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Abstract

We study the many-body dynamics of an initially factorized bosonic wave function in
the mean-field regime. We prove large deviation estimates for the fluctuations around the
condensate. We derive an upper bound extending a recent result to more general interactions.
Furthermore, we derive a new lower bound which agrees with the upper bound in leading
order.

Keywords Large deviation principle - Bose-Einstein condensates - Mean-field regime -
Many-body quantum dynamics

1 Introduction and Main Results
1.1 Introduction

We consider the dynamics of N bosons in the mean-field regime described through the
bosonic wave function ¥y ; € LE(RW ), the symmetric subspace of L%(R3N). The bosons
evolve according to the Schrodinger equation

10N = HNYN (1.D

where Hy denotes the Hamiltonian

N N
1
Hy=Y —Ay + v > v(xi —x;). (1.2)
—~

i<j

The coupling constant 1/N in front of the interaction term corresponds to weak and long-
range interactions of mean-field type. In the following we assume the two-particle interaction
potential v to satisfy

V< C(1—A) (1.3)
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for a positive constant C > 0. We consider factorized initial data ¥y o = ¢®V exhibit-
ing complete Bose—Einstein condensation (BEC), i.e. their reduced one-particle density yy
satisfies

yn = |p)(p| forevery N, (1.4)

for a one-particle orbital ¢ € H*(R?). Although the factorization is not preserved along the
time evolution, the property of BEC is known to be preserved, i.e. the reduced one-particle
density yn ; associated to the solution ¥y ; of the Schrodinger equation (1.1) satisfies

YN —> o) (o] as N — oo (1.5)

where the time evolution of the condensate wave function ¢, is governed by the Hartree
equation

i = hu(t) @i, with hu(t) = —A + v x || (1.6)

with initial data ¢9 = ¢. (For more details see e.g. [1-3, 10-15, 19, 25, 26].)

1.2 Main Results

From a probabilistic point of view, BEC implies a law of large numbers for bounded one-
particle observables. To be more precise, for a bounded, self-adjoint one-particle operator O
on L%(R3) we define the N-particle operator

0V=1®---9190®1Q---®1 (L.7)

as the operator acting as O on the j-th particle and as identity elsewhere. We consider O/
as a random variable with probability distribution determined by ¥y and given through

Pyy [0 € Al = wn. xa (09) y) (1.8)

where x4 denotes the characteristic function of the set A C R. Since the expectation value
with respect to factorized states ¥y = @®V is

E on [0<f>]:<<p, Og¢) forall j=1,...,N, (1.9)

the random variables are i.i.d. and thus, in this case, they satisfy a law of large numbers, i.e.
for the averaged sum Oy = N~! Z?’:l (0Y) — (@, Og)), we have for any § > 0

Pyev [|On] > 6] — 0 as N — oo. (1.10)

The large deviation principle goes one step further and investigates the rate of convergence
through the rate function given by

Ay () === lim N"ogPy, [Oy > ] , (L.11)

assuming the limit exists. For i.i.d. random variables, i.e. Yy = ¢®N , Cramér’s Theorem [9]
shows that the rate function is given by

Aoy (x) = inf [—hx + Ayev (V)] (1.12)
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where the rate function’s Legendre-Fenchel transform A ev is the logarithmic moment
generating function

Ageon () = loglp, H0"=:00)g). (1.13)

Recall that we consider the time evolution of factorized initial data with respect to (1.1).
Thus, initially the random variables are i.i.d. and therefore a law of large numbers and a large
deviation principle with rate function (1.13) hold true. Although for times r > 0 the random
variables are not i.i.d. anymore (as the factorization is not preserved), the condensation
property (1.5) ensures the validity of a law of large numbers [4], i.e. for any § > 0

Pyy, [ION] >8] =0 as N — oco. (1.14)

In the following theorem, we show that for ¢ > 0 large deviation estimates hold true as well.
Before stating our main theorem, let us introduce some notation. For O a bounded self-
adjoint operator on L2(IR3), we define the norm

ol =l(-a+Do A+ (1.15)
where || - || denotes the usual operator norm. Moreover, for 0 < s < ¢, let f5.; € L3(R3)
denote the solution to

iy for = (hu(s) + K1y — Koo J) fi (1.16)

with initial datum f;., = 4109 = O¢r — {1, Opr)er, where g; = 1 — |@s) (@5, J denotes
the anti-linear operator J f = f, the Hartree Hamiltonian Ay (s) is defined in (1.6), and

El,s = qul,s qs, EZ,X = qSKZ,.Y qs (1.17)

with K ; ¢ the operators defined by the integral kernels
Kis(x,y) =vlx = y)es(0)es(y),  Kos(x, y) =vx — y)es(0)es(y) - (1.18)

Theorem 1.1 Assume that the interaction potential v satisfies (1.3) and ¢ € H (R with
lell = 1. Fort > 0, let Y., denote the solution of the Schrodinger equation (1.1) with
initial datum .o = ®V and @; the solution to the Hartree equation (1.6) with ¢y = ¢.

Let O be a self-adjoint operator on L? (]R3) suchthat ||O|ll < oo, and let fi.; be as defined
above. With 0(«’)from (1.7), we define Oy ; = N1 Z?’zl (O(j) — (¢s, O(p,)). There exist
C1, Cy > 0 (independent of O ) such that

() forallt = 0and 0 < x < e[| fo. I3/1Oll

2 eCit 3
C 0
limsup N Tog By, [Ony > 1] < ———— 4> <19 (1.19)
N—o0 ' 2|l fo:ell5 Il fo:e 113
(i) forallt > 0and 0 < x < e~ | fo. [4/(CallOII?)
2 eC2! 3/2
C 0
liminf N logByy [0 > x] = o — 322 Ol (1.20)
N—o00 2|l fo:zll5 Il fo:¢ 115

We remark that the function f.; is determined through Bogoliubov’s quasi-free approx-
imation of the fluctuations around the condensate (see (3.27) below). For a detailed
explanation see [4,Theorem 2.2 and subsequent Remark]. In fact, with the notation of [4],
Jsie = qs(U(t;5) + JV(£55) Ogr.
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The bounds (1.19) and (1.20) show that the rate function of the system is, if it exists, for
sufficiently small x > O given by

2

X
A (x) = ———— 4+ 0(x?). (1.21)
v 2 fouel13

In particular, Theorem 1.1 determines the rate function A"]/‘/N ,upto quadratic order. Note that
for time ¢t = 0 the quadratic term in (1.21) agrees with the one of Cramér’s theorem (1.13)
as

Il fo:0ll3 = llgoOgll3 = (¢, 0%¢) — (g, Op)I*. (1.22)

In the regime x = O(1/+/N), our findings agree with the central limit theorems previously
obtained in [4, 7] proving that

: _ ! T fitu%

Jim Py, [VNON. <x] NI /_OO e dr . (1.23)
We remark that a central limit theorem still holds true when replacing the weak mean field
potential (given by N3#v(NPx) for § = 0) with more singular interactions in the intermediate
regime (corresponding to 0 < B < 1) [23]. In the physically most relevant Gross—Pitaevski
regime (8 = 1), a central limit theorem holds for the ground state [24] showing, in particular,
that the fluctuations around the condensate are approximately quasi-free. The validity of large
deviation estimates for fluctuations around the condensate for Bose—Einstein condensates in
the ground state is still an open question, however.

The proof of Theorem 1.1 (given in Sect. 2) is based on a lower and an upper bound on
the logarithmic moment generating function stated in the following (and proven in Sect. 3).

Theorem 1.2 Under the same assumptions as in Theorem 1.1,
(i’) there exists a constant Cy > 0 such that for all 0 < A < e_eclt/lll O||| we have

A

2
limsup N~ log By, eV OV < 5 Il foc 113 + e 3o, (1.24)

N—o00

.y . _,C
(ii’) there exists a constant Cy > 0 such that for all0 < ) < e™¢ 21/||| O||| we have

)\'2
liminf N~ log Ey, &V OV > 7||fo;,||§ — G303, (1.25)

N—o0

The upper bound (i’) on the logarithmic moment generating function (as well as the result-
ing upper bound on the rate function in Theorem 1.1(i)) is an extension of the large deviation
estimate obtained in [18] to more general interaction potentials. In particular, the assumptions
on the potential in Theorem 1.1 involve the physical interesting Coulomb potential which
was excluded by the assumptions v € LY(R3) N L*®(R3) in [18]. Note that the term cubic in
A in (1.24) depends on time through a double exponential, compared to a term exponential
in time in [18], which is a consequence of allowing less regular interaction potentials here
(entering the proof through Lemmas 3.1 and 3.2). The quadratic term of (1.24) agrees with
the findings from [18,Theorem 1.1]. In particular, the definition of fy., in (1.16) here is the
same as in [18, Eq. (1.D).2

1 There are minor mistakes in [18,Eq. (1.1)], where (1.18) instead of the projected kernels (1.17) is used. This
does not change the rest of the proof, which is based on estimates of quadratic forms in the truncated Fock
space where the projections g5 act as identities (see (3.78)). Also there are two typos in [18,Eq. (1.1)], the
operators J and K ¢ are switched and the sign in front of the operator K  is false.
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In contrast to [18], we prove here also a matching lower bound (ii’) on the logarithmic
moment generating function (resulting, together with the upper bound, in the lower bound
on the rate function in Theorem 1.1(ii)). This allows to determine the rate function A’:;IN‘r
up to quadratic order. In particular, we show that Afm, coincides up to quadratic order with
the rate function of Bogoliubov’s quasi-free approximation of the fluctuations around the
condensate. Whether this holds true for higher order terms remains an open question. In
fact, we don’t expect that the rate function of Bogoliubov’s approximation of the fluctuations

agrees with A’]ZN , to all orders.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 uses ideas of the proof of Cramer’s theorem involving estimates
on the logarithmic moment generating function in Theorem 1.2. The upper bound (i) follows
by Chebychev’s inequality from (i’), while the proof of the lower bound is more involved
and uses both (i’) and (ii’).

Proof Upper bound (i): For » > 0, we have
Py, [On > ] =Py, [V eV O > 1], @1
Chebychev’s inequality implies that

Pyy, [Ong > ] = eV By, [#VO], 2.2)
and we find with Theorem 1.1 for A < e_eclt/|||0|||

. _ 22 c
limsup N~ log Py, , [On.1 > x] < —hx + - fou I3 + C1ef “Rlront.  @3)

N—o00
For
_Cqt
x < el foul3/NOlN (24)
let & = x/| fo.¢ 13- Then
2 3. ,eC1t 3
C o
limsupN_llogIF’]/,Nl [ON,, > x] < - a 5 T e ”l I (2.5)
N—oo ' 2||f0;t||2 ”fO;t”z
Lower Bound (ii): For arbitrary ¢ > 0, we have
N7'1ogPy, , [On: > x] = N ogPy,, [On: € (x,x +&)] (2.6)

and it suffices to consider in the following

Pyy, [On: € (r,x +8)] = (YN, Xiexte) (Oni) Unoi)

= (YN.t, X(x.x+e) (ON1) e MNONS ANON Ly 1) (2.7)
On the support of x(y y+e)(On.¢) we have e *VONt > ¢=CF+OMN for 3 > () and we find

Pyy, [Oni € (t.x+8)] = e TNy xiere) (Ong) VOV 0y ). (2.8)
It is easy to check that
Pyy, [Oni € Al = e VN Dy xa (On) NNy ) (2.9)
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for A C R and

AN, () = N~ log(¥n. i, N OV iy ) (2.10)
defines a probability distribution. We use (2.9) to rewrite the expression (2.8) as

Bun, [0 € (61 +0)] 2 PVCINADE, 0y, € (x5 +6)]
— MNEx=)+NAN () (1 _ ﬁwN[ [ON,t < x]

Py, [On: = x+¢]). @.11)

Similarly to the upper bound’s proof, we use Chebychev’s inequality for the last two terms
on the r.h.s. and obtain for arbitrary A, u, it > 0

Pyy, [On: € (x,x +8)]
> MN(=x=6)+NAy, ()

% (1 — N (AN W+ +AN  (=D) _ eN(—AN,f<x>—u<x+s>+AN.,(A+m)) @12

For given x € R, we need to choose A, u, it and & such that both

lim sup (—An, (X)) + fix + Ay (A — ) <0 (2.13)
N—o0
and
limsup (—An, (X)) — n(x + &) + Ay, (A + ) <0. (2.14)
N—o00

In fact, for 0 < 8 < &, let A = x(1 + &)/ foll3. & = x8. i = 8x/I| foe|3 and p =
(O 8)x/||f0;,||%. Then, as long as,

minfe="", e~ /(1 4 8)}| fou.II2

0<x< (2.15)
ol
we have with Theorem 1.2
lim sup (— Ay, (A) + ix + Ay (A — )
N—o0
A2 c -~ r—1)2 cyt ~
< —7||fo;t||% + G2 R3O + fix + fufo;,u% +Cref (= 1llol?
2¢2 3 3
k) 0
— -2 xliol (C2e 1 +8 + 1) <0 (2.16)
2||f0;t||2 ”fO;t”
if
3 Cat 3 Cit 82 4
*OIF (C2e™ (1 48 + C1e™ ) < Sl foul3 2.17)

Similarly, as long as

_eCit

JA+8), e /(A + Y fou 2
ol

min{e
0<x<

(2.18)
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we have from Theorem 1.2

limsup (—Ay Q) — n(x 4+ &) + Ay (A + w)

N—o0

O+ w?
2

22 Cot
< =S I osell3 + Coe” RO — uix +-6) + I fo:e 13
G- Slo)P

20 foll3 W foullS

C: C ~
(C2ee A48+ e a +5)3) <0

(2.19)

Clt
+Cre g willone =

@ -
2
In particular, under conditions (2.15), (2.17), (2.18) and (2.20), we have from (2.12)

5 2
) I forel3 - (2.20)

*IOIF (C2e ™ (1 4 8 + 1™ (1 4+3)°) <

liminf N"'logP[Oy,, > x| > liminfy oo Ay (A) — A(x + &)
N—o0
a2 3 €2 3 3 ol
Z i T200 4+ 0) = Coet T 4 8)7 e
(2.21)
With C3 = max{C, C»} we can take
5\’ loj
82 =(2]) =70C5e ™ 2 (2.22)
2 ||f0;t||2
and (2.17) as well as (2.20) are satisfied as long as § < 1. For
. _C3 _C3
x < min { 3= fou IB/ON siese™ W fou I3/ 11011 (2.23)
we can thus conclude that
2 3/2
: 10}
liminf N~ log P[0y, > x] > —— Ciee 52 1Ol (2.24)

—— 5 U4
N—oo 2|l fo.el13 Il forelI3

for C4 > 0 large enough. We shall show in Lemma 3.2 below that || fo.;[|2 < 1Ole€!! for
suitable C > 0, which allows for the simpler condition on x as stated in Theorem 1.1(ii). O

3 Proof of Theorem 1.2

3.1 Properties of K; s and £,

In this section, we show in Lemma 3.2 useful estimates on the function f5.; defined in (1.16).
To this end, we first collect in Lemma 3.1 properties of the kernels K ; ; defined in (1.18).
These Lemmas are the crucial ingredient to generalize the result of [18] to more singular
interaction potentials. The main difference is that in [18] estimates of the form (3.6) rely on
the propagation of the H '-norm of ¢, using, in particular, that by conservation of energy and
(1.3) we have

sl g w3y = Cllell g gs) (3.1)
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for a constant C > 0. In contrast, here, we need the propagation of higher Sobolev norms of
@s in (3.11), i.e. bounds of the form

sl g g3y < Ce* llgoll e s (3.2)

for k > 2 which are well-known (see e.g. [8]). These lead to bounds exponential in time
in (3.6) and, thus, to bounds double exponential in time in (3.13) because of the use of a
Gronwall type estimate. These bounds effect Lemma 3.4 and, consequently, the error terms
in Theorems 1.1 and 1.2.

Lemma 3.1 Fors € Randv satisfying (1.3), let o; denote the solution to the Hartree equation
(1.6) with initial data ¢ € H*(R?). There exists a constant C > 0 such that

v * g5 llos < C (3.3)

VU * @5 lloe < C B 1AV * @5 * loo < CeCB!, (3.4)

and, furthermore for j = 1,2 and f € H*(R3)

1Kjsllz2(rixg3s) < C (3.5)
IVKjsfll2 < CePUI fllpmsys 1AK s fll2 < CePI Fll g2 (3.6)
Proof From (1.3), we have
| (v lgsl?) ()] < / e =P e Pdy + Cllgsl3 < Cllgslzpgs, G
and (3.3) follows from (3.1). Similarly, since
Vo # |gg|? = 2v % Re @5 Vg (3.8)
we have with (3.2)
1V0 %195 Plloo < Cligs g, < CeF. (3.9)

The second bound in (3.4) follows in the same way.
Moreover, with (1.18), we have for j = 1,2

1K 51172 sy = f s )P0 (x = »lgs W dxdy = (g, (¥ % lgs*) ¢5)  (3.10)

and thus (3.5) follows by arguing as in (3.7) above. In order to show (3.6), we integrate by
parts

/ (VoK) (v ) f()dy = / o(x — ¥) (Vgy) (gs 0D £ ()dy

+ / v — Vs ) (Tor) ) £ G)dy

+ [va-newamvimd G
and estimate with (1.3) similarly as above

IVKLsfll2 < Cligslys s 112 + Cllgsli g |l @) < CePFlpes) - (3:12)

The second estimate in (3.6) follows in the same way. O
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Because of (3.2), one readily checks that the same bounds hold with K j.sinplaceof K ;.
Those bounds are in fact the ones we need below.

Lemma 3.2 Under the same assumptions as in Theorem 1.2, let f;.; be defined as in (1.16).
Then, there exists a constant C > 0 such that for all 0 < s < t we have

_ Cle|
I fszellz < 101 =1l frll oy < Ce IO (3.13)

where || O|| is defined in (1.15).

Proof Since

t t
||fc;t||%=||ﬁ;t||%—f afnfwn%dr:||fm||%—2/ I (frr Koo fr) dr (3.14)

s s

we have with (3.5)

t
I fsell3 < I fruell3 + C / Il fruell3 d . (3.15)
S

Since || fi.¢l2 = llg: Og;ll2 < || O], the first bound in (3.13) is a consequence of Gronwall’s
inequality.
In order to show the second, we compute
05l fir I sy = 21m (A% = 24) fuor. (v 1gsl® + Kis) foar)
—21Im ((=A + 1)? for, Kasdfir)
=4Im (A fyr, (Vs losl?) Vfi) +2Im (A for, (Av * [@s]?) for)
+2Im (A fryy AK 1 for) —4Im (A fusr, (v |5l + Kis) i)
—2Im ((—A + 1) fyrn (—=A+ 1) KasJfs,). (3.16)
2 Cs

H2(R3)
The second bound in (3.13) thus also follows from Gronwall’s inequality, together with

It follows from Lemma 3.1 that all the terms on the r.h.s. can be bounded by C || f./||

||ft;t||H2(R3) = |lg: O¢: ||H2(]R3) < ||(Pt||1-12(]R3)||0|| + ||0</’t||H2(R3)
= o1+ WO el 12 r3) (3.17)
and (3.2). O
Note that the generalization of the interaction potential comes into play when using the

estimates (3.55) and (3.72) from Lemma 3.1 and Lemma 3.2. These estimates lead to the
bounds double exponential in time.

3.2 Fluctuations Around the Condensate
For the proof of Theorem 1.2, we need to study the fluctuations around the condensate in the
truncated Fock space of excitations. This description is based on the observation of [21] that

any N-particle bosonic wave function ¥y € L2(R*V) can be decomposed as

Yn =0 o2V +m @ o2V 4y (3.18)
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9 Page100f21 S. Rademacher, R. Seiringer

with n; € LZLW (R3)®” , where Li(pl (R3) denotes the orthogonal complement in L*(R?)
of the condensate wave function ¢, and ®g the symmetric tensor product. In particular, this
observation allows to define the unitary operator

U o L2 (]R3N> @ L3, (&) (3.19)

mapping an N-particle bosonic wave function ¥y onto an element of the truncated Fock
space, with U;n = {no, ..., nn} describing the excitations orthogonal to the condensate.
On the full bosonic Fock space (built over L?(R?)) we have the usual creation and annihilation
operators, given for f € L*(R?) by

a*(f) = / Fatdx, a(f) = f T ay dx (3.20)

and the number of particles operator N' = [ a¥a,dx. Moreover, we have the modified
creation and annihilation operators b*( f), b(f) which (in contrast to a*(f), a(f)) leave the
truncated Fock space f;N invariant and are given for f € LZL(/), (R3) by

D) = Uy a* ()0 U = ()1 = 250
b(f) =t Ga() U =1 =5 a(p) (3.21)

where NV (1) = N — a*(¢r)a(g;) is the number of excitations. Note that the operators
b*(f), b(f) are time dependent, yet we omit the time dependence in their notation for
simplicity. Their commutators given for fi, f> € Lﬁ_ o (R3) by

Ni(@)

[b(f1), b*(f2)] = ( ) (fi. f2) = *a *(fa(fo),
[b(f1), b(f2)] = [b*(f1), b*(fz)] =0 (3.22)

behave in the limit N — oo similarly as the standard commutation relations of a* (f1), a(f2);
however, the correction terms of order N ! lead to technical difficulties in the proofs below.

With (3.21) and the following further properties of U/,

Ua*(pr)a(e)ly = N — N (1)
Ua™ (fa@U = a*(f)a(g) (3.23)

for f,g e Lf_ o (R?), we can compute the generator £y (1) of the fluctuation dynamics

Wi (02 1) = Uype IV 2N 2N (3.24)
defined by

10, W (t2: 11) = Ly ()W (125 11) - (3.25)
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For &y, & € ffé\: it is given by
(&1, LN (D) = (&1, [0 U U + U HVUS E)

— (&1, dT () + K1,08) +Re / Ka(x, y) (&1, bibtE2) dxdy

1 2
- ﬁ(sl’ dT (v * |@r|= + K1,p — ) W4 (1) — Dé2)
T+ 2 Re (£1, N (OB(( % I Ppn)
——Re (&1, v *
N 1, N4 Pt )Pt)52
2
+ ﬁ/ v(x — y)Re ¢, (x) (€1, ayacbyér) dxdy
1
+ IN v(x — y) (&, a:a;axayéz) dxdy (3.26)
where we used the notation introduced in (1.6), (1.18) and 2u, = fdxdy v(x —

e )Pl (017
In the limit of large N, the fluctuation dynamics Wy (#2; t1) can be approximated by a

limiting dynamics Weyo(f2; 11) : F. Loy ™ F Lo, which is obtained by taking a formal limit
N — oo in (3.26). It satisfies the equation

10 Weo(t2; 1) = Loo(t2)Woo(t2; 1) (3.27)

with the generator L, (f) whose matrix elements are given for &1, & € F 1, by

(61, Loo(1)E2) = (1, dT (hu(®) + K1,1)62) +Re/ Ko (x5 y) (€1, ayasér) dxdy (3.28)

For more details see [20] resp. [11, 16, 17, 22]. The generator L, (¢) of the limiting fluc-
tuation dynamics is quadratic in creation and annihilation operators and thus gives rise to
a Bogoliubov transformation [4, 5, 23] related to the function fj.; defined in (1.16) (see
[4,Theorem 1.2 et seq.]).

3.3 Proof of Theorem 1.2

The proof follows closely the ideas of [18] and is based on Baker—Campbell-Hausdorff
formulas proved therein (see [18,Propositions 2.2-2.5]. The main difference compared to
[18] is, on the one hand, our weaker assumptions on the interaction potential (entering in the
estimates (3.55) and (3.72) through Lemmas 3.1 and 3.2). On the other hand, we prove lower
bounds in Lemmas 3.3-3.5 as well, based on similar ideas as for the upper bounds (see also
[18,subsequent discussion of Theorem 1.1]).

With the map Uy defined in (3.19), we observe that 9®V = Uy Q2 and thus by definition
of the fluctuation dynamics in (3.24), we have

Un, = e NI GON — NI O — LW (15 0)RQ. (3.29)
Hence we can write the moment generating function as
Ey,, [exNON,,] _ (l”N,t» SNON WN,:>

_ <sz W (6 00 T OO Wy (1 0)9) (3.30)
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with 5, = O — (¢, Og;). The properties (3.21), (3.23) of U; allow to compute
UdT (O)U; = dT (g, 0,q1) + N1 (q: Ogr) (331)

where we used that (¢;, 5, ¢¢) = 0 and we introduced the notation
¢4 (h) = b(h) + b*(h) forh € Li@ (IR3). Thus, we arrive at

Eyy, [0 ] = (@, Wi ok @fm s Nosaomy, i 00) . (332)

As in [18], we split the proof into three steps. The first step, Lemma 3.3, can be proved as
[18, Lemma 3.1].

Lemma 3.3 There exists a constant C > 0 such that for allt € Rand » < ||O -t
e~ CNIOI <Q W (£ 0)e™Y N+ 000/2=2LI0IN+ () AVNG1 (1 000 2y (1 0)Q>
< (W?{,(t; 0)Q, e)»dr(%5:qt)+k~m¢+(410<ﬂf)WN(t; 0)9)

< (CNIOF2? (Q W (£ 0) e/\ﬁm(qmw,)ﬂezxu0||N+<z>exﬁ¢+(qz0wr>/2wN (t; 0)Q> .
(3.33)

Proof The proof of the upper bound in (3.33) is the same as in [18, Lemma 3.1]. The lower
bound can be proved in essentially the same way. For completeness we carry it out in the
following. As in [18] (but replacing k with —«), we define for s € [0, 1] and ¥ > O the vector

£ = e—(l—s)xww(t)/zea—s)xﬁ¢+(q,ogo,)/zesk[dr(qt 5rq,)+«/ﬁq>+(qr0¢t)]/2WN(l; 0)Q.
(3.34)

We have
&I = (Q Wi (t; 0)eMNO+ @ 09)/2 = AN+ (1) AN+ 6 0002y ;. 0)Q> (3.35)
and
I&1 ||2 = <Q, WK, (t; O)ekdr(ih 51‘1:)+M/N¢+(4t0<ﬂz)WN (t: 0)Q> (3.36)
To control the difference of (3.35) and (3.36), we compute the derivative
85”‘%.5”2 = 2Re<$s7 as%s) = 2Re<$s’ Ms$s> (337)

where the operator M is given by

M, A =N ()2, (1= N1 (a1 0e/241 (g, Oy gp)e~ 1= Nb+(@ 000/2, (=) N+ (1)/2
2
Ak
+ 7N+(t). (3.38)

With [18, Propositions 2.2-2.4], we can compute M explicitly. Note that only the hermitian
part of M enters in (3.37). Using the notation i, = (1 — s)Ag; O¢; and y; = coshs, o5 =
sinh s, we find
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2
Ok

My + M ~
% = dT(q,Osqr) —

- AL Oih) (N = Ny (1))
t

—1\? ~
+ <%> (ht, Othy)a* (hy)a(hy)
'

-1 N _
+ %(a*(hﬂa(% O/hy) +a*(q; Othy)a(hy)) + kN (1)
t
" ﬁ % SiIlh((s B 1))«/2) [%(htv 5tht>¢+(hz) + ¢+(% 5zhz):|
d t

(3.39)

For any h € L2l P (R?) and any bounded operator H on Lip (R3), we have the bounds
IB(EN < IRl INE@OV2ENL 16" (WEN < Ihllal N4 @) + DY £, £dT(H) < | H|N4 () .
(3.40)

Consequently, all terms on the r.h.s. of (3.39) can be bounded by a constant of order N.
Furthermore, since

10l < 10111 + llg13) = 2110 (3.41)

we can bound dl"(qtdqt) > —2||O|N4(t) and hence the choice x = 2| O] gives
dT(q; O,q;) + kN (t) > 0. Moreover, since

lhillz < Mg Opill2 = IO llerll2 < 1 (3.42)

forall A < ||O||~!, all the other terms on the r.h.s. of (3.39) are at least of order A2. Thus,
using (3.40) and k = 2| O|| we obtain the lower bound

2
~Re (&, My&;) = —CAN[OIP &% (3.43)

In combination with (3.37) the lower bound in (3.33) now follows from Gronwall’s inequality.
The proof of the upper bound in [18] works in the same way, simply replacing k by —«
and estimating the terms in (3.39) from above instead of from below. O

The second step, Lemma 3.4, is a generalization of Lemma [18, Lemma 3.2] to more
singular interaction potentials. The proof involves Lemmas 3.1 and 3.2 (see in particular
(3.55) and (3.72)) for the estimates yielding to an double exponential in time of the term
cubic in X and in the definition of «;(compared to an exponential in time in [18]). We remark
that for Lemma 3.4 it is a crucial observation that f., € Lﬁ_ o (R3) forall 0 < s < r. This
follows from the fact that (¢;, f;.;) = (¢:, q: O¢;) = 0 by construction, as well as

s {@ss fi) = —i Im @y, [K1s — KasJ] fir) =0 (3.44)

using the definitions (1.16) and (1.17).

Lemma3.4 For0 <s <t,let fy; € L7, (R?) be defined by (1.16). Let O be a self-adjoint

operator on L? (R3) suchthat ||| O||| < oo as defined in (1.15). There exists a constant C > 0
such that for « defined as

Kk = C|||0|||eeCt (3.45)
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we have for all 0 < Ak <1

(Q, Wi (t; 0)e*V NS+ 0902 2HIOINL (O i/ N 000 2y (1 0)Q>
< < (NANOIP+2) <Q VNS (fo:)/2 N4 (0) exﬁm(fb;,)/zgz) (3.46)

and

<Q’ Wy (t: O)elm@r(fhO(Pr)/ze*Z)hH0||N+(l)e)~~/ﬁ¢+(%0%)/2WN (t: 0)Q>

> oK (NAI0IP+2) (g g}\\/ﬁ@r(fo;r)/ze—l'f-/\@(0)elﬁ¢+(f0::)/2gz> _ (3.47)

Proof Thelowerbound (3.47) follows with ideas from [18, Lemma 3.2] and from Lemmas 3.1
and 3.2. For 0 < s < t and some (differentiable) k; > 0 with k; = 2|/ O||, define the vector

£ (5) = e N O2AVNOL L0 2y (5: 002 € FEN (3.48)
It satisfies
& )] = (2, VN9 U0)/2,=20N 0 VNG (o) 2 (3.49)
and
||§t(;)||2 - <Q Wy (t; 0)*€>~\/ﬁ¢+(qr0@)/28—2/\\\0|W+(t)ekﬁ¢+(qr0<pt)/2WN(t; 0)Q> )
(3.50)

Note that the definition (3.48) is similar to the vector defined at the beginning of the proof
of [18, Lemma 3.2]. The crucial difference is that, here, in (3.48), for the lower bound, the
exponential of the number of particles operator comes with a negative constant in front (in
contrast to a positive one in [18] for the upper bound).

As in the proof of Lemma 3.3, we want to control the difference of (3.49) and (3.50)
through the derivative

% ()|* = —2i Im <§t(S)7 IN .1 (8)&: (S)> (3.51)
where J (s) is (in the sense of a quadratic form on }"iz as in (3.26)) given by
T 1(5) = e MNE@O2AVNOL(fi)/2 1 (6) o™+ NG+ (fi)/2 M N (5)/2

1 e s Ni(9)/2 [i 3S€M/ﬁ¢+(fs;:)/2] e YNG4 (fu) /2 ghics N (/2 %ks Ni(s),

(3.52)

where we denote Ky = dk;/ds. For this computation it is convenient to embed F fl\i into
the full Fock space F in which case N4 (s) can be replaced by the s-independent A (for
more details see the discussion before [18,Eq. (3.3)]). We proceed as in [18] and compute
the anti-symmetric part of Jy ;(s) explicitly with the help of [18,Propositions 2.2-2.4], and
show that its norm is bounded by terms of order N4> and A.

To this end, recalling the definition of Ly (s) in (3.26) and analogous calculations as in
[18,(3.4)-(3.5)], we have

e—?»KsN+(S)/2e?»«/ﬁ¢+(fs;r)/2d[*(hH(s) + Kl’S)e_xﬁ¢+(fS;t)/2€AKSN+(S)/2

AN N
= \2/>¢—((hH(S) + K1) fo) + T + 51 (3.53)
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where we introduced the notation ¢_ () = —i(b(f) — b*(f)), S1 = S} is symmetric and

Ty =ivVN (i}'j“ cosh(hiy /2) — 1) ¢ ((hua(s) + K1.)hyio)
st

Ollhg, |l Vihg, | — 1
heall IR ”2 (hs;ta (hu(s) + Kl,s)hx;t) COSh(}\Ks/z)(Pf(hs;t) (3.54)
st st

+ivN

with hg.; = A fs.;/2, as well as y; = coshs and oy = sinh s as in the proof of Lemma 3.3.
We use the bounds (3.40) and

C
Ihu)hsill < Cllhsillgagesy < CAIONE . [1Kishyulla < CAIOS (3.55)

forall0 <s < tbyLemmas 3.1 and 3.2, and conclude that forall 0 < Ak, < lands € [0, 7],

we have || T1]| < Ce¢“ N O]I?23.
We proceed similarly with the remaining terms of (3.52). For the second term of Ly ;(s)
in (3.26), we find with analogous calculations as the ones leading to [18,Eq. (3.6)], using that

K25l < K2 sll2misrsy <€, Nfsullz < o) (3.56)
for0 < s <t by Lemmas 3.1 and 3.2,
oM N (/2 N () G/[mb by + Ko (x, y)b*b*]dxdy) o= VNG () s N (/2

= l)»\/;q& (KZSle)+SZ+T2+lR2 (3.57)

where S> = S5 is symmetric, T3 is bounded as 7 above by || T2 < CeeC’N|||O|||3A3, and
R, contains all the remaining terms of order A, which are given by

e —_—
5 [ [RasGoibab, = Kot b dxdy

LN [(1 - N*“;VJF 1/2) b(Ka.s fsr) — b*(Kas forr) (1 _ M@+ 172 1/2>]

Ry =—

2 N

i [ Rty Guasa, = Kot yagazbfn ] dsdy

4«/>./‘ K2 s(x, y)a (fs t)ax KZ,.Y(-x7 Y)b;a:a(fs;t):l dxdy. (3.58)

The bounds in Lemmas 3.1 and 3.2 imply that?
Ry > —Ch (KS 4 ||0||eC’) No(s) + 1) (3.59)

forO0 <s <t.
For the third term of (3.26), we proceed as in [18,Eq. (3.7)] and use

IKisl < C, llvxlgsPlloo < C, N fsulla < eClO] (3.60)

2 The corresponding bound in [18] is incorrectly claimed with N (s) instead of N4 (s) + 1 on the rhs.,
resulting in a missing error term of order A which is independent of N, however, and hence irrelevant for
N — oo. The same applies to the corresponding bounds on R3, R4 and Rs below.
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from Lemmas 3.1 and 3.2 to conclude that
— s Ny (5)/2 NNy (hgp) 2 Ni(s) — 1 Ny (hg.t) hcs Ny (s)/2
e sIV+ e + Uls:t dl"(v % |§0Y| _j’_ KI,S — e +\Ulg,t e +

Ms) N
=S+ T3+iR3 (3.61)

where S3 = §3 is symmetric, [|73]| < CeeC’N|||O|||3A3 and
Ry > —Ce“ | OIA(WNi(s) + 1) . (3.62)

For the forth term on the r.h.s. of (3.26), we have with dy = (v * [¢;|%) @5

1

= e MNLOI2ING i) (N7, (5) b(dy) + b*(dy) Ny (s)) €V N0+ hsi) JesN+(0)/2

=S4+ T4+ iRy (3.63)

where Sy and Ry are symmetric and ||T4]| < CN (€S| O| + «5)323 forall 0 < s < ¢ and
Akg < 1. The term R4 equals

Ri=— f (N4 (9)b(ds) = b*(dIN+(9)) + iNy () (Am{dy, hs,r) (1 = Ny (s)/N)
- iA% (a*(hs:a(dy) — a*(dy)a(hyr)) + ¢ (hs:)b(dy) + b* (dg)p—(hy:r).
(3.64)
Since
ldsll2 < llv s lgs Plloollgsllz < €.l fiall2 < €110 (3.65)
by Lemmas 3.1 and 3.2, we have
Ry > —Ch (KS + ||0||eC’) Ni(s)+ 1) (3.66)

forall0 <s <t.
Next, we consider the fifth term on the r.h.s. of (3.26) and follow the same strategy as the
one leading to [18, Eq. (3.8)]. With

v (fis:05) oo < Cll fssell2ll@sll g1 g3y < CeCNlO] (3.67)
for0 <s <t from (3.1) and (3.13) we find that

oM NG)/2 VN () / o(x — y) [% ()atashy + prOblata ] dxdyeVNo+ (i) s N4 (5)/2

=854+ T5+iRs (3.68)
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where §% = Ss is symmetric, || 75| < Ce“’N||O|*A3 and
. )‘KS * ok N Ak
iRy = =7 [ ot =) [mbiaia — g Olatayh | dvdy
~ [ ot =9 [0~ eI I ] dxdy
— [ ot =9 [0 090205 ~ B G by | dxy
+ [ ot = [ 001 - My )/Naja,
e (azay (1 = No)/N) | dxdy
1 -
-5 [ v »[eatataie; - pOaaa toa] dxdy. 669
Using again (3.40) and (3.67) as well as

1v? % 165 Plloe < Cllgs 1 gy < € (3.70)
by (1.3), we find that

Rs = —CA (Ks + ||0||€Ct) WNi(s)+ 1) (3.71)

forall0 <s <1t.
Finally, we consider the last term on the r.h.s. of (3.26), proceeding as in [18,Eq. (3.9)].
With (3.40) and

C
107 % £Zlloo = Cll frst 371 sy < Ce MO (3.72)
we find that
%eﬂm\fus)/zemm(hm) / dxdy v(x — ) ayaze™ N+ JrNe )2

=S¢+ Ts +iRg (3.73)
with

. ) S

iRo= / vir =) [FarOatacby = fu(bjaza | dxdy. (3.74)

Again S¢ = S¢ is symmetric and [|T5] < Ce“’CtN|||0|||3)L3. Furthermore, with (3.72) a
Cauchy—Schwarz inequality yields

Ct
Re = —Ce [|ONIAN(s) . (3.75)

If we combine (3.53), (3.57), (3.61), (3.63), (3.68) and (3.73), we conclude that the first
term on the r.h.s. of (3.52) is given by

e MNE@ 2 VNG ) 1 (6) o™V NG (hsir) ks N (5)/2

= IMZ/N¢—((hH(S)+K1,s+K2,sf)fx;z)+S+T+iR (3.76)

where §* = § is symmetric, | T < CeecrN|||0|||3)»3 and

R = —CA(lOllle*” + k) Wi (s) + 1) (3.77)
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forall 0 < s < tand 0 < Aky; < 1. For the second term of the r.h.s. of (3.52) we find as in
[18,p. 2613] using the definition of f;.; in (1.16) that

o Mi—sN(5)/2 [l- axeﬁm(hx;,)] oV NG+ (hy;) hici— N (5)/2

i A/ N ~ o~
= - gl fu) + S+ T

A/ N ~ ~ ~ o~
:_l ) ¢—((hH(s)+K],s_KZ,sJ)fs;t)+ +T

iA/N -
= ! ‘ZF ¢ ((hu(s) + K1y — Koy J) fud) + S+ T (3.78)

where S = S* is symmetric and IITII < Ce“'N llONIPA3. We remark that the last equality
holds as an identity in the sense of a quadratic form on ffg where the projection g acts as
the identity.

With (3.76) and (3.78), we conclude that

ll [Tn.i(5) = T3, ()] = —Ce NIIOIPA® = & [C(|||0|||eec’ +ky) + K's] N (s)
— C(lloNe®” + ;) (3.79)
forall 0 <s <rand 0 < Ak, < 1. We shall choose
ks =210 4 o (°0= ~ 1)

in which case the second term on the r.h.s. of (3.79) vanishes. With this choice of «, we thus
have from (3.51)

C
AsllE ()12 = —Ce” [NAZOI1P + AllON] & )1 (3.80)
for suitable C > 0. With Gronwall’s inequality, we arrive at
_ 3 3 oCt
& (1) [|> = e~ CNVNOIHAIOM1 2 ()2 . (3.81)

This concludes the proof of the lower bound.

As already mentioned at the beginning of the proof, the upper bound follows along the
same lines. One simply replaces k; by —«, and estimates the various error terms R; for
2 < j < 6 from above instead of from below. O

The third step, Lemma 3.5, is proven similarly to [18, Lemma 3.3].

Lemma 3.5 There exists a constant C1 > 0 such that forallt > 0,0 < ¢ < C1|||0|||eeclt
and 0 < 5 < e~ (101l

In <Q, e)»«/ﬁm(fo;t)/2€/\KN+(O)el«/ﬁm(fo;x)ﬂQ> < }”ziN”fO;t”Z + ClN)\3|||O|||3€eClt
? (3.82)
and
1n<$2, ekx/ﬁtm(fo;r)/ze—?»'f-/\f+(0)elx/ﬁ¢+(fo;x)/2g> > ﬂllfo;xllz _ C1Nk3|||0|||3eec” _
? (3.83)
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Proof We start with the lower bound (3.83), we proceed similarly as in the proof of the
previous Lemmas. Following [18, Lemma 3.3], we define for s € [0, 1] the vector

g, = (1P (N=2NEO) i I2/2 =3k N+ 0)/2 g5/ N (he) o (1=)VNB* (1) ,(1=5)V/Nb(hi) (3 84)
where we introduced the notation h; = A fo.;/2 € Li 0 (R?). Note that the last exponential
factor in (3.84) could be omitted since b(h;)S2 = 0, but it is actually convenient to keep it for

the calculation of the derivative of 9y ||&; 1%, Compared to the upper bound in [18], we need
the additional term e~ (=) N+ Ol I”? in (3.84), as will be seen below. We have

I&11% = <Q e)»«/ﬁm(fo;z)/Ze*lKNJr(0)e/\~/ﬁ¢+(fo;r)/29> (3.85)

and
l&l? = eNnh,nz(e«/Nb*(ht)Q e—<xx+2nht\|2>N+<0)edﬁb*(h,>9>_ (3.86)

The latter quantity will lead to the desired bound on the r.h.s. of (3.83). In order to compare
(3.85) and (3.86), we compute the derivative of & as

OslI&1* = 2Re (&, Gi&y) (3.87)
where, following [18, Eq. 3.12 et seq.],
Gy = 2(1 = N+ O |
— TN OREVNO D [(1 — )|, PN (0) + (1 = $)a* (ha(hy)
—V/N|lh|*(1 = 5)*b* (h,)] =SNG+ () N+ 02 (3.88)
Using that ||/, ]2 < A|O €7 /2 by Lemma 3.2, it follows from the calculation [18, Eq. 3.12
et seq.] that
Gs = (1 = HNLO)|Ih]* = (1 = $)a*(hs)a(hs) + T (3.89)

with || T < CNA3||O|?eC" as long as Ak < 1. Since N (0)||A: 1> = a*(hy)a(hy), the
remaining terms are positive, hence

A& N> = —CNA O[3 &2 . (3.90)
With Gronwall’s inequality we arrive at
€112 > e CNMIOIE! g2 (3.91)

It remains to compute (3.86). To this end, let us introduce ¥’ = « + 2||h,||2/)\ =Kk +
A||f0;,||2/2. As in [18, Lemma 3.3] we compute

eN)»ZIIfo;x||2/4<e«m)»b*(fo;z)/29 ¢ HNEO) o VNAB* (forn) 120y
2n
NP4 VAT ik ngp2
, Z G I15* (fo.)" Il (3.92)
and furthermore
I15* (o) 1

= |t - 220/ a *<f01)<1—N+(0>/N>”2 a <fo,)<1—N+<0)/N)1/2szH

(N-@m—-D)---(N - ) n (N —
= N@=1) (f 1) Q“ N(n 1)(N

||f0 3" (3.93)
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Thus we have

N0t /4 (NI (o) /2y = b N () o NAD* (f0:)/2 0

_ N2 ol /42( >A2"||f0t||z —'n

‘ 320 o112
_ NS4 (] 4 Meka

N (321 fo 134+ (16221 fo 13 14))

o NP B+ AN o 1/32 (3.94)

where we used that In(1 4+ x) > x — x2/2 for x > 0. Using in addition that e > 11—k’
and || fo.rll2 < 1O le€?, we arrive at the desired bound (3.83).
The upper bound (3.82) follows in essentially the same way, see [18,Lemma 3.3]. O

Proof of Theorem 1.2 The upper bound (1.24) is an immediate consequence of (3.32), the
upper bound in (3.33), (3.46) and (3.82). Similarly, the lower bound (1.25) follows by com-
bining (3.32) with the lower bound in (3.33), (3.47) and (3.83). ]

Acknowledgements The authors thank Gérard Ben Arous for pointing out the question of a lower bound.
Funding from the European Union’s Horizon 2020 research and innovation programme under the ERC Grant
Agreement No. 694227 (R.S.) and under the Marie Sktodowska-Curie Grant Agreement No. 754411 (S.R.)
is gratefully acknowledged.

Funding Open access funding provided by orgName.
Data Availibility The authors declare that all data supporting this article are available within the article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys.
127(6), 1193-1220 (2007)

2. Ammari, Z., Falconi, M., Pawilowski, B.: On the rate of convergence for the mean field approximation
of bosonic many-body quantum dynamics. Commun. Math. Sci. 14(5), 1417-1442 (2016)

3. Bardos, C., Golse, F., Mauser, N.J.: Weak coupling limit of the N -particle Schrodinger equation. Methods
Appl. Anal. 7(2), 275-293 (2000)

4. Ben Arous, G., Kirkpatrick, K., Schlein, B.: A central limit theorem in many-body quantum dynamics.
Commun. Math. Phys. 321(2), 371-417 (2013)

5. BoBmann, L., Petrat, S., Pickl, P., Soffer, A.: Beyond Bogoliubov dynamics. Pure Appl. Anal. 3(4),
677-726 (2021)

6. Brennecke, C., Schlein, B.: Gross-Pitaevskii dynamics for Bose-Einstein condensates. Anal. PDE 12(6),
1513-1596 (2019)

@ Springer


http://creativecommons.org/licenses/by/4.0/

Large Deviation Estimates for Weakly Interacting Bosons Page210of21 9

20.

21.

22.

23.

24.

25.

26.

Buchholz, S., Saffirio, C., Schlein, B.: Multivariate central limit theorem in quantum dynamics. J. Stat.
Phys. 154(1-2), 113-152 (2014)

Cazenave, T.: Semi-linear Schrodinger Equations, Courant lecture Notes in Mathematics, vol. 10. Amer-
ican Mathematical Society (2003)

Cerf, R., Petit, P.: A short proof of Cramér’s Theorem in R. Am. Math. Mon. 118(10), 925-931 (2011)
Chen, L., Oon Lee, J., Schlein, B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4),
872-903 (2011)

. Chen, X.: Second order corrections to mean field evolution for weakly interacting bosons in the case of

3-body interactions. Arch. Ration. Mech. Anal. 203(2), 455497 (2012)

Erdés, L., Yau, H.-T.: Derivation of the nonlinear Schrodinger equation from a many-body Coulomb
system. Adv. Theor. Math. Phys. 5(6), 1169-1205 (2001)

Frohlich, J., Knowles, A., Pizzo, A.: Atomism and quantization. J. Phys. A 40(12), 3033-3045 (2007)
Frohlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body
interaction. Commun. Math. Phys. 288(3), 1023—-1059 (2009)

Ginibre, J., Velo. G.: The classical field limit of scattering theory for non-relativistic many-boson systems.
I and II. Commun. Math. Phys. 66, 37-76, 68, 45-68 (1979)

Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly
interacting bosons. I. Commun. Math. Phys. 294(1), 273-301 (2010)

. Hepp, K.: The classical limit for quantum mechanics correlation functions. Commun. Math. Phys. 35,

265-277 (1974)

. Kirkpatrick, K., Rademacher, S., Schlein, B.: A large deviation principle in many-body quantum dynamics.

Ann. Henri Poincaré 22, 2595-2618 (2021)

. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math.

Phys. 298(1), 101-138 (2010)

Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean- field regime. Am. J.
Math. 137, 1613-1650 (2015)

Lewin, M., Nam, P.T, Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun.
Pure Appl. Math. 68(3), 413-471 (2015)

Mitrouskas, D., Petrat, S., Pickl, P.: Bogoliubov corrections and trace norm convergence for the Hartree
dynamics. Rev. Math. Phys. 31(08), 1950024 (2019)

Rademacher, S.: Central limit theorem for Bose gases interacting through singular potentials. Lett. Math.
Phys. 110, 2143-2174 (2020)

Rademacher, S., Schlein, B.: Central limit theorem for Bose-Einstein condensates. J. Math. Phys. 60,
071902 (2019)

Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean filed dynamics.
Commun. Math. Phys 291(1), 31-61 (2009)

Spohn, H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569-615 (1980)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Large Deviation Estimates for Weakly Interacting Bosons
	Abstract
	1 Introduction and Main Results
	1.1 Introduction
	1.2 Main Results

	2 Proof of Theorem 1.1 
	3 Proof of Theorem 1.2
	3.1 Properties of Kj,s and fs;t
	3.2 Fluctuations Around the Condensate
	3.3 Proof of Theorem 1.2 

	Acknowledgements
	References




