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Abstract. This paper is a continuation of Part I of this project, where we developed a new local well-
posedness theory for nonlinear stochastic PDEs with Gaussian noise. In the current Part II we consider
blow-up criteria and regularization phenomena. As in Part I we can allow nonlinearities with polynomial
growth and rough initial values from critical spaces. In the first main result we obtain several new blow-up
criteria for quasi- and semilinear stochastic evolution equations. In particular, for semilinear equations we
obtain a Serrin type blow-up criterium, which extends a recent result of Prüss–Simonett–Wilke (J Differ
Equ 264(3):2028–2074, 2018) to the stochastic setting. Blow-up criteria can be used to prove global well-
posedness for SPDEs. As in Part I, maximal regularity techniques and weights in time play a central role in
the proofs. Our second contribution is a new method to bootstrap Sobolev and Hölder regularity in time and
space, which does not require smoothness of the initial data. The blow-up criteria are at the basis of these
new methods. Moreover, in applications the bootstrap results can be combined with our blow-up criteria, to
obtain efficient ways to prove global existence. This gives new results even in classical L2-settings, which
we illustrate for a concrete SPDE. In future works in preparation we apply the results of the current paper
to obtain global well-posedness results and regularity for several concrete SPDEs. These include stochastic
Navier–Stokes equations, reaction– diffusion equations and the Allen–Cahn equation. Our setting allows
to put these SPDEs into a more flexible framework, where less restrictions on the nonlinearities are needed,
and we are able to treat rough initial values from critical spaces. Moreover, we will obtain higher-order
regularity results.
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1. Introduction

The field of stochastic evolution equations has attracted a lot of attention in the
past decades. Adding noise to existing models can provide a lot of new insights. At
the same time there is still a large gap between the understanding of the deterministic
theory and the stochastic theory. Broadly speaking, we and many others are trying
to close and understand this gap, and this paper can be seen as another step in this
direction.
The paper is a continuation of our recent work [3], which we refer to as Part I. In

Part I we obtained a systematic treatment of nonlinear stochastic evolution equations
by means of maximal regularity techniques, and the main result in Part I was a new
local well-posedness theory which we successfully applied to classes of quasi- and
semilinear SPDEs. The aim of the current paper is to obtain blow-up criteria, global
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existence, and instantaneous regularization. As far as possible we made Part II inde-
pendent of Part I. However, for this the reader has to take the local well-posedness
theorem of Part I (see Theorem 1.1) for granted.

The equations we consider are of the following form:

{
du + A(·, u)u dt = F(·, u)dt + (B(·, u)u + G(·, u))dW,
u(0) = u0.

(1.1)

Here (A, B) are the leading operators and are of quasilinear type which means that
for each v in a suitable interpolation space A(v) : X1 → X0 and B(v) : X1 → X1/2

are bounded linear operators. In the above X0 and X1 are Banach spaces such that X1

densely embeds into X0, and for θ ∈ (0, 1), Xθ = [X0, X1]θ denotes the complex
interpolation space. In applications all of these spaces will be suitable Sobolev and
Besov spaces. In the semilinear case (A(u)u, B(u)u) is replaced by ( Āu, B̄u), where
( Ā, B̄) does not depend on u. The noise term W is a cylindrical Brownian motion.
The nonlinearities F and G are of semilinear type which means they are defined on
suitable interpolation spaces. Many examples of SPDEs fit in the above framework.
As in Part I when comparing to other papers we would like to point out the main

novelties of our theory:

(a) it is an L p(time; Lq(space))-theory;
(b) ellipticity or coercivity conditions are formulated for the couple (A, B);
(c) no smallness assumption on B is needed;
(d) measurable dependence in (t, ω) for the couple (A, B) is allowed;
(e) rough initial data u0 ∈ (X0, X1)1− 1+κ

p ,p with κ ∈ [0, p
2 − 1) are allowed;

(f) F,G can be defined in [X0, X1]1−ε for ε > 0 with polynomial growth;
(g) we can identify intrinsically defined critical spaces which reflect the scaling

properties of concrete SPDEs.

Individual cases of these points have been addressed in several papers, but having
the combination of all of them is one of the strengths of our theory. Moreover, our
paper seems to be the first to deal with (e) and (g), but also the first to deal with (b)
and (c) in an abstract L p-framework. Let us give some comparison for some of the
classical theories for SPDEs. In the monotone operator approach to SPDEs (see [31]
and references therein) (b)–(d) are included as well, but a variational Hilbert space
framework is required. On the other hand, with the monotone operator approach to
SPDEs many types of nonlinearities can be treated which are not of quasilinear type
and it gives global existence immediately. In Krylov’s L p-theory [27] (a) with p = q,
(b)–(d) are included, but only in the case A is a linear second-order differential oper-
ator. Moreover, the nonlinearities are assumed to be Lipschitz and of semilinear type.
Although some of the initial ideas of our theory can be traced back to the semigroup
approach to SPDEs [12,16,22,48], many of the above points, such as (b)–(d), cannot
be addressed if one is limited to this method in its pure form. Finally, the rough path
theory approach to SPDEs is developing quickly and is the only available theory in the
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case renormalization is required [17,19], but at the moment we think it is unnatural to
compare it to our theory.
Our work can be seen as a stochastic version of the theory of evolution equations in

critical spaces of Prüss, Simonett and Wilke [40] (see also [26,41]). As is clear from
[3] it is nontrivial to extend the deterministic theory to the stochastic setting. From
the results of this paper it turns out that it is also highly involved to extend blow-up
criteria to the stochastic setting. In addition, we also obtain several results which are
even new in the deterministic setting.
In the theory of evolution equation it is standard to combine blow-up criteria with

energy estimates to obtain global existence (see themonographs [33,39,44,51]). These
methods usually rely on Sobolev embeddings combined with L p-energy estimates.
In the stochastic case L p-theory is much less developed than in the deterministic
case, and this might be one of the reasons that blow-up criteria have not played a
major role in the theory yet. Of course another advantage of L p-theory is that it
allows to studyNavier–Stokes equations,Allen–Cahnequation, and reaction–diffusion
equations, with gradient nonlinearities, and in higher dimensions, which seems not
possible when only L2-theory is available.
The results of the current paper and [3] have already been applied in several situa-

tions and have already providedmany new results and insights. In [6] we develop a new
L p-theory for stochastic Navier–Stokes equations with transport noise. In particular,
for d = 2 new global well-posedness and regularity properties have been obtained
using our new temporal weighted methods, and we do not know how to derive these
results without our newmethods. In [1] global well-posedness for the stochastic prim-
itive equations with transport noise in 3d is obtained by applying our local existence
theory from [3] and blow-up criteria Theorem 4.11. In [7,8] we will use our theory to
build an L p-theory for stochastic reaction–diffusion equations with transport noise.
Moreover, we do expect that our theory will be useful for many other SPDEs.
We kindly invite the interested readers to apply our theory to their favorite quasilin-

ear or semilinear SPDE. After rewriting it as (1.1) one can try to check the mapping
properties of the nonlinearities stated in Sect. 4.1 by taking X0 and X1 suitable Sobolev
spaces. Here one has to try out which nonlinearities to put in which terms. Several
classical examples can already be found in [3]. In many cases (and at first we would
recommend to skip checking this), the abstract “stochastic maximal regularity” con-
dition on the leading operators of the SPDE satisfy the conditions of Theorem 4.3, and
thus local well-posedness follows. Quite likely this will already shine new light on
the SPDE: more flexibility concerning initial values and nonlinearities, new regularity
properties of the solution, and a greater variety of function spaces in which the SPDE
can be analyzed. After that the doors to our theory are completely open, and the reader
can try to follow Roadmap 4.14 to prove higher-order regularity of local solutions and
try to establish global well-posedness by showing energy estimates which are strong
enough to apply one of our blow-up criteria. At the moment we have several papers
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in preparation where this program is followed for several classes of SPDEs, including
some of the examples in [3].
In the next subsections we give a laymen’s summary of the results of our paper. We

will start by recalling some of the local well-posedness theory of [3].

1.1. Local well-posedness and critical spaces

As already mentioned, the main result of Part I (see [3]) is a local well-posedness
result, whichwewill nowbriefly recall in an informalway.Details can be found in Sect.
4.1, and, in particular, the precise statement can be found in Theorem 4.3. The result
gives suffices conditions for existence and uniqueness of maximal solutions (u, σ ).
Here σ is a certain maximal stopping time, and u a stochastic process on [0, σ ).
Theorem 1.1. Let p ∈ [2,∞) and wκ(t) = tκ with κ ∈ [0, p

2 − 1) (set κ = 0 if p =
2). Under maximal L p-regularity assumptions on the pair (A, B), and local Lipschitz
conditions and polynomial growth conditions on A, B, F and G, and assuming u0 ∈
XTr
κ,p a.s., there exists a unique L p

κ -maximal solution (u, σ ) to (1.1), and the paths of
u almost surely satisfy

u ∈ L p
loc([0, σ ), wκ ; X1) ∩ C([0, σ ); XTr

κ,p) ∩ C((0, σ ); XTr
p ). (1.2)

In the aboveσ > 0 a.s., and XTr
p = (X0, X1)1− 1

p ,p
and XTr

κ,p := (X0, X1)1− 1+κ
p ,p. A

loose introduction tomaximal regularity can be found in [3, Section 1.2]. By analyzing
the precise polynomial growth conditions of F and G we obtain conditions on (p, κ)
for criticality of the space XTr

κ,p. Of course, this condition also depends on the choice

of the spaces X0 and X1. However, the corresponding “trace space” XTr
κ,p in the critical

case is usually independent of the choice of the scale (see [40, Section 2.4] and the
applications in [3, Section 5–7]). A brief introduction to criticality in this context can
be found in [3, Section 1.1].

The well-posedness result of Theorem 1.1 is easy to state, and in [3] we showed that
it leads to new results formany of the classical SPDEs, includingBurger’s equation, the
Allen–Cahn equation, the Cahn–Hilliard equation, reaction–diffusion equations, and
the porous media equation. In the case of additive noise it is often possible to reduce
(1.1) to the deterministic setting of [40] which in turn can be analyzed pathwise. This
is carried out for the so-called primitive equation in fluid dynamics in [20].

1.2. Blow-up criteria

Next we state one of our blow-up criteria for quasilinear equations. More details
and other criteria can be found in Theorem 4.9. To formulate our blow-up criteria we
introduce the following notation:

N κ(u; t) := ‖F(·, u)‖L p(0,t,wκ ;X0) + ‖G(·, u)‖L p(0,t,wκ ;γ (H,X1/2)).

Theorem 1.2. (Quasilinear case) Under suitable conditions, the maximal solution
(u, σ ) of Theorem 1.1 satisfies
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(1) P

(
σ < ∞, lim

t↑σ u(t) exists in XTr
κ,p, N κ(u; σ) < ∞

)
= 0;

(2) P

(
σ < ∞, lim

t↑σ u(t) exists in XTr
κ,p

)
= 0 if XTr

κ,p is not critical for (1.1);

(3) P

(
σ < ∞, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖L p(0,σ ;X1− κ

p
) < ∞

)
= 0.

The blow-up criteria of Theorem 1.2 can often be used to prove global existence.
For instance, in case XTr

κ,p is not critical, for this one needs a suitable a priori bound
for the solution which implies the existence of the limit limt↑σ u(t) in the “trace
space” XTr

κ,p on the set {σ < ∞}. According to Theorem 1.2(2) this can only happen
if P(σ < ∞) = 0, and thus σ = ∞ a.s. Similar considerations hold for Theorem
1.2(1) and (3). Of course to obtain an a priori bound or energy estimate we need to use
structural properties of a given SPDE. To obtain such bounds, one can typically use
Itô’s formula, combined with one-sided growth conditions of F , and subtle regularity
results for linear SPDEs.
In the semilinear case much more can be said (see Theorems 4.10 and 4.11 for the

precise statements).

Theorem 1.3. (Semilinear case) Under suitable conditions, the maximal solution
(u, σ ) of Theorem 1.1 satisfies

(1) P

(
σ < ∞, sup

t∈[0,σ )
‖u(t)‖XTr

κ,p
< ∞

)
= 0 if XTr

κ,p is noncritical for (1.1);

(2) P

(
σ < ∞, sup

t∈[0,σ )
‖u(t)‖XTr

κ,p
+ ‖u‖L p(0,σ ;X1− κ

p
) < ∞

)
= 0;

(3) P

(
σ < ∞, ‖u‖L p(0,σ ;X1− κ

p
) < ∞

)
= 0 under extra conditions on κ .

The above results extend the blow-up criteria in [40, Corollaries 2.2, 3.3 and Theo-
rem 2.4] to the stochastic setting. The criterium (3) is a Serrin type blow-up condition,
and probably the deepest of the criteria stated here. It seems that our results are the first
systematic approach to blow-up criteria in the stochastic case. The global existence
results for stochastic Navier–Stokes equations in d = 2, and equations of reaction–
diffusion type in [6,7], will all be based on these new criteria. Let us mention that
some of the criteria we obtain are even new in the deterministic setting.
The advantage of our approach is that for a given concrete SPDE, the local well-

posedness theory, and blow-up criteria can be used as a black box. So to prove global
existence one only needs to prove energy estimates (which can be hard). However,
the rest of the argument can be completed in a rather soft way. We summarize this in
the following roadmap, of which a more extensive version can be found in Roadmap
4.14. An illustration of the results will be discussed in Sect. 1.4.

Roadmap 1.4. (a) Prove local well-posedness and regularity with Theorem 1.1;
(b) prove an energy estimate;
(c) combine the energy estimate with Theorem 1.2 or 1.3 to prove σ = ∞.
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Moreover, instantaneous regularization (see Sect. 1.3) can help in the above scheme
as often the extra regularity enables to prove energy estimates.
In [12,13,15,22,47,48] an abstract settings appear in which global existence is

proved using an argument which resembles a blow-up criterium. Of these results
the one in [22, Theorem 4.3] comes closest to the one in Theorem 1.2(3) if κ = 0.
However, in that case the result of Theorem 1.2(1)–(2) is applicable and actually easier
to check as we do not consider ‖u‖L p(0,σ ;X1) < ∞ in the criteria. There are many
other differences, and in particular, the assumptions on the nonlinearities and initial
data in [22] are much more restrictive. We refer to the introduction of [3] for a detailed
comparison.

1.3. Instantaneous regularization

In order to introduce the reader to instantaneous regularization, in this section we let
X1 � X0, which is usual in applications to SPDEs. From (1.2) one sees that if κ > 0,
then the solution to (1.1) instantaneously regularizes “in space” as the regularity of u
for t > 0 is better than the one in t = 0 since XTr

p � XTr
κ,p. This simple but central

result is the key behind our new bootstrapping method. It we will now explain in the
special setting of Corollary 6.5, which requires the conditions p > 2 and κ > 0. The
case p = 2 or κ = 0 can be studied as well, see Proposition 6.8 and the text below it.

Fix s > 0 and r ∈ (p,∞). Since κ > 0, we can choose α ∈ [0, r2 − 1) such that
1
p <

1+α
r < 1+κ

p . By (1.2) we have u(s) ∈ XTr
p ↪→ XTr

α,r a.s. and one can construct a

maximal local solution to (1.1) starting at s with initial data u(s) ∈ XTr
α,r by Theorem

1.1. This gives a maximal local solution (v, τ ) on [s,∞) and by (1.2),

v ∈ Lr
loc([s, τ ), wα; X1) ∩ C([s, τ ); XTr

α,r ) ∩ C((s, τ ); XTr
r ) almost surely. (1.3)

Since r > p, XTr
r � XTr

p and hence the regularity of v seems to be better than the one
of u in (1.2). Now if we could show that τ = σ and u = v on [s, σ ), then this would
improve the regularity of u significantly. By choosing r large one can even obtain
Hölder regularity in time (see Corollary 6.5 for details).
To prove u = v, first note that by using the regularity of v and the uniqueness of

the maximal local solution (u, σ ), one can obtain τ ≤ σ a.s. and v = u on [s, τ ).
This is not surprising since v is “more regular” than u and therefore one expects that
v blows-up before u. The key step is proving that σ = τ . To show this, note that on
the set {τ < σ }, v = u ∈ C((s, τ ]; XTr

p ) ⊆ C((s, τ ]; XTr
α,r ), and hence

P(τ < σ) = P

(
{τ < σ } ∩ {τ < ∞} ∩

{
lim
t↑τ v(t) exists in XTr

α,r

})
≤ P

(
τ < ∞, lim

t↑τ v(t) exists in XTr
α,r

)
= 0,

which follows from the blow-up criterium of Theorem 1.2(2) applied to (v, τ ).
The above gives an abstract bootstrap mechanism to obtain time regularization of

solutions to (1.1). A variation of this strategy can be used to bootstrap regularity in
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space. This requires two Banach couples (Y0,Y1) and (Ŷ0, Ŷ1) in which the equation
(1.1) can be considered as well. Next we state this result. The precise assumptions are
too technical to state here, but the conditions to be checked seem to be natural in all
examples we have considered in [6,7]. For details we refer to Theorem 6.3.

Theorem 1.5. Let (Y0,Y1) and (Ŷ0, Ŷ1) be couples of Banach spaces such that

Y1 ↪→ Y0, Ŷ1 ↪→ Ŷ0, and Ŷi ↪→ Yi .

Let r̂ ≥ r ≥ p > 2, α ∈ [0, r2 − 1), and α̂ ∈ [0, r̂2 − 1). Let (u, σ ) be the L p
κ -maximal

solution of Theorem 1.1. Under suitable conditions, the following implication holds:

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (0, σ ; Y1−θ ) a.s. �⇒ u ∈

⋂
θ∈[0,1/2)

H θ,̂r
loc (0, σ ; Ŷ1−θ ) a.s.

We emphasize that we do not need additional regularity for the initial data u0, since
the arguments all take place on [s,∞) with s > 0. The main idea of the theorem is
that regularity in the (Y0,Y1, r, α)-setting be transferred to the (Ŷ0, Ŷ1, r̂ , α̂)-setting.
Since we can freely choose the spaces Yi and Ŷi , we can iterate the above to gain
regularity. The regularity class

⋂
θ∈[0,1/2) H

θ,r
loc (0, σ ; Y1−θ ) seems rather obscure at

first sight. However, it is the one that contains all information concerning stochastic
maximal Lr -regularity. Its deterministic analogue Lr

loc(0, σ ; Y1) ∩ W 1,r
loc (0, σ ; Y0) is

much simpler to deal with.
The extra regularity obtained by bootstrapping, is, of course interesting from a

theoretical point of view, but it can also assist in proving global existence. Indeed, due
to the extra smoothness and integrability, often one can prove energy estimates on an
interval [s, σ ) with s > 0 by applying Itô’s formula and integration by parts.

In classical bootstrapping arguments, one argues in a completely different way.
Given the maximal solution (u, σ ) one investigates what regularity f := F(·, u) and
g := G(·, u) have, and combines this with regularity estimate for linear equations
with inhomogeneities f and g to (hopefully) find more space and time regularity for
u. With the new information on u, one can repeat this argument over and over again.
This method is of course very important, but it also has some disadvantages. First
of all it requires a smooth initial value. Moreover, in case of critical nonlinearities
or unweighted situations, it is often not possible to use this argument as F(·, u) or
G(·, u) does not have the right integrability/regularity properties. A 1d example where
this occurs is discussed in Sect. 1.4, and in [6] we showed that the same holds for 2d
Navier–Stokes equations.
In order to deal with the critical and unweighted case (in particular, if p = 2), we

will prove a further variation of the bootstrapping result of Theorem 1.5 in Proposition
6.8. Here the idea is to exchange some of the space regularity to create a weighted
setting out of an unweighted one. As soon as theweight is there, the loss of integrability
and regularity can be recovered with Theorem 1.5.

Finally, we mention that in deterministic theory one can often use the implicit
function theorem to prove higher-order regularity in time and space. This method
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is referred to as the parameter trick and usually attributed to [9,10]. It can be used
to prove differentiability and even real analyticity in time. For further details on this
method we refer to [39, Chapter 5] and to the notes of that chapter for further historical
accounts. Of course, differentiability in time is completely out of reach in the stochastic
setting, since already Brownian motion itself is not differentiable. Therefore, it seems
impossible to extend this method to the stochastic framework.

1.4. Illustration

In Sect. 7 we illustrate our main results in a simple toy example. Here the point is
not the strength of the results, but more the techniques to prove it. Indeed, the same
methods can be used to study more serious examples (see [6–8]).

Consider the following stochastic PDE:{
du − ∂2x u dt = ∂x (u3)dt + |u|hdwc

t , on T,

u(0) = u0, on T,
(1.4)

where u : [0,∞)×�× T → R is the unknown process and wc
t is a colored noise on

T, i.e., an Hλ(T)-cylindrical Brownian motion with λ ∈ ( 12 , 1), and h ∈ [1, 3). The
following is a special case of Theorems 7.2 and 7.3, where u3 and |u|h are replaced
by more general nonlinearities.

Theorem 1.6. Let Assumption 7.1 be satisfied. Then for any u0 ∈ L0
F0
(�; L2(T))

the following holds.

(1) There exists a unique maximal solution (u, σ ) to (7.1) on [0,∞) such that

u ∈ L2
loc([0, σ ); H1(T)) ∩ C([0, σ ); L2(T)) a.s. (1.5)

(2) (Hölder regularity) u ∈ Cθ1,θ2loc ((0, σ )×T) for all θ1 ∈ (0, 1/2) and θ2 ∈ (0, 1).
(3) (Global existence) If h = 1, then σ = ∞ a.s.

As in [6, Theorem 2.7], by further bootstrapping, one can even get θ2 ∈ (0, 2) in (2).
Moreover, this can be further extended by (for instance) applying Schauder theory.
Furthermore, a version of the above result also holds for u0 with negative smoothness
in a suitable Besov scale (see Theorem 7.4).

(1) follows from our local well-posedness theory of Part I [3]. It seems that it cannot
be deduced from other standard results unless h = 1. The proof of (2) requires the
full strength of our bootstrapping results and is complicated because of the criticality
of the nonlinearity. Some further explanations what this means can be found below.
Using (2), the proof of (3) follows by deriving an energy estimate from Itô’s formula
and applying the blow-up criterium of Theorem 1.3(2).
It seems that Theorem 1.6(2) cannot be proved by standard bootstrap methods

even if |u|hdwc is omitted. Indeed, following the usual strategy (viewing ∂x (u3) as a
inhomogeneity), one is tempted to prove that ∂x (u3) ∈ Lr

loc([0, σ ); H−1,q(T)), where
at least one of the integrability exponents r and q is strictly larger than 2. In turn, one
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has to prove that u ∈ L3r
loc([0, σ ); L3q(T)) a.s. However, the regularity in (1.5) is not

strong enough for this. Indeed, the following embeddings are sharp

C([0, t]; L2(T)) ∩ L2(0, t; H1(T)) ↪→ L6(0, t; H1/3(T)) ↪→ L6(0, t; L6(T)).

(1.6)

Therefore, using (1.5) we merely obtain ∂x (u3) ∈ L2
loc([0, σ ); H−1,2(T)) which is

useless if we want to improve regularity by standard estimates.
The above is related to the fact that ∂x (u3) is a so-called critical nonlinearity for

(7.1). Roughly speaking this means that the typical energy bound (see Lemma 7.6) and
nonlinearity are of the same order, and this makes this type of bootstrapping argument
impossible. Unfortunately, we can also not use our Theorem 1.5 because it is not
applicable in case p = 2. Instead we use the previously mentioned variation of the
latter (see Proposition 6.8) where the key point in this example is to create a weighted
setting out of the unweighted setting. After that we can apply Theorem 1.5 to gain
further regularity.
Let us stress that theway the results in Sect. 6 are applied is summarized inRoadmap

7.5. This roadmap has some universality in the sense that it can be applied almost ver-
batim in other situations where a L2(L2)-theory is available. For instance, this appears
in reaction–diffusion equations [8] and the 2d stochastic Navier–Stokes equations [6].

1.5. Other approaches to quasilinear evolution equations

In this subsectionwediscuss a selection of other approaches to quasilinear stochastic
evolution equations. Recall that our definition of quasilinearity is as explained below
(1.1). We will restrict ourselves to the case of strong solutions (in the probabilistic
sense) to parabolic equations with multiplicative colored or white Brownian noise. As
general references we refer the reader to the monographs [16,31,43]. Below we will
not discuss the part of the literature where only additive noise, or where kinetic or
weak (probabilistic) solutions are considered, as the list for this is too numerous, and
these works seem less connected to our paper.
A well-known method to study quasi- and semilinear stochastic evolution equa-

tions is to approximate the original equations, derive uniform energy estimates, prove
convergence of the approximate solutions, and identify the limit as the solution to the
original equation. In particular, one could approximate the semilinear terms F and G
by functions which are globally Lipschitz.
In aHilbert space framework one can also project the SPDE into a finite-dimensional

setting and use the above scheme, and in particular this is the general idea in the
monotone operator approach (see [31] and references therein). Another type of ap-
proximation appears in [21], where the quasilinear equation is regularized by the heat
semigroup, a version of the above approximation approach is carried out in L2, and
higher-order regularity is bootstrapped via L p-theory.
In [28] the authors use the theory of pathwise mild solutions of [37], to obtain local

well-posedness of quasilinear parabolic stochastic evolution equations. This is done
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in a Hilbert space setting, but could also be done in an L p-setting. One difficulty with
the approach is that one needs generation of evolution families for A(u) ∈ L (X1, X0)

for a large class of processes u.

1.6. Overview

• In Sect. 2 we discuss the relevant background including: weighted function
spaces and stochastic analysis;

• in Sect. 3 we present some extensions of results on stochastic maximal L p-
regularity where the initial time is random. Moreover, we prove a perturbation
result which plays a central role in blow-up criteria;

• in Sect. 4 we state our main results on blow-up criteria and give a simple appli-
cation to a problem with linear growth conditions;

• in Sect. 5 we prove the blow-up criteria;
• in Sect. 6 we present our results on instantaneous regularization;
• in Sect. 7 we illustrate how the results of Sects. 4 and 6 can be used.

1.7. Notation

• For any T ∈ (0,∞], we set IT = (0, T ). Thus, I T = [0, T ] if T < ∞ and
I∞ = [0,∞);

• R+ = (0,∞), N = {0, 1, 2, . . .};
• we write A �P B (resp. A �P B), whenever there is a constant C only depend-
ing on the parameter P such that A ≤ CB (resp. A ≥ CB). Moreover, we write
A �P B if A �P B and A �P B;

• we writeC(q1, . . . , qN ) > 0 orC = C(q1, . . . , qN ) > 0 if the positive constant
C depends only on the parameters q1, . . . , qN ;

• for any metric space (Y, dY ), y ∈ Y , η > 0, we denote by BY (x, η) := {y′ ∈
Y : dY (y, y′) < η}. If Y is a vector space, then we set BY (η) := BY (0, η);

• if X,Y is an interpolation couple of Banach space, we endow the intersection
X ∩ Y with the norm ‖ · ‖X∩Y := ‖ · ‖X + ‖ · ‖Y ;

• (·, ·)θ,p, [·, ·]θ denotes the real and the complex interpolation method, respec-
tively (see [11,34]);

• XTr
κ,p = (X0, X1)1− 1+κ

p ,p, X
Tr
p = XTr

0,p, and Xθ = [X0, X1]θ (see Assumption

3.1);
• wa

κ (t) = |t − a|κ see (2.1);
• A(I, wa

κ ; X) forA ∈ {L p, H θ,p,W 1,p, 0H
θ,p, L loc, H

θ,p
loc . . . }denoteweighted

function spaces (see Sect. 2.1);
• Cθ1,θ2 anisotropic Hölder space (see the text before Theorem 7.2);
• SMR•

p,κ (σ, T ) and SMR•
p,0(σ, T ) = SMR•

p(σ, T ), etc. denote the couples
with stochastic maximal L p-regularity (see Definitions 3.4 and 3.5);

• Hypothesis (H), see Sect. 4.1;
• Critical spaces see the text below Hypothesis (H);
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• Hypothesis H(Y0,Y1, α, r), see Assumption 6.1;
• X space associated with the nonlinearities F and G, see (5.4);
• the (Y0,Y1, r, α)-setting, see Assumption 6.1.

2. Preliminaries

In this section we collect several known results and fix our notation. Below X
denotes a Banach space, and further assumptions will be given when needed.
Let O ⊆ R

d for some d ≥ 1. For k ∈ N, Ck(O; X) denotes the set of all
maps f : O → X such that ∂α f are continuous on O for all α ∈ N

d satis-
fying

∑d
j=1 α j = k. If O is compact, then Ck(O; X) is endowed with the norm

‖u‖Ck (O;X) := ∑
|α|≤k supx∈O ‖∂αu(x)‖X .

2.1. Weighted function spaces

Let p ∈ (1,∞), κ ∈ (−1, p−1) and for a ≥ 0, we denote bywa
κ the shifted power

weight

wa
κ (t) := |t − a|κ , t ∈ R, wκ := w0

κ . (2.1)

For I = (a, b) where 0 ≤ a < b ≤ ∞ and θ ∈ (0, 1), define the following spaces:
• L p(I, wa

κ ; X) is the set of all strongly measurable functions f : I → X such

that ‖ f ‖L p(I,wa
κ ;X) := (

∫ b
a ‖ f (t)‖p

Xw
a
κ (t)dt)

1/p < ∞;
• W 1,p(I, wa

κ ; X) is the set of all f ∈ L p(I, wa
κ ; X) such that the weak derivative

satisfies f ′ ∈ L p(I, wa
κ ; X). This space is endowed with the norm:

‖ f ‖W 1,p(I,wa
κ ;X) := ‖ f ‖L p(I,wa

κ ;X) + ‖ f ′‖L p(I,wa
κ ;X);

• 0W
1,p(I, wa

κ ; X) = { f ∈ W 1,p(I, wa
κ ; X) : f (a) = 0};

• H θ,p(I, wa
κ ; X) = [L p(I, wa

κ ; X),W 1,p(I, wa
κ ; X)]θ (complex interpolation);

• 0H
θ,p(I, wa

κ ; X) = [L p(I, wa
κ ; X1), 0W

1,p(I, wa
κ ; X)]θ ;

• For an interval J ⊆ I andA ∈ {L p, H θ,p,W 1,p}, we denote byAloc(J, wa
κ ; X)

the set of all strongly measurable maps f : J → X such that f ∈ A(J ′, wa
κ ; X)

for all bounded intervals J ′ with J ′ ⊆ J .

If κ = 0, then the weight will be omitted from the notation. For the definition of
H θ,p and 0H

θ,p we used complex interpolation. For details on interpolation theory
we refer to [11,45] and [23, Appendix C].
In the case θ < 1+κ

p , the main result of [30, Section 6.2] (see [3, Theorem 2.6] for
the case of bounded intervals) states that for all 0 ≤ a < b ≤ ∞,

0H
θ,p(a, b, wa

κ ; X) = H θ,p(a, b, wa
κ ; X) (2.2)

with equivalent norms. This already played an important role in [3]. In the current
paper it will play a key role in Sect. 5.4.
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The following will be used many times in the manuscript. For each f ∈ L p(a, b,
wa
κ ; X), f is integrable on (a, b) since κ ∈ (−1, p − 1). Moreover, in the case that

κ ≥ 0 for any c ∈ (a, b) one has
‖ f ‖L p(c,b;X) ≤ |c − a|−κ/p‖ f ‖L p(c,b,wa

κ ;X).

Let us collect some useful results in the following proposition.

Proposition 2.1. Let X be a Banach space and p ∈ (1,∞). Let 0 ≤ a ≤ c < d ≤
b < ∞, κ ∈ (−1, p − 1), θ ∈ (0, 1) and A ∈ {0H, H}. The following assertions
hold.

(1) If κ ≥ 0, then for each f ∈ Aθ,p(a, b, wa
κ ; X) the following estimates hold:

‖ f ‖Aθ,p(c,d,wa
κ ;X) ≤ ‖ f ‖Aθ,p(a,b,wa

κ ;X),

‖ f ‖Aθ,p(c,b;X) ≤ (c − a)−κ/p‖ f ‖Aθ,p(a,b,wa
κ ;X),

‖ f ‖H θ,p(c,b;X) ≤ (c − a)−κ/p‖ f ‖Aθ,p(a,b,wa
κ ;X).

In particular, H θ,p(a, b, wa
κ ; X) ↪→ H θ,p

loc (a, b; X);
(2) let a > 0. Let 0Ea be the zero-extension operator from 0W

1,p(a, b, wa
κ ; X) to

0W
1,p(0, b, wa

κ ; X). Then 0Ea induces a contractive mapping

0Ea : 0H θ,p(a, b, wa
κ ; X) → 0H

θ,p(0, b, wa
κ ; X);

(3) let 1 < p ≤ q < ∞ and η ∈ (−1, q − 1). Assume that 1+κ
p >

1+η
q . Then

Aθ,q(a, b, wa
η; X) ↪→ Aθ,p(a, b, wa

κ ; X), and for all f ∈ Aθ,p(a, b, wa
η; X),

‖ f ‖Aθ,p(a,b,wa
κ ;X) � |b − a|

(
κ+1
p − η+1

q

)
‖ f ‖Aθ,q (a,b,wa

η ;X),

where the implicit constant depends only on p, q, η, κ;
(4) let 1 < p0 ≤ p1 < ∞, θ0, θ1 ∈ (0, 1) and κi ∈ (−1, pi − 1) for i ∈ {0, 1}. As-

sume κ1p1 ≤ κ0
p0

and θ0− 1+κ0
p0

≥ θ1− 1+κ1
p1

. Then for all f ∈ Aθ0,p0(a, b, wa
κ0

; X),

‖ f ‖Aθ1,p1 (a,b,wa
κ1

;X) � ‖ f ‖Aθ0,p0 (a,b,wa
κ0

;X).

Finally, if A = 0H, then the implicit constant in the above estimate can be
chosen independently of b − a.

Proof. (1): This follows by interpolation (see [3, Proposition 2.3] for details).
(2): One can check that 0Ea : 0H

j,p(a, b, wa
κ ; X) → 0H

j,p(0, b, wa
κ ; X) is con-

tractive for j ∈ {0, 1}. Therefore, the claim follows by interpolation.
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(3): We may assume a = 0 and T := b < ∞. Then for f ∈ Lq(IT , wη; X),

‖ f ‖p
L p(IT ,wκ ;X) =

∫ T

0

(
t
η
q ‖ f (t)‖X

)p
tκ−η

p
q dt

≤
( ∫ T

0
t
κq−ηp
q−p dt

) q−p
q

( ∫ T

0
tη‖ f (t)‖qXdt

) p
q

= Cp,q,κ,ηT
p
(
1+κ
p − 1+η

q

)
‖ f ‖p

Lq (IT ,wη;X),

where we used the Hölder’s inequality. Clearly, the same estimate holds for the first-
order Sobolev space. The general case follows by interpolation.
(4): See [3, Proposition 2.7]. �

Remark 2.2. Proposition 2.1(3) is false in the limiting case (1 + κ)/p = (1 + η)/q.
This can be seen by taking f (t) = t−α for an appropriate α.

We state a simple consequence of the above result.

Corollary 2.3. Let X be a Banach space and 1 ≤ q ≤ p < ∞. Let 0 ≤ a < b < ∞.
Let ε > 0 and suppose that κ ∈ (−1, p − 1), η ∈ (−1, q − 1) and 1+κ

p < ε + 1+η
q .

Then for each A ∈ {0H, H},
Aθ,p(a, b, wa

κ ; X) ↪→ Aθ−ε,q(a, b, wa
η; X), θ ∈ [ε, 1].

The case 1+κ
p = ε + 1+η

q is allowed provided p = q.

Proof. It suffices to consider a = 0 and b = T . Let A ∈ {0H, H} and let θ ∈ [ε, 1]
be fixed. We distinguish two cases.
Case (i): ε < 1+κ

p . Let κ̃ := κ − εp. Note that κ̃ ≤ κ < p − 1 and κ̃ > −1 since

ε < 1+κ
p . Therefore, Proposition 2.1(4) and (3) (using 1+κ̃

p = 1+κ
p − ε <

1+η
q ) give

Aθ,p(IT , wκ ; X) ↪→ Aθ−ε,p(IT , wκ̃ ; X) ↪→ Aθ−ε,q(IT , wη; X). (2.3)

Case (i i): ε ≥ 1+κ
p . Take ε̃ ∈ (0, 1+κp ) such that 1+κ

p <
1+η
q + ε̃. By the previous

case, we have

Aθ,p(IT , wκ ; X) ↪→ Aθ−̃ε,q(IT , wη; X) ↪→ Aθ−ε,q(IT , wη; X)
where the last inclusion follows by Proposition 2.1(4) and ε > ε̃.

To prove the last claim, note that ε < 1+κ
p due to the assumption. Now the claim

follows as in Case (i) if we omit the last embedding of (2.3). �
Next we recall some useful interpolation estimates.

Lemma 2.4. (Mixed derivative inequality) Let (X0, X1) be an interpolation couple
of UMD spaces. Let pi ∈ (1,∞), κi ∈ (−1, pi − 1) and si ∈ [0, 1] for i ∈ {0, 1}. For
θ ∈ (0, 1) set

s := s0(1 − θ)+ s1θ,
1

p
:= 1 − θ

p0
+ θ

p1
, κ := (1 − θ)

p

p0
κ0 + θ

p

p1
κ1.
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Then there exists a constant C > 0 s.t. for all f ∈ A0(IT , wκ0; X0)∩A1(IT , wκ1; X1)

‖ f ‖A(IT ,wκ ;[X0,X1]θ ) ≤ C‖ f ‖1−θA0(IT ,wκ0 ;X0)
‖ f ‖θA1(IT ,wκ1 ;X1)

,

in each of the following cases:

(1) A = Hs,p, Ai = Hsi ,pi and si ∈ (0, 1) for i ∈ {0, 1};
(2) A = 0H

s,p, Ai = 0H
si ,pi and si ∈ (0, 1) for i ∈ {0, 1}, provided s �= 1+κ

p ;

(3) A = Hs,p, A0 = L p0 , A1 = W 1,p1 , s0 = 0, s1 = 1;

where in case (2) the constant C can be chosen independently of T .

Proof. (1): See [3, Proposition 2.8]. The other cases follow by the same argument if
one uses the extension operator of [3, Proposition 2.5]. �

To conclude, let us recall the trace embedding. Here in the limiting case we write
H1,p = W 1,p and 0H

1,p = 0W
1,p. We also use the notation Xθ = [X0, X1]θ for

θ ∈ [0, 1] for the complex interpolation spaces.

Proposition 2.5. Assume that p ∈ (1,∞), κ ∈ [0, p−1), θ ∈ (0, 1] and let 0 ≤ a <
b < ∞. Let X0, X1 be Banach spaces such that X1 ↪→ X0. Then the following hold:

(1) If θ > (1 + κ)/p, then

H θ,p(a, b, wa
κ ; X1−θ ) ∩ L p(a, b, wa

κ ; X1) ↪→ C([a, b]; (X0, X1)1− 1+κ
p ,p);

(2) If θ > 1/p, then for any δ ∈ (0, b − a),

H θ,p(a, b, wa
κ ; X1−θ ) ∩ L p(a, b, wa

κ ; X1) ↪→ C([a + δ, b]; (X0, X1)1− 1
p ,p
).

Moreover, if H θ,p is replaced by 0H
θ,p, the constants in the embeddings in (1) and

(2) can be taken independent of a, b.

The above result follows from [4,35] (see also [3, Proposition 2.10]) provided X1 =
D(A) and A is a sectorial operator on X . The more general case will be considered in
[2], but is not needed here.

2.2. Probabilistic preliminaries

Throughout the paper (�,A ,P) denotes a probability space, and F = (Ft )t≥0 is
a filtration. Below WH : L2(R+; H) → L2(�) denotes an H-cylindrical Brownian
motion with respect to F (see, e.g., [3, Definition 2.11]). The stochastic integration
theory of [14,46,50] is summarized in Part I of our work [3, Section 2.3].
Let X be a Banach space. A process φ : [0, T ] × � → X is called strongly

progressively measurable if for all t ∈ [0, T ], φ|[0,t] is strongly B([0, t]) ⊗ Ft -
measurable (here B denotes the Borel σ -algebra). The σ -algebra generated by the
strongly progressively measurable processes on�×[0, T ]will be denoted byPT (or
simply P) and is a subset of B([0, T ])⊗ FT . In the following, for any p ∈ [0,∞)
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and any Banach space Y , L p
P (IT ×�; Y ) denotes the closed subspace of all strongly

progressively measurable processes.
A stopping time (or random time) τ is a measurable map τ : � → [0, T ] such that

{τ ≤ t} ∈ Ft for all t ∈ [0, T ]. We denote by �0, σ � the stochastic interval

�0, σ � := {(t, ω) ∈ [0, T ] ×� : 0 ≤ t ≤ σ(ω)}.

Analogously definitions hold for �0, σ �, �0, σ � etc.
In accordance with the previous notation, for A ⊆ � and τ, μ two stopping times

such that τ ≤ μ, we set

[0, T ] ×� ⊇ [τ, μ] × A := {(t, ω) ∈ [0, T ] × A : τ(ω) ≤ t ≤ μ(ω)}.

Similar definitions are employed for [τ, μ) × A, (τ, μ) × A etc. In particular,
�0, σ � = [0, σ ] ×�.

Let X be a Banach space and let A ∈ A . Let σ,μ be stopping time such thatμ ≤ σ

a.s. Let I ∈ {[μ, σ ], (μ, σ )}. We say that u : I × A → X is strongly measurable
(resp. strongly progressively measurable) if the process

1I×A u :=
{
u, on I × A,

0, otherwise,
(2.4)

is strongly measurable (resp. strongly progressively measurable).
To each stopping time τ we can associate the σ -algebra of the τ -past,

Fτ := {A ∈ A : {τ ≤ t} ∩ A ∈ Ft , ∀t ∈ [0, T ]}. (2.5)

The following well-known results will be used frequently in the paper without
further mentioning (see [25, Lemmas 7.1 and 7.5]).

Proposition 2.6. Let τ be a stopping time. ThenFτ is a σ -algebra and the following
properties hold.

• If τ = t a.s. for some t ∈ [0, T ], then Fτ = Ft ;
• if X : [0, T ] ×� → X is a strongly progressively measurable process, then the
random variable Xτ (ω) := X (τ (ω), ω) is stronglyFτ -measurable;

• if σ is a stopping time, then {τ < σ } is inFτ ∩ Fσ = Fτ∧σ .

We will need the following approximation result for a sequence of stopping times.

Lemma 2.7. Let (σn)n≥1 and σ be stopping times such that 0 ≤ σn < σ ≤ T a.s. for
all n ≥ 1 and limn→∞ σn = σ a.s. Then for each ε > 0, there exists a sequence of
stopping times (̃σn)n≥1 such that the following assertion holds for each n ≥ 1:

(1) σ̃n takes values in a finite subset of [0, T ];
(2) σ̃n−1 ≤ σ̃n and σ̃n ≥ σn a.s.;
(3) P(̃σn ≥ σ) ≤ ε.
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Finally, if sup� σn < T for all n ≥ 1, then one can choose (̃σn)n≥1 such that sup� σ̃n <
T for all n ≥ 1.

Proof. Let ε > 0. We approximate each σn from above in a suitable way. Since for
each n ≥ 1, one has 0 = P(σn ≥ σ) = lim j→∞ P(σn +1/j > σ) it follows that there
exists a jn ≥ 1 (also depending on ε) such that

P(σn + 1/jn > σ) ≤ 2−nε. (2.6)

Let 0 = tn0 < tn1 < . . . < tnNn
= T be such that |tni − tni+1| < 1/(2 jn) for each

i = 0, . . . , Nn − 1. Set Un
i := {tni ≤ σn < tni+1} ∈ Ftni+1

for i = 0, . . . , Nn − 1. Let
τn be the stopping time defined by

τn :=
Nn−1∑
i=0

tni+11Un
i
.

Thus, σn ≤ τn < σn +1/jn a.s. and by (2.6), P(τn ≥ σ) ≤ P(σn +1/jn > σ) < 2−nε.
Now for each n ≥ 1, set σ̃n := τn ∨ τn−1 ∨ · · · ∨ τ1. Then each σ̃n takes values in a
finite set. Moreover, σ̃n ≥ σ̃n−1 and σ̃n ≥ τn ≥ σn for all n ≥ 1 a.s. Finally,

P(̃σn ≥ σ) ≤
n∑

i=1

P(τi ≥ σ) ≤
∞∑
i=1

2−iε = ε.

The last claim follows from the above construction by choosing jn in (2.6) small
enough so that 1/jn < T − sup� σn . �

Next, we introduce some stopped versions of the spaces we introduced in Sect. 2.1.
As these definitions sometimes lead to measurability problems, we need to be careful
here. This issue already appears in [3] (see Lemma 2.15 and Definition 2.16 there) for
processes with random endpoint. The latter definitions can be extended easily to the
case of random initial time σ provided it takes values in a finite set. In particular, a
natural norm can be defined for the space

L p(�;Aθ,p(σ, τ,wσκ ; X)) for A ∈ {0H, H}, and L p(�;C([σ, τ ]; X))
where X is a Banach space. Additionally, we will need some spaces of processes
starting at a more general random time and this is defined below. If the starting random
time takes values in a finite set, the definitions coincide.
We say that f ∈ L p(�; 0H θ,p(σ, T ; X)) if f : �σ, T � → X is stronglymeasurable,

f ∈ 0H
θ,p(σ, T ; X) a.s. and 0Eσ f ∈ L p(�; 0H θ,p(IT ; X)), where 0Eσ is the 0-

extension operator in Proposition 2.1(2). Moreover, we set ‖ f ‖L p(�;0H θ,p(σ,T ;X)) :=
‖ 0Eσ f ‖L p(�;0H θ,p(IT ;X)).
Let (Yt )t∈IT be a family of function spaces such that for any f : IT → Y and

any t ∈ IT , f |(t,T ) ∈ Yt and t �→ ‖ f |(t,T )‖Yt is continuous, we say f ∈ L p(�; Yσ )
if there exists a strongly measurable map f̃ : �0, T � → X such that f̃ |�σ,T � =
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f and ‖ f ‖L p(�;Yσ ) := (E‖ f̃ |(σ,T )‖p
Yσ
)1/p. The main spaces we need this for are

Yt = C([t, T ]; X) and Yt = Lr (t, T ; X). In the above, we add the subscript P if in
addition the process f is strongly progressively measurable. One can check that the
spaces L p(�; Yσ ) with (Yt )t∈IT as above, are Banach spaces.

3. Stochastic maximal L p-regularity

The theory of stochastic maximal L p-regularity has been developed in many recent
works and is still ongoing research. We refer to [27,36,49] and references therein for
an overview. A loose introduction into the topic of (stochastic) maximal regularity can
be found in [3, Section 1.2].

As in [3, Section 3], the following assumption will be made throughout Sects. 3–6
where the abstract theory is studied.

Assumption 3.1. Let X0, X1 be UMD Banach spaces with type 2 and X1 ↪→ X0

densely. Assume one of the following holds:

• p ∈ (2,∞) and κ ∈ [0, p
2 − 1);

• p = 2, κ = 0 and X0, X1 are Hilbert spaces.

For θ ∈ (0, 1) and p, κ as above, we set

Xθ := [X0, X1]θ , XTr
κ,p := (X0, X1)1− 1+κ

p ,p, XTr
p := XTr

0,p.

Let us recall that, in the case p = 2 and κ = 0, by [23, Corollary C.4.2] we have
X 1

2
= (X0, X1) 1

2 ,2
= XTr

2 . This is one of the reasons we only consider Hilbert spaces
if p = 2 and it will be used without further mentioning it.

3.1. Definitions and foundational results

In this section we recall and extend some definition given in [3, Section 3]. Let us
begin with the following assumption which will be in force throughout Sect. 3.

Assumption 3.2. Let T ∈ (0,∞] and σ : � → [0, T ] be a stopping time. The
maps A : �σ, T � → L (X1, X0), B : �σ, T � → L (X1, γ (H, X1/2)) are strongly
progressively measurable. Moreover, there exists a constant CA,B > 0 such that for
a.a. ω ∈ � and for all t ∈ (σ (ω), T ),

‖A(t, ω)‖L (X1,X0) + ‖B(t, ω)‖L (X1,γ (H,X1/2)) ≤ CA,B .

Stochastic maximal L p-regularity is concerned with the optimal regularity estimate
for the linear abstract stochastic Cauchy problem:{

du(t)+ A(t)u(t)dt = f (t)dt + (B(t)u(t)+ g(t))dWH (t), t ∈ �σ, T �,

u(σ ) = uσ .
(3.1)
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A new feature is that we consider the initial condition at a random time σ since this
will be needed in some of the proofs below.
The definition of strong solution to (3.1) is as follows:

Definition 3.3. Let Assumptions 3.1 and 3.2 be satisfied. Let τ be a stopping time
such that σ ≤ τ ≤ T a.s. Let

uσ ∈ L0
Fσ
(�; X0), f ∈ L0

P (�; L1(σ, τ ; X0)), g ∈ L0
P (�; L2(σ, τ ; γ (H, X1/2))).

A strongly progressive measurable map u : �σ, τ� → X1 is called a strong solution
to (3.1) on �σ, τ� if u ∈ L2(σ, τ ; X1) a.s. and a.s. for all t ∈ [σ, τ ],

u(t)− uσ +
∫ t

σ

A(s)u(s)ds =
∫ t

σ

f (s)ds +
∫ t

0
1�σ,τ�(B(s)u(s)+ g(s))dWH (s).

If σ, τ are constants, then we simply write u is a strong solution to (3.1) on [σ, τ ]
instead of �σ, τ�. As in [3], we follow [36] to define stochastic maximal L p-regularity.
Recall that norms at random times are defined in Sect. 2.2.

Definition 3.4. (Stochastic maximal L p-regularity) Let Assumptions 3.1 and 3.2 be
satisfied. We write (A, B) ∈ SMRp,κ (σ, T ) if for every

f ∈ L p
P (�σ, T �, wσκ ; X0), g ∈ L p

P (�σ, T �, wσκ ; γ (H, X1/2)) (3.2)

there exists a strong solutionu to (3.1)withuσ = 0 such thatu ∈ L p
P (�σ, T �, wσκ ; X1),

and, moreover, for all stopping time τ , such that σ ≤ τ ≤ T a.s., and each strong
solution u ∈ L p

P (�σ, τ �, w
σ
κ ; X1) to (3.1) on �σ, τ� the following estimate holds

‖u‖L p(�σ,τ�,wσκ ;X1)
≤ C(‖ f ‖L p(�σ,τ�,wσκ ;X0)

+ ‖g‖L p(�σ,τ�,wσκ ;γ (H,X1/2))
),

where C > 0 is independent of ( f, g, τ ). We set SMRp(σ, T ) := SMRp,0(σ, T ).
Moreover, we write A ∈ SMRp,κ (σ, T ) if (A, 0) ∈ SMRp,κ (σ, T ).

If (A, B) ∈ SMRp,κ (σ, T ), then by the stated estimate a strong solution to (3.1)
in L p(�σ, T �, wσκ ; X1) is unique.

Definition 3.5. Let Assumptions 3.1 and 3.2 be satisfied.

(1) Let p ∈ (2,∞). In case κ > 0, suppose that σ takes values in a finite set. We
write (A, B) ∈ SMR•

p,κ (σ, T ) if (A, B) ∈ SMRp,κ (σ, T ) and for each f, g
as in (3.2) the strong solution u to (3.1) with uσ = 0 satisfies

‖u‖L p(�;0H θ,p(σ,T,wσκ ;X1−θ )) ≤ Cθ (‖ f ‖L p(�σ,T �,wσκ ;X0)

+ ‖g‖L p(�σ,T �,wσκ ;γ (H,X1/2))
),

for each θ ∈ [0, 12 ) \ { 1+κp }, where Cθ is independent of f, g, τ .
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(2) Let p = 2 and κ = 0. We write (A, B) ∈ SMR•
2,0(σ, T ) if (A, B) ∈

SMR2,0(σ, T ) and for each f, g as in (3.2) the strong solution u to (3.1) with
uσ = 0 satisfies

‖u‖L2(�;C([σ,T ];X1/2))
≤ C(‖ f ‖L2(�σ,T �;X0)

+ ‖g‖L2(�σ,T �;γ (H,X1/2))
),

where C is independent of f, g, τ .

Finally, we say that A ∈ SMR•
p,κ (σ, T ) if (A, 0) ∈ SMR•

p,κ (σ, T ) and we set

SMR•
p(σ, T ) := SMR•

p,0(σ, T ).

In the above setting we consider the solution operator

u = Rσ,(A,B)(0, f, g). (3.3)

In (3.10) the mapping Rσ,(A,B)(0, ·, ·) will be extended to nonzero initial data. For
p > 2 and κ ∈ [0, p

2 − 1) (where σ takes values in a finite set in the case κ > 0), and
θ ∈ [0, 12 ) \ { 1+κp },Rσ,(A,B)(0, ·, ·) defines a mapping

L p
P (�σ, T �, wσκ ; X0)×L p

P (�σ, T �, wσκ ; γ (H, X1/2))→L p(�; 0H θ,p(σ, T ; X1−θ )).

Moreover, we define the constants

Cdet,θ,p,κ
(A,B) (σ, T ) = ‖Rσ,(A,B)(0, ·, 0)‖L p

P (�σ,T �,wσκ ;X0)→L p(�;0H θ,p(σ,T,wσκ ;X1−θ )),

Csto,θ,p,κ
(A,B) (σ, T ) = ‖Rσ,(A,B)(0, 0, ·)‖L p

P (�σ,T �,wσκ ;γ (H,X1/2))→L p(�;0H θ,p(σ,T,wσκ ;X1−θ )),

where in the case p = 2, κ = 0, θ ∈ (0, 12 ), we replace the range space by
L2(�;C([σ, T ]; X1/2)) (which is constant in θ ∈ (0, 12 )). Moreover, we set

K det,θ,p,κ
(A,B) (σ, T ) = Cdet,θ,p,κ

(A,B) (σ, T )+ Cdet,0,p,κ
(A,B) (σ, T ),

K sto,θ,p,κ
(A,B) (σ, T ) = Csto,θ,p,κ

(A,B) + Csto,0,p,κ
(A,B) (σ, T ).

(3.4)

Remark 3.6. (1) Definition 3.5 (1) reduces to the one in [3, Section 3] in case σ =
0. The case θ = 1+κ

p is not considered, since the concrete description of the
interpolation space is more complicated and not considered in [30, Theorem
6.5]. In case σ = 0, this case was included in [3] as it can be obtained by
complex interpolation. This becomes unclear for random times σ ;

(2) the stopping time σ in Definition 3.5(1) is assumed to take only takes finitely
many values and this is sufficient for our purposes. We avoid the general case
due to nontrivial measurability problems.

The following basic result can be proved in a similar way as in [3, Proposition 3.8].
It allows us to focus on proving (A, B) ∈ SMRp,κ (σ, T ) and obtain the stronger
result (A, B) ∈ SMR•

p,κ (σ, T ) almost for free.
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Proposition 3.7. (Transference of stochasticmaximal regularity)Let Assumptions 3.1
and 3.2 be satisfied. Let σ : � → [0, T ] be a stopping time which takes values in a
finite set if κ > 0. If (A, B) ∈ SMRp,κ (σ, T ) and SMR•

p,κ (σ, T ) is nonempty, then
(A, B) ∈ SMR•

p,κ (σ, T ).

In order to check that SMR•
p,κ (σ, T ) is nonempty we can often use the following

result of [49] (the extension to power weights can be found in [4]). More general
weights and extrapolation have been considered in [32]. Details on H∞-functional
calculus can be found in [18] and [24, Chapter 10].

Theorem 3.8. Let Assumption 3.1 be satisfied. Assume that X0 is isomorphic to a
closed subspace of an Lq-space for some q ∈ [2,∞) on a σ -finite measure space. Let
A be a closed operator on X0 such that D(A) = X1. Assume that there exists a λ ∈ R

such that λ+ A has a bounded H∞-calculus on X0 of angle < π/2. Then

A ∈ SMR•
p,κ (s, T ), for all 0 ≤ s < T < ∞.

As noticed in [48], Theorem 3.8 easily extends to Fs-measurable operators A :
� → L (X1, X0) as long as the estimates and the angle for the H∞-calculus are
uniform in ω ∈ �. Combining Theorem 3.8 with [3, Example 2.1], one immedi-
ately obtains a large class of example of operators in SMR•

p,κ (s, T ). For additional
examples, see [3, Section 3].

3.2. Random initial times

In this section we study the role of random initial times.Wewill start by considering
linear problem (3.1) for nontrivial initial data at a random initial time. A similar result
was proved in [3, Proposition 3.11] for fixed times, but without taking care of the
dependence on the length of the time interval, which turns out to be important here.
Therefore, we have to provide a detailed proof. The construction in the proof below
will be used later on.

Proposition 3.9. (Nonzero initial data) Suppose that Assumptions 3.1 and 3.2 be
satisfied. Let (A, B) ∈ SMRp,κ (σ, T ). Then for any uσ ∈ L p

Fσ
(�; XTr

κ,p), f ∈
L p
P (�σ, T �, wσκ ; X0), and g ∈ L p

P (�σ, T �, wσκ ; γ (H, X1/2)), there exists a unique
strong solution u ∈ L p

P ((σ, T )×�,wσκ ; X1) to (3.1) on �σ, T �, and

‖u‖L p((σ,T )×�,wσκ ;X1) ≤ C‖uσ ‖L p(�;XTr
κ,p)

+ C‖ f ‖L p(�σ,T �,wσκ ;X0)
+ C‖g‖L p(�σ,T �,wσκ ;γ (H,X1/2))

(3.5)
where C only depends on p, κ, K j,θ,p,κ

(A,B) (σ, T ).
If additionally (A, B) ∈ SMR•

p,κ (σ, T ) and σ takes finitely many values if κ > 0,
then the left-hand side of (3.5) can be replaced by

(1) ‖u‖L p(�;C([σ,T ];XTr
κ,p))

;

(2) ‖u‖L p(�;C([σ+δ,T ];XTr
p ))

if δ > 0;
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(3) ‖u‖L p(�;H θ,p(σ,T,wσκ ;X1−θ )) if θ ∈ [0, 12 ) \ { 1+κp } and p ∈ (2,∞);

(4) ‖u‖L p(�;0H θ,p(σ,T,wσκ ;X1−θ )) if θ ∈ (0, 1+κp ) and p ∈ (2,∞);

where C also depends on δ (resp. θ ) in (2) (resp. (3) and (4)).

The norms on random intervals in the above result are defined as at the end of Sect.
2.2. Part (4) is an estimate in terms of the 0H -norms and will only play a role in the
proof of Theorem 4.10(3). Note that due to (2.2), no trace restrictions is needed in (4).

Proof. For the reader’s convenience, we split the proof into several steps. We only
consider the case p > 2, since the case p = 2 is simpler.

Below we will use the so-called trace method of interpolation. By [11, Theorem
3.12.2] or [45, Theorem 1.8.2, p. 44], XTr

κ,p is the set of all x ∈ X0 + X1 such that
x = h(0) for some h ∈ W 1,p(R+, wκ ; X0) ∩ L p(R+, wκ ; X1) and

C−1
p,κ‖x‖XTr

κ,p
≤ inf ‖h‖W 1,p(R+,wκ ;X0)∩L p(R+,wκ ;X1)

≤ Cp,κ‖x‖XTr
κ,p
, (3.6)

where the infimum is taken over all h as above and where C only depends on p, κ .
Step 1: the case (A, B) ∈ SMRp,κ (σ, T ). Uniqueness is clear from (A, B) ∈

SMRp,κ (σ, T ). By completeness and density (see [3, Proposition 3.11]), it is enough
to prove the claim for uσ = ∑N

j=1 1U j x j where N ≥ 1, x1, . . . , xN ∈ XTr
κ,p, and

(Ui )
N
i=1 ⊆ Fσ is a partition of �. By (3.6) there exist h j ∈ W 1,p(R+, wκ ; X0) ∩

L p(R+, wκ ; X1) such that h j (0) = x j and

‖h j‖W 1,p(R+,wκ ;X0)∩L p(R+,wκ ;X1)
≤ 2Cp,κ‖x j‖XTr

κ,p
, j ∈ {1, . . . , N }.

Then v1 := ∑N
j=1 1U j h j (· − σ) on �σ,∞� is strongly progressively measurable. It

follows that u is a strong solution to (3.1) if and only if v2 := u − v1 is a strong
solution to{

dv2 + Av2dt = [ f − v̇1 − Av1]dt + (Bv2 + Bv1 + g)dWH ,

v2(σ ) = 0.
(3.7)

Let Aθ,p = H θ,p, or A = 0H
θ,p if θ ∈ (0, (1 + κ)/p). Note that on U j ,

‖v1‖Aθ,p(σ,T,wσκ ;X1−θ )
(i)≤ ‖t �→ h j (t − σ)‖Aθ,p(σ,∞,wσκ ;X1−θ )

(i i)≤ ‖h j‖Aθ,p(R+,wκ ;X1−θ )
(i i i)≤ Cθ‖h j‖H θ,p(R+,wκ ;X1−θ )
(iv)≤ Cθ‖h j‖L p(R+,wκ ;X1) + Cθ‖h j‖W 1,p(R+,wκ ;X0)

(v)≤ 2CθCp,κ‖uσ ‖XTr
κ,p
,

where in (i) we used Proposition 2.1(1), and in (i i) a translation argument. In (i i i)
we used (2.2) if Aθ,p = 0H

θ,p and in (iv) Lemma 2.4. Finally, in (v) we used the
choice of h j . Note that (i i i) can be avoided if Aθ,p = H θ,p.
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In the following we set C ′
θ := 2CθCp,κ . If θ ∈ {0, 1}, then taking L p(�)-norms

we obtain
‖v1‖L p(�;H θ,p(σ,T,wσκ ;X1−θ )) ≤ C ′

θ‖uσ ‖L p
F σ

(�;XTr
κ,p)
, (3.8)

Since v2 satisfies (3.7) and (A, B) ∈ SMRp,κ (σ, T ), setting Cθ1 = Cdet,θ,p,κ
(A,B) (σ, T )

and Cθ2 = Csto,θ,p,κ
(A,B) (σ, T ) it follows that

‖v2‖L p(�σ,T �,wσκ ;X1)

≤ C0
1‖ f + v̇1 − Av1‖L p(�σ,T �,wσκ ;X0)

+ C0
2‖Bv1 + g‖L p(�σ,T �,wσκ ;γ (H,X1/2))

≤ C̃0C
0
1‖uσ‖L p(�;XTr

κ,p)
+ C0

1‖ f ‖L p(�σ,T �,wσκ ;X0)
+ C0

2‖g‖L p(�σ,T �,wσκ ;γ (H,X1/2))
,

where in the last step we used (3.8). Combining the estimates for v1 and v2, we obtain
(1).
Next suppose (A, B) ∈ SMR•

p,κ (T ). In the same way as in Step 1, by (3.8) for

each θ ∈ [0, 12 ) \ { 1+κp },
‖v2‖L p(�;0H θ,p(σ,T,wσκ ;X1−θ )) ≤ C̃0C

0
1‖uσ ‖L p(�;XTr

κ,p)
+ Cθ1‖ f ‖L p(�σ,T �,wσκ ;X0)

+ Cθ2‖g‖L p(�σ,T �,wσκ ;γ (H,X1/2))
.

(3.9)
Combining the estimates, we obtain (3) and (4), where for (3) one additionally needs

to use that 0H
θ,p ↪→ H θ,p, contractively.

The maximal estimate in (1) follows by considering v1 and v2 separately again.
Indeed, by Proposition 2.5(1) applied to each h j we obtain

‖v1‖C([σ,T ];XTr
κ,p)

≤ C‖uσ‖XTr
κ,p
, a.s.

The estimate for v2 follows by combining (3.9) for θ = 0 and θ ∈ ((1 + κ)/p, 1/2)
with Proposition 2.5. To prove (2), one can argue similarly using Proposition 2.5(2)
instead of Proposition 2.5(1). �

By the above we can extend the solution operator, defined for uσ = 0 in (3.3), to
nonzero initial values by setting

Rσ,(A,B)(uσ , f, g) := u, (3.10)

where u is the unique strong solution to (3.1) on �σ, T �. This defines a mapping from

L p
Fσ
(�; XTr

κ,p)× L p
P (�σ, T �, wσκ ; X0)× L p

P (�σ, T �, wσκ ; γ (H, X1/2)) (3.11)

into L p(�σ, T �, wσκ ; X1).
The following result can be obtained as in [3, Proposition 3.13].

Proposition 3.10. (Localization and causality). Let Assumptions 3.1 and 3.2 be sat-
isfied. Let (A, B) ∈ SMRp,κ (σ, T ). Let σ, τ be stopping times such that σ ≤ τ ≤ T
a.s. Assume that (uσ , f, g) belongs to the space in (3.11) and u := Rσ,(A,B)(uσ , f, g).
Then the following holds:
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(1) If σ is a stopping time with values in IT , then for any F ∈ Fσ one has

1Fu = 1FRσ,(A,B)(1Fuσ , 1F f, 1Fg), a.s. on �s, T �.

(2) For any strong solution v ∈ L p(�σ, τ �, wσκ ; X1) to (3.1) on �σ, τ�, one has

v = u|�σ,τ� = Rσ,(A,B)(uσ , 1�σ,τ� f, 1�σ,τ�g), a.s. on �σ, τ�,

where we can replace �σ, τ � by its half open versions or closed version as well.

Note that the last assertion follows from the fact that the symmetric difference of
the different sorts of intervals has zero Lebesgue measure.
Next we show that one can combine operators (A j , Bj ) at discrete random times

to obtain an operator in SMR•
p,κ (σ, T ).

Proposition 3.11. (Sufficient conditions for SMR at random initial times). Let As-
sumption 3.1 be satisfied. Suppose that σ = ∑N

j=1 1U j s j , for N ∈ N, where (s j )Nj=1

is in (0, T ), and (U j )
N
j=1 is a partition of� with U j ∈ Fs j for j ∈ {1, . . . , N }. Given

(A j , Bj ) ∈ SMR•
p,κ (s j , T ) for j ∈ {1, . . . , N } satisfying Assumption 3.2, set

A :=
N∑
j=1

1U j×[s j ,T ]A j , and B :=
N∑
j=1

1U j×[s j ,T ]Bj

Then (A, B) ∈ SMR•
p,κ (σ, T ) and for each i ∈ {det, sto} and θ ∈ [0, 12 ) \ { 1+κp }

Ki,θ,p,κ
(A,B) (σ, T ) ≤ max

j∈{1,...,N } K
i,θ,p,κ
(A j ,Bj )

(σ, T ).

Proof. We only consider p > 2. Let R j := Rs j ,(A j ,Bj ) be the solution operator
associated to (A j , Bj ). Using Proposition 3.10, one can check that the unique solution
to (3.1) with f, g as in (3.2) and uσ = 0 is given by

u :=
N∑
j=1

1U jR j (0, f, g) =
N∑
j=1

1U jR j (0, 1U j f, 1U j g), (3.12)

Therefore, if f = 0, setting K = max j∈{1,...,N } K θ,i,p,κ
(A j ,Bj )

(s j , T ) we obtain

‖u‖p
L p
P (�;0H θ,p(σ,T,wσκ ;X1−θ ))

=
N∑
j=1

E

[
1U j ‖R j (0, 0, 1U j g)‖p

0H
θ,p(s j ,T,w

s j
κ ;X1−θ )

]

≤ K p
( N∑

j=1

E

[
1U j ‖g‖p

L p(s j ,T,w
s j
κ ;γ (H,X1/2))

] )

= K p‖g‖p
L p(�σ,T �,wσκ ;γ (H,X1/2))

.

This proves the required estimate for K sto,θ,p,κ
(A,B) . The other case is similar. �
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We end this subsection with a result which shows that weighted maximal regularity
implies unweightedmaximal regularity for a shifted problem.Although in applications
it is usually obvious that the latter holds, from a theoretical perspective it has some
interest that weighted maximal regularity can be sufficient. It can be used to check
Assumption 4.5 for blow-up criteria.

Proposition 3.12. Let Assumptions 3.1 and 3.2 be satisfied. Let τ be a stopping time
such that σ ≤ τ ≤ T a.s. Assume that one of the following conditions holds:

• κ = 0.
• κ > 0, σ takes values in a finite set, where we suppose s := inf{τ(ω)− σ(ω) :
ω ∈ �} > 0 and r := sup{T − σ(ω) : ω ∈ �}.

If (A, B) ∈ SMR•
p,κ (σ, T ), then (A, B) ∈ SMR•

p(τ, T ), and

K j,θ,p,0
(A,B) (τ, T ) ≤ s−κ/prκ/pK j,θ,p,κ

(A,B) (σ, T ),

for j ∈ {det, sto} and θ ∈ [0, 1/2).
Proof. To prove the proposition, we only consider the case p > 2 as the other case
is simpler. Let u = Rσ,(A,B)(0, 1�τ,T � f, 1�τ,T �g). Then Proposition 3.10 and the
assumption on (A, B) imply that u|�τ,T � is the unique strong solution to

du + Audt = f dt + (Bu + g)dWH , u(τ ) = 0,

and u = 0 on �σ, τ�.
If σ < τ , then combining two estimates in Proposition 2.1(1) we obtain

‖u‖
0H

θ,p(τ,T ;X1−θ ) ≤ s−κ/p‖u‖
0H

θ,p(τ,T,wσκ ;X1−θ ) ≤ s−κ/p‖u‖
0H

θ,p(σ,T,wσκ ;X1−θ ).

Clearly, the latter still holds with constant one if σ = τ and κ = 0.
Therefore, by the assumption on (A, B) for each θ ∈ [0, 12 ) \ { 1+κp }, we obtain
‖u‖L p(�;0H θ,p(τ,T ;X1−θ ))

≤ s−κ/p‖u‖L p(�;0H θ,p(σ,T,wσκ ;X1−θ ))

≤ s−κ/p(K1‖1�τ,T � f ‖L p(�σ,T �,wσκ ;X0)
+ K2‖1�τ,T �g‖L p�σ,T �,wσκ ;γ (H,X1/2))

)

≤ s−κ/prκ/p(K1‖ f ‖L p(�τ,T �;X0)
+ K2‖g‖L p�τ,T �;γ (H,X1/2))

),

where K1 = K det,θ,p,κ
(A,B) (σ, T ) and K2 = K sto,θ,p,κ

(A,B) (σ, T ) using the notation of
(3.4). �

3.3. Perturbations

In this subsectionwewill discuss a simple perturbation resultwhichwill be needed in
Theorem 4.9 on blow-up criteria. It is based on a version of the method of continuity,
which extends the result [36, Proposition 3.18] of Portal and the second author in
several ways.
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To simplify the notation for stopping times σ, τ such that s ≤ τ ≤ σ ≤ T , we set

Eθ (σ, τ ) = L p
P (�σ, τ�, wσκ ; Xθ ) and Eγθ (σ, τ ) = L p

P (�σ, τ�, wσκ ; γ (H, Xθ )), θ ∈ [0, 1].

Proposition 3.13. (Method of continuity) Let Assumptions 3.1 and 3.2 be satisfied.
Suppose that (A, B) ∈ SMRp,κ (σ, T ), where σ is a stopping time with values in
[s, T ]. Let Â : �σ, T � → L (X1, X0), B̂ : �σ, T � → L (X1, γ (H, X1/2)) be strongly
progressively measurable and assume there exists a constant Ĉ such that

‖ Â(t, ω)x‖X0 + ‖B̂(t, ω)x‖γ (H,X1/2) ≤ ĈA,B‖x‖X1 , (t, ω) ∈ �σ, T �, x ∈ X1.

Let

Aλ = (1 − λ)A + λ Â and Bλ = (1 − λ)B + λB̂, λ ∈ [0, 1].
Suppose that there exist constants Cdet,Csto > 0 such that for all λ ∈ [0, 1], for
all stopping time τ such that σ ≤ τ ≤ T , f ∈ E0(σ, T ), g ∈ Eγ1/2(σ, T ) and each
u ∈ E1(σ, τ ) which is a strong solution on �σ, τ� to{

du(t)+ Aλudt = f dt + (Bλu + g)dWH , on �σ, T �,

u(σ ) = 0,
(3.13)

the following estimate holds

‖u‖E1(σ,τ ) ≤ Cdet‖ f ‖E0(σ,τ ) + Csto‖g‖Eγ1/2(σ,τ ). (3.14)

Then ( Â, B̂) ∈ SMRp,κ (σ, T ) and C
j,0,p,κ
(A,B) (σ, T ) ≤ C j for j ∈ {det, sto}.

Of course the above result can be combined with Proposition 3.7 to find a similar
result for SMR•

p,κ (σ, T ). In case SMR•
p,κ (σ, T ) �= ∅, it is enough to prove (3.14)

assuming also optimal space-time regularity for u. The latter observation can be useful
in certain situations (see, e.g., [1, Proposition 4.1]). For convenience we give a more
precise formulation in the following remark.

Remark 3.14. Let the assumptions of Proposition 3.13 be satisfied and suppose that
SMR•

p,κ (σ, T ) �= ∅. Then (A, B) ∈ SMR•
p,κ (σ, T ) if the estimate (3.14) holds

with constants independent of λ and any strong solution u on �0, τ� to (3.13) satisfying

• u ∈ L p(�; 0H θ,p(σ, τ,wσκ ; X1−θ )) for all θ ∈ [0, 12 ) if p > 2;
• u ∈ L2(�× (σ, τ ); X1) ∩ L2(�;C([σ, τ ]; X1/2)) if p = 2.

To see this one can repeat the argument in [3, Proposition 3.8] to show that if u ∈
E1(σ, τ ) satisfies (3.13) and SMR•

p,κ (σ, T ) �= ∅, then u also has the above space-
time regularity.

Proof. Uniqueness of the solution to (3.13) is clear from (3.14). It remains to show the
existence of strong solution on �σ, T �. Let� ⊆ [0, 1] denote the set of all λ such that
for all f ∈ E0(σ, T ) and g ∈ Eγ1/2(σ, T ), (3.13) has a strong solution u ∈ E1(σ, T ).
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Since ( Â, B̂) ∈ SMRp,κ (σ, T ), one has 0 ∈ � and it is enough to check that 1 ∈ �.
For this it is enough to show that there exists a ε0 > 0 such that for any λ ∈ � one
has [λ, λ+ ε0] ∩ [0, 1] ⊆ �.

Let ε0 = [2C(ĈA,B + CA,B)]−1 where CA,B and C are as in Assumption 3.2 and
(3.14), respectively. Let λ ∈ � and ε ∈ (0, ε0] be such that λ+ ε ≤ 1. It is enough to
show λ + ε ∈ �. Given v ∈ E1(σ, T ), let Lε(v) = u, where u is the unique strong
solution to (3.13) with ( f, g) replaced by ( f + ε(Av − Âv), g + ε(B̂v − Bv)).
Since λ ∈ �, Lε defines a mapping on E1(σ, T ). By definition, for v1, v2 ∈

E1(σ, T ) one has that u1,2 := Lε(v1) − Lε(v2) satisfies (3.13) with ( f, g) replaced
by (ε(Av − Âv), g + ε(B̂v − Bv)), where v = v1 − v2. Therefore, by (3.14),

‖Lε(v1)− Lε(v2)‖E1(σ,T ) = ‖u1,2‖E1(σ,T )

≤ C(‖ε(Av − Âv)‖E0(σ,T ) + ‖ε(B̂v − Bv)‖Eγ1/2(σ,T ))
≤ C(ĈA,B + CA,B)ε‖v1 − v2‖E1(σ,T )

≤ 1

2
‖v1 − v2‖E1(σ,T ).

By the Banach contraction principle it follows that there exists a unique u ∈ E1(σ, T ),
such that Lε(u) = u, and thus u is the unique strong solution of (3.13) with λ replaced
by λ+ ε. From this we can conclude that λ+ ε ∈ �.

The final estimate is immediate from (3.14) for λ = 1. �

Now we are able to state and proof our perturbation result, where the main novelty
is that we can allow initial random times. The perturbation is assumed to be small in
terms of the maximal regularity constants Cdet,0,p,κ

(A,B) and Csto,0,p,κ
(A,B) introduced below

(3.3), but this will be sufficient for the proof of the blow-up criteria of Theorem 4.9.
Other perturbation results allowing lower-order terms can be found in [36] and will
be discussed in [5].

Corollary 3.15. (Perturbation) Let Assumptions 3.1 and 3.2 be satisfied. Let σ :
� → [0, T ] be a stopping time which takes values in a finite set if κ > 0. As-
sume that (A, B) ∈ SMR•

p,κ (σ, T ). Let Â : �σ, T � → L (X1, X0), B̂ : �σ, T � →
L (X1, γ (H, X1/2)) be strongly progressively measurable such that for some positive
constants CA,CB, L A, LB and for all x ∈ X1, a.s. for all t ∈ (σ, T ),
‖A(t, ω)x − Â(t, ω)x‖X0 ≤ CA‖x‖X1 , ‖B(t, ω)x − B̂(t, ω)x‖γ (H,X1/2) ≤ CB‖x‖X1 .

If δA,B := Cdet,0,p,κ
(A,B) (σ, T )CA + Csto,0,p,κ

(A,B) (σ, T )CB < 1,

then ( Â, B̂) ∈ SMR•
p,κ (σ, T ).

Proof. ByProposition 3.7 and (A, B) ∈ SMR•
p,κ (σ, T ), it suffices to prove ( Â, B̂) ∈

SMRp,κ (σ, T ), and actually the proof shows that we only need SMRp,κ (σ, T ) for
the latter. We will use the method of continuity of Proposition 3.13. In the notation
introduced there, let λ ∈ [0, 1], and let u ∈ E1(σ, τ ) be a strong solution to (3.13) on
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�σ, τ�. It suffices to prove the a priori estimate (3.14). Since u(σ ) = 0,

du(t)+ Audt = [
f + λ(A − Â)u]dt + [

Bu + g + λ(B̂ − B)u
]
dWH on �σ, τ ],

and (A, B) ∈ SMRp,κ (σ, T ), it follows from Proposition 3.10 that a.s. on �σ, τ�

u = Rσ,(A,B)(0, 1�σ,τ� f + λ(A − Â)1�σ,τ�u, 1�σ,τ�g + λ(B̂ − B)1�σ,τ�u).

Therefore, by the properties of Rσ,(A,B) we obtain

‖u‖E1(σ,τ ) ≤ Cdet,0,p,κ
(A,B) (σ, T )‖1�σ,τ� f + λ(A − Â)1�σ,τ�u‖E0(σ,T )

+ Csto,0,p,κ
(A,B) (σ, T )‖1�σ,τ�g + λ(B̂ − B)1�σ,τ�u‖Eγ1/2(σ,τ )

≤ Cdet,0,p,κ
(A,B) (σ, T )‖ f ‖E0(σ,τ ) + Csto,0,p,κ

(A,B) (σ, T )‖g‖Eγ1/2(σ,τ ) + δA,B‖u‖E1(σ,τ ).

Therefore, (3.14) follows, and this completes the proof. �

4. Blow-up criteria for stochastic evolution equations

In this section we present blow-up criteria for parabolic stochastic evolution equa-
tions of the form:{

du + A(·, u)udt = (F(·, u)+ f )dt + (B(·, u)u + G(·, u)+ g)dWH ,

u(s) = us,
(4.1)

where s ≥ 0. Moreover, in the main theorems below we will actually consider (4.1)
on a finite time interval [s, T ] where T ∈ (s,∞) is fixed. Extensions to T = ∞
are straightforward consequences. Moreover, by using uniqueness and combining
solutions and can always reduce to the finite interval case (see Sect. 4.3). Before
stating our main results we first review local existence results for (4.1) proven in [3].

4.1. Nonlinear parabolic stochastic evolution equations in critical spaces

To prove local existence for (4.1), we need the following assumptions taken from
[3]. We will refer to the condition as:
Hypothesis (H).

(HA) Suppose Assumption 3.1 holds. Let A : [s, T ]×�× XTr
κ,p → L (X1, X0) and

B : [s, T ] ×�× XTr
κ,p → L (X1, γ (H, X1/2)). Assume that for all x ∈ XTr

κ,p
and y ∈ X1, the maps (t, ω) �→ A(t, ω, x)y and (t, ω) �→ B(t, ω, x)y are
strongly progressively measurable.
Moreover, for all n ≥ 1, there exist Cn, Ln ∈ R+ such that for all x, y ∈ XTr

κ,p
with ‖x‖XTr

κ,p
, ‖y‖XTr

κ,p
≤ n, t ∈ [s, T ], and a.a. ω ∈ �

‖A(t, ω, x)‖L (X1,X0) ≤ Cn(1 + ‖x‖XTr
κ,p
),

‖B(t, ω, x)‖L (X1,γ (H,X1/2)) ≤ Cn(1 + ‖x‖XTr
κ,p
),
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‖A(t, ω, x)− A(t, ω, y)‖L (X1,X0) ≤ Ln‖x − y‖XTr
κ,p
,

‖B(t, ω, x)− B(t, ω, y)‖L (X1,γ (H,X1/2)) ≤ Ln‖x − y‖XTr
κ,p
.

(HF) The map F : [s, T ]×�× X1 → X0 decomposes as F := FTr + Fc, where for
all x ∈ X1 the mappings (t, ω) �→ FTr(t, ω, x) and (t, ω) �→ Fc(t, ω, x) are
strongly progressively measurable. Moreover, FTr and Fc satisfy the following
estimates.

(i) There exist mF ≥ 1, ϕ j ∈ (1 − (1 + κ)/p, 1), β j ∈ (1 − (1 + κ)/p, ϕ j ],
ρ j ≥ 0 for j ∈ {1, . . . ,mF } such that Fc : [s, T ] × � × X1 → X0 and for
each n ≥ 1 there exist Cc,n, Lc,n ∈ R+ for which

‖Fc(t, ω, x)‖X0 ≤ Cc,n

mF∑
j=1

(1 + ‖x‖ρ j
Xϕ j
)‖x‖Xβ j + Cc,n,

‖Fc(t, ω, x)− Fc(t, ω, y)‖X0 ≤ Lc,n

mF∑
j=1

(1 + ‖x‖ρ j
Xϕ j

+ ‖y‖ρ j
Xϕ j
)‖x − y‖Xβ j ,

(4.2)

a.s. for all x, y ∈ X1, t ∈ [s, T ] such that ‖x‖XTr
κ,p
, ‖y‖XTr

κ,p
≤ n. Moreover,

ρ j , ϕ j , β j , κ satisfy

ρ j

(
ϕ j − 1 + 1 + κ

p

)
+ β j ≤ 1, j ∈ {1, . . . ,mF }. (4.3)

(ii) For each n ∈ N there exist LTr,n,CTr,n ∈ R+ such that the mapping FTr :
[s, T ] ×�× XTr

κ,p → X0 satisfies

‖FTr(t, ω, x)‖X0 ≤ CTr,n(1 + ‖x‖XTr
κ,p
),

‖FTr(t, ω, x)− FTr(t, ω, y)‖X0 ≤ LTr,n‖x − y‖XTr
κ,p
,

for a.a. ω ∈ �, for all t ∈ [s, T ] and ‖x‖XTr
κ,p
, ‖y‖XTr

κ,p
≤ n.

(HG) The map G : [s, T ]×�× X1 → γ (H, X1/2) decomposes as G := GTr +Gc,
where for all x ∈ X1 the mappings (t, ω) �→ GTr(t, ω, x) and (t, ω) �→
Gc(t, ω, x) are strongly progressively measurable. Moreover, GTr and Gc sat-
isfy the following estimates.

(i) There exist mG ≥ 1, ϕ j ∈ (1 − (1 + κ)/p, 1), β j ∈ (1 − (1 + κ)/p, ϕ j ],
ρ j ≥ 0 for j = mF +1, . . . ,mF +mG such that Gc : [s, T ]×�× X1 → X0

and for each n ≥ 1 there exist Cc,n, Lc,n ∈ R+ for which

‖Gc(t, ω, x)‖γ (H,X1/2) ≤ Cc,n

mF+mG∑
j=mF+1

(1 + ‖x‖ρ j
Xϕ j
)‖x‖Xβ j + Cc,n,

‖Gc(t, ω, x)− Gc(t, ω, y)‖γ (H,X1/2)

≤ Lc,n

mF+mG∑
j=mF+1

(1 + ‖x‖ρ j
Xϕ j

+ ‖y‖ρ j
Xϕ j
)‖x − y‖Xβ j ,

(4.4)
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a.s. for all x, y ∈ X1, t ∈ [s, T ] such that ‖x‖XTr
κ,p
, ‖y‖XTr

κ,p
≤ n. Moreover,

ϕ j , β j , κ satisfy

ρ j

(
ϕ j − 1 + 1 + κ

p

)
+ β j ≤ 1, j = mF + 1, . . . ,mF + mG . (4.5)

(ii) For each n ∈ N there exist constants LTr,n,CTr,n such that GTr : [s, T ]×�×
XTr
κ,p → X0 satisfies

‖GTr(t, ω, x)‖γ (H,X1/2) ≤ CTr,n(1 + ‖x‖XTr
κ,p
),

‖GTr(t, ω, x)− GTr(t, ω, y)‖γ (H,X1/2) ≤ LTr,n‖x − y‖XTr
κ,p
,

for a.a. ω ∈ �, for all t ∈ [s, T ] and ‖x‖XTr
κ,p
, ‖y‖XTr

κ,p
≤ n.

(Hf) f ∈ L0
P (�; L p(IT , wκ ; X0)) and g ∈ L0

P (�; L p(IT , wκ ; γ (H, X1/2))).
Following [40] or [3], we say that XTr

κ,p is a critical space for (4.1) if for some
j ∈ {1, . . . ,mF +mG} equality holds in (4.3) or (4.5). In this case the corresponding
power of the weight κ := κcrit will be called critical. A loose introduction to criticality
can be found in [3, Section 1.1].

Next we recall the definitions of a strong, local, and maximal solution from [3].

Definition 4.1. (Strong solution) Let Hypothesis (H) be satisfied and let σ be a stop-
ping time with s ≤ σ ≤ T . A strongly progressively measurable process u on �s, σ �

satisfying

u ∈ L p(s, σ,ws
κ ; X1) ∩ C([s, σ ]; XTr

κ,p) a.s.

is called an L p
κ -strong solution of (4.1) on �s, σ � if F(·, u) ∈ L p(s, σ,wκ ; X0) and

G(·, u) ∈ L p(s, σ,wκ ; γ (H, X1/2)) a.s. and the following identity holds a.s. and for
all t ∈ [s, σ ],

u(t)− us +
∫ t

s
A(r, u(r))u(r)dr =

∫ t

s
(F(r, u(r))+ f (r))dr

+
∫ t

s
1[s,σ ](r)(B(r, u(r))u(r)+ G(r, u(r))+ g(r)) dWH (r).

(4.6)

As noted in [3], the conditions in Definition 4.1 ensure that the integrals in (4.6) are
well-defined.

Definition 4.2. (Local and maximal solution) Let Hypothesis (H) be satisfied and let
σ be a stopping time with s ≤ σ ≤ T a.s. Moreover, let u : �s, σ � → X1 be strongly
progressively measurable.

• (u, σ ) is called an L p
κ -local solution to (4.1) on [s, T ], if there exists an increasing

sequence (σn)n≥1 of stopping times such that limn→∞ σn = σ a.s. and u|�s,σn�
is an L p

κ -strong solution to (4.1) on �s, σn�. In this case, (σn)n≥1 is called a
localizing sequence for the L p

κ -local solution (u, σ );
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• an L p
κ -local solution (u, σ )of (4.1) is calledunique, if for every L

p
κ -local solution

(v, τ ) for a.a. ω ∈ � and for all t ∈ [s, τ (ω)∧σ(ω)) one has v(t, ω) = u(t, ω);
• a unique L p

κ -local solution (u, σ ) to (4.1) on [s, T ] is called an L p
κ -maximal

local solution on [s, T ], if for any other unique L p
κ -local solution (v, τ ) to (4.1)

on [s, T ], we have a.s. τ ≤ σ and for a.a. ω ∈ � and all t ∈ [s, τ (ω)), u(t, ω) =
v(t, ω).

Wewill omit the “on [s, T ]”whenever s, T arefixed. InSect. 4.3we extend the above
to the case T = ∞. Moreover, we omit the prefix L p

κ if no confusion seems likely.
The above definition can be extended verbatim to random initial times τ instead of s.
This setting will be needed in some of the preliminary results and will, in particular,
be considered in Sect. 5.1.
Note that L p

κ -maximal local solutions are unique by definition. In addition, an
(unique) L p

κ -strong solution u on �s, σ � gives an (unique) L p
κ -local solution (u, σ ) to

(4.1) on [s, T ]. Finally, under suitable assumptions, one can omit the word “unique”
in the definition of maximal L p

κ -maximal local solutions, see Remark 5.6.
Given us ∈ L0

Fs
(�; XTr

κ,p) we denote by (us,n)n≥1 a sequence such that

us,n ∈ L∞
Fs
(�; XTr

κ,p), and us,n = us on {‖us‖XTr
κ,p

≤ n}. (4.7)

A possible choice would be to set us,n = Rn(us) where

Rn(x) = x, if ‖x‖XTr
κ,p

≤ n, otherwise Rn(x) := nx/‖x‖XTr
κ,p
. (4.8)

The following is the main local well-posedness result of the first part of our work
and was proved in [3, Theorem 4.7].

Theorem 4.3. (Local well-posedness) Let Hypothesis (H) be satisfied. Let us ∈
L0
Fs
(�; XTr

κ,p) and that (4.7) holds for some (us,n)n≥1. Suppose that

(A(·, us,n), B(·, us,n)) ∈ SMR•
p,κ (s, T ), n ≥ 1. (4.9)

Then the following assertions hold:

(1) (Existence and regularity) There exists an L p
κ -maximal local solution (u, σ ) to

(4.1) such that σ > s a.s. Moreover, for each localizing sequence (σn)n≥1 for
(u, σ ) one has
• if p > 2 and κ ∈ [0, p

2 − 1), then for all θ ∈ [0, 12 ) and n ≥ 1,

u ∈ H θ,p(s, σn, w
s
κ ; X1−θ ) ∩ C([s, σn]; XTr

κ,p) a.s.

Moreover, u instantaneously regularizes to u ∈ C((s, σn]; XTr
p ) a.s.;

• if p = 2 and κ = 0, then for all n ≥ 1,

u ∈ L2(s, σn; X1) ∩ C([s, σn]; X1/2) a.s.
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(2) (Localization) If (v, τ ) is an L p
κ -maximal local solution to (4.1) with initial data

vs ∈ L0
Fs
(�; XTr

κ,p), then setting � := {vs = us}, one has
τ |� = σ |�, v|�×[s,τ ) = u|�×[s,σ ).

For future reference, we conclude this section with the following remark.

Remark 4.4. (1) In [3], F = FL + FTr + Fc, where FL is assumed to have a small
Lipschitz constant in the X1-norm (see Hypothesis (HF) in [3]), and similarly
for G. The results presented there extend to our current setting. However, since
in the applications in [6,7], FL and GL do not play a role, we prefer to omit
these terms here;

(2) if Fc satisfies (HF)withϕ j , β j ≤ 1− 1+κ
p for all j ∈ {1, . . . ,m}, then Fc satisfies

(HF) with ρ j as it was, and ϕ j = β j = 1− 1+κ
p +ε where ε ∈ (0,min{ 1+κ

(ρ j+1)p :
1 ≤ j ≤ mF }) is fixed. Indeed, this follows from X1− 1+κ

p +ε ↪→ Xϕ j ∩ Xβ j , and

since (4.3) is equivalent to ε ≤ 1+κ
(ρ j+1)p . Moreover, due to the choice of ε, (4.3)

holds with the strict inequality. Therefore, in this situation one even knows that
XTr
κ,p is not critical for (4.1). The same applies to Gc.

4.2. Main results

In this subsection, we state our main results regarding blow-up criteria for (4.1).
For this we will need the following assumption on the nonlinearity (A, B). Recall that
by Assumption 3.1, either κ ∈ [0, p

2 − 1), p > 2 or κ = 0, p = 2.

Assumption 4.5. Suppose that Assumption (HA) holds for (A, B). Let � ∈ [0, p
2 −1)

(where � = 0 if p = 2). Assume that for each M, η > 0 and θ ∈ [0, 12 ) \ { 1+κp }, there
exists a constant K θ

M,η such that, for all t ∈ [s + η, T ) and v ∈ L∞
Ft
(�; XTr

�,p) with
‖v‖XTr

�,p
≤ M a.s., one has (A(·, v), B(·, v)) ∈ SMR•

p,�(t, T ) and

max{K det,θ,p,�
(A(·,v),B(·,v))(t, T ), K

sto,θ,p,�
(A(·,v),B(·,v))(t, T )} ≤ K θ

M,η, t ∈ [s + η, T ).

where the constants are as defined in (3.4).

Assumption 4.5 ensures that themaximal regularity constants are uniformon balls in
XTr
κ,p. It is important that the assumption is only formulated for non-random initial times

t . Random initial times can be obtained afterward using Proposition 3.12. In applica-
tions to semilinear equations, i.e., in the case that (A(t, x), B(t, x)) = ( Ā(t), B̄(t)),
the condition (A(t, x), B(t, x)) ∈ SMR•

p,κ (s, T ) already implies Assumption 4.5
for � = 0 by Proposition 3.12. Finally, we note that on most applications we know
SMR•

p,κ (t, T ) �= ∅ with uniform estimates in t . Therefore, by transference (see
Proposition 3.7) it is enough to check (A(·, v), B(·, v)) ∈ SMRp,�(t, T ) together
with the above estimate for θ = 0.

In the quasilinear case, Assumption 4.5 can be weakened in some situations of
interest. For future convenience, we formulate this in the following remark.
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Remark 4.6. Let C ⊆ XTr
�,p be a closed subset and assume that the maximal L p

κ -local
solution (u, σ ) to (4.1) satisfies u(t) ∈ C a.s. for all t ∈ (0, σ ). If the previous holds,
then the requirement v ∈ C a.s. can be added in Assumption 4.5. For instance, in the
case XTr

�,p is a function space the choice C = {v ∈ XTr
�,p : v ≥ 0} can be useful in

applications to quasilinear SPDEs where the flow is positive preserving. For more on
this see Remark 5.5.

For our main blow-up result we need another condition which states that the con-
ditions on F and G are also satisfied in the unweighted setting.

Assumption 4.7. Suppose that Assumption 3.1 holds for X0, X1, κ, p. Let F and G
be as in Assumptions (HF) and (HG). Suppose that Assumption (HF) and (HG) hold
with κ replaced by 0 and a possibly different choice of the parameters (ρ′

j , ϕ
′
i , β

′
j ) for

j ∈ {0, . . . ,m′
F + m′

G} for certain integers m′
F and m′

G .

Remark 4.8. If for a given κ ∈ [0, p
2 − 1) and for each j ∈ {1, . . . ,mF + mG} one

has either ϕ j = β j or ρ j ≥ 1 in (HF) and (HG), then Assumption 4.7 is satisfied with
ρ′
j = ρ j . These cases covers all applications to SPDEs we considered in [3]. Next we

explain the sufficiency of these cases in more details:

• Case ϕ j = β j . If β j = ϕ j > 1 − 1/p, then one can choose ϕ′
j = β ′

j = ϕ j . In

case β j = ϕ j ≤ 1−1/p, one can take ϕ′
j = β ′

j = 1− 1
p + 1

(ρ j+1)p (see Remark
4.4(2));

• Case ρ j ≥ 1. If β j , ϕ j > 1 − 1/p one can take ϕ′
j = β ′

j = ϕ j . If β j , ϕ j ≤
1 − 1/p, one can take β ′

j = ϕ′
j = 1 − 1

p + 1
(ρ j+1)p . Till now we did not use

ρ j ≥ 1 yet. If β j ≤ 1 − 1/p < ϕ j , then one can argue as follows. Note that,
(4.3), (4.5) and β j > 1 − 1+κ

p implies ρ j (ϕ j − 1 + 1
p ) <

1
p + κ

p (1 − ρ j ) ≤ 1
p .

Thus there exists ε > 0 such that ρ j (ϕ j −1+ 1
p )+β ′

j < 1where β ′
j = 1− 1

p +ε.
The main results of this section are blow-up criteria for the L p

κ -maximal local
solution of Theorem 4.3. Theorems 4.9–4.11 show that σ is an explosion time of the
L p
κ -maximal local solution of (4.1) in a certain norm. For notational convenience, for

s, t ∈ [0, T ] set
N κ

c (u; s, t) := ‖Fc(·, u)‖L p(s,t,ws
κ ;X0) + ‖Gc(·, u)‖L p(s,t,ws

κ ;γ (H,X1/2)), (4.10)

where we recall F = FTr + Fc and G = GTr + Gc.

Theorem 4.9. (Blow-up criteria for quasilinear SPDEs) Let the Hypothesis (H) be
satisfied. Let us ∈ L0

Fs
(�; XTr

κ,p) and suppose that (4.7) holds. Suppose that

(A(·, us,n), B(·, us,n)) ∈ SMR•
p,κ (s, T ), n ≥ 1, (4.11)

and that Assumption 4.5 holds for � ∈ {0, κ} and Assumption 4.7 holds. Let (u, σ ) be
the L p

κ -maximal local solution to (4.1). Then

(1) P

(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, N κ

c (u; s, σ ) < ∞
)

= 0;
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(2) P

(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p

)
= 0 provided XTr

κ,p is not critical for (4.1);

(3) P

(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖L p(s,σ ;X1− κ

p
) < ∞

)
= 0.

In Fig. 1 we provide a decision tree for applying Theorem 4.9.
Some comments are in order. In case XTr

κ,p is not critical, (2) is the easiest to check
in applications. In critical situations (1) and (3) are available. As in [40, Theorem 2.4],
we note that the space L p(s, σ ; X1− κ

p
) appearing in (3) has the (space-time) Sobolev

index 1 − 1+κ
p , which coincides with the ones of C([s, σ ]; XTr

κ,p).
To apply (1), one only needs to control Fc and Gc. which can be done with Lemmas

5.2 and 5.7. The control of Fc and Gc is needed only far from t = s. Actually one can
replace N κ

c (u; s, σ ) by N 0
c (u; τ, σ ) for any random time τ ∈ (s, σ ). Indeed, this

follows from Theorem 4.3, and Lemmas 5.2 and 5.7.
As we will show in Sect. 6, the solution u is typically smoother than its values near

t = s and this may simplify the proof of energy estimates. In applications to concrete
SPDEs we always use the following consequence of Theorem 4.9(1):

P

(
s′ < σ < T, lim

t↑σ u(t) exists in XTr
κ,p, N 0

c

(
u; s′, σ ) < ∞

)
= 0, for all s′ ∈ (s, T ).

Similar considerations hold for Theorem 4.9(2)–(3) and Theorems 4.10–4.11.
In (3) it suffices to estimate the L p(τ, σ ; X1− κ

p
)-norm of u for some stopping time

τ ∈ (s, σ ). This already implies that u is in L p near t = s as a map with values in
X1− κ

p
. Indeed, if p > 2 this follows from Theorem 4.3(1), and

u ∈ H
κ
p ,p(s, σn, w

s
κ ; X1− κ

p
) ↪→ L p(s, σn; X1− κ

p
), a.s. for all n ≥ 1, (4.12)

where we used Proposition 2.1(4). The case p = 2 is immediate from the fact that
(u, σ ) is an L2

0-maximal local solution (see Definitions 4.1–4.2). Part (3) plays a key
role in proving instantaneous regularization of solutions to (4.1) in the unweighted
setting (see Proposition 6.8).

Figure 1. Decision tree for applying Theorem 4.9 to quasilinear SPDEs
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In applications to semilinear equations, the following improvement of Theorem 4.9
holds. For convenience, for s, t ∈ [0, T ] set

N κ(u; s, t) := ‖F(·, u)‖L p(s,t,ws
κ ;X0) + ‖G(·, u)‖L p(s,t,ws

κ ;γ (H,X1/2)). (4.13)

Theorem 4.10. (Blow-up criteria for semilinear SPDEs) Let the Hypothesis (H) be
satisfied, where we suppose that (A(t, x), B(t, x)) = ( Ā(t), B̄(t)) does not depend
on x and

( Ā(·), B̄(·)) ∈ SMR•
p,κ (s, T ). (4.14)

Assume that Assumption 4.5 holds for � = κ and Assumption 4.7 holds. Let us ∈
L0
Fs
(�; XTr

κ,p) and let (u, σ ) be the L p
κ -maximal local solution to (4.1). Then

(1) P

(
σ < T, N κ(u; s, σ ) < ∞

)
= 0;

(2) P

(
σ < T, sup

t∈[s,σ )
‖u(t)‖XTr

κ,p
< ∞

)
= 0 provided XTr

κ,p is not critical for (4.1);

(3) P

(
σ < T, sup

t∈[s,σ )
‖u(t)‖XTr

κ,p
+ ‖u‖L p(s,σ ;X1− κ

p
) < ∞

)
= 0.

Taking into account Theorem 4.11, a decision tree is given in Fig. 2.
The proof of Theorem4.10(1) does not requireAssumption 4.5 for � = κ .Moreover,

Assumption 4.5 for � = 0 is not assumed since it follows from Assumption 4.5
for � = κ and Proposition 3.12. Theorem 4.10(2)–(3) are slight improvements of
Theorem 4.9(2)–(3) since only boundedness is required. As before in (1) we may
replaceN κ(u; s, σ ) byN 0(u; τ, σ ) any random time τ ∈ (s, σ ). The same holds for
(3) with ‖u‖L p(s,σ ;X1− κ

p
) replaced by ‖u‖L p(τ,σ ;X1− κ

p
).

Below we will obtain a further improvement of Theorem 4.10(3) by removing the
condition supt∈[s,σ ) ‖u(t)‖XTr

κ,p
< ∞ under suitable assumptions. In literature blow-

up criteria which only require L p-bounds are called of Serrin type due to the analogy
with Serrin’s blow-up criteria for Navier–Stokes equations (see, e.g., [29, Theorem
11.2]).

Theorem 4.11. (Serrin type blow-up criteria for semilinear SPDEs) Let Hypothesis
(H) be satisfied, where we suppose that (A(t, x), B(t, x)) = ( Ā(t), B̄(t)) does not
depend on x and

( Ā(·), B̄(·)) ∈ SMR•
p,κ (s, T ), (4.15)

FTr = 0, GTr = 0, the constants Cc,n in (HF)-(HG) are independent of n ≥ 1, and for
each j ∈ {1, . . . ,mF + mG}

β j = ϕ j and [(κ > 0 and ρ j < 1 + κ) or (κ = 0 and ρ j ≤ 1)]. (4.16)

Suppose that Assumption 4.5 holds for � = κ and Assumption 4.7 holds. If us ∈
L0
Fs
(�; XTr

κ,p) and (u, σ ) is the L
p
κ -maximal local solution to (4.1), then

P

(
σ < T, ‖u‖L p(s,σ ;X1− κ

p
) < ∞

)
= 0. (4.17)
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Figure 2. Decision tree for applying Theorems 4.10 and 4.11 to
semilinear SPDEs

To the best of our knowledge, Theorem 4.11 is new even in the case p = 2 and
κ = 0. The second part of (4.16) holds if ρ j = 1, and this covers the case of bilinear
nonlinearities as considered in [6,40].An extension ofTheorem4.11 allowingϕ j �= β j

can be found in Proposition 5.12.
Suppose that mF = mG = 1, β := β1 = β2 = ϕ1 = ϕ2, and ρ := ρ1 = ρ2 are

fixed for a given problem (4.1). Let S = {(p, κ) : XTr
κ,p is critical for (4.1)}. Then for

all (p, κ) ∈ S the following identity holds 1+κ
p = ρ+1

ρ
(1 − β), which means that

1+κ
p is constant. Moreover, the second part of (4.16) holds if and only if ρp <

1+κ
p =

ρ+1
ρ
(1 − β), which holds for p large enough. Moreover, 1 − κ

p = ρ+1
ρ
(β − 1) + 1

p
which decreases in p. Therefore, Theorem 4.11 requires only a mild control of the
regularity “in space” of u provided p and thus κ are large.
As a key step in the proof of Theorems 4.9–4.11we prove the following result which

is of independent interest.

Proposition 4.12. (Predictability of the explosion timeσ ) If the conditions of Theorem
4.9 hold, then any localizing sequence (σn)n≥1 for (u, σ ) satisfies

P(σ < T, σn = σ) = 0, for all n ≥ 1.

The above implies that σ is a so-called predictable stopping time. Proposition 4.12
will be proven in Sect. 5.2, and as it is shown in the proof, to obtain it we only need
Assumption 4.5 for � = 0.

The next simple result will allow us to reduce to integrable or even bounded data. It
will be used in the proofs of Theorems 4.9, 4.10 and 4.11, but it can also be a helpful
reduction in proving global existence in concrete situations.

Proposition 4.13. (Reduction to uniformly bounded data) Let the Hypothesis (H) be
satisfied. Let us ∈ L0

Fs
(�; XTr

κ,p) and suppose that (4.7) holds. Let fn = f 1[s,τn ] and
g = g1[s,τn ], where

τn = inf{t ∈ [s, T ] : ‖ f ‖L p(s,t,ws
κ ;X0) ≥ n, ‖g‖L p(s,t,ws

κ ;γ (H,X1/2)) ≥ n}.
Let (u, σ ) be the L p

κ -maximal local solution to (4.1), and let (un, σn) be the L p
κ -

maximal local solution to (4.1) with (us, f, g) replaced by (us,n, fn, gn). For each of
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the statements in Theorems 4.9, 4.10, and 4.11 it suffices to prove that the correspond-
ing probability is zero with u replaced by un for each n ≥ 1.

Finally, if σn = T a.s. for all n ≥ 1, then σ = T a.s.

Proof. By a translation argument we may assume that s = 0. We present the details in
case of Theorem 4.10(1). The other cases can be obtained in the same way replacing
the set (4.20) by a suitable set in each case.
Set �n := {‖u0‖XTr

κ,p
≤ n} ∈ F0. Observe that P({τn = T } ∩ �n) → 1 as n → ∞,

and for each n ≥ 1, (u, σ ∧ τn) is a unique L p
κ -local solution to (4.1) with ( f, g)

replaced by ( fn, gn). Denoting by (vn, μn) the L p
κ -maximal solution to (4.1) with

(u0, fn, gn), we have τn ∧ σ ≤ μn and u = vn on �0, τn ∧ σ � by maximality (see
Theorem 4.3). Similarly, since (vn, μn ∧ τn) is a unique L p

κ -local solution to (4.1)
with (u0, f, g) we have μn ∧ τn ≤ σ and u = vn on �0, μn ∧ τn�. It follows that

μn = σ on {τn = T }, and u = vn on [0, σ )× {τn = T }. (4.18)

Moreover, by Theorem 4.10(1),

μn = σn on �n, and vn = un on �n . (4.19)

For a stopping time ν such that 0 ≤ ν ≤ σ , and a process (v(t))t∈(τ,ν) set

O(v, ν) := {N κ(v; 0, ν) < ∞}. (4.20)

Now if Theorem 4.10(1) holds with (u0,n, fn, gn), then by (4.18) and (4.19)

P
({σ < T } ∩ O(u, σ )) = lim

n→∞ P
({σ < T } ∩ O(u, σ ) ∩ {τn = T } ∩ �n

)
= lim

n→∞ P
({σn < T } ∩ O(un, σn) ∩ {τn = T } ∩ �n

)
≤ lim inf

n→∞ P
({σn < T } ∩ O(un, σn)

) = 0.

The last sentence follows from (4.18), (4.19) and P({τn = T } ∩ �n) → 1. �

The proofs of the blow-up criteria are given in Sect. 5:

• Subsection 5.2: Theorem 4.10(1) and Proposition 4.12;
• Subsection 5.3: Theorem 4.9(1)–(2) and Theorem 4.10(2);
• Subsection 5.4: Theorems 4.9(3), 4.10(3) and Theorem 4.11.

Blow-up criteria involving the space X (see (5.4)) will be given in Remarks 5.8 and
5.9.

4.3. Global existence

In this section we demonstrate how Theorem 4.10 can be used to prove global
existence for an equation, where F and G satisfy a certain linear growth condition.
Definitions 4.1 and 4.2 can be extended to the half line case. Indeed, in Definition

4.1 one can just take T = ∞ and replace [s, T ], L p(s, σ ) and C([s, σ ]) by [s,∞),
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L p
loc([s, σ )) and C([s, σ ] ∩ [s,∞)), respectively. Definition 4.2 extends verbatim to

T = ∞.
One can check that (u, σ ) is an L p

κ -(maximal) local solution to (4.1) on [s,∞)

if for each T < ∞, (u|�s,σ∧T �, σ ∧ T ) is an L p
κ -(maximal) local solution to (4.1)

on [s, T ]. As before an L p
κ -maximal local solution on [s,∞) is unique. Conversely,

one can construct L p
κ -maximal local solutions on [s,∞) from the ones on finite time

intervals. Indeed, suppose that an L p
κ -maximal local solution (uT , σ T ) exists on [s, T ]

for every T ∈ (s,∞). Then by maximality (see Definition 4.2) σ T = σ S ∧ T a.s.
and uT = uS a.e. on �s, σ T � for s < T ≤ S. Therefore, letting u = uT on �s, σT �

and σ := limT→∞ σ T , one has that u is an L p
κ -maximal local solution on [s,∞). In

particular, an L p
κ -maximal local solution on [s,∞) exists if the conditions of Theorem

4.3 hold for all T ∈ (s,∞). Finally we mention that if for each T ∈ (s,∞), (σ T
n )n≥1

is a localizing sequence for (uT , σ T ), then letting

σn = sup
m∈{1,...,n}

σm
n , n ≥ 1,

we obtain a localizing sequence (σn)n≥1 for (u, σ ).
The following roadmap can be used to prove global well-posedness and regularity.

Roadmap 4.14. (Proving global existence and regularity)

(a) Prove local well-posedness with Theorem 4.3;
(b) obtain instantaneous regularization from Theorem 6.3 and Corollary 6.5 using

as a first step Proposition 6.8 in the case κ = 0;
(c) reduce the global existence proof to data (u0, f, g)which are uniformly bounded

in � (see Proposition 4.13);
(d) prove an energy estimate for a certain norm ‖u‖Z(s,σ∧T ) by applying the equation

and/or Itô’s formula. In this part, the regularization proven in (b) can be used to
simplify and/or obtain the estimate;

(e) combine the energy estimate with Theorem 4.9, 4.10 or 4.11 to prove σ ≥ T
a.s. possibly under restrictions on the integrability parameters and weights;

(f) use the instantaneous regularization phenomena of Theorem 6.3 and Corollary
6.5 to reduce to the previous case.

Some steps of this roadmap can be skipped in certain situations. But the steps (a), (d),
(e) seem essential in all cases. Furthermore, we mention that in (b) and (f) the use of
weights is essential.

To illustrate the above roadmap concretely, we will now prove global existence
of (4.1) in the semilinear setting under linear growth assumptions on F and G. Of
course the linear growth assumptions fail to hold for many of the interesting SPDEs.
So this result should only be seen as an illustration and test case. For more advanced
applications where the roadmap is followed, we refer to Sects. 7 and [6] on stochastic
Navier–Stokes equation with transport noise.



J. Evol. Equ. Parabolic stochastic evolution equations in critical spaces II Page 39 of 96 56

Theorem 4.15. (Global well-posedness under linear growth conditions) Let Hypoth-
esis (H) be satisfied for all T ∈ (s,∞), where we suppose that (A(t, x), B(t, x)) =
( Ā(t), B̄(t)) does not depend on x and

( Ā(·), B̄(·)) ∈ SMR•
p,κ (s, T ) for all T ∈ (s,∞). (4.21)

Assume that Assumption 4.5 holds for � = κ and all T ∈ (s,∞) and Assumption 4.7
holds for all T ∈ (s,∞). Suppose that for every ε > 0 there exist a constant Lε > 0
such that for all t ∈ (s,∞), ω ∈ � and x ∈ X1,

‖F(t, ω, x)‖X0 + ‖G(t, ω, x)‖γ (H,X1/2) ≤ Lε(1 + ‖x‖X0)+ ε‖x‖X1 . (4.22)

Then for each us ∈ L0
Fs
(�; XTr

κ,p) there is a unique L p
κ -global solution u to (4.1) s.t.

• If p > 2 and κ ∈ [0, p
2 − 1), then for all θ ∈ [0, 12 ),

u ∈ H θ,p
loc ([s,∞), ws

κ ; X1−θ ) ∩ C([s,∞); XTr
κ,p) a.s.

Moreover, u instantaneously regularizes to u ∈ C((s,∞); XTr
p ) a.s.

• If p = 2 and κ = 0, then

u ∈ L2
loc(s,∞; X1) ∩ C([s,∞); X1/2) a.s.

Moreover, if additionally us ∈ L p
Fs
(�; XTr

κ,p), f ∈ L p
P ((s, T )×�,ws

κ ; X0) and g ∈
L p
P ((s, T )×�,ws

κ ; γ (H, X1/2)), then for every T ∈ (s,∞) and every θ ∈ [0, 1/2)
there exists a constant Cθ,T such that

‖v‖L p(�;Eθ,p) ≤ Cθ,T (1 + ‖us‖L p(�;XTr
κ,p)

+ ‖ f ‖L p(�s,T �,ws
κ ;X0)

+ ‖g‖L p(�s,T �,ws
κ ;γ (H,X1/2))

),
(4.23)

where we set, for s′ > s,

Eθ,p ∈ {H θ,p(s, T, ws
κ ; X1−θ ),C([s, T ]; XTr

κ,p),C([s′, T ]; XTr
p )} if p ∈ (2,∞),

Eθ,2 ∈ {L2(s, T ; X1),C([s, T ]; X1/2)}.
By standard interpolation inequalities we can replace ‖x‖X0 by ‖x‖X1−δ with arbi-

trary δ ∈ (0, 1) in (4.22). From the proof below one can actually see that it is enough
to have (4.22) for some fixed small ε > 0.

Proof of Theorem 4.15. Wemay suppose that s = 0. We will only prove the result for
p > 2 as the other case is simpler.
By Theorem 4.3 and the above discussion there exists local solution (u, σ ) of (4.1)

on [0,∞) with the required properties on [0, σ ) and thus we only need to show that
σ = ∞ a.s. Replacing σ by σ ∧ T it suffices to show that P(σ < T ) = 0 for all
T ∈ (0,∞). Moreover, by Proposition 4.13 it suffices to consider the case of L p(�)-
integrable data u0, f and g. To prove σ = T a.s., we will apply Theorem 4.10(1) (but
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also the slightly simpler Lemma 5.4 suffices). In order to do so we will first derive a
suitable energy estimate.
Let (σn)n≥1 be a localizing sequence for (u, σ ). Moreover, for each n ≥ 1 define a

stopping time by

τn = inf{t ∈ [0, σ ) : ‖u‖L p(0,t,wκ ;X1) ≥ n} ∧ σn,

where we set inf ∅ = σ . Then u|�0,τn� is a strong solution of (4.1) on �0, τn�.

Set f̃n = 1[0,τn ]( f + F(·, u)) and g̃n = 1[0,τn ](g + G(·, u)). Then by (4.22),
f̃n ∈ L p(�0, T �, wκ ; X0) and g̃n ∈ L p(�0, T �, wκ ; γ (H, X1/2)). By (4.21) for the
strong solution v to{

dv(t)+ A(t)v(t)dt = f̃ (t)dt + (B(t)v(t)+ g̃(t))dWH (t), t ∈ �0, T �,

u(0) = u0,

we have u = v on �0, τn�, and by Proposition 3.9,

‖v‖L p(�0,T �,wκ ;X1)
≤ C(‖u0‖L p(�;XTr

κ,p)
+ ‖ f̃ ‖L p(�0,T �,wκ ;X0)

+ ‖g̃‖L p(�0,T �,wκ ;γ (H,X1/2))
).

By the linear growth assumption (4.22), and ‖1[0,τn ]u‖Xi ≤ ‖v‖Xi we obtain

‖ f̃ ‖X0 + ‖g̃‖γ (H,X1/2) ≤ ‖ f ‖X0 + ‖g‖γ (H,X1/2) + Lε(1 + ‖v‖X0)+ ε‖v‖X1 .

Choose ε = 1
2C and set

K = ‖u0‖L p(�;XTr
κ,p)

+ ‖ f ‖L p(�0,T �,wκ ;X0)
+ ‖g‖L p(�0,T �,wκ ;γ (H,X1/2))

+ Lε,

Then combining the above we obtain

‖v‖L p(�0,T �,wκ ;X1)
≤ CK + CLε‖v‖L p(�0,T �,wκ ;X0)

+ 1

2
‖v‖L p(�0,T �,wκ ;X1)

,

and hence

‖v‖L p(�0,T �,wκ ;X1)
≤ 2CK + 2CLε‖v‖L p(�0,T �,wκ ;X0)

. (4.24)

Similarly, by Proposition 3.9(1) there exists a C̃ > 0 independent of T such that

‖v‖L p(�;C([0,T ];XTr
κ,p))

≤ C̃(‖u0‖L p(�;XTr
κ,p)

+ ‖ f̃ ‖L p(�0,T �,wκ ;X0)

+ ‖g̃‖L p(�0,T �,wκ ;γ (H,X1/2))
)

≤ C̃K + C̃ Lε‖v‖L p(�0,T �,wκ ;X0)
+ 1

2
C̃‖v‖L p(�0,T �,wκ ;X1)

(4.24)≤ ĈK + Ĉ Lε‖v‖L p(�0,T �,wκ ;X0)
,
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where Ĉ = C̃(1+C). Since T > 0 was arbitrary letting y(t) = ‖v‖p
L p(�;C([0,t];XTr

κ,p))

it follows that for all t ∈ (0, T ],

y(t) ≤ 2p−1Ĉ pK p + 2p−1Ĉ pL p
ε

∫ t

0
y(s) ds.

Thus, Gronwall’s inequality implies y(t) ≤ 2p−1Ĉ pK pe2
p−1Ĉ p L p

ε t . This gives

‖v‖L p(�;C([0,T ];XTr
κ,p))

≤ 2ĈKe
1
p 2

p−1Ĉ p L p
ε t := KCT .

Therefore, by XTr
κ,p ↪→ X0 with embedding constant M , from (4.24) we obtain that

‖v‖L p(�0,T �,wκ ;X1)
≤ 2CK + 2CLεMKCT T

1/p

Since u = v on �0, τn� letting n → ∞ the following energy estimate follows

‖u‖L p(�0,σ�,wκ ;X1)
≤ 2CK + 2CLεMKCT T

1/p (4.25)

From the estimate (4.25) and (4.22) we obtain that for a suitable C̃T∥∥∥‖F(·, u)‖X0 + ‖G(·, u)‖γ (H,X1/2)

∥∥∥
L p(�0,σ�,wκ )

≤ C̃T K < ∞.

Therefore, Theorem 4.10(1) implies σ = T a.s. Furthermore, (4.23) follows from
the latter estimate, (4.21) and Proposition 3.9. �

5. Proofs of Theorems 4.9, 4.10 and 4.11

In this section we have collected the proofs of the blow-up criteria stated in Sect.
4. The proofs are technical and require some preparations. In Sect. 5.1 we will first
obtain a local existence result for (4.1) starting at a random initial time. It plays a key
role in the proof of Lemma 5.4, which is a weaker version of Theorem 4.10(1), but it
is a central step in proving all the blow-up criteria.

5.1. Local existence when starting at a random time

In this subsection, for a stopping time τ , we consider{
du + A(·, u)dt = (F(·, u)+ f )dt + (B(·, u)u + G(·, u)+ g)dWH ,

u(τ ) = uτ ;
(5.1)

on �τ, T �. To define an L p
κ -local solution to (5.1) on �τ, T �, one can just replace the

initial time s by τ in Definition 4.2.
The following is the natural extension of the local existence part of Theorem 4.3 to

the case of random initial times (5.1). It will be used to prove the blow-up results of
Theorem 4.9.



56 Page 42 of 96 A. Agresti and M. Veraar J. Evol. Equ.

Proposition 5.1. (Local existence starting at a random initial time) Let Hypothesis
(H) be satisfied. Let τ be a stopping time with values in [s, T ], where we assume
that τ takes values in a finite set if κ > 0. Assume that uτ ∈ L∞

Fτ
(�; XTr

κ,p) and

(A(·, uτ )|�τ,T �, B(·, uτ )|�τ,T �) ∈ SMR•
p,κ (τ, T ). Then there exists a unique L p

κ -
local solution (u, σ ) to (5.1) on �τ, T � such that σ > τ a.s. on the set {τ < T }.

The analogues assertions of Theorem 4.3 for (5.1) hold as well, but since these
results will not be needed we do not consider this.
To prove Proposition 5.1, we use a variation of the method in [3, Theorem 4.6]. As

in [3], we introduce the space X which allows to control the nonlinearity Fc,Gc. If
(4.3) or (4.5) holds with strict inequality for some j ∈ {1, . . . ,mF + mG} we denote
by ρ�j the unique positive number such that (4.3) or (4.5) holds with equality if ρ j is
replaced by ρ�j . More precisely, we set

ρ�j := 1 − β j

ϕ j − 1 + (1 + κ)/p
, j ∈ {1, . . . ,mF + mG}. (5.2)

To introduce the space X, set

1

r ′
j

:= ρ�j (ϕ j − 1 + (1 + κ)/p)

(1 + κ)/p
< 1,

1

r j
:= β j − 1 + (1 + κ)/p

(1 + κ)/p
< 1. (5.3)

Note that 1
r j

+ 1
r ′
j

= 1 by (5.2). Finally, for each 0 ≤ a < b ≤ ∞, we set

X(a, b) :=
( mF+mG⋂

j=1

L pr j (a, b, wa
κ ; Xβ j )

)
∩

( mF+mG⋂
j=1

Lρ
�
j pr

′
j (a, b, wa

κ ; Xϕ j )
)
.

(5.4)
Setting X(T ) := X(0, T ), for all T > 0, our notation is consistent with [3].

The following result is proven in [3, Lemma 4.10].

Lemma 5.2. Let Assumption 3.1, (HF) and (HG) be satisfied. Let 0 < a < b ≤ T <
∞ and let X(a, b) be as in (5.4). Then the following hold:

(1) If p > 2, κ ∈ [0, p
2 − 1), and A ∈ {0H, H}, then for any δ ∈ ( 1+κp , 12 ),

Aδ,p(a, b;wa
κ ; X1−δ) ∩ L p(a, b, wa

κ ; X1) ↪→ X(a, b);

(2) if p = 2 and κ = 0, then C([a, b]; X1/2) ∩ L2(a, b; X1) ↪→ X(a, b).

Finally, if in (1)A = 0H, then the constants in the embeddings (1)–(2) can be chosen
to be independent of b − a > 0.

The following lemma contains the key estimate for the proof of Proposition 5.1.
It is not immediate from Lemma 5.2, since we require uniformity in the constants if
|b − a| tends to zero.



J. Evol. Equ. Parabolic stochastic evolution equations in critical spaces II Page 43 of 96 56

Lemma 5.3. Let Assumption 3.1, (HF) and (HG) be satisfied. Let 0 ≤ a < b <
T < ∞ and let σ be a stopping time with values in [a, b], where we assume that σ
takes values in a finite set if κ > 0. Let (A, B) ∈ SMR•

p,κ (σ, T ). Let either p > 2,

κ ∈ [0, p
2 − 1) and δ ∈ ( 1+κp , 12 ) or p = 2, κ = 0 and δ ∈ (0, 12 ) be fixed. Set

K(A,B) := max{K det,δ,p,κ
(A,B) , K sto,δ,p,κ

(A,B) }.
Then there exists a constant C > 0 independent of a, b, σ such that for each (uσ , f, g)
which belongs to (3.11),

‖Rσ (uσ , f, g)‖L p(�;X(σ,b)∩L p(σ,b,wσκ ;X1)∩C([σ,b];XTr
κ,p))

≤ C(1 + K(A,B))(‖uσ‖L p(�;XTr
κ,p)

+ ‖ f ‖L p(�σ,b�,wσκ ;X0)

+‖g‖L p(�σ,b�,wσκ ;γ (H,X1/2))
), (5.5)

where Rσ := Rσ,(A,B) is the solution operator associated to (A, B).

Proof. Weonly consider the case p > 2. FromProposition3.9we see that the constants
in the estimates for the L p(�σ, b�, wσκ ; X1) and L p(�;C([σ, b]; XTr

κ,p)) norm of u
do not depend on a, b, σ . It remains to estimate the L p(�;X(σ, b))-norm of u :=
Rσ (uσ , f, g), and for this we will reduce to the case with zero initial data. As in the
proof of Proposition 3.9 we can assume that uσ = ∑N

j=1 1U j x j is simple and set

v1 = ∑N
j=1 1U j h j (· − σ). The proof of Proposition 3.9 shows that u = v1 + v2 and

that on U j ,

‖v1‖X(σ,b) ≤ ‖t �→ h j (t − σ)‖X(σ,∞)

= ‖h j‖X(0,∞) � Ã ‖h j‖W 1,p(R+,wκ ;X0)∩L p(R+,wκ ;X1)
� Ã ‖uσ ‖XTr

κ,p
;

where we used Lemmas 2.4 and 5.2 and the same argument as the proof of Proposi-
tion 3.9. Taking L p(�)-norms we obtain ‖v1‖L p(�;X(σ,b)) � ‖uσ‖L p(�;XTr

κ,p)
, where

the implicit constant does not depend on σ, a, b. To estimate v2, choosing any δ ∈
( 1+κp , 12 ), by Lemma 5.2 we find

‖v2‖L p(�;X(σ,b)) � ‖v2‖L p(�;0H δ,p(σ,b,wσκ ;X1−δ)∩L p(σ,b,wσκ ;X1))

� 2C̃0K(A,B)‖uσ ‖L p(�;XTr
κ,p)

+ K(A,B)‖ f ‖L p(�σ,b�,wσκ ;X0)

+ K(A,B)‖g‖L p(�σ,b�,wσκ ;γ (H,X1/2))
,

where we used (3.9). Combining the estimates for v1 and v2, the result follows. �
After these preparations we can prove Proposition 5.1.

Proof of Proposition 5.1. The proof is a variation of the argument in Step 1 and 4 in
the proof of [3, Theorem 4.6]. For each λ ∈ (0, 1), we look at the following truncation
of (5.1):{

du + A(·, uτ )udt = (F̃λ(u)+ f̃ )dt + (B(·, uτ )u + G̃λ(u)+ g̃)dWH ,

u(τ ) = uτ ,
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on �τ, T �, where

F̃λ(u) := �λ(·, uτ , u)[Fc(·, u)− Fc(·, 0)]
+�λ(·, uτ , u)[(A(·, uτ )u − A(·, u)u)+ FTr(·, u)− FTr(·, uτ )],

G̃λ(u) := �λ(·, uτ , u)[Gc(·, u)− Gc(·, 0)]
+�λ(·, uτ , u)[(B(·, uτ )u − B(·, u)u)+ GTr(·, u)− GTr(·, uτ )],

f̃ := f + Fc(·, 0)+ FTr(·, uτ ), g̃ := g + Gc(·, 0)+ GTr(·, uτ ).

(5.6)

Here, for λ > 0, ξλ := ξ(·/λ), ξ ∈ W 1,∞([0,∞)), ξ = 1 on [0, 1], ξ = 0 on [1,∞)

and linear on [1, 2], we have set, a.s. for all t ∈ [τ, T ],

�λ(t, uτ , u) := ξλ

(
‖u‖X(τ,t) + sup

s∈[τ,t]
‖u(s)− uτ‖XTr

κ,p

)
,

�λ(t, uτ , u) := ξλ

(
‖u‖L p(τ,t,wτκ ;X1) + sup

s∈[τ,t]
‖u(s)− uτ‖XTr

κ,p

)
.

(5.7)

LetRτ := R(A(·,uτ ),B(·,uτ )) be the solution operator associated to the couple (A(·, uτ ),
B(·, uτ )), see (3.10). For any T ′ ∈ (0, T ] we introduce the Banach space

ZT ′ := L p
P (�;C([τ, μT ′ ]; XTr

κ,p) ∩ X(τ, μT ′) ∩ L p(τ, μT ′ , wτκ ; X1)),

where μT ′ := T ∧ (τ + T ′). In the following, for notational simplicity, we write μ
instead of μT ′ if no confusion seems likely. Let us consider the map ϒ defined as

ϒ(u) = Rτ (uτ , 1�τ,μ�(F̃λ(u)+ f̃ ), 1�τ,μ�(G̃λ(u)+ g̃)). (5.8)

For the sake of clarity, we split the proof into two steps.
Step 1:ϒ maps ZT ′ into itself for all T ′ ∈ (0, T ] and λ > 0.Moreover, there exists

a T ∗ ∈ (0, T ] and λ∗ > 0 such that

‖ϒ(v)− ϒ(v′)‖ZT∗ ≤ 1

2
‖v − v′‖ZT∗ , for all v, v′ ∈ ZT ∗ . (5.9)

Let us note that by a translation argument and the pointwise estimates w.r.t. ω ∈ � in
[3, Lemmas 4.14 and 4.16], one can check that for all v, v′ ∈ ZT ′ ,

‖F̃λ(v)‖L p(�τ,μ�,wτκ ;X0)
+ ‖G̃λ(v)‖L p(�τ,μ�,wτκ ;γ (H,X1/2))

≤ Cλ,

‖F̃λ(v)− F̃λ(v
′)‖L p(�τ,μ�,wτκ ;X0)

+ ‖G̃λ(v)− G̃λ(v
′)‖L p(�τ,μ�,wτκ ;γ (H,X1/2))

≤ Lλ,T ‖v − v′‖ZT ′ .

In addition, for each ε > 0 there exists a λ̄(ε) > 0 and T̄ (ε) ∈ (0, T ] such that

Lλ,T < ε, for all λ ∈ (0, λ̄], and T ∈ (0, T̄ ].
We will only prove (5.9). The fact that ϒ maps ZT ′ into itself can be proved in
a similar way. Let K be the least constant in (5.5) with (A, B), σ replaced by
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(A(·, uτ ), B(·, uτ )), τ . Choose ε∗ > 0 such that 4K Lλ∗,T ∗ ≤ 1 where λ∗ := λ̄(ε∗)
and T ∗ := T̄ (ε∗). Thus, Lemma 5.3 and the previous choices yield

‖ϒ(v)− ϒ(v′)‖ZT∗

= ‖Rτ (0, 1�τ,μ�(F̃λ(v)− F̃λ(v
′)), 1�τ,μ�(G̃λ(v)− G̃λ(v

′)))‖ZT∗

≤ K
(‖F̃λ(v)− F̃λ(v

′)‖L p(�τ,μ�,wτκ ;X0)
+ ‖G̃λ(v)− G̃λ(v

′)‖L p(�τ,μ�,wτκ ;γ (H,X1/2))

)
≤ 1

2
‖v − v′‖ZT∗ .

Step 2: Conclusion. Let λ∗, T ∗ be as in Step 1. The conclusion of step 1 ensures
that ϒ is a contraction on ZT ∗ , and thus there exists a fixed point of the map ϒ on
ZT ∗ which will be denoted by U . Setting

ν := inf
{
t ∈ [τ, T ] : ‖U‖L p(τ,t,wτκ ;X1)∩X(τ,t) + sup

s∈[τ,t)
‖U (t)− uτ‖ > λ∗}.

Then ν is a stopping time and ν > τ a.s. on {τ < T }. Moreover, as in Step 4 in the
proof of [3, Theorem 4.5], one obtains u := U |�τ,ν� is an L p

κ -local solution to (5.1).
This follows since by (5.7), a.s. for all t ∈ [τ, ν],

�λ∗(t, uτ ,U ) = 1, �λ∗(t, uτ ,U ) = 1.

By (5.6) the latter implies, a.s. for all t ∈ [τ, ν],
F̃λ∗(U ) = A(·, uτ )U − A(·,U )U + Fc(·,U )− Fc(·, 0)+ FTr(·,U )− FTr(·, uτ ),
G̃λ∗(U ) = B(·, uτ )U − B(·,U )U + Gc(·,U )− Gc(·, 0)+ GTr(·,U )− GTr(·, uτ ).

Thus, (5.8) and Proposition 3.9 ensure that (u, ν) is an L p
κ -local solution to (4.1)

where u = U |�τ,ν� and ν > τ a.s. The uniqueness of the above L p
κ -local solution can

be proven as in Step 5 of [3, Theorem 4.5]. �

5.2. Proofs of Theorem 4.10(1) and Proposition 4.12

We begin by proving a blow-up criteria for (4.1) which will be an important inter-
mediate step to obtain the blow-up criteria stated in Sect. 4.2.

Lemma 5.4. (An intermediate blow-up criteria) Let Hypothesis (H) be satisfied and
let us ∈ L0

Fs
(�; XTr

κ,p). Suppose that (4.7) and (4.11) are satisfied. Assume that

Assumption 4.5 holds for � = 0 and Assumption 4.7 holds. Let (u, σ ) be the L p
κ -

maximal local solution to (4.1) and let N κ be as in (4.13). Then

P

(
σ < T, lim

t↑σ u(t) exists in XTr
p , ‖u‖L p(s,σ,ws

κ ;X1) + N κ(u; s, σ ) < ∞
)

= 0.

The above blow-up criteria is weaker than Theorem 4.9(1) since XTr
p ↪→ XTr

κ,p.

Moreover, as u is bounded with values in XTr
κ,p, boundedness of N κ(u; s, σ ) < ∞
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if and only if N κ
c (u; s, σ ) < ∞ (see (4.10)). Note that the lemma does not require

Assumption 4.5 for � = κ . Lemma 5.4 will be used to prove Theorems 4.9(1) and
4.10(1).
To proveLemma5.4,we argue by contradiction. If the probabilitywould be nonzero,

we will obtain a new equation on a set of positive probability at a random initial
time. Using Proposition 5.1 we extend the solution which gives a contradiction with
maximality.

Proof. By a translation argument we may assume that s = 0. Moreover, we will only
consider p > 2, since the other case is simpler.

Step 1: Let M ∈ N,η > 0 andr ∈ [η, T ]. Ifμ is a stopping timewith values in [r, T ],
uμ ∈ L∞

Fμ
(�; XTr

p ) and ur ∈ L∞
Fr
(�; XTr

p ) are such that uμ, ur ∈ BL∞(�;XTr
κ,p)
(M)

and

‖uμ − ur‖L∞(�;XTr
κ,p)

≤ 1

4KM,ηLM
,

then one has (A(·, uμ), B(·, uμ)) ∈ SMR•
p(μ, T ), where LM and KM,η = K 0

M,η
are as in (HA) and Assumption 4.5 with � = 0, respectively. To prove the result, we
use the perturbation result of Corollary 3.15. Note that by (HA), for x ∈ X1, for all
t ∈ (r, T ) and a.s.

‖(A(t, ur )− A(t, uμ))x‖X0 ≤ LM‖uμ − ur‖XTr
κ,p

‖x‖X1 ≤ 1

4KM,η
‖x‖X1 .

Similarly, ‖(B(t, ur ) − B(t, uμ))x‖γ (H,X1/2) ≤ 1/(4KM,η)‖x‖X1 for all t ∈ (r, T )
a.s. Assumption 4.5 for � = 0 and Proposition 3.12 imply that (A(·, ur )|�μ,T �,
B(·, ur )|�μ,T �) is in SMR•

p(μ, T ) with

max{K det,0,p,0
(A(·,ur )|�μ,T�,B(·,ur )|�μ,T�)

, K sto,0,p,0
(A(·,ur )|�μ,T�,B(·,ur )|�μ,T�)

} ≤ KM,η,

The claim follows from the previous estimates and Corollary 3.15 with

δA,B ≤ KM,η
1

4KM,η
+ KM,η

1

4KM,η
= 1

2
.

Step 2: Conclusion. By contradiction assume that P(O) > 0, where

O :=
{
σ < T, lim

t↑σ u(t) exists in XTr
p , ‖u‖L p(0,σ,wκ ;X1) + N κ(u; 0, σ ) < ∞

}
∈ Fσ .

Since σ > 0 a.s. there exists an η > 0 such that P(O ∩ {σ > η}) > 0. Moreover,
by Egorov’s theorem, there exist V ⊆ O ∩ {σ > η} and M ∈ N such that V ∈ Fσ ,
P(V) > 0 and

‖u‖C([η,σ ];XTr
p )

+ ‖u‖L p(0,σ,wκ ;X1) + N κ(u; 0, σ ) ≤ M, a.s. on V, (5.10)

lim
n→∞ sup

V
sup

s∈[σ− 1
n ,σ ]

‖u(s)− u(σ )‖XTr
p

= 0, (5.11)
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where we set u(σ ) := limt↑σ u(t) on O. Let N ∈ N be such that η > 1
N and

sup
s∈[σ− 1

N ,σ ]
‖u(s)− u(σ )‖XTr

p
≤ 1

4KM,ηLMCκ,p
on V. (5.12)

Here, Cκ,p denotes constant in the embedding XTr
p ↪→ XTr

κ,p. Set � := ess supV σ
and fix r ∈ (�− 1

N , �) such that r ≥ η, and setU := V∩{σ > r}. ThenU ∈ Fσ ∩Fr ,
and by definition of essential supremum one has P(U) > 0.
Setμ = σ1U +r1�\U and vμ := 1Uu(σ ). Thenμ ∈ [r, T ] and vμ ∈ L∞

Fμ
(�; XTr

p ).
By (5.12) one has

‖u(r)− vμ‖XTr
κ,p

≤ Cκ,p‖u(r)− vσ‖XTr
p

≤ 1

4KM,ηLM
on U ,

and by (5.10), ‖1Uu(r)‖XTr
p

≤ M and ‖vμ‖XTr
p

≤ M . Applying Step 1 to (1Uu(r), vμ),
we obtain that (A(·, vμ), B(·, vμ)) ∈ SMR•

p(μ, T ). Thus, Assumption 4.7 and
Proposition 5.1 ensure the existence of an L p

0 -local solution (v, τ ) to{
dv + A(·, v)vdt = (F(·, v)+ f )dt + (B(·, v)v + G(·, v)+ g)dWH (t),

v(μ) = vμ,

(5.13)
on �μ, T �, and where τ > μ a.s. Note that vμ = u(σ ) on U . Set

ũ = u1�0,σ� + v1U×[σ,τ) and σ̃ := 1�\Uσ + 1Uτ.

Then (̃u, σ̃ ) is a unique L p
κ -local solution to (4.1) which extends (u, σ ) on U .

Since P(U) > 0, this contradicts the maximality of (u, σ ) and this gives the desired
contradiction. �

Remark 5.5. Suppose that we know that the maximal solution satisfies

u(t) ∈ C a.s. for all t ∈ (0, σ ) where C ⊆ XTr
p is closed subset. (5.14)

Then in Assumption 4.5 we only need to consider v ∈ C a.s. In this way Lemma 5.4
remains true. Indeed, one can repeat Step 1 for ur , uμ satisfying ur , uμ ∈ C a.s. and
replacing vμ in (5.13) by 1Uu(σ )+ 1�\U x , where x ∈ C. The same extension holds
for the assertions in Theorem 4.9 and this will not be repeated later.

Remark 5.6. If the assumptions of Lemma 5.4 are satisfied, then one can equivalently
define L p

κ -maximal local solution to (4.1) (see Definition 4.2) as:

(a) An L p
κ -local solution (u, σ ) to (4.1) on [s, T ] is called an L p

κ -maximal local
solution on [s, T ], if for any other L p

κ -local solution (v, τ ) to (4.1) on [s, T ], we
have a.s. τ ≤ σ and for a.a. ω ∈ � and all t ∈ [s, τ (ω)), u(t, ω) = v(t, ω).

Compared to Definition 4.2, in (a) we omit the word “unique”. In particular (a) is
stronger thanDefinition 4.2 sincewe also exclude the existence of an L p

κ -local solution
(but not unique) which extends (u, σ ), i.e., τ > σ with positive probability.
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Next we show that the L p
κ -maximal local solution in the sense of Definition 4.2 also

satisfies (a) if the assumptions of Lemma 5.4 hold. Let (v, τ ) be an L p
κ -local solution

(v, τ ) to (4.1). By uniqueness of (u, σ ), we get u = v a.e. on �0, σ ∧ τ �. In particular,
a.s. on {σ < τ }, u ∈ L p(s, σ,ws

κ ; X1) ∩ C([s, σ ]; XTr
p ) and N κ(u; σ) < ∞ since

(v, τ ) is an L p
κ -local solution. Hence by Lemma 5.4

P(σ < τ) ≤ P

(
σ < T, lim

t↑σ u(t) exists in XTr
p , ‖u‖L p(s,σ,ws

κ ;X1) + N κ (u; s, σ ) < ∞
)

= 0.

Therefore, τ ≤ σ a.s. as desired.

Next we will prove Theorem 4.10(a) and Proposition 4.12. For this we need the
following elementary lemma (see [3, Lemma 4.12] for a similar result).

Lemma 5.7. Let the hypothesis (HF)-(HG) be satisfied. Let s ≤ a < b ≤ T < ∞
and N ∈ N be fixed. Let ζ := 1 + max{ρ j : j ∈ {1, . . . ,mF + mG}}. Then for all
h ∈ C([a, b]; XTr

κ,p) ∩ X(a, b) which satisfy ‖h‖C([a,b];XTr
κ,p)

≤ N, one has a.s.

‖Fc(·, h)‖L p(a,b,wa
κ ;X0) + ‖Gc(·, h)‖L p(a,b,wa

κ ;γ (H,X1/2))

≤ ca,b(1 + ‖h‖X(a,b) + ‖h‖ζX(a,b)),

where ca,b = c(|a−b|, N ) > 0 is independent of f and satisfies c(δ1, N ) ≤ c(δ2, N )
for all 0 ≤ δ1 ≤ δ2. Moreover, if (4.2) and (4.4) are satisfied with constants Cc,n

independent of n ≥ 1, then c(b − a, N ) can be chosen independent of N .

Proof. We prove the estimate for Fc in the case mF = 1. The other cases are similar.
Let N , h be as in the statement. Hypothesis (HF) ensures that for a.a. ω ∈ � and all
t ∈ [a, b],

‖Fc(t, ω, h(t))‖X0 ≤ Cc,N (1 + ‖h(t)‖ρXϕ )‖h(t)‖Xβ + Cc,N .

where β := β1, ϕ := ϕ1 and ρ := ρ1. By Hölder’s inequality with exponent r ′ :=
r ′
1, r := r1 (see (5.3) and the text below it) we get

‖Fc(·, h)‖L p(a,b,wa
κ ;X0) ≤ Cc,N

(‖h‖L p(a,b,wa
κ ;Xβ)+

+ ‖h‖ρ
Lρpr ′ (a,b,wa

κ ;Xϕ)
‖h‖L pr (a,b,wa

κ ;Xβ) + |b − a|1/p).
Since κ ≥ 0, r > 1 and ρ� := ρ�1 ≥ ρ (see (5.2)), Hölder’s inequality ensures that

‖h‖L p(a,b,wa
κ ;Xβ) ≤ Cb−a‖h‖L pr (a,b,wa

κ ;Xβ)
‖h‖Lρpr ′ (a,b,wa

κ ;Xϕ) ≤ Cb−a‖h‖Lρ� pr ′ (a,b,wa
κ ;Xϕ),

whereCδ1 ≤ Cδ2 for 0 ≤ δ1 < δ2 < ∞ and supδ∈(0,T ) Cδ < ∞ due to the assumption
T < ∞. By (5.4) the previous inequalities imply the claimed estimate. �
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Proof of Theorem 4.10(1). As before we assume s = 0, and we only consider p > 2.
By (4.14) and Proposition 3.12, (A, B) satisfies Assumption 4.5 for � = 0. Therefore,
Lemma 5.4 is applicable.

Let us argue by contradiction. Thus, we assume that P(O) > 0 where

O := {σ < T, N κ(u; 0, σ ) < ∞}.
Since σ > 0 a.s. by Theorem 4.3, it follows that there exist η,M > 0 such that
P(V) > 0 where

V := {η < σ < T,N κ (u; 0, σ ) < M}. (5.15)

Define a stopping time by

τ := inf{t ∈ [0, σ ) : N κ(u; 0, t) ≥ M},
where we take inf ∅ := σ . Note that τ = σ a.s. on V and

‖1�0,τ�F(·, u)‖L p(IT ,wκ ;X0) + ‖1�0,τ�G(·, u)‖L p(IT ,wκ ;γ (H,X1/2)) ≤ M. (5.16)

Since u is an L p
κ -maximal local solution to (4.1), u|�0,τ� is an L p

κ -local solution to
(3.1) on �0, τ�. Proposition 3.10 and (5.16) gives

u = R0,(A,B)(u0, 1�0,τ�F(·, u)+ f, 1�0,τ�G(·, u)+ g), a.e. on �0, τ�, (5.17)

On the other hand, by Propositions 2.1(1) and 3.9(2), (5.16) ensures that

RHS(5.17) ∈ L p(�;C([η, T ]; XTr
p ) ∩ L p(0, T, wκ ; X1)).

Thus by (5.17) and τ = σ on V , we obtain that limt↑σ u(t) exists in XTr
p and

‖u‖L p(0,σ,wκ ;X1) < ∞ a.s. on V . Therefore,

0 < P(V) = P

(
V ∩ {σ < T } ∩ {

lim
t↑σ u(t) exists in XTr

p , ‖u‖L p(0,σ,wκ ;X1) < ∞})
≤ P

(
σ < T, lim

t↑σ u(t) exists in XTr
p , ‖u‖L p(Iσ ,ws

κ ;X1) + N κ(u; 0, σ ) < ∞
)

= 0,

wherewe used (5.15) and the last equality follows fromLemma 5.4. This contradiction
completes the proof. �

Remark 5.8. (1) Let the assumptions of Theorem4.10 be satisfied. If FTr = GTr = 0
and Cc,n in (HF)-(HG) does not depend on n ≥ 1, then Lemma 5.7 yields

P(σ < T, ‖u‖X(s,σ ) < ∞) = P(σ < T, N κ(u; s, σ ) < ∞) = 0,

where in the last step we applied Theorem 4.10(1);
(2) If p = 2, then Theorem 4.9(3) (resp. 4.10(3)) follows from Lemma 5.4 (resp.

Theorem 4.10(1)) due to Lemmas 5.2 and 5.7. The general case is more compli-
cated and will be considered in Sect. 5.4.



56 Page 50 of 96 A. Agresti and M. Veraar J. Evol. Equ.

Proof of Proposition 4.12. Let (σn)n≥1 be a localizing sequence. Suppose that there
exists an n ≥ 1 such that P(σn = σ < T ) > 0. Setting V := {σn = σ < T }, by
Theorem 4.3(1), one has σn = σ > s a.s. on V , and for all θ ∈ [0, 12 ),

u ∈ H θ,p(s, σn, w
s
κ ; X1−θ ) ∩ C([s, σn]; XTr

κ,p) ∩ C((s, σn]; XTr
p )

= H θ,p(s, σ,ws
κ ; X1−θ ) ∩ C([s, σ ]; XTr

κ,p) ∩ C((s, σ ]; XTr
p ) a.s. on V.

In particular, limt↑σ u(t) exists in XTr
p , a.s. on V . Thus, by Lemmas 5.2 and 5.7,

P(V) = P

(
V ∩

{
lim
t↑σ u(t) exists in XTr

p , ‖u‖L p(s,σ,wκ ;X1) + N κ(u; s, σ ) < ∞
})

≤ P

(
σ < T, lim

t↑σ u(t) exists in XTr
p , ‖u‖L p(s,σ,wκ ;X1) + N κ(u; s, σ ) < ∞

)
= 0,

where in the last equalitywe used Lemma 5.4. This contradictsP(V) > 0 and therefore
the result follows. �

5.3. Proofs of Theorems 4.9(1)–(2) and 4.10(2)

Using Lemma 5.4 and Proposition 4.12 we can now prove Theorem 4.9(1). Unfor-
tunately, the proof is rather technical. It requires several reduction arguments and one
key step is to approximate localizing sequences by stopping times taking finitely many
values which in turn allow to apply the maximal regularity estimates of Proposition
3.11.

Proof of Theorem 4.9(1). By a translation argument we may assume s = 0. We will
only consider p > 2 as the other case is similar. By Proposition 4.13 it is enough to
consider

u0 ∈ L∞
F0
(�; XTr

κ,p), f ∈ L p(IT ×�,wκ ; X0), and g ∈ L p(IT ×�,wκ ; γ (H, X1/2)).

Step 1: Setting up the proof by contradiction. We will prove (1) by a contradiction
argument. So suppose that P(O) > 0 where

O :=
{
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, N κ

c (u; 0, σ ) < ∞
}

∈ Fσ ,

see (4.10) for the definition of N κ
c . For each n ≥ 1, let

σn = inf
{
t ∈ [0, σ ) : ‖u‖L p(It ,wκ ;X1)∩C([0,t];XTr

κ,p)
+ N κ

c (u; 0, t) ≥ n
}

∧ nT

n + 1
,

(5.18)
and inf ∅ := σ . Then (σn)n≥1 is a localizing sequence for (u, σ ). ByEgorov’s theorem
and the fact that σ > 0 a.s., there exist η > 0, Fσ � V ⊆ O, M ∈ N such that
P(V) > 0, σ ≥ η a.s. on V , and

‖u‖C([0,σ ];XTr
κ,p)

+ N κ
c (u; 0, σ ) ≤ M on V,

lim
n→∞ sup

V
sup

s∈[σn ,σ ]
‖u(s)− u(σ )‖XTr

κ,p
= 0, (5.19)
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where we have set u(σ ) := limt↑σ u(t) on O. By decreasing η if necessary, we may
suppose P(σ ≤ η) ≤ 1

4P(V).
By Proposition 4.12, one has σn < σ on {σ < T } for all n ≥ 1. Moreover, the

definition of σn implies σn < σ on the set {σ = T }. Therefore, Lemma 2.7 implies
there exists a sequence of stopping times (̃σn)n≥1 such that for each n ≥ 1, σ̃n takes
values in a finite subset of [0, T ], σ̃n ≤ σ̃n+1, σ̃n ≥ σn and P(̃σn ≥ σ) ≤ 1

4P(V).
Moreover, we can also assume that sup� σ̃n < T for all n ≥ 1. Set

σ ′
n = σ̃n ∨ η for n ≥ 1 and V ′ := V ∩ (∩n≥1{σ ′

n < σ }). (5.20)

Then by Proposition 2.6, V ′ ∈ Fσ , and

P(V ′) = lim
n→∞ P(V ∩ {σ ′

n < σ }) ≥ lim
n→∞ P(V)− P(σ ′

n ≥ σ) ≥ 1

2
P(V) > 0, (5.21)

where in the last step we used

P(σ ′
n ≥ σ) ≤ P(σ ′

n ≥ σ, σ > η)+ P(σ ≤ η) ≤ P(̃σn ≥ σ)+ P(σ ≤ η) ≤ 1

2
P(V).

Step 2: In this step we will prove that P(O) > 0 implies

P

(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖L p(Iσ ,wκ ;X1)∩X(σ ) < ∞

)
> 0. (5.22)

To prove the above, we need some preliminary observations. By (5.19), for each ε > 0
there exists an N (ε) ∈ N such that

sup
s∈[σN (ε),σ ]

‖u(s)− u(σ )‖XTr
κ,p
< ε on V. (5.23)

For each ε > 0 set λε = σN (ε), λ′
ε = σ ′

N (ε) and define the stopping time τε by

τε := inf
{
t ∈ [λε, σ ) : ‖u(t)− u(λε)‖XTr

κ,p
≥ 2ε,

‖u‖C([0,t];XTr
κ,p)

+ N κ
c (u; 0, t) ≥ M

}
(5.24)

where we set inf ∅ := σ . Note that τε = σ on V ⊇ V ′. Therefore,

V ′ ⊆ Uε := {τε > λ′
ε} ∈ Fλ′

ε
.

For each ε > 0 we set

uε := 1Uεu(λ
′
ε) ∈ L∞

Fλ′ε
(�; XTr

κ,p).

The latter random variable is well defined since σ ≥ τε > λ′
ε on Uε, and by (5.24),

we have ‖uε‖XTr
κ,p

≤ M. Since λ′
ε ≥ η (see (5.20)), combining Assumption 4.5 with
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Proposition 3.11, we obtain that (A(·, uε), B(·, uε)) ∈ SMR•
p,κ (λ

′
ε, T ), and for each

θ ∈ [0, 12 ) \ { 1+κp },

max{K det,θ,p,κ
(A(·,uε),B(·,uε)), K

sto,θ,p,κ
(A(·,uε),B(·,uε))} ≤ K θ

M,η, (5.25)

where K θ
M,η is as in Assumption 4.5 for � = κ . Let us stress that K θ

M,η does not

depend on ε. Fix any θ ∈ ( 1+κp , 12 ) and set KM,η = K 0
M,η + K θ

M,η. For notational
convenience, set Rε = Rλ′

ε,(A(·,uε),B(·,uε)).
Lemma 5.3 ensures that (5.5) holds withRσ replaced byRε and constant K̃M,η :=

C(1 + KM,η) which is independent of ε (see (5.25)). Thus, for Ln as in (HA), we set
ε = 1/(16K̃M,ηLM ). Let

ψ := 1�\Uελ′
ε + 1Uε τε and ψn := 1�\Uελ′

ε + 1Uε [(σn ∨ λ′
ε) ∧ τε]. (5.26)

Note that ψn ↑ ψ and for each n ≥ 1, �λ′
ε, ψn� ⊆ �λ′

ε, σn�. Since (u, σ ) is an
L p
κ -maximal local solution to (4.1), (u|�λ′

ε,ψ�, ψ) is an L p
κ -local solution to

{
dv + A(·, v)vdt = (F(·, v)+ f )dt + (B(·, v)v + G(·, v)+ g)dWH (t),

v(λ′
ε) = uε,

(5.27)
with localizing sequence (ψn)n≥1. Here we used that σ > λ′

ε on Uε which follows
from the definition of Uε. Finally, we set

�ε := �λ′
ε, ψ� = [λ′

ε, τε)× Uε,
�n
ε := �λ′

ε, ψn� = [λ′
ε, (σn ∨ λ′

ε) ∧ τε)× Uε.

Since A(·, u) = A(·, uε) + (A(·, u) − A(·, uε)), B(·, u) = B(·, uε) + (B(·, u) −
B(·, uε)), by (5.27) and Proposition 3.10 one has a.s. on �n

ε

1Uεu = Rε(uε, 1�n
ε
f, 1�n

ε
g)

+Rε(0, 1�n
ε
(A(·, uε)− A(·, u))u, 1�n

ε
(B(·, uε)− B(·, u))u)

+Rε(0, 1�n
ε
FTr(·, u), 1�n

ε
GTr(·, u))

+Rε(0, 1�n
ε
Fc(·, u), 1�n

ε
Gc(·, u))

=: I + I I + I I I + I V . (5.28)

Next, we estimate each of the above summands. To make the formulas more readable,

in this step, we denote by Z the space L p(�; L p(λ′
ε, T, w

λ′
ε
κ ; X1) ∩ X(λ′

ε, T )). To
begin, by Lemma 5.3,

‖I‖Z ≤ K̃M,η(‖uε‖L p(Uε;XTr
κ,p)

+ ‖ f ‖
L p(�n

ε ,w
λ′ε
κ ;X0)

+ ‖g‖
L p(�n

ε ,w
λ′ε
κ ;γ (H,X1/2))

)

≤ CK̃M,η(M + ‖ f ‖L p(IT ×�,wκ ;X0) + ‖g‖L p(IT ×�,wκ ;γ (H,X1/2))).
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Again, by Lemma 5.3,

‖I I‖Z ≤ K̃M,η(‖(A(·, uε)− A(·, u))u‖
L p(�n

ε ,w
λ′ε
κ ;X0)

+ ‖(B(·, uε)− B(·, u))u‖
L p(�n

ε ,w
λ′ε
κ ;γ (H,X1/2))

) ≤ 1

2
‖u‖

L p(�n
ε ,w

λ′ε
κ ;X1)

,

(5.29)
where in the last inequality we used the choice of ε (see the text before (5.26)) and
the fact that

sup
s∈[λ′

ε,τε)

‖u(s)− u(λ′
ε)‖XTr

κ,p
≤ 2 sup

s∈[λε,τε)
‖u(s)− u(λε)‖XTr

κ,p
≤ 4ε, a.s. on Uε,

since λε ≤ λ′
ε. Similarly, one obtains

‖I I I‖Z ≤ K̃M,η(‖FTr(·, u)‖
L p(�n

ε ,w
λ′ε
κ ;X0)

+ ‖GTr(·, u)‖
L p(�n

ε ,w
λ′ε
κ ;X0)

)

≤ 2K̃M,η(1 + CTr,MM),

where in the last estimate we used (HF)-(HG) and (5.19). Finally,

‖I V ‖Z ≤ K̃M,η(‖Fc(·, u)‖
L p(�n

ε ,w
λ′ε
κ ;X0)

+ ‖Gc(·, u)‖
L p(�n

ε ,w
λ′ε
κ ;X0)

)

≤ K̃M,ηCM,
(5.30)

in the last inequalitywe used (4.10) and the bound in (5.19). By (5.28), and the previous
estimates, one obtains that for some C1 > 0 for all n ≥ 1,

‖u‖
L p(Uε;L p(λ′

ε,(σn∨λ′
ε)∧τε,wλ

′
ε
κ ;X1)∩X(λ′

ε,(σn∨λ′
ε)∧τε))

≤ C1, (5.31)

and by Fatou’s lemma, (5.31) also holds with (σn ∨ λ′
ε) ∧ τε replaced by τε.

Recall that τε|V ′ = σ |V ′ . Since λ′
ε < τε = σ on V ′, (5.31) (with n → ∞) implies

V ′ ∩
{
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖L p(Iσ ,wκ ;X1)∩X(σ ) < ∞

}
= V ′ ∩

{
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖

L p(λ′
ε,σ,w

λ′ε
κ ;X1)∩X(λ′

ε,σ )
< ∞

}
= V ′,

By (5.21), (5.22) follows, and this completes the proof of the claim in step 2.
Step 3: In this step we will prove that P(O) > 0 implies

P

(
σ < T, lim

t↑σ u(t) exists in XTr
p , ‖u‖L p(Iσ ,wκ ;X1) + N κ(u; 0, σ ) < ∞

)
> 0.

(5.32)
Here N κ is as in (4.13). Clearly, (5.32) contradicts Lemma 5.4 and thus implies
P(O) = 0. To prove (5.32), by Step 2 we can find M̃ ≥ M (see (5.19)), such that
P(I) > 0, where

I := {
σ < T, ‖u‖L p(Iσ ,wκ ;X1)∩X(σ )∩C(I σ ;XTr

κ,p)
< M̃

}
.
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Note that Lemma 5.7 yields

N κ(u; 0, σ ) < ∞, a.s. on I. (5.33)

Let μ be the stopping time given by

μ := inf{t ∈ [0, σ ) : ‖u‖L p(It ,wκ ;X1)∩X(t)∩C([0,t];XTr
κ,p)

≥ M}, inf ∅ := σ.

(5.34)
By construction and (5.19), {μ = σ } ⊇ I and μ > 0 a.s. Since we already reduced
to bounded initial values, we have (A(·, u0), B(·, u0)) ∈ SMR•

p,κ (T ) by (4.11). Set
v := R0,(A(·,u0),B(·,u0))(u0, f A, gB) on pg�0, T �. Here f A and gB are defined by

f A := 1�0,μ�((A(·, u0)− A(·, u))u + F(·, u))+ f ∈ L p
P (IT ×�,wκ ; X0),

gB := 1�0,μ�((B(·, u0)− B(·, u))u + G(·, u))+ g ∈ L p
P (IT ×�,wκ ; γ (H, X1/2)),

where we used Lemma 5.7, (5.34) and (HA) to check the required L p-integrability.
Since (u, σ ) is an L p

κ -maximal local solution to (4.1) with s = 0 it follows from
Proposition 3.10 that u = v on �0, μ�. Since σ > 0 a.s., there exists an η̃ > 0 such
that P({σ > η̃} ∩ I) > 0. Set U := {σ > η̃} ∩ I. Using the regularity estimate of
Proposition 3.9(2) (and (3.10)) we obtain

‖u‖L p(U;C([̃η,μ];XTr
p ))

≤ ‖v‖L p(U;C([̃η,T ];XTr
p ))

�η̃ ‖u0‖L p(�;XTr
κ,p)

+ ‖ f A‖L p(IT ×�,wκ ;X0) + ‖gB‖L p(IT ×�,wκ ;γ (H,X1/2)) < ∞.

Since {μ = σ } ⊇ U ,U ⊆ I andP(U) > 0, the above estimate and (5.33) imply (5.32).
This finishes the proof of Step 3, and therefore the proof of
Theorem 4.9(1). �

Remark 5.9. • The arguments in the proof of Theorem 4.9(1) can be extended to
prove Theorem 4.9(2) in the case Fc = Gc = 0. The only difference is in Step
2, where I V = 0 by assumption. Of course the latter situation is also covered
by Theorem 4.9(2) which is proved below;

• similar to Remark 5.8, under the assumptions of Theorem 4.9,

P
(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖X(s,σ ) < ∞) = 0. (5.35)

To obtain (5.35) one can repeat the argument of Theorem 4.9(1) using Lemma
5.7 to get the estimate of I V in (5.30).

To prove Theorem 4.9(2), we need the next result (see [3, Lemma 4.12]).

Lemma 5.10. Let the hypothesis (HF)-(HG) be satisfied. Let 0 < a < b < T < ∞
and N ∈ N be fixed. Assume that XTr

κ,p is not critical for (4.1). Then there exists a

ζ > 1 such that for all N ≥ 1 and h ∈ C([a, b]; XTr
κ,p) ∩ X(a, b) which satisfies

‖h‖C([a,b];XTr
κ,p)

≤ N, one has a.s.
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‖Fc(·, h)− Fc(·, 0)‖L p(a,b,wa
κ ;X0) + ‖Gc(·, h)− Gc(·, 0)‖L p(a,b,wa

κ ;γ (H,X1/2))

≤ Ca,b(‖h‖X(a,b) + ‖h‖ζX(a,b)),
where Ca,b = C(|a − b|, N ) > 0 is independent of f and satisfies C(δ1, N ) ≤
C(δ2, N ) for all 0 ≤ δ1 ≤ δ2 and limδ↓0 C(δ, N ) = 0.

To derive the remaining part (2) of Theorem 4.9, we will exploit the noncriticality of
XTr
κ,p by using Lemma 5.10. Also Theorem 4.9(1) is applied in a technical but essential

step in the proof below.

Proof of Theorem 4.9(2). As before in part (1) we assume s = 0 and p > 2. By
Proposition 4.13 we may assume u0 is bounded, and f and g are L p-integrable. Set

O :=
{
σ < T, lim

t↑σ u(t) exists in XTr
κ,p

}
(5.36)

and suppose that P(O) > 0. We will show that this leads to a contradiction.
Let (σn)n≥1 be the localizing sequence for (u, σ ) defined in (5.18). By Egorov’s

theorem and the fact that σ > 0 a.s., there exist η > 0 and Fσ � V ⊆ O, M ∈ N

such that P(V) > 0, σ > η a.s. on V and

sup
V

‖u‖C(I σ ;XTr
κ,p)

≤ M onV,

lim
n→∞ sup

V
|σn − σ | = 0, lim

n→∞ sup
V

sup
s∈[σn ,σ ]

‖u(s)− u(σ )‖XTr
κ,p

= 0.

Here, as usual, we have set u(σ ) := limt↑σ u(t) ∈ XTr
κ,p on V . Moreover, we may

suppose that P(σ ≤ η) ≤ 1
4P(V).

As in Step 1 of the proof of Theorem 4.9(1), there exists a sequence of stopping
times (̃σn)n≥1 such that for each n ≥ 1, σ̃n takes values in a finite subset of [0, T ],
σ̃n ≤ σ̃n+1, σ̃n ≥ σn and P(̃σn ≥ σ) ≤ 1

4P(V). Defining σ ′
n and V ′ as in (5.20), we

have V ′ ∈ Fσ , and P(V ′) > 0 as before. Moreover, for each ε > 0 there exists an
N (ε) such that on the set V , we have

sup
t∈[0,σ )

‖u(t)‖XTr
κ,p
< M, |σN (ε) − σ | < ε, sup

s∈[σN (ε),σ ]
‖u(s)− u(σ )‖XTr

κ,p
< ε.

(5.37)
For each ε > 0 set λε = σN (ε), λ′

ε = σ ′
N (ε) and define the stopping time τε by

τε := inf
{
t ∈ [λε, σ ) : sup

s∈[λε,t]
‖u(s)− u(λε)‖XTr

κ,p
≥ 2ε,

sup
s∈[0,t]

‖u(t)‖XTr
κ,p

≥ M, |t − λε| ≥ ε
}
,

where inf ∅ := σ . As in the proof of Theorem 4.9(1), τε = σ a.s. on V ⊇ V ′ for each
ε > 0. Moreover, setting Uε := {τε > λ′

ε} ∈ Fλ′
ε
∩Fτε and uε := 1Uεu(λ′

ε), one has
Uε ⊇ V ′, uε isFλ′

ε
-measurable and

uε ∈ BL∞(�;XTr
κ,p)
(M), for all ε > 0, N = N (ε). (5.38)
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Again, as in the proof of Theorem 4.9(1), combining Assumption 4.5 for � = κ ,
(5.38) and Proposition 3.11, one obtains (A(·, uε), B(·, uε)) ∈ SMR•

p,κ (λ
′
ε, T ), and

for each θ ∈ [0, 12 ) \ { 1+κp },
max{K det,θ,p,κ

(A(·,uε),B(·,uε)), K
sto,θ,p,κ
(A(·,uε),B(·,uε))} ≤ K θ

M,η. (5.39)

Here K θ
M,η does not depend on ε. Fix θ ∈ ( 1+κp , 12 ) and set KM,η = K 0

M,η + K θ
M,η.

Let Rε := Rλε,(A(·,uε),B(·,uε)) be the solution operator associated with
(A(·, uε), B(·, uε)). By Lemma 5.3 and (5.39), the estimate (5.5) holds with Rσ

replaced by Rε and K̃M,η independent of ε > 0.
Step 1: There exist R, ε̄ > 0, ζ > 1 such that for all ε ∈ (0, ε̄) and all stopping

time τ satisfying
λ′
ε ≤ τ ≤ τε a.s. on Uε, (5.40)

one has

E
[
1Uε‖u‖p

X(λ′
ε,τ )

] ≤ R + CεE
[
1Uε‖u‖pζ

X(λ′
ε,τ )

]
, (5.41)

for some Cε > 0 independent of u, τ such that limε↓0 Cε = 0.
It suffices to prove the result with τ replaced by λ′

ε ∨ (τ ∧ σn) for each n ≥ 1. This
has the advantage that all norms which appear here will be finite.
Set ε1 := 1/(32 K̃M,ηLM ). Let ε2 > 0 be such that C(ε2,M) ≤ 1/(4K̃M,η),

where C(ε2,M) is as in Lemma 5.10. Here we used the fact that since Fc and Gc

are noncritical limε↓0 C(ε,M) = 0. Let ε̄ := ε1 ∧ ε2 and fix ε ∈ (0, ε̄). Set ψ :=
1�\Uελ′

ε + 1Uε τ . Since Uε ∈ Fτε ∩ Fλ′
ε
and τε ≥ τ a.s. on Uε, ψ is a stopping time.

Let �ε := �λ′
ε, τ � = [λ′

ε, τ ) × Uε. Reasoning as in the proof of Theorem 4.9 (see
(5.27)-(5.28)), by Proposition 3.10 and the linearity of Rε, a.s. on �ε, one has

1Uεu = Rε(uε, 1�ε Fc(·, 0)+ f, 1�εGc(·, 0)+ g)

+Rε(0, 1�ε(A(·, uε)− A(·, u))u, 1�ε(B(·, uε)− B(·, u))u)
+Rε(0, 1�ε FTr(·, u), 1�εGTr(·, u))
+Rε(0, 1�ε(Fc(·, u)− Fc(·, 0)), 1�ε(Gc(·, u)− Gc(·, 0))

:= I + I I + I I I + I V . (5.42)

It remains to estimate each part separately. For notational convenience, we set Z :=
L p(�; L p(λ′

ε, T, w
λ′
ε
κ ; X1) ∩ X(λ′

ε, T )). By Lemma 5.3,

‖I‖Z ≤ K̃M,η(‖uε‖L p(�;XTr
κ,p)

+ ‖Fc(·, 0)‖
L p(�ε,w

λ′ε
κ ;X0)

+ ‖ f ‖
L p(�ε,w

λ′ε
κ ;X0)

+ ‖Gc(·, 0)‖
L p(�ε,w

λ′ε
κ ;γ (H,X1/2))

+ ‖g‖
L p(�ε,w

λ′ε
κ ;γ (H,X1/2))

)

≤ K̃M,ηCη(C + M),

where we used that (5.38). Moreover, as in (5.29) and (5.30) in the proof of Theorem
4.9(1) and using that τ ≤ τε on Uε, one easily obtains

‖I I‖Z ≤ 1

4
‖u‖

L p(�ε,w
λ′ε
κ ;X1)

, ‖I I I‖Z ≤ K̃M,ηC(1 + M).
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To estimate I V we employ Lemma 5.10.
For δ > 0, set Cδ := C(δ,M), where C(·, ·) is as in Lemma 5.10. By the choice of

ε2, we know that C|b−a| K̃M,η ≤ 1
4 for each a < b with |b − a| ≤ ε2. By Lemma 5.3,

‖I V ‖Z ≤ K̃M,η(‖Fc(·, u)− Fc(·, 0)‖
L p(�ε,w

λ′ε
κ ;X0)

+ ‖Gc(·, u)− Gc(·, 0)‖
L p(�ε,w

λ′ε
κ ;γ (H,X1/2))

)

≤ 1

4
‖u‖L p(Uε;X(λ′

ε,τ ))
+ Cε(E[1Uε‖u‖pζ

X(λ′
ε,τ )

])1/p,

where the last estimate follows from Lemma 5.10 and τ −λ′
ε ≤ τε −λε ≤ ε (here we

used (5.40), the definition of τε below (5.37) and λ′
ε ≥ λε).

Combining the estimates we obtain the claim of Step 1.
Step 2: Conclusion. Fix ε > 0 and set

Iε := V ′ ∩ {
σ < T, ‖u‖X(λ′

ε,σ )
< ∞}

,

Recall that λ′
ε < σ on V ′. We claim that P(Iε) = 0. Indeed, by (5.36), one has

limt↑σ u(t) exists in XTr
κ,p a.s. on V ′ ⊆ O. Therefore,

P(Iε) = P

(
V ′ ∩

{
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖X(λ′

ε,σ )
< ∞

})
= P

(
V ′ ∩

{
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖X(σ ) < ∞

})
≤ P

(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖X(σ ) < ∞

)
= 0,

where in the last step we used Theorem 4.9(1) and Lemma 5.7 (or (5.35)).
Next let ε̄, (Cε)ε∈(0,ε̄), R, ζ be as in Step 1. For each ε ∈ (0, ε̄) and x ∈ R+, set

ϕε(x) := x −Cεxζ . Standard considerations show that ϕε has a unique maximum on
R+ and limε↓0 Mε = ∞ where maxR+ ϕε =: Mε. Let mε > 0 be the unique number
such that ϕε(mε) = Mε and note that ϕε ≥ 0 on [0,mε]. Since limε↓0 Mε = ∞ and
P(V ′) > 0, we can choose ε ∈ (0, ε̄) such that MεP(V ′) > R.
Since P(Iε) = 0, for a.a. ω ∈ V ′ there exists a t < σ(ω) such that

‖u(·, ω)‖X(λ′
ε,t) > m1/p

ε . (5.43)

Define the stopping time με by

με :=
{
inf

{
t ∈ [λ′

ε, τε) : ‖u‖X(λ′
ε,t) ≥ m1/p

ε

}
, onUε;

λ′
ε, on� \ Uε.

Here we set inf ∅ := τε. In this way ‖u‖X(λ′
ε,με)

≤ m1/p
ε a.s.

By the definition of τε and (5.43), one has με < τε = σ and ‖u‖X(λ′
ε,με)

= m1/p
ε

a.s. on V ′. Since ϕε|[0,mε] ≥ 0 and Uε ⊇ V ′, we find

E[1Uεϕε(‖u‖p
X(λ′

ε,με)
)] ≥ E[1V ′ϕε(‖u‖p

X(λ′
ε,με)

)] = E[1V ′ϕε(mε)] = MεP(V ′).
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Next observe that τ = με satisfies condition (5.40), and the quantities appearing in
(5.41) are finite. Therefore, Step 1 implies the following converse estimate

E[1Uεϕε(‖u‖p
X(λ′

ε,με)
)] ≤ R. (5.44)

This leads to a contradiction since R < MεP(V ′). Therefore, P(O) = 0 and this
completes the proof of Theorem 4.9(2). �

Proof of Theorem 4.10(2). Weuse the samemethod as in the proof of Theorem 4.9(2).
Suppose that P(O) > 0 where

O := {
σ < T, sup

t∈[0,σ )
‖u(t)‖XTr

κ,p
< ∞}

.

As before (see (5.37)) one can check that there exists a set V with positive probability
such that for all ε > 0 there exists an N (ε) ∈ N for which

sup
t∈[0,σ )

‖u(t)‖XTr
κ,p
< M, and |σN (ε) − σ | < ε. (5.45)

Now the estimate (5.41) holds again. Indeed, in the proof the fact that limt↑σ u(t)
exists in XTr

κ,p was only used to estimate I I . In the semilinear case, I I = 0, and the
bound in (5.45) can be used to reproduce the estimates for I, I I I, I V . The proof of
Step 2 of Theorem 4.9(2) can be used to complete the proof. �

5.4. Proofs of Theorems 4.9(3), 4.10(3) and 4.11

In this subsection, we prove the remaining results stated in Sect. 4.2. We begin
with the proof of Theorem 4.10(3) which will guide us into the remaining ones. The
advantage is that in the semilinear case the argument used to control the nonlinearities
is more transparent. Additional changes are needed to get Theorems 4.9(3) and 4.11.
Before starting with the proofs we introduce some notation which will be used only

in this subsection and allows us to give an extension of Theorem 4.11, i.e., Proposition
5.12. Let (HF)-(HG) be satisfied and fix j ∈ {1, . . . ,mF + mG}. If ρ j > 0, then we
define β�j , ϕ

�
j ∈ (1 − 1+κ

p , 1) as follows:

• If ρ j (ϕ j −1+ 1+κ
p )+ϕ j ≥ 1, then ϕ�j = ϕ j , and β�j = 1−ρ j (ϕ j −1+ 1+κ

p ) ∈
[β j , ϕ j ];

• If ρ j (ϕ j − 1 + 1+κ
p )+ ϕ j < 1, then β�j = ϕ�j = 1 − ρ j

ρ j+1
1+κ
p ∈ (ϕ j , 1).

The previous definition implies that

ρ j

(
ϕ�j − 1 + 1 + κ

p

)
+ β�j = 1 for all j ∈ {1, . . . ,mF + mG}. (5.46)

If ρ j = 0, then with a slight abuse of notation we replace ρ j by ε j > 0 such that
ε j (ϕ j − 1 + 1+κ

p ) + ϕ j < 1, and ϕ�j := β�j := 1 − ε j
ε j+1

1+κ
p ≥ ϕ j . By choosing ε j

small enough (e.g., ε j < κ + 1) one always has β�j = ϕ�j > 1 − 1+κ
p

1+κ
2+κ , which is

needed in Lemma 5.11(1).
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In all cases we have ϕ�j ≥ ϕ j and β�j ≥ β j . Therefore, by X! ↪→ Xφ for 0 < φ ≤
! < 1, and by (HF)-(HG) for all n ≥ 1 a.s. for all x ∈ X1 s.t. ‖x‖XTr

κ,p
≤ n,

‖Fc(·, x)‖X0 + ‖Gc(·, x)‖γ (H,X1/2) ≤ C ′
c,n

mF+mG∑
j=1

(1 + ‖x‖ρ j
Xϕ�j
)‖x‖Xβ�j + C ′

c,n .

(5.47)
where C ′

c,n = C ′Cc,n with C ′ depending only on X0, X1, β j , β
�
j , ϕ j , ϕ

�
j .

Next,wepartially repeat the constructionof theX-space (see (5.4)) using (ρ j , β
�
j , ϕ

�
j )

instead of (ρ j , β j , ϕ j ). As in Lemma 5.7 this will be needed to estimate the nonlin-
earities Fc,Gc. Similar to (5.3), for all j ∈ {1, . . . ,mF + mG} we set

1

ξ ′
j

:= ρ j (ϕ
�
j − 1 + (1 + κ)/p)

(1 + κ)/p
, and

1

ξ j
:= β�j − 1 + (1 + κ)/p

(1 + κ)/p
. (5.48)

Since ϕ�j , β
�
j ∈ (1− 1+κ

p , 1), we get 1
ξ ′
j
, 1
ξ j
> 0. Moreover, (5.46) yields 1

ξ ′
j
+ 1

ξ j
= 1

and therefore 1
ξ ′
j
, 1
ξ j
< 1. Parallel to (5.4), for all 0 ≤ a < b ≤ T we define

X�(a, b) :=
( mF+mG⋂

j=1

L pξ j (a, b, wa
κ ; Xβ�j )

)
∩

( mF+mG⋂
j=1

Lρ j pξ ′
j (a, b, wa

κ ; Xϕ�j )
)
.

(5.49)
By (5.47) and Hölder’s inequality we obtain that for all M ≥ 1 and all h ∈ X�(a, b)∩
C([a, b]; XTr

κ,p) which satisfy ‖h‖C([a,b];XTr
κ,p)

≤ M ,

‖Fc(·, h)‖L p(a,b,wa
κ ;X0) + ‖Gc(·, h)‖L p(a,b,wa

κ ;γ (H,X1/2))

≤ C ′′
c,M

[ mF+mG∑
j=1

(1 + ‖h‖ρ j

L
ρ j pξ

′
j (a,b,wa

κ ;Xϕ�j )
)‖h‖

L pξ j (a,b,wa
κ ;Xβ�j )

+ 1
]
, (5.50)

where C ′′
c,M = C ′

c,M (1 ∨ ‖1‖L p(0,T,wκ ) ∨ max j ‖1‖
L
pξ ′j (0,T,wκ )

).

The key to the proofs of the blow-up criteria is interpolation inequalities. In order
to simplify the notation for θ ∈ [0, 1] and 0 ≤ a < b ≤ T , we set

0MRθ,κX (a, b) := 0H
θ,p(a, b, wa

κ ; X1−θ ) ∩ L p(a, b, wa
κ ; X1). (5.51)

The reason for using the space 0H
θ,p instead of H θ,p is that Proposition 3.9(4) allows

to obtain uniformity of the estimates in b − a in the proof of Theorem 4.10(3). By
(2.2) there are no trace restrictions when θ < 1+κ

p .

Lemma 5.11. (Interpolation inequality) Let p ∈ (1,∞), κ ∈ [0, p − 1), ψ ∈ (1 −
1+κ
p , 1), and set ζ = (1 + κ)/

(
ψ − 1 + 1+κ

p

)
. Then there exists a θ0 ∈ [0, 1+κp ) such

that for all θ ∈ [θ0, 1) there is a constant C > 0 such that the following estimate holds
for all 0 ≤ a < b ≤ T and all f ∈ 0MRθ,κX (a, b)∩L∞(a, b; XTr

κ,p)∩L p(a, b; X1− κ
p
),

‖ f ‖Lζ (a,b,wκ ;Xψ) ≤ C‖ f ‖1−φ
L∞(a,b;XTr

κ,p)
‖ f ‖(1−δ)φ

0MRθ,κX (a,b)
‖ f ‖δφL p(a,b;X1− κ

p
)
, (5.52)

where we can take δ, φ ∈ [0, 1] as follows:
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(1) δ = 1 − p
1+κ

(
ψ − 1 + 1+κ

p

)
and φ = 1 if ψ ∈ (1 − 1+κ

p
1+κ
2+κ , 1) and κ > 0;

(2) δ = κ
κ+1 and φ = p

(
ψ − 1 + 1+κ

p

)
if ψ ∈ (1 − 1+κ

p , 1 − κ
p ] and κ > 0;

(3) δ = 1 and φ = p
(
ψ − 1 + 1

p

)
if κ = 0.

In particular, in each of the above cases

(1 − δ)φ ≤ p

1 + κ

(
ψ − 1 + 1 + κ

p

)
. (5.53)

Note that (1) and (2) have a nontrivial overlap since 1 − κ
p > 1 − 1+κ

p
1+κ
2+κ .

Proof. By a translation argument we can suppose that a = 0 and we write t instead of
b below. Let us begin by making some reductions. By Lemma 2.4(2) for all θ ∈ [θ0, 1)
we have

0H
θ,p(It , wκ ; X1−θ ) ∩ L p(It ;wκ ; X1) ↪→ 0H

θ0,p(It , wκ ; X1−θ0) ∩ L p(It ;wκ ; X1).

Therefore, it suffices to consider θ = θ0 in all cases.
(1): First considerψ ∈ (1− κ

p , 1). For θ ∈ (0, 1−ψ) one has θ < κ/p < (κ+1)/p.
Setting δ := (1 − θ − ψ)/( κp − θ) ∈ (0, 1], we find

‖ f ‖Lζ (It ,wκ ;Xψ )
(i)
� ‖ f ‖

0H
θ(1−δ),p(It ,wκ(1−δ);Xψ )

(i i)
� ‖ f ‖1−δ

0H
θ,p(It ,wκ ;X1−θ )‖ f ‖δL p(It ;X1− κ

p
).

(5.54)
In (i i) we used Lemma 2.4(2). In (i) we used Proposition 2.1(4) with Sobolev expo-
nents

θ(1 − δ)− κ(1 − δ)+ 1

p
= −

( κ
p

− θ
)
(1 − δ)− 1

p
(a)= −

(
ψ − 1 + κ + 1

p

)
(b)= −κ + 1

ζ
,

where we used 1 − δ = (ψ + κ
p − 1)/( κp − θ) in (a) and the definition of ζ in (b).

The condition κ
ζ

≤ κ
p (1 − δ) of Proposition 2.1(4) gives the following restriction on

the parameter θ :

1

1 + κ

(
ψ − 1 + 1 + κ

p

)
≤ 1

p

ψ − 1 + κ
p

κ
p − θ

. (5.55)

One can check that (5.55) is satisfied with strict inequality for θ = 1 − ψ (since
ψ < 1), and (5.55) is not satisfied for θ = 0. Therefore, by continuity and linearity
there is a unique θ ∈ (0, 1−ψ) such that equality holds in (5.55). Now (5.54) implies
(5.52) with φ = 1, and

1 − δ =
(
ψ − 1 + κ

p

)
κ
p − θ

(5.55)= p

1 + κ

(
ψ − 1 + 1 + κ

p

)

which coincides with the choice of δ in (1).
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Next consider ψ ∈ (1 − 1+κ
p

1+κ
2+κ , 1 − κ

p ). Then 1 − ψ > κ/p and we can apply
the same argument starting with θ ∈ (1 − ψ, (1 + κ)/p) and setting δ := (θ + ψ −
1)/(θ − κ

p ). Now the following variant of (5.55) has to be considered

1

1 + κ

(
ψ − 1 + 1 + κ

p

)
≤ 1

p

1 − ψ − κ
p

θ − κ
p

. (5.56)

This time (1) is satisfied with strict inequality for θ = 1−ψ (sinceψ < 1), and (5.56)
is not satisfied for θ = 1+κ

p (since ψ > 1 − 1+κ
p

1+κ
2+κ ). Therefore, there is a unique

θ ∈ (1 − ψ, 1+κp ) such that equality holds in (5.56). The rest of the proof is identical
to (1).
The case ψ = 1 − κ

p is contained in (2) and will be proved below.

(2): First consider ψ ∈ (1− 1+κ
p , 1− κ

p ). Here we use a two step interpolation. By
real interpolation [11, Theorems 3.5.3 and 4.7.1] and the definition of φ we obtain

(XTr
κ,p, X1− κ

p
)φ,1 ↪→

(
(X0, X1)1− 1+κ

p ,p, (X0, X1)1− κ
p ,∞

)
φ,1

= (X0, X1)ψ,1 ↪→ Xψ,
(5.57)

and hence ‖x‖Xψ � ‖x‖1−φ
XTr
κ,p

‖x‖φX1− κ
p
for all x ∈ X1− κ

p
. Since φζ = p(1 + κ), the

latter estimate implies

‖ f ‖Lζ (It ;wκ ;Xψ) � ‖ f ‖1−φ
L∞(It ;XTr

κ,p)
‖ f ‖φ

L p(1+κ)(It ,wκ ;X1− κ
p
)
. (5.58)

Reasoning as in (5.54) we get

‖ f ‖L p(κ+1)(It ,wκ ;X1− κ
p
) � ‖ f ‖

0H
κ
p (1−δ),p(It ,wκ(1−δ);X1− κ

p
)

� ‖ f ‖1−δ
0H

κ
p ,p(It ,wκ ;X1− κ

p
)
‖ f ‖δL p(It ;X1− κ

p
),

(5.59)

where for the Sobolev embedding of Proposition 2.1(4) we used

κ

p
(1 − δ)− κ(1 − δ)+ 1

p
= − 1

p
= − κ + 1

p(κ + 1)
,

and κ
p(κ+1) = κ

p (1 − δ) (since δ = κ
κ+1 ). Combining (5.58) and (5.59) gives (5.52).

Finally, the case ψ = 1− κ
p of (2) follows from (5.59) with φ = 1 and δ as before.

(3): This follows in a similar way as in (5.57) and (5.58). �
Proof of Theorem 4.10(3). As usual, we set s = 0 and we mainly focus on the case
p > 2 as the case p = 2 follows from Theorem 4.10(1), cf. Remark 5.8(2). For the
reader’s convenience we split the proof into several steps. In Step 1 we apply Lemma
5.11 to obtain interpolation inequalities. In Step 2 we set-up the proof by contradiction
and in Step 3 we derive the contradiction. Recall that from Theorem 4.3 we obtain
that a.s. for all θ ∈ [0, 12 ) and 0 ≤ a < b < σ ,

u ∈ H θ,p(a, b, wa
κ ; X1−θ ) ∩ C([a, b]; XTr

κ,p). (5.60)



56 Page 62 of 96 A. Agresti and M. Veraar J. Evol. Equ.

In case a > 0, we also used Proposition 2.1(1).
Step 1: Interpolation inequalities. Since ϕ�j , β

�
j ∈ (1 − 1+κ

p , 1) and

ρ j pξ
′
j = 1 + κ

(ϕ�j − 1 + 1+κ
p )

and pξ j = 1 + κ

(β�j − 1 + 1+κ
p )

, (5.61)

the exponents ρ j pξ ′
j and pξ j satisfy the conditions of Lemma 5.11. Therefore, there

exist θ ∈ [0, 1+κp ) and C > 0 such that for all j ∈ {1, . . . ,mF + mG} there are
φ1, j , φ2, j , δ1, j , δ2, j ∈ (0, 1] such that a.s. for all 0 ≤ a < b < σ

‖u‖
L
ρ j pξ

′
j (a,b,wa

κ ;Xϕ�j )
≤ C‖u‖1−φ1, j

L∞(a,b;XTr
κ,p)

‖u‖(1−δ1, j )φ1, j
0MRθ,κX (a,b)

‖u‖δ1, jφ1, jL p(a,b;X1− κ
p
)
, (5.62)

‖u‖L pξ j (a,b,wa
κ ;Xβ�j )

≤ C‖u‖1−φ2, j
L∞(a,b;XTr

κ,p)
‖u‖(1−δ2, j )φ2, j

0MRθ,κX (a,b)
‖u‖δ2, jφ2, jL p(a,b;X1− κ

p
)
, (5.63)

Moreover, by (5.46) and (5.53), ρ jφ1, j (1 − δ1, j ) + φ2, j (1 − δ2, j ) ≤ 1. Note that in
(5.62) and (5.63) we used (5.60) and (2.2).
Step 2: Setting up the proof by contradiction. By contradiction we assume that

P(O) > 0 where

O :=
{
σ < T, sup

t∈[0,σ )
‖u(t)‖XTr

κ,p
< ∞, ‖u‖L p(Iσ ;X1− κ

p
) < ∞

}
. (5.64)

By Egorov’s theorem and the fact that σ > 0 a.s., there exist η > 0, M ≥ 1,
Fσ � V ⊆ O such that P(V) > 0, σ > η a.s. on V ,

sup
V

sup
t∈[0,σ )

‖u(t)‖XTr
κ,p

≤ M, and lim
n→∞ sup

V
‖u‖L p(σn ,σ ;X1− κ

p
) = 0. (5.65)

Reasoning as in the proof of Theorem 4.9(2), employing Proposition 4.12, there exist
a sequence of stopping times (σ ′

n)n≥1 and a set Fσ � V ′ ⊆ V with positive measure
such that σn ≤ σ ′

n , σ
′
n ≥ η a.s., and σ ′

n < σ a.s. on V ′ for all n ≥ 1. Finally, by (5.65)
and the fact that σ ′

n ≥ σn , for all ε > 0 there exists an N (ε) > 0 such that

sup
t∈[0,σ )

‖u(t)‖XTr
κ,p

≤ M, and ‖u‖L p(σ ′
N (ε),σ ;X1− κ

p
) ≤ ε, a.s. on V ′. (5.66)

Step 3: In this step we prove the desired contradiction. We begin by partially re-
peating the argument used in Step 2 in the proof of Theorem 4.9(1). Let θ and M, η
be as in Steps 1 and 2, respectively. By Assumption 4.5 there exists a KM,η > 0 such
that for all t ∈ (η, T ) one has

max{K det,θ,p,κ
(A,B) (t, T ), K sto,θ,p,κ

(A,B) (t, T )} ≤ KM,η. (5.67)

Since σ ′
n takes values in a finite set, (5.67) and Proposition 3.11 imply that (A, B) ∈
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SMR•
p,κ (σ

′
n, T ) and

max{K det,θ,p,κ
(A,B) (σ ′

n, T ), K
sto,θ,p,κ
(A,B) (σ ′

n, T )} ≤ KM,η, for all n ≥ 1. (5.68)

For notational convenience, for each ε > 0 we set λε := σN (ε) and λ′
ε := σ ′

N (ε).
For each � ≥ 1, let us define the following stopping time

τε,� := inf
{
t ∈ [λ′

ε, σ ) : ‖u‖L p(λ′
ε,t;X1− κ

p
) ≥ ε,

‖u(t)‖XTr
κ,p

≥ M, ‖u‖X(λ′
ε,t)∩L p(λ′

ε,t,wκ ;X1) ≥ �
}
,

(5.69)

on {λ′
ε < σ } and τε,� = λ′

ε on {λ′
ε ≥ σ }. Due to (5.66), lim�→∞ τε,� = σ a.s. on V ′.

Next, fix L ≥ 1 so large enough that

P(V ′′) > 0, where V ′′ := V ′ ∩ U , U := {σ > λ′
ε, ‖u(λ′

ε)‖XTr
κ,p

≤ L} ∈ Fλ′
ε
.

(5.70)
By (5.69), for all ε > 0 and � ≥ 1, we have a.s.

‖u‖L p(λ′
ε,τε,�;X1− κ

p
) ≤ ε, ‖u‖X(λ′

ε,τε,�)∩L p(λ′
ε,τε,�,wκ ;X1) ≤ �, ‖u‖L∞(λ′

ε,τε,�;XTr
κ,p)

≤ M.

(5.71)
Combining the last inequality in (5.71) and (HF)-(HG), we get ‖FTr(·, u)‖X0

+ ‖GTr(·, u)‖γ (H,X1/2) ≤ CTr,M (1 + M) a.e. on �λ′
ε, τε,��. In particular, for some

RTr,M > 0 independent of � ≥ 1, we have a.s.

‖FTr(·, u)‖
L p(λ′

ε,τε,�,w
λ′ε
κ ;X0)

+ ‖GTr(·, u)‖
L p(λ′

ε,τε,�,w
λ′ε
κ ;γ (H,X1/2))

≤ RTr,M . (5.72)

Finally, we estimate Fc,Gc. By (5.50) we get, for all ε > 0, � ≥ 1 and a.s.

‖Fc(·, u)‖
L p(λ′

ε,τε,�,w
λ′ε
κ ;X0)

+ ‖Gc(·, u)‖
L p(λ′

ε,τε,�,w
λ′ε
κ ;γ (H,X1/2))

≤ C ′′
c,M

⎡
⎣mF+mG∑

j=1

(1+‖u‖ρ j

L
ρ j pξ

′
j (λ′

ε,τε,�,w
λ′ε
κ ;Xϕ�j )

)‖u‖
L pξ j (λ′

ε,τε,�,w
λ′ε
κ ;Xβ�j )

+1

⎤
⎦ .
(5.73)

Fix j ∈ {1, . . . ,mF + mG}. From (5.62) and (5.63) we get a.s.

‖u‖ρ j

L
ρ j pξ

′
j (λ′

ε,τε,�,w
λ′ε
κ ;Xϕ�j )

‖u‖
L pξ j (λ′

ε,τε,�,w
λ′ε
κ ;Xβ�j )

≤ C1λ′
ε<τε,�

‖u‖ρ j (1−φ1, j )+(1−φ2, j )
L∞(λ′

ε,τε,�;XTr
κ,p)

‖u‖ρ jφ1, j (1−δ1, j )+φ2, j (1−δ2, j )
0MRθ,κX (λ′

ε,τε,�)
‖u‖ρ j δ1, jφ1, j+δ2, jφ2, j

L p(λ′
ε,τε,�;X1− κ

p
)

(i)≤ CM, jϒ j (ε)‖u‖ρ jφ1, j (1−δ1, j )+φ2, j (1−δ2, j )
0MRθ,κX (λ′

ε,τε,�)

(i i)≤ RM, j + CM, j‖u‖
0MRθ,κX (λ′

ε,τε,�)
ϒ j (ε),

(5.74)
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where RM, j > 0, ϒ j ∈ C([0,∞)) are independent of � ≥ 1 and limε↓0ϒ j (ε) = 0
(since δk, jφk, j > 0) and in (i) we used the first and the last inequality in (5.71) and in
(i i) theYoung’s inequality and the fact thatρ jφ1, j (1−δ1, j )+φ2, j (1−δ2, j ) ≤ 1.Using
the same argument one can provide a similar estimate for ‖u‖

L pξ j (λ′
ε,τε,�,w

λ′ε
κ ;Xβ�j )

. Thus,

the latter and (5.73)–(5.74) yield, a.s. for all � ≥ 1,

‖Fc(·, u)‖
L p(λ′

ε,τε,�,w
λ′ε
κ ;X0)

+ ‖Gc(·, u)‖
L p(λ′

ε,τε,�,w
λ′ε
κ ;γ (H,X1/2))

≤ R +ϒ(ε)‖u‖
0MRθ,κX (λ′

ε,τε,�)
(5.75)

where R > 0 and ϒ ∈ C([0,∞)) are independent of � ≥ 1 and limε↓0ϒ(ε) = 0.
To proceed further, note that by (5.67) there exists a constant K̃M,η > 0 independent

of ε > 0 such that (3.5) and Proposition 3.9(4) holds withC , (A, B) replaced by K̃M,η,
(A|�σ ′

n ,T �, B|�σ ′
n ,T �), respectively. Let ε

∗ > 0 be such that

K̃M,ηϒ(ε
∗) ≤ 1

4
(5.76)

and set τ∗,� := τε∗,�, λ′∗ := λ′
ε∗ andR∗ := Rλ′

ε∗ ,(A,B) (see (3.10)). Fix � ≥ 1 an recall
that Fc = FTr + Fc, G = GTr + Gc. Thus, by (5.72) and combining the second and
the second estimate of (5.71) with Lemma 5.7 we get

1[λ′∗,τ∗,�]×U F(·, u) ∈ L p
P (�; L p(λ′∗, τ∗,�, w

λ′∗
κ ; X0)),

1[λ′∗,τ∗,�]×UG(·, u) ∈ L p
P (�; L p(λ′∗, τ∗,�, w

λ′∗
κ ; γ (H, X1/2))),

(5.77)

with norms depending possibly on � ≥ 1. To get the desired contradiction we need to
prove an estimate which is uniform in � ≥ 1.

To this end, recall that ‖u(λ′∗)‖XTr
κ,p

≤ L a.s. on U by (5.70). Reasoning as in the
proof of Theorem 4.9 (see (5.27)–(5.28)), by Proposition 3.10, the second estimate of
(5.71) and (5.77) one has, a.e. on [λ′∗, τ∗,�] × U ,

u = R∗(1Uu(λ′∗), 1[λ′∗,τ∗,�]×U F(·, u), 1[λ′∗,τ∗,�]×UG(·, u)). (5.78)

Thus, by (5.72), (5.75) with ε = ε∗ and Proposition 3.9 applied with θ as in Step 1,
for all � ≥ 1 we obtain

‖u‖L p(U;0MRθ,κX (λ′∗,τ∗,�))

≤ ‖R∗(1Uu(λ′∗), 1[λ′∗,τ∗,�]×U F(·, u), 1[λ′∗,τ∗,�]×UG(·, u))‖L p(�;0MRθ,κX (λ′∗,T ))

≤ 2K̃M,η
(
L + RTr,M + ‖Fc(·, u)‖

L p((λ′∗,τ∗,�)×U ,wλ
′∗
κ ;X0)

+ ‖Gc(·, u)‖
L p((λ′∗,τ∗,�)×U ,wλ

′∗
κ ;γ (H,X1/2))

)
≤ 2KM,η,L + 1

2
‖u‖L p(U;0MRθ,κX (λ′∗,τ∗,�))

,

where KM,η,L does not depend on � ≥ 1 and in the last estimate we used the choice of
ε∗ in (5.76). Let us stress that L p(U)-norms in the previous inequality are well-defined
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due to the measurability result [3, Lemma 2.15] and the fact that λ′
ε takes values in a

finite set.
Therefore, ‖u‖L p(U;0MRθ,κX (λ′∗,τ∗,�))

≤ C for a constant C independent of � ≥ 1.

Since lim�→∞ τ∗,� = σ a.s. on V ′, by (5.75) with ε = ε∗, by Fatou’s lemma we get
(recall that V ′′ = V ′ ∩ U)

‖Fc(·, u)‖
L p((λ′∗,σ )×V ′′,wλ

′∗
κ ;X0)

+ ‖Gc(·, u)‖
L p((λ′∗,σ )×V ′′,wλ

′∗
κ ;γ (H,X1/2))

≤ sup
�≥1

[
‖Fc(·, u)‖

L p((λ′∗,τ∗,�)×V ′′,wλ
′∗
κ ;X0)

+ ‖Gc(·, u)‖
L p((λ′∗,τ∗,�)×V ′′,wλ

′∗
κ ;γ (H,X1/2))

]
< ∞.

Combining this with (5.72), we have N κ(u; λ′∗, σ ) < ∞ a.s. on V ′′ (see (4.13) for
N κ ). The former and σ < T a.s. on O ⊇ V ′′ imply

P(V ′′) = P

(
V ′′ ∩ {

σ < T, N κ (u; λ′∗, σ ) < ∞})
= P

(
V ′′ ∩ {

σ < T, N κ (u; 0, σ ) < ∞}) ≤ P

(
σ < T, N κ (u; 0, σ ) < ∞

)
= 0,

where in the last equality we used Theorem 4.10(1). The previous yields the desired
contradiction with (5.70). �

The proof of Theorem 4.9(3) combines the argument used above and the one used
in the Step 2 in the proof of Theorem 4.9(1).

Proof of Theorem 4.9(3). As usual s = 0 and we prove the claim by contradiction.
Assume that P(O) > 0 where

O :=
{
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖L p(0,σ ;X1− κ

p
) < ∞

}
.

Reasoning as in the proof of Theorem 4.9(1) there exist η,M > 0, a sequence of
stopping times (σ ′

n)n≥1 taking values in a finite set and V ′ ∈ Fσ such that η ≤ σ ′
n < σ

a.s. on V ′ and for each ε > 0 there exists an N (ε) ≥ 1

‖u‖C(I σ ;XTr
κ,p)

≤ M, sup
t∈[σ ′

N (ε),σ ]
‖u(t)− u(σ )‖XTr

κ,p
< ε and ‖u‖L p(σ ′

N (ε),σ ;X1− κ
p
) < ε.

where u(σ ) := limt↑σ u(t) a.s. on O.
For each ε > 0, � ≥ 1 define τε,� := σ ′

N (ε) on {σ ′
N (ε) ≥ σ } and on {σ ′

N (ε) < σ } as

τε,� := inf
{
t ∈ [σ ′

N (ε), σ ) : ‖u(t)− u(σ ′
N (ε))‖XTr

κ,p
≥ 2ε,

‖u‖X(σ ′
N (ε),t)∩L p(σ ′

N (ε),t,wκ ,X1)
≥ �,

‖u‖L p(σ ′
N (ε),t;X1− κ

p
) ≥ ε, ‖u‖C([0,t];XTr

κ,p)
≥ M

}
.

Choose ε∗ > 0 such that the condition in the proof of Theorem 4.9(1) (see the text
before (5.26)) and (5.76) both hold. At this point, one can repeat the estimates of u
using the splitting in (5.28) with τε replaced by τε∗,�. Note that I − I I I (see (5.28))
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can be estimated as in Theorem 4.9(1) and the remaining terms as in the proof of
Theorem 4.10(3). The claim follows similar to Theorem 4.10(3) by contradiction with
Theorem 4.9(1). �

It remains to prove Theorem 4.11. As announced in Sect. 4.2, we prove a gener-
alization of Theorem 4.11, where we do not require ϕ j = β j . An example of such a
situation is provided by stochastic reaction–diffusion equations with gradient nonlin-
earities, see [3, Subsection 5.4].

Recall that ϕ�j and β
�
j are defined at the beginning of Sect. 5.4.

Proposition 5.12. (Serrin type blow-up criteria for semilinear SPDEs—revised) Let
the assumptions of Theorem 4.11 be satisfied replacing (4.16) by the following con-
dition: For each j ∈ {1, . . . ,mF + mG} such that ρ j > 0 one of the following is
satisfied

• κ > 0 and β�j , ϕ
�
j > 1 − 1+κ

p
1+κ
2+κ ;

• κ = 0 and ρ j ≤ 1.

Then the L p
κ -maximal local solution (u, σ ) to (4.1) satisfies

P
(
σ < T, ‖u‖L p(s,σ ;X1− κ

p
) < ∞) = 0.

Before we prove Proposition 5.12, we first show that it implies Theorem 4.11.

Proof of Theorem 4.11. It is enough to check the assumptions of Proposition 5.12. In
case κ = 0 the assumptions coincide and hence this case is clear.

Next we assume κ > 0 and fix j ∈ {1, . . . ,mF +mG}. If ρ j = 0, then as agreed at
the beginning of Sect. 5.4 we replaced ρ j by ε j , and the corresponding ϕ�j , β

�
j satisfy

ϕ�j , β
�
j > 1 − 1+κ

p
1+κ
2+κ as assumed in Proposition 5.12. If ρ j > 0, then note that the

definition of ϕ�j , β
�
j and the fact that ϕ j = β j imply ϕ�j = β�j = 1 − ρ j

ρ j+1
1+κ
p . Since

ρ j < 1 + κ is equivalent to ϕ�j , β
�
j > 1 − 1+κ

p
1+κ
2+κ , the assumptions of Proposition

5.12 are satisfied also in this case. �

Proof of Proposition 5.12. As usual, we consider s = 0 and we split the proof into
several cases. The proof follows a similar argument as Theorem 4.10(3)
Suppose that P(O) > 0 where

O := {σ < T, ‖u‖L p(Iσ ;X1− κ
p
) < ∞}. (5.79)

Then there exist η,M > 0 and Fσ � V ⊆ O such that P(V) > 0 and

σ > η and ‖u‖L p(Iσ ;X1− κ
p
) ≤ M a.s. on V.

Note that in contrast to the proof of Theorem 4.10(3) we do not have an L∞-bound
for u in the trace space XTr

κ,p. However, the assumption of Theorem 4.11 is that FTr =
GTr = 0 and C ′

c,n in (5.50) are independent of n ∈ N.
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As in Step 1 of the proof of Theorem 4.10(3) fromLemma 5.11(1) and (3), it follows
that for all j ∈ {1, . . . ,mF+mG}, (5.62)-(5.63) holdwithφ1, j , φ2, j , δ1, j , δ2, j ∈ (0, 1]
such that

ρ j [(1 − φ1, j )+ φ1, j (1 − δ1, j )] + [(1 − φ2, j )+ φ2, j (1 − δ2, j )] ≤ 1. (5.80)

Note that φk, j = 1 if κ > 0 and δk, j = 1 if κ = 0, by Lemma 5.11. There-
fore, we can extend the proof of Theorem 4.10(3) to the present case. Indeed, by
(5.80) we can repeat the estimate (5.75) replacing the term ‖u‖

0MRθ,κX (λε,τε,�)
by

‖u‖
0MRθ,κX (λε,τε,�)∩L∞(λε,τε,�;XTr

κ,p)
. After this modification, one can repeat the argument

of Step 3 of the proof of Theorem 4.11. �

6. Instantaneous regularization

In this section we study regularization effects for (4.1). We present a space and time
regularity result for the solution to (4.1). We already saw that due to the presence of
nontrivial weights one can obtain instantaneous regularization of solutions (see The-
orem 4.3(1)). Below we state conditions under which regularity can be bootstrapped
for any positive time.
There are threemain results. In Theorem6.3we present a general iteration scheme to

bootstrap regularity in time and space. In Corollary 6.5we specialize to time regularity.
In both results weights play an essential role. Finally, in Proposition 6.8 we present a
result which allows to introduce weights after starting from an unweighted situation.
The latter is important in several interesting situations. An example where this occurs
will be given in Sect. 7 (see Roadmap 7.5 for a simple explanation).

6.1. Assumptions

Below we state abstract conditions which can be used for bootstrapping arguments.
We first present our main assumptions on the spaces Y1 ↪→ Y0 in which we bootstrap
regularity.

Assumption 6.1. Suppose that Hypothesis (H) is satisfied. Let Y0 and Y1 be UMD
Banach spaces with type 2, and such that Y1 ↪→ Y0 densely. Let either r = 2 and
α = 0, or r ∈ (2,∞) and α ∈ [0, r2 −1). We say that hypothesisH(Y0,Y1, r, α) holds
if

(1) X0 and Y0 are compatible, and Y1 ∩ X1 ↪→ Y1 is dense;
(2) There exist maps AY : �s, T � × Y Tr

α,r → L (Y1,Y0), FY : �s, T � × Y1 → Y0,
BY : �s, T � × Y Tr

α,r → L (Y1, γ (H,Y1/2)) and GY : �s, T � × Y1 → γ (H,Y1/2)
such that a.s. for all t ∈ (s, T ),

AY (t, z)v = A(t, z)v, BY (t, z)v = B(t, z)v,

FY (t, v) = F(t, v), GY (t, v) = G(t, v),

for all z, v ∈ X1 ∩ Y1. Moreover, the following hold:
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• AY , BY verify (HA) with (X0, X1, p, κ) replaced by (Y0,Y1, r, α);
• FY ,GY satisfy (HF)–(HG) with (X0, X1, p, κ) replaced by (Y0,Y1, r, α) and
(possibly) different parameters (ρ̃ j , ϕ̃ j , β̃ j , m̃F , m̃G).

(3) f ∈ L0
P (�; Lr (s + ε, T ; Y0)), g ∈ L0

P (�; Lr (s + ε, T ; γ (H,Y1/2))) for all
ε > 0.

As before in case (4.1) is semilinear, we write (A(·, x), B(·, x)) = ( Ā(·), B̄(·))
and ( ĀY (·), B̄Y (·)) instead of (AY (·, x), BY (·, x)). If it is necessary to make the de-
pendency on (α, r) explicit as well, then we will write (AY,α,r , BY,α,r , FY,α,r ,GY,α,r )

instead of (AY , BY , FY ,GY ). In some applications (see [7]), we will need a general-
ization of Assumption 6.1 in which lower-order parts of A and B are moved to F and
G (see Remark 6.7).
Let (u, σ ) be the maximal L p

κ -solution given by Theorem 4.3. Now the idea is as
follows. The above setting allows to consider (4.1) in the (Y0,Y1, r, α)-setting, i.e.,

replace (X0, X1, p, κ, A, B, F,G) by (Y0,Y1, r, α, AY , BY , FY ,GY ) in (4.1).

Now if Assumption 4.5 holds in the (Y0,Y1, r, α)-setting for � = α, it follows that all
conditions of Theorem 4.3 also hold on [s + ε, T ] for ε > 0 arbitrary. Therefore, if
u(s + ε) ∈ Y Tr

α,r a.s. there exists an Lr
α-maximal local solution (v, τ ) to (4.1) in the

(Y0,Y1, r, α)-setting with (s, us) replaced by (s+ε, u(s+ε)) and τ : � → (s+ε, T ].
Now one would expect that τ = σ and u = v on [ε, σ ], and this typically improves
the space-time regularity of u. In order to make the above bootstrap argument precise
we need to be able to connect the (Y0,Y1, r, α)-setting to the (X0, X1, p, κ)-setting
to assure:

(a) XTr
p ⊆ Y Tr

α,r ;
(b) v = u on [ε, τ ] and τ ≤ σ ;
(c) τ ≥ σ via a blow-up criterium in the (Y0,Y1, r, α)-setting.

Below we will actually use an abstract (Y0,Y1, r, α)-setting and (Ŷ0, Ŷ1, r̂ , α̂)-
setting to be able to iteration the bootstrap argument. One important ingredients in
the proof will be to show uniqueness (see (b) in the above), and this will be done by
presuming the following inclusion:⋂

θ∈[0,1/2)
H θ,̂r (s, T, ws

α̂; Ŷ1−θ ) ⊆ Lr (s, T, ws
α; Y1) ∩ Y(s, T ) ∩ C([s, T ]; Y Tr

α,r ).

(6.1)
Here Y(s, T ) is defined as in (5.4) with the above new parameters (r, α, ρ̃ j , ϕ̃ j , β̃ j )

and Xθ replaced by Yθ .
By translation and scaling (6.1) extends to all other bounded intervals. If u is in the

space on RHS(6.1), then u has the required regularity for being an Lr
α-strong solution

to (4.1) in the (Y0,Y1, r, α)-setting by Definition 4.1. This follows from Lemma 5.7
in the (Y0,Y1, r, α)-setting.
The following lemma gives sufficient conditions for (6.1) and is strong enough to

cover all applications which we have studied so far. In particular, we never need to
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considerY explicitly in applications.We only consider the case Ŷi ↪→ Yi for i ∈ {0, 1},
but there are also variations which avoid this condition.

Lemma 6.2. Suppose that HypothesisH(Y0,Y1, r, α) holds (see Assumption 6.1) and
that

• Ŷ0 and Ŷ1 are Banach spaces such that Ŷ1 ↪→ Ŷ0;
• Ŷi ↪→ Yi for i ∈ {0, 1}, r̂ ∈ [r,∞), and α̂ ∈ [0, r̂2 − 1).

Then (6.1) holds in each of the following cases:

(1) r = r̂ and α = α̂;
(2) 1+α̂

r̂ < 1+α
r ;

(3) 1+α̂
r̂ < 1+α

r +ε provided Ŷ1−ε ↪→ Y1 and Ŷ0 ↪→ Yε, for some ε ∈ (0, 12 − 1+α
r );

(4) r = r̂ and 1+α̂
r = 1+α

r + ε provided Ŷ1−ε ↪→ Y1 and Ŷ0 ↪→ Yε, for some
ε ∈ (0, 12 − 1+α

r ).

Proof. In all cases, it is enough to consider the case s = 0.
(1)–(2) By Proposition 2.1(3) and the fact that Ŷ1−θ ↪→ Y1−θ , for all θ ∈ [0, 12 ),

H θ,̂r (IT , wα̂; Ŷ1−θ ) ↪→ H θ,r (IT , wα; Ŷ1−θ ) ↪→ H θ,r (IT , wα; Y1−θ ).

Therefore, the inclusion follows by the former, Lemma 5.2 and Proposition 2.5(1).
(3): Due to Lemma 5.2, it is enough to show that for some θ1, θ2 ∈ [0, 12 ), ν ∈

( 1+αr , 12 ),⋂
θ∈{θ1,θ2}

H θ,̂r (IT , wα̂; Ŷ1−θ ) ⊆ H ν,r (It , wα; Y1−ν) ∩ Lr (IT , wα; Y1). (6.2)

The reiteration theorem for the complex interpolation (see, e.g., [11, Theorem 4.6.1])
ensures that Ŷθ(1−ε) ↪→ Yε+θ(1−ε), for each θ ∈ (0, 1). Therefore

Ŷ1−θ ↪→ Y1−θ+ε, for all θ ∈ [ε, 1). (6.3)

Since ε ∈ (0, 12 − 1+α
r ), there exists a δ ∈ (0, 12 ) such that δ > ε+ 1+α

r > 1+α̂
r̂ , where

the last inequality follows by assumption. By (6.3) and the fact that δ > ε we obtain

H δ,̂r (IT , wα̂; Ŷ1−δ) ↪→ H δ,̂r (IT , wα̂; Y1−(δ−ε)) ↪→ H δ−ε,r (IT , wα; Y1−(δ−ε))

where the last embedding follows from Corollary 2.3. Similarly,

H ε,̂r (IT , wα̂; Ŷ1−ε) ↪→ H ε,̂r (IT , wα̂; Y1) ↪→ Lr (IT , wα; Y1).

The above embeddings imply (6.2) with θ1 = ε, θ2 = δ and ν = δ − ε.
(4): The proof is similar to (3) using the last claim in Corollary 2.3 in the case that

1+α̂
r = ε + 1+α

r . �
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6.2. Bootstrapping using weights

In this section we state our main result. The statement below is quite technical
because the list of conditions is rather long. The strength of the result will be demon-
strated in Sect. 7 and in the follow-up papers [6–8] where we use the results below to
show

• Hölder regularity results with rough initial data;
• weak solutions immediately become strong solutions.

To obtain this type of regularization, we build a general scheme which only depends
on the structure of the SPDE through the parameters p, κ, X0, X1 in which the scaling
properties of the underlined SPDEs is encoded. An example will be given in Sect. 7
(see Roadmap 7.5 for a short overview).
The assumptions below have a considerable overlap with Theorem 4.9, which plays

a key role in the proof. Let us remind that critical spaces for (4.1) are defined be-
low Hypothesis (H). The picture one should have in mind is that Y -regularity and
Lr -integrability is given, and Ŷ -regularity and Lr̂ -integrability are deduced as a con-
sequence.

Theorem 6.3. (Bootstrapping regularity) Let Hypothesis (H) be satisfied. Let us ∈
L0
Fs
(�; XTr

κ,p) and suppose that (4.7) for a sequence (us,n)n≥1. Suppose that

(A(·, us,n), B(·, us,n)) ∈ SMR•
p,κ (s, T ), n ≥ 1,

and let (u, σ ) be the L p
κ -maximal local solution to (4.1) given by Theorem 4.3. Suppose

that Assumption 4.5 holds for � ∈ {0, κ} and Assumption 4.7 holds with parameters
(ϕ′

j ) j∈{1,...,m′
F+m′

G }. Further suppose the following:
(1) Hypothesis H(Y0,Y1, r, α) holds with r ∈ [p,∞) (see Assumption 6.1), As-

sumption 4.5 holds in the (Y0,Y1, r, α)-setting for � = α, and
• Y Tr

r ↪→ XTr
p ;

• Yδ ↪→ X0, Y1 ↪→ X1−δ for some δ ∈ [0, 1 − max j ϕ
′
j ) and

1
r + δ ≤ 1

p ;
• u : �s, σ � → Y1 is strongly progressively measurable and

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (s, σ ; Y1−θ ) a.s.;

(2) Hypothesis H(Ŷ0, Ŷ1, α̂, r̂) holds with r̂ ∈ [r,∞) and α̂ ∈ [0, r̂2 − 1), and the
space Ŷ Tr

α̂,̂r is not critical for (4.1), Assumption 4.5 for � ∈ {0, α̂} and 4.7 both

hold in the (Ŷ0, Ŷ1, r̂ , α̂)-setting;
(3) Ŷi ↪→ Yi for i ∈ {0, 1}, Y Tr

r ↪→ Ŷ Tr
α̂,̂r and (6.1) holds.

Then (u, σ ) instantaneously regularizes in spaces and time in the sense that u :
�s, σ � → Ŷ1 is strongly progressively measurable and

u ∈
⋂

θ∈[0,1/2)
H θ,̂r
loc (s, σ ; Ŷ1−θ ) ⊆ C((s, σ ); Ŷ Tr

r̂ ) a.s. (6.4)
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Observe that if Hypothesis (H) and Assumption (4.5) for � = κ hold, then by
Theorem 4.3, condition (1) is always satisfied for (Y0,Y1, r, α) = (X0, X1, p, κ).
Also note that Y Tr

α,r can be critical for (4.1) in the (Y0,Y1, r, α)-setting.
The second bullet of (1) holds with δ = 0 if Yi ↪→ Xi , which is the case in most

applications to SPDEs. In the latter situation, Y Tr
r ↪→ XTr

p holds provided r ≥ p. The
case δ > 0 will be needed in combination with Proposition 6.8 where we consider the
case κ = 0 and therefore ϕ′

j = ϕ j for all j .

Remark 6.4. (1) Theorem 6.3 yields an improvement in regularity in time if r̂ > r
and in space if Ŷi ↪→ Yi is strict for some i ∈ {0, 1};

(2) often Theorem 6.3 can be applied iteratively where (Ŷ0, Ŷ1, r̂ , α̂) takes over the
role of (Y0,Y1, r, α), and another quadruple takes over the role of (Ŷ0, Ŷ1, r̂ , α̂).
In this way for concrete SPDEs, in finitely many steps one can often derive
( 12 − ε)-Hölder regularity in time and higher-order Hölder regularity in space
for rough initial data.

Proof of Theorem 6.3. To prepare the proof, we collect some useful facts. It suffices
to consider s = 0. Fix ε > 0 and set

V := {σ > ε} ∈ Fε. (6.5)

By (1), Proposition 2.5, and (3),

1Vu(ε) ∈ L0
Fε
(�; Y Tr

r ) ⊆ L0
Fε
(�; Ŷ Tr

α̂,̂r ). (6.6)

As explainedbelowAssumption6.1, by (1) andTheorem4.3 applied in the (Y0,Y1, r, α)-
setting we find that there exists an Lr

α-maximal local solution to (v, τ ) to (4.1) in the
(Y0,Y1, r, α)-setting with s = ε and initial data 1Vu(ε), with localizing sequence
(τk)k≥1. Similarly, arguing in (Ŷ0, Ŷ1, r̂ , α̂)-setting (thus using (6.6) and (2)), we ob-
tain an Lr̂

α̂-maximal local solution (̂v, τ̂ ) to (4.1) in the (Ŷ0, Ŷ1, r̂ , α̂)-setting with
s = ε, initial data 1Vu(ε) and localizing sequence (̂τk)k≥1.

Step 1: τ = σ on V and v = u a.e. on [ε, τ )× V . By Theorem 4.3 and Proposition
2.5(2), for all k ≥ 1,

v ∈
⋂

θ∈[0,1/2)
H θ,r (ε, τk, w

ε
α; Y1−θ ) ⊆ C((ε, τk]; Y Tr

r ). (6.7)

By condition (1) and Theorem 4.3(1), u ∈ Y1 ∩ X1 a.e. on �ε, σ �. Thus, AY (·, u)u =
A(·, u)u, BY (·, u)u = B(·, u)u, FY (·, u) = F(·, u), GY (·, u) = G(·, u) a.e. on
�ε, σ �. This implies that (1Vu|[ε,σ ), 1Vσ + 1�\Vε) is an Lr

α-local solution to (4.1) in
the (Y0,Y1, r, α)-setting with s = ε and initial data 1Vu(ε). Therefore, maximality of
(v, τ ) implies (see also Remark 5.6)

σ ≤ τ, a.e. on V, u = v, a.e. on [ε, σ )× V. (6.8)

It remains to prove that σ ≥ τ a.e. on V . For this it is enough to show

P(V ∩ {σ < τ }) = 0. (6.9)
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For convenience, we divide the proof into two substeps. In case δ = 0 (i.e., Yi ↪→ Xi ),
the claim in Step 1a follows immediately from Lemma 5.2 and r ≥ p.

Step 1a: Let X′ be defined as in (5.4) with (mF ,mG , ϕ j , β j , ρ
�
j , κ) replaced by

(m′
F ,m

′
G , ϕ

′
j , β

′
j , ρ̃

�
j , 0) (see Assumption 4.7). In particular ρ̃

�
j = (1−β ′

j )/(ϕ
′
j −1+

1
p ), cf. (5.2). Then, for all 0 ≤ a < b < ∞,

⋂
θ∈[0,1/2)

H θ,r (a, b; Y1−θ ) ⊆ X′(a, b). (6.10)

Fix k ∈ {1, . . . ,m′
F + m′

G}. By (5.2)-(5.3) with (mF ,mG , ϕ j , β j , κ) replaced by
(m′

F ,m
′
G , ϕ

′
j , β

′
j , 0), it is enough to show that the LHS in (6.10) embeds into

L p̃rk (a, b; Xβ ′
k
) ∩ L ρ̃

�
k p̃r

′
k (a, b; Xϕ′

k
) (6.11)

where r̃k, r̃ ′
k satisfy

1

ρ̃�k p̃r
′
k

= ϕ′
k − 1 + 1

p
and

1

p̃rk
= β ′

k − 1 + 1

p
. (6.12)

By Assumption 4.7, for φ ∈ {β ′
k, ϕ

′
k} we have δ < 1 − φ (since δ < 1 − ϕ′

k and
ϕ′
k ≥ β ′

k) and 1 − φ − δ < 1
2 (since φ > 1 − 1

p >
1
2 ). Using that Yθ+δ ↪→ Xθ by

complex reiteration (see, e.g., [11, Theorem 4.6.1]), we have⋂
θ∈[0,1/2)

H θ,r (a, b; Y1−θ ) ⊆
⋂

φ∈{β ′
k ,ϕ

′
k }
H1−φ−δ,r (a, b; Xφ).

To complete the proof of Step 1a, it suffices to show that the latter space embeds in
(6.11). We only consider the case φ = βk since the other case is similar. If p̃rk > r ,
then H1−β ′

k−δ,r (a, b; Xβ ′
k
) ↪→ L p̃rk (a, b; Xβ ′

k
) follows from Proposition 2.1(4) and

the fact that 1 − β ′
k − δ − 1

r ≥ − 1
p̃rk

= 1 − β ′
k − 1

p by (6.12) and 1
r + δ ≤ 1

p . In

case p̃rk ≤ r , then the embedding follows from H1−β ′
k−δ,r ↪→ Lr ↪→ L p̃rk , where

we used δ < 1 − ϕ′
k ≤ 1 − β ′

k .
Step 1b: Proof of (6.9). Since (u, σ ) is an L p

κ -maximal local solution to (4.1) in the
(X0, X1, p, κ)-setting, N κ

c (u; 0, t) < ∞ for all for all t < σ a.s. (here N κ
c is as in

(4.10)). We claim that

lim
t↑σ u(t) exists in XTr

κ,p and N c
κ (u; 0, σ ) < ∞ onV ∩ {σ < τ }. (6.13)

Here the first part of the claim follows from (6.7), (6.8), limk→∞ τk = τ and τ > ε

a.s., and the embedding Y Tr
r ↪→ XTr

p ↪→ XTr
κ,p. To obtain the second part of (6.13),

note that by Step 1a and Lemma 5.7 applied to v in the unweighted case, we have
N c

0 (u; σ/2, σ ) < ∞ a.s. on V ∩ {σ < τ }. Combining this with N κ
c (u; 0, σ/2) < ∞

a.s. the claim follows.
By (6.13) and σ < τ ≤ T a.s. on V ∩ {σ < τ }, we obtain
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P(V ∩ {σ < τ })
= P

(
V ∩ {σ < τ } ∩ {σ < T } ∩ {

lim
t↑σ u(t) exists in XTr

κ,p, N c
κ (u; 0, σ ) < ∞})

≤ P

(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, N c

κ (u; 0, σ ) < ∞
)

= 0,

where the last equality follows from Theorem 4.9(1) (here we used Assumption 4.5
for � ∈ {0, κ} and Assumption 4.7). Therefore (6.9) is proved.

Step 2: τ = τ̂ a.s. and v = v̂ on �ε, τ �. Since (̂τk)k≥1 is a localizing sequence, for
all k ≥ 1, one has

v̂ ∈
⋂

θ∈[0,1/2)
H θ,̂r (ε, τ̂k, w

ε
α̂; Ŷ1−θ ) a.s. (6.14)

Next, as inStep1,we show that (̂v, τ̂ ) is an Lr
α-local solution to (4.1) in the (Y0,Y1, α, r)-

setting. To this end, note that thanks toHypothesisH(Y0,Y1, α, r) andH(Ŷ0, Ŷ1, α̂, r̂),
and by density,

AŶ ,̂α,̂r (·, v̂)̂v = AY,α,r (·, v̂)̂v, FŶ ,̂α,̂r (·, v̂) = FY,α,r (·, v̂),
BŶ ,̂α,̂r (·, v̂)̂v = BY,α,r (·, v̂)̂v, GŶ ,̂α,̂r (·, v̂) = GY,α,r (·, v̂)

a.e. on �ε, τ̂ �. The latter, (6.1), and (6.14), ensure that (̂v, τ̂ ) is also an Lr
α-local solution

to (4.1) in the (Y0,Y1, r, α)-setting with s = ε and initial data 1Vu(ε). Themaximality
of (v, τ ) gives (see also Remark 5.6)

τ̂ ≤ τ, a.s., v = v̂, a.e. on �ε, τ̂ �. (6.15)

It remains to prove τ ≤ τ̂ a.s. By (3), YTr
r ↪→ Ŷ Tr

α̂,̂r and thus by (6.7) and (6.15),

v = v̂ ∈ C((ε, τ̂ ]; Y Tr
r ) ⊆ C((ε, τ̂ ]; Ŷ Tr

α̂,̂r ), a.s. on {̂τ < τ }.

Therefore, limt↑τ̂ v̂(t) exists in Ŷ Tr
α̂,̂r a.e. on {̂τ < τ }. Since τ̂ < τ ≤ T on {̂τ < τ },

P(̂τ < τ) = P

(
{̂τ < τ } ∩ {̂τ < T } ∩ {

lim
t↑τ̂ v̂(t) exists in Ŷ Tr

α̂,̂r

})
≤ P

(
τ̂ < T, lim

t↑τ̂ v̂(t) exists in Ŷ Tr
α̂,̂r

)
= 0,

where in the last step we used condition (2) in order to apply Theorem 4.9(2) in the
(Ŷ0, Ŷ1, r̂ , α̂)-setting.
Step 3: Conclusion. By Steps 1-2, σ = τ = τ̂ a.s. on V and u = v = v̂ on

V × [ε, σ ) = �ε, σ �. Let (σn)n≥1 be the localizing sequence for u defined in (5.18).
Then we have already seen that one has σn < σ for all n ≥ 1. Thus, by (6.14) and the
previous consideration, for all n ≥ 1 and δ > 0,

1Vu ∈
⋂

θ∈[0,1/2)
H θ,̂r (ε, σn, w

ε
α̂; Ŷ1−θ ) ⊆

⋂
θ∈[0,1/2)

H θ,̂r (ε+δ, σn; Ŷ1−θ ) a.s. (6.16)
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where we used that σn < σ = limk→∞ τ̂k a.s., Proposition 2.1(1).
Now let εk = δk = 1

2k , Vk = {σ > 1
2k } and set �0 = ⋃

k≥1 Vk . Let (̂vk)k≥1

denote the corresponding Ŷ1-valued solutions defined on �1/k, σ �. Since σ > 0 a.s.,
P(�0) = 1, and therefore, a.s. for all k ≥ 1 and all n ≥ 1,

u ∈
⋂

θ∈[0,1/2)
H θ,̂r ( 1k , σn; Ŷ1−θ ).

This implies the first part of (6.4). The final part of (6.4) follows from Proposition
2.5(1) in the unweighted case.

Finally, to check the progressive measurability of u as a Ŷ1-valued function, note
that u|�1/k,σ� = v̂k onVk a.s. Since 1[1/k,σ )×Vk v̂k is strongly progressivelymeasurable

as a Ŷ1-valued process and converges pointwise to u a.s. we find that u has the same
property. �

In the special case Ŷi = Yi , the above result simplifies and can be used to derive
time-regularity.

Corollary 6.5. (Bootstrapping time regularity) Let Hypothesis (H) be satisfied. Let
us ∈ L0

Fs
(�; XTr

κ,p) and that (4.7) holds. Suppose that

(A(·, us,n), B(·, us,n)) ∈ SMR•
p,κ (s, T ), n ≥ 1,

and let (u, σ ) be the L p
κ -maximal local solution to (4.1) given by Theorem 4.3. Suppose

that Assumption 4.5 holds for � ∈ {0, κ} and Assumption 4.7 holds.

(1) Suppose that HypothesisH(Y0,Y1, r, α) holds with r ∈ [p,∞) and α ∈ (0, r2 −
1), Assumption 4.5 holds in the (Y0,Y1, r, α)-setting for � = α, and
• Y Tr

r ↪→ XTr
p ;

• Yδ ↪→ X0, Y1 ↪→ X1−δ for some δ ∈ [0, 1 − max j ϕ
′
j ) and

1
r + δ ≤ 1

p ;
• u : �s, σ � → Y1 is strongly progressively measurable and

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (s, σ ; Y1−θ ) a.s.;

(2) let r̂ ∈ [r,∞) and suppose Assumption 4.5 for � ∈ {0, α̂} and Assumption 4.7
both hold in the (Y0,Y1, r̂ , α̂)-setting for all α̂ ∈ [0, r̂2−1) satisfying 1+α̂

r̂ < 1+α
r .

Then

u ∈
⋂

θ∈[0,1/2)
H θ,̂r
loc (s, σ ; Y1−θ ) ⊆ C(s, σ ; Y Tr

r̂ ) a.s. (6.17)

Note that if f = 0 and g = 0, then the above result may be applied with r̂ arbitrary.
Recall that by Theorem 4.3, (1) is satisfied in the case Xi = Yi (for i ∈ {0, 1}), r = p
and α = κ > 0. In the proof of Corollary 6.5 we will see that it is enough to assume
(2) for a particular value α̂ such that 1+α̂

r̂ < 1+α
r , and the corresponding trace space

Ŷ Tr
α̂,̂r is not critical for (4.1) in the (Ŷ0, Ŷ1, r̂ , α̂)-setting.
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Proof of Corollary 6.5. The idea is to apply Theorem 6.3 with Ŷ0 = Y0, Ŷ1 = Y1,
r̂ > r and α̂ such that 1+α̂

r̂ < 1+α
r which will be chosen below. It remains to check

Theorem 6.3(1)(3). Note that (1) holds by assumption. Next, we check (2). Since
hypothesis H(Y0,Y1, α, r) holds, there exist m̃F , m̃G , (ϕ̃ j )

m̃F+m̃G
j=1 ⊆ (1 − 1+α

r , 1),

(β̃ j )
m̃F+m̃G
j=1 such that β̃ j ∈ (1 − 1+α

r , ϕ̃ j ] and (HF)-(HG) hold with (p, κ) replaced
by (r, α). Set

2ε := min
j∈{1,...,m̃F+m̃G }

{
β̃ j − 1 + 1 + α

r
,
α

r

}
> 0,

where we used that α > 0 by (1). In particular,

min
j∈{1,...,m̃F+m̃G }{β̃ j , ϕ̃ j } > 1 − 1 + α

r
+ ε, and

1

r
<

1 + α

r
− ε. (6.18)

Since α̂ ∈ [0, r̂2 −1) if and only if 1+α̂
r̂ ∈ [ 1r̂ , 12 ) ⊇ [ 1r , 12 ) (where we used that r̂ ≥ r ),

there exists an α̂ ∈ [0, r̂2 − 1) such that

1 + α

r
− ε <

1 + α̂

r̂
<

1 + α

r
. (6.19)

Note that the above choice of α̂ and the second in (6.18) yield

Yr ↪→ Y Tr
α̂,̂r = Ŷ Tr

α̂,̂r and Y Tr
α̂,̂r = Ŷ Tr

α̂,̂r ↪→ Y Tr
α,r . (6.20)

We claim that FY ,GY satisfy (HF)-(HG) with (p, κ) replaced by (̂r , α̂). To see this,
note that by (6.18)-(6.20), ϕ̃ j , β̃ j > 1− 1+α

r +ε > 1− 1+α̂
r̂ , and thus (4.3), (4.5) hold

with (p, κ, ρ j , ϕi , β j ,mF ,mG) replaced by (̂r , α̂, ρ̃ j , ϕ̃i , β̃ j , m̃F , m̃G). Moreover,
due to the fact that 1+α̂

r̂ < 1+α
r , (4.3) and (4.5) hold with the strict inequality and

thus Ŷ Tr
α̂,̂r is not critical for (4.1) in the (Y0,Y1, r̂ , α̂)-setting. Finally, (HA) holds by

the second inclusion in (6.20).
Due to the first inclusion in (6.20), to check Theorem 6.3(3) it remains to note that

(6.1) with the above choice of (Ŷ0, Ŷ1, α̂, r̂) follows from Lemma 6.2(2) and the upper
bound in (6.19). �
Remark 6.6. In the deterministic case, part of the arguments used in Theorem 6.3
appears in [20,38,42]. Our systematic treatment appears to be new. Let us note that
an essential step in the proof is to use blow-up criteria to show the invariance of the
explosion time σ in the different settings.

Remark 6.7. In some application (see [7]), we need a straightforward extension of
Theorem 6.3 and Corollary 6.5, where in Assumptions 4.5, 4.7 and 6.1 we assume
that there is a splitting in a principle and a lower-order part of the form

A(·, v)v = AY,princ(·, v)v + AY,lower(t, v),

B(·, v)v = BY,princ(t, v)v + BY,lower(·, v), (6.21)

on Y0. If (6.21) holds, then it can be useful to consider the corresponding assumptions
on (AY,princ, BY,princ, FY + Alower,GY + Blower). One can check that Theorem 6.3 and
Corollary 6.5 extend to this setting.
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6.3. The emergence of weights

In Theorem 6.3(2), there are two difficulties:

• it is not applicable in the critical case;
• it is often not applicable in the unweighted setting.

In this subsection we show how to create a weighted situations from an unweighted
one, which also allows criticality. For simplicity we only consider the case where we
add a weight near t = s as this is what is needed to start a bootstrapping argument.
Moreover, we only consider the semilinear setting, as the extension to the quasilinear
setting is quite cumbersome and harder to state. Unlike Theorem 6.3 the case κ = 0
is allowed, which is central in many applications.
Recall that ( ĀY , B̄Y ) is as below Assumption 6.1. We need an additional condition

on F and G. Fix r ∈ [1,∞]. Suppose that for each n ≥ 1 there is a constant Cn such
that for a.a. ω ∈ �, for all t ∈ [s, T ] and ‖x‖(X0,X1)1− 1

p ,r
, ‖y‖(X0,X1)1− 1

p ,r
≤ n,

‖Fc(t, ω, x)‖X0 ≤ Cn

mF∑
j=1

(1 + ‖x‖ρ j
Xϕ j
)‖x‖Xβ j + Cn

‖Gc(t, ω, x)‖γ (H,X1/2) ≤ Cn

mF+mG∑
j=mF+1

(1 + ‖x‖ρ j
Xϕ j
)‖x‖Xβ j + Cn,

‖FTr(t, ω, x)‖X0 + ‖GTr(t, ω, x)‖γ (H,X1/2) ≤ Cn(1 + ‖x‖(X0,X1)1− 1
p ,r
). (6.22)

This coincides with the growth condition in (HF) and (HG) if r = p and κ = 0.
The main result of this section is the following:

Proposition 6.8. (Adding weights at the initial time) Let Hypothesis (H) be satisfied
with κ = 0. Let r ∈ [p,∞), r > 2, α ∈ [0, r2 − 1), and suppose that (6.22) holds. Let
us ∈ L0

Fs
(�; XTr

p ) and suppose that

(A(·, x), B(·, x)) ≡ ( Ā(·), B̄(·)) ∈ SMR•
p(s, T ), for all x ∈ X1. (6.23)

Let (u, σ ) be the L p
0 -maximal local solution to (4.1) of Theorem 4.3. Suppose that

δ ∈ [0, 1 − max j ϕ j ), where p > 2 in case δ = 0, and the following are satisfied:

(1) Hypothesis H(Y0,Y1, α, r), ( ĀY , B̄Y ) ∈ SMR•
r,α(t, T ) for all t ∈ (s, T ) and

Assumption 4.7 hold in the (Y0,Y1, α, r)-setting,

Yδ = X0, Y1 = X1−δ,
1

p
= 1 + α

r
+ δ, and

1

r
≥ max

j
ϕ j − 1 + 1

p
;

(2) ( ĀY , B̄Y ) ∈ SMRq(t, T ) for all t ∈ (s, T ) and q ∈ [2, r ].
Then

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (s, σ ; X1−δ−θ ) ⊆ C(s, σ ; (X0, X1)1−δ− 1

r ,r
) a.s. (6.24)
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Proposition 6.8 allows to bootstrap regularity in time provided r > p is not too big
at the expense of reducing the regularity “in space” in the case that δ > 0. Moreover, if
α > 0, then (X0, X1)1−δ− 1

r ,r
= (X0, X1)1− 1

p + α
r ,r
↪→ XTr

p and therefore Proposition

6.8 also yields a regularization in space. One of the interesting features of Proposition
6.8 is that in applications to SPDEs one can fix r and choose δ so small that αr =
1
p − 1

r − δ > 0. In that case, the conditions in Corollary 6.5(1) follow from ϕ′
j = ϕ j

and Proposition 6.8(1). Therefore, if Corollary 6.5(2) holds aswell, then one can obtain
further integrability in time afterward. After that one can bootstrap further regularity
via Theorem 6.3.
In the case p > 2, one usually takes δ = 0. This is not allowed if p = 2, since

1
p = 1

2 >
1+α
r for all r ∈ [2,∞), α ∈ [0, r2 − 1) and therefore (1) can hold if and

only if δ > 0. In this case, Y0 can be thought as “X−δ” and (typically) can be defined
as X−δ, Ã, i.e., the extrapolated space (see, e.g., [3, Appendix A]) constructed via a
sectorial operator Ã on X0 such that D( Ã) = X1.

Actually, Proposition 6.8 holds undermore general assumptions, and it has a version
for a quasilinear equations. However, we prefer to state Proposition 6.8 in its current
simple form as this is enough for many of the applications we have in mind and is less
technical.

Proof of Proposition 6.8. As usual, we set s = 0. Due to [11, Theorems 4.6.1 and
4.7.2] and the fact that Yδ = X0, Y1 = X1−δ we have

Yθ = Xθ−δ, and (Y0,Y1)θ,ζ = (X0, X1)θ−δ,ζ for all θ ∈ (δ, 1), ζ ∈ [1,∞].
(6.25)

The former, the fact that r ≥ p and 1+α
r = 1

p − δ imply that for all ε > 0

1Vu(ε) ∈ L0
Fε
(�; XTr

p ) ⊆ L0
Fε
(�; Y Tr

α,r ) where V := {σ > ε}. (6.26)

As explained below Assumption 6.1, by (6.26) and HypothesisH(Y0,Y1, α, r), Theo-
rem 4.3 gives existence of an Lr

α-maximal local solution (v, τ ) to (4.1) on [ε, T ] with
initial data 1Vu(ε) in the (Y0,Y1, α, r)-setting. Since r > 2 by assumption, Theorem
4.3(1) ensures that a.s.

v ∈
⋂

θ∈[0,1/2)
H θ,r
loc ([ε, τ ), wεα; Y1−θ ) ⊆ C([ε, τ ); Y Tr

α,r ) = C([ε, τ ); (X0, X1)1− 1
p ,r
),

(6.27)
where the latter is not the “right” trace space in the (X0, X1, p, κ)-setting. As in the
proof of Theorem 6.3, to prove (6.24) it remains to show that

τ = σ a.s. and u = v a.e. on �ε, σ �. (6.28)

Indeed, if (6.28) holds, then (6.24) follows from (6.27), the arbitrariness of ε > 0,
and the argument in Step 3 of the proof of Theorem 6.3.
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For the reader’s convenience, we split the proof of (6.28) into several steps. In Step
1 we prove that τ ≤ σ a.s. and u = v a.e. on V × [ε, τ ) assuming that

⋂
θ∈[0,1/2)

H θ,r (a, b, wa
α; Y1−θ ) ⊆ X(a, b), for all 0 ≤ a < b < ∞, (6.29)

in Step 2 we prove (6.28), and in Step 3 we prove (6.29). Here X is as in (5.4).
Step 1: τ ≤ σ a.s. and u = v a.e. on V × [ε, τ ). By uniqueness of the L p

0 -maximal
local solution (u, σ ) (see also Remark 5.6), to prove the claim of this step it remains to
check that (v, τ ) is an L p

0 -local solution to (4.1) on [ε, T ] in the (X0, X1, p, 0)-setting
with initial data 1Vu(ε). Since HypothesisH(Y0,Y1, α, r) holds, it is enough to check
that the process v has the required regularity for being an L p

0 -local solution to (4.1)
on [ε, T ] in the (X0, X1, p, 0)-setting (see Definitions 4.1–4.2 and Lemma 5.7), i.e.,

v ∈ L p(ε, τk; X1) ∩ C([ε, τk]; XTr
p ) ∩ X(ε, τk) a.s. for all k ≥ 1, (6.30)

for a suitable localizing sequence (τk)k≥1 for (v, τ ). By (6.27) and (6.29), v ∈ X(ε, τk)

a.s., and thus it remains to prove the first two parts of (6.30).
To proceed, we need a localization argument. For j ≥ 1, set

V j := V ∩ {‖u(ε)‖XTr
p

≤ j} ∈ Fε. (6.31)

By (6.27) and (6.29), we can define a localizing sequence by

τ j := inf{t ∈ [ε, τ ) : ‖v‖Lr (ε,t,wεκ ;Y1)+‖v(t)‖(X0,X1)1− 1
p ,r

+‖v‖X(ε,t) ≥ j}, (6.32)

where inf ∅ := τ , and moreover, (τ j ) j≥1 is a localizing sequence for (v, τ ). Due to
(6.22) one can check that Lemma 5.7 is also valid if XTr

κ,p is replaced by (X0, X1)1− 1
p ,r

everywhere. Therefore, by (6.32), we obtain that for all j ≥ 1,

Fj := 1[ε,τ j ]×V j F(·, v) ∈ L∞(�; L p(ε, T ; X0)),

G j := 1[ε,τ j ]×V j G(·, v) ∈ L∞(�; L p(ε, T ; γ (H, X1/2))).
(6.33)

Due to (6.23), (6.31) and (6.33), for each j ≥ 1 there exists a strong solution z j ∈
L p
P (�; L p(ε, T ; X1) ∩ C([ε, T ]; XTr

p )) to the following (see Definition 3.3)

{
dz j + Ā(·)z jdt = Fjdt + (B̄(·)z j + G j )dWH , on [ε, T ],
z j (ε) = 1V j u(ε).

(6.34)

Recall that (v, τ ) is an Lr
α-maximal local solution to (4.1) on [ε, T ] in the (Y0,Y1, α, r)-

setting with initial data 1Vu(ε). By (6.32), v ∈ L∞(�; Lr (ε, τ j , w
ε
α; Y1)). For all

j ≥ 1, set

v j := 1V j (v − z j ) ∈ L p(�; L p(ε, τ j ; X1)+ Lr (ε, τ j , w
ε
α; Y1)). (6.35)
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Then v j is a strong solution to the following problem on [ε, τ j ] × V j{
dv j + ĀY (·)v jdt = B̄Y (·)v jdWH , on �ε, T �,

v j (ε) = 0,
(6.36)

where ( ĀY , B̄Y ) are as below Assumption 6.1. Due to the regularity of z j , it remains
to prove that v j = 0 a.e. on �ε, τ j �. To this end, we apply assumption (2). For the sake
of clarity we divide the argument into two cases.

(1) Case δ = 0, p > 2. Recall that r ≥ p and 1+α
r = 1

p by (1). Fix q ∈ (2, p).

Then 1+α
r < 1

q and Proposition 2.1(3) yields Lr (It , wα; Y1) ↪→ Lq(It ; Y1) for
all t > 0. Recalling that X1 = Y1 (due to δ = 0), we have

L p(It ; X1)+ Lr (It , wα; Y1) ↪→ Lq(It ; X1) for all t > 0.

The former and (6.35) ensure v j ∈ Lq(�; Lq(ε, τ j ; X1)). Therefore, v j ≡ 0 by
(6.36), ( ĀY , B̄Y ) = ( Ā, B̄) ∈ SMRq(ε, T ), and Proposition 3.10.

(2) Case δ > 0. Since 1+α
r = 1

p − δ < 1
p we have Lr (It , wα; Y1) ↪→ L p(It ; Y1)

for all t > 0 by Proposition 2.1(3). Recalling that X1 ↪→ Y1, we have

L p(It ; X1)+ Lr (It , wα; Y1) ↪→ L p(It ; Y1) for all t > 0.

As above, the former and (6.35) imply that v j ∈ L p(�; L p(ε, τ j ; Y1)). There-
fore, v j ≡ 0 by (6.36), ( ĀY , B̄Y ) ∈ SMRp(ε, T ) and Proposition 3.10.

Step 2: (6.28) holds. By Step 1 and (6.27) it is enough to show that τ ≥ σ a.s. on
V and this will be done via Theorem 4.10(3). To this end, we claim that it suffices to
show that

v ∈ Lr (ε, τ ; Y1− α
r
) ∩ C([ε, τ ]; Y Tr

α,r ) a.s. on V ∩ {τ < σ }. (6.37)

Indeed, if (6.37) holds, then

P(V ∩ {τ < σ }) (i)= P

(
V ∩ {τ < σ } ∩

{
sup

t∈[ε,τ )
‖v(t)‖YTr

α,r
+ ‖v‖Lr (ε,τ ;Y1− α

r
) < ∞

})
(i i)≤ P

(
τ < T, sup

t∈[ε,τ )
‖v(t)‖YTr

α,r
+ ‖v‖Lr (ε,τ ;Y1− α

r
) < ∞

)
= 0,

where in (i) we used (6.37), and in (i i) we used Theorem 4.10(3). As usual we also
used that τ < T on {τ < σ }.

To prove (6.37), recall that τ ≤ σ a.s. on V and u = v a.e. on [ε, τ )× V by Step 1.
The latter, (6.25) and the fact that r ≥ p ensure

v = u ∈ C([ε, τ ]; XTr
p ) ⊆ C([ε, τ ]; Y Tr

α,r ), a.s. on V ∩ {τ < σ }. (6.38)

To complete the proof of (6.37), we need to prove v ∈ Lr (ε, τ ; Y1− α
r
) a.s. on

V ∩ {τ < σ }. To this end, we consider p > 2 and p = 2 separately.
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If p > 2, then by Step 1 and Theorem 4.3(1) applied with θ = α
r + δ = 1

p − 1
r <

1
2

we have, a.s. on V ∩ {τ < σ },

v = u ∈ H
α
r +δ,p(ε, τ ; X1− α

r −δ)
(6.25)= H

α
r +δ,p(ε, τ ; Y1− α

r
)
(i i i)
↪→ Lr (ε, τ ; Y1− α

r
)

where (i i i) follows from Proposition 2.1(4).
If p = 2, then instead of Sobolev embedding, we can use the following standard

interpolation inequality for 0 ≤ a < b < ∞ and θ ∈ (0, 1):
C([a, b]; X1/2) ∩ L2(a, b; X1) ↪→ L2/θ (a, b; X(1+θ)/2). (6.39)

By Theorem 4.3(1) with p = 2 and Step 1 we have, a.s. on V ∩ {τ < σ },

v = u ∈ C([ε, τ ]; X1/2) ∩ L2(ε, τ ; X1)
(iv)
↪→ Lr (ε, τ ; X1− α

r −δ)
(6.25)= Lr (ε, τ ; Y1− α

r
),

where in (iv) we used (6.39) with θ = 1 − 2(αr + δ) = 2
r ∈ (0, 1).

Step 3: (6.29) holds. By translation and scaling, it is enough to prove (6.29) for
a = 0 and b = T . Fix k ∈ {1, . . . ,mF + mG}. Recall that κ = 0 and by (5.2)-(5.3)

1

ρ�k pr
′
k

= ϕk − 1 + 1

p
and

1

prk
= βk − 1 + 1

p
. (6.40)

ByHypothesis (H) for φ ∈ {βk, ϕk}we have δ < 1−φ (since δ < 1−ϕk and ϕk ≥ βk)
and 1 − φ − δ < 1

2 (since φ > 1 − 1
p >

1
2 ). Thus, to prove (6.29) note that⋂

θ∈[0,1/2)
H θ,r (IT , wα; Y1−θ ) ⊆

⋂
φ∈{ϕk ,βk }

H1−φ−δ,r (IT , wα; Yφ+δ)

(i)=
⋂

φ∈{ϕk ,βk }
H1−φ−δ,r (IT , wα; Xφ) (i i)↪→ Lρ

�
k pr

′
k (IT ; Xϕk ) ∩ L prk (IT ; Xβk )

(6.41)
where in (i) we used (6.25), and in (i i) we used (6.40), Proposition 2.1(4) and

r ≤ min{prk , ρ�k pr ′
k}, 1 − ϕk − δ − 1 + α

r
= − 1

ρ�k pr
′
k
, 1 − βk − δ − 1 + α

r
= − 1

prk
.

Note that r ≤ min{prk, ρ�k pr ′
k} is equivalent to 1

r ≥ 1
ρ�k pr

′
k

= ϕk − 1 + 1
p and

1
r ≥ 1

prk
= βk − 1 + 1

p (see (6.40)), which hold by the last condition in (1) and the
fact that βk ≤ ϕk . Since k was arbitrary (6.29) follows from (5.4) and (6.41). �

Remark 6.9. If additionally in Proposition 6.8, ( ĀY , B̄Y ) ∈ SMR•
r,α(s, T ), f ∈

L0
P (�; Lr (s, T, wα; Y0)) and g ∈ L0

P (�; Lr (s, T, wα; γ (H,Y1/2))), then

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc ([s, σ ), ws

α; X1−δ−θ ) a.s. (6.42)

Indeed, this follows by taking ε = 0 in (6.26), and using ( ĀY , B̄Y ) ∈ SMR•
r,α(s, T )

and XTr
p ↪→ Y Tr

α,r .
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The previous regularization results allow us to prove instantaneous regularization
for L p

κ -maximal local solutions to (4.1). In applications to SPDEs, one can employ
the following extrapolation result to transfer the regularity and life-span of solutions
for a given setting to another one.

Lemma 6.10. (Extrapolating regularity and life-span)LetHypothesis (H) be satisfied.
Let us ∈ L0

Fs
(�; XTr

κ,p) and suppose that (u, σ ) the L
p
κ -maximal local solution to (4.1)

exists. Suppose that Assumption 4.5 for � ∈ {0, κ} and 4.7 are satisfied and that the
following conditions hold for a given ε ∈ (0, T − s):

(1) HypothesisH(Y0,Y1, r, α)andAssumption4.5 for� = α hold in the (Y0,Y1, r, α)-
setting, and one of the following holds:
• u ∈ C((s, σ ); Y1/2) ∩ L2

loc(s, σ ; Y1) a.s. and r = 2,

• u ∈ ⋂
θ∈[0,1/2) H

θ,r
loc (s, σ ; Y1−θ ) a.s. and r > 2;

(2) Hypothesis H(Ŷ0, Ŷ1, r̂ , α̂) holds, Ŷi ↪→ Yi , r̂ ∈ [r ∨ p,∞), Ŷ Tr
r̂ ↪→ XTr

κ,p,

Ŷ1 ↪→ X1−κ/p and the Lr
α-maximal local solution (v, τ ) to (4.1) on [s + ε, T ]

in the (Y0,Y1, r, α)-setting with initial value vs+ε = 1σ>εu(s + ε) satisfies

v ∈
⋂

θ∈[0,1/2)
H θ,̂r
loc (s + ε, τ ; Ŷ1−θ ).

Then σ = τ a.s. on the set {σ > ε} and u = v a.e. on �s + ε, σ �.

Conditions (1) and (2) can be checked using the results in Sects. 6.2–6.3. Typically
the lemma can be applied for every ε ∈ (0, T − s), and in this case we obtain that
u ∈ ⋂

θ∈[0,1/2) H
θ,̂r
loc (s, σ ; Ŷ1−θ ).

Remark 6.11. (1) In applications to SPDEs, Lemma 6.10 allows to extrapolate
global existence result from a given (Y0,Y1, r, α)-setting where τ = T . Typi-
cally, this yields an improvement in the choice of the initial data (see Theorem
7.4 and the text below it).

(2) In the case that XTr
κ,p is critical, Theorems 4.9(2) and 4.10(2) are not applicable.

Using Lemma 6.10 we can change into a (Y0,Y1, r, α)-setting, and in the case
Y Tr
α,r is not critical, then one can often apply those result to find τ = T , and

therefore σ = T . See [8] for an application to reaction–diffusion equations.

Proof of Lemma 6.10. As usual, we set s = 0. Here we employ the arguments used
in Step 1 and 3 in the proof of Theorem 6.3 with minor modifications. Note that, due
to (1) and Proposition 2.5, vε := 1σ>εu(ε) ∈ L0

Fε
(�; Y Tr

α,r ). By (2) there exists a
Lr
α-maximal local solution (v, τ ) to (4.1) in the (Y0,Y1, α, r)-setting.
Reasoning as in Step 1 in Theorem 6.3, by (1) and Lemma 5.7 applied in the

(Y0,Y1, α, r)-setting, one can check that (u|�ε,σ�, σ1σ>ε + ε1σ≤ε) is an Lr
α-local

solution to (4.1) with initial data vε in the (Y0,Y1, α, r)-setting. The maximality of
(v, τ ) ensures that σ ≤ τ a.s. on {σ > ε}, and u = v a.e. on �ε, σ �. It remains to prove
P(ε < σ < τ) = 0. By Proposition 2.5, and (2), we have
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u = v ∈ C((ε, σ ]; Ŷ Tr
r̂ ) ∩ Lr̂

loc((ε, σ ]; Ŷ1)
⊆ C((ε, σ ]; XTr

κ,p) ∩ L p
loc((ε, σ ]; X1− κ

p
) a.s. on {ε < σ < τ }.

where we also used that r̂ ≥ p. Since τ ≤ T a.s.,

P(ε < σ < τ) = P

(
{ε < σ < τ } ∩ {

lim
t↑σ u(t) exists in XTr

κ,p, ‖u‖L p(0,σ ;X1− κ
p
) < ∞})

≤ P

(
σ < T, lim

t↑σ u(t) exists in XTr
κ,p, ‖u‖L p(0,σ ;X1− κ

p
) < ∞

)
= 0,

where we used (4.12) and Theorem 4.9(3). This completes the proof. �

7. A 1D problem with cubic nonlinearities and colored noise

The aim of this subsection is to demonstrate our main results in a fairly simple
situation. In particular, we created this section to illustrate how Sects. 4 and 6 can be
used to transfer the results in an L2(L2)-setting to L p(Lq). The arguments used in
this simple 1d case can be extended to other situations, and this will be done in [6,7].

Below we study the existence and regularity of global solutions to{
du − ∂2x u dt = ∂x ( f (·, u))dt + g(·, u)dwc

t , on T,

u(0) = u0, on T,
(7.1)

where u : [0,∞)×�× T → R is the unknown process and wc
t is a colored noise on

T, i.e., an Hλ(T)-cylindrical Brownian motion (see, e.g., [3, Definition 2.11]). Here,
for the sake of simplicity we will assume λ ∈ ( 12 , 1). Throughout this section we write
Hs(T) := Hs,2(T) for s ∈ R.

7.1. Statement of the main results

Let us begin by listing our assumptions.

Assumption 7.1. λ ∈ ( 12 , 1).
(1) f : R+×�×T×R → R and g : R+×�×T×R → R areP⊗B(T)⊗B(R)-

measurable;
(2) f (·, 0) ∈ L∞(R+ ×�× T) and g(·, 0) ∈ L∞(R+ ×�× T). Moreover, there

exists ν ∈ (0, 2] such that a.s. for all t ∈ R+, x ∈ T and y, y′ ∈ R,

| f (·, y)− f (·, y′)| � (1 + |y|2 + |y′|2)|y − y′|,
|g(·, y)− g(·, y′)| � (1 + |y|2−ν + |y′|2−ν)|y − y′|.

Next, we define weak solutions to (7.1) on I T where T ∈ (0,∞]. To this end, we
suitably interpret the term g(·, u)dwc

t in (7.1). The operator Mg(·,u) denotes multi-
plication by g(·, u). Since λ > 1

2 , by Sobolev embeddings ι : Hλ(T) → Lη(T) for
all η ∈ (1,∞) and therefore, by Hölder’s inequality, we may consider Mg(·,u) as a
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multiplication operator from Lη(T) into L2(T), where u ∈ H1(T). Typical examples
of nonlinearities f and g which satisfy Assumption 7.1 are given by

f (y) = ay3, and g(y) = by3−ν, a, b ∈ R.

For T ∈ (0,∞]. We say that (u, σ ) is a weak solution to (7.1) on I T if (u, σ ) is an
L2
0-maximal local solution to (4.1) on I T (see Definitions 4.1, 4.2, and Sect. 4.3 for the

extension to [0,∞)) with p = 2, κ = 0, H = Hλ(T), X0 = H−1(T), X1 = H1(T),
and for v ∈ X1,

A(·)v = −∂2x v, B(·)v = 0,

F(·, v) = ∂x ( f (·, v)), G(·, v) = Mg(·,v).
(7.2)

Weak solutions are unique by maximality. We say that (u, σ ) (or simply u) is a global
weak solution to (7.1) provided (u, σ ) is a weak solution to (7.1) on [0,∞) with
σ = ∞ a.s. Note that in the above the term weak is meant in the analytic sense and is
motivated by the choice X0 = H−1(T).
For s1, s2 ∈ (0, 1), Cs1,s2([a, b] × T) denotes the space continuous functions on

u : [a, b] × T → R for which there exists a C ≥ 0 such that

|u(t1, x1)− u(t2, x2)| ≤ C(|t1 − t2|s1 + |x1 − x2|s2), t1, t2 ∈ [a, b], x1, x2 ∈ T.

Theorem 7.2. (Local existence and regularity) Let Assumption 7.1 be satisfied. Then
for any u0 ∈ L0

F0
(�; L2(T)), (7.1) has a weak solution on [0,∞) such that

u ∈ L2
loc([0, σ ); H1(T)) ∩ C([0, σ ); L2(T)) a.s. (7.3)

Moreover, u instantaneously regularizes in time and space:

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (Iσ ; H1−2θ,ζ (T)) a.s. for all r, ζ ∈ (2,∞). (7.4)

In particular,

u ∈
⋂

θ∈(0,1/2)
Cθloc(Iσ ;C1−2θ (T)) ⊆

⋂
θ1∈(0,1/2), θ2∈(0,1)

Cθ1,θ2loc (Iσ × T) a.s. (7.5)

Under additional assumptions on the nonlinearities f and g but keeping still keep-
ing u0 ∈ L0

F0
(�; L2(T)), one can prove higher-order regularity result by using the

bootstrap argument of Sect. 6 (cf. [6, Theorem 2.7]) or by using Schauder theory. We
emphasize that the main difficulty is to pass from (7.3) to (7.4). The regularization
effect in (7.4)-(7.5) is also nontrivial if g ≡ 0, and even in that case it appears to be
new (see the discussion related to (1.6) for details).

Next we will prove a global existence result under a sublinearity assumption on
g (but without further growth conditions on f ). It is possible to further weaken the
growth condition on g under dissipativity conditions on f , and we will consider this
in a higher-dimensional setting in [8].
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Theorem 7.3. (Global existence and regularity) Let Assumption 7.1 be satisfied. As-
sume that f (t, x, y) does not depend on x, and there exists a Cg > 0 such that

|g(t, x, y)| ≤ Cg(1 + |y|) a.s. for all t ∈ R+, x ∈ T and y ∈ R. (7.6)

Then for any u0 ∈ L0
F0
(�; L2(T)), (7.1) has a global weak solution u. In particular,

u satisfies (7.3)-(7.5) with σ = ∞ a.s. Moreover, if u0 ∈ L2(�; L2(T)), then for each
T ∈ R+ there exists a C > 0 independent of u0 such that

E

[
sup
s∈IT

‖u(s)‖2L2(T)

]
+ E‖u‖2L2(IT ;H1(T))

≤ C(1 + E‖u0‖2L2(T)
). (7.7)

By Lemma 6.10 and Theorem 7.3 we can extrapolate global existence of solutions
to (7.1) with rough initial data. To this end we need to introduce (s, q, p, κ)-weak
solutions to (7.1). Let T ∈ (0,∞] and s ∈ (0, 1). We say that (u, σ ) is a (unique)
(s, q, p, κ)-weak solution to (7.1) on I T if (u, σ ) is an L p

κ -maximal local solution to
(4.1) with the choice (7.2), X0 = H−1−s,q(T), X0 = H1−s,q(T) and H = Hλ(T).
As above, (u, σ ) (or simply u) is a global (s, q, p, κ)-weak solution to (7.1) if (u, σ )
is a (s, q, p, κ)-weak solution to (7.1) on [0,∞) with σ = ∞ a.s.

Theorem 7.4. (Global existence and regularity with rough initial data) Suppose that
Assumption 7.1 and (7.6) hold. Let s ∈ (0, 13 ), p, q ∈ (2,∞) be such that

q ∈
(
2,

2

1 − 2s

)
and

1

p
+ 1

2q
≤ 3 − 2s

4
.

Set κcrit = −1 + p
2 (

3
2 − s − 1

q ). Then for any u0 ∈ L0
F0
(�; B

1
q − 1

2
q,p (T)), (7.1) has a

global (s, q, p, κcrit)-weak solution u on [0,∞) such that

u ∈ L p
loc([0,∞), wκcrit; H1−s,q(T)) ∩ C([0,∞); B

1
q − 1

2
q,p (T)) a.s. (7.8)

and u satisfies (7.4)-(7.5) with σ = ∞.

Letting s ∈ (0, 13 ) and q ∈ (2, 6) be large, Theorem 7.4 ensures global exis-
tence for initial data in critical spaces with negative smoothness up to − 1

3 . Since

L2(T) ↪→ B
1
q − 1

2
q,p (T) this improves Theorem 7.3. The proof of Theorem 7.4 also

yields instantaneous regularization results for (s, q, p, κcrit)-weak solutions to (7.1)
without condition (7.6).

7.2. Proofs of Theorems 7.2–7.4

Throughout this subsection, to abbreviate the notation, we often write Lq , Hs,q ,
Bs
q,p, etc., instead of Lq(T), Hs,q(T), Bs

q,p(T). We begin by proving Theorem 7.2.
In Roadmap 7.5 we summarized the strategy to obtain (7.4)–(7.5) using the results in
Sect. 6.
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Roadmap 7.5. (Instantaneous regularity for critical problems with p = q = 2)

(a) Consider (7.1) in the (H−1−ε, H1−ε, r, α)-setting with ε ≥ 0 small, and for
ε = 0 obtain a local solution from Theorem 4.3 (see Step 1 below);

(b) exploit the case ε > 0 to bootstrap time regularity via Proposition 6.8 (Step 2a
below) and Corollary 6.5 (Step 2b below). Here we create a weighted setting
in time, but we lose some regularity in space. We recover space regularity via
Theorem 6.3 still in case of an L2-setting in space (Step 2c below);

(c) apply Theorem 6.3 once more to bootstrap regularity in space by considering
(7.1) in the (H−1,ζ , H1,ζ , r, α)-setting where ζ > 2 (Steps 3 and 4 below).

After this brief overview we will now actually start the proof.

Proof of Theorem 7.2. The proof will be divided into several steps. Recall that the
operator −#s,q : H2+s,q(T) ⊆ Hs,q(T) → Hs,q(T) has a bounded H∞-calculus of
angle 0 for all s ∈ R and q ∈ (1,∞) (see [24, Theorem 10.2.25] for the case of R

d ).
Thus, by Theorem 3.8, for all r ∈ (2,∞), q ∈ [2,∞) and α ∈ [0, r2 − 1) (allowing
r = q = 2 and α = 0 as well) we have

−#s,q ∈ SMR•
r,α(s, T ) for all 0 ≤ s < T < ∞ (7.9)

and that Assumption 4.5 holds for � = α. The complex and real interpolation spaces
below will be obtained via [11, Theorem 6.4.5].
Step 1: For each u0 ∈ L0

F0
(�; L2) there exists a weak solution (u, σ ) to (7.1) on

[0,∞). Moreover, for all r ∈ (2,∞), α ∈ [0, r2 − 1) and ε ∈ [0, 12 ) Hypothesis
H(H−1−ε, H1−ε, α, r) holds, and Assumption 4.7 holds in the (H−1−ε, H1−ε, r, α)-
setting provided

1 + α

r
≤ 1

2
− ε

2
, (7.10)

where the corresponding trace space B
1−ε−2 1+α

r
2,r is critical for (7.1) if and only if

(7.10) holds with equality. In this step we set X0 = H−1−ε and X1 = H1−ε. Thus,
X1/2 = H−ε and XTr

α,r = B
1−ε−2 1+α

r
2,r . To estimate F , note that by Assumption 7.1,

for all v, v′ ∈ H1,

‖∂x ( f (·, v))− ∂x ( f (·, v′))‖H−1−ε � ‖ f (·, v)− f (·, v′)‖H−ε
(i)
� ‖ f (·, v)− f (·, v′)‖Lξ
(i i)
� (1 + ‖v‖2L3ξ + ‖v′‖2L3ξ )‖v − v′‖L3ξ

(i i i)
� (1 + ‖v‖2H θ + ‖v′‖2H θ )‖v − v′‖H θ , (7.11)

where ξ = 2
1+2ε ∈ (1, 2) (here we used ε < 1

2 ), θ = 1
3 − ε

3 and in (i), (i i i) we used

the Sobolev embeddings and in (i i) Hölder’s inequality with exponent (3, 32 ). Since
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[H−1−ε, H1−ε]φ = H−1−ε+2φ for all φ ∈ (0, 1), setting p = r , κ = α, mF = 1,
ρ1 = 2, and β1 = ϕ1 = 1+ε+θ

2 = 2
3 + ε

3 , the condition (4.3) becomes

1 + α

r
≤ 3

2
(1 − ϕ1) = 1

2
− ε

2
,

which coincides with (7.10).
Next we estimate G. Since λ > 1

2 by Assumption 7.1, it follows from [24, Example
9.3.4] that ι : Hλ → Lη belongs toγ (Hλ, Lη) for allη ∈ [1,∞). By the ideal property
of γ -radonifying operators (see, e.g., [24, Theorem 9.1.10]), for all v, v′ ∈ H1−ε,

‖G(·, v)− G(·, v′)‖γ (Hλ,H−ε) � ‖G(·, v)− G(·, v′)‖γ (Hλ,Lξ )

≤ ‖ι‖γ (Hλ,Lη)‖Mg(·,v) − Mg(·,v′)‖L (Lη,Lξ )

≤ Cλ,η‖g(·, v)− g(·, v′)‖L$ , (7.12)

where ξ = 2
1+2ε is as above, and we applied Hölder’s inequality with 1

$
+ 1

η
= 1

ξ
.

Therefore, by Assumption 7.1 and Hölder’s inequality with exponents (3 − ν, 3−ν2−ν ),

‖G(·, v)− G(·, v′)‖γ (Hλ,H−ε) �
∥∥(1 + |v|2−ν + |v′|2−ν)|v − v′|∥∥L$

≤ (1 + ‖v‖2−ν
L(3−ν)$ + ‖v′‖2−ν

L(3−ν)$ )‖v − v′‖L(3−ν)$
Setting $ = 3ξ/(3 − ν), by (7.11), the latter and X1/2 = H−ε, it follows that (HG)
holds with mG = 1, ρ2 = 2 − ν, ϕ2 = β2 = ϕ1 and (4.5) holds with strict inequality.
Therefore, if ε = 0, Theorem 4.3 with p = 2, κ = 0, Fc = F and Gc = G implies

existence and uniqueness of a weak solution to (7.1). The other assertions of Step 1
follow from the above considerations for general ε ∈ [0, 12 ).
Step 2: The weak solution (u, σ ) provided by Step 1 verifies

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (Iσ ; H1−2θ (T)), a.s. for all r ∈ (2,∞). (7.13)

To prove this regularization effect in time, we will first use Proposition 6.8 to create
a weighted setting with a slight increase in integrability. After that we will apply
Corollary 6.5 to extend the integrability to arbitrary order. In the above procedure
we lose some space regularity, and this will be recovered by applying Theorem 6.3.
Observe that it suffices to consider r large. The proof is split into several sub-steps.

Step 2a: For each ε ∈ (0, 12 ), (7.13) holds with H θ,r
loc (Iσ ; H1−2θ (T)) replaced

by H θ,6
loc (Iσ ; H1−2θ−ε(T)). It suffices to apply Proposition 6.8, with Y0 = H−1−ε,

Y1 = H1−ε, X0 = H−1, X1 = H1, δ = ε
2 , p = 2, and α > 0 such that 1

2 = 1+α
6 + δ.

Since ε ∈ (0, 1/2), we have α ∈ (0, 2). Recall from Step 1 that ϕ1 = ϕ2 = 2
3 . The

requirements of Proposition 6.8 are now clear from the above choices and Step 1.
Step 2b: For each ε ∈ (0, 12 ) and r̂ ∈ [6,∞), (7.13) holds with H θ,r

loc (Iσ ; H1−2θ (T))

replaced by H θ,̂r
loc (Iσ ; H1−2θ−ε(T)). This is immediate from Step 1, Step 2a, and

Corollary 6.5 applied with Xi = H−1+i , p = 2, κ = 0, Yi = H−1+2i−ε, r = 6,
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α = 2− 3ε and r̂ ∈ [6,∞) arbitrary. Note that assumption (2) is satisfied due to Step
1. Condition (1) is satisfied with δ = ε

2 , r = 6, ε < 1
3 and κ = 0. Finally, note that

Y Tr
r = B

1− 2
r −ε

2,r ↪→ L2 = XTr
p since 1 − 2

r − ε > 0.

Step 2c: Proof of (7.13). Set Xi = Ŷi = H−1+2i , Yi = H−1+2i−ε,

α = 0, α̂ > 0, r = r̂ ≥ 6, ε ∈ (0, 12 ), such that
1 + α̂

r
= 1

r
+ ε

2
. (7.14)

To gain space regularity, it suffices to check the conditions (1)–(3) of Theorem 6.3.
(1): By Step 1 and (7.9), Hypothesis H(H−1−ε, H−1−ε, α, r) and Assumption 4.5

hold provided (7.10) is satisfied for (r, α, ε). The required regularity of u also follows
from Step 2b. The remaining conditions follow as in Step 2b.
(2): This follows from Step 1 with ε = 0 and the fact that 1+α̂

r < 1
2 . Moreover, by

(7.10)with ε = 0 the spaceY Tr
α̂,̂r = B

1−2 1+α̂
r

2,r is not critical for (7.1) in the (Ŷ0, Ŷ1, r̂ , α̂)-
setting.

(3): By (7.14), one has Y Tr
r = B

1−ε− 2
r

2,r = B
1−2 1+α̂

r
2,r = Ŷ Tr

α̂,̂r . Also by (7.14) and
Lemma 6.2(4) applied with ε replaced by ε/2, the embedding condition (6.1) holds.

Step 3: For all ζ, r ∈ (2,∞) and α ∈ [0, r2 − 1), HypothesisH(H−1,ζ , H1,ζ , α, r)
holds, Assumption 4.7 holds in the (H−1,q , H1,q , α, r)-setting and the corresponding

trace space B
1−2 1+α

r
ζ,r is not critical for (7.1). Let us begin by estimating F . Note that

by Assumption 7.1, for all v, v′ ∈ H1,ζ ,

‖∂x ( f (·, v))− ∂x ( f (·, v′))‖H−1,ζ � ‖ f (·, v)− f (·, v′)‖Lζ
(i)
� (1 + ‖v‖2L3ζ + ‖v′‖2L3ζ )‖v − v′‖L3ζ

(i i)
� (1 + ‖v‖2

H
2
3 ζ,ζ

+ ‖v′‖2
H

2
3 ζ,ζ
)‖v − v′‖

H
2
3 ζ,ζ
,

where in (i) we used Hölder’s inequality with exponent (3, 32 ) and in (i i) the Sobolev

embedding H
2
3 ζ,ζ ↪→ L3ζ . Since [H−1,ζ , H1,ζ ]θ = H−1+2θ,ζ for all θ ∈ (0, 1),

setting mF = 1, ρ1 = 2, β1 = ϕ1 = 1
2 + 1

3q , condition (4.3) becomes

1 + α

r
≤ 3

2
(1 − ϕ1) = 3

4
− 1

2ζ
.

Since 3
4− 1

2ζ >
1
2 due to ζ > 2 and 1+α

r < 1
2 for allα ∈ [0, r2−1), the above estimate is

always strict and hence noncriticallity follows. As in (7.12) with Lξ and H−ε replaced
by Lζ , one can estimate G to show that (HG) holds in the (H−1,ζ , H1,ζ , α, r)-setting
with mG = 1, ρ2 = 2 − ν, ϕ2 = β2 = ϕ1 . Moreover, since 1+α

r < 1
2 , one can check

that (4.5) holds with the strict inequality.
Step 4: u satisfies (7.4) and (7.5). Note that (7.5) follows from (7.4), Sobolev

embedding, and standard considerations. To prove (7.4), we apply Theorem 6.3 with
Y0 = H−1+2i , Ŷi = H−1+2i,ζ ,

r = r̂ > 4, α̂ = r̂/4, and α ∈ (̂α, r
2

− 1) arbitrary.



56 Page 88 of 96 A. Agresti and M. Veraar J. Evol. Equ.

Note that α̂ = r
4 <

r
2 − 1. It remains to check Theorem 6.3(1)–(3):

(1): all conditions are clear from Steps 1 and 2, and Y Tr
r = B

1− 2
r

2,r ↪→ L2 = XTr
p ;

(2): all conditions follow from Step 3;

(3): to check Y Tr
r = B

1− 2
r

2,r ↪→ B
1−2 1+α̂

r̂
ζ,r = Ŷ Tr

r̂ ,̂α , by Sobolev embeddings we need
to show that

1 − 2

r
− 1

2
≥ 1 − 2

1 + α̂

r
− 1

ζ
⇔ 2

α̂

r
+ 1

ζ
≥ 1

2
. (7.15)

Since α̂ = r
4 , (7.15) holds for all ζ ∈ (2,∞). Finally, (6.1) follows from Ŷi ↪→ Yi for

i ∈ {0, 1}, Lemma 6.2(2) and the choice α ∈ (̂α, r2 − 1). �

To prove global existence for (7.1) under the assumptions of Theorem 7.3, we fol-
low the roadmap provided in Sect. 4.3. Note that (a)–(b) are contained in the proof of
Theorem 7.2. Our next step is to provide energy estimates under integrability assump-
tions on u0 (see (c)–(d) and Proposition 4.13). The proof is based on an integration by
parts argument. As noticed in (d), we can take advantage of the regularization results
in Theorem 4.3 in the proof below. Indeed, due to (7.4)-(7.5), if we stay away from
t = 0, then we have integrability in time and space of arbitrary order (see (7.17) and
(7.21)).

Lemma 7.6. (Energy estimates) Let Assumption 7.1 be satisfied and suppose that
u0 ∈ L2

F0
(�; L2). Let (u, σ ) be the weak solution to (7.1) on [0,∞) provided by

Theorem 7.2. If (7.6) holds, then for each T > 0 there exists a C > 0 independent of
u, u0 such that

E

[
sup

s∈[0,σ∧T )
‖u(s)‖2L2

]
+ E‖∇u‖2L2(0,σ∧T ;L2)

≤ C(1 + E‖u0‖2L2).

Proof. Let T > 0 be fixed. By replacing σ by σ ∧ T , we may assume that σ takes
values in [0, T ]. Recall that (u, σ ) is the unique weak solution to (7.1), and

u ∈ L2
loc([0, σ ); H1) ∩ C([0, σ ); L2) a.s. (7.16)

Let s > 0 and n ≥ 1 be arbitrary (later on we let s ↓ 0 and n → ∞). By (7.5), the
following stopping time is well-defined

τn := inf
{
t ∈ [s, σ ) : ‖u‖L2(s,t;H1) + ‖u(t)− u(s)‖C(T) ≥ n

}
if σ > s and τn = s if σ ≤ s. Here inf ∅ := σ . Note that limn→∞ τn = σ a.s. on
{σ > s}. Moreover, we set

�s,n := {τn > s, ‖u(s)‖C(T) ≤ n} ∈ Fs . (7.17)

Let

y(t) := sup
r∈[s,t∧τn)

1�s,n‖u(r)‖2L2 +
∫ t

s

∫
T

1[s,t∧τn)×�s,n |∇u(r)|2 dxdr, t ∈ [s, T ].
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It is enough to prove the existence of C > 0 independent of u0, s, n such that

Ey(t) ≤ C(1 + t − s + Ey(s))+ C
∫ t

s
Ey(r)dr, t ∈ [s, T ]. (7.18)

Indeed, by Grownall’s inequality (7.18) implies that for all t ∈ [s, T ],
Ey(t) ≤ CeC(t−s)(1 + t − s + E[1�n‖u(s)‖2L2 ]). (7.19)

The required a priori estimate, follows by letting s ↓ 0 and n → ∞ in (7.19).
For the reader’s convenience, we split the remaining argument into several steps

and we simply write �, τ instead of �s,n, τn , since s and n will be fixed.
Step 1: We apply Itô’s formula to obtain the identity (7.22). To this end, we extend

u to a process v on [s, T ] × � in the following way. Let v ∈ L2((s, T ) × �; H1) ∩
L2(IT ;C([s, T ]; L2)) be the strong solution to the problem

dv = #vdt + f udt + gudWHλ and v(s) = 1�u(s) (7.20)

where by (7.4)-(7.5), and the definition of τ and �, for all q ∈ (1,∞) one has

f u(t) := 1�×[s,τ )∂x ( f (·, u)) ∈ L2((s, T )×�; H−1,q(T)),

gu(t) := 1�×[s,τ )g(·, u) ∈ L2((s, T )×�; Lq(T)).
(7.21)

The existence of v is ensured by (7.9), (7.21), and Proposition 3.9. Note that since
(u, σ ) is a weak solution to (7.1) and v satisfies (7.20), by maximality of (u, σ ) we
get v = u a.e. on � × [s, τ ).
Applying Itô’s formula to ‖v‖2

L2 (see [31, Theorem 4.2.5]), we obtain, a.s. for all
n ≥ 1 and t ∈ [s, T ],

‖v(t)‖2L2 − 1�‖u(s)‖2L2 + 2
∫ t

s
‖∇v(r)‖2L2dr

= −2
∫ t

s

∫
T

1�×[s,τ ) f (r, u(r))∂xu(r) dxdr

+
∫ t

s
1�×[s,τ )‖Mg(r,u(r))‖2γ (Hλ,L2)

dr

+2
∫ t

s
1�×[s,τ )(u(r),Mg(r,u(r))(·))L2 dWHλ(r) =: It + I It + I I It . (7.22)

Step 2: There exists C independent of u, u0, s, n such that

E

∫ t

s
‖∇v(r)‖2L2 dr ≤ 1�‖u(s)‖2L2 + C

(
1 + t − s + E

∫ t

s
1�×[s,τ )‖u(r)‖2L2 dr

)
.

The idea is to take expectations in (7.22). Clearly, E[I I It ] = 0 for all t ∈ [s, T ]. We
claim that It = 0. To see this, it is enough to show that

∫
T
f (t, φ)∂xφ dx ≡ 0 for any

φ ∈ H1,q with q ≥ 6 suitably large. Here we used that u is smooth (see (7.4)).



56 Page 90 of 96 A. Agresti and M. Veraar J. Evol. Equ.

Let (φk)k≥1 in C∞(T) be such that φk → φ in H1,q . By Assumption 7.1 and
f (·, φk) → f (·, φ) in Lq/3. Therefore, f (·, φk)∂xφk → f (·, φ)∂xφ in L1, and hence∫

T

f (·, φ)∂xφdx = lim
k→∞

∫
T

f (·, φk)∂xφkdx = lim
k→∞

∫
T

∂x [F(·, φk)]dx ≡ 0,

where F is such ∂z F(·, z) = f (·, z). Hence It ≡ 0.
It remains to estimate I I . Here we argue as in (7.12). Fix ξ > 2 and let η < ∞ be

such that 1
η

+ 1
ξ

= 1
2 . Using (7.6), a.s. for all r ∈ [s, τ ),
‖Mg(r,u(r))‖γ (Hλ,L2) ≤ C‖Mg(r,u(r))‖L (Lη,L2)

≤ C‖g(r, u(r))‖Lξ
≤ CCg(1 + ‖u(r)‖Lξ )
≤ CCg(1 + ‖u(r)‖1−

2
ξ

H1 ‖u(r)‖
2
ξ

L2)

≤ ‖u(r)‖H1 + C ′Cg(1 + ‖u(r)‖L2)

≤ ‖∇u(r)‖L2 + (C ′Cg + 1)(1 + ‖u(r)‖L2) (7.23)

where C,C ′ only depend on z, ξ and we used H1 ↪→ L∞. Thus, for all t ∈ [s, T ],

|I It | ≤
∫ t

s
1�×[s,τ )‖∇u‖2L2 dr + c

(
t − s +

∫ t

s
1�×[s,τ )‖u‖2L2 dr

)
(7.24)

where c depends only on C,Cg , and where we used the definition of y. Therefore,
taking expectations in (7.22) and (7.24), and using u = v on �×[s, τ ), we obtain the
required estimate in comparison with LHS(7.22).
Step 3: Proof of (7.18). We take absolute values and the supremum over time

in (7.22), and then expectations. We already saw that I ≡ 0 on [s, T ]. Moreover,
E

[
supr∈[s,t] |I Ir |

] ≤ E
[|I It |]which can be estimate by the expectation of RHS(7.24).

To conclude, it remains to estimate I I I . By the scalar Burkholder–Davis–Gundy
inequality, we get

E

[
sup

r∈[s,t]
|I I Ir |

]
≤ CE

[ ∫ t

s
1�×[s,τ )(r)

∥∥∥(u(r),Mg(r,u(r))(·))L2

∥∥∥2
γ (Hλ,R)

dr
]1/2

≤ CE

[ ∫ t

s
1�×[s,τ )(r)‖u(r)‖2L2‖Mg(r,u(r))‖2γ (Hλ,L2)

dr
]1/2

≤ CE

[(
sup

r∈[s,t∧τ)
1�‖u(r)‖2L2

)1/2( ∫ t

s
1�×[s,τ )(r)‖Mg(r,u(r))‖2γ (Hλ,L2)

dr
)1/2]

≤ 1

2
E

(
sup

r∈[s,t∧τ)
1�‖u(r)‖2L2

)
+ C ′

E

[ ∫ t

s
1[s,τ )(r)‖Mg(r,u(r))‖2γ (Hλ,L2)

dr
]
.

where the last term coincides with E|I It |. Thus, by (7.24) and Step 2,

E

[
sup

r∈[s,t]
|I I Ir |

]
≤ 1

2
E

(
sup

r∈[s,t∧τ)
1�‖u(r)‖2L2

)
+ c′′(1+ t − s +E

∫ t

s
‖u(r)‖2L2 dr

)
,
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where c′′ is independent of u0, s, n. Combining the estimates with (7.22), using u = v

on � × [s, τ ), and using the definition of y, we obtain (7.18). �

By Lemma 7.6 we can prove the global well-posedness to (7.1) following Roadmap
4.14(e) in Sect. 4.3. Here the criticality of the L2-setting (see (7.10) with r = 2 and
ε = α = 0), forces us to use Theorem 4.10(3) in the proof below.

Proof of Theorem 7.3. Let (u, σ ) be theweak solution to (7.1) on [0,∞). By Theorem
7.2 and Lemma 7.6 it remains to prove that σ = ∞ a.s.
Let T ∈ (0,∞). Replacing (u, σ ) by (u|�0,σ∧T �, σ ∧T ) it suffices to consider weak

solutions to (7.1) on [0, T ] and to show that σ = T a.s. For this we will use Theorem
4.10(3) with p = 2, κ = 0, X0 = H−1, X1 = H1, and therefore XTr

κ,p = L2. Note
that (7.9) holds, and that Assumption 4.7 is satisfied by Step 1 of the proof of Theorem
7.2. ByProposition 4.13wemay assume that u0 ∈ L2(�; L2). Thus, Lemma7.6 yields

sup
s∈[0,σ )

‖u(s)‖2L2 +
∫ σ

0
‖u(s)‖2H1ds < ∞ a.s.

Therefore, applying Theorem 4.10(3), we obtain

P(σ < T ) = P

(
σ < T, sup

s∈[0,σ )
‖u(s)‖XTr

κ,p
+ ‖u(s)‖L2(Iσ ;X1)

< ∞
)

= 0.

Hence σ = ∞ a.s. Finally, Lemma 7.6 also implies (7.7). �

It remains to prove Theorem 7.4. The idea of the proof is similar as in Roadmap
7.5, but since p > 2 we can use Proposition 6.8 with δ = 0. Moreover, we will use
the extrapolation technique of Lemma 6.10.

Proof of Theorem 7.4. Let T ∈ (0,∞). To prove global well-posedness we apply
Lemma 6.10 (see also Remark 6.11(1)) with Xi = H−1−s+2i,ζ , Yi = H−1+2 j , r = 2,
α = 0, Ŷ j = H−1+2 j,ζ , ζ, r̂ large, and α̂ = r̂

4 as in Step 4 of Theorem 7.2.
First, we check Lemma 6.10(2) with τ = T . As in the proof of Theorem 7.2 one

can check that H(Ŷ0, Ŷ1, r̂ , α̂) holds. The global well-posedness in the (Y0,Y1, 2, 0)-
setting follows from Theorem 7.3 and a translation argument, and the remaining con-
ditions are clear.
It remains to check the local well-posedness and regularity assertions of Lemma

6.10(1), which is the existence of a (s, q, p, κcrit)-weak solution to (7.1) and the
instantaneous regularization requirement in (1). It is enough to show that for any

u0 ∈ L0
F0
(�; B

1
q − 1

2
q,p (T)) there exists a (s, q, p, κcrit)-weak solution (u, σ ) to (7.1) on

[0, T ] such that
u ∈ C(Iσ ; L2(T)) ∩ L2

loc(Iσ ; H1(T)) a.s. (7.25)

Step 1: For all s ∈ (0, 13 ), r ∈ [2,∞), α ∈ [0, r2 − 1) and ζ ∈ (2,∞), Hypothesis
H(H−1−s,ζ , H1−s,ζ , r, α), and Assumption 4.7 hold in the (H−1−s,ζ , H1−s,ζ , r, α)-
setting provided

ζ <
2

s
, and

1 + α

r
+ 1

2ζ
≤ 3 − 2s

4
. (7.26)
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The corresponding trace space B
1−s−2 1+α

r
ζ,r is critical for (7.1) if andonly if (7.26)holds

with equality. In particular, for u0 ∈ L0
F0
(�; B

1
q − 1

2
q,p ) there exists a (s, q, p, κcrit)-weak

solution (u, σ ) to (7.1) on I T . To prove local well-posedness we use Theorem 4.3
with Xi = H−1−s+2i,ζ . We first check (HF) in the (H−1−s,ζ , H1−s,ζ , r, α)-setting.
Fix v, v′ ∈ H1−s,ζ and note that

‖∂x ( f (·, v))− ∂x ( f (·, v′))‖H−1−s,ζ � ‖ f (·, v))− f (·, v′)‖H−s,ζ

(i)
� ‖ f (·, v))− f (·, v′)‖Lψ
� (1 + ‖v‖2L3ψ + ‖v′‖2L3ψ )‖v − v′‖L3ψ

(i i)
� (1 + ‖v‖2H θ,q + ‖v′‖2H θ,ζ )‖v − v′‖H θ,ζ

where in (i)–(i i) we used the Sobolev embedding with −s − 1
ζ

= − 1
ψ
and θ − 1

ζ
=

− 1
3ψ , where θ > 0. To ensure that ψ ∈ (1,∞) one needs ζ > 1

1−s which holds since

ζ > 2 and s < 1
3 . Combining the above identities we have θ = 2

3ζ − s
3 . To ensure

θ > 0 we need ζ < 2
s . Since H θ,ζ = Xβ , we obtain β = 1

3 (
1
ζ

+ s) + 1
2 , and one

can check that β ∈ (1/2, 1). Setting p = r , mF = 1, ρ1 = 2, and β1 = ϕ1 = β the
condition (4.3) becomes

1 + α

r
≤ 3

2
(1 − β) = 3 − 2s

4
− 1

2ζ
.

which coincides with the second condition in (7.26). As in the proof of Theorem 7.2,
one can check that condition (HG) holds in the (H−1−s,ζ , H1−s,ζ , r, α)-setting with
mG = 1, ρ2 = 2 − ν ϕ2 = β2 = ϕ1.
By the above, we can apply Theorem 4.3. It only remains to investigate criticality.

By (7.26), criticality occurs if and only if

1 + κ

p
+ 1

2q
= 3 − 2s

4
. (7.27)

Since 1+κ
p ∈ [ 1p , 12 ), (7.27) is admissible if and only if

1

p
+ 1

2q
≤ 3 − 2s

4
, and

3 − 2s

4
− 1

2q
<

1

2
.

The second inequality in the previous displayed formula yields the limitation q <
2

1−2s . Since
2

1−2s <
2
s due to s <

1
3 , the first condition in (7.26) with q = ζ holds. By

(7.27), κcrit = −1 + p
2 (

3
2 − s − 1

q ) and the corresponding trace space becomes

XTr
κcrit,p

= B
1−s−2

1+κcrit
p

q,p = B
1−s− 3

2+s+ 1
q

q,p = B
1
q − 1

2
q,p ,

which finished this step.
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Step 2: The (s, q, p, κcrit)-weak solution provided by Step 1 verifies

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (Iσ ; H1−s−2θ,q(T)), a.s. for all r ∈ (2,∞). (7.28)

As in Step 2 in the proof of Theorem 7.2we use Proposition 6.8 and after that Corollary
6.5. In case κcrit > 0, Step 2a is not needed.
Step 2a: There exists an r > p such that (7.28) holds. Let ϕ j = β where β ∈

(1/2, 1) is as in Step 1. Let r > p be such that 1
r ≥ max j ϕ j − 1+ 1

p . Then the claim
follows by applying Proposition 6.8 with δ = 0.

Step 2b: (7.28) holds. If κcrit > 0, then the claim follows from Corollary 6.5 applied
to Yi = Xi = H−1−s+2i,q , r = p and α = κcrit. Next we consider the case κcrit = 0.
Let r be as in Step 2a and let α ∈ (0, r2 − 1) be such that 1

p = 1+α
r . By Step 2a, the

assumptions of Corollary 6.5 are satisfied and this concludes the required regularity.
Step 3: The (s, q, p, κcrit)-weak solution provided by Step 1 verifies

u ∈
⋂

θ∈[0,1/2)
H θ,r
loc (Iσ ; H1−2θ,q(T)), a.s. for all r ∈ (2,∞).

In particular, (7.25) holds. To conclude, it is enough to apply Theorem 6.3 to Yi =
H1−s−2i,q , Ŷi = H−1+2i,q ,

α = 0, α̂ > 0, r = r̂ > p large enough and
1 + α̂

r
= 1

r
+ s

2
.

To check the assumptions of Theorem 6.3 one can use Step 2 and argue in a similar
way as in Theorem 7.2 Step 2c. �
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