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Abstract
A domain is called Kac regular for a quadratic form on L2 if every functions

vanishing almost everywhere outside the domain can be approximated in form norm

by functions with compact support in the domain. It is shown that this notion is

stable under domination of quadratic forms. As applications measure perturbations

of quasi-regular Dirichlet forms, Cheeger energies on metric measure spaces and

Schrödinger operators on manifolds are studied. Along the way a characterization of

the Sobolev space with Dirichlet boundary conditions on domains in infinitesimally

Riemannian metric measure spaces is obtained.

Keywords Dirichlet forms � Kac regularity � Semigroup domination � Metric

measure spaces � Cheeger energy

Mathematics Subject Classification 46E35 � 31E05 � 47A63

1 Introduction

Following Stroock, a domain X � Rn is called Kac regular if the first exit time of

the Brownian motion from X equals the first penetration time of the Brownian

motion to Xc. In analytic terms, Kac regularity has been proven by Herbst and Zhao

[9] to be equivalent to the property that every u 2 W1;2ðRnÞ with u ¼ 0 a.e. on Xc

can be approximated in W1;2-norm by elements of C1
c ðXÞ. As expected, this

property very much depends on the regularity of the boundary of X.

The above mentioned characterization of Kac regularity in terms of an

approximation property allows to extend the definition of Kac regularity to open
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subsets of a sufficiently regular topological space with a Borel measure. The W1;2-

norm in the original definition is replaced by the norm induced by a closed quadratic

form on (possibly vector-valued) L2-functions, and the notion of Kac regularity

depends on the choice of the quadratic form.

In this respect, it has been shown by Bei and Güneysu in [4] that an open subset

of a Riemannian manifold X with its volume measure m is Kac regular for the

canonical Dirichlet form on X induced by the scalar Laplace–Beltrami operator if

and only if it is Kac regular for every reasonable semibounded quadratic form on

L2ðX;m;EÞ which is induced by a covariant Schrödinger operator of the form

r�r þ V on a Hermitian vector bundle E over X, where the potential V need not be

semibounded. The aim of this article is to show that for positive perturbations

V (allowing certain measure perturbations), this stability result can be understood in

terms of domination of quadratic forms, thereby allowing much more general spaces

than Riemannian manifolds.

In [4], the results are derived using deep techniques from stochastic analysis, in

particular Feynman–Kac formulae and stochastic parallel transport. In contrast, our

approach is purely functional analytical, drawing on the result of a joint article with

Lenz and Schmidt [10], and works in the setting of (quasi-regular) Dirichlet forms

so that it can readily be applied not only to quadratic forms on Riemannian

manifolds, but also on (infinitesimally Riemannian) metric measure spaces. In this

context we also give a characterization of the Sobolev space with Dirichlet

boundary conditions on domains in infinitesimally Riemannian metric measure

spaces, which might be of independent interest.

This article is structured as follows: In Sect. 1 we introduce the notion of Kac

regularity with respect to quadratic forms on L2-spaces and prove the abstract

stability result under domination of quadratic forms (Theorem 1). In Sect. 2 we

study Kac regular domains for quasi-regular Dirichlet forms, collect several

equivalent definitions of the form domain with Dirichlet boundary conditions and

prove that Theorem 1 implies the stability of Kac regularity under measure

perturbations (Theorem 2). In Sect. 3 we apply the results of Sect. 2 to the Cheeger

energy on infinitesimally Riemannian metric measure spaces (Theorems 3, 4).

Finally, in Sect. 4 we show how the stability result of [4] fits into our framework

(Theorem ).

2 Kac regular domains for quadratic forms

In this section, we introduce the concept of Kac regular domains for quadratic forms

and prove an abstract stability theorem under domination. For simplicity’s sake, all

quadratic forms in this article are assumed to be non-negative. The generalization to

the case of lower bounded forms is straightforward.

Let X be a Lindelöf topological space (every open cover has a countable sub-

cover), m a Borel measure on X and E �! X a Hermitian vector bundle (see, e.g.,

§2 of [13], where the term Euclidean vector bundle is used). In particular, each fiber

Ex is a finite-dimensional Hilbert space with inner product h � ; � ix and induced norm

j � jx.
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A (positive) quadratic form on a Hilbert space H is a map a : H �! ½0;1�
satisfying

– aðuþ vÞ þ aðu� vÞ ¼ 2aðuÞ þ 2aðvÞ for all u; v 2 H,

– aðkuÞ ¼ jkj2aðuÞ for all k 2 R, u 2 H.

Its domain is DðaÞ ¼ fu 2 H j aðuÞ\1g. Via polarization, every quadratic form

induces a bilinear form on DðaÞ, which shall be denoted by the same symbol.

A quadratic form a is called closed if DðaÞ is complete with respect to the form

norm

k � ka ¼ k � k2
L2 þ að�Þ

� �1
2

:

Let a be a closed quadratic form on L2ðX;m;EÞ. For an open subset X of X denote

by DðaXÞ the k � ka-closure of the set of all U 2 DðaÞ, such that suppU is compact

and contained in X. Here, suppU is understood as the support of the measure jUjm.

Further let aX be the restriction of a to DðaXÞ.
Moreover, let Dð~aXÞ ¼ fU 2 DðaÞ j U ¼ 0 a.e. on Xcg and denote by ~aX the

restriction of a to Dð~aXÞ.

Lemma 1 The space Dð~aXÞ is closed in DðaÞ.

Proof This follows immediately from the fact that every k � ka-convergent

sequences also converges in L2 and hence has an a.e. convergent subsequence. h

In the light of this lemma, one clearly has DðaXÞ � Dð~aXÞ. We will study

domains where also the reverse inclusion holds.

Definition 1 The set X is called Kac regular for a if DðaXÞ ¼ Dð~aXÞ.

Now let us turn to domination of quadratic forms (see [12, 14]). A closed

quadratic form b on L2ðX;mÞ satisfies the first Beurling–Deny criterion if u 2 DðbÞ
implies juj 2 DðbÞ and bðjujÞ � bðuÞ.

Lemma 2 If b satisfies the first Beurling–Deny criterion and X � X is open, then

bX and ~bX also satisfy the first Beurling–Deny criterion.

Proof In both cases it suffices to show that the domain is stable under taking

absolute values. In the case of ~bX this is clear.

To see this for bX, let u 2 DðbXÞ and ðunÞ a sequence in DðbÞ with supp un
compact and contained in X and un ! u in form norm. Then, junj still has compact

support contained in X, junj ! juj in L2ðX;mÞ, and k junj kb �kunkb. Thus, ðjunjÞ
has a subsequence converging weakly to juj in form norm. By the Banach–Saks

theorem there is a sequence of finite convex combinations of elements of ðjunjÞ that

converges to juj w.r.t. k � kb. Hence, juj 2 DðbXÞ. h
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The closed quadratic form a on L2ðX;m;EÞ is said to be dominated by b if b

satisfies the first Beurling–Deny criterion and for all U 2 DðaÞ and v 2 DðbÞ with

0� v� jUj one has jUj 2 DðbÞ, v sgnU 2 DðaÞ and

bðv; jUjÞ�ReaðU; v sgnUÞ:

Here sgnUðxÞ ¼ UðxÞ=jUðxÞjx whenever UðxÞ 6¼ 0 (the value in the case UðxÞ ¼ 0

is obviously irrelevant for the preceding definition).

Let A and B be the positive self-adjoint operators associated with a and b,

respectively. Domination of quadratic forms has the following nice characterization

in terms of the associated semigroups ([12], Theorem 4.1): The form a is dominated

by b if and only if

je�tAUj � e�tBjUj

for all t� 0 and U 2 L2ðX;m;EÞ.
We will later use the following two facts: A closed quadratic form b that satisfies

the first Beurling–Deny criterion is dominated by itself (see [14], Proposition 3.2)

and the domain DðbÞ is a lattice, that is, u; v 2 DðbÞ implies u ^ v, u _ v 2 DðbÞ.
The latter is immediate from the formulas

u ^ v ¼ 1

2
ðuþ v� ju� vjÞ;

u _ v ¼ 1

2
ðuþ vþ ju� vjÞ:

Lemma 3 Let a be a closed quadratic form on L2ðX;m;EÞ, b a closed quadratic

form on L2ðX;mÞ and X � X open. If a is dominated by b, then aX is dominated by

bX and ~aX is dominated by ~bX.

Proof If U 2 Dð~bXÞ and v 2 Dð~aXÞ with 0� v� jUj, then v sgnU 2 DðaÞ and

jUj 2 DðbÞ, since a is dominated by b. Moreover, jUj and v sgnU vanish a.e. on Xc

by definiton of Dð~aXÞ and Dð~bXÞ. Thus, jUj 2 Dð~bXÞ and v sgnU 2 Dð~aXÞ. The

inequality between ~aX and ~bX follows directly by restriction. The proof for aX, bX is

analogous. h

Theorem 1 Let a be a closed quadratic form on L2ðX;m;EÞ, b a closed quadratic

form on L2ðX;mÞ and X � X open. If a is dominated by b and X is Kac regular for
b, then it is Kac regular for a.

Proof By Lemma 3, the form ~aX is dominated by ~bX. Let Da and Db be the set of all

elements of DðaÞ and DðbÞ, respectively, with compact support in X. By

assumption, Db is dense in Dð~bXÞ.
In general, Dð~bXÞ will of course not be densely defined in L2ðX;mÞ. However,

since Dð~bXÞ is a lattice, its closure in L2ðX;mÞ is order isometric to an L2-space

([15], Corollary 2.4), so we can view ~aX and ~bX as densely defined forms in the

closures of their respective domains. Then, Theorem 2.3 from [10] (see also
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Corollary 2.4) is applicable and implies that Da is dense in Dð~aXÞ. Hence, X is Kac

regular for a: h

3 Quasi-regular Dirichlet forms

In this section, we give a characterization of DðEXÞ that is better suited for

applications in the case when E is a quasi-regular Dirichlet form and discuss an

application of Theorem 1 to measure perturbations of Dirichlet forms.

The definition of quasi-regular Dirichlet forms along with all necessary properties

can be found in [11]. At this point let us just mention that every Dirichlet form satisfies

the first Beurling–Deny criterion and is thus dominated by itself.

Further let us recall some standard terminology. Let X be a Hausdorff space, m a

r-finite Borel measure on X of full support, and E a quasi-regular Dirichlet form on

L2ðX;mÞ. An ascending sequence ðFkÞ of closed subsets of X is called nest ifS
k DðEÞFk

is dense in E. A Borel set B � X is called exceptional if B �
T

k F
c
k for

some nest ðFkÞ. A property is said to hold quasi-everywhere, abbreviated q.e., if it

holds outside an exceptional set. A function u on X is called quasi-continuous if

there exists a nest ðFkÞ, such that ujFk
is continuous for all k 2 N. Every element u

of the domain of a quasi-regular Dirichlet form has a quasi-continuous m-version,

uniquely determined up to equality q. e. We will denote it by ~u.

For a Borel set B � X let

DðEÞB ¼ fu 2 DðEÞ j ~u ¼ 0 q.e. on Bcg:

Alternatively, DðEÞB can be characterized as the closure of all functions with

compact support in B, as the following lemma ([17], Lemma 2.7) shows.

Lemma 4 For every Borel set B � X there exists an ascending sequence ðFkÞ of
compact subsets of B, such that

S
k DðEÞFk

is k � kE-dense in DðEÞB.

Corollary 1 If X � X is open, then DðEXÞ ¼ DðEÞX.

Note that in this situation, EX is again a quasi-regular Dirichlet form

([17], Lemma 2.12).

In many cases it is more customary to define the Sobolev space with Dirichlet

boundary conditions not as the closure of all compactly supported functions in the

domain, but as the closure of a certain subset (for example continuous functions or

smooth ones). The following definition gives a general setup for these situations.

Definition 2 A subalgebra C of DðEÞ \ CbðXÞ is called generalized special
standard core if

– C is dense in DðEÞ with respect to the form norm,

– for every �[ 0 there exists an increasing 1-Lipschitz function C� : R ! R, such

that ���C� � 1 þ �, CðtÞ ¼ t for t 2 ½0; 1� and C� 	 u 2 C for all u 2 C,

– for every compact K � X and every open G � X with K � G there exists u 2 C,

such that u� 0, ujK ¼ 1 and supp u � G.
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As the name suggests, this concept generalizes special standard cores in the

regular setting (see [6], Sect. 1.1). In particular, if E is a regular Dirichlet form, then

DðEÞ \ CcðXÞ is a special standard core. More examples will be discussed in the

following sections.

The crucial property of generalized special standard cores for our purpose is that

their density in the form domain can be localized in the sense of the following

lemma (cf. Lemma 2.3.4 in [6] in the case of special standard cores).

Lemma 5 If C is a generalized special standard core, then fu 2 C j supp u � Xg is
k � kE-dense in DðEXÞ.

Proof We have to show that every function u 2 DðEXÞ can be approximated in

ðDðEÞ; h�; �iEÞ by elements from C with support in X. By Lemma 4 we can assume

that u has compact support in X, and by a standard approximation argument we may

further assume that 0� u� 1.

Denote the support of u by K. By the definition of generalized special standard

core, there exists w 2 C, such that w� 0, wjK ¼ 1 and suppw � X and a sequence

ðvnÞ in C, such that vn ! u w.r.t. k � kE . Moreover, let C� be a bounded 1-Lipschitz

function as in Definition 2 for some �[ 0.

Let un ¼ ðC� 	 vnÞ � w. By definition of a generalized special standard core, we

have un 2 C, and clearly supp un � X. Furthermore
Z

X

jðC� 	 vnÞ � w� uj2 dm ¼
Z

X

jðC� 	 vnÞ � w� ðC� 	 uÞ � wj2 dm

�kwk1
Z

X

jvn � uj2 dm

! 0;

and

EððC� 	 vnÞ � wÞ1=2 �kC�k1EðwÞ1=2 þ kwk1EðvnÞ1=2:

Thus ðunÞ has a subsequence converging weakly in ðDðEÞ; h�; �iEÞ to u. By the

Banach–Saks theorem there is a sequence of finite convex combinations of elements

of ðunÞ that converges to u w.r.t. k � kE . h

Next, we study a class of perturbations of quasi-regular Dirichlet forms that are

dominated by the original form.

A positive Borel measure l on X is called smooth if lðBÞ ¼ 0 for every

exceptional set B and there exists a nest ðFkÞ of compact sets, such that lðFkÞ\1
for all k 2 N.

If l is a smooth measure, define the quadratic form El by

DðElÞ ¼ fu 2 DðEÞ j ~u 2 L2ðX; lÞg; ElðuÞ ¼ EðuÞ þ
Z

X

~u2 dl:

The form El is again a quasi-regular Dirichlet form ([17], Proposition 2.3).

Lemma 6 The form El is dominated by E.
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Proof Let u 2 DðElÞ and v 2 DðEÞ with 0� v� juj a.e. Then juj 2 DðEÞ and

v sgn u 2 DðEÞ, since E is dominated by itself. Furthermore
Z

X

j gv sgn uj2 dl ¼
Z

X

j~vj2 dl�
Z

X

j~uj2 dl\1:

Thus v sgn u 2 DðElÞ.
Finally

Elðu; v sgn uÞ ¼ Eðu; v sgn uÞ þ
Z

~vj~uj dl� Eðu; v sgn uÞ� Eðjuj; vÞ

since E is dominated by itself. h

Now, we can combine Lemma 6 with Theorem 1 to obtain stability of Kac

regularity under measure perturbations.

Theorem 2 If an open set X � X is Kac regular for E, then it is Kac regular for El

for every smooth measure l.

Even in the case of the standard Dirichlet energy on Euclidean space, this

theorem provides new examples, as [4] only studies the case of absolutely

continuous measures l, whereas in the present framework also singular measures

can be treated without additional effort.

Example 1 Let

E : W1ðRdÞ �! ½0;1Þ; EðuÞ ¼
Z

Rd
jruj2 dx:

The Hausdorff measure l on a ðd � 1Þ-dimensional hyperplane is a smooth measure

(see [6], Exercise 2.2.1). Thus, every domain that is Kac regular for E is also Kac

regular for the perturbed form El.

4 Metric measure spaces

In this section, we apply the results of the previous section to the Cheeger energy on

infinitesimally Riemannian metric measure spaces.

Let (X, d) be a complete, separable metric space and m a r-finite Borel measure

of full support on X satisfying mðBrðxÞÞ\1 for all x 2 X, r[ 0. Denote by

LipbðX; dÞ the space of all bounded Lipschitz functions on X. For f 2 LipbðX; dÞ the

local Lipschitz constant is defined as

jDf jðxÞ ¼ lim sup
y!x

jf ðxÞ � f ðyÞj
dðx; yÞ :

The Cheeger energy Ch is the L2-lower semicontinuous relaxation of
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LipbðX; dÞ \ L2ðX;mÞ �! ½0;1�; f 7! 1

2

Z

X

jDf j2 dm:

If Ch is a quadratic form, then (X, d, m) is called infinitesimally Riemannian (see,

e.g., [2, 7]). In this case, Ch is a quasi-regular Dirichlet form ([18], Theorem 4.1—

the theorem is formulated for RCD spaces, but the proof of quasi-regularity holds

under the weaker assumptions stated above).

Let (X, d, m) be an infinitesimally Riemannian metric measure space and Ch the

Cheeger energy. The space LipbsðX; dÞ of Lipschitz functions with bounded support

is k � kCh-dense in DðChÞ, as follows for example from [1], Lemma 4.3, combined

with a standard localization argument. From that fact it is easy to see that

LipbsðX; dÞ is indeed a generalized special standard core for Ch.

The results from the last section (Corollary 1, Lemma 5) immediately give the

following characterization of the first-order Sobolev space with Dirichlet boundary

conditions on domains in infinitesimally Riemannian metric measure spaces.

Theorem 3 For an open subset X of X, the following spaces all coincide:

– The k � kCh-closure of fu 2 DðChÞ j supp u � X compactg.

– The k � kCh-closure of fu 2 LipbsðX; dÞ j supp u � Xg.

– The set fu 2 DðChÞ j ~u ¼ 0 q.e. on Xcg.

Now, we turn to perturbations of the Cheeger energy by a positive potential.

For measurable V : X �! ½0;1� let

ChV : L2ðX;mÞ �! ½0;1�; ChVðuÞ ¼ ChðuÞ þ
Z

X

juj2V dm:

For the following theorem recall that an RCD�ðK;NÞ space is an infinitesimally

Hilbertian metric measure space with Ricci curvature bounded below by K and

dimension bounded above by N (see [5], Definition 3.16 for a precise statement).

Theorem 4 If V 2 L1
locðX;mÞ is non-negative and X is Kac regular for Ch, so it is

for ChV . Conversely, if (X, d, m) is an RCD�ðK;NÞ space for K[ 0, N 2 ð2;1Þ,
V 2 LpðX;mÞ for p 2 ½N=2;1�, and X is Kac regular for ChV , then it is also Kac
regular for Ch.

Proof Since Ch is quasi-regular, there is a nest ðFkÞk of compact sets. By

assumption VmðFkÞ\1 for all k 2 N. Of course, Vm does not charge measures of

capacity zero. Hence, Vm is a smooth measure, and the first implication follows

from Theorem 5.

For the converse implication it is sufficient to show that DðChVÞ ¼ DðChÞ. Let q

be the dual exponent of p and u 2 DðChÞ. Since q 2 ½1; N
N�2

�, the Sobolev

embedding theorem ([3], Proposition 6.2.3, see also [16], Proposition 3.3) implies

u 2 L2qðX;mÞ. Thus
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Z

X

V juj2 dm�kVkpkuk
1=2
2q \1;

that is, u 2 DðChÞ. h

More examples in the spirit of [4] can be constructed using the first-order

differential calculus for the Cheeger energy developed in [7]. There is an L2-normed

L1-module L2ðTXÞ, the tangent module, and a linear map r : DðChÞ �! L2ðTXÞ
satisfying the Leibniz rule such that the Cheeger energy can be written as

ChðuÞ ¼
Z

X

jruj2 dm:

If b 2 L2ðTXÞ with jbj 2 L1ðX;mÞ, then the form

Chb : DðChÞ �! ½0;1Þ; ChbðuÞ ¼
Z

X

jðr � ibÞuj2 dm

is dominated by Ch and thus Kac regularity for Ch implies Kac regularity for Chb.

With the calculus rules proven in [7], the proof can be carried out in essentially the

same way as the one of Proposition 3.7 from [10]. We do not repeat it here as it is

quite lengthy.

5 Schrödinger operators on Riemannian manifold

In this section, Kac regularity for quadratic forms generated by Schrödinger

operators on vector bundles over manifolds is examined.

Let (M, g) be a Riemannian manifold and

E : W1;2
0 ðMÞ �! ½0;1�; u 7!

Z

M

jruj2 dvolg:

The space C1
c ðMÞ is obviously a special standard core for E and so DðEXÞ coincides

with W1;2
0 ðXÞ for X � M open.

Further let E �! M be a Hermitian vector bundle with metric covariant

derivative r and let V : M �! EndðEÞ be a measurable section with VðxÞ� 0 for

a.e. x 2 M and jVj 2 L1
locðMÞ. In particular, V(x) is hermitian for a.e. x 2 M.

Denote by CC1
c
ðM;EÞ the smooth section of E with compact support and let Er;V

be the closure of

CC1
c
ðM;EÞ �! ½0;1Þ;

U7!
Z

M

ðjrUðxÞj2x þ hVðxÞUðxÞ;UðxÞixÞ dvolgðxÞ:

From the proof of [8], Proposition 2.2, together with the semigroup characterization

of domination ([12], Theorem 4.1) it follows that Er;0 is dominated by E (alter-

natively, one could also adapt the proof of [10], Proposition 3.7, to the case of

Dirichlet boundary conditions). Given this result, it is not hard to see (with an
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argument along the lines of Lemma 6) that Er;V is dominated by E as well. Thus, we

can apply Theorem 1 to obtain the stability of Kac regularity in this setting.

Theorem 5 If X is Kac regular for E, then it is also Kac regular for Er;V .

A standard approximation argument shows that DðEr;V
X Þ is the closure of

CC1
c
ðX;EÞ. Therefore, the previous theorem recovers partially Theorem 2.13 a) of

[4] with the restriction to non-negative potentials.
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17. Röckner, M., Schmuland, B.: Quasi-regular Dirichlet forms: examples and counterexamples. Can.

J. Math. 47(1), 165–200 (1995). https://doi.org/10.4153/CJM-1995-009-3
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