φ−(i∂s fs;t ) + S̃ + T̃

= − iλ
√
N

2
φ−

((
hH(s) + K̃1,s − K̃2,s J

)
fs;t

) + S̃ + T̃

= − iλ
√
N

2
φ−

((
hH(s) + K1,s − K2,s J

)
fs;t

) + S̃ + T̃ (3.78)

where S̃ = S̃∗ is symmetric and ‖T̃ ‖ ≤ Cee
Ct
N |||O|||3λ3. We remark that the last equality

holds as an identity in the sense of a quadratic form on F≤N
⊥ϕs

where the projection qs acts as
the identity.

With (3.76) and (3.78), we conclude that

1

i

[JN ,t (s) − J ∗
N ,t (s)

] ≥ −Cee
Ct
N |||O|||3λ3 − λ

[
C(|||O|||eeCt + κs) + κ̇s

]
N+(s)

− Cλ(|||O|||eeCt + κs) (3.79)

for all 0 ≤ s ≤ t and 0 ≤ λκs ≤ 1. We shall choose

κs = 2‖O‖eC(t−s) + |||O|||eeCt
(
eC(t−s) − 1

)

in which case the second term on the r.h.s. of (3.79) vanishes. With this choice of κ , we thus
have from (3.51)

∂s‖ξt (s)‖2 ≥ −Cee
Ct [

Nλ3|||O|||3 + λ|||O|||] ‖ξt (s)‖2 (3.80)

for suitable C > 0. With Gronwall’s inequality, we arrive at

‖ξt (t)‖2 ≥ e−C(Nλ3|||O|||3+λ|||O|||)eeCt
t ‖ξt (0)‖2 . (3.81)

This concludes the proof of the lower bound.
As already mentioned at the beginning of the proof, the upper bound follows along the

same lines. One simply replaces κs by −κs and estimates the various error terms R j for
2 ≤ j ≤ 6 from above instead of from below. ��

The third step, Lemma 3.5, is proven similarly to [18, Lemma 3.3].

Lemma 3.5 There exists a constant C1 > 0 such that for all t > 0, 0 ≤ κ ≤ C1|||O|||eeC1 t
and 0 ≤ λ ≤ e−eC1 t /(C1|||O|||)

ln
〈
�, eλ

√
Nφ+( f0;t )/2eλκN+(0)eλ

√
Nφ+( f0;t )/2�

〉
≤ λ2N

2
‖ f0;t‖2 + C1Nλ3|||O|||3eeC1 t

(3.82)

and

ln
〈
�, eλ

√
Nφ+( f0;t )/2e−λκN+(0)eλ

√
Nφ+( f0;t )/2�

〉
≥ λ2N

2
‖ f0;t‖2 − C1Nλ3|||O|||3eeC1 t .

(3.83)
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Proof We start with the lower bound (3.83), we proceed similarly as in the proof of the
previous Lemmas. Following [18, Lemma 3.3], we define for s ∈ [0, 1] the vector
ξs = e(1−s)2(N−2N+(0))‖ht‖2/2e−λκN+(0)/2es

√
Nφ+(ht )e(1−s)

√
Nb∗(ht )e(1−s)

√
Nb(ht )� (3.84)

where we introduced the notation ht = λ f0;t/2 ∈ L2⊥ϕ(R3). Note that the last exponential
factor in (3.84) could be omitted since b(ht )� = 0, but it is actually convenient to keep it for
the calculation of the derivative of ∂s‖ξs‖2. Compared to the upper bound in [18], we need
the additional term e−(1−s)2N+(0)‖ht‖2 in (3.84), as will be seen below. We have

‖ξ1‖2 =
〈
�, eλ

√
Nφ+( f0;t )/2e−λκN+(0)eλ

√
Nφ+( f0;t )/2�

〉
(3.85)

and

‖ξ0‖2 = eN‖ht‖2〈e
√
Nb∗(ht )�, e−(λκ+2‖ht‖2)N+(0)e

√
Nb∗(ht )�〉. (3.86)

The latter quantity will lead to the desired bound on the r.h.s. of (3.83). In order to compare
(3.85) and (3.86), we compute the derivative of ξs as

∂s‖ξs‖2 = 2Re 〈ξs,Gsξs〉 (3.87)

where, following [18, Eq. 3.12 et seq.],

Gs = 2(1 − s)N+(0)‖ht‖2
− e−λκN+(0)/2es

√
Nφ+(ht )

[
(1 − s)‖ht‖2N+(0) + (1 − s)a∗(ht )a(ht )

−√
N‖ht‖2(1 − s)2b∗(ht )

]
e−s

√
Nφ+(ht )eλκtN+(0)/2 . (3.88)

Using that ‖ht‖2 ≤ λ‖O‖eCt/2 by Lemma 3.2, it follows from the calculation [18, Eq. 3.12
et seq.] that

Gs = (1 − s)N+(0)‖ht‖2 − (1 − s)a∗(hs)a(hs) + T (3.89)

with ‖T ‖ ≤ CNλ3‖O‖3eCt as long as λκ ≤ 1. Since N+(0)‖ht‖2 ≥ a∗(ht )a(ht ), the
remaining terms are positive, hence

∂s‖ξs‖2 ≥ −CNλ3‖O‖3eCt‖ξs‖2 . (3.90)

With Gronwall’s inequality we arrive at

‖ξ1‖2 ≥ e−CNλ3‖O‖3eCt ‖ξ0‖2 . (3.91)

It remains to compute (3.86). To this end, let us introduce κ ′ = κ + 2‖ht‖2/λ = κ +
λ‖ f0;t‖2/2. As in [18, Lemma 3.3] we compute

eNλ2‖ f0;t‖2/4〈e
√
Nλb∗( f0;t )/2�, e−λκ ′N+(0)e

√
Nλb∗( f0;t )/2�〉

= eNλ2‖ f0;t‖2/4
N∑

n=0

Nnλ2n

4n(n!)2 e
−λκ ′n‖b∗( f0;t )n�‖2 (3.92)

and furthermore

‖b∗( f0;t )n�‖2

=
∥∥∥a∗( f0;t )(1 − N+(0)/N )1/2a∗( f0;t )(1 − N+(0)/N )1/2 · · · a∗( f0;t )(1 − N+(0)/N )1/2�

∥∥∥
2

= (N − (n − 1)) · · · (N − 1)

N (n−1)
‖a∗( f0;t )n�‖2 = (N − 1)!n!

N (n−1)(N − n)! ‖ f0;t‖2n2 . (3.93)
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Thus we have

eNλ2‖ f0;t‖2/4〈e
√
Nλb∗( f0;t )/2�, e−λκ ′N+(0)e

√
Nλb∗( f0;t )/2�〉

= eNλ2‖ f0;t‖22/4
N∑

n=0

(
N

n

)
λ2n‖ f0;t‖n2

4n
e−λκ ′n

= eNλ2‖ f0;t‖22/4
(
1 + λ2‖ f0;t‖22

4
e−λκ ′

)N

= e
N

(
λ2‖ f0;t‖22/4+ln

(
1+λ2‖ f0;t‖22e−λκ′

/4
))

≥ e
N

(
λ2‖ f0;t‖22(1+e−λκ′

)
)
/4−Nλ4‖ f0;t‖42/32 (3.94)

where we used that ln(1+ x) ≥ x − x2/2 for x ≥ 0. Using in addition that e−λκ ′ ≥ 1− λκ ′
and ‖ f0;t‖2 ≤ ‖O‖eCt , we arrive at the desired bound (3.83).

The upper bound (3.82) follows in essentially the same way, see [18,Lemma 3.3]. ��

Proof of Theorem 1.2 The upper bound (1.24) is an immediate consequence of (3.32), the
upper bound in (3.33), (3.46) and (3.82). Similarly, the lower bound (1.25) follows by com-
bining (3.32) with the lower bound in (3.33), (3.47) and (3.83). ��
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